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Abstract

Major and trace element analyses show different compositions between the sediments of the
Karmgy southeast shoreline and the sediments of northern Randaberg. Also supported form
petrographic analyses, the Karmgy samples indicate a mafic source with andesitic to sub-alkaline
basalt composition, low to moderate content of SiO,, enrichment in Cr, V, and Co and very low
Y/Ni ratios. On the contrary, both petrographic and geochemical analyses of the Randaberg
samples show a more felsic composition, similar to unrecycled UCC, with a rhyodacitic to dacitic
composition and low concentrations of Cr, V, and Co. The sands from Santorini do not derive
from the calcite-rich carboniferous basement that is exposed on the island; instead their source
is the recent volcanic rocks with rhyodacitic/dacitic to andesitic composition typical of active
subduction zones. The sediments from all three areas are only moderately to partly
unweathered and show no significant recycling. Lithic-fragment and mineral compositions are
closely related to the adjacent source rocks. The sediments from Santorini mirror the
composition of the volcanic source rocks and the paleotectonic environment of continental arc is
easily deduced from the geochemical results. In contrast, the sediments from southwest Norway
do not reflect the proposed paleotectonic environment of passive margin. Both petrographic
and geochemical analyses indicate an oceanic arc environment for the Karmgy sediments and an
active continental margin for the Randaberg sediments. Therefore, provenance determination is
not possible in southwest Norway and further analyses are needed. Correlation between the
sediments of Karmgy and Randaberg is very difficult and should be done with great caution and
further sampling. However, the provenance techniques can be used with accuracy in Santorini
whilst the validity of the results could be explained by the much younger age of the source rocks.



Introduction

The objective of this thesis is to determine the nature and origin of recent sediments deposited
along the shoreline of southeastern Karmgy and northern Randaberg in Norway and to compare
them with recent sediments deposited on the shoreline of the volcanic island Thera in the
Santorini group of islands in Hellas. The methods and results are then discussed for their
application as provenance techniques in the hydrocarbon industry.

The working hypothesis is that in both regions the modern tectonic setting is known. For
Santorini a continental arc setting is envisaged and for the Norwegian region a passive margin.
Provenance geochemistry should demonstrate if the tectonic setting can be easily reflected in
the sediments of the area.

On the island of Karmgy the sampling areas are located within the geologic area of the Karmgy
Ophiolite Complex and particularly the Karmgy Axis Sequence, dominated by gabbroic rocks,
where a total of 15 sand samples were collected from 5 different outcrops, as well as 1 sample
of the dominant gabbro (Foldout 1).

In the Randaberg area the sampling areas are located within the geologic area of the Middle
Allochthon group, dominated by mica-schist and gneiss, where a total of 15 sand samples were
collected from 2 different outcrops (Foldout 2).

On the island of Thera the sampling areas are located within the only volcanic center of the
southern Aegean island arc that is active today. The island is dominated by the metamorphosed
basement and various volcanic rocks, where a total of 27 sand samples were collected from 7
different outcrops, as well as 7 volcanic rock samples and 2 samples of the metamorphosed
limestone basement (Foldout 3).

All the samples were analyzed macroscopically, microscopically and geochemically and the
combined use of geologic observations and geochemical data was used to characterize the
provenance and the plate tectonic environment.

Geology of the Karmgy Area, Norway

The island of Karmgy is part of the Karmgy Ophiolite Complex of southwest Norway (Sturt and
Thon, 1978; Sturt et al., 1979; Furnes et al., 1980) interpreted as ancient oceanic crust from the
lapetus Ocean that was formed when the continents of Baltica and Laurentia started drifting
apart around 600Ma. The oceanic crust was then displaced on top of the thrust nappes during
the formation of the Caledonian orogenic belt when the plate movement was reversed after
Late Cambrian until the beginning of the collision of Laurentia and Baltica during the Silurian.
The Karmgy Ophiolite Complex consists mainly of gabbro, chlorite-schist and ultramafic rocks,
intruded by various younger mafic/silica-poor igneous rocks (Foldout 1). On the island of Karmgy
the Ophiolite Complex is deformed, fragmented by faulting and underlie stratigraphically the
metamorphosed deep-ocean chert and phyllite sediments that are found in the north of the
island.

The major rock groups found on the island of Karmgy are in chronological order from old to
young: the Karmgy Axis Sequence (dominated by layered gabbro), the West Karmgy Igneous



Complex (ranging from tonalites to granites), the Torvastad Group (volcano-sedimentary rocks in
the northern part of the island) and the Skudeneset Group (sedimentary rocks in the southern
part of the island) (Foldout 1).

Particularly at the southern part of the island, where the samples were collected, the geological
situation is more complex with gabbros in the east (Axis Sequence), sedimentary rocks in
southeast (Skudeneset Group) and tonalites, quartz-diorites, diorites, granodiorites and granites
(West Karmgy Igneous Complex) towards the west (Foldout 1).

Geology of the Randaberg Area, Norway

The area of Randaberg is situated 20 km south of the island of Karmgy and is characterized by
the thrust geology of the southwest Norway resulting from the continent collision of Baltica and
Laurentia. The rocks are quite metamorphosed and deformed suggesting a deep subduction
zone where Laurentia is transported east-southeast over Baltica during the Caledonian orogeny.
They belong to the Middle Allochthon group consisting of basement nappes of Baltic origin and
late-precambrian deposits (Fossen et al.,, 2008). However, their detrital zircon population
(youngest concordant grain 540Ma) is very unusual for Baltica with a large amount of zircons
derived from an igneous event around 600Ma when Baltica was characterized on its western
side by a passive margin (pers. com. U. Zimmermann).

The major rock groups found in the northern part of the Randaberg area, where the samples
were collected, are mica-gneiss, mica-schist, meta-sandstones and amphibolites and belong to
the Ryfylke Phyllite (Smit et al., 2011). In the southern part diorites, granodiorites, granites and
migmatites are also exposed and represent part of the Jeeren Nappe (Smit et al., 2011) (Foldout
2).

Geology of the Santorini Area, Hellas

The group of volcanic islands of Santorini is part of the island arc of southern Aegean Sea
produced by the continental convergence of the African and Eurasian plates (Foldout 3).
Santorini is one of the five volcanic centers of the arc connected with tectonic zones of weakness
of a northeast trend. It is the only volcanic center that is active today and is characterized by
earthquakes, tsunamis and sulphurous gas escapes (Papazachos and Panagiotopoulos, 1993).
The Santorini group of islands used to form one single, round island ring with several volcanoes
which since the Minoan eruption (3,6ka after Friedrich et al., 2006) has more or less its present
form.

Thera is the largest island in the group and this is where the samples were collected (Foldout 3).
The older core (basement) beneath the volcanic rocks consists of limestones that have been
metamorphosed, deformed and uplifted. The basement can be seen forming the highest hills at
the south part of the island (Perissa, Kamari, Vlychada) and as a single rock in the eastern part of
the island (Monolithos). The basement is made of marine sedimentary rocks (mostly limestone,
but also sandstones and clays) deposited in the Tethys Sea from the Triassic to the Tertiary. The



sedimentary rocks were metamorphosed during the Cenozoic to marble, quartzite and mica-
schist.

The rest of the island is covered entirely of volcanic rocks of different phases, built from lava and
pyroclastites (Foldout 3). The major volcanic rock groups are in chronological order from old to
young: the updomed areas and early centers of Akrotiri (rhyodacites), the Peristeria (ranging
from basalts to andesites), the Cinder Cones of Akrotiri (ranging from basalts to andesites), the
pyroclastic deposits of Cycle 2 and Cycle 1 (ranging from rhyodacites to andesites), the Cinder
Cones of northeast Thera (andesites), the Skaros Shield (ranging from basalts to andesites), and
the Minoan Tuff (ranging from rhyodacites to andesites) (Druitt, 1998).

Sampling of the Karmgy Area, Norway

Fifteen sand samples were collected from the shoreline at the southwest part of Karmgy within
the geologic area of the Karmgy Axis Sequence interpreted as layered gabbroic complex with an
age of 493+7/-4Ma (Pedersen and Malpas, 1984; Dunning and Petersen, 1988). The sampling
area is characterized by a series of small bays with a steep topography and a short distance from
the elevated cliff where the gabbroic rocks are prominent.

The most southern samples were collected from the outcrop Al located north of the main fault
that separates the gabbroic rocks from the sedimentary rocks of the Skudeneset Group (Foldout
1). One sample was collected from the beach at Litlehavnen (N59°10°21” - E05°18’38"”), and one
from the river 100m away from the shoreline Bekkjarvika (N59°10°17” - E05°18’29"). Heading
north, three samples were collected from Norst@, outcrop A2 (N59°10°40” - E05°18’33"), four
samples from Sgra Bgrevika, outcrop A3 (N59°11'12" - E05°18'48”), two samples from Blikshavn
Nord, outcrop A4 (N59°12°50” - E05°19°16”) and finally, four samples from Temmervika, outcrop
A5 (N59°13’05” - E05°19’16"). All the samples, with the exception of the river, were collected
within one meter distance of the shoreline and 10-15cm deep in the sand. The sample from the
river (A1P) was collected in a water depth of 25cm and 5cm deep in the sandy sediments
(Appendix 2).

One rock sample was collected from the gabbro located at the eastern part of the road
(N59°11°76” - E05°18’43"”), near outcrop A3 and about 200m away from the shoreline (Appendix
2). The rock appears deformed and fragmented by faulting and represents the nearest source of
the sandy sediments. The gabbro is cut by the Fegy dyke swarms which are more prominent in
the north and have formed prior to, during and subsequent to crystallization of the underlying
gabbro sequence (Pedersen, 1986) (Foldout 1).

Sampling of the Randaberg Area, Norway

Fifteen sand samples were collected from the shoreline at the northern part of Randaberg
within the geologic area of the Ryfylke Phyllite of unknown age, but assumed to be related to
the Caledonian orogeny (Smit et al., 2011) (Foldout 2).



The area is characterized by a peninsula bordered by two bays with flat topography and long
sandy beaches. Sandebukta, outcrop RS (N59°01’15” - E05°35’30”), is the largest bay at
northwest, over 1km long, with a fine grained sandy beach and sand dunes at the innermost part
of the bay. Seven samples were collected within 5m of the shoreline in a water depth of up to
40cm, as well as one sample was collected from the dunes (PB3). Six samples were collected
within 3m of the shoreline in a water depth of up to 30cm at Randaberbukta, outcrop RM
(N59°01’25” - E05°36’15"”), the largest bay at northeast. Both bays have shallow waters and
therefore significant effects of the tides (Appendix 2).

The rocks between the two bays have been interpreted as part of the Middle Allochthon group
consisting of metamorphosed and deformed gneiss and mica-schist, but recent detrical zircon
determination showed a Lower Palaeozoic depositional age and a very unusual detrital zircon
population for Baltica (pers. com. U. Zimmermann).

Sampling of the Santorini Area, Hellas

Twenty seven sandy samples were collected from the shoreline of the island of Thera, the
largest island of the group of Santorini islands that are part of the volcanic arc of the southern
Aegean (Foldout 3). The island is characterized by flat topography with the exception of the hills
in the southeastern and western parts. The flat areas consist of about 80% of the island and are
covered by Minoan Tuff. The Minoan Tuff was deposited during different phases, creating
several tuff layers that have been eroded to various forms and contain xenoliths derived from
older lavas of various ages (Appendix 2).

Profitis Elias, the highest hill in the southeastern part (565m) is located between Perissa and
Kamari and consists of metamorphosed, deformed and uplifted basement rocks such as marble,
quartzite and mica-schist of unknown age, interpreted as Triassic to Tertiary (Pichler et al., 1980;
Heiken and McCoy, 1984; Druitt et al., 1989;). Two marble samples were collected from Profitis
Elias, one from Perissa (RPEB) and one from Kamari (RKAB). Four sediment samples were
collected from Perissa, outcrop PE (N36°21'27” — E25°28’36"), which is located SE and is
characterized by a 4km long black sandy beach. Four sediment samples were collected from
Kamari, outcrop KA (N36°22°’09” — E25°28’51”), which is located NE of Profitis Elias and is
characterized by a 2km black pebble beach (Appendix 2).

In the southern part of the island, where Gavrilos is located, another hill consisting of basement
rocks crops out. Near Gavrilos, four sediment samples were collected from Vlychada, outcrop VL
(N36°20°20” — E25°25’53"), as well as one rock sample of the Minoan Tuff (RVLT).

In Akrotiri, the southwestern part of the island, sediment samples were collected from two
outcrops within a few hundred meters distance between them. Three samples were collected
from outcrop BL (N36°20°56” — E25°23'54"), a small black pebble beach, and four samples from
outcrop RE (N36°20°54” — E25°23’39"”), a long red sandy beach. The area of Akrotiri forms a hill
consisting of volcanic rocks of various cycles. Two rock samples were collected (RREBU-RRERP)
from the Cinder Cones of Akrotiri of age 626 to 319ka (Druitt et al., 1998).

The western part of the island is located 200-400m above the sea level overlooking the caldera
that was created during the Minoan eruption, and consists of various volcanic rocks. Two rock
samples were collected from the northwest part of the island, one sample (RBMP) from outcrop



(BM) Mikro Profitis llias (N36°27°71” — E25°25’25") consisting of the Peristeria formation of age
536 to 425ka, and one sample (RRMC) from outcrop (RM) Kokkino Vouno (N36°27°48” —
E25°24’52”) of the Cinder Cones of northeast Thera of age 54+23ka (Druitt et al., 1998).

At Cape Kolumbo at the northeast part of the island, four sandy samples were collected from
outcrop KO (N36°28'24” — E25°25’15"”), as well as two volcanic rock samples from different
layers of Minoan Tuff (RKOTB and RKOTR).

Finally, four sandy samples were collected from Monolithos, outcrop MO (N36°24'44” —
E25°29°00”), at the eastern part of the island. Monolithos consists of a very flat area with
shallow waters where a small piece of the basement is exposed at the northern part of the
beach.

All the sandy samples were collected within one meter distance of the shoreline and 10-15cm
deep in the sand.

Methodology

The sandy samples were dried and cleaned from anthropogenic materials such as glass, ceramic,
metal and charcoal. The rock samples were dried and crushed. The samples were examined
macroscopically and microscopically in order to separate the organic matter and the magnetic
minerals, to observe size, color and shape of the grains, and to identify minerals and lithic
fragments.

Studies have shown that the source for geochemical trends is best represented in the clay-sized
fraction of the sediment (Cullers et al., 1987), so the samples were sieved and 50 gr from the
finest grain sizes were milled in an agate swing mill to a very fine mesh for geochemical analyses.
Geochemical analysis of major and trace elements was carried out in duplicate by Inductively
Coupled Argon Plasma — Mass Spectrometry (ICP-MS) at ACME Laboratories (Vancouver,
Canada). Analysis consisted of total extraction of the elements into a solution and element
determination by instrumental analysis of the solution. ICP-MS measures the element
concentrations by counting the atoms for each element present in the solution. More
information about the method and the detection limits can be obtained from the homepage:
www.acmelab.com. The results are shown at Appendix 1.

Petrography of the sands of Karmgy Area, Norway

The sands collected from Karmgy range in size from coarse sand to coarse pebbles. Sorting is
poor with a random size distribution on all the beaches and the grains have angular to sub-
angular shape possibly indicating short transport (Fig.1). The lithic fragments observed are
derived from gabbros, tonalites, chlorite-schists, gneiss, schists and sandstones. Some rock
fragments have a three-faceted (triangular) shape, typical for glacial transport. Single minerals
identified are pyrite, mica, feldspar, calcite, serpentine, amphibole, plagioclase, pyroxene,
olivine and quartz. Organic matter occurs as shell fragments and only in the river section organic
matter appears to be derived from plants. In the waters and sessile on algae, a number of
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shelled organisms, like foraminifers, have been identified and might be the source for the shell
fragments in the sands.

Petrography of the sands of Randaberg Area, Norway

The sands collected from Randaberg range in size from very fine to coarse grained sand. Sorting
is moderate at both beaches and the grains are mostly sub-angular. Lithic fragments appear to
be derived from phyllites and gneiss. Single minerals identified are pyrite, mica, feldspar, calcite,
amphibole, plagioclase, pyroxene, muscovite, tourmaline, garnet and quartz. The organic
derived matter is represented by shell fragments (Fig.1).
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Figure 1 Images of sand grains (more images at Appendix 3). a) Sample A41 from Blikshavn Nord, Karmgy. b) Sample
A52 from Tgmmervika, Karmgy. c) Sample RM4 from Randaberbukta, Randaberg. d) Sample RS5 from Sandebukta,
Randaberg.
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Petrography of the sands of Santorini Area, Hellas

The sands collected from Santorini range in size from fine sand at Monolithos to coarse pebbles
at Kamari. Sorting is moderate at all the beaches and the grains have mainly sub-angular shape
indicating possibly short transport, suggesting that the main source of sediment are the adjacent
cliffs. Lithic fragments are mainly of volcanic origin, such as lava, pumice and even preserved
glass. Metamorphic grains have also been observed shed from marbles and phyllites. Most
common minerals identified are plagioclase, clinopyroxene, orthopyroxene, amphibole,
hornblende and quartz. Less common minerals are magnetite, orthoclase, zircon, zeolite,
hematite, olivine, calcite and dolomite (Fig.2).
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Figure 2 Images of sand grains (more images at Appendix 3). a) Sample RE4 from Red Beach at Akrotiri, Santorini. b)
Sample PE1 from Perissa, Santorini. ¢) Sample MO3 from Monolithos, Santorini. d) Sample KO2 from Kolumbo,
Santorini.
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Geochemical Results

Major Elements

Most of the samples from Karmgy (including the rock sample) have low to moderate content of
SiO, (from 46% to 57%) with the exception of outcrop A4 where the content of SiO, (from 34%
to 41%) is even lower (Appendix 1). All the samples show higher values of Fe;03(5,72% - 12,07%)
and MgO (4,40% - 7,58%) than the average upper continental crust (UCC), but there is a
variation in the values of Al,0; (10,60% - 20,23%). In addition all the samples show high CaO
abundances (ranging from 6,92 to 22,71%) and low K,O (less than 1%). The highest values of CaO
(22,71% and 16,48%) are shown in outcrop A4 indicating abundance of calcite shells as
petrographic analyses can confirm.

The samples from Randaberg are moderately enriched in SiO, (from 73% to 78%) and depleted
in all other major elements in comparison to UCC (Appendix 1). CaD % concentrations are
between 1,36% and 2,44% and reflect the organism shells. Although the samples are collected
from two different exposures they are geochemically in their major elements relatively
homogeneous.

All the sand samples from Santorini have moderate content of SiO,, ranging from 53% to 61%
(Appendix 1). Almost all the samples show enrichment in Fe,03 (values vary between 4,33% and
10,64%) but only some in MgO (values vary between 1,45% and 10,21%). The values of Al,0;
vary from 12,35% to 18,90%. All the samples are depleted in K,0 (0,90% - 2,15%) and enriched in
TiO, (0,57% - 1,06%). In addition all the samples show slight enrichment in CaO (5,56 to 9,87%)
indicating presence of calcite as petrographic analyses can confirm.

The volcanic rocks have low to moderate content of SiO, ranging from 47% to 65% (Appendix 1).
Most samples are enriched in Fe,0; (values vary between 4,09% and 8,49%), but only a few in
MgO (values vary between 1,34% and 7,78%). All the samples are depleted in K,0 (0,68% -
2,57%), most are enriched in TiO, (values vary between 0,48% and 1,14%) and some show slight
enrichment in CaO (values vary between 2,99 to 10,63%).

The two samples from the metamorphosed carbonate rocks (RPEB and RKAB) show expectedly

high concentrations of CaO (55-56%) and depletion in all other major elements including MgO,
supporting the existence of calcite as major carbonate mineral (Appendix 1).

Alteration

The chemical index of alteration CIA is used to show the degree of chemical weathering (Nesbitt
and Young, 1982) and was calculated using the molecular proportions by eq.1:

CIA=(Al,03/(Al,03+Ca0*+Na,0+K,0))*100 (eq.1)
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Where CaO* represents the CaO associated with the silicate fraction of the sample and was
calculated by eq.2:

Ca0*=Ca0-CO,-(0.5*C0,)-((10/3)*P,05) (eq.2)

Unweathered igneous rocks have values of 50 or below, residual clays have values of near 100
and typical shales have average values 70 to 75.

The CIA is low in most of the Karmgy samples varying from 40 to 47 indicating no significant
alteration (Appendix 1). Samples from outcrop A4 have particularly low values 25,04 and 33,73.
The samples from Randaberg all have similar CIA values varying from 49 to 53 indicating slight
weathering. The samples from Santorini have low CIA values varying from 35 to 48 indicating no
significant weathering.

In addition, weathering trends are shown on the A-CN-K (A=Al,0;, C=Ca0, N=Na,0 and K=K,0)
triangular plot (Nesbitt and Young, 1984, 1989) where, the trends for increasing degrees of
weathering for different rocks are illustrated (Fig. 3). Weathering involves the conversion of
unstable minerals (mainly feldspars and mica) and volcanic rocks (glass), to clay. Deviations from
the trends indicate chemical changes resulting from diagenesis or metasomatism. Compositions
are plotted as molar proportions and the initial stages of weathering form a trend parallel to the
CN-A side of the diagram. During weathering there is a substantial increase in Al,0;and removal
of alkalis and Ca, during the breakdown of plagioclase, then potassium feldspar and
ferromagnesian silicates.

All the samples from Karmgy plot on or near the basaltic weathering trend line and have degree
of weathering less than 50, characterized as unweathered. Most of the Randaberg samples
follow a trend line between andesite and shale, but there are deviations towards both the A-K
and the CN-A sides of the diagram. Most of the Santorini samples follow a basaltic-andesitic
trend, but some of them deviate towards the A-K side of the diagram. All of the Santorini
samples have degree of weathering less than 50, so they are characterized as unweathered.

Comparing K/Cs ratios to CIA (McLennan et al., 1993) can show if K-metasomatic effect is
present, that would cause weathered compositions to plot closer to the K apex, thus lowering
the CIA values. Both K and Cs are absorbed on clay minerals during weathering. Cs as a larger ion
element, being preferred over K, thus the K/Cs ratio should decrease with increasing chemical
weathering. A K-metasomatic effect is shown as a deviation from the negative correlation
between the K/Cs ratio and CIA.

K/Cs ratios scatter for the Karmgy samples, indicating different influences of the detritus and/or
different weathering influences. The K/Cs ratios of the samples from Randaberg are
homogeneous and have higher values than UCC. The K/Cs ratios of the Santorini samples do not
correlate with the CIA values, indicating a minor K-metasomatic influence (Fig. 3).

However, most of the samples can be described as only moderately to partly unweathered.
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Figure 3 a) CIA and ACNK trivalent diagram (Nesbitt and Young, 1984, 1989). b) K/Cs versus CIA diagram (McLennan et
al., 1993).

Trace Elements

Trace elements like rare earth elements (REE) and high field strength elements (HFSE) are
usually immobile under surface conditions, preserving characteristics of the source rocks, and
have been used to suggest the former tectonic environment.

All the Karmgy samples show enrichment in Cr (103 to 377 ppm), V (136 to 410 ppm) and Co
(21,50 to 67,60), which are good indicators for a mafic source component. They are also
characterized by low abundances of La, Th, U, Zr and Nb indicating a tectonic setting of oceanic
arc. On the contrary, none of the Randaberg samples shows enrichment in Cr, V or Co. The only
samples from Santorini that are enriched in Cr are the ones from outcrop RE (323 to 595 ppm).
These samples are also enriched in Ni (73 to 164 ppm), with a ratio Cr/Ni between 3,6 and 4,5
(Appendix 1).

Classification of the volcanic and sedimentary rocks can be done with the plot Zr/Ti versus Nb/Y,
a discrimination diagram relying on High-Field-Strength Elements (HFSE), where Nb/Y measures
the degree of alkalinity and Zr/Ti is an index of fractionation (Fig. 4). The various fields are
illustrated according to Winchester and Floyd (1977). These elements are stable under
conditions of hydrothermal, sea-floor weathering and up to medium metamorphic grades (mid-
amphibolites). Nb/Y is insensitive to fractionation in the shallow mantle and variations in these
ratios may reflect heterogeneities in the mantle source. The behavior of Y, however, changes
depending on the depth in the mantle. It is incompatible in the shallow mantle, but is
compatible in the deep mantle, where it is retained in garnet during partial melting.

Most of the samples from Karmgy plot in the andesitic basalt field, while some plot in the sub-
alkaline basalt field. It is interesting that the samples from outcrop Al (the most southern
outcrop) have higher Zr/Ti ratios and plot in the andesite field. All the samples from Randaberg
plot in the rhyodacite/dacite field. The samples from Santorini plot between the
rhyodacite/dacite and the andesite fields.
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Rare earth elements (REE) are of special interest in sediments since they are considered
representative of provenance. REE are amongst the least soluble trace elements and present in
minute concentrations in water. They are also relatively immobile under surface conditions, so
the concentration of REE in sediments reflects the chemistry of their source.

Values for concentration of REE (Rare Earth Elements) of the sediment samples were normalized
to Chondrite after Taylor and McLennan (1985), Upper Continental Crust (UCC) after McLennan
et al. (2006) and Post Archean Average Australian Shale (PAAS) after Nance and Taylor (1976),
(Fig. 4). Post Archean shales normalized to Chondrite show typically patterns with light REE
enrichment, flat heavy REE and negative Eu anomaly. The removal of feldspar by crystal
fractionation or partial melting will result to Eu depletion. Strong positive enrichment in Eu
results from plagioclase enrichments due to sedimentary sorting processes.

The Karmgy samples show a flat pattern slightly enriched in all the REE compared to chondrite,
with a higher enrichment in Eu. The Randaberg samples follow more or less the pattern of UCC
(except for Eu), showing light REE enrichment and flat heavy REE compared to chondrite. The
samples from Santorini are also enriched in light REE but have higher values of the heavy REE
compared to UCC and closer to the values of PAAS.
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Figure 4 a) Zr/Ti versus Nb/Y diagram (Winchester and Floyd, 1977). b) REE pattern normalized to chondrite after

Taylor and MclLennan (1985). c) REE pattern normalized to UCC after MclLennan et al. (2006). d) REE pattern
normalized to PAAS after Nance and Taylor (1976). e) Legend for figures 4. b,c and d.
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Ratios of Th/Sc were plotted against Zr/Sc on the diagram after McLennan et al., (1993), a useful
indicator of zircon enrichment that shows sediment reworking (Fig. 5). The Th/Sc ratio is a good
measure of igneous chemical differentiation processes since Th is typically an incompatible
element enriched in felsic rocks, whereas Sc is typically compatible indicating mafic source
components. Both elements are transferred almost exclusively to the clastic sedimentary record
during weathering, erosion and transport, and are not redistributed widely by secondary
processes, such as diagenesis.

The Th/Sc ratios of the Karmgy samples vary, but are generally low and none of the samples
show zircon enrichment, thus they have undergone no sediment recycling or the sediment
derived from a mafic source. The samples from Randaberg show Zr addition and the Th/Sc ratios
are similar to the UCC. All the samples from Santorini follow the composition line with Th/Sc
ratios less than 1 and no zircon addition, which points to a mixing of different mafic and
intermediate rock sources.

Cr is compatible in the minerals olivine, orthopyroxene, clinopyroxene and the spinels in a
basaltic melt. The abundance of Cr and Ni in clastic sediments indicates an ultramafic source,
where low concentrations of Cr are typical of a felsic provenance. The diagram Cr/V versus Y/Ni
(Hiscott, 1984) shows the mixing curve model between granite and ultramafic end-members
(Fig. 5). High Cr/V ratios and very low Y/Ni ratios indicate ultramafic sources. Homogeneous Cr/V
ratios indicate a single mafic source, where variations can be caused by different processes
and/or source mixing.

All the samples from Karmgy have very low Y/Ni ratios and varying Cr/V ratios indicating source
mixing. None of the Randaberg samples, as well as most of the Santorini samples, show
influence from an ultramafic source. Interesting though, the samples from outcrop RE (Akrotiri)
have very high ratios of Cr/V and very low ratios of Y/Ni, plotting at the ultramafic end of the
mixing curve model. Hence, they have to have a different sand composition which is also
supported by petrography.
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Figure 5 a) Th/Sc versus Zr/Sc diagram (McLennan et al., 1993). b) Cr/V versus Y/Ni diagram (Hiscott, 1984).
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The elements Rb, Nb, Y, Yb and Ta are used as discriminants between most types of ocean-ridge
granites (ORG), within-plate granites (WPG), volcanic arc granites (VAG) and syn-collisional
granites (syn-COLG), (Pearce et al., 1984), (Fig. 6). Elements Y and Yb are compatible, while Rb is
highly incompatible in continental granites, but less abundant in oceanic granites. The elements
Nb and Ta are incompatible in intra-plate magmas, but are compatible in subduction zones. Low
Nb content is typical of subduction-related magmas.

In all the diagrams, the volcanic rock samples from Santorini plot in or near the volcanic-arc
granite (VAG) field. As expected, the sampled rocks are related to a volcanic arc.
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Figure 6 Granite discrimination diagrams after Pearce et al. (1984). VAG=volcanic-arc granites, syn-COLG=syn-
collisional granites, WPG=within-plate granites, ORG=ocean-ridge granites.

Implication of the petrographic and geochemical data

The sediments from Karmgy are poorly sorted with angular to sub-angular shape and have not
undergone significant weathering or sediment recycling. They are characterized by low to
moderate content of SiO,, enrichment in Cr, V, and Co and very low Y/Ni ratios. Their
homogeneous andesitic to sub-alkaline basalt composition corresponds to the composition of
the gabbroic rocks in the area and is reflected as well in the abundance of mafic lithoclasts.
Hence, there has been no visible input of felsic detritus.
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The sediments from Randaberg are moderately enriched in SiO, with low concentrations of Cr,
V, and Co and their composition is rhyodacitic to dacitic. REE patterns are homogeneous for both
outcrops and similar to unrecycled UCC. The sands are moderately sorted with sub-angular
shape, but have not undergone significant weathering or sediment recycling. The phyllite rocks
in the area are relatively soft, therefore quick erosion can be the cause of the rapid
dismembering of the sediments. Petrographic data confirm this interpretation with a majority of
lithoclasts derived from felsic rocks.

The grains in the sands from Santorini have sub-angular shape, moderate sorting and do not
show significant weathering or sediment recycling. They are characterized by moderate content
of Si0, and have no significant enrichment in CaO, thus the calcite-rich carboniferous basement
rocks cannot be the main source of the sediments. The composition ranges between
rhyodacitic/dacitic to andesitic corresponding to the composition of the adjacent volcanic rocks
which have geochemical features typical of active subduction zones. The REE patterns are
homogeneous for all the outcrops and similar to PAAS. The samples from outcrop RE are
enriched in Cr and Ni resulting in very high ratios of Cr/V and very low ratios of Y/Ni, showing a
more mafic composition of the volcanic source which is supported by previous geochemical
studies of the magma. The Cinder Cones of Akrotiri, the source of the sediments in outcrop RE,
comprise of andesitic-basaltic magma of age 626 to 319ka (Druitt et al., 1998). Therefore,
Santorini is a perfect example for a recognizable short source to sink transport based on the
identified petrographic and geochemical signatures.

To determine the provenance of the source rocks, the plot Ti/Zr versus La/Sc (after Bhatia and
Crook, 1986) has been used as a good discriminator of the paleotectonic setting (Fig. 7). Zr is
mainly transported by the ultra-stable heavy mineral zircon and Ti is fixed in rutile. Depletion of
the high field strength elements Ti and Zr indicates an arc signature, whereas enrichment in Ti
and Zr indicates intraplate setting. Oceanic island arc samples are characterized by Ti/Zr ratio
more than 40 and La/Sc ratios less than 1. Continental island arc samples are characterized by
Ti/Zr ratio between 10 and 35, and La/Sc ratio between 1 and 4. Active continental margins have
Ti/Zr ratio between 10 and 25 and La/Sc ratio ranging from 3 to 7. Finally, passive margin
samples are characterized by Ti/Zr ratio between 0 and 10, and La/Sc ratio between 4,5 and
11,5.

All samples from Karmgy plot in the oceanic island arc field with some extremely high values of
Ti/Zr ratio (ranging from 45 to 207) and very low values of La/Sc ratio (less than 0,25). They even
show higher values than the sampled gabbro (as well plotted in Fig. 7 for comparison). Almost all
the samples from Randaberg plot in the active continental margin field. It is interesting that the
samples from Santorini plot half in the continental island arc and half in the oceanic island arc.
Hence, the amount of Ti-rich sources is significant higher than those related to felsic rocks.

Using the elements the elements Th, Sc and Zr on the triangular plot after Bhatia and Crook
(1986) is another technique of paleotectonic environment discrimination (Fig. 7). On this
diagram the Karmgy samples plot very close to the Sc apex, showing an extreme enrichment in
Sc in comparison to Th and Zr. The Randaberg samples do not show a typical passive margin
signature; instead they straddle the fields of active continental margin, passive margin and
continental arc showing a typical unrecycled upper continental crust rock composition. This is in
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accordance with the petrography, as the rock debris is relatively angular and not well rounded or
even sub-rounded as the main typical feature. Hence, sampling along the coastline of Karmgy
reveals an oceanic island arc signature for the sediments, while the Randaberg samples reveal an
unrecycled UCC composition, which implies that correlation along large basins need to be made
with greatest caution. The samples from Santorini plot half in the continental island arc and half
in the oceanic island arc just like the plot Ti/Zr versus La/Sc.

a) b)

TifZr

Figure 7 a) Ti/Zr versus La/Sc diagram (Bhatia and Crook, 1986). b) Th, Sc, Zr trivalent diagram (Bhatia and Crook,
1986). OlA=oceanic island arc, CIA=continental island arc, ACM=active continental margin, PM=passive margin.

The paleotectonic environment of Santorini is a continental arc and it is reflected in the
geochemistry, as expected. The differences in some samples that show a stronger mafic
signature can be explained by the different compositions of the volcanic magmas. In Randaberg,
the paleotectonic environment is proposed to be a passive margin but it is not reflected in the
geochemistry. The Karmgy sediments do not reflect the paleotectonic environment either, as
the geochemistry and petrography show quartz-poor sediments with a geochemical signature of
oceanic arc. The samples have not been transported far and they hold the mafic signature of the
adjacent gabbroic rocks that belong to the Karmgy Axis Sequence and are from the oldest on the
island. Sands from other parts of Karmgy, where younger rocks are exposed (e.g. from the
southwest, where the dominant rocks are of quartz-dioritic, dioritic, granodioritic and granitic
composition), might show different geochemical and petrographic results and further studies
are needed in order to establish the paleotectonic environment. The sands from Randaberg in
turn show an unrecycled UCC signature, which cannot be expected at a typical passive margin. In
combination with the findings of similar aged sediments from Karmgy, a tectonic setting of the
sediments cannot be deduced by provenance techniques. Santorini, as shown, reflects and
mirrors within the sink sediments the composition (and the tectonic setting) of the source rocks.
These sediments are actually supporting the provenance techniques as proposed (references see
above in Introduction), which is also deciphered in Lower Palaeozoic rocks in the Central Andes
(Zimmermann et al., 2010).
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Moreover, applying Ce/Y ratios in basalts has been used as a quantitative estimate of crustal
thickness during the evolution of an orogeny (Mantle and Collins, 2008). The volcanic rocks in
Santorini have Ce/Y ratios between 1 and 1,5 (except sample RKOTR that has a ratio of 0,76)
indicating a Moho depth of 20-30km which is also supported by recent geophysical studies (Li et
al., 2003; Sodoudi et al., 2006; Karagianni and Papazachos, 2007). The sediments have also Ce/Y
ratios between 1 and 1,5 supporting the theory that they derive from the adjacent volcanic rocks
and that the depositional setting is a continental arc. This supports the interpretation of 100%
recycling.

Consequences for the hydrocarbon industry

Correlation is an often used tool in the oil industry to gain information about basin extension
and to trace down hydrocarbon-rich layers or successions. Understanding of the provenance of
hydrocarbon-rich sedimentary rocks and their depositional system, should aid in regional
mapping correlation of potential reservoirs. This implies the validity of provenance models and
quantitative analytical techniques. Here, as shown this cannot be applied to western Norway.
The petrographic and geochemical analyses do not suggest a passive margin as a paleotectonic
environment. Instead the Karmgy sediments indicate an oceanic arc and the Randaberg
sediments an active continental margin. Correlation between the two locations is very difficult
and further sampling is required. Since the samples show no significant weathering or recycling
and their petrography indicates possible short transport, it is suggested that the characteristics
of the sediments are biased by the adjacent source rocks. In contrast, Santorini reflects the
paleotectonic environment accurately as the sediments carry the signature of the volcanic
source rocks, typical of continental arc. Hence, greatest caution is needed when applying
provenance techniques to correlate sedimentary layers and detailed studies should be carried in
order to check the validity of the results.

Conclusion

Petrography and geochemistry of the sediments of southwest Karmgy revealed detrital material
deriving mainly from the adjacent gabbroic rocks belonging to the Karmgy Axis Sequence of the
Karmgy Ophiolite Complex. Trace element geochemistry and petrographic features exclude a
reworking of the sediments and indicate a possibly short transport. The sediments show a strong
guartz-poor mafic precursor with no visible felsic input and provenance studies indicate a
paleotectonic environment of an oceanic island arc which does not come in accordance with the
proposed paleotectonic environment of passive margin.

In turn, the petrography and geochemistry of the moderately sorted sub-angular sediment
grains of Randaberg reveals a source rock composition similar to unrecycled UCC, implying a
paleotectonic environment of active continental margin and not of passive margin either.
However, the sands from Santorini mirror both the composition and the tectonic environment of
the volcanic source rocks with geochemical features typical of active subduction zones. Texture
and composition show local variations which reflect differences in magma composition.
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The study demonstrates that although provenance studies can reveal important information
about the source rocks, greatest caution is needed when their validity is applied as indicators of
the paleotectonic environment. The geochemical results can reflect local variations in geology
that would make correlation between different layers very difficult. Further detailed studies are
needed and in order to successfully correlate sedimentary layers extended sampling is
suggested.
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Appendix 1 - Geochemical data

Major and trace element abundances and ratios for rocks and sediments of Karmgy, Randaberg
and Santorini.

Oxide concentrations, LOI, TOT/C and TOT/S are given in wt%.
Single trace element concentrations are given in ppm.
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Appendix 2 - Sampling pictures

1-20. Karmgy localities and representative samples.
21-32. Randaberg localities and representative samples.

33-70. Santorini localities and representative samples.
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5. Norstg (A2) 6. Sample from Norstg (A21)
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havn Nord (A41)
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11. Téemmervika (A5) 12. Sample from Tgmmervika (A54)
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17. Layered gabbroic rocks at A2 18. Lithic fragment at A2

Al

19. Lithic fragments at A3 20. Lithic fragments indicating glacial
transport (Al)
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21. Sandebukta (RS) south view 22. Sandebukta (RS) north view

23. Sediment transportation (RS) 24. Sediment transportation (RS)
" / 48 3 4™ 7 AN

LIS 5 W

LR UK

25. Sand dunes (RS) 26. Sample from Sndebukta (RS3)
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27. Randabergbukta (RM) north view 28. Randabergbukta (RM) south view

29. Sﬂe':din)ent transportation (RM)

JAT . 3W Wiy il
i . oA g
P Y . g

1 »,

31. Rock between outcrops RS and RM 32. Sample from Randabe

& &3 Nt

gbuta (R4)
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ch at kroflri (RE

~35. Red Beach (RREB‘U) Cinder cones 36. Sample from Cinder cones (RREBU) )

37. Red Beach (RRERP) Cinder cones 38. Sample from Cinder cones (RRERP)
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41. Vlyhada (VL)

<

PR
t

»

42. Sample from Vlyhada (VL1)

46. Sample from Tuff breccia at Vlyhada
(RVLT)
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537.> arble bééeﬁwent (RKAB) at Kamari 54. Sample from basement at Kamari
(RKAB)
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b Yo

0 Vouno (RRMC) Cinder cones

59. Kokkino Vouno (RRMC) Cinder cones 66. Kokkin

o

61. Kokkino Vouno (RRMC) Cinder cones 62. Sample from Cinder cones (RRMC)
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Monolithos (MO)

67. Tuff I.:-;yers at Kolumbo (RKOTR and 68. Sample from Tuff at Kolumbo (RKOTR)
RKOTB)

9P »9‘. 4 ;
e

70. Saple from Tuff breccia (R

69. qumbo uff reC| RB OTB) .
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Appendix 3 - Sediment grain images
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Map foldouts

1) Karmgy

A. Geological map of the Karmgy Ophiolite Complex and associated rocks (Pedersen and
Hertogen (1990).

B. Block diagram summarizing the magmatic evolution as displayed on Fegy. Numbers in
boxes are U-Pb ages determined on zircons (Pedersen and Hertogen (1990).

C. Geological map of Karmgy downloaded from www.ngu.no.
2) Randaberg
Geological map of Randaberg downloaded from www.ngu.no.

3) Santorini

A. Island arc of southern Aegean Sea showing the volcanic centers (Papazachos and
Panagiotopoulos, 1993).

B. Summarized stratigraphic section of Santorini after Druitt et al., 1989.

C. Simplified geological map of Santorini after Druitt et al., 1998.
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