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Abstract 

In the North Sea many fields are water flooded. Subsequent to water flooding large amounts 

of water flood residual oil will be left in reservoirs. The challenge is how to improve the oil 

recovery. On the Ekofisk field such a challenge is to be addressed. The entire reservoir on 

the Ekofisk field is currently water flooded. The current plan is to continue water injection 

until the end of license in 2028. To improve oil recovery, EOR mechanisms have been 

proposed. The EOR mechanism hydrocarbon water-alternating gas has shown good 

potential and will be studied in this thesis. 

The main purpose of this thesis is to evaluate WAG injection at Ekofisk. A number of 

factors may affect WAG performance, in this study the importance of some of these will be 

evaluated through simulation work. Miscibility evaluation is performed using a slim-tube 

simulation model. Mechanistic models are further used to evaluate other key parameters 

such as trapped gas saturation, hysteresis effect, fracture-matrix system and SORM. Finally 

a sector model is used to optimize WAG ratios and WAG slug sizes, and to make a 

comparison of WAG scenarios to a water flood case. 

The slim-tube simulation work resulted in the conclusion to use immiscible WAG injection 

by dry hydrocarbon gas, because of high minimum miscibility pressure and minimum 

miscibility enrichment. 

Mechanistic simulations indicated that trapped gas and SORM should be included in WAG-

modeling to avoid over prediction of recoveries for a WAG applications. 

Sector simulations showed incremental oil potential to the water flood case for all WAG 

scenarios. WAG ratio of 1 to 2 gave the largest increase with 8.4 million BOE. Increasing 

WAG ratio showed decreasing potential. Similar, the WAG slug size of 0.4 pore volumes 

was best with 4.4 million BOE incremental to the base case. WAG slug sizes showed 

decreasing potential with decreasing slug sizes.  

The results from the sector model indicated the need of optimization of the total volume of 

gas injected for the WAG application, which is recommended for further studies, together 

with introducing local grid refinement to avoid numerical dispersion and instability 

problems.  
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1 Introduction 

Subject and problem statement 

In the North Sea many fields are water flooded. Subsequent to water flooding large amounts 

of water flood residual oil will be left in reservoirs. The challenge is how to improve the oil 

recovery. It has been recognized that there is large potentials for enhanced oil recovery 

(EOR). One of the EOR-mechanisms is hydrocarbon water-alternating-gas (HC-WAG) 

injection.   

On the Ekofisk field such a challenge is to be addressed. The entire reservoir on the Ekofisk 

field is currently water flooded, both vertically and laterally. The current plan is to continue 

water injection until the end of license in 2028. Since large amounts of water flood residual 

oil is expected in the reservoir following water flooding, several EOR-mechanisms have 

been considered to further improve oil recovery on the Ekofisk field. Of the mechanisms, 

HC-WAG has shown good potential and is the EOR-mechanism which is studied in this 

thesis. 

To model the impact and accurately evaluate the potential oil recovery from a tertiary HC-

WAG injection, understanding of parameters and concepts on microscopic scale is essential. 

Of the important parameters and concepts for WAG-displacement, trapped gas saturation, 

relative permeability hysteresis effect and miscible flood residual oil saturation (SORM) are 

evaluated on a pore-scale perspective in this study. During WAG-displacement both two-

phase flow and three-phase flow are encountered in different regions of the reservoir. 

Hence, it is important to understand and model related concepts such as relative 

permeability and capillary pressure properly based on the number of mobile phases. 

The displacement efficiency of WAG-processes is strongly dependent on whether the 

injected gases are miscible or immiscible with the reservoir oil.  To evaluate the condition 

of gas injection, miscible or immiscible, tests are performed on minimum miscibility 

pressure (MMP) and minimum miscibility enrichment (MME) of the injected gas and 

reservoir oil system. Since the Ekofisk field is a fractured chalk reservoir, understanding the 

matrix – fracture mechanisms will also be important to successfully model a WAG 

injection.   
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Evaluation of problem statement 

In this thesis evaluation of miscibility is performed using a slim-tube simulation model. 

Evaluation of miscibility is determined based on the minimum miscibility pressure and the 

minimum gas enrichment. Based on the results from the miscibility evaluation a decision 

will be taken to proceed with miscible or immiscible displacement for the further studies.  

Important reservoir parameters and the understanding of reservoir mechanisms in a WAG-

displacement are then modeled mechanisticly. A homogenous matrix model is used to 

perform sensitivity runs to evaluate trapped gas saturation and relative permeability 

hysteresis effect in WAG injection. Further, different matrix-fracture models are developed 

to identify the impact of different matrix-fracture systems and the residual oil saturation for 

each system is used as basis for evaluation on SORM. Finally, a sector model, initialized 

with some of the main parameters from results for the mechanistic models, is used to 

evaluate the impact of different WAG-ratios and slug sizes, and for comparison with a water 

flood scenario. 

Structure of thesis 

The thesis is initiated with a chapter describing the Ekofisk field history and the background 

for this thesis. Next a literature study on WAG-displacement is given, with presentations of 

WAG projects worldwide, in the North Sea, and previous WAG-studies on the Ekofisk field 

that are of interest to this thesis. 

The next chapter is a theory chapter. The chapter is initiated with presentation of general 

reservoir and fluid parameters for reservoir simulations which also are interesting regarding 

the main parameters of this study. Definitions and explanations of the main parameters and 

concepts in this thesis as well as important recovery mechanisms for a WAG-process and 

evaluation of miscibility are then presented. The last part of the theory chapter is an 

introduction to the full field numerical simulation tool, PSim, which is used for modeling. 

The next chapters include descriptions of the three different types of simulation models 

utilized in this thesis, slim-tube model, mechanistic models and sector model, followed by 

results and discussion of simulations in these models.  In the last chapter main conclusions 

from the study and recommendations for further research and simulation work is given. 
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2 Ekofisk field history and background 

The Ekofisk field is a giant oil producing field located in block 2/4, in the southern part of 

the Norwegian Sector of the North Sea, about 300 kilometers southwest of Stavanger. The 

Ekofisk field is part of the Greater Ekofisk Area, shown in figure 2.1, which makes up 

totally eight fields. Four of these fields, Ekofisk, Eldfisk, Embla and Tor, are still producing 

(ConocoPhillips Company (1)) and are part of the production license PL018, which is 

operated by ConocoPhillips, former Phillips, on behalf of the license co-ventures. Operator 

ConocoPhillips currently own 35.11 % of the PL018, with the partners Total 39.9 %, Eni 

Norge AS 12.39 %, Statoil Petroleum AS 7.6 % and Petoro AS 5 % (ConocoPhillips 

Company (2)). 

 

Figure 2.1: Location of the Greater Ekofisk Area, where the Ekofisk field is one of four producing fields  
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Discovery of the Ekofisk Field 

The petroleum industry first got their eyes on the oil and gas potential in the North Sea in 

1959 with the discovery of the giant Groningen onshore gas field in the Netherlands. In 

1963 the Phillips Norway Group started seismic surveys in the Norwegian Sector of the 

North Sea. Two years later, in the 1965, the Norwegian government awarded 22 production 

licenses, thereby three to the Phillips Norway Group. Phillips started their exploration 

drilling in 1967, which in 1968 led to the first discovery of petroleum in the Norwegian 

sector with the Cod gas-condensate sandstone reservoir. Further drilling indicated though 

that the Cod discovery was not large enough for profitable production, and the field was 

later abandoned (Dangerfield, et al., 1987), (Norsk Teknisk Museum).   

By the fall of 1969 exploration efforts in the North Sea were declining. Over 200 

exploration wells had been drilled, thereby 32 Phillips wells, and none had found 

commercial oil (Sulak, 1990), (Dangerfield, et al., 1987). However, a major turning point in 

exploration for petroleum in the North Sea was about to occur. On October 25th 1969, a 

Phillips exploration well drilled from the rig Ocean Viking penetrated an oil-bearing chalk 

reservoir. Violent autumn storms postponed further drilling and made it difficult to carry out 

production tests to confirm the discovery. However, early December the process could 

continue and by little Christmas Eve many knew that a gigantic oil discovery at Ekofisk was 

made. The oil discovery at Ekofisk was though not public known before June 1970. 

The Ekofisk field is the first commercial oil field in the Norwegian North Sea. The 

discovery at Ekofisk field is seen as the major turning point for petroleum exploration in 

Western Europe, and rejuvenated the search for oil in the North Sea. Over the next years, 

five additional fields were discovered in what is now known as the Greater Ekofisk Area 

(Bark, et al., 1979).   

 

Ekofisk field development 

Test production from the Ekofisk field was started in 1971 from the discovery well and 

three other subsea appraisal wells.  Successful test production led to the decision already in 

1972 to develop the Ekofisk field with permanent structures. Permanent production facilities 
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with a design capacity of 54 wells and 300 000 standard oil barrels per day (STB/D) became 

operational in May 1974 (Sulak, 1990).  

The produced oil was initially stored in a one million barrel concrete storage tank and sold 

via tankers, until October 1975 when a 400 kilometer oil pipeline and stabilizing facilities at 

Teesside, England were commissioned. Produced gas was initially flared or re-injected into 

the reservoir via injection wells, until a 500 kilometer gas pipeline to the gas plant in 

Emden, West Germany was put into service in September 1977. After the installation of the 

gas pipeline, only gas in excess of contract quantities was re-injected into the reservoir. The 

oil production at Ekofisk peaked in October 1976 with a production of 350 000 STB/D 

(Sylte, et al., 1999), (Takla, et al., 1989), (Sulak, 1990).   

Oil recovery due to primary depletion, with additional re-injection of gas in excess of 

contract quantities, was estimated to be 18 % of original oil in place (OOIP). Because of this 

low oil recovery improved recovery studies were initiated soon after the start of production 

in 1971 (Christian, et al., 1993).   

 

Water injection 

A lot of effort was performed to evaluate how to improve the oil recovery. Water flood 

laboratory experiments on core plugs initiated in 1977 showed that the Tor formation 

exhibited excellent spontaneous imbibition characteristics, but that the Ekofisk formation 

had poor imbibition characteristics. In 1981 a water-flood pilot was initiated in the Tor 

formation to evaluate water flood performance. The water flood pilot was successful and 

confirmed the laboratory results. These factors were used as justification for the decision to 

water flood the northern Tor formation. A 30 wells water-injection platform (2/4 K) with an 

injection capacity of 375,000 barrels of water per day (BWPD) was approved and water 

injection commenced in November 1987 (Sylte, et al., 1988, 1999), (Sulak, 1990). 

Despite the poor imbibition experimental results for the Ekofisk formation a water flood 

pilot was initiated to the Lower Ekofisk formation in 1984. The pilot was successful and 

indicated that water injection of the Ekofisk formation could be effective. The success of 

this pilot combined with earlier positive results from the water flooding of the northern Tor 

formation led to the decision to expand water injection. This expansion included injection of 
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water into the Lower Ekofisk formation as well as expansion of the Tor formation water 

flood to include the remaining part of the formation. The expanded water flood project was 

approved in 1989 and increased water injection capacity to 820 000 BWPD (Sylte, et al., 

1988, 1999). Following a major field study in 1992, undertaken to determine future 

operating strategy for the Ekofisk field, the conclusion was drawn to start water flooding of 

the Upper Ekofisk formation as well (Christian, et al., 1993). 

Currently the entire reservoir on the Ekofisk field is being water flooded, both vertically and 

laterally. The plan is to continue water injection until the end of license in 2028. The 

estimated recovery factor subsequent to water flooding is expected around 50 percent. 

 

Geological overview 

The Ekofisk field is located in the Central Graben in the southern part of the Norwegian 

Sector of the North Sea. The Central Graben area is a complicated rift system which was 

created through several phases of extension in the Jurassic period. In the Late Jurassic 

period thick accumulations of marine shales were deposited in the Central Graben basin. 

These were very rich in organic content and made up the main source rock in this area. The 

influx of shale initiated movements in the form of salt swells which eventually created the 

important hydrocarbon traps in the Ekofisk area. By Maastrichtian time in Late Cretaceous, 

chalk deposition was widespread in the North Sea with deposition-centers located in the 

Ekofisk area. Over 3 000 feet of chalk had accumulated in this area by the end of Danian 

time in Early Paleocene. In the following Tertiary and Quaternary periods more than 10 000 

feet of clastic sediments were deposited in the Ekofisk area, which now comprise the 

Ekofisk overburden. The great layer thickness and following weight of these overburden 

layers have induced natural fracturing of the chalk (Bark, et al., 1979).  Figure 2.2 illustrates 

the main geological events for the Ekofisk field and the geological timing of these events. 
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Figure 2.2: Geological time scale of important geological events for the Ekofisk field 

  

The Ekofisk field structure is an elongated anticline, 10 km long and 5 km wide, with the 

major axis oriented north-south (Jakobsson & Christian, 1994). The chalk making up the 

reservoir rock is soft, fine textured, highly porous and is composed almost entirely of 

skeletal carbonate, particulary from coccolithophorid algaes (Dangerfield, et al., 1987). The 

fairly similar patterns of chalk sedimentation within the producing part of the Ekofisk field 

constitute a rather continuous background of chalk deposition interrupted in places by 
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masses of chalk material deposited elsewhere and introduced in form of turbidities, slumps 

and debris flows. The producing formations of the Ekofisk field are composed almost 

exclusively of chalk with similar compositional and mechanical characteristics (Johnson, et 

al., 1989). 

 

Formations of the Ekofisk field 

The Ekofisk reservoir consists of chalk from the Masstrichtian through Upper Danian Age, 

Late Cretaceous to Early Paleocene epoch. The producing horizons of the Ekofisk field are 

the Ekofisk and the Tor formations (Johnson, et al., 1989).  The Ekofisk field is situated at a 

sea depth of approximately 200 feet, and the top of the Ekofisk reservoir located at a depth 

of about 9600 feet.  

The Ekofisk formation is divided into three main geological layers. The Upper Ekofisk layer 

is EA, followed by the middle layer, EM, and the Lower Ekofisk layer, EL. A tight non-

producible impermeable zone, represented by the layer EE, separates the Ekofisk and the 

Tor formations. The underlying Tor formation is subdivided into three geological layers, the 

upper layer, TA, the middle layer, TB, and the lower layer TC. The uppermost layer, TA, 

forms the best quality reservoir and also contains the bulk of the reserves in the Tor 

formation. The Lower Ekofisk layer, EL, is mainly composed of reworked chalk and makes 

up a good reservoir rock. The upper Ekofisk is more heterogeneous with a higher degree of 

impurities, mainly silica (Takla, et al., 1989), (Jakobsson, et al., 1994), (Agarwal, et al., 

1997).  

The full field simulation model of the Ekofisk field is divided into 22 layers. The upper 

eleven layers comprise the Ekofisk formation, the underlying three layers make up the tight 

zone, and the remaining buttom eight comprise the Tor formation. 

The chalk of the Ekofisk formation has a thickness ranging from 350 to 550 feet with matrix 

porosities ranging from 25 to 48 %, illustrated in figure 2.3, and a low matrix permeability 

of 1 to 4 millidarcies (mD). The Tor formation is slightly thinner than the Ekofisk 

formation, with thickness of 350 to 500 feet with porosities ranging from 25 to 40 % and 

matrix permeability similar to the Ekofisk formation. The impermeable tight zone 

separating the producing part of the two formations has a thickness of 50 to 90 feet. Vertical 
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effective permeability is between 0.001 and 0.1 times that of horizontal effective 

permeability and depends strongly on the presence of vertical barriers (Jakobsson, et al., 

1994). The overburden consists of approximately 9300 feet of clays and shale, which is over 

pressured below approximately 4500 feet.  

 

Figure 2.3: Formations of the Ekofisk field (Sulak, 1990) 

A chalk reservoir at the depth of the Ekofisk reservoir should normally have porosities less 

than 10 %. It is therefore important to understand why diagenesis of the Ekofisk and Tor 

formations has retained porosities ranging from 30 % to over 40 %.  There are several 

possible mechanisms for retaining porosity. At this time, it is appropriate to state that 

anomalously high porosity in Ekofisk field is probably due to a combination of over 

pressuring of the reservoir, magnesium-rich pore fluids and early introduction of 

hydrocarbons into the reservoir (Bark, et al., 1979).   

 

Ekofisk reservoir oil 

The original Ekofisk reservoir fluid was an under-saturated, moderately volatile crude oil at 

initial reservoir absolute pressure of 7103 pounds per square inches (psia) and initial 

reservoir temperature of 268   Fahrenheit (F) at datum depth of 10 400 ft.  The initial oil had 

an average density of about 850 kg/m
3
 and a field wide solution gas to oil ratio (GOR) 

around 1530 standard cubic feet gas per standard oil barrel (SCF/STB). In 1976 the 

reservoir oil went through the oil saturation pressure, which initially was 5560 psia at datum 

depth 10 400 ft, resulting in gas bubbles boiling out of the reservoir oil. The field-wide 

GOR being constant to this date increased to about 9000 SCF/STB by 1986 (Sulak, 1990). 

Water flooding of the formations has resulted in the reservoir pressure again increasing 

above the oil saturation pressure, making the oil under saturated. The current field-wide 
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GOR is approximately 1100 SCF/STB. The observed field-wide GOR history on the 

Ekofisk field is illustrated in figure 2.4. 

 

Figure 2.4: Ekofisk field-wide GOR history 

 

Subsidence of the seafloor 

The potential of compaction for high porosity chalk was recognized before the development 

of the Ekofisk field. However, at that time rock mechanics and structural analysis, coupled 

with case studies, led to development of certain criteria for transfer of reservoir compaction 

into surface subsidence. These criteria indicated that reservoir compaction at Ekofisk should 

not lead to significant subsidence (Sulak, et al., 1989). However, in November 1984 

subsidence of the seafloor in the vicinity of the Ekofisk complex was discovered, 

demonstrating that the initial criterias of subsidence were incorrect.  The seabed under the 

Ekofisk complex had subsided about 10 feet by 1984, illustrated in figure 2.5.  
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 Figure 2.5: Subsidence of Ekofisk seafloor (ConocoPhillips Company(3),2012)  

The subsidence is caused by compaction of the reservoir formations being transmitted to the 

surface through the overburden. Reservoir compaction is caused by deformation of the chalk 

matrix due increase in effective stress on the rock. The effective stress, the difference 

between the overburden load on the rock and the pore pressure within the rock, increased 

due to pressure depletion (Dangerfield, et al., 1987).  Under initial conditions, the pore 

pressure in the reservoir was about 7000 psia. The weight of 3 km thick overburden exerts a 

pressure of 9000 psia, giving a net effective stress of 2000 psia. With the pore pressure 

decreasing due to production, the effective stress increases resulting in compaction of the 

reservoir chalk and following subsidence of the seabed (Jewhurst, et al., 1987). 

The main concerns related to the subsidence were protection of the steel platforms and the 

concrete storage tank. In order to buy time to come up with a solution, produced gas was re-

injected and not sold for a period. In 1986 it was decided to elevate the steel platforms and 

build a concrete protective barrier around the storage tank. All platforms were elevated 

within 1987 and construction of a protective barrier around the storage tank began in May 

1988.  

The stepwise increase of water injection in Ekofisk for the purpose of pressure maintenance 

and improved oil recovery was expected to slow down or eventually stop the subsidence 

rate. Despite slightly increasing reservoir pressure, subsidence continued just about 40 

cm/year to 1998 (Sylte, et al., 1999). After that subsidence rates sharply declined to 

approximately 10 cm/year, which have continued to present time. Figure 2.6 shows the 

subsidence rate for the two platforms, Alpha and Bravo, and for the hotel complex. 
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Figure 2.6: Subsidence rate history at Ekofisk (ConocoPhillips Company(3),2012) 

 

Fracture-matrix mechanism 

The Ekofisk field has a fracture-matrix mechanism which is crucial for the reservoir being 

producible. The permeability of the chalk matrix is between 1 and 4 mD. However, the 

natural fractures can enhance the effective permeability a factor of 50 times the matrix 

permeability in areas. The effective permeability has been calculated from well tests to be 

up to 100 to 150 mD. It has been estimated that the reservoir volume represented by 

fractures is less than 0.5% (Sulak, 1990). 

The fractures in the Ekofisk field are of various origins and can generally be classified as 

stylolite, tectonic, irregular and healed fractures. Stylolite and tectonic fractures, shown in 

figure 2.7, provide enhanced permeability and are therefore of primary interest. The Ekofisk 

formation is dominated by tectonic fractures, and stylolite fractures are rare. The Tor 

formation is dominated by stylolite fractures, but also areas of tectonic fractures (Thomas, et 

al., 1987). The tectonic fractures in the Ekofisk formation have developed parallel and 

conjugate sets of fractures. The intensity of fracturing varies both vertically and areally.  

Highly fractured zone have spacings as small as 5 to 15 centimeters, while zones of lower 

fracture intensity have spacing of 15 to 100 centimeters. The dip of the tectonic fractures are 

mainly sub-vertical with a dip varying from 60 to 80 degrees (Hallenbeck, et al., 1989).  The 

stylolites in the Tor formation are parallel to the beding plan and are usually only a few feet 
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apart. These fractures form permeable zones which can extend laterally for large distances 

(Dangerfield, et al., 1987). 

 

Figure 2.7: Tectonic and stylolite associated fractures (ConocoPhillips Company(3),2012) 

 

Ekofisk drive mechanisms for oil displacement 

Solution gas drive and compaction drive have been the dominant natural production 

mechanisms on the Ekofisk field. Initially, solution gas drive was thought to be the 

dominating drive mechanism. However, the discovery of subsidence in 1984 led to the 

conclusion that compaction drive also was a dominant recovery mechanism. Water influx 

into the Tor formation and oil expansion contributed to oil production the first years. 

Primary depletion was also augmented by gas injection.  

After concluding that water flooding was successful, it was found that the dominating 

processes responsible for this was spontaneous imbibition of water into the chalk. As the 
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Ekofisk field is intensively natural fractured, the surface area subjected to imbibition is 

large, contributing to water injection being effective. When production of formation water 

was observed it indicated that viscous displacement was a contributing drive mechanism for 

oil recovery.  

Future plans  

As earlier mentioned, the current plan is to continue water flooding until the production 

license expires by the end of 2028. However, a wide range of EOR-mechanisms are 

considered for improving the oil recovery beyond the Ekofisk water flood scenario.  

Hydrocarbon WAG, carbon dioxide WAG, water chemistry and chemical flooding are 

among the EOR processes assessed. Extensive laboratory experiments, reservoir simulations 

and even a WAG-pilot, discussed in more detail in chapter 3, have been executed to 

evaluate the incremental recovery potential. None of the EOR scenarios have yet proven to 

be economically accepted to be implemented on full-field scale.  
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3 Literature review 

WAG processes have been applied for more than 50 years with good success in most field 

cases (Christensen, et al., 2001). The first reported WAG application took place in a 

sandstone reservoir in Alberta, Canada in 1957 with a hydrocarbon miscible WAG-process. 

Since that WAG applications have been applied extensively worldwide with a gradually 

increase in projects, see figure 3.1. The majority of WAG injections are in onshore fields 

located in Canada and United States. However, there are also several fields located in 

former USSR and in the North Sea.  

 

Figure 3.1: Cumulative number of worldwide WAG applications from the first project in 1957 to 1996  

(Christensen, et al., 2001)  

 

Purpose of WAG injection 

The purpose of WAG injection is to improve oil recovery, by both increasing the 

macroscopic and microscopic sweep efficiency and for pressure maintenance. The 

microscopic sweep efficiency is defined by how much oil is recovered in areas contacted by 

the displacing fluids. The macroscopic sweep efficiency is defined by how effective the 

displacing fluids contact the reservoir in volumetric sense. In other words, how well the 

displacing fluids sweep the reservoir, both vertically and areally. The main purpose of the 
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water slugs is to increase the macroscopic sweep efficiency by a more favorable 

displacement mobility ratio. By a reduction of the mobility ratio larger parts of the reservoir 

will be contacted and the displacing front will be more stable resulting in reduced viscous 

fingering and postponed gas breakthrough to production wells. The purpose of the gas slugs 

is to increase the microscopic sweep efficiency, and also contact attic oil in areas not 

contacted by water injection. In high permeable sandstone reservoirs gravity segregation is 

common. Gas will tend to migrate to the top of the reservoir and the more dense water will 

tend to migrate to the bottom of the reservoir, hence attic oil in the upper parts of the 

reservoir may be contacted by the injected gas. Usually residual oil to WAG is less than to 

water or gas (SorWAG < Sorw;Sorg). Thus, a combination of the improved microscopic 

displacement efficiency by gas injected with the improved macroscopic displacement 

efficiency by water injection improved oil recovery can be achieved (Christensen, et al., 

2001), (Kleppe, et al., 2006). 

WAG projects worldwide 

Christensen et al. (2001) did a review of 59 fields where WAG injection were applied. The 

review included both miscible and immiscible WAG using different types of displacing 

gases, both hydrocarbon and non-hydrocarbon gases, such as carbon dioxide and nitrogen.  

A common trend for the success of the reviewed fields were increased oil recovery in the 

range of 5 to 10 % of the original oil in place, but increased oil recovery up to 20 % were 

also reported in several fields. The average improved recovery was calculated to be 9.7% 

for miscible WAG injection and as expected lower for the immiscible WAG injection at 

6.4%. A positive observation from the review related to this study was that the highest 

improved recovery was obtained in a carbonate formation, however it was not in offshore 

environments like the Ekofisk field. 

Of the 59 fields repored only six were applied in carbonate, and only six reported as WAG 

injection in offshore environments. All of the six reported offshore fields were located in the 

North Sea and made use of hydrocarbon gases. A typical trend for all fields were inital 

WAG-ratio of 1, however some fields varied up to WAG-ratio of 4. WAG-ratio is the ratio 

between volume of water and volume of gas in a WAG-cycle. The gas slug sizes reported 

were generally in the range of 0.1 to 3 pore volumes, with use of low volume slug sizes 

most common (Christensen, et al., 2001).   
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WAG projects in North-Sea 

Kleppe et al. (2006) did a survey summerizing North Sea EOR projects in the period from 

1975 to 2005. It was published that WAG injection is the most commom and successful 

EOR technology for the North Sea. WAG injection have been applied in the North Sea since 

1980 and is considered a mature EOR-technology. Of the 19 reviewed EOR projects in the 

survery, which included both pilots and field-scale applications, nine are WAG-applications. 

Of these nine WAG-applications, six are classified as immiscible-WAG, Brage and 

Statfjord being field-scale WAG injections, while Ekofisk, Gullfaks, Thistle and Oseberg 

Øst are WAG-pilots. Of the three miscible WAG applications only Magnus is field-scale, 

while the other two at Snorre A and Brae South are WAG-pilots. In all cases hydrocarbon 

gases has been used, mainly because of the availability directly from production resulting in 

relativly low costs. 

WAG injection in offshore environments such as in the North Sea is quite different from 

onshore WAG applications. Regular injection patterns are commonly used onshore, with 

five-spot injection pattern being the most common, however such patterns is typically not 

used offshore. The reason for this is the high costs of drilling new wells and for data 

acquisition offshore. Offshore wells are more likely to be placed based on geological 

considerations (Christensen, et al., 2001), (Kleppe, et al., 2006).  

CO2-WAG has also proven to be a successful EOR technology worldwide. In many cases 

the method has lower minimum miscibility pressure than hydrocarbon gases which makes it 

attractive. However, the high costs of CO2 capture and sequestration have so far been to 

challenging for the technology to be attractive in the North Sea (Kleppe, 2006).  

Previous WAG-studies at the Ekofisk field 

Immiscible WAG studies for the Ekofisk field were initiated in the fall of 1993 

(ConocoPhillips, January 1994). The plan was to cover a set of phases including 

experimental laboratory work and reservoir modeling, which eventually could lead to the 

design of a WAG-pilot and possibly further expansion to full field WAG injection (Østhus, 

1998 ). Laboratory work performed included evaluation of incremental oil recovery, 

compared to a water flood case, and evaluation of oil recovery mechanisms for gas 

injection, following complete water imbibition into chalk samples, similar to those in the 
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Ekofisk field (Reservoir Laboratories AS, 1995). The laboratory studies substantiated WAG 

potential with incremental oil recovery in the range of 20-25 %. A full field WAG screening 

(ConocoPhillips, January 1994), based on optimistic assumptions, also gave good results 

with the potential for WAG injection to be economically feasible. These positive results led 

to the decision to proceed to pilot planning.  

Ekofisk WAG-pilot 

The injection well 2/4 W-06 was chosen as the WAG-injection well for the pilot. This well 

was chosen due to low costs, good water injectivity being a former water injection well, 

several surrounding production wells and perforations in both the Ekofisk and Tor 

formations making it representative for the entire field. (Jensen, 2001), (Østhus, 1998 ). The 

main objectives of this multiwell pilot was to get information on reservoir performance data 

including injectivity of gas and water, sweep efficiency of injected gas in the presence of 

high water saturations, timing of gas breakthrough and production response of oil, gas and 

water in surronding production wells. 

Gas injection in the WAG-pilot well was performed intermittenly in the period between 

June 1996 and September 1996. Gas was accomodated from the nearby Charlie 2/4 

production platform. The WAG-pilot was unsuccesful because substantial gas injection rates 

were not achieved.  

Ekofisk WAG-pilot failure and suggested solutions to hydrate formation problem 

Post analysis revealed that hydrate formation in the reservoir was the reason for gas 

injectivity loss.  Gas hydrate formation was caused by the temperature around the former 

water injection well being around      F.  

Labarotory experiments performed at Rogaland Research Institute (Lekvam, et al., 1997) 

and at the Phillips Research Center in Barlesville (Wegener, et al., 1997) were reported 

addressing and discussing several options to prevent hydrate formation, given in table 3.1, 

for WAG injection in the Ekofisk Field. 
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Table 3.1: Summarize of suggested solutions to prevent the hydrate formation problem for WAG 

injection at the Ekofisk field (Lekvam, et al., 1997) 

Suggestions to avoid hydrate formation 
1) Chemical heating of the near wellbore area prior to gas injection 

2) Heating of the injection water to rise near wellbore temperature prior to gas injection 

3) Sidetrack the injectors outside cooled zones prior to gas injection 

4) Co-injection of water and gas 

5) Chemical inhibition to prevent and/or retard the onset of hydrate formation 

The reports (Wegener, et al., 1996), (Lekvam, et al., 1997) concluded that co-injection of 

water and gas would not be a solution in itself, but would be required to achieve necessary 

bottom-hole pressure (BHP), above the reservoir pressures. Further the reports concluded 

that chemical inhibition would not be capable of avoiding the hydrate formation. Increasing 

the near wellbore temperature, by chemical heating or by injecting heated water prior to gas 

injection was neither found to be solutions.  A model showed that the injected gas would 

move much faster than the heating water front and eventually move ahead of the heating 

front, leading to hydrate formation. Similarly chemical heating might raise temperature near 

the wellbore. However, the cold zone is pushed ahead into the reservoir and will be reached 

when injecting gas. The only remaining option was to sidetrack the injection wells outside 

the cool temperature regions. Sidetracking the injection wells outside the cooled region still 

means that the injected water temperature needs to be above hydrate formation temperature, 

and a sufficiently high BHP is needed to overcome the high reservoir pressure. Some 

unsuccessful attempts were performed to prevent hydrate formation, and the WAG well was 

eventually changed back to a water injection well (Østhus, 1998 ). 

Ekofisk WAG-studies in the posterity of the WAG-pilot 

Full field WAG simulations indicated incremental oil recovery potential up to 6 %, above a 

Ekofisk water flood case from 1997 (Østhus, 1998 ). The potential oil production for a full 

field WAG-simulation, with field gas injection rates of 600 million standard cubic feet per 

day (SCF/D), was compared to a long term water flood production forecast, from 1997 until 

end of license in 2028, and is shown in figure 3.2.  
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Figure 3.2: Full field WAG-simulation versus long term water flood production forecast (Østhus, 1998 ) 

Some of the assumptions made in the full field simulation model were good gas injectivity, 

no relative permeability hysteresis effect and low trapped gas saturation. Further 

assumptions were that injected gas would contact residual oil in the matrix block, either by 

forced displacement and/or by diffusion mechanisms, and eventually vaporize parts of the 

residual oil after the water flooding (Østhus, 1998 ). The displacement process was assumed 

immiscible, with the injected gas composition used given in table 3.2. 

Table 3.2: Composition of injected gas used in previous Ekofisk WAG-simulations (Østhus, 1998 ) 

Component Mole (%) 

Nitrogen, N2 0.4 

Methane, C1 85.4 

Carbon dioxide, CO2 2.1 

Ethane, C2 8.1 

Propane, C3 2.8 

2-Metylpropan, i-C4 0.3 

n-Butane, n-C4 0.9 
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A major EOR screening study (Harpole, et al., 2000) was performed in 1998-1999 where 

HC-WAG was reported among the top two processes to be carried forward in further 

studies. The screening study recommended to update full field WAG development forecasts, 

with progression towards a new pilot if full field economics were sufficient. 

Further WAG studies re-evaluating full field WAG potential were performed in 2000-2001 

(Jensen, 2001). A premise for the study was that any unresolved technical or logistical 

issues had to be successfully addressed or solved prior to further process implementation. 

Based on the premise the study concluded with WAG not being technically or economically 

viable at this point. 
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4 Theory 

This chapter is initiated with description of general reservoir and fluid parameters which 

affect reservoir simulations and the main parameters and concepts of this study. Next, 

presentation of definitions, correlations and models regarding the main parameters and 

concepts of this thesis, such as trapped gas saturation, relative permeability hysteresis and 

SORM are given.  

Oil recovery mechanisms for WAG-displacement, divided into oil displacement by gas and 

oil displacement by water are then presented. The subsequent section presents difference 

between miscible and immiscible WAG-injection, and how to evaluate miscibility through 

tests on minimum miscibility pressure and minimum miscibility enrichment. The last part of 

the chapter is an introduction to the full field numerical simulation tool, PSim, which is used 

for reservoir modeling in this thesis. 

 

4.1 Rock properties 

4.1.1 Porosity 

Porosity (φ) of a porous rock is the fraction of the total rock volume that is occupied by void 

space. The porosity describes the fluid storage capacity of the rock. 

4.1.2 Absolute permeability 

Permeability (k) of a rock is associated with the rock’s capacity to transport fluids through 

systems of interconnected pores. Permeability is a measure of the fluid conductivity of a 

particular rock, in terms of Darcy (Ursin, et al., 1997). 

Absolute permeability of a porous medium refers to the permeability when saturated with a 

single fluid. The rock property, absolute permeability, is constant for a particular porous 

medium and is independent of the fluid type flowing in the rock.  
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4.1.3 Effective permeability 

In cases of multi-phase flow, when several fluids or phases are flowing locally and 

simultaneously in a system, each fluid phase will counteract the free flow of the other 

phases and a reduced phase permeability of each phase is measured, called the effective 

permeability (Ursin, et al., 1997).  Effective permeability (ke) is a measure of the fluid 

conductance of one particular fluid, when that fluid fills a fraction of the pore space of a 

porous medium. 

 

4.2 Relative permeability 

Relative permeability (kr) is a property used to describe flow in a multi-phase system. The 

property is a fluid-rock property and is defined as the ratio of the effective permeability of a 

particular fluid at a particular saturation to a base permeability of the porous medium, as 

given in equation 4.1. The base permeability is usually referred to the absolute permeability 

of the porous medium. 

    
  

 
               Equation 4.1 

Relative permeability is dimensionless and has values between 0 and 1. If a single fluid is 

present in a rock, the effective permeability will be equal to the absolute permeability; hence 

the relative permeability will be equal to one. If the relative permeability of a fluid is zero, 

the fluid will be immobile. 

Relative permeability is mainly a function of fluid saturations and saturation history. 

Dependence on saturation history is described as relative permeability hysteresis effect. 

Water relative permeability depends most strongly on its own phase-saturation and typically 

shows little hysteresis effect. The non-wetting phase relative permeability though depends 

strongly on both the saturation of its own phase and on the saturation history. This results in 

a complex saturation pattern which demands special relative permeability description, 

illustrated in figure 4.1. Relative permeability hysteresis is important in WAG-processes 

because the alteration between water and gas injection results in changes of saturation, 

between imbibition and drainage processes, which can result gas getting trapped and 

consequently change in relative permeability curves. Drainage is referred to as a process 
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where the wetting-phase saturation decreases and contrary imbibition to a process where the 

wetting-phase saturation increases. A more detailed discussion on trapped gas and hysteresis 

effected relative permeability curves will be given in chapter 4.6. 

 

Figure 4.1: Example of hysteresis affected gas relative permeability imbibition curve 

 

4.2.1 Two-phase relative permeability 

Two-phase flow refers to a process where only two fluids or phases are flowing locally and 

simultaneously in a system. Relative permeability of water (krw) and oil (krow) in a water-oil 

system are plotted in relative permeability curves as a function of the water saturation. 

Similarly, the relative permeability of gas (krg) and oil (krog) in a gas-oil system are plotted 

in relative permeability curves as a function of the gas saturation. Figure 4.2 (a) and (b) 

illustrates typical shape of two-phase relative permeability curves for water-oil and gas-oil 

systems respectively. 

 

Relative permeability curves allow comparison of fluid flow at different fluid saturation and 

estimation of residual oil and gas saturations based on endpoint saturations. Endpoint 

saturations are reflected by the largest saturation of a phase for which the relative 
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permeability of the respective phase in the respective system is zero. Endpoint saturations in 

a water-oil system are defined Sorw for oil and Swr for water, figure 4.2 (a). Similarly, for a 

gas-oil system the endpoint saturations are defined as Sorg for oil and Sgr for gas, figure 4.2 

(b). If the saturation of a coexisting phase becomes less than the endpoint saturation, the 

relative permeability will be zero and the phase immobile. Endpoint saturations are also of 

great importance for estimation of initial fluid distribution and ultimate recovery of systems. 

 

 

(a)                                                                                   (b)   

Figure 4.2: Illustration of the shape of (a) water-oil relative permeability curves, and corresponding 

end-point saturations (b) gas-oil relative permeability curves, and corresponding end-point saturations 

Even though there have been attempts to calculate relative permeability on theoretical 

backgrounds, most work is done experimentally. The experimental work on relative 

permeability is mostly performed on the two-phase systems water-oil and gas-oil.   

Relative permeability data can be obtained experimentally by centrifuge techniques or by 

core flooding tests under steady-state or unsteady-state conditions. In unsteady-state relative 

permeability tests, cores with in-situ fluid are flooded with an immiscible fluid, gas or 

water, at constant rate. Values for relative permeability are determined using a Buckley and 

Leverett developed equation based on observations of the fractional flow of the displacing 

fluid phase, which are related to saturation. In steady-state tests two fluids are injected 

simultaneous in a core at constant rate until the produced fluid ratio comes in equilibrium 

with the injected fluid ratio. Phase saturations are measured and the corresponding relative 

permeability is obtained by applying Darcy’s law. Relative permeability for different 
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saturations can be obtained by changing the fluid ratio of the injected fluids (Ibrahim, et al., 

2001). In centrifuge tests a liquid saturated sample is placed in an air-filled core holder and 

subsequently rotated with constant speed in a centrifuge. Relative permeability values are 

obtained by monitoring the liquid production as a function of time at a given rotational 

speed (Spronsen, 1982) (Firoozabadi, et al., 1986). 

The centrifuge method is relative fast; however it has been limited to determination of 

wetting-phase relative permeability only (App, et al., 2002). Unsteady-state tests have 

shown to yield faster results than steady-state tests. Steady-state tests have though been 

preferred for reservoir with more-scale heterogeneity and with mixed wettability (Ursin, et 

al., 1997), (Ibrahim, et al., 2001). 

In lack of reliable two-phase relative permeability data, simplified models based on 

experimental data can be used to construct two-phase data. An example of such a model is 

the Corey-type approximations which uses a power law function to calculate relative 

permeability based on endpoint saturations and empirical parameters.  

4.2.2 Three-phase relative permeability 

Locally in reservoirs three phases can flow simultaneously. To describe such three-phase 

flow, three-phase relative permeability data is required. For WAG-displacement, local three-

phase flow is common, and is especially evident close to injectors, see figure 4.3. In a three-

phase system there will be an intermediate wetting-phase in addition to the phases present in 

two-phase systems. In a water-wet system, oil will be the intermediate wetting-phase and act 

as a non-wetting phase with respect to water and as a wetting-phase with respect to gas.  

 

Figure 4.3: Three-phase flow in a WAG-system (Skauge, et al., 2007) 
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Estimates of three-phase relative permeability are needed to understand three-phase flow. 

As most experimental data on relative permeability are on two-phase systems, a number of 

correlations and models to calculate three-phase permeability have been developed. 

However, there is little experimental data to validate most models (ConocoPhillips 

Technical Manual, 2010). The most accepted and commonly used three-phase relative 

permeability models in the petroleum industry are the two proposed by Stone. 

4.2.2.1 Stone’s models 

Stone’s models (Stone 1970, 1973) are probability-based models which assume the relative 

permeability of the wetting and non-wetting phases depend only on the saturation of the 

wetting and non-wetting phases respectively, while the intermediate wetting-phase relative 

permeability varies in a more complex manner. For a water-wet system, water will be the 

wetting phase, gas the non-wetting phase and oil the intermediate wetting-phase.  

Stone’s models use more easily measured two-phase data, water-oil and gas-oil relative 

permeability curves, to predict the relative permeability of the intermediate-wetting phase in 

a three-phase system.  

In many reservoirs that involve three-phase flow only gas and oil are mobile in the upper 

parts, and only water and oil are mobile in the lower parts, as illustrated in figure 4.3. 

Stone’s models therefore predict that the oil relative permeability, kro, is obtained as 

function of oil relative permeability from the water-oil system (krow) in presence of water 

only, and as a function of oil relative permeability from the gas-oil system (krog) in presence 

of gas and irreducible water. 

In areas of three mobile phases the technique used to obtain three-phase relative 

permeability for the intermediate wetting-phase is to interpolate between the two sets of 

two-phase relative permeability data, using krw, krow, krg and krog, krw and krow are obtained 

from the water-oil data as function of water saturation. Similarly, krg and krog are obtained 

from the gas-oil data as a function of gas saturation holding the water saturation constant 

and immobile. Hence, the two-phase relative permeability curves for water-oil and gas-oil 

are sufficient for use of Stone’s models. 

Both Stone’s models have the desirable property in that they yield the correct two-phase 

data when only two phases are flowing, and yet provide interpolated data for three-phase 
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flow that are consistent and continuous functions of the phase saturations. To allow for 

hysteresis effect, the water and gas saturations should be changing in the same direction in 

the two sets of two-phase data, as desired in the three-phase system. 

 

4.3 Surface and interfacial tension 

Whenever immiscible phases coexist in a porous medium, surface energy related to the fluid 

interfaces influences the saturations, distributions and displacement of the phases (Green, et 

al., 1998). The surface force between two fluids is quantified in terms of surface/interfacial 

tension, σ, which is given as the force acting in the plane of the surface, per unit length of 

the surface.   

Surface tension is usually reserved to the case when the interface is between a liquid and its 

vapor or air. If the interface is between two different fluids or between a liquid and a solid, 

the term “interfacial tension” (IFT) is used.  

 

4.4 Rock wettability  

Wettability can be defined as the tendency of one fluid to spread or to adhere to a solid 

surface in the presence of a second fluid. (Ursin, et al., 1997) When two immiscible phases 

are placed in contact with a solid surface, one phase usually is attracted to the solid more 

strongly than the other phase. The more strongly attracted phase is called the wetting phase 

(Green, et al., 1998).  

Quantitative evaluation of wettability can be done by examining the interfacial forces that 

exist when two immiscible fluid phases are in contact with a solid. In figure 4.4, forces 

between the solid, water and oil are balanced and given by: 

                              Equation 4.2 

Where σos, σws and σow are interfacial tensions between solid and oil, water and solid and 

water and oil respectively, and θ is the contact angle measured through the water.  
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Figure 4.4: Interfacial forces when water and oil are in contact with a solid rock in a water-wet-system 

Experimental methods have not been developed to measure σos, σws. Therefore, the 

wettability preference of a rock is estimated by measuring the contact angle, θ. Contact 

angles are measured through the water phase, from the solid surface to the fluid-fluid 

interface. A rock is water-wet if θ < 90 and oil-wet if θ > 90. A contact angle approaching 0 

indicates a strongly water-wet system, while contact angle approaching 180 indicates a 

strongly oil-wet rock. Contact angle close to 90 refers to as intermediate or neutral wet rock 

(Green, et al., 1998). The wettability preference of a rock based on a rule of thumb for oil-

water systems is summarized in table 4.1 and in figure 4.5. 

Table 4.1: Wettability preference expressed by contact angle (Ursin, et al., 1997) 

 

 

Figure 4.5: Rocks wetting preferences based on contact angle (Ursin, et al., 1997) 
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The state of rock wettability will affect the distribution of fluids within a reservoir system, 

see figure 4.6.  

 

Figure 4.6 Fluid distributions within water-wet and oil-wet systems (Green, et al., 1998) 

Rock wettability will also affect relative permeability-, illustrated in figure 4.7, and capillary 

pressure characteristics of a fluid-rock system, which is likely to result result in differences 

in residual oil saturations (Green, et al., 1998), (Donaldson, et al., 1969).  

 

Figure 4.7: Wettability effect on relative permeability curves for (a) water-wet systems and (b) oil-wet 

systems (Ursin, et al., 1997) 
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In water-oil systems, oil will be more mobile, and lower water flood residual oil saturations 

will be exhibit than in an oil-wet system. Likewise, water will flow better in oil-wet systems 

and higher water flood residual oil saturation will be left in the reservoir. 

Strongly water-wet system will spontaneously imbibe more water into the matrix blocks 

than a preferentially water-wet system. Spontaneous imbibition of water into matrix blocks 

is important for oil recovery and is described in more detail in chapter 4.9.1.2.  

 

4.5 Capillary pressure 

A pressure difference called capillary pressure will exists across the interface between 

immiscible fluids caused by interfacial tensions. Capillary pressure, Pc, is defined as the 

pressure difference between the non-wetting phase, Pnw, and the wetting-phase, Pw, given by 

equation 4.3 (Ursin, et al., 1997): 

                       Equation 4.3 

Young-Laplace presented a relationship between the capillary pressure and the interfacial 

tension between two immiscible fluids on a curved surface, given in equation 4.4, with 

examples of radius of curvature shown in figure 4.8: 

      
 

  
 

 

  
                                                                              Equation 4.4 

 

 

Figure 4.8: Radius of curvature on a curved surface (Ursin, et al., 1997) 
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If the curvature of the interface is approximately spherical the radius of curvature equal, 

R1=R2=R, and easy trigonometry, illustrated in figure 4.9, induces that the radius of the 

medium rc can be defined as: 

                           Equation 4.5 

 

Figure 4.9: Two immiscible fluids forming an idealized spherical curvature (Ursin, et al., 1997) 

Combining Young-Laplace equation 4.4 with the above equation 4.5, deduces an equation 

to calculate the capillary pressure between two immiscible fluids as a function of the IFT 

and the wettability of rocks, through the contact angle: 

   
       

  
             Equation 4.6 

Drainage and imbibitions laboratory experiments have shown that capillary pressure is 

dependent on interfacial tension   ), contact angle  ) measured through the water phase, 

fluid saturations (      , rock porosity (   and permeability (  . (Ursin, et al., 1997) A 

correlation, equation xx, relating the capillary pressure, Pc, to these parameters was defined 

by Leverett based on dimension analysis. The correlation is widely used for reservoir 

simulation tasks. 

   
       

 
 

 

                   Equation 4.7 

Capillary pressure curves are important for understanding the saturation distribution in 

reservoirs. Capillary pressure depend on the direction of saturation, being an imbibition or a 

drainage process, as well as previous saturation history reflected as capillary pressure 
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hysteresis effect. Common shape of water-oil capillary pressure curves for drainage and 

imbibition processes are shown in figure 4.10: 

 

Figure 4.10: Illustration of water-oil capillary pressure curves 

The capillary pressure, created as a result of interactions between liquids and solid surface, 

is responsible for the spontaneous imbibitions of water into the matrix blocks. Water will 

spontaneous imbibe the matrix block until the capillary pressure equals zero. 

In case of three-phase flow, three-phase capillary pressures curves are needed to model the 

dynamics of gas-oil and oil-water transition zone movements in the reservoir (Helland, et 

al., 2004). There has been little experimental work done on three-phase capillary pressure 

(Skauge, et al., 2007).  Three-phase capillary pressure curves have traditionally been 

estimated from experimentally measured two-phase capillary pressure data. However, 

experimental work on three-phase capillary pressure reported by Bradford and Leij (1995) 

indicated that this practice may not be valid. Although experimental data is very limited 

there exist a few correlations to calculate three-phase capillary pressure. Helland and 

Skjævland (2004) presented a three-phase capillary pressure correlation accounting for 

direction of saturation change as well as wettability conditions. They validated the 

correlation with centrifuge measurements from water-wet cores.  The correlation have not 

yet been widely accepted or validated, and capillary pressures are often neglected in three-

phase flow processes like WAG-injection. 
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4.6 Trapped gas saturation and hysteresis effect 

4.6.1 Introduction to trapped gas saturation and hysteresis 

Phase trapping of gas is a common phenomenon after an imbibition process where a 

wetting-phase displaces the non-wetting phase gas (Green, et al., 1998). Trapped gas is 

important in WAG processes, because the WAG cycles lead to oscillation of water and gas 

with position and time (Skauge, et al., 2007), which induce changes between drainage and 

imbibition processes. 

For water-wet systems gas is always the non-wetting phase, and invades the larger pores and 

throats (Suicmez, et al., 2006). During the imbibition process the capillary pressure in the 

larger pores is less than the capillary pressure in the smaller pores. As a consequent, the 

wetting phase will advance faster in the smaller pores and part of the gas phase will be 

bypassed by the increasing wetting phase. This disconnection of the former continuous gas 

clusters will leave a portion of the gas phase immobile and trapped as isolated drops or 

ganglia. The isolated gas will be held in the larger pores by strong capillary forces which 

cannot overcome the relative small viscous forces (Green, et al., 1998). As the trapped, 

immobile part of the gas saturation does not contribute to flow of gas, the gas relative 

permeability at a given gas saturation will be less for the imbibition process compared to the 

drainage process. The change of imbibition relative permeability curves compared to 

drainage curves is called relative permeability hysteresis effect and is mainly caused by the 

trapped gas. Different models and correlations accounting for hysteresis effect relative 

permeability curves and for modeling trapped gas saturation will be presented in this section.   

Several studies have been performed on determining the parameters that impact the amount 

of gas getting trapped. Trapped gas saturations have been reported (Suicmez, et al., 2006), 

(Wegener, et al., 1996) function of on pore geometry and porosity and the saturation history, 

both current and historical maximum gas saturation. Laboratory experiments on carbonate 

cores by Keelan and Pugh (1975) indicated that trapped gas is independent of pore geometry 

and porosity for chalk formation. Further their experiments confirmed that increasing gas 

saturation is accompanied with increasing trapped gas saturation. Pow et al. (1997) 

addressed imbibition of water in fractured reservoirs. Field and laboratory information 

suggested that a large amount of gas was trapped by fast water imbibition through the 

fractures.  
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Several correlations have been proposed in the literature to calculate the amount of trapped 

gas saturation. The most accepted is the one proposed by Carlson S. Land. Land’s 

correlation is the correlation commonly used in hysteresis models to calculate the amount of 

trapped gas. 

4.6.2 Trapped gas saturation correlations and hysteresis models in PSim 

4.6.2.1 Land’s correlation 

Land’s trapped gas 

Carlson S. Land addressed an empirical correlation (Land, 1968), (Land, 1971) based on 

available data which relates initial gas saturation at the start of an imbibition process to the 

trapped gas saturation at complete imbibition: 

       
     

                
             Equation 4.8 

Where: 

       :  Residual (trapped) gas saturation after complete imbibition
1
 

      : Gas saturation established in the drainage process and the initial gas saturation          

of the imbibition process  

CLand   :  Trapping characteristic of the porous rock called Lands constant 

 

The trapping characteristic of the porous rock, Lands constant, is determined by:  

 

         
  

      
                            Equation 4.9 

 

Where: 

      
   : Maximum obtainable residual gas saturation, corresponding to initial gas 

saturation at one minus critical water saturation.  

                                                 
1
  All saturation marked with stars are effective saturation expressed as fraction of the pore 

volume excluding the pore volume occupied by the irreducible wetting phase. 
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Land’s relative permeability hysteresis effect 

Land further proposed that only the mobile part of the gas-phase should be used to calculate 

hysteresis affected relative permeability imbibition curves. The total gas saturation,    , at 

any point in the imbibition process can be treated as two separate saturations, a mobile 

fraction of the gas,      , and the current trapped gas fraction of the gas,      : 

                            Equation 4.10 

If a total saturation,       is reduced to a residual trapped gas saturation,        the 

contribution from the mobile fraction,       to residual trapped gas saturation can be found 

by applying SgF* as an initial saturation in equation 4.8. The gas saturation that gets 

trapped, contribution of SgF*, during a reduction in gas saturation from Sg* to Sgr*, must 

equal the residual value Sgr* associated with Sgi*. From this deduction, the current trapped 

gas saturation can be expressed as: 

              
     

                
        Equation 4.11 

Substituting equation 4.10 into equation 4.11 and solving for SgF* deduce the remaining 

mobile gas saturation when the gas saturation has been reduced from Sgi* to Sg* in an 

imbibition process: 

        
 

 
                 

 

 
                   

 

 
                      

Equation 4.12 

Based on the mobile gas saturation SgF* calculated from equation 4.12, Land proposed that 

new hysteresis effected gas relative permeability data can be calculated by using equation 

4.13: 

                             Equation 4.13 

Where: 

    :    Empirically determined pore-size distribution factor 
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4.6.2.2 Coats correlation 

Coats proposed a linear correlation relating the initial gas saturation at the start of an 

imbibition process to trapped gas saturation at complete imbibition (ConocoPhillips 

Technical Manual, 2010): 

   
                

           Equation 4.14 

Where: 

     :  Critical gas saturation 

C     :  Trapping characteristic of the porous rock given by: 

   
   
     

     
     

         Equation 4.15 

4.6.3 Other relative permeability hysteresis models 

A number of hysteresis empirical models have been developed to characterize the hysteresis 

effect on relative permeability (Spiteri, et al., 2004).The most important parameter 

determining the significance of hysteresis effect is the trapped non-wetting phase saturation. 

Relative permeability models that incorporate with hysteresis are usually based on the 

trapping model proposed by Land in the previous section.  

Two-phase hysteresis models have been the standard in most reservoir simulators. The most 

popular are described by Carlson and Killough (Larsen, et al., 1998). Standard two-phase 

hysteresis models for non-wetting phase consist of one drainage relative permeability curve 

and one imbibitions curve connected at the same inflection point. An inflection point is the 

point where the displacement process shifts from drainage to imbibition (Larsen, et al., 

1995). The drainage-imbibition curves form a reversible envelope in which scanning-curves 

are generated (Skauge, et al., 2007). The standard hysteresis models for the non-wetting 

phase allows for reduced mobility in the imbibition curve after primary drainage. However, 

further drainage-imbibition processes are described within the primary drainage-imbibition 

envelope, where scanning curves are used to represent any subsequent drainage process. 

Experimental observations have indicated that the two-phase hysteresis models do not 

sufficiently describe WAG processes (Skauge, et al., 1994).  Experimental observations 

have shown that the mobility during secondary drainage generally is considerably lower 
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than during primary drainage. This indicates that the reversibility within two-phase models 

is inappropriate. Larsen and Skauge therefore developed a three-phase hysteresis model that 

includes impact further changes in trapped gas saturation have on mobility and following on 

relative permeability curves.  

4.6.3.1 Carlson hysteresis model 

Carlson hysteresis model describes hysteresis effect of the relative permeability curves 

using an experimental primary drainage curve together with an estimated imbibition curve 

based on Land’s trapped gas correlation (Carlson, 1981).  Further saturation changes, 

between drainage and imbibition, are produced by scanning curves parallel to the estimated 

imbibition curve. The imbibition curve is simply shifted until it intersects with the drainage 

curve for the relevant saturation for saturation direction change, illustrated in figure 4.11 

(Kossack, 2000). 

 

Figure 4.11: Carlson hysteresis affected non-wetting phase relative permeability curves (Kossack, 2000) 

The outer lines in figure 4.11 represent a primary drainage curve connected with an 

imbibition curve, which is estimated based on the largest possible non-wetting phase. These 

curves make up a relative permeability envelope where scanning-curves are generated 

(Larsen, et al., 1995). Whenever a drainage process ends, a subsequent imbibition will 

follow a scanning-curve. After initiating an imbibition process all further processes are 

assumed reversible; the scanning-curve is followed back to the inflection point and the 

primary drainage curve is followed to a new historical maximum of gas saturation. If the 
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drainage process stops on the scanning-curve, imbibition is computed along the same 

scanning-curve. 

4.6.3.2 Killough hysteresis model 

Killough hysteresis model is similar to Carlson’s model founded on Land’s trapped gas 

correlation (Larsen, et al., 1995) ,(Killough, 1976). The only experimental data needed in 

this model is the bounding primary drainage curve, and data to estimate the bounding 

imbibition curve based on Land’s correlation. The bounding drainage-imbibition curves 

make a reversible envelope, where scanning curves are estimated, illustrated in figure 4.12, 

based on the drainage curve through an interpolation method using a parametric curve or a 

normalized experimental imbibition relative permeability relation. The hysteresis model 

predicts the bounding imbibition relative permeability curve by first calculating the amount 

of non-wetting phase that will be trapped by Land’s correlation, and then interpolate 

between the relative permeability at the historical maximum gas saturation and zero relative 

permeability at the trapped gas saturation. 

 

Figure 4.12: Killough hysteresis affected non-wetting phase relative permeability curves (Killough, 

1976) 

Subsequent to an imbibition process the drainage curve will follow the scanning curve till 

the maximum historical non-wetting phase has been reached, then continue along the 

primary drainage curve. 

4.6.3.3 Skauge and Larsen three-phase hysteresis model 

The hysteresis model of Skauge and Larsen is often referred to as the WAG-hysteresis 

model and is based on Carlson’s hysteresis model and Land’s trapped gas correlation 

(Kossack, 2000). The model contains two Carlson hysteresis envelopes, one for high 
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mobility and one for low mobility, illustrated in figure 4.13. Each of the envelopes obeys 

the rules of Carlson model in which scanning curves are produced parallel to the imbibition 

curves. 

Change between the envelopes is activated when gas saturation increases in a drainage 

process, following the primary drainage-imbibition cycle (Larsen, et al., 1995). In 

simulation of WAG processes small saturation changes caused by stability problems occur 

frequently. To prevent these saturation oscillations to change between envelopes, the model 

was modified by introducing a saturation tolerance limit. This limit must be exceeded before 

a change between envelopes take place.  

 

 

Figure 4.13: Skauge and Larsen hysteresis affected gas relative permeability curves, changing between a 

high and a low mobility envelope. (Larsen, et al., 1995) 

The model can also define different water relative permeability curves within each envelop, 

illustrated in figure 4.14. Two different water relative permeability curves can be given as 

input, and a change between the curves occur corresponding to change in gas-phase 

envelops. 
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Figure 4.14: Skauge and Larsen water relative permeability curves, changing between a high mobility 

curve and a low mobility curve in correspondence with the gas-phase envelops in figure 4.13. (Larsen, et 

al., 1995) 

 

4.7 Miscible flood residual oil saturation (SORM) 

The residual oil left behind in the reservoir after a miscible WAG-process, the miscible 

flood residual oil saturation, is important to include in field-scale reservoir simulations to 

correctly evaluate the oil recovery. Compositional reservoir simulators may entirely sweep 

grid blocks in miscible flooding or close to miscible flooding, which will give an optimistic 

prediction of the oil recovery (ConocoPhillips Technical Manual, 2010). Complete oil 

sweep is unlikely to be achieved in field-scale even under perfect miscible conditions with 

first contact miscibility. There are several reasons for this, such as bypassed oil because of 

heterogeneities as fractures, capillary trapping of oil, viscous fingering and heavy 

component precipitations as asphaltenes and wax.  The assumption of total mixing of all 

hydrocarbons within grid blocks is the reason for simulation to over predict oil recovery. 

The equation of state (EOS) in the simulator may allow all oil components to vaporize into 

the gas phase leading to oil saturations below user-defined Sorg and Sorw. 

Various techniques have been proposed to account for SORM. Some of the techniques are: 

1) To introduce an artifact heavy component so that, under reservoir conditions, the heavy 

component will not vaporize into the gas phase. This technique has not been recommended 

because it may completely miss fluid properties such as the density and viscosity. 
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2) Treat the miscible residual oil as a part of the rock. A user-defined SORM value can be 

defined as part of the rock such that oil saturation will not decrease beyond the SORM 

value. The excluded oil cannot contribute to rock wettability and to solution gas if the 

pressure falls below the bubble point. 

3) Modification of the compositions of oil and gas phases that are flowing into or out of a 

grid block by an alpha factor method. A drawback of this technique is that there are too 

many parameters to tune per grid block, and the imposed SORM cannot be exactly honored. 

4) The default method implemented in PSim is that a specified volume of the initial oil in 

place corresponding to SORM will be isolated and considered as a fourth phase in a 

different medium. A modified three-phase compositional model is used, which includes 

Sorm as a part of the oil saturation together with the mobile oil saturation, Som.  

                      Equation 4.16 

Various options can be used to account for wettability effect, and mass exchange via 

vaporization and condensation between the isolated oil and the flowing hydrocarbons.  

5) Another technique available in PSim for SORM, is for SORM to only take effect 

internally for a grid block when the oil saturation in the grid becomes less than or equal to a 

defined SORM. This way SORM will not impact the flow as long as the oil saturation is 

larger than the defined SORM in the grid blocks. The check for a triggered SORM is done 

for each grid block at the end of the time steps (ConocoPhillips Technical Manual, 2010).  

 

4.8 Matrix-fracture mechanisms 

In the Ekofisk reservoir most of the fluid is stored in the matrix blocks, however without the 

fractures the Ekofisk field would likely not be producible. Even though the fractures only 

comprise about 0.5 % of the total reservoir volume they can enhance the effective 

permeability from 1 to 4 mD up to 100 to 150 mD, which enables fluid flow towards the 

production wells.  

The primary method for detecting the fractures on the Ekofisk field is through well testing 

(Dangerfield, et al., 1987). Matrix permeability, kmat, derived from well log porosity and 
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core permeability correlations are compared with the measured effective permeability from 

well tests, kwell, and a fracture intensity factor, FI, can be deduced:  

   
      

       
            Equation 4.17 

Different regions of the Ekofisk fields have different type of fractures, which makes up 

different kind of fracture-networks. The distribution of fracture types, fracture width, 

fracture lengths and fracture intensity factors, is not uniform throughout the reservoir. 

Therefore different matrix-fracture models representing different regions of the reservoir 

will be designed in this thesis.  

The traditional yet efficient and effective approach to model naturally fractured reservoirs 

has been through dual porosity models (Heeremans, et al., 2006).  In dual porosity models 

the fracture and matrix systems are separated into different continua with its own sets of 

properties. 

When reservoirs with fracture systems are depleted, initially fluid will only be produced 

from the fractures (Dangerfield, et al., 1987). Because the fractures only comprise about 0.5 

% of the reservoir volume, they are quickly depleted. As the fractures are depleted, a 

pressure difference between matrix blocks and fractures will develop. The pressure 

difference will lead to matrix blocks starting to feed fluid to the fracture system. Eventually, 

the production rate will be determined by the fluid influx rate from the matrix into the 

fractures. The fractures will then only enhance the net flow capabilities of the chalk matrix.  

The mass transfer between matrix blocks and fractures is in dual porosity models modeled 

through a transfer function, which is the heart of the dual porosity models as it controls the 

matrix-fracture interaction and production performance of naturally fractured reservoirs 

(Heeremans, et al., 2006) (Warren, et al., 1963). 

At this time dual porosity models are not available in PSim, instead a single porosity/single 

permeability model is used to describe matrix-fracture systems in full field simulations 

where matrix and fractures are modeled within the same grid blocks with a shared set of 

properties. 
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4.9   Recovery mechanisms relevant to WAG 

The oil left in the reservoir after water flooding comprises both bypassed oil in unswept 

reservoir zones and residual oil in water swept zones. Bypassed oil is associated with poor 

macroscopic sweep efficiency, while the residual oil in water swept zones is associated with 

poor microscopic sweep efficiency. WAG-injection is implemented to improve microscopic 

sweep efficiency compared to water injection because of gas half-cycles, and to improve 

macroscopic sweep efficiency compared to gas injection because of water half-cycles.  

In this section WAG recovery mechanisms, displacement of oil by gas and by water, will be 

presented. 

4.9.1 Oil recovery mechanisms for water injection 

The most important forces acting to recover oil from water injection are viscous forces, 

gravity forces and capillary forces (Morrow, 1979). 

4.9.1.1 Gravitational displacement 

Displacement of oil in a fractured system by gravitational forces is the mechanism where 

water forces into the matrix blocks due to difference in fluid densities. 

Gravitational forces might arise because of different water-oil contact in the fracture system 

and the matrix blocks. Difference in fluid densities give rise to a pressure difference and a 

gravity potential for water to be forced into the matrix blocks.  The gravity potential,  , is a 

given by:               

                              Equation 4.18 

Where: 

    :  Fractional height of water in the fracture 

    :  Fractional height of the gas in the matrix 

    :  Water density 

   :  Oil density 

  :  Gravitational constant 

   :  Height of matrix blocks 
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In the case of the Ekofisk field, matrix blocks heights are estimated in the range of one to 

three feet, and the gravity potential between water and oil is normally negligible compared 

to capillary and viscous forces. 

4.9.1.2 Capillary displacement - spontaneous imbibition 

Spontaneous imbibition is the mechanism where one fluid displaces another from a porous 

medium as a result of capillary forces only. The matrix is a porous medium with a capillary 

pressure, and the fractures have approximately zero capillary pressure (Heeremans, et al., 

2006). This results in a capillary pressure potential which allows the water to flow into the 

matrix to release oil.  

Spontaneous imbibition has been widely studied because of its importance on oil recovery, 

with much emphasis on carbonate rocks. In fractured reservoirs, spontaneous imbibition of 

water due to strong capillary forces is regarded as an important and necessary mechanism to 

attain high displacement efficiency 

The rate of imbibition is primarily dependent on the rock permeability, pore structure, rock 

wettability, and the interfacial tension between fluids. Oil recovery due to spontaneous 

imbibition can be determined from the capillary imbibition pressure curve. The higher water 

saturation value for capillary pressure equals to zero, the better is the spontaneous 

imbibition. The limit of spontaneous imbibition is determined where the imbibition capillary 

pressure curve equals to zero. The degree of spontaneous imbibition is a function of 

wettability as illustrated in figure 4.15. For more water-wet system higher water saturation 

can be achieved for capillary pressure equals to zero, hence better water imbibition into 

matrix blocks.   
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Figure 4.15: Capillary imbibition as a function of wettability 

Further forced imbibition of water into matrix blocks at negative capillary pressures requires 

external forces like viscous or gravitational forces. In fractures reservoir where both 

spontaneous imbibition and viscous displacement is evident, the residual oil saturation after 

water flooding will depend more on the shape of the negative part, forced imbibition, of the 

capillary pressure curve and the magnitude of pressure drop than on the spontaneous 

imbibition part. 

4.9.1.3 Viscous displacement 

Viscous displacement is the mechanism where water is forced from the fracture system into 

matrix blocks due to a pressure gradient over the matrix blocks. Pressure differences in the 

reservoir results due to production, extracting fluids and decreasing the pressure, and 

injection, adding fluids and increasing the pressure. 

The external pressure drop, over the matrix blocks, will force water into the matrix blocks 

until a balance between the viscous forces and capillary forces are reached. In the case of 

the Ekofisk field the pressure drop over matrix blocks is about 1 psi/ft. 

4.9.2 Oil recovery mechanisms for gas injection  

The most important oil recovery mechanisms for gas injection into a fractured reservoir are 

condensation of gas into oil, vaporization of oil, gravity drainage, diffusion and viscous 

displacement (Jakobsson, et al., 1994). Viscous displacement, gravity drainage and diffusion 
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are mechanisms for gas to enter the matrix blocks, while condensation and vaporization are 

the mechanisms for oil to expel into the fractures to be produced. The mechanism of viscous 

displacement for gas is such as described for water and will not be presented. 

4.9.2.1 Vaporizing gas drive / oil stripping 

Vaporizing gas drive is the mechanism where low molecular-weight hydrocarbons, ethane 

to heptanes, vaporize from the reservoir oil (Holm, 1987). As injected gas enters the matrix 

blocks it will not be in equilibrium with the reservoir oil, and a vaporization process will be 

initiated where lighter oil components will vaporize and transfer to gaseous phase 

(Jakobsson, et al., 1994). The gas in the matrix block will gradually increase its enrichment; 

hence the produced gas becomes more enriched than the injected gas. The vaporization 

process ultimately results in lower residual oil saturation, but will also give a heavier and 

more viscous residual oil.  

Laboratory experiments conducted on Ekofisk chalk in 1994, as part of a WAG research 

program (Reservoir Laboratories AS, 1995) proved that vaporization of oil is the recovery 

mechanism for gas injection that produces most oil. The experiments were performed by 

injecting gas into completely water flooded core plugs, and take fluid samples to identify the 

physical mechanisms which acts to produce oil.  

4.9.2.2 Condensation gas-drive / oil swelling  

Condensing gas-drive is the mechanism of oil displacement by condensation of intermediate 

hydrocarbons components, ethane to pentane, from injected gas going in solution with the 

reservoir oil (Holm, 1987) (Wu, et al., 1990). Mass transfer of intermediate components 

from the injected gas into water flood residual oil makes the oil swell and become less 

viscous. The higher mobility results in oil being expelled from the matrix blocks into the 

fracture system to be produced. 

The laboratory WAG research program (Reservoir Laboratories AS, 1995) indicated that oil 

swelling only produces water, and is not considered an important oil recovery mechanism. 

Following water flooding, the matrix blocks are highly water saturated and the relative 

permeability of water is high, while the relative permeability of oil is low. When gas enters 

oil in the matrix and swells into the oil it will expand in the pores. Even though the oil 

viscosity will decrease, the low oil relative permeability will unable oil to flow into the 
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fractures; however the high mobility water flow more easily into the fractures and be 

produced. 

4.9.2.3 Gravity drainage  

Gravity drainage is the mechanism where gas is forced into matrix blocks due to 

gravitational forces. Gravitational forces are caused by differences in fluid densities 

between injected gas and reservoir oil. As gas is injected into a fractured chalk reservoir, the 

gas will surround the matrix and create a gravity-potential between the matrix blocks and 

the fractures (Jakobsson, et al., 1994). If the gravitational forces overcome the capillary 

forces, gas will enter the matrix block where oil will be driven to the bottom of the block 

before the oil will drain to the fracture. The matrix will continue to drain out oil until the 

capillary forces, working against the gravity to keep the oil in the matrix pore system, are 

equal to the gravitational forces. The pressure difference,    due to gravity is given by 

(Heeremans, et al., 2006): 

 

                              Equation 4.19 

Where: 

   : Fractional height of gas in the fracture 

   :   Fractional height of the gas in the matrix 

    :  Height of matrix block 

    : Oil density 

    : Gas density 

The amount of oil produced to the fracture is dependent on the balance between gas-oil 

capillary forces and gravitational forces caused by difference in oil and gas densities. The 

effectiveness of gravity drainage is directly related to the matrix block size, because liquid 

height is directly related to capillary forces (Reservoir Laboratories AS, 1995). The smaller 

the block size the less efficient is the gravity drainage.  

4.9.2.4 Molecular diffusion  

The diffusion process is of molecular nature and results from random motion of molecules 

in a solution. Molecular diffusion is present in all systems in which miscible fluids are 

brought into physical contact, and is an important phenomenon for dispersion of fluids 
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(Green, et al., 1998).  The diffusion process may be described quantitatively using Fick’s 

first law. Fick’s first law relates the diffusion of a fluid into another fluid as proportional to 

the concentration gradient between the fluids.  

In a fractured reservoir, significant component mass transfer between matrix and fracture 

may occur by molecular diffusion. In a matrix block filled with under saturated oil, transport 

of injected gas from the fracture into the matrix block occurs primarily by molecular 

diffusion (Reservoir Laboratories AS, 1995). The oil along the edge of the matrix block 

becomes saturated, which creates a concentration gradient within the matrix blocks. The 

concentration gradient will induce molecular diffusion. After some time, the innermost part 

of the matrix block will also become saturated with the injection gas, and equilibrium gas 

will be expelled from the matrix blocks. This process will continue until thermodynamic 

equilibrium is reached (Jakobsson, et al., 1994). 

4.9.2.5 Combination of vaporizing and condensing mechanisms 

If most of the mass transfer is from the oil to the gas, then the mechanism is termed as 

vaporizing drive. If the bulk of the mass transfer is from the gas to the oil, the mechanism is 

termed condensing drive. However in most cases, the mass transfer is actually a mixture of 

both these cases, and the displacement is a condensing-vaporizing drive (Al-Wahaibi, et al., 

2007). 

Zick (1986) was the first to present a detailed description of this mechanism. Zick stated the 

explanation that as enriched gas comes into contact with oil, the light intermediate 

components will condense from the gas into the oil, making it lighter. At the same time 

middle intermediate components in the oil are vaporized into the gas. Thus, the oil at the 

upstream location tends to become saturated with light intermediate components, but 

depleted of middle intermediate components. Such mechanism can result in low residual oil 

saturations and following increased oil recovery (Green, et al., 1998), (Elsharkawy, et al., 

1992).  

4.9.3 Capillary continuity 

Capillary continuity is a mechanism for fractured reservoirs where the effect of gravity and 

viscous mechanisms are improved because matrix blocks are connected with a permeable 

contact and acts as one block. 
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If vertical capillary continuity exists, meaning matrix blocks are contacted on top of each 

other and acts as one tall block, the gravity potential increases because the height, H, in 

equation 4.18 and 4.19, will be the total height of all individual contacted blocks in the 

vertical direction. More water and gas will enter the connected block system and might 

increase the oil recovery substantially. 

If horizontal capillary continuity exists; meaning matrix block are connected horizontally 

and acts as one long horizontal block, the pressure drop will be the sum of each individual 

block in the horizontal direction. The viscous forces will come in equilibrium with the 

capillary forces at a higher capillary pressure, resulting in higher recovery. 

 

4.10  Miscible and immiscible WAG 

The displacement efficiency of WAG-injections is highly dependent on whether the 

displacing gas is miscible or immiscible with the reservoir oil. Most miscible WAG projects 

are re-pressurized to create miscibility (Christensen, et al., 2001). However, because of 

failure to maintain sufficient pressure, real cases may oscillate between miscible and 

immiscible displacement. 

4.10.1  Miscible displacement 

Miscibility is defined as the physical condition between two or more fluid that permits them 

to mix in all proportions without existence of an interface (Holm, 1987). At any mixing ratio 

a single homogeneous phase is formed.  Miscible displacements can be first-contact 

miscible or multi-contact miscible. 

4.10.1.1 First contact miscibility 

In a first-contact miscible (FCM) displacement, the injected gas and reservoir oil will mix 

instantly to create a single phase in all mixing proportions (Al-Wahaibi, et al., 2007). To 

achieve first-contact miscibility, injection of highly rich gases with hydrocarbons such as 

ethane, propane, butane, or mixtures of liquefied petroleum gas (LPG) are used (Holm, 

1987). For leaner gas system FCM can be achieved by gas injection at very high pressure.  
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However, it is often not economical to inject a gas that is FCM with the oil. Instead, the 

injected gas can be design to develop multi-contact miscibility with use of leaner 

hydrocarbons (Al-Wahaibi, 2009).   

4.10.1.2  Multi-contact miscibility 

In a multi-contact miscibility (MCM) displacement, mass exchange between the injected 

gas and the reservoir oil will result in miscibility between the two phases, after a number of 

contacts, within a mixing zone of the flood front (Al-Wahaibi, et al., 2007).  

The injected gas and the reservoir oil are not initially miscible. As more gas is injected, an 

enriched gas mixture is pushed away from the injection well and forms a new even richer 

mixture. The process continues and creates a transition zone of contiguously miscible liquid 

compositions, ranging from injection gas at the wellbore to unaltered oil just ahead of the 

flood front in the reservoir (Jethwa, et al., 2000).  

Multi-contact miscibility can develop through a vaporizing process, a condensing process or 

a combination of the processes. In the vaporizing process the intermediate molecular weight 

hydrocarbons from the oil are transferred to the leading edge of the gas front, enabling it to 

become miscible with the reservoir oil after a number of contacts (Elsharkawy, et al., 1992), 

(Wu, et al., 1990).  

In the condensing process, the injected gas is enriched with light hydrocarbons. The 

reservoir oil left behind by the gas front is enriched by net transfer of light hydrocarbons 

from the gas phase into the oil. Enrichment of the reservoir oil proceeds until it becomes 

miscible with the injected gas (Elsharkawy, et al., 1992), (Wu, et al., 1990). 

Miscibility can partly develop through a combination of the vaporizing and the condensing 

processes. As in the condensing process, the light intermediate components in the injected 

gas condense into the crude oil, while the middle intermediate components vaporize into the 

gas phase.  

4.10.2  Immiscible displacement 

Immiscible displacement is a process where two separate fluid phases form after adding 

some proportion of one fluid (Al-Wahaibi, et al., 2007). Immiscible gas injections have the 

possibility of enhancing oil recovery. Even though two separate phases will create when 
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injecting immiscible gas, some mass exchange between the two phases will occur. Gas 

vaporization from the oil or condensation of gas into the oil or a combination of the two 

processes could appear. Dependent on the degree of mass exchange the process could get 

nearly miscible and result in favorable changes in the fluid viscosity and fluid density 

(Dong, et al., 2005), (Christensen, et al., 2001). 

For WAG processes, immiscible displacement has been applied to improve macroscopic 

sweep efficiency by improving the frontal stability and by contacting un-swept regions 

(Christensen, et al., 2001), and also improve the microscopic sweep efficiency by some 

mass exchange between oil and gas. Microscopic sweep efficiency for immiscible WAG 

displacement is usually determined by gas residual oil saturation, Sorg, in gas invaded zones 

and by water flood residual oil saturation, Sorw, in water dominated zones (Skauge, et al., 

1994). 

4.10.3  Evaluation of miscibility 

The displacement efficiency of a WAG process, as presented in the previous section, is 

highly dependent on whether the injected fluid will be miscible or immiscible with the 

reservoir oil. It is therefore important to be able to evaluate if injected gases will create 

miscibility or be immiscible with the reservoir oil. Such evaluation can be done by studying 

two parameters, the minimum miscibility pressure (MMP) and the minimum miscibility 

enrichment (MME).  

4.10.3.1 Minimum miscibility pressure (MMP) 

The displacement efficiency of reservoir oil by gas injection is highly pressure dependent 

and miscible displacement is only achieved at pressures greater than a certain minimum 

pressure, termed the minimum miscibility pressure.  Minimum miscibility pressure is 

defined as the lowest pressure for which a given injected gas composition can develop 

miscibility through a multi-contact process with a given reservoir oil at reservoir 

temperature (Green, et al., 1998). The reservoir to which the process is applied must be 

operated at or above the MMP to develop miscibility. Reservoir pressures below the MMP 

result in immiscible displacements and consequently lower oil recoveries (Elsharkawy, et 

al., 1992). The minimum miscibility pressure has been reported a strong function of the 

reservoir oil, the composition of the injected gas and the reservoir temperature (Ahmed, 
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2000). Temperature dependence of MMP has mostly been investigated for CO2-gases. 

Elsharkawy et.al (1992) reported that MMP for three different oils with CO2 increased in the 

range of 1250 to 1500 psia when temperature was increased from     to       F. Other 

reports on CO2 have agreed with the observation, except at very high temperatures above 

      F, where MMP has showed a decreasing trend with increased temperatures. However, 

the very little data reported on temperature dependence of MMP for hydrocarbon gases has 

not shown any clear trends. Firoozabadi and Aziz (1986) reported that for 100 % methane 

injected the MMP decreased with temperature. Lee and Reitzel (1982) reported though that 

no trend on MMP with temperature could be seen from a dry hydrocarbon gas with a 

content of 85 % methane. 

4.10.3.2 Minimum miscibility enrichment (MME) 

Minimum miscibility enrichment is defined as the lowest gas enrichment at which the 

injected gas can develop miscibility through a multi-contact process with a given reservoir 

oil at reservoir temperature and a given constant pressure (Green, et al., 1998). The injected 

gas composition must be enriched to or above the MME to develop miscibility with the 

reservoir oil. The minimum miscibility enrichment is a function of composition of reservoir 

oil, reservoir pressure and reservoir temperature.  

4.10.3.3 Evaluation of MMP and MME 

The challenge is to determine MMP and MME for a given reservoir oil at existing reservoir 

conditions. There exist both laboratory methods, empirical correlations based on 

experimental data and phase-behavior calculations based on an EOS and computer modeling 

to determine MMP and MME. 

The empirical correlations are based on experimental results and are relative simple to 

apply. However, the predicted values can be significantly in error so empirical correlations 

are typically only used to obtain first pass estimates and as a screening tool for evaluation of 

miscibility (Green, et al., 1998).  

Most phase-behavior correlations are design to evaluate miscibility for CO2-injection.        

Tarek Ahmed (2000) though presented a methodology to determine MMP also for other 

displacing gas-types.  Ahmed proposed a method combining a modified Peng and Robinson 

equation of state (PR-EOS) with a miscibility function to get estimates of the MMP. The 
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miscibility function is a mathematical expression used to describe miscibility conditions in 

terms of injection pressure and overall composition. Such phase-behavior methods can be 

used to obtain reliable results (Green, et al., 1998). However, the approach requires 

availability of a significant amount of compositional data for the reservoir fluids. Such data 

are often not available and tedious laboratory analyses are needed to obtain them. Further, 

an appropriate modified PR-EOS and a miscibility function is needed, together with a 

powerful computer to solve a complex solution algorithm. Because of the complexness and 

the lack of necessary data, such models will not be discussed in more detail in this thesis. 

The more common way to evaluate miscibility of a system is through laboratory 

measurements (Elsharkawy, et al., 1992), (Randall, et al., 1988). Primarily two laboratory 

methods are used to measure MMP and MME, namely the slim-tube method, and the rising-

bubble method. Slim-tube displacement tests have been widely used since early 1950s and 

are often referred to as the “industry standard” for evaluating miscibility. The rising-bubble 

nmethod was developed in the early 1980s, and laboratory experience has indicated that this 

method is considerably faster than the slim-tube method. In this thesis a ConocoPhillips 

created slim-tube model for simulations on MMP and MME will be used. A more detailed 

description of the slim-tube method will therefore be given.  

4.10.3.4 Slim-tube tests 

Slim-tube tests have become a generally accepted procedure for miscibility evaluation, 

although slim-tube design, operating procedure and criteria for interpretations have not been 

standardized by the petroleum industry (Green, et al., 1998). A great variety of 

specifications for slim-tube apparatus have therefore been reported with different slim-tube 

lengths, diameters, type of packing and permeability and porosities of packing.  A good 

design of a slim-tube apparatus is to use long tubes to minimize the effect of transition zone 

length and small tubing diameter to prevent viscous fingering.  

The slim-tube apparatus is operated by completely saturating the slim-tube with oil at the 

start of each displacement test. Gas is then injected to displace oil. Water is absent in slim 

tube tests. Laboratory one displacement test takes one day, with another day or two for 

cleaning and re-saturating the slim-tube. Determination of MMP for a gas-oil system with a 

slim-tube requires from one to two weeks (Elsharkawy, et al., 1992), (Shyeh-Yung, 1991). 
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To evaluate and interpret the MMP based on slim-tube experiments, oil recovery at gas 

breakthrough, oil recovery at 1 to 1.2 pore volumes of injected gas, and ultimate recovery 

can be plotted as a function of operating pressure. One criteria of determining MMP is the 

break-over pressure of the recovery curves. If the break-over is not sharp, the MMP can be 

chosen as the pressure for in which incremental oil recovery per incremental pressure 

increase is less than some arbitrary value. MMP could also be defined as the pressure when 

the oil recovery is 90 to 95 percent (Elsharkawy, et al., 1992).  

To evaluate the MME, oil recovery from several slim-tube tests with increasing levels of 

enrichment at constant pressure are compared. To interpret MME oil recovery at gas 

breakthrough, oil recovery at 1 to 1.2 pore volumes of injected gas, the enrichment at 90 to 

95 percent oil recovery, and ultimate recovery can be plotted as a function of enrichment 

level (Elsharkawy, et al., 1992). 

Slim-tube laboratory experiments to determine MMP or MME for Ekofisk crude oil are not 

available. Slim-tube simulations will be performed to investigate potential MMP for the 

produced dry hydrocarbon gas; to evaluate what reservoir pressures are needed to achieve 

miscibility, and to study MME to evaluate what gas enrichments are needed at different 

pressures to achieve miscibility. 

The temperature around water injection wells are lower compared to production wells 

because of cooling of the formation due to 20-30 years of cold water injection. Since both 

MMP and MME have been reported to be functions of temperature, sensitivity studies of 

MMP and MME to temperature will be included as part of the slim-tube simulation study.  

 

4.11   Introduction to the numerical reservoir simulation tool 

(PSim) 

PSim is a ConocoPhillips developed full field numerical reservoir simulation tool, 

specialized for the Ekofisk field. The tool has special formulations treating reservoir 

compacting and behavior of chalk as in the Ekofisk field case. The tool is generalized for 

simulation of black oil and compositional problems in single-porosity reservoirs. The model 

has been tested against SPE Comparative Solution Project problems and has been used in 

numerous field studies (ConocoPhillips Technical Manual, 2010).  
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Discrete mass balance equations for each grid blocks are linearized in PSim by either 

IMPES or implicit formulations. In IMPES formulations, pressures are treated implicitly 

and saturations are treated explicitly. In implicit formulation all unknowns are implicitly 

solved simultaneously using Newton-Raphson method. IMPES is the default formulation in 

PSim and usually requires less CPU time than the implicit formulation. However, IMPES 

method is conditionally stable and sufficiently fine grid and small time step lengths are 

needed to avoid instability. The implicit formulation is always stable (Kleppe, 2011). The 

linear equations can then be solved in PSim by the three linear solvers; bandwidth direct (D-

4 ordering), Orthomin preconditioned by Nested Factorization and Orthomin preconditioned 

by ILU (ConocoPhillips Technical Manual, 2010). 

For compositional problems Peng-Robinson or Soave-Redlich-Kwong equation of state can 

be used to compute fluid properties for any number of components. For each component 

molecular weight, critical temperature and pressure, critical z-factor, shift factor, acentric 

factor and cubic EOS constants have to be specified. 

Two- phase water-oil and gas-oil relative permeability and capillary pressure tables can be 

entered for multiple rock types, i.e. for the fracture system and for the matrix blocks, which 

are normalized before use in the simulations. For three-phase permeability Stone’s first 

model is default, but also Stone’s second model and Baker’s saturation-weighted linear 

interpolation method is available. Correlations for trapped gas saturation with associated 

relative permeability hysteresis effect are also available, with Coats as default and also the 

choice of Land’s non-linear and linear method. In PSim any number of pressure-volume-

temperature (PVT) tables, black oil or compositional, can be entered, and each grid block 

must be assign to a set of PVT-tables. All compositional PVT tables must use the same 

number and names of components (ConocoPhillips Technical Manual, 2010). 

The tool provides a variety of outputs for analysis; including rates, cumulative production 

and injection, which all can be specified how frequently printed and from which regions of 

the reservoir/model. The output data is analyzed in the ConocoPhillips program CView. 
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5 Slim-tube modeling 

The recovery efficiency of WAG-injection is highly dependent on whether the process is 

miscible or immiscible. The slim-tube simulation model has been used to evaluate if 

injected gas will be miscible or immiscible with the Ekofisk crude oil. This has been done 

by evaluating the MMP and MME. In this chapter description of the slim-tube simulation 

model, methodology to determine MMP and MME, and results and discussion from 

simulations are presented. Finally a decision has been taken to proceed with miscible or 

immiscible process for the further studies.  

5.1   Description of the slim tube model 

The slim-tube simulation model used in this study was initially designed for evaluation of 

CO2-gas miscibility with Ekofisk crude oil. However, a revised EOS, tuned against 

hydrocarbon gas experimental data at ConocoPhillips research center in Bartlesville, has 

made it applicable for miscibility evaluations for hydrocarbon gases. 

The slim-tube model is a one dimensional, compositional, 400 grid-blocks displacement 

model of oil by gas, illustrated in figure 5.1. Each grid block has the length in x-direction of 

2.5 ft, making the total model 1000 ft long. The size of each grid block is 14037.5 ft
3
, with 

grid block sides of 2.5 ft, 561.5 ft and 10 ft, in the x-,y- and z-direction respectively. An 

injection well is perforated in grid block (1,1,1), and a production well is perforated in grid 

block (400,1,1). The pressure difference between the injection well and production well is 

1000 psia in all simulations, resulting in a pressure gradient of 1 psi/ft. The grid blocks 

properties in the model are homogeneous with constant porosity and absolute permeability 

of 10 % and 10D respectively.  

 

Figure 5.1: Illustration of slim-tube model after some time of gas injection 
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The slim-tube is always initialized with single phase oil. The input oil composition and 

corresponding saturation pressure for the slim-tube model has been obtained by running a 

simulation on the homogeneous mechanistic model, described in the chapter 6. The 

simulation is performed by running primary depletion and water flooding with initial 

Ekofisk oil composition and saturation pressure as input, to mimic the Ekofisk history. At 

the end of the simulation, the output in-situ oil composition and the new saturation pressure 

are monitored, which are used as input for the slim-tube simulation.  This way, the oil 

composition will be more close to the current Ekofisk oil composition and results are more 

reliable and in accordance to the timing of a potential WAG-injection. The oil compositions 

and corresponding saturation pressure are given at a reference depth of 10280 feet. 

Two different EOS are used to compute fluid properties for the components at given 

conditions. One is for use at high temperatures and the other is for use at lower 

temperatures. Both EOS are 15-components modified Peng-Robinson type EOS designed 

for the Ekofisk crude oil and tuned against measured phase behavior data of oil vaporization 

by immiscible hydrocarbon gas at high and low temperatures. A test simulation with the 

high temperature E S at      F was compared with a similar run with the low temperature 

EOS, which showed some difference in oil recovery. Both EOS consist of the same 

components, shown in table 5.1, and use the same set of PVT data. The only difference 

between them is their binary coefficients.  

Table 5.1: The 15 components used in EOS for slim-tube simulations 

Composition Abbreviation in EOS 
Nitrogen N2 

Carbon dioxide CO2 

Methane C1 

Ethane C2 

Propane C3 
Iso-butane iC4 

n-butane C4 

Iso-pentane iC5 
n-pentane C5 

Hexane C6 

Heptane + Octane C7P1 
C9-C13 C7P2 

C14-C19 C7P3 

C20-C29 C7P4 
C30+ C7P5 
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The last five components of the EOS given in table 5.1 are pseudo-components. A pseudo-

component is a lumping of several components into one component comprising a shared set 

of compositional PVT data.   

5.2 Methodology for slim tube model 

5.2.1 Methodology minimum miscibility pressure 

Miscibility of a gas with reservoir oil in a WAG-process is highly pressure dependent. To 

determine if a WAG-process will be miscible or immiscible one can evaluate the minimum 

miscibility pressure of the gas-oil system. The minimum miscibility pressure (MMP) is, as 

presented in chapter 4.10.3.1, the lowest pressure for which a given injected gas 

composition can develop miscibility through a multi-contact process with a given reservoir 

oil at reservoir temperature.  

To evaluate MMP, simulations are run in PSim where gas is injected into the slim tube 

model at different operating pressure between simulations. Following each run, oil recovery 

as a function of gas volume injected, and mole composition produced and injected are 

printed. For each simulation gas is injected at constant temperature and pressure, and the oil 

recovery at 1.2 pore volumes of gas injected is monitored. After a number of simulations 

with different operating pressures, a graph of oil recovery at 1.2 pore volumes of gas 

injected can be plotted against operating pressures, all at constant temperature. MMP can 

then be determined by the criteria of break-over pressure of the curve, presented in section 

4.10.3.4. Plotting oil recovery at 1.2 pore volumes of gas injected versus operating pressure 

and using the criteria of break-over pressure of the curve to determine MMP is the most 

commonly used practice for slim-tube tests. This is the reason for the selection of such 

procedure in this study. 

In all slim-tube simulations where MMP is evaluated, the injected gas composition used is 

similar to the composition of dry hydrocarbon gas produced at Ekofisk, shown in terms of 

mole percent in table 5.2: 
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Table 5.2: Composition of Ekofisk dry hydrocarbon gas  

Components Mole % 
N2 0.28 

CO2 2.65 

C1 84.02 

C2 9.41 

C3 2.94 

iC4 0.22 

C4 0.41 

iC5 0.04 
C5 0.03 

In chapter 4.10.3.1 it was presented that MMP has been reported to be temperature 

dependent for different injection gas types. Temperatures around injection wells can be as 

low as 60   F, because of the cold water injection, and increases towards production wells up 

to the initial reservoir temperature of 268   F. Because of the great variety of temperatures 

within the Ekofisk field, MMP dependence to temperature for dry hydrocarbon gas is 

included in this study. To do this MMP is evaluated at 60   F, 100   F, 150   F, 200   F and 268   

F. The high temperature EOS is used for simulations at reservoir temperatures of 200   F and 

268   F, while the low temperature EOS is used for simulations at reservoir temperatures of 

60, 100 and 150   F.  Evaluation of temperature dependence on MMP is performed by 

repeating the procedure presented above, running several simulations at different operating 

pressure for each temperature. The output data are then monitored and graphs of oil 

recovery at 1.2 pore volumes of gas injected versus operating pressures are plotted for the 

different temperatures and evaluated by the break-over pressure criteria.  

5.2.2 Methodology minimum miscibility enrichment 

Miscibility of gas with reservoir oil in a WAG-process is strongly dependent on the 

enrichment level of the injected gas. To determine whether a process will be miscible or 

immiscible the minimum miscibility enrichment of gas-oil systems can be evaluated. 

Minimum miscibility enrichment (MME) is, as presented in section 4.10.3.2, the lowest gas 

enrichment at which injected gas can develop miscibility through a multi-contact process 

with a given reservoir oil at constant temperature and pressure.  
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Evaluation of MME is performed in this study by injecting gas, with increasing amounts of 

natural gas liquid (NGL) added to the dry hydrocarbon gas, into the slim-tube model at 

constant pressures until miscibility is achieved. The NGL composition is given in table 5.3, 

and the dry hydrocarbon gas is the one given in table 5.2. The amount of NGL that is 

required to be added to achieve miscibility at a given reservoir pressure and temperature is 

defined as the minimum miscibility enrichment. 

Table 5.3: Composition of the NGL added to dry gas in MME evaluations 

Components Mole % 
CO2 1.16 

C1 1.96 

C2 18.59 

C3 28.68 

iC4 6.56 

C4 19.32 

iC5 6.59 

C5 7.35 

C6 7.28 

C7P1 2.45 

C7P2 0.06 
 

The NGL composition used has gone through process facilities and separation from the 

produced Ekofisk gas, and is usually meant to be transported in pipelines for sale.  

In each MME-simulation gas is injected at constant temperature and pressure, and the oil 

recovery at 1.2 pore volumes of gas injected is monitored. Injected gas composition is then 

altered for new simulations and the procedure is repeated. Injected gas compositions with 0 

%, 2 %, 5 %, 8 %, 10 %, 12 %, 15 % and 20 % NGL added to the dry hydrocarbon gas are 

simulated, comprised gas compositions are given in appendix A. 

When the above procedure is completed for all enrichment levels, a graph of oil recovery at 

1.2 pore volumes of gas injected can be plotted against enrichment level (amount NGL 

added) all at constant temperature and pressure. MME can then be determined by the criteria 

of 95 % oil recovery, as presented in chapter 4.10.3.4. MME have often been hard to 

evaluate based on the break-over criteria, which is the reason for the criteria of 95 % oil 

recovery is chosen to determine MME in this study.   
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The MME is, as presented in chapter 4.10.3.2, dependent on the reservoir pressure. The 

current reservoir pressures around injection wells are commonly between 6000-6800 psia, 

and lower around production well, commonly between 5000-6000 psia. Since the pressures 

throughout the reservoir vary greatly, study of MME dependence to pressure is necessary.  

MME is therefore evaluated at operating pressures of 5000 and 6000 psia.  

MME has also been reported temperature dependent. As earlier mentioned the reservoir 

temperature varies within different regions of the reservoir. Study of MME dependence to 

temperatures is therefore necessary. Evaluation of temperature dependence on MME is 

therefore performed at 60   F, 150   F and 268   F. The low temperature EOS is used for 

temperatures of 60   F and 150   F, while the high temperature EOS is used for 268   F. For 

each temperature constant operating pressure of 6000 psia is used and the procedure 

presented above is repeated by running simulations with each enrichment level for all 

temperatures. The output data are monitored and graphs of oil recovery at 1.2 pore volumes 

of gas injected versus enrichment levels can then be plotted for the different temperatures. 

Evaluation of MME according to the 95 % oil recovery criteria can then be used to compare 

MME for the different temperatures. 

5.3   Results and discussion of slim-tube simulations 

The results from the slim-tube simulations are presented in this section, divided into MMP 

and MME evaluation. 

5.3.1 Minimum miscibility pressure 

Slim-tube simulations to evaluate MMP were run in PSim at constant temperature of 268   F 

and the recovery factor at 1.2 pore volumes of injected gas for different operating pressures 

were monitored, and is plotted in figure 5.2 and 5.3 based on the data given in appendix A.  
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Figure 5.2: MMP evaluation at 268   F 

 

Figure 5.3: MMP evaluation at 268   F, zoomed to the break-over pressure region 

MMP at       F is determined by the break-over pressure criteria, presented in chapter 

4.10.3.4, to be between 6900 and 7000 psia, illustrated in the red circle in figure 5.3. 

At low pressures when 1.2 pore volumes of gas is injected, compositional analysis from the 

output data indicates that large amount of residual oil is left behind as both lean and heavy 

hydrocarbons components. As the pressure was increased to 6500, near the minimum 

miscibility pressure, most of the lean components up to C9 were produced, however still a 

considerable amount of heavier components C10+ remained unproduced. At the MMP, of 
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6900-7000 psia, nearly all heavy oil components above C10+ were also produced. Further 

increase of pressure above MMP had little effect on residual oil, which is also seen on the 

oil recovery curve in figure 5.2, which flattens out for pressures above the MMP.  

Simulations were further run in PSim with different temperatures of 60   F, 100   F, 150   F, 

200   F and 268   F with varying operating pressures for each temperature. Oil recoveries at 

1.2 pore volume of gas injected were monitored as a function of operating pressure for the 

different simulations, given in appendix A, and plotted in figure 5.4 for different 

temperatures.

 

Figure 5.4: MMP evaluation at different temperatures 

The break-over pressure criteria was used to determine MMP for the different temperatures 

and showed to be in the range of 6600 to 7100 psia, within the red circle in figure 5.4. 

To determine if any temperature trends for MMP can be observed, the range in which MMP 

was determined to is plotted against temperature in figure 5.5. 
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Figure 5.5: The pressure range which MMP was determined in for different temperatures 

The results of temperature dependence of MMP show no clear trends, analogous to what 

was reported by Lee and Reitzel (1982) with a hydrocarbon gas with methane content of 85 

%. The injected gas used in this study had a methane content of 84 %. Because the MMP for 

different temperatures is determined to be within a small pressure range, it is concluded that 

dry hydrocarbon gas with the Ekofisk crude oil do not significantly affect the MMP at 

different temperatures. 

MMP conclusion 

Based on the current reservoir pressures at Ekofisk, which in most regions are below the 

determined MMPs, WAG injection will most likely by immiscible when injecting dry 

hydrocarbon gas. Close to injection wells pressures can be up to 6800 psia and miscible or 

close to miscible processes can be achieved. As gas is injected the enrichment of the 

injected fluid front will increase because of mass exchange with the oil, however as the 

injection front moves further into the reservoir the pressures are much lower and the process 

will most likely be immiscible. 

To achieve miscibility one can start the WAG injection at a later stage, when continued 

water injection has increased reservoir pressures above the MMP. Another alternative to 

achieve miscibility is to enrich the injection gas above the MME. The latter alternative will 

be presented in the next section. 
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5.3.2 Minimum miscibility enrichment 

To evaluate the MME, slim-tube simulations were run in PSim at 2     F with different 

enrichment levels of the injected gas shown in appendix A. Output oil recoveries at 1.2 pore 

volumes of gas injected were monitored as a function of the amount NGL added at reservoir 

pressures of 5000 and 6000 psia plotted in figure 5.6 based on the data in appendix A. 

 

Figure 5.6: MME evaluation at operating pressures of 5000 psia and 6000 psia and constant 

temperature of 268   F  

Based on the criteria of 95 % oil recovery, MME is determined as 11 % enrichment of NGL 

at pressure of 6000 psia and 18 % enrichment of NGL at pressure of 5000 psia. 

The results on MME to pressure agree with the theory stating that higher pressures are 

needed to achieve miscibility for leaner gases than for more enriched gases.  

Based on the gradient of the two curves in figure 5.6 it is observed that for lower pressures 

increased enrichment will have greater effects on the oil recovery than for equal increase in 

enrichment for higher pressures. To achieve miscibility a more enriched gas is required for 

low pressures.  The incremental oil recovery for low pressure is however larger than for 
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high pressure, so when increasing the enrichment level equally for the two cases the curves 

converges as enrichment level is increased.   

Figure 5.6 illustrates that the largest gradient of the two curves are from 6 to 11 % 

enrichment level for the 6000 psia case and from 7 to 14 % for the 5000 psia case. This 

observation indicates that miscibility is not necessarily to be achieved to increase oil 

recovery substantially. Actually the largest increase in oil recovery for increasing 

enrichment levels is in the immiscible, close to miscible, region. Above the MME increased 

enrichment level will have less effect on oil recovery and the curves will eventually flatten 

out. 

Simulations were further run in PSim with different temperatures of 60   F, 150   F and 268   F 

with the different enrichment levels for each temperature, all at constant pressure of 6000 

psia. Oil recoveries at 1.2 pore volume of gas injected as a function of enrichment levels 

were monitored for the different simulations, and is given in appendix A and plotted in 

figure 5.7 at different temperatures. 

 

Figure 5.7: MME evaluation at temperatures of 60, 150 and 268   F and constant operating pressure of 

6000 psia. 
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Based on the criteria of 95 % oil recovery, MME at pressure of 6000 psia is determined to 

11 % enrichment of NGL at both 268   F and 150   F, and to 16.5 % enrichment of NGL at 60 

  F. 

MME conclusion 

To achieve miscibility through enriching the injected gas, large amounts of NGL is required 

to be added to the dry gas 11 to 16.5 % NGL at 6000 psia. Assuming that totally around 0.3 

to 1 pore volume of gas is injected in the WAG-process; the total volume NGL delegated 

from sale to injection to achieve miscibility will be large. Such delegation of NGL from sale 

to injection involves high economical risks, as current NGL price is high and a significant 

incremental oil recovery from the WAG-process is needed for a successful process, which 

yet is highly uncertain. It has therefore been decided to proceed with the much cheaper 

hydrocarbon dry gas for the further studies. 
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6 Mechanistic modeling  

The mechanistic models are designed to get an understanding of the behavior of important 

parameters, concepts and oil recovery mechanisms for WAG-displacement. The parameters 

and concepts studied in this section are trapped gas saturation and the connected relative 

permeability hysteresis effect, miscible flood residual oil saturation (SORM) and matrix-

fracture mechanisms. For the study of trapped gas saturation a homogeneous matrix model 

is designed. Studies of matrix-fracture mechanisms are performed by introducing different 

matrix-fracture models to describe different types of fracture networks and fracture intensity 

factors within different regions of the reservoir. Based on the results from the different 

matrix-fracture models evaluation of SORM is performed. Finally, obtained results are used 

as basis for further sector modeling. 

6.1   Description of mechanistic models 

The mechanistic models in this study are compositional, two-dimensional models in the xz-

plane with 1156 grid blocks, 34 in x-direction and 34 in z-direction. A vertical injection well 

is perforated in the grid block (1,1,1) through (1,1,34) and a vertical production well is 

perforated in the grid blocks (34,1,1) through (34,1,34). The size of each grid block, both 

matrix and fracture grid blocks, is 10 ft
3
 with grid block sides of 0.1 ft, 1000 ft and 0.1 ft in 

the x-,y-, and z-direction respectively. 

The homogeneous matrix model and the matrix-fracture models make use of the same 

matrix grid block properties. Fracture properties used are also equal for the fracture grid 

blocks within the matrix-fracture models.  

Matrix properties 

The properties of the matrix grid blocks used are based on laboratory and field data from the 

Ekofisk and are summarized in table 6.1. 
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Table 6.1: Matrix properties used in the mechanistic models 

Parameter Value 

Initial pressure (z = 10280 ft) 7103 psia 

Porosity 40 % 

Horizontal permeability 2 mD 

Vertical permeability 0.2 mD 

Initial water saturation 0.04 

Initial oil saturation 0.96 

Critical gas saturation 0.05 

 

The input two-phase matrix gas-oil and water-oil relative permeability curves are illustrated 

in figure 6.1 (a), and figure 6.1 (b) respectively. 

 

 (a)                                                                       (b) 

Figure 6.1: Input matrix (a) gas-oil and (b) water-oil relative permeability curves for the mechanistic 

models 

If the assumption of no trapped gas is made, the gas drainage and imbibition curves coincide 

and will be represented by the green line in figure 6.1(a). However, if trapped gas saturation 

is included, the imbibition curve will be different. Results from trapped gas studies and 

presentation of new hysteresis affected relative permeability curves are presented in chapter 
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6.3.1. Since three-phase flow is encountered in WAG-displacement, Stone’s first model is 

used to calculate three-phase oil relative permeability data.  The gas-oil capillary pressures 

are very small and can therefore be neglected.   

The input drainage and imbibition water-oil capillary pressure curves are important for 

displacement of oil by water, and are shown in figure 6.2. 

 

Figure 6.2: Matrix water-oil capillary pressure curves for the mechanistic models 

The capillary imbibition curve in figure 6.2 indicates that spontaneous imbibition ends at 

water saturation of about 0.56, corresponding to zero capillary pressure. The degree of 

spontaneous imbibition for this system gives the indication of the rock being moderately 

water-wet, based on the capillary pressure relation to rock wettability presented in section 

4.4. Further imbibition of water into the matrix blocks may be achieved by forced 

imbibition by external forces like viscous or gravitational. Forced imbibition can imbibe 

water up to possibly water saturations of 0.75, resulting in Sorw of 0.25, as seen in figure 

6.2. 

Fracture properties 

The fracture properties used within each matrix-fracture mechanistic models are constant for 

all fracture grid blocks and given in table 6.2. 
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Table 6.2: Fracture properties used in the matrix-fracture mechanistic models 

Parameter Value 

Initial pressure (z=10280 ft) 7103 psia 

Porosity 100 % 

Horizontal permeability 1000 mD 

Vertical permeability 1000 mD 

Initial water saturation 0.04 

Initial oil saturation 0.96 

 

The permeability of the fractures on the Ekofisk has not been fully understood. However, 

well tests have measured effective permeability up to 100-150 mD. Fracture permeability of 

1000 mD is therefore used to give effective permeability for the matrix-fracture model up to 

this range. 

The water-oil and gas-oil relative permeability curves for the fractures are linear and 

illustrated in figure 6.3 (a) and figure 6.3 (b) respectively. The capillary pressures in the 

fractures are assumed to be zero. 

 

 

                                (a)                                                                      (b) 

Figure 6.3: Fracture (a) water-oil and (b) gas-oil relative permeability curves for matrix-fracture models 
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PVT data 

In an immiscible displacement process less compositional changes over each time-step is 

expected compared to miscible displacement. Therefore, an EOS with fewer components 

may sufficiently describe an immiscible displacement. A simulation test was performed to 

investigate the difference between a 7-component EOS and the 15-component EOS which 

was used for slim-tube modeling. The result from the simulation showed that the 7-

component EOS gave almost the exact results as the 15-component EOS, seen in appendix 

B, and the 7-component EOS was therefore chosen for the further studies to reduce central 

processing unit (CPU) time of simulations.  

The 7-component EOS is a Peng-Robinson type EOS tuned to match the same data as the 

15-component used for slim-tube simulations. The main difference is that some components 

with similar properties in the 15-components EOS are lumped into pseudo-components in 

the 7-components EOS, shown in table 6.3. The lumping of components into pseudo-

components results in new set of compositional PVT data and also new set of binary 

coefficients. 

Table 6.3: 7-components EOS 

Components Abbreviation in EOS 
Carbon dioxide CO2   

Nitrogen and methane N2C1  
Ethane and propane C2C3  

Butane to hexane C4C6  

C7-C13 C7P1  

C14-C30 C7P3  
C30+ C7P5  

  

Simulation procedure 

A three-stage development is modeled, first primary depletion, followed by water flooding 

to Sorw, to imitate the Ekofisk history and then further prediction studies with WAG-

injection. All models are initialized with matrix and fracture grid block properties as 

presented above. In addition to the matrix and fracture properties presented above, the input 

SORM option five, presented in chapter 4.8, with SORM value equal to 0.03 is used for all 

matrix blocks. Input maximum trapped gas equal to 0.2 for all matrix grid blocks is also 

used is a standard, with trapped gas saturation calculated based on Lands correlations, 

presented in section 4.6.2.1. The composition of the in-situ reservoir oil is similar to the 
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initial Ekofisk crude oil.  The initial reservoir pressure and temperature in the models are 

7103 psia and    F   respectively, at a datum depth of 10280 feet. The initial reservoir 

pressure is above the oil saturation pressure which is calculated to be 5390 psia at initial 

conditions, and the oil is following initially under saturated. 

The models are simulated by running a primary depletion with BHP-control by stepwise 

decreasing the BHP at the production well to a pressure of 3500 psia. The oil recovery 

factor following primary depletion is between 16-20 % for the different models. Water 

flooding is then performed by introducing the injection well and gradually increasing the 

BHP at both the injection and production well, retaining a constant pressure difference. The 

pressure difference between the wells for water injection is set to 750 psia, giving a pressure 

drop of 220 psi/ft. This high pressure drop is used because the interest is to reach water 

flood residual oil saturation as fast as possible. Water flooding is performed to water flood 

residual oil saturation of 0.3-0.35, resulting in oil recovery of approximately 65-70 % for the 

different models. The reservoir pressure following water flooding is about 6400 psia.  

WAG-studies are then initiated with BHP-control, with BHP of the injection well at 6500 

psia for both gas and water injection and BHP of the production well at 6000 to make sure a 

pressure drop exist across the matrix blocks. Dry hydrocarbon gas as presented in table 5.2 

is used for the gas half-cycles. An illustration of the oil recovery and reservoir pressure for 

primary depletion and water flooding for the homogeneous case is shown in figure 6.4. 

 

Figure 6.4: Oil recovery and reservoir pressure for the homogeneous matrix model 
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Two different strategies are used for WAG-injection in the mechanistic models. One is to 

inject small pore volume slugs to pretend that the mechanistic model represents a region of 

the reservoir. The other strategy is to inject large pore volumes to pretend that the 

mechanistic model represents a small part of the reservoir like a core sample. Using the 

latter method, the entire mechanistic models will eventually be flooded and similar ultimate 

oil recoveries will be reached for different cases. The choice of strategy will be stated in 

each section.  

6.2  Methodology for mechanistic modeling 

Methodologies to evaluate the different main parameters studied in mechanistic models for 

this thesis, trapped gas saturation and hysteresis effect, matrix-fracture systems and SORM 

are presented in this section. 

6.2.1 Trapped gas saturation and relative permeability hysteresis effect 

Phase trapping of gas and corresponding relative permeability hysteresis effect is common 

after an imbibition process where a wetting-phase displaces the non-wetting phase gas. 

These phenomenas are typical in WAG processes, because the alternation between water 

and gas injection induce changes between drainage and imbibition processes. To evaluate 

trapped gas saturation and relative permeability hysteresis effect in WAG processes, 

available options in PSim are used and evaluated against laboratory and other reported data 

for chalk. 

The available trapped gas correlations in PSim are those by Coats and Land. Because PSim 

lacks standard hysteresis options, such as the WAG-hysteresis model or the models by 

Carlson or Killough presented in chapter 4.6.3, the available options will be investigated. 

Hysteresis affected relative permeability curves can be calculated in PSim based on the two 

trapped gas correlations. 

The two correlations are compared in the homogeneous model by investigating how trapped 

gas saturation is calculated as a function of historical maximum gas saturation with Sgr 

input equal to 0.2. Further the impact on relative permeability curves is considered. The 

evaluation is performed by choosing a reference cell in the homogeneous model where gas 

saturation, Sg, current trapped gas saturation, Sgrc, and relative permeability of gas, krg, is 

monitored at each time step. 
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To evaluate the best matching trapped gas correlation and Sgr input value for the Ekofisk 

chalk, simulations results are compared with reported data on chalks and laboratory results 

by ConocoPhillips on trapped gas. Sgr input values of 0.2, 0.3 and 0.35 for Lands 

correlation and Sgr input values of 0.2 and 0.5 for Coats correlation are studied. The 

evaluation is done by comparing how trapped gas saturation is calculated as a function of 

historical maximum gas saturation and comparing this with reported and laboratory data. 

The same reference cell as used earlier is used to obtain data for the evaluation. 

Finally an evaluation of the impact trapped gas saturation has on a WAG-process is done by 

comparing the best matching Sgr-input value with a run where trapped gas is negligible, 

Sgr=Sgc=0.05. Trapped gas of 0.05 equals a run where trapped gas is neglected, since the 

critical gas saturation is 0.05. In each sensitivity run all parameters other than Sgr are 

unchanged and kept equal to the standard, presented in section 6.1. The homogeneous 

matrix model is assumed to be a larger part of a reservoir and small slugs are therefore 

injected in this evaluation. 

6.2.2 Matrix-fracture systems 

In the Ekofisk chalk reservoirs it is the naturally fractures that makes the reservoirs 

producible. The Ekofisk field has different types of fractures making up different kind of 

Ffracture-networks within the matrix. The different matrix-fracture systems lead to different 

flow performance in the reservoir resulting in different oil production from a WAG-process 

in different regions. Five matrix-fracture models are designed in this thesis to investigate the 

impact of different matrix-fracture systems within a reservoir and their impact on WAG-

displacement. All matrix grid blocks and all fracture grid blocks within the different models 

have similar properties, as presented in section 6.1. The five different models design for the 

matrix-fracture evaluation are:  

1) Homogeneous matrix model with no fractures.  
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2) 3-layer fracture model with three horizontal layered fractures introduced within the 

matrix model, illustrated in figure 6.5. 

  

 

  

Figure 6.5: 3-layer fracture model in the xz-plane 
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3) Six-layer fracture model with three additional horizontal layered, totally six, 

fractures introduced in the homogeneous matrix model, illustrated in figure 6.6. The 

model is used to evaluate the impact of fracture intensity factor, given by equation 

4.17. 

 

Figure 6.6: Six-layer fracture model shown in the zx-plane 
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4) Discontinuous fracture model with three discontinuous fractures introduced within 

the homogeneous matrix model, illustrated in figure 6.7. 

 

 

Figure 6.7: Discontinuous fracture model in the xz-plane 
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5) 9-block model with three horizontal and two vertical continuous fractures within the 

homogeneous matrix model, illustrated in figure 6.8.   

 

Figure 6.8: 9-block fracture model in the xz-plane 

The models are assumed to be core plugs sizes and large slugs of two pore volumes are 

therefore injected in each model. The impact of WAG-injection in the different models is 

studied by evaluating incremental oil recovery to water flooding, and the timing of gas 

breakthrough. The impact of perforating in matrix grid blocks or both matrix and fracture 

grid blocks is also studied. 

Different models with different properties are originally used to represent different areas of 

the reservoir in a full field model. A presentation of upscaling from mechanistic models to 

full field model is therefore included following the results. 

6.2.3 Miscible flood residual oil saturation 

In miscible or close to miscible WAG-processes reservoir simulator may over predict the oil 

recovery by completely sweeping the grid blocks. This could result in residual oil saturation 
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(SORM) approaching zero. As presented in chapter 4.7, this is unlikely to occur in field 

cases for several reasons. To avoid over estimation of oil recovery in full field simulations 

several methods have been proposed. Two methods, SORM options, are available in PSim 

to account for the problem, discussed in detail in chapter 4.7. 

To evaluate how the different SORM options operate, simulations with input SORM of 0.2 

are performed in the homogeneous matrix model for both options. Since the main interest is 

to capture how the options operate at low oil saturations, the homogeneous matrix model is 

used and assumed to be core plug size and therefore entirely flodded with two pore volumes 

slugs. 

To account for SORM in full-field reservoir simulations of WAG-processes the incremental 

recovery from the different matrix-fracture mechanistic models is used as a basis for SORM 

in the upscaled grid blocks in the sector model.   

 

6.3 Results and discussion of mechanistic simulations 

The results from mechanistic simulations are presented in this section, divided into trapped 

gas saturation and relative permeability hysteresis effect, matrix-fracture systems and 

miscible flood residual oil saturation. 

6.3.1 Trapped gas saturation and relative permeability hysteresis effect 

Simulations were run in the homogeneous matrix model with input Sgr equal to 0.2 to 

evaluate how trapped gas saturation is calculated for the different trapped gas correlations in 

PSim. The reference cell (18,1,18) was chosen to monitor how trapped gas saturation is 

calculated as a function of maximum historical gas saturation, plotted in figure 6.9, 

assuming that a complete imbibition process is initiated at the maximum historical gas 

saturation.  
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Figure 6.9: Land and Coats trapped gas saturation as function of maximum historical gas saturation for 

reference grid block (18,1,18) 

Land’s non-linear correlation relates the amount of gas being trapped to the maximum 

historical gas saturation by applying equation 4.8, where CLand is calculated by equation 4.9 

to be 4, based on the input Sgr value of 0.2. In example the black box on the Land non-

linear curve has the gas saturation of 0.1669. Assuming this is the maximum historical gas 

saturation at the start of a complete imbibition process, the trapped gas saturation is 

calculated by applying equation 4.8:  

   
  

   
 

            
  

 
      

          
         

Coats correlation relates the amount gas being trapped to the maximum historical gas 

saturations by using the linear correlation given in equation 4.14. The trapping constant C, 

given by equation 4.15, is 0.1648 corresponding to the slope of Coats curve in figure 6.9. In 

example the blue box on Coats curve has the gas saturation of 0.3458. The trapped gas 

saturation, assuming this gas saturation is the maximum historical gas saturation at the start 

of a complete imbibition process, is calculated by applying equation 4.14: 

0 

0,02 

0,04 

0,06 

0,08 

0,1 

0,12 

0,14 

0,16 

0,18 

0,2 

0 0,1 0,2 0,3 0,4 0,5 0,6 

T
ra

p
p

e
d

 g
a

s
 s

a
tu

ra
ti

o
n

 

Maximum historical  gas saturation 

Trapped gas saturation as function of max gas 
saturation for different correlation using input Sgr=0.2 

Land non-linear 

Coats 



 

93 

 

   
             

                                        

Gas trapping can in both cases only occur if the gas saturation increases above the critical 

gas saturation at 0.05, because an imbibition process subsequent to a drainage process can 

only occur when gas is flowing, accordingly above the critical gas saturation. 

To find gas relative permeability curves corresponding to the two correlations, the reference 

cell (18,1,18) was used to monitor gas saturation and gas relative permeability as a function 

of time. Gas relative permeability as a function of gas saturation in the first WAG gas cycle, 

drainage process, and first WAG water cycle, imbibition process is plotted in figure 6.10, 

for the two different correlations. 

 

Figure 6.10: Gas relative permeability curves for Coats and Lands correlations with input maximum 

trapped gas saturation of 0.2 based on data from the reference grid block (18,1,18)  

To calculate the hysteresis effected imbibition curve, maximum gas saturation in the start of 

the imbibition process is used to calculate the amount of trapped gas of a complete 

imbibition. At any point along the imbibition process relative permeability is calculated 

based on the mobile part of the total gas saturation, given by equation 4.12. The mobile gas 

saturation is then used to calculate hysteresis effected relative permeability data in the 

imbibition process by applying equation 4.13.  
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The drainage curve for the next WAG gas cycle will follow the imbibition curve, possibly 

up to the maximum gas saturation achieved during previous drainage process, and then 

along the input relative permeability curve if gas saturation is further increased. 

To evaluate which trapped gas correlation and Sgr input value that matches best with chalk, 

simulation results for different Sgr input values for both correlations were compared with 

reported (Keelan, et al., 1975) and laboratory data (Maloney, 2003) on trapped gas (shown 

in figure 6.11) 

 

Figure 6.11: Trapped gas correlations and different Sgr-input values compared to reported and 

laboratory data on trapped gas 
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Land’s correlation with input Sgr of 0.35, the yellow curve in figure 6.11, matches the 

laboratory data and Keelan and Pughs trapped gas data on chalk the best. Based on this 

result the homogeneous model with Land’s correlation and Sgr-value of 0.35 will be 

compared to a run with negligible trapped gas. Sgr-value of 0.35 will also be used as basis 

for sector modeling. 

Two sensitivity runs were carried out with Sgr equal to 0.05 and 0.35, and all other 

parameters kept unchanged from the properties presented in section 6.1. Five WAG-cycles 

were injected with half-cycle slug sizes of 0.1 pore volumes. In figure 6.12 the oil recovery 

is plotted as function of time to for the two cases. To get a better understanding what 

happens in the simulations, gas saturation, oil saturation, oil saturation pressure and 

reservoir pressure where plotted for the reference grid block (18,1,18) as a function of time 

for both cases (shown in appendix C). 

 

Figure 6.12: Impact of trapped gas on oil recovery for WAG-displacement 

No effect of trapped gas is observed during the primary deletion period because this is a 

drainage process where the gas saturation increases. As water injection is initiated, the gas 

saturation decreases, hence starts an imbibition process where gas trapping can occur. From 

the reference cell, the gas saturation obtained after primary depletion is 0.285. Based on the 

maximum historical gas saturation, Land’s correlation calculates the trapped gas, for Sgr 

input of 0.35, to be 0.188. The gas relative permeability is lower during imbibition than 

during drainage because gas is gradually being trapped. During water injection gas 
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eventually becomes immobile at the gas saturation of 0.188. As the pressure increases due 

to water flooding, the pressure will eventually increases above the oil saturation pressure 

and gas will go into solution with oil. When gas goes into solution, the oil saturation 

pressure will increase. Eventually as pressure is further increased all gas will be in solution 

with the oil and no trapped gas is left in the reservoir. For the case with trapped gas 

included, more gas will go in solution because more gas is present. Following water 

flooding the oil recovery from both cases are similar, as illustrated in figure 6.12. The case 

with negligible trapped gas saturation though has a higher gas recovery, and following a 

higher oil equivalent recovery than the case where gas. 

When gas injection in the WAG-process is initiated the reservoir pressure will be above the 

oil saturation pressure, and gas will go in solution until the oil saturation pressure exceeds 

the reservoir pressure. The amount gas going into solution is equal for both runs because no 

gas is present in the reservoir following water flooding. When gas is injected at reservoir 

pressure lower than the oil saturation pressure, free gas will start develop in the grid blocks 

and increase till the end of the drainage process. Gas trapping will occur during the 

subsequent water injection, and hence imbibition process. The oil recovery following WAG-

injection is 2 % higher when trapped gas is neglected compared to the case with input Sgr of 

0.35. Similarly the gas recovery following WAG-injection is 35 % higher when trapped gas 

is neglected. This illustrates that neglecting trapped gas will give an optimistic prediction of 

both oil and gas recovery.  

6.3.2 Matrix-fracture systems 

The matrix-fracture models presented in section 6.2.2 were all run using the simulation 

procedure presented in section 6.1. Two different strategies were investigated, perforating 

only in matrix grid blocks and perforating in both matrix and fracture grid blocks. Table 6.4 

and figure 6.13 show the oil recovery after water flood and after WAG injection for the different 

models with perforation in matrix grid blocks only. 

 

 

  



 

97 

 

Table 6.4: Oil recoveries for the matrix-fracture models perforated in matrix only 

Model 
 Type 

Water flood 
recovery 

WAG 
recovery 

Incremental 
recovery  

Homogeneous 
matrix model 69.4 % 93.7 % 24.3 % 

3-layer fracture 
model 66.5 % 80.9 % 14.4 % 

6-layer fracture 
model 65.0 % 76.3 % 11.3 % 

Discontinuous 
fracture model 69.4 % 91.5 % 22.1 % 
9-block fracture 

model 65.2 % 77.8 % 12.6 % 

 

 

Figure 6.13: Oil recovery for the matrix-fracture models perforated in matrix only 

The incremental oil recovery above water flood clearly shows the impact of fractures, 

ranging from 11 % incremental oil recovery for high fracture intensity factor to 22 % with 

low fracture intensity factor. 

The reason for difference in oil recovery between the matrix system and the matrix-fracture 

systems is that injected fluid will tend to flow into the high permeable fractures and 
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displacement of oil in the matrix becomes less efficient.  As the number of fractures is 

increased, the volume injected fluid going into the fractures increases and hence decreased 

displacement efficiency in the matrix blocks is observed. Gas saturation in the 3-layer and 

the 6-layer fracture model early in the WAG-process are illustrated in figure 6.14 and 6.15. 

 

Figure 6.14: Gas saturation in the 3-layer fracture model 

    

 

Figure 6.15: Gas saturation in the 6-layer fracture model 

For the discontinuous fracture model, gas is forced out of the fractures and into the matrix. 

This will result in better matrix sweep efficiency compared to the continuous fracture 

models and hence high recovery, slightly less than what is observed for the homogeneous 

matrix model.  
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For the 9-block fracture model, the sweep of injected fluid in the grid blocks close to the 

injection well is good, however as injected fluid reach the fracture, it follows the fracture all 

the way to production well which result in poor sweep of the middle matrix blocks, 

illustrated in figure 6.16. The reason for high gas saturations in the matrix grid blocks close 

to the production well is that the production well is perforated in the matrix only, and gas 

has to enter the matrix block by any of the mechanisms described in chapter 4.9.2.1 to be 

produced.  

 

Figure 6.16: Gas saturation in the 9-block fracture model 

 

Table 6.5 and figure 6.17 show the oil recovery after water flood and after WAG injection for the 

different models with perforation in both matrix and fracture grid blocks only. 

Table 6.5: Oil recoveries for the matrix-fracture models perforated in both matrix and fractures 

Model 
 Type 

Water flood 
recovery 

WAG 
recovery 

Incremental 
recovery  

Homogeneous 
matrix model 69.4 % 93.7 % 24.3 % 

3-layer fracture 
model 66.9 % 78.7 % 11.8 % 

6-layer fracture 
model 66.0 % 74.3 % 8.3 % 

Discontinuous 
fracture model 69.0 % 89.5 % 20.5 % 
9-block fracture 

model 64.3 % 72.3 % 8.0 % 
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Figure 6.17: Oil recovery for the matrix-fracture models perforated in matrix and fracture grid blocks 

When perforating in both matrix and fracture grid blocks lower oil recoveries are observed, 

compared to perforation only in matrix grid blocks. Incremental oil recoveries to water 

flood ranges from 8 % in high fractured areas to 20 % in areas with low fracture intensity 

factor. The difference in incremental oil recoveries between perforations in matrix only and 

in both matrix and fractures are between 2 to 5 %. The reason for this is that gas is forced 

into the matrix blocks before it can reach the fractures when perforating in the matrix only, 

hence giving a better sweep efficiency and better oil recovery.  

Because the exact locations of different fractures in the reservoir are not known, the wells 

are commonly perforated in both matrix and fractures. Based on well test data, indicating 

high effective permeability, one has an idea of areas with high degree of fractures and 

perforating wells in these areas can therefore be avoided. Production wells though are 

always perforated along the entire reservoir region where it is believed to be oil. 

Upscaling 

The grid blocks used in the mechanistic models are far too fine to be used as grids in full 

field reservoir models. All grids within a high resolution mechanistic model may be 

represented by only one or a few grid blocks in a full field model. To close the gap 

upscaling from mechanistic models are used to make single grid blocks represent the same 
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behavior as entire mechanistic models. An example is how different matrix-fracture system 

should be represented by single coarse grid blocks in a low resolution full field model. This 

means that both matrix and fractures needs to be described within the same grid block and 

alteration of parameters between the scales is necessary. Input parameters to mechanistic 

models may be obtained by fluid samples, core samples, laboratory work and well testing.  

The ultimate goal of upscaling is to construct low resolution models which mimic the 

recovery characteristics of the higher resolution models. To do this reservoir parameters and 

reservoir performance in high resolution models are matched in low resolution models. The 

upscaling technique may involve averaging of reservoir parameters and alteration of relative 

permeability curves in the low resolution model to match flow behavior and important 

factors affecting the recovery efficiency in the higher resolution models.  

Upscaling techniques have been applied to give properties to the grid block in the Ekofisk 

full field simulation model. Based on the grid properties, if-functions have been used to 

assign each grid block to a set of relative permeability curves representing different kind of 

systems.  

In this study a sector model, region of the full field model, is used which already have been 

upscaled. However, trapped gas saturation and SORM will be altered according to the 

results obtained in this chapter of the thesis. 

6.3.3 Miscible flood residual oil saturation 

SORM is introduced to avoid over prediction of oil recovery when the matrix-fracture 

models are upscaled into the sector model. Since the mechanistic matrix-fracture models 

gave significant differences in oil recoveries, different SORM-values need to be assigned to 

different grid blocks in the sector model representing different matrix-fracture models. 

The matrix-fracture models have different effective permeability which is used as a basis to 

upscale SORM to grid blocks in the sector model. This is done by using setting SORM 

values in grid blocks based on the horizontal permeability. Within different ranges of 

horizontal permeability different SORM-values are assigned.  

The homogeneous matrix model is used to represent areas without fractures. As the matrix 

permeability is believed to range between 1 to 4 mD, all grid blocks in the sector model 

with horizontal permeability less than 4 mD are assigned SORM-values of 0.06 which 
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represents the ultimate oil recovery from the homogeneous model. The discontinuous 

fracture model is used to represent enhanced fractured areas. In these areas, it is assumed 

that the discontinuous fractures enhance the effective permeability in the range of 2 to 3 

times the matrix permeability, and grid blocks with horizontal permeability between 4 to 10 

mD are assigned SORM-values of 0.08 which represents the ultimate oil recovery from the 

discontinuous model. The 3-layer fracture model is used to represent areas with some 

degree of networks between the fractures. It is believed that such areas have effective 

permeability ranging between 10 to 90 mD. Grid blocks in the sector model with horizontal 

permeability between 10 to 90 mD are assigned SORM-values of 0.2 representing the 

ultimate oil recovery from the layered fracture model. The 9-block fracture model and the 6-

layer fracture model are used to represent highly fractured areas. Such areas can have 

effective permeability above 90 mD, and all grid blocks in the sector model with horizontal 

permeability above 90 mD is assigned SORM-values of 0.25 based on the average ultimate 

oil recovery from the 9-block and double layered fracture models. 

Table 6.6 summarized how different grid blocks in the sector model are assigned SORM-

values based on the horizontal permeability of the grid block. 

Table 6.6: Assignment of SORM-values to different grid blocks in sector model based on results from 

the matrix-fracture mechanistic models 

Matrix-fracture 

system type 

Sector model horizontal 

permeability grid block  

SORM-value assigned 

to grid block 

Matrix dominated 

areas 

< 4 mD 0.06 

Enhanced fractures 

areas 

4-10 mD 0.09 

Fractured  

dominated areas 

10-90 mD 0.20 

Highly fractured 

dominated areas 

> 90 mD 0.25 

To investigate how the two available SORM options in PSim, described in chapter 4.8, 

impact oil recovery and how different input SORM-values impact oil saturation in grid 

blocks, the homogeneous matrix model was used. The model was assumed to be core plug 

size and slugs of two pore volumes were injected. The reason for this choice is that the 

interest is to detect how SORM operates at low oil saturations. 
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The effect the two different options have on oil recovery using input SORM value of 0.2 is 

compared with a run where SORM options are excluded, shown in figure 6.18. 

 
Figure 6.18: Oil recovery for the different SORM options in PSim, and a run without SORM  

To get a better understanding how the different options cope with oil saturation, oil 

saturation as a function of time is plotted for the reference cell (18,1,1), as illustrated in 

figure 6.19. 

 

Figure 6.19: Oil saturation as a function of time in the reference grid block (18,1,18) for the two 

available SORM options in PSim, and the run without SORM 
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It is observed from, from figure 6.18 and 6.19, that the SORM Sotrig option and the case 

without SORM are equal for primary depletion and water flooding. The default SORM 

option though differs from these two cases for the same period. The reason for this is that 

for the default SORM option, 20 % of the total oil saturation is considered to be isolated in a 

different medium and this oil will not contribute to phase behavior calculations. This means 

that mass exchange through vaporization and condensation between the isolated oil and the 

flowing hydrocarbons is not described as for the other two cases. 

The SORM Sotrig option will not affect the performance of primary depletion and water 

flooding, because SORM first takes effect for a grid block when the oil saturation becomes 

less than or equals to the input SORM value. This means that all oil contribute to phase 

behavior calculation until the input SORM value is reached.  

Since choice of SORM option should not affect primary depletion and water flooding, rather 

set a limit for oil depletion from grid blocks, the SORM Sotrig option is chosen for further 

studies. 

The effect on oil recovery and on grid block oil saturation for input SORM values of 0.03 

and 0.2 using the SORM Sotrig option is shown in figure 6.20 and figure 6.21 respectively.   

 
Figure 6.20: Effect of different input SORM values to oil recovery for SORM Sotrig option 
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Figure 6.21: Oil saturation as a function of time for different SORM input values for the reference grid 

block 

It is observed that the grid block oil saturations are equal until the oil saturation becomes 

0.2. At this saturation SORM will be trigged for the case with user-defined SORM value of 

0.2, meaning that further oil depletion from the grid block is not possible. For the case with 

input SORM value of 0.03, further depletion can occur until the oil saturation reaches 0.03. 
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7 Sector modeling 

A sector model is a section of the Ekofisk full field simulation model. The sector model 

used in this thesis is shown within the red box on figure 7.1. The sector model uses the same 

grid blocks, wells, faults and properties as that section of the full field simulation model. 

The sector model is introduced in this thesis to study how different WAG ratios and half-

cycle slug sizes effects production performance and oil recovery on field-scale. 

 

Figure 7.1: Ekofisk full field model, illustrating the location of the sector model within the red square 
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7.1 Description and methodology for sector model 

The sector model comprises a history matched part from 1971 to 2011 and a predictive part 

from 2011 till end of license in 2028. The history matched part is based on historical data 

from production and injection wells, on reservoir pressure and fluid flow. Production and 

injection data are such as rates, pressures, water-cuts, GOR. Knowledge about fluid flow is 

through tracers, saturation of cores, breakthrough times and 4D seismic. The predictive part 

gives the opportunity to visualize and compare the continued water flood scenario to WAG 

scenarios. 

Model description 

The sector model is a single porosity/single permeability system where the effective 

porosity and effective permeability are entered for each grid cell. The effective porosity and 

permeability is calculated from estimated matrix and fracture properties. The model has 22 

vertical layers. The division of the Ekofisk formation and Tor formation into the 22 vertical 

layers is shown in figure 7.2. The sector model is run in compositional mode with the 7-

component Peng-Robinson EOS presented in table 6.3 of chapter 6.1. 

The sector model consists of 17600 grid blocks,  5∙  ∙   grids in the x-, y-, z-directions 

respectively. Only 16244 of the grid blocks are active. Each grid block has size of 

approximately 225 feet in the x-direction, 240 feet in the y-direction and thickness of 

average 40 feet. All grid blocks within the sector model have been assigned a set of initial 

properties such as initial fluid saturations, effective permeability and porosity, and a set of 

relative permeability curves, stress tables and compaction tables based on upscaling 

techniques. The stress and compaction tables are used to alter permeability and porosity 

respectively as a function of pressure to account for the subsidence observed at the Ekofisk 

field. Three-phase relative permeability data are calculated by Stone’s method. Capillary 

pressure curves are not included in the sector model 

The input porosities range from 0.15 to 0.40 with an average of 0.26. The horizontal 

permeability ranges from zero, in the impermeable tight zone, up to 720 mD, in the most 

fractured areas. The average horizontal permeability is 6 mD.  Input maximum trapped gas 

saturation is set to 0.35 with trapped gas calculated by Lands correlation, and SORM values 

are assigned based on horizontal permeability data as discussed in chapter 6.3.3 using the 

SORM Sotrig option. 
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The average initial reservoir pressure is 7103 psia and the calculated initial GOR is 1575 

SCF/STB. At a reference depth of 10165 ft the initial oil saturation pressure is 5475 psia, 

the oil viscosity 0.216 cP and oil density of 584 kg/m
3
. These fluid parameters change with 

depth and reservoir pressure. 

 

Figure 7.2: The 22 layers of the sector model 

Totally 17 wells and 22 faults are included in the sector model. The wells comprise both 

vertical and horizontal wells. 12 of the wells are production wells which are assumed 
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operated since 1972 and five are water injection wells assumed operating since 1984. The 

distribution of the wells and faults in the sector model is shown in figure 7.3, as black dots 

and black lines between grid blocks. The initial reservoir pressure of the top layer is also 

illustrated in the figure 7.3.   

 

Figure 7.3: Initial reservoir pressures and distribution of wells and faults in the sector models upper 

layer 1. 
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Base case simulation 

A base case simulation of continued water injection for all the injection wells till the end of 

license in 2028 is used to compare with different WAG scenarios. All wells are operated 

with BHP-control and maximum rate limits. The limiting BHP is set to 2 000 psia for 

production wells and to 7 000 psia for injection wells. The maximum production rate is set 

to 2 000 STB/D and maximum injection rate to 10 000 BWPD.  

The oil recovery and average reservoir pressure as a function of time is shown for the base 

case simulation in figure 7.4. 

 

Figure 7.4: Oil recovery and average pressure for the base case simulation in the sector model 

The oil recovery after primary depletion is around 12 % and the oil recovery following 

water flooding till the end of license in 2028 is 23.9 %. These recoveries are a lot lower than 

what is observed in the field and within the Ekofisk full field simulation model. The reason 

for the low recoveries in the sector model is that only wells within the region of the sector 

model are included. In reality, surrounding production and injection well will result in a 

more extensive water flooding and better depletion than what is modeled within the sector 

model. However, the sector model can be used to investigate the incremental oil recovery 

for WAG scenarios within the given model and results can be compared to the water 

scenario base case. Figure 7.4 further illustrates that if WAG-injection is initiated after 

water flooding till 2018, the average reservoir pressure would be above 7100 psia. This 
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reservoir pressure is above the minimum miscibility pressure for all temperatures, presented 

in chapter 5.3.1, and miscible displacement would likely be achieved. 

WAG-injection 

For WAG scenarios the former water injection well, well B16W, is changed to a WAG-

injection well, B16WAG, for the predictive part starting from 2011. This well is shown in 

the circle in figure 7.3. The injection well, B16WAG, is a vertical well which is 

representative for both formations as it is perforated in the Ekofisk formation in layer 1-9 

and 11, and in the Tor formation in layer 16-19. Layer 10 and 15 are not represented in the 

well because of a pinch-out, while layer 12-14 are in the tight zone. All wells are still 

operated under BHP-control and maximum rate limits, similar to what was presented for the 

base case. The only difference is that the WAG injection well is switched to a BHP limit of 

8 000 psia, which is obtainable, to ensure high injection rates. 

Methodology  

Methodology WAG-ratios 

For the Ekofisk reservoir it is believed that low vertical permeability will result in limited 

flow in the vertical direction and also that most injected gas flows along fractured areas, 

which together results in poor macroscopic sweep efficiency. However, optimizing the 

WAG-ratio, ratio of volume of water injected to gas injected, can result in increased oil 

recovery. The water slugs stabilizes the gas front by a more favorable displacement mobility 

ratio, which results in better sweep efficiency, as reduced viscous fingering and postponed 

gas breakthrough can be obtained.  

To study the effect of WAG ratio on recovery for this sector model, four different cases with 

WAG ratio 4:1, 2:1, 1:1 and 1:2 are simulated and compared with the base case. The gas 

half-cycle slug sizes are set to 10 % of the pore volume of the grid size which the water 

injection well, B16W, had swept by 2011. This pore volume equals approximately 100 

million barrels and each gas-half cycle equals 10 million barrels or roughly 56 million cubic 

feet. In each case three WAG-cycles are used, meaning a total of 0.3 pore volumes of gas 

injected for each case. 
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Methodology WAG slug sizes 

Optimization of the size of injected slugs of water and gas can result in increased oil 

recovery. Smaller WAG slug sizes will result in an increase zone of three flowing phases, 

which can result in better displacement efficiency.  

To study the effect different slug sizes have on oil recovery, four WAG cases with half-

cycle slug sizes of 0.05, 0.1, 0.2 and 0.4 pore volumes are simulated. WAG ratio of 1:1 is 

used for the different cases. For evaluation the total amount of gas injected should be equal 

and is set to 0.4 pore volumes, which will control number of WAG-cycles for each case.  

7.2 Results and discussion of sector simulations 

7.2.1 WAG-ratio 

Different WAG-ratios are evaluated by the amount of barrels of oil equivalent (BOE) going 

to sale, compared to the water flood base case. The BOE to sale is obtained by using a 

ConocoPhillips tool, based on the simulation output. BOE to sale is calculated based on oil 

production rates, gas production rates, fuel, gas injection and sales factors and is shown in 

appendix D for the different WAG ratios. The cumulative incremental BOE to the base case 

is plotted in figure 7.5 and summarized in table 7.1 

 

Figure 7.5: Cumulative incremental barrels of oil equivalent to water flood base case for different WAG 

ratios 
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Table 7.1: Barrels of oil equivalent and incremental barrels of oil equivalent to base case for different 

WAG ratios for the predictive part from 2011 to 2028 

Scenario BOE to sale at the end of 

the predictive period  

( for year 2011-2028)  

Incremental  BOE to 

sale to the base case 

Water flood base case 17.5 million BOE - 

WAG ratio 1:1 24.4 million BOE 6.9 million BOE 

WAG ratio 2:1 21.8 million BOE 4.3 million BOE 

WAG ratio 4:1 20.4 million BOE 2.9 million BOE 

WAG ratio 1:2 25.9 million BOE 8.4 million BOE 

It is observed that the best WAG scenario is with WAG ratio of 1:2 which gives additional 

8.4 million BOE to sale compared to the water flood base case. Figure 7.5 and table 7.1 

indicates that decreased WAG-ratios results in increased oil equivalent recovery.  For all the 

WAG scenarios incremental oil equivalent recovery to the water flood base case is 

observed. 

A plot of gas saturation and permeability for layer 8 is given in figure 7.6 to illustrate the 

flow pattern of injected gas. 

 

Figure 7.6: Gas saturation and permeability in layer 8 of the sector model during WAG injection 

It is seen from figure 7.6 that most of the injected gas will flow in the high permeable grid 

blocks.  
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7.2.2 WAG slug sizes 

The impact of slug sizes for WAG injection is evaluated by a similar approach as for the 

WAG ratios, comparing the BOE to sale for the different WAG scenarios against the water 

flood base case. Calculation of BOE for the different slug sizes is shown in appendix D. The 

results are plotted as cumulative incremental BOE to the base case in figure 7.7 and 

summarized in table 7.2 

 

Figure 7.7: Cumulative incremental barrels of oil equivalent to water flood base case for different slug 

sizes 
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Table 7.2: Barrels of oil equivalent and incremental barrels of oil equivalent to base case for different 

slug sizes with WAG ratio 1:1 for the predictive part from 2011 to 2028 

Scenario BOE to sale for 

predictive period  

(year 2011-2028) 

Incremental  BOE to 

sale to the base case 

Water flood 

base case 

17.5 million BOE - 

0.05 pore volumes 

half-cycle slugs 

21.0 million BOE 3.5 million BOE 

0.1 pore volumes 

half-cycle slugs 

21.2 million BOE 3.7 million BOE 

0.2 pore volumes 

half-cycle slugs 

21.5 million BOE 4.0 million BOE 

0.4 pore volumes 

half-cycle slugs 

21.9 million BOE 4.4 million BOE 

Figure 7.7 and table 7.2 indicates that increasing the slug size results in increased oil 

equivalent recovery. The best case was half-cycle slug size of 0.4 pore volumes which gave 

an incremental 4.4 million BOE to the base case. It is observed that total gas injected of 0.4 

pore volumes, give lower BOE than for same WAG ratio with total gas injected of 0.3 pore 

volumes. Based on this result, the total volume of gas injected is recommended to be 

investigated and optimized for further studies. 

The coarse grid blocks of the sector model may lead to numerical dispersion when 

implementing a WAG-injection, because of rapidly varying fluid fronts and large 

differences in reservoir parameters between grid blocks. To avoid numerical dispersion and 

instability problems caused by coarse gridding in WAG injection, local grid refinement can 

be applied. The technique can improve grid resolution in particular areas of a model and 

keep the coarse resolution in other areas. The option will minimize the number of grid 

blocks and therefore reduce the CPU time of simulation compared to a regular grid 

refinement option where grids in all areas are refined. The LGR methodology could be 

useful around the WAG-injection well where fluid saturations change rapidly. The 

technique is not used in this study because of its complexness, but is recommended to 

include for further studies to avoid numerical dispersion.   
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8 Conclusion 

The purpose of this thesis was to evaluate hydrocarbon WAG injection at the Ekofisk field. 

Miscibility evaluation on MMP and MME, and modeling of important reservoir parameters 

for WAG-displacement, such as trapped gas and hysteresis effect, matrix-fracture 

mechanisms and SORM was suggested. Also modeling of WAG injection in a sector model 

to optimize WAG ratios and WAG slug sizes, and to compare against a continuous water 

flood case was suggested.   

The evaluation was performed by running simulations in PSim for various models. The 

following main conclusion can be drawn from the results from this study: 

 At current reservoir pressures at Ekofisk, WAG injection with dry hydrocarbon would 

most likely be immiscible. This is based on the MMPs for dry hydrocarbon gas with the 

Ekofisk crude oil determined in the range of 6600 to 7100 psia for different 

temperatures. 

 

 The results showed that MME decreases with increasing pressures, which agrees with 

theory. It was found that achieving miscibility by increasing the enrichment was not a 

solution, because large amounts of NGL were needed. This involves high economical 

risk because the relative high price NGL is delegated from sales to injection.  

 

 Mechanistic simulations on trapped gas showed that Lands trapped gas correlation with 

input trapped gas value of 0.35 gave the best match to laboratory and reported trapped 

gas data for chalks. It was also shown that neglecting trapped gas in simulations gives 

optimistic predictions. 

 

 Simulations of different matrix-fracture systems gave significant differences in oil 

recoveries and were used as an argument to introduce SORM for sector modeling, which 

showed to be best described by the SORM Sotrig option. 

 

 WAG-scenarios in the sector model indicated incremental production to the water flood 

base case for all cases. The best WAG ratio showed to be 1 to 2, with incremental 

barrels of oil equivalent of 8.4 million to the base case. The incremental BOE decreased 
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with increasing WAG ratio. The optimized WAG slug sizes at WAG ratio of 1:1 showed 

to be 0.4 pore volumes, with incremental BOE of 4.4 million to the base case. 

Incremental BOE increased with increasing WAG slug sizes.  

 

Recommendation for further work 

It is recommended that further research be undertaken in the following areas: 

 Laboratory work on miscibility of dry hydrocarbon gas with the Ekofisk crude oil for 

more accurate and reliable MMP evaluations. 

 

 More research on SORM and more accurate upscaling techniques from mechanistic 

level to full field level. 

 

 Perform simulation work to investigate the total gas volume injected for WAG scenarios 

in the sector model. 

 

 Introduction of local grid refinement to avoid numerical dispersion and instability 

problems in the sector model. 

  

 Investigation of full field WAG potential by running full field simulations. 

 

 Economical study including aspects such as pipeline from production to injection 

platforms, installation of compression pump, gas and NGL prices, sale of incremental oil 

and net present value. 
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9 Abbreviations and symbols 

BHP   Bottom-hole pressure 

BOE    Barrels of oil equivalent 

BWPD   Barrels of water per day 

CLand    Lands trapping constant 

C   Trapping characteristics of porous rock 

CPU    Central processing unit 

D    Darcy, unit for permeability  

EOR    Enhanced oil recovery 

EOS    Equation of state 

FCM   First-contact miscibility 

FI   Fracture intensity factor 

G     Gravitational constant 

GOR    Gas to oil ratio 

H    Height of matrix blocks 

HC-WAG   Hydrocarbon water-alternating-gas 

IFT    Interfacial tension 

k    Absolute permeability 

ke     Effective permeability 

kmat    Matrix permeability from well log porosity or permeability correlations 

kr     Relative permeability 

krg    Relative permeability of gas 

kro    Relative permeability of gas 

krog   Relative permeability of oil in a gas-oil system 

krow     Relative permeability of oil in a water-oil system 

krw    Relative permeability of water 

kwell    Effect permeability from well tests 

LGR    Local grid refinement 

LPG     Liquefied petroleum gas 

MCM   Multi-contact miscibility 

MME   Minimum miscibility enrichment 

MMP     Minimum miscibility pressure 
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NGL   Natural gas liquid  

OOIP   Original oil place 

Pc   Capillary pressure 

Pnw                            Non-wetting phase pressure  

PR-EOS  Peng and Robinson equation of state 

Psia    Pounds per square inch, absolute pressure 

PVT    Pressure-volume-temperature 

Pw    Wetting-phase pressure 

SCF/D   Standard cubic feet gas per day 

SCF/STB   Standard cubic feet gas per standard oil barrel 

Sg*    Total gas saturation 

SgF*    Mobile fraction of gas 

Sgi*   Gas saturation at the start of imbibition process 

Sgc   Critical gas saturation 

Sgr   Residual gas saturation 

Sgr*   Residual trapped gas saturation after complete imbibition 

Sgr*max  Maximum obtainable residual gas saturation 

Sgrc*   Current trapped gas fraction of the gas 

Som    Mobile oil saturation 

Sorg   Residual oil to gas 

SORM   Miscible flood residual oil saturation 

Sorw   Residual oil to water 

SorWAG   Residual oil to WAG 

STB/D   Standard oil barrels per day 

Swr    Residual water saturation 

WAG  Water alternating gas 

XG  Fractional height of gas in the fracture 

Xg   Fractional height of the gas in the matrix 

XWF   Fractional height of water in the fracture 

XWm    Fractional height of the gas in the matrix 

θ    Contact angle 

      Empirically determined pore-size distribution factor 

ρg    Gas density 
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ρo   Oil density 

ρw   Water density 

σ   Interfacial tension 

σos   Interfacial tension between solid and oil 

σow    Interfacial tension between water and oil 

σws    Interfacial tension between solid and water 

φ    Rock porosity 
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11 Appendices 

Appendix A - Slim tube 

MMP 

268 F 

Pressure 
Oil recovery at 1.2 PV gas 

injected 

3500 54,36 

4000 57,72 

4500 61,57 

5000 66,48 

5500 73,78 

6000 81,32 

6500 89,18 

6800 94,26 

6850 95,12 

6900 95,84 

6950 96,33 

7000 96,67 

7050 96,91 

7100 97,11 

7500 97,93 

8000 98,43 

9000 98,99 

  l re o er  as a   n t on o  operat ng press re at        F 

200 F 

Pressure 
Oil recovery at 1.2 PV gas 

injected 

3500 53,51 

4500 60,99 

5500 73,65 

6000 80,79 

6500 88,09 

6900 94,35 

7000 95,61 

7100 96,26 

7500 97,3 

8000 97,83 

  l re o er  as a   n t on o  operat ng press re at        F 
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150F 
Pressure Oil recovery at 1.2 PV gas injected 

3500 53,8 

4500 61,93 

5500 75,37 

6000 82,32 

6500 89,22 

6800 93,63 

6900 94,86 

7000 95,59 

7100 96,02 

7500 96,87 

8000 97,36 

  l re o er  as a   n t on o  operat ng press re at        F 

100F 
Pressure Oil recovery at 1.2 PV gas injected 

3500 55,5 

4500 65,61 

5500 78,96 

6000 85,21 

6500 91,19 

6600 92,42 

6700 93,55 

6800 94,44 

6900 94,99 

7000 95,38 

7500 96,3 

8000 96,73 

  l re o er  as a   n t on o  operat ng press re  or        F 

60 F 
Pressure Oil recovery at 1.2 PV gas injected 

3500 58,68 

4500 70,2 

5500 82,04 

6000 86,58 

6250 88,73 

6500 90,87 

6750 92,87 

7000 94,34 

7250 95,05 

7500 95,45 

8000 95,92 

  l re o er  as a   n t on o  operat ng press re  or       F 
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MME 

                  Total composition of injected gas with different degree of enrichment 

 

 

268 F, 6000 psia 
Enrichment (NGL added) Oil recovery at 1.2 PV gas injected 

0 % 81,32 

2 % 82,56 

5 % 85,6 

8 % 90,25 

10 % 93,43 

12 % 95,82 

15 % 97,72 

20 % 99,47 

  l re o er  as a   n t on o  enr   ment le el at       F and 6000 psia 

 

268F, 5000 psia 
Enrichment (NGL added) Oil recovery at 1.2 PV gas injected 

0 % 66,48 

2 % 67,59 

5 % 70,36 

8 % 75,34 

10 % 79,73 

12 % 84,48 

15 % 91,24 

20 % 97,4 

  l re o er  as a   n t on o  enr   ment le el at       F and 5000 psia 
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150 F, 6000 psia 
Enrichment (NGL added) Oil recovery at 1.2 PV gas injected 

0 % 82,32 

2 % 83,66 

5 % 86,69 

8 % 91,1 

10 % 93,78 

12 % 95,53 

15 % 97,16 

20 % 98,89 

  l re o er  as a   n t on o  enr   ment le el at       F and 6000 psia 

 

 

60 F, 6000 psia 
Enrichment (NGL added) Oil recovery at 1.2 PV gas injected 

0 % 86,58 

2 % 87,22 

5 % 88,32 

8 % 89,71 

10 % 90,93 

12 % 92,3 

15 % 94,27 

20 % 96,79 

  l re o er  as a   n t on o  enr   ment le el at      F and 6000 psia 
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Appendix B – Test of EOS for immiscible conditions 

 

 

Oil recovery from a slim-tube simulation for a 7-components EOS compared to a 15-

components EOS at operating pressure of 6500, which is close to miscible condition 
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Appendix C – trapped gas saturation and hysteresis effect 

 

Oil saturation, gas saturation, pressure and oil saturation pressure as a function of 

time in reference grid block (18,1,18) of the homogeneous matrix model for a run with 

input trapped gas of 0.35 



 

134 

 

 

Oil saturation, gas saturation, pressure and oil saturation pressure as a function of 

time in reference grid block (18,1,18) of the homogeneous matrix model for a run with 

negligible trapped gas saturation 
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Appendix D – sector model 

WAG-ratio 

 

Calculation of BOE to sale for the WAG ratio 1:2 case 

 

Calculation of BOE to sale for the WAG ratio 1:1 case 
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Calculation of BOE to sale for the WAG ratio 2:1 case 

 

Calculation of BOE to sale for the WAG ratio 4:1 case 
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WAG slug sizes 

 

Calculation of BOE to sale for the case of 0.05 pore volumes slug sizes 

 

 

Calculation of BOE to sale for the case of 0.10 pore volumes slug sizes 
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Calculation of BOE to sale for the case of 0.20 pore volumes slug sizes 

 

Calculation of BOE to sale for the case of 0.40 pore volumes slug sizes 


