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ABSTRACT 
 
 

In a surfactant flooding of oil reservoirs, surfactant products are added to the injected 

water to reduce the oil-water interfacial tension (IFT) and thereby mobilize capillary 

trapped oil. The theory in classic surfactant floods is based on water-wet sandstone 

reservoirs. It is now known that the wettability of sandstone reservoirs is often 

characterized as mixed-wet. The classic theory for surfactant flooding cannot be applied. 

 

This thesis characterizes water flooding and surfactant flooding at different wettability 

conditions in Berea rock. Different wettability conditions (water-, oil- and mixed-

wetting) are established by the chemical product Quilon L. 

 

Three experiments will be carried out in the laboratory. In the first experiment (static), 

the wettability of treated and untreated minerals and crushed rock is characterized to 

evaluate the wettability alteration by the chemical Quilon L. Then, in the second 

experiment (stability test), water and surfactant flooding is performed in treated and 

untreated Berea core plugs to study the stability of the wettability alteration. Finally, in 

the third experiment, water flooding and surfactant flooding is applied at multiple rates to 

Berea core plugs at different wettability conditions to observe the characteristics in each 

type of rock. 

 

Results obtained in these experiments show that water flooding is more effective in 

strongly oil-wet and mixed-wet rocks reducing remaining oil saturation to very low 

values or close to zero. Conversely, surfactant flooding is more effective in strongly 

water wet rocks due to high remaining oil saturation after water flooding. Also, capillary 

number in water flooding ranges from 10 -8 and 10 -6 whereas in surfactant flooding 10 -6 

and 10 -4 in all cases.  
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NOMENCLATURE 
 

 

IFT  = Interfacial tension 

k = Permeability 

kabs = Absolute permeability 

ko = Effective permeability to oil 

kr = Relative permeability 

kw = Effective permeability to water  

n = Archie saturation exponent 

Nca = Capillary number 

PV =  Pore volume 

Q = Flow rate 

RI = Resistivity index 

ro =  Electrical resistance when rock is saturated with 100% water 

rt =  Electrical resistance when rock is partially saturated with water 

Soc =  Remaining oil saturation after surfactant flooding 

Sow = Remaining oil saturation after water flooding 

Sw = Water saturation 

 

 

Subscript  

o =  oil 

w = water 

i = initial 
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INTRODUCTION 
 

 

As world oil demand continues rising, and at the same time conventional reserves 

deplete, secondary and tertiary processes 1 have been implemented in fields in order to 

increase the oil recovery factor in sandstone reservoirs. 

 

In order to maintain pressure, water flooding is the most common process used as a 

secondary recovery 1- 3. In this classical method (immiscible), water is injected to displace 

oil toward producing wells obtaining a final oil recovery of around 35 to 50% of the 

original oil in place leaving some remaining oil in sandstone reservoirs. This trapped oil 

is related with viscous and capillary forces like oil-water interfacial tension, IFT, that is 

around 30 to 50 dynes/cm and capillary number, Nca, which ranges from 10 -8 to 10 -6. 

 

Tertiary processes 1, 4   (chemical, miscible and thermal processes) are implemented to the 

oil reservoirs after the secondary recovery.  Chemical process (surfactant flooding) will 

be studied in this research. In this miscible method, surfactant products (special class of 

molecules with both hydrophobic and hydrophilic parts) are added to injected water in a 

very low concentration  to 3 wt % 1 to reduce the oil-water interfacial tension and thereby 

mobilize capillary trapped oil (ganglia). IFT is usually around 10 - 2 dynes/cm and 

capillary number ranges from 10 - 6 to 10 - 4 obtaining a notable reduction in oil residual 

saturation. 

 

A lot of studies have been realized around classic water and surfactant flooding which are 

based on water-wet sandstone reservoirs 5-8. It is now known that the wettability of 

sandstone reservoirs is often characterized as mixed-wet. Therefore, the classic theory for 

water and surfactant flooding cannot be applied to mixed-wet sandstone reservoirs. 

 

The purpose of the research in this thesis is to characterize the water flooding and 

surfactant flooding at different wettability conditions in Berea rock. Different wettability 
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conditions like strong oil-wet, strong water-wet and mixed-wet are established by using a 

chemical product at different concentrations.  

 

This thesis has been organized as follows: in the first part, literature study will be shown. 

Wettability concepts will be discussed:  wetting systems, methods to measure and how to 

alter the wettability. Also, surfactant chemicals are introduced: types, properties, 

characteristics and surfactant flooding.  

 

In the second part, procedures for three experiments that will be carried out in the 

laboratory will be shown. 1) In the static experiments, the wettability of treated and 

untreated minerals and crushed rock is characterized to evaluate the wettability alteration 

by the chemical Quilon L. 2) In the stability test experiment, water and surfactant 

flooding is performed in treated and untreated Berea core plugs to study the stability of 

the wettability alteration. 3) In the third experiment, water flooding and surfactant 

flooding is applied at multiple rates to Berea core plugs at different wettability conditions 

to observe the characteristics in each type of rock. 

 

In the third part, results obtained from the three experiments will be discussed and 

compared with the literature study and previous work. These results will characterize 

(properties and remaining oil saturation reduction) the oil-, water- and mixed-wet rocks 

during water and surfactant flooding. Finally, in the last part, conclusions derived from 

the results will be analyzed.  
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LITERATURE STUDY 
 
 
1.1 Wettability 
 
Wettability has been defined by Jerauld and Rathmell 9 “as a tendency of one fluid of a 

fluid pair to coat the surface of a solid spontaneously”. Another important definition is 

given by Anderson 10 who defines wettability as “the tendency of one fluid to spread on 

or adhere to a solid surface in the presence of other immiscible fluids”. Therefore, in a 

fluid/rock system, depending on the preference of the fluid to coat the rock surface, it can 

be water-wet or oil-wet system (Figure1.1). In the first case, water has the tendency to 

adhere to the majority of the rock surface occupying the small pores, whereas in the 

second case oil is in contact with the majority of the rock surfaces occupying the small 

pores. 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Water-wet vs. Oil-wet systems 1 

 

Depending on the interaction between fluids and rock, the systems could be classified 10 

as a strongly water-wet or strongly oil-wet. Nevertheless, in some systems, both oil and 

water tends to adhere to the rock surface which is defined as intermediate (or neutral) 

wettability. There is also another type of wettability called “fractional” where different 

areas of the core have different wetting preferences. It occurs where rock surface has 

variable mineral composition and surface chemistry. A special type of fractional 
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wettability was introduced by Salathiel 11 “mixed-wettability” in which the smaller pores 

are water-wet and filled with water whereas the larger pores are oil-wet and filled with oil 

(it forms a continuous path). Salathiel explains this phenomenon: when oil initially 

invaded originally water–wet reservoir, it displaced water from the larger pores, while the 

smaller pores remained water-filled because of capillary forces. 

 

 

1.1.1 Methods to determine wettability 

 

A lot of methods have been developed to evaluate the wettability of a fluid/rock system. 

Anderson 12 carried out a study of the quantitative methods such as contact angles 12, 

imbibition and forced displacement (Amott 13), USBM 14 and electrical resistivity 15 

wettability method, and qualitative methods 12 –imbibition rates, microscope 

examination, flotation, glass slide method, relative permeability curves, 

permeability/saturation relationships, capillary pressure curves, capillarimetric method, 

displacement capillary pressure, reservoir logs, nuclear magnetic resonance and dye 

adsorption.  

 

1.1.1.1 Quantitative methods 

 

i. Contact-Angle Method 

 

The contact angle 12 is the best wettability measurement method when pure fluids and 

artificial cores are used. It is also good at examining the effects of temperature, pressure, 

and brine chemistry on wettability. 

 

Many methods of contact-angle measurement have been developed, but the most 

common used in the petroleum industry are sessile drop method and a modified form of 

the sessile drop method. For the first case, it uses a single flat, polished mineral crystal 

(Figure 1.2), whereas in the second one it uses two flat, polished mineral crystals that are 

mounted parallel to each other on adjustable posts (Figure1.3a). 
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Figure1.2 Wettability of the oil/water/rock system 12 

 

 
Figure 1.3 Contact-angle measurements 12 
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For the modified sessile drop method, an oil drop is placed between the two crystals, and 

then it is aged for a few days. After this, the two crystals are moved parallel to each other 

(Figure 1.3b) getting a non-equilibrium angle which will decrease after some days until a 

constant contact angle is obtained. 

 

The disadvantage of this method is the hysteresis generated between the water-advancing 

and water receding angles. Anderson 12 showed that contact-angle hysteresis can be 

caused by surface roughness, surface heterogeneity and surface immobility on a 

macromolecular scale. 

 

ii. Amott 

 

Amott 13 carried out a test to determine the average wettability of a core which involves 

imbibition and forced displacement volumes both of water by oil and oil by water. 

Amott’s test consists of the following steps: 

 

1. Flush core with water and with kerosene to remove most of the crude oil and 

formation water. 

2. Remove gas by evacuating with kerosene 

3. Centrifuge under brine until the residual oil saturation is obtained 

4. Immerse the core in kerosene, and record the volume of water spontaneously 

released (imbibition) after 20 hours. 

5. Centrifuge the core under kerosene until the irreducible water saturation is 

reached, and record the total volume of water displaced (volume displaced by 

spontaneous imbibition is included). 

6. Immerse the core in brine, and measure the volume of oil spontaneously displaced 

by imbibition of water after 20 hours. 

7. Centrifuge the core in brine until residual oil saturation is obtained, and record 

total volume of oil displaced. 
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The wettability of the rock according to the Amott’s test is giving by 2 ratios: (1) 

displacement-by-oil index, Io, ratio between water volume displaced by spontaneous oil 

imbibition alone, Vwsp and the total displaced by oil imbibition and centrifugal (forced) 

displacement, Vwt 

 

     (1.1) 

 

And (2) displacement-by-water index, Iw, ratio between oil volume displaced by 

spontaneous water imbibition alone, Vosp and the total displaced by water imbibition and 

centrifugal (forced) displacement, Vot 

 

 

     (1.2) 

 

The wettability of a rock is given by these indexes. For a strong water-wet core, Iw will be 

positive whereas Io will be zero. Similarly, in a strong oil-wet core, Io will have positive 

values whereas Iw will be zero. In the case of a neutral wet core, both indexes are zero. 

 

A modification of this method called “Amott-Harvey Relative Displacement Index” is 

being used more frequently. The procedure of this modified method is similar to the 

Amott, but an additional step is included prior to preparation of the core which consists of 

centrifuging the core first under brine and then under crude to reduce the plug to 

irreducible water saturation. Therefore, the Amott-Harvey index is giving by: 

 

I = Iw - I o     (1.3) 

 

A new range is giving for the wettability criteria. A system is water-wet when             

+0.3 ≤ I ≤ 1.0, intermediate wet when -0.3 ≤ I ≤ 0.3, and oil wet when -1 ≤ I ≤ -0.3. 
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iii. USBM ( U. S. Bureau of Mines) 

 

Donaldson 14 et al. developed a method called USBM based on the two areas under the 

capillary pressure curves determined with a centrifuge. This method gives an average 

wettability value of the core. The test consists of the following steps: 

 

1. A core saturated with brine is placed in a glass core holder filled with oil. It is 

centrifuged until the residual water saturation is obtained (dashed line I in    

Figure 1.4) 

2. The core is placed in another core holder filled with brine and centrifuged at 

different speeds to displace oil. This volume is measured to obtain the capillary-

pressure Curve II. 

3. After that, the core is placed in a core holder filled with oil, and the volume of 

brine is recorded at each incremental increase in speed to obtain capillary-

pressure Curve III in Figure 1.4. 

 

The wettability defined by this method states W = log (A1 / A2), consequently, a water-

wet system has a larger area under the water-displaced-by-oil curve (A1) than the area 

under the oil-displaced-by-water curve (A2) which means that the value of the logarithm 

is positive (Figure 1.4a). In contrast, in an oil-wet system, the logarithm of the area ratio 

is negative (Figure 1.4b). Finally, in Figure 1.4c, a neutral wet system is observed. 
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Figure 1.4 Effect of Wettability on the area ratio of capillary-pressure curves: a) Untreated core; 

b) Core treated with 10 percent Dri-fill 99; c) Core pretreated with oil for 324 hours at 140 °F 14 

 

 

iv. Electrical Resistivity  

 

E. Sondenaa 15 et al. estimated the water saturation using Archie’s equation: 

 

        (1.4) 
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Where RI is defined as the resistivity index, Rt and Ro are the electrical resistivity when 

the rock is partially saturated with water and when the rock is saturated 100% water. The 

exponent n is defined as the Archie saturation exponent. Then: 

 

    (1.5) 

 

They 15 carried out some experiments with different types of oil (crude oil, live crude oil 

and refined oil) at different conditions (temperature and pressure at reservoir and ambient 

conditions) to observe the variation of Archie saturation exponent. Therefore, they 

concluded that the Archie saturation exponent is not affected or decreased slightly with 

an increase in temperature, and this exponent should be evaluated using only endpoints 

values. 

 

Other authors 16-18 determined different ranges for Archie saturation exponent depending 

on the type of rocks and chemicals used in the experiments. Lewis 11 et al. determined 

Archie saturation exponents for Berea sandstones treated with chemical Quilon C from 

2.0 (strong water wet) to 5.2 (strong oil wet). These values will be the reference for 

treated Berea core plugs that will be characterized in the present study. 

 

 

1.1.1.2 Qualitative methods 

 

Qualitative methods 12 determine the degree of water or oil wetness based on: a) the 

shape of the curves like in relative permeability and recovery curves, or b) behavior of 

particles in fluids like in flotation methods.  The methods that will be used are relative 

permeability and recovery curves because they are easily obtained in water and surfactant 

flooding experiments. 
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i. Flotation methods 

 

These methods work for strongly wetted systems. Donaldson 14 et al. mentions that this 

method consists on placing water, oil and sand in a glass bottle, and then, they are 

shaken. After this, the behavior of the sand grains is observed to determine the wettability 

of the system. For a strongly oil-wet system, some of the grains will keep suspended at 

the oil/water interface whereas in the water, the oil-wet sand grains will group and form 

small oil globules coated with sand. In contrast, for a strongly water-wet system, clean 

sand grains will be observed on the bottom of the bottle, whereas some grains in the oil 

will group forming clumps of grains coated by thin layer of water. 

 

 

ii. Relative Permeability 

 

Relative permeability methods 12 may not notice small wettability changes in cores (from 

strong to moderated oil-wet or water-wet). Nevertheless, they are useful when the cores 

are strongly water-wet or strongly oil-wet. Craig 19 suggested the rules of thumb to 

differentiate between strongly oil-wet and water-wet systems as follows (Figure 1.5): 

 

1. Connate water saturations are usually greater than 20 to 25% PV in a water-wet 

system, but less than 10% PV in an oil-wet system. 

2. Water saturation at which water and oil relative permeabilities intersect (are equal) is 

generally less than 50% for oil-wet systems and greater than 50% for the water-wet 

systems. 

3. The water relative permeability value is much larger (from 50 to 100%) in oil-wet 

systems, but small values (less than 30%) in water-wet systems. 
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Figure 1.5 Typical water/oil relative permeability curves 1 

 

 

iii. Recovery Curves 

 

Figure 1.6 20 shows recovery curves (oil recovery factor) as a function of pore volumes of 

formation water injected in the water flooding using low viscosity fluids. For a strongly 

water wet sample (curve A), oil recovery factor is high before breakthrough, and the 

water/oil ratio rises sharply (curve A’) whereas for a strongly oil wet sample (curve B), 

oil recovery factor is low before breakthrough, and the water/oil ratio rises slowly after 

breakthrough. 
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Figure 1.6 Idealized water flood performance of a sandstone type core (linear). Case of 

low-viscosity fluid 20 

 

 

1.1.2 Techniques to alter wettability 

 

There are a lot of methods to alter the wetting properties of mineral surfaces to water and 

oil. Two methods will be reviewed to alter the wettability of a system from strong water 

wet system to less water wet as preparation for the initial conditions that will be used in 

the laboratory. 

 

i. Silanization 21 

ii. Quilon treatments 22-25 

 

i. Silanization 

 

The silanization procedure 21 consists in a chemical reaction where organosilyl group 

attacks and displaces the hydroxyl group (OH). In this reaction, organochlorosilane 

compound (silicon molecules with attached chlorines and non-water organic groups, with 

the formula RnSiCl4-n) react with the hydroxyl group on silicon dioxides surfaces, 
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exposing the organic groups and shifting into a hydrophobic system. In his study, 

trichloro(methyl)silane reacted with water or hydroxyl groups (silica) to release HCl and 

form a thin film of methylpolysiloxanes which has low critical surface tension 

(hydrophobic). The reaction is giving by the following chemical reaction 21: 

 

Si Surface  -  OH  + (CH3)Cl3Si   Si Surface O  -  Si(CH3)Cl2  +  HCl 

 

The procedure used by Tabrizy 22 in his research to alter the wettability from strong 

water-wet to strong oil-wet is: 

 

1. Cleaning procedures are applied to the glass beads with an HCl solution (20%) to 

get a water wet system. 

2. Rinse the glass beads with distilled water to remove all residues and then put in an 

oven for 2 hours at 100 °C. 

3. The glass beads are incubated for 15 minutes in a 2% solution of 

trichloro(methyl)silane and 98% of toluene. A thin film of methylpolysiloxanes 

covers the grains. It has to be taken into account the HCl formation during this 

reaction before removing the glass beads from the reaction vessel. 

4. Finally, rinse the glass beads with methanol and then dried in the oven. This issue 

will help to the cross linking reaction and the formation of monolayer silane film. 
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ii. Quilon treatments 

 

Other techniques have been developed to alter the wettability in sandstones cores like 

Quilon treatments 22 - 25. Maini 22 used Quilon-S whereas Lewis 23 worked with Quilon-C 

to change the hydrophilic surfaces into hydrophobic (oil-wet). Quilon-C is a chromium 

complex that contains a fatty acid group (C14-C18). The chromium in Quilon-C reacts 

with polar groups on charged surfaces (negative) and forms an insoluble layer of 

polymerized complex which bonds to the rock surface by chromium. The exposing fatty 

acids groups repel water, thus the rock surface is hydrophobic. 

 

Lewis 23 used the following procedure to get a hydrophobic surface:  The cores were 

vacuumed dry for 2 hours, and then saturated with a 20% solution of Quilon-C and 

reagent grade isopropyl alcohol. After that, the cores were evacuated for 4 hours. The 

procedure was repeated again, and then the core was flushed with ethanol until effluent 

was a very slight green color. Finally, the core was heated in an oven at 60 °C for the 

whole night. This total procedure was repeated again to get a stable treatment. 

 

 

1.2 Surfactants 
 
Rosen 26 defined surfactants as the chemical substances that adsorb on or concentrate at a 

surface or fluid/fluid interface when present at low concentrations in a system. They 

consist of a lipophilic portion (hydrocarbon group) and hydrophilic portion (polar group) 

which are the non-polar (tail) and polar (head) portions respectively as shown in       

Figure 1.7.  
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Figure 1.7 Schematic of surface-active molecule 1 

 

According to the ionic nature of the hydrophilic group, surfactants can be classified in 

four groups 1, 26 as follows: 

 

- Anionic.- In these surfactants, charge in the head group is negative. They are the most 

common used in EOR processes because of the properties like low adsorption on 

reservoir rock, stable and availability to manufacture economically (inexpensive). 

 

- Cationic.- These surfactants are characterized by the positive charge in the head 

group. They are rarely used because of its adsorption onto the reservoir rock (negative 

charge), and high costs compared with nonionic and anionic surfactants. 

 

- Zwitterionic.- It has both charged groups: positive and negative which makes them 

easily absorbed by charged surfaces without forming hydrophobic film. The main 

disadvantage is that they are usually not soluble with organic solvents. 

 
- Nonionic.- Surfactants do not ionize, thus the tail group is smaller than the head 

group. They have tolerance to the high-salinity brine (hard water), but poor properties 

to reduce the IFT, thus they are used as a co-surfactants to get better behavior of the 

surfactant systems. Some advantages of these surfactants are:  1) compatible with all 

types of surfactants, 2) soluble in organic solvents and water. Unfortunately, the main 
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disadvantage is that the adsorption onto charged surfaces is strong (no electrical 

effects). 

 

1.2.1 Surfactant adsorption 

 

Surfactant adsorption 27 occurs when surfactant is in contact with a surface or interface, 

which may lead to wettability alteration (positive effect) or loss of surfactant from 

solution (negative effect).   

 

1.2.1.1 The electrical double layer 

 

According to Rosen 26, at any interface the electrical charges are not distributed equally 

between the two phases. This unequal distribution causes one side of the interface to 

acquire a net charge of a particular sign and the other side to acquire a net charge of the 

opposite sign, giving rise to a potential across the interface. 

 

 

1.2.1.2 Adsorption at solid/liquid interfaces  

 

Adsorption of surfactant onto porous media 26, 27 (on the walls of throats or pores, or on 

fine particles in rock pores) can constitute a loss of valuable surfactant that can determine 

the feasibility of the oil recovery project. 

 

Static 1 (batch equilibrium tests) and dynamic 1 (core flood measures) experiments are 

usually used to measure the surfactant adsorption. In the first case, batch equilibrium 

tests, a specified mass of crushed rock is mixed with a known volume of surfactant 

solution (at a known concentration) in a sealed container. Fluids samples are withdrawn 

at intervals and analyzed until the system is at equilibrium (concentration keeps constant 

with time as shown in Figure 1.8. Material balance is used to calculate adsorption. For the 

second case, the dynamic core flood method, surfactant slugs of increasing size are 
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injected into cores until retention reaches a maximum and constant value as shown in 

Figure 1.9. 

 

 

 

 

 

 

 

 

 

 

Figure 1.8 Adsorption vs. time 1 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.9 Surfactant retention during core flood experiments 1 

 

The surfactant adsorption onto porous media is affected by surfactant type, concentration 

and equivalent weight; temperature; brine salinity and hardness; solution pH; rock 

minerals; wettability; presence of a residual oil phase and the flow rate of the solution. 
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1.2.1.3 Wettability alteration 

 

Surfactant adsorption onto solid surface 27 decreases IFT and shifts the wettability of the 

solid surface making it water-wetting or oil-wetting depending on the orientation between 

adsorbed surfactant molecules and solid surface. If the orientation of the head groups 

(hydrophobic) point away from the surface, oil-wetting reduces whereas water-wetting 

increases. Conversely, if the tail groups (hydrophilic) point away from the surface, oil 

wetting increases whereas water-wetting decreases. 

 

 

1.2.1.4 Liquid/Liquid interfacial adsorption and IFT reduction 

 

Surfactant can decrease IFT between two immiscible fluids (oil and brine) by adsorbing 

at their interface 26, 27, displacing some oil and water molecules there. Then, the surfactant 

molecules arranged by themselves orienting their hydrophobic portion into the oil, and 

the hydrophilic portion into the brine 

 

a) Ultralow interfacial tension  

 

In order to displace the residual oil from the porous media, IFT should be reduced to 

reach an ultralow value 26 (around 10 -3 dyne/cm) between the 2 immiscible fluids (oil 

and brine) and surfactant forming one phase that is called microemulsion. Depending of 

the nature of surfactants, temperature or salinity increases may help that systems change 

in phases and solubilization. 

 

 

1.2.2 Micelle formation and critical micelle concentration (CMC) 

 

Surfactants also can form micelles (colloidal aggregates in solution) depending on the 

concentration into a solvent (Figure 1.10). When the surfactant concentration is very low, 

dissolved surfactants molecules are dispersed as monomers, whereas increasing the 
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concentration, the molecules tend to aggregate until getting the critical micelle 

concentration (CMC 1) which is the concentration at which the micelles start to form.  For 

the case of a hydrocarbon solvent, micelles are formed with the head group directed 

inward and the tail group outward with a continuous hydrocarbon phase.  (Figure 1.10 – 

upper right side). Water is solubilized into the interior of this type of micelle. In contrast, 

when water is the solvent, the tail group is oriented inward and the head group is outward 

(Figure 1.10 – lower right side) to form micelles which allow that significant amounts of 

oil can be solubilized in their interior. This process in which micelles solubilize a phase 

which is not miscible with the solvent is called microemulsions.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.10 Formation of micelles 1 

 

 

1.2.3  Phase behavior of Microemulsions: 

 

Green and Paul Willhite 1 (1998) state that microemulsions can be designed to have 

ultralow IFT and high solubilization with oil and brine which make them very attractive 

in EOR processes. In order to study the phase behavior of microemulsions, pseudoternary 

diagrams 28 (equilateral triangle) have been plotted to represent each of the true 

pseudocomponents that form a microemulsion like surfactant (surfactant/cosurfactant 
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ratio), brine (water + NaCl) and hydrocarbons pseudocomponents in each of the apices 

(Figure 1.11). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.11 Pseudoternary phase diagram for a micellar solution 1 

 

Nelson and Pope 28 showed in their paper that pseudoternary diagrams show different 

phase behavior of microemulsions depending on the salinity concentration in water phase 

(Figure 12a). At low brine salinity, a type II (-) system (lower microemulsion or excess-

oil phase) is formed where all water is dissolved into the microemulsion whereas not all 

oil is solved into it. When the salinity starts to increase reaching an intermediate salinity, 

a complex system, type III (middle microemulsion) appears where some water and oil is 

dissolved into the microemulsion. Finally, at high brine salinity, a type II (+) system 

(upper microemulsion or excess-water phase) is formed with all oil dissolved in the 

microemulsion and some remaining water (Figure 1.12b). Additionally, the salinity brine 

also affects the IFT between equilibrium phases as Figure 1.13 depicts. As it is seen, 

there is an optimal salinity in the surfactant/oil/brine system close the critical point where 

the three phases become chemically indistinguishable and thus exhibit ultralow IFT 

between all phases. 
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Figure 1.12 a) Ternary representations of phase diagrams, b) Generalized phase diagrams 

illustrating the effect of changing salinity 28 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.13 IFT as a function of salinity 1 

 

Phase behavior of microemulsions and IFT can also be affected by the following 

parameters 1: 
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- Oil type: The effect is related with the amount of aromatics that the oil type could 

contain. An increment in the aromatics fraction will decrease the optimal salinity and 

IFT as shown in Figure 1.14. 

 

 

 

 

 

 

 

 

 

Figure 1.14 IFT, effect of oil 1 

 

- Co-surfactant type: The type and amount of surfactant has really impact on the phase 

behavior and IFT. Research of 2 types of alcohols 1 (TBA and TAA) added to 

surfactant systems have changed the optimal salinity and IFT, and have made them 

more hydrophilic or hydrophobic as depicted in Figure 1.15.   

 

 

 

 

 

 

 

 

 

Figure 1.15 IFT, effect of alcohol 1 

 

- Temperature: IFT and optimal salinity are increased when the temperature is 

increased as shown in Figure 1.16.   
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Figure 1.16 IFT, effect of temperature 1 

 

- Divalent Ions: Divalent ions (Mg ++ and Ca++) are found in brine, in porous matrices 

of reservoir rocks and surfactants. These ions can precipitate or generate 

incompatibility between brine and surfactant by dissolution or ion exchange. The 

presence of divalent ions decreases the optimal salinity and increases the IFT as 

shown in Figure 1.17.  

 

 

 

 

 

 

 

 

 

Figure 1.17 IFT, effect of Ca2+ .1 

 

- Surfactant Structure: Gale and Sandvik 29 examined the effect on IFT with oil by 

measuring IFT as a function of the surfactant equivalent weight. Also, they carried 

out some IFT experiments varying the percentages of low and high-equivalent weight 

surfactants in mixture concluding that surfactant properties are dominated by high-

equivalent-weight molecules.  
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- Pressure: Nelson 30 concluded that there is a possible effect on behavior in crude oils 

containing significant amount of gas, whereas there is a small effect (negligible) in 

liquid systems.   

 

- Polymer Addition: Polymers are usually added to the chemical process in order to 

increase the solution viscosity (mobility ratio) causing some small shifts as Pope 31et 

al pointed out  like in salt concentration (decreasing) and IFT (increasing) as shown 

in Figure 1.18. Nevertheless, their research concluded that the main impact is the shift 

in the three-phase boundaries. 

 
 

 
 

 
 

 

 

 

 

 

 

 

Figure 1.18 IFT, effect on polymer 1 

 
 

1.2.4 Surfactant flooding 

 

1.2.4.1 Micellar/polymer process  

 

A chemical flooding process 1, usually called microemulsion, surfactant, micellar, low 

tension and soluble oil; have been established to reach an ultralow IFT (around 10 -3 

dynes/cm) between oil and water in order to decrease the residual oil saturation.  
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Micellar/polymer process (Figure 1.19) is usually implemented as a tertiary recovery 

process after water flooding, and consists of the following steps 1, 32: 

 

 

 

 

 

 

 

 

 

Figure 1.19 Surfactant/polymer process 1 

 

 

a) A preflush should be performed to condition the reservoir which main objective is to 

reduce the salinity and pH of brine which affects the surfactant behavior, and to 

decrease adsorption and loss of surfactant contained in the micellar solution 1. Most 

of time, when micellar/polymer process is established as a tertiary recovery, water 

flooding (1.0 PV) could be designed as a preflushing fluid. 

 

b) A primary surfactant slug (around 0.1 - 0.3 PV) is injected which has an ultralow IFT 

with both oil (residual and trapped) and brine which moves together ahead of the 

surfactant slug forming an oil bank. Moreover, in order to avoid viscous fingering of 

the primary slug into the oil bank, a favorable mobility ratio should exist between 

them.  

 

c)  A mobility buffer (1.0 PV), usually polymer in water, is injected to displace the 

primary slug. The mobility buffer concentration usually varies from the original 

polymer concentration to 100% brine. The displacement efficient depends on the 
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favorable mobility ratio between the primary slug and mobility buffer, and their low 

IFT; which leave a small amount of surfactant trapped in the porous media. 

 

d) Finally, brine (driving fluid) is injected after the mobility buffer which reduces the 

cost of project by no using polymers. 

 
Figure 1.20 1 shows cumulative recovery curve vs. pore volume injected obtained during 

micellar/polymer displacement test in the laboratory. 

 
 

 

 

 

 

 

 

 

 

 

Figure 1.20 Cumulative recovery curve, laboratory micellar/polymer displacement test 1 
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EXPERIMENTAL PROCEDURES 
 

2.1 Properties of fluids and solid surfaces 
 

i. Wettability modifier 

 

The chemical product used as wettability modifier is Quilon L which characteristics are 

shown in Table 2.1 33. 

 

 

Table 2.1 Typical Analyses and Properties of Quilon L 33 

Appearance dark-green liquid 
Odor Alcoholic 
Chromium as Cr, wt. % 9.2 
Chloride as Cl, wt. % 12.7 
Fatty Acid (C14-18), wt. % 21.2 
Boiling point, C 82.0 
Freezing point, C 4.0 
Density at 20 C (lb/gal) 8.6 

Solubility in water Complete 
 

 

ii. Minerals 

 

Minerals that will be analyzed are: Quartz (SiO2), Kaolinite (Al2(Si2O5)(OH)4) and 

Dolomite-calcite (Ca,Mg,Fe)CO3 

 

 

iii. Porous media 

 

Berea core plugs (500 mD) will be used for experiments.  
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iv. Brine 

 

Composition of artificial formation water (FW) is shown in Table 2.2 

 

Table 2.2 Composition of formation water 

Salt 
Formation water 

(g/L) 

CaCl2 -2H2O 37.6 

MgCl2 -6H2O 15.0 

NaCl 88.0 

Na2SO4 0.2 
 

 

v. Surfactant solution 

 

WITCOLATE 7093 34 (Sodium C6-10 Alcohol Ether Sulfate), manufactured by Akzo 

Nobel Surface Chemistry LLC, has been selected as a surfactant. Specification and 

properties are shown in Table 2.3. 

 

Table 2.3 Specifications and properties of WITCOLATE 7093 34 

Form Liquid 
Odor Faint odor 
Color Light yellow 
pH 7.0 to 8.5 
Boiling point, C 100.0 
Density at 25 C, g/ml 1.10 
Viscosity at 25 C, cp 0.58 

Solubility 
 Soluble in water, 

methanol, acetone  

 

 

vi. Oil 

 

n-Decane with the properties in Table 2.4 35 is used 
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Table 2.4 Physical and chemical properties of n-Decane 35 

Form Liquid 
Odor Characteristic 
Color Colorless 
Molecular weight (g/mol) 142.28 
Boiling point, °C 174.0 
Melting point, °C -30.0 
Density (g/ml) 0.73 
Viscosity at 20 °C/38 °C, cp 0.92 / 0.50 

Solubility in water Insoluble 
 

 

 

2.2 Experiments 
 

2.2.1 Static experiments 

 

In static experiments, the wettability alteration of minerals and crushed Berea by the 

Quilon L are studied. 

 

i. Procedure 

 

Two g of mineral (quartz, kaolinite and calcite) or crushed Berea rock and 3.0 wt % 

Quilon L solution (5ml or 5g) are transferred to tubes with known weight. The weight of 

the tube containing the mixture is determined. The mixtures are mixed slowly by shaking 

and then stored with tubes open at 90 °C for 5 days. 

 

ii. Wettability characterization 

 

Wettability is characterized for treated and untreated minerals and crushed rock at room 

temperature. The prepared mixtures are transferred to a measuring cylinder (with same 

volume and shape in all experiments) and 25 ml FW is added. The mixture is stirred in 10 



37 
 

minutes. The sedimentation in mixtures of treated and untreated material is followed in 

parallel. Mixtures behavior is observed at different time: 0, 1, 5, 10, 30 and 60 minutes.  

 

 

2.2.2 Stability test 

 

The stability of Berea rock treated with Quilon L is studied in core plug flooding 

experiments. 

 

i. Preparation of treated core plug 

 

1. A Berea core plug (dry weight) is mounted into a triaxial core holder at 50 bar 

(overburden pressure). 

2. 10 pore volumes of Quilon L solution of 3.0 % wt are injected at 0.5 ml/min and 5 

bar back pressure at room temperature in both directions (5 PV in each direction) to 

make sure that the core has been saturated. The core plug is demounted. 

3. The core plugs are aged at 90 °C for 5 days. Measure weight to confirm that it is 

quite similar to the step 1. 
 

 

ii. Floods 

 

Effluent samples are characterized by visual inspection in floods at room temperature (25 

°C). A sketch of the flooding rig that should be used is shown in Figure 2.1. 
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Figure 2.1.Sketch of flooding rig 

 

The following fluids are injected at rate of 0.1 ml/min to core plugs with treated and 

untreated material: 

 

a) 10 pore volumes of formation water (water flooding 1). Measure the resistivity (ro) of 

the core at 100% water saturation. 

b) 10 pore volumes of 1.0% wt surfactant solution 

c) 10 pore volumes of formation water (water flooding 2) 

d) 10 pore volumes of n-Decane 

e) Establish Swi by continues injecting n-Decane. Increase the rate gradually until water 

production stops at the highest rate. Measure the resistivity (rt) of the core at partially 

water saturation and calculate n. 

 

For the treated core plug the following steps are additionally carried out 

 

f) MeOH injection to clean the core plug 

g) N2 injection at 60 °C to dry the core 

h) Water flooding to measure water effective permeability 

i) n-Decane flooding to establish Swi 

j) Spontaneous imbibition in formation water 
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2.2.3 Water flooding and Surfactant flooding experiments 

 

Water flooding and surfactant flooding is studied in treated and untreated Berea core 

plugs. 

 

 

2.2.3.1 Homogeneous treatment 

 

A homogeneous treatment is applied in order to obtain strongly oil- or water-wet core 

plugs. In this treatment, the modification of wettability is before drainage. 

 

 

i. Preparation of Berea core plugs 

 

1. Measure length, diameter and weight of dry cores 

2. The Berea core plug (dry core) is mounted into a triaxial core holder at 50 bar 

(overburden pressure) 

3. Quilon L solutions (Quilon L diluted in water) of 0.0, 0.1, 1.0 and 3.0 wt% (5 pore 

volumes in each direction) are injected at a rate of 0.5 ml/min to Berea core plugs at 

room temperature. Demounted the core plug. 

4. The core plugs are aged at 90°C for 5 days. Measure weight to confirm that it is 

quite similar to the step 1. 

5. Removal of treatment fluid by injection of formation water (5 pore volumes at 0.1 

ml/min). Measure ro and calculate Kabs. 

6. Treated and untreated core plugs are drained to initial water saturation (Swi) by 

nitrogen with gradually increasing the pressure (from 0.3 bar to 15 bar) using the 

unconfined porous disc method (estimated time in the porous disc is around 3 

weeks). 

7. Nitrogen is replaced with n-Decane to establish initial conditions (Swi, kro, rt and 

n). 
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ii. Floods 

 

1. Water flooding: Formation water is injected to the Berea core plugs with gradually 

increasing the injection rate: 0.1, 0.3, 1.0, 3.0 and 10 ml/min. Calculate kw, krw and 

Sow. 

2. Surfactant flooding: Surfactant solution of 1.0 wt % is injected to the core plugs 

with gradually increasing the injection rate: 0.1, 0.3, 1.0, 3.0 and 10.0 ml/min. 

Establish Soc. At the lowest rate, effluent samples are analyzed for surfactant 

concentration using the two phase titration method (Appendix A). 

3. Formation water is injected at 1.0 ml/min to displace the surfactant. 

4. NO3 formation water is injected at 1.0 ml/min. Mohr’s titration method of chloride 

(Appendix B) is used to calculate accessible water volume (Vw). 

5. Formation water is injected at 1 ml/min to replace NO3 formation water 

6. n-Decane flooding: n-Decane is injected to the core plugs with gradually increasing 

the injection rate: 0.1, 0.3, 1.0, 3.0 and 10.0 ml/min. Establish final conditions (ko, 

kro and Swi) 

 

 

2.2.3.2 Heterogeneous treatment 

 

A heterogeneous treatment is applied in order to obtain mixed-wet core plugs 11. In this 

treatment, the modification of wettability is after drainage to Swi. 

 

i. Preparation of Berea core plugs 

 

1. Berea core plugs are saturated by injecting formation water. Measure the resistivity 

(ro) of the core at 100% water saturation at room temperature. 

2. Then, core plugs are drained to initial water saturation (Swi) by nitrogen with 

gradually increasing the pressure using the unconfined porous disc method at 25 °C. 

3. Nitrogen is replaced with n-Decane to establish initial conditions (Swi, kro, rt and 

n) at 38 °C. 
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4. Quilon L solution (Quilon L diluted in n-Decane) of 3.0 wt % is injected (5 pore 

volumes in each direction) at rate of 0.5 ml/min to untreated core plugs at Swi at   

38 °C. 

5. Two possibilities may be chosen to measure the resistivity (rt) of the core at 

partially water saturation and calculate n: 

a) n-Decane is injected (5 pore volumes) at rate of 0.5 ml/min at 38 °C, or 

b) Core plug is aged at 90 °C for 5 days, and then n-Decane is injected (10 pore 

volumes) at rate of 0.2 ml/min at 38 °C. 

 

 

ii. Floods 

 

The core flooding experiments are carried out in core plugs of mixed wettability at 38 °C 

using 5 bar back pressure. 

 

1. Water flooding: Formation water is injected to the Berea core plugs with gradually 

increasing the injection rate: 0.1, 0.3, 1.0, 3.0 and 10 ml/min. Calculate kw, krw and 

establish Sow. 

2. 5 PV of NO3 FW + LiCl used as a tracer is injected at 1.0ml/min. Both Li analysis 

and Mohr’s titration method for Cl- test is used to calculate accessible water volume 

(Vw). 

3. Formation water is injected at 1.0 ml/min to replace NO3 formation water. 

4. Surfactant flooding: Surfactant solution of 1.0 wt % is injected to the core plugs 

with gradually increasing the injection rate: 0.1, 0.3, 1.0, 3.0 and 10.0 ml/min. 

Establish Soc. At the lowest rate, effluent samples are analyzed for surfactant 

concentration. 

5. Formation water is injected at 1.0 ml/min to displace the surfactant. 

6. n-Decane flooding: n-Decane is injected to the core plugs with gradually increasing 

the injection rate: 0.1, 0.3, 1.0, 3.0 and 10.0 ml/min. Establish final conditions (ko, 

kro and Swi). Measure rt and calculate n. 
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7. Spontaneous imbibition is applied to core plugs. 

 

Note: The criteria for increasing the rate (flooding) are that the oil/water production 

has stopped and the differential pressure keeps constant. 
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RESULTS AND DISCUSSION 
 

 

3.1 ROCK AND FLUID PROPERTIES 

 

Cores 1 and 2 were used for stability test; cores 3, 4, 5 and 6 for homogeneous treatment; 

and cores 7, 8 and 9 for mixed treatments. Properties of the cores are shown in Table 3.1 

 

Table 3.1 Properties of Berea core plugs 

Core Length             
(cm) 

Diameter  
(cm) 

Porosity      
(%) 

k                  
(mD) 

PV               
(ml) 

Quilon L        
(wt. %) 

Experiment 

1 8.10 3.76 0.18 852 16.18 3.0 Stability test 
2 9.04 3.79 0.19  --- 19.79 0.0 Stability test 
3 9.01 3.78 0.22 610 22.06 0.0 Homogeneous 
4 8.99 3.77 0.21 629 20.85 0.1 Homogeneous 
5 8.99 3.77 0.20 673 19.56 1.0 Homogeneous 
6 9.04 3.76 0.19 723 18.91 3.0 Homogeneous 
7 8.96 3.78 0.15 432 15.48   Mixed 
8 8.98 3.77 0.18 418 18.14   Mixed 
9 9.02 3.78 0.16 460 16.26   Mixed 

 

 

Properties of artificial formation water (brine) are shown in Table 3.2.   

 

Table 3.2 Properties of formation water 

Density at 38 °C (g/ml) 1.08 
Viscosity at 38 °C (cp) 1.00 
pH 5.30 

 

 

Surfactant solution of 1.0 % wt. (WITCOLATE 7093 diluted in formation water) is used 

in surfactant flooding. Physical properties are shown in Table 3.3 
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Table 3.3 Physical properties of Surfactant solution of 1.0 % wt. 

Density at 20 °C (g/ml) 1.08 
Concentration (mg/g) 9.37 
Type of microemulsion Lower 
Type of surfactant Anionic 
Viscosity at 25 °C / 38 °C 1.20 cp / 0.96 cp 

 

 

3.2 STATIC EXPERIMENT 

 

As described in the procedure before, wettability is characterized for untreated and 

treated minerals mixed with formation water and stirred (first case) and n-Decane (second 

case). Pictures of the mixtures are taken after 0, 1, 5, 10, 30 and 60 minutes. 

 

Sedimentation of untreated (left of picture) and treated (right of picture) after 60 minutes 

of each mineral and crushed Berea rock is shown in pictures below. 

 

 

i. Calcite 

 

               
      Figure 3.1 Calcite in formation water         Figure 3.2 Calcite in n-Decane 

 

As it is seen in Figure 3.1, when samples are mixed with formation water and stirred, 

untreated calcite dissolves in formation water (a little whiter color) and most of it starts to 

settle down on the bottom like a powder which is interpreted as water wet surface. 
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Conversely, sedimentation of small amount of treated calcite to bottom, but most of it 

keeps floating which is interpreted as oil wet surface. In Figure 3.2 (n-Decane), untreated 

calcite precipitates on the bottom which is related with water wet surface, whereas 

treated calcite settles down on the bottom like a powder which is oil wet surface 

 

 

ii. Quartz 

 

                
      Figure 3.3 Quartz in formation water         Figure 3.4 Quartz in n-Decane 

 

In Figure 3.3, particles of untreated Quartz settles down on the bottom like powder which 

is interpreted as water wet surface, whereas treated Quartz precipitates and then settles 

down which is related with oil wet surface. Conversely, in Figure 3.4, particles of 

untreated Quartz are floating and dispersed in and just few ones settles down on the 

bottom which is water wet surface, whereas treated Quartz settles down on the bottom 

like a powder which is related with oil wet surface. Furthermore, a green color of the 

solution is observed in both cases which mean that some Chromium of Quilon L is 

soluble in both water and n-Decane. 
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iii. Kaolinite 

 

                
    Figure 3.5 Kaolinite in formation water      Figure 3.6 Kaolinite in n-Decane 

 

Figure 3.5 shows that untreated Kaolinite particles settles down with time on the bottom 

like a powder which is water wet surface, whereas a little treated Kaolinite particles 

settles down, and most of it keeps floating which is oil wet surface. Contrary, in Figure 

3.6, untreated particles are suspended all time and few of them precipitated which is 

water wet surface, whereas treated Kaolinite particles settled down like a powder which 

is related with oil wet surface. 

 

iv. Berea 

 

                 
     Figure 3.7 Berea in formation water                   Figure 3.8 Berea in n-Decane 

 

In Figure 3.7, some particles of untreated Berea particles dissolves in formation water 

(small particles give white color to solution) and few ones settle down on the bottom like 
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a powder which is related with water wet surface, whereas treated Berea sample 

precipitates which is oil wet surface. Conversely, Figure 3.8 shows that few untreated 

Berea particles are suspended and most of it settles down on the bottom which is water 

wet surface, whereas treated Berea particles settled down on the bottom like a powder 

which is related with oil wet surface. Additionally, there is change in color (turns into 

brown) in treated Berea sample with n-Decane because of the precipitation of iron (ferric 

and ferrous oxide) presents in Berea sample. 

 

 

3.3 STABILITY TEST 

 

Stability test is carried out in 2 Berea core plugs: treated (3.0 % wt. Quilon L solution) 

and untreated one. 

 

 

i. Treated core plug 

 

1. Water flooding 1: 

 

In water flooding 1, it is observed that all samples have some yellow particles settled 

down on the bottom that can be Fe released from Berea (Ferric and ferrous oxides). 

Moreover, pH increases from 4.1 in the first effluent sample to 5.1 in last ones which are 

values between the pH of Quilon L (pH = 3.0) and formation water (pH = 5.3). This 

shows that not all Quilon L is absorbed by the rock, but it remains inside the porous 

media and reacts with formation water varying the pH during the flooding. Table 3.4 

shows calculations obtained during flooding. 

 

Table 3.4 Effluent samples of treated Berea core plug during water flooding 1 

PV         
injected 

Pressure drop 
(mbar) 

Q                          
(ml/min) 

Kabs        
(mD) 

10.5 20.1 0.1 679 
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2. Surfactant flooding: 

 

Collected effluent samples are transparent (around 1.7 PV), and then some yellow 

particles are settled down on the bottom (up to 10.1 PV). Breakthrough is around 4.8 PV 

where surfactant concentration keeps constant (9.37 mg/g) as shown in Figure 3.9. 

 

 

 
Figure 3.9 Effluent surfactant concentration vs. PV injected during surfactant flooding in 

a treated core. 

 

 

3. Water flooding 2: 

  

As it is seen in Figure 3.10, there is an opposite effect as the surfactant flooding curve 

(Figure 2). The concentration of fluid starts to decrease from 9.37 mg/g (surfactant) to 0 

when 5 PV of formation water have been injected. Furthermore, all effluent samples 

show light yellow particles on the bottom. Table 3.5 depicts the main parameters in this 

flooding. 
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Figure 3.10 Effluent surfactant concentration vs. PV injected during water flooding in a treated 

core. 

 

Table 3.5 Effluent samples of treated Berea core plug during water flooding 2 

PV         
injected 

Pressure drop 
(mbar) 

Q       
(ml/min) 

Sw            
(frac) 

ro                       
(ohm) 

9.8 10.64 0.1 1.00 76.9 

 

 

4. n-Decane flooding 1: 

 

During n-Decane flooding 1, collected effluent samples are transparent.  By using 

equation 1.5, n is calculated which is a value greater than 5 which means that treated core 

plug is strong oil wet. Table 3.6 shows calculations obtained during flooding. 

 

Table 3.6 Effluent samples of treated Berea core plug during n-Decane flooding 1 

Swi            
(frac) 

rt                       
(ohm) 

n kro 

0.21 604300 5.78 0.29 
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After n-Decane flooding 1, treated Berea core plug is cleaned by injecting MeOH. Then, 

N2 is injected at 60 °C to dry the core plug and get the initial conditions. Later, 

temperature is decreased to room temperature. Finally, absolute permeability is measured 

by injecting formation water at different rates and applying Darcy’s law               

equation: kabs = 653 md. 

 

5. n-Decane flooding 2: 

 

In n-Decane flooding 2 is observed that the treated Berea core plug remains strong oil 

wet although it was previously cleaned and dried as shown in Table 3.7 

 

Table 3.7 Effluent samples of treated Berea core plug during n-Decane flooding 2 

Swi            
(frac) 

rt                       
(ohm) 

n 

0.32 147300 6.63 

 

 

ii. Untreated core plug 

 

1. Water flooding 1: 

 

During this flooding all samples are transparent; and pH values are around 5.2 which are 

close to the formation water (pH = 5.3). Table 3.8 shows the main parameters in this 

flooding. 

 

Table 3.8 Effluent samples of untreated Berea core plug during water flooding 1 

PV         
injected 

Pressure drop 
(mbar) 

Q       
(ml/min) 

Sw            
(frac) 

ro                       
(ohm) 

10.7 20 0.5 1.00 94.0 
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2. Surfactant flooding: 

 

Collected effluent samples are transparent. Breakthrough is around 3.7 PV where 

surfactant concentration keeps constant (9.36 mg/g) as depicted in Figure 3.11. 

 

 
Figure 3.11 Effluent surfactant concentration vs. PV injected during surfactant flooding in an 

untreated core 

 

 

3. Water flooding 2: 

 

Figure 3.12 shows a sharply decrease in the concentration from 9.34 mg/g (surfactant) to 

0 when 3.8 PV of formation water have been injected. Moreover, effluent samples are 

transparent. Table 3.9 depicts the main parameters in this flooding. 

 

 

 

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10 11

EF
FL

U
EN

T 
SU

RF
A

CT
A

N
T 

CO
N

CE
N

TR
A

TI
O

N
, m

g/
g

PORE VOLUME INJECTED

SURFACTANT INJECTION

Effluent surfactant concentration  (mg/g)



52 
 

 
Figure 3.12 Effluent surfactant concentration vs. PV injected during water flooding in an 

untreated core. 

 

 

Table 3.9 Effluent samples of untreated Berea core plug during water flooding 2 

PV         
injected 

Pressure drop  
(mbar) 

Q        
(ml/min) 

kabs           
(mD) 

Sw            
(frac) 

ro                       
(ohm) 

9.2 12.4 0.2 571 1.00 71.4 

 

 

4. n-Decane flooding: 

 

Effluent samples are transparent during n-Decane flooding. Additionally, resistivity is 

measured when core plug is partially saturated with formation water (rt), and applying 

equation 1.5, n is around 2 which means that is strong water wet. Table 3.10 shows 

calculations obtained during flooding 

 

Table 3.10 Effluent samples of untreated Berea core plug during n-Decane flooding 

Swi            
(frac) 

rt                       
(ohm) 

n 

0.31 949 1.96 
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A summary of the two experiments is shown in Table 3.11 

 

Table 3.11 Summary of the stability test 

Flooding Treated                                                      
(3.0 % wt Quilon L) Untreated 

WF 1 
- Yellow particles on effluent samples - Clean effluent samples 
- pH increases up to 5.3 (pH of FW) - pH keeps constant → 5.3 (pH of FW) 

SF 
- Yellow particles on effluent samples - Clean effluent samples 
- Breakthrough time:  4.8 PV - Breakthrough time:  3.7 PV 

WF 2 
- Yellow particles on effluent samples - Clean effluent samples 
- ro = 77 Ω - ro = 71 Ω 

n-Decane 1 
- Clean effluent samples - Clean effluent samples 
- Swi = 0.21  and rt = 604300 Ω - Swi = 0.31  and rt = 949 Ω 
- n = 5.8  → strong oil wet - n = 2.0  → strong water wet 

Cleaning   - MeOH injection ----------   - N2 injection at 60 C 

n-Decane 2 
  - Swi = 0.32  and rt = 147300 Ω  

---------- 
  - n = 6.6  → strong oil wet 

 

According to the results obtained in these 2 core plugs (treated and untreated), some 

issues have been observed as followed: 

 

- Some yellow particles appeared in effluent samples which can be iron (Fe) released 

from Berea (Ferric oxide or ferrous oxide). These iron particles oxidize with time and 

then form yellow particles that will settle down on the bottom.  

 

- During surfactant flooding, breakthrough in untreated core plug is earlier than the 

treated one (around 1 PV) which means that there will be a higher loss of surfactant 

(adsorption) in the treated core plug compared with the untreated one. 

 
- As in the previous experiment (static experiment with Berea sample), it is observed 

that treated Berea core plug is strong oil wet whereas untreated one is strong water-

wet. 

 
- Quilon L treatment is not affected by surfactant or cleaning with MeOH in treated 

core plug because the wettability keeps as strong oil wet all time. 
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3.4 WATER FLOODING AND SURFACTANT FLOODING EXPERIMENTS 

 

3.4.1 Homogeneous treatment (Modification of wettability before drainage) 

 

In this experiment, 4 Berea core plugs have been chosen for flooding experiments. The 

temperature is 38 °C, except for core plug 4 which is at 25 °C. 

 

Table 3.12 Initial condition of core plugs 

Core Quilon L           
(% wt) 

Swi            
(frac) 

kabs           
(mD) 

ko               
(mD) 

ro                       
(ohm) 

rt                       
(ohm) n Comment 

3  0.0 0.094 610 289 60.0 3920 1.8 Strongly water wet 
4  0.1 0.162 629 789 68.5 5820 2.4 Slightly water wet 
5 1.0 0.210 673 317 67.8 29880 3.9 Preferentially oil wet 
6 3.0 0.197 723 417 59.4 228400 5.1 Strongly oil wet 

 

 

As it is seen in Table 3.12, n is proportional to Quilon L concentration (% wt) changing 

wettability of Berea from strong water wet (n = 2) in an untreated core plug to strong oil 

wet (n = 5) in a treated core plug. 

 

 

i. Water flooding:  

 

Core 3 (untreated core) and core 4 (Quilon L 0.1 % wt) experimental data are shown in 

Figures 3.13 and 3.14, respectively. As it is observed in these figures, after breakthrough, 

So reduces slightly and then keeps constant or holds constant all time which means that 

rock is water wet. Also, krw has been calculated at end point: krw = 0.14 (core 3) and 

krw = 0.25 (core 4) which confirm that rocks are water wet. In order to determine the 

grade of water wettability, n values are calculated and compared which indicate that 

untreated core plug is strong water wet and core plug with Quilon L 0.1 % wt. is slightly 

water wet.  

 

 



55 
 

     
Figure 3.13 Untreated core plug (core #3). During the water flooding a) Remaining Oil Saturation curve 

on left, b) Pressure drop behavior on the right 

 

    
Figure 3.14 Core plug with Quilon L 0.1 % wt (core #4). During the water flooding a) Remaining Oil 

Saturation curve on left, b) Pressure drop behavior on the right 

 

 

Core 5 (Quilon L 1.0 % wt) and core 6 (Quilon L 3.0 % wt) experimental data are shown 

in Figures 3.15 and 3.16, respectively. Conversely, in these figures it is observed that 

after breakthrough, So continues decreasing for a little time and then it starts to keep 

constant which is related with oil wettability. Also, krw has been calculated at end point: 

krw = 0.60 (core 5) and krw = 0.61 (core 6). As before, the grade of oil wettability is 
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determined by calculating n values which concludes that core plug with Quilon L 1.0 % 

wt. is preferential oil wet whereas core plug with Quilon L 3.0 % wt. is strong oil wet. 
 

 

    
Figure 3.15 Core plug with Quilon L 1.0 % wt (core #5). During the water flooding a) Left, Remaining 

Oil Saturation curve, b) Right, Pressure drop across 

 

     
Figure 3.16 Core plug with Quilon L 3.0 % wt (core #6). During the water flooding a) Left, Remaining 

Oil Saturation curve, b) Right, Pressure drop across 

 

Additionally, the largest reduction of So is obtained in the strongly oil wet rock (around 
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Also, pressure drop is higher in strong water wet rocks because trapped oil is 

discontinuous (ganglia) and pressure needed to move forward is high, but it reduces when 

changing into strong oil wet rocks due to the oil is continuous. 

 

 

ii. Surfactant flooding:  

 

Once water flooding is finished, the highest So is in the core 3 (untreated core), and then 

it continues decreasing in core 4 (Quilon L 0.1 % wt) and core 5 (Quilon L 1.0 % wt) 

until reaching the lowest So in core 6 (Quilon L 3.0 % wt).  

 

During surfactant flooding IFT is reduced between water and oil, and then trapped oil is 

moved forward. As it is observed, the highest reduction of So is obtained in the strongly 

water wet rock (Figures 3.17), then it starts to reduce (Figure 3.18 and 3.19) and finally, 

the smallest value it is obtained in the strongly oil wet (Figure 3.20). This phenomenon 

occurs because there is much oil trapped in the strong water wet than in strong oil wet 

after water flooding is finished. 

 

     
Figure 3.17 Untreated core plug (Core #3). During surfactant flooding a) Left, Remaining Oil Saturation 

curve, b) Right, Pressure drop across 
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Figure 3.18 Core plug with Quilon L 0.1 % wt (Core #4). During surfactant flooding a) Left, Remaining 

Oil Saturation curve, b) Right, Pressure drop across 

 

 

    
Figure 3.19 Core plug with Quilon L 1.0 % wt (Core #5). During surfactant flooding a) Left, Remaining 

Oil Saturation curve, b) Right, Pressure drop across 
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Figure 3.20 Core plug with Quilon L 3.0 % wt (Core #6). During surfactant flooding a) Left, Remaining 

Oil Saturation curve, b) Right, Pressure drop across 

 

 

Capillary number: Figures 3.21 and 3.22 show a flat or slightly flat trend during water 

flooding as it is expected in water wet rocks, and then when surfactant flooding is 

implemented it starts to reduce sharply. Conversely, Figures 3.23 and 3.24 depicts a 

sharply decrease during water flooding, and then when surfactant flooding starts it keeps 

almost constant which is characteristic of oil wet rocks.  

 

Furthermore, in 4 cases, capillary number ranges from 1 * 10 -8 to 10 -6 in water flooding, 

and from 1 * 10 -6 to 10 -4 in surfactant flooding. 
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           Figure 3.21 CDC for an untreated core plug    Figure 3.22 CDC for a core plug with Quilon L 0.1 % wt 

 

 

     
Figure 3.23 CDC for a core plug with Quilon L 1.0 % wt       Figure 3.24 CDC for a core plug with Quilon L 3.0 % wt.  

 

 

iii. n-Decane flooding: 

 

Figure 3.25 (core 3) shows that after breakthrough, Sw continues decreasing slightly 

which means that is water wet rock. Conversely, in Figure 3.26 (core 5), Sw keeps almost 

flat after breakthrough which is interpreted as oil wet rock. Consequently, there is no 
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change in wettability in oil- and water-wet systems after water and surfactant flooding 

have been implemented (final and initial conditions are the same). 

 

 

    
Figure 3.25 Untreated core plug (Core #3). During the n-Decane flooding a) Left, Remaining Oil 

Saturation curve, b) Right, Pressure drop across 

 

 

 
Figure 3.26 Core plug with Quilon L 1.0 % wt (Core #5). During the n-Decane flooding a) Left, 

Remaining Oil Saturation curve, b) Right, Pressure drop across 
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A summary of the final results after flooding is shown in Table 3.13: 

 

Table 3.13 Results of homogeneous wettability after flooding 

Core Quilon L           
(% wt) 

Initial conditions Water flooding Surfactant 
flooding 

n-Decane 
flooding 

ko              
(mD) 

Swi        
(frac) 

Sor        
(frac) 

kw               
(mD) 

krw           
(frac) 

Sorw            
(frac) 

krw           
(frac) 

Sorc            
(frac) 

ko              
(mD) 

Swi            
(frac) 

3 0.0 289 0.09 0.91 87 0.14 0.60 0.55 0.15 281 0.36 
4 0.1 789 0.16 0.84 155 0.25 0.27 0.55 0.22 - - 
5 1.0 317 0.21 0.79 403 0.60 0.17 0.90 0.15 118 0.200 
6 3.0 417 0.20 0.80 442 0.61 0.12 0.86 0.12 - - 

 

 

 

3.4.2 Heterogeneous treatment (Modification of wettability after drainage to Swi) 

 

In this experiment, 3 Berea core plugs have been altered to mixed wet rocks by injecting 

Quilon L solution (Quilon L diluted in n-Decane). Initial conditions of mixed wet core 

plugs are shown in Table 3.14 

 

Table 3.14 Initial conditions of mixed core plugs 

Core Quilon L    
(3 % wt) Aging Swi            

(frac) 
ro                       

(ohm) 
rt                       

(ohm) n Comment 

7  Yes Yes 0.01 65 175000 1.8 Mixed wet 
8 Yes No 0.13 61 66700 3.4 Mixed wet 
9 Yes No 0.16 104 83000 3.7 Mixed wet 

 

 

i. Water flooding:  

 

As it is seen in Figures 3.27, 3.28 and 3.29, reduction in remaining oil saturation drops 

sharply to reach zero values as it continues increasing flowing rate which is 

characteristics of mixed wet rocks as it was expected according to Salathiel 11 model 

(strong oil wet in large pores and strong water wet in small pores). Another parameter 

that is observed in these type of rocks is that krw is greater than 0.60 (krw=1.15,          
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krw =0.95 and krw=0.70 for cores 7, 8 and 9 respectively), and pressure drop across core 

plugs is low and quite similar to strong oil wet values. 

 

 

     
Figure 3.27 Core plug 7 during water flooding a) Left, Remaining Oil Saturation curve, b) Right, Pressure 

drop across 

 

 

     
Figure 3.28 Core plug 8 during water flooding a) Left, Remaining Oil Saturation curve, b) Right, Pressure 

drop across 
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Figure 3.29 Core plug 9 during water flooding a) Left, Remaining Oil Saturation curve, b) Right, Pressure 

drop across 

 

ii. Surfactant flooding:  

 

Figures 3.30, 3.31 and 3.32 show that implemented surfactant flooding at different 

flowing rates in mixed wet rocks causes no effect in oil recovery because remaining oil 

saturation is very low or zero after water flooding. 

 

    
Figure 3.30 Core plug 7 during surfactant flooding a) Left, Remaining Oil Saturation curve, b) Right, 

Pressure drop across 
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Figure 3.31 Core plug 8 during surfactant flooding a) Left, Remaining Oil Saturation curve, b) Right, 

Pressure drop across 

 

 

     
Figure 3.32 Core plug 9 during surfactant flooding a) Left, Remaining Oil Saturation curve, b) Right, 

Pressure drop across 

 

 

Capillary number: There is a similar behavior in the capillary number trend in the 3 

mixed-wet core plugs as shown in Figure 3.33 (left, right and bottom).  Remaining oil 
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0

2

4

6

8

10

12

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20 25 30 35

Q
 in

je
ct

io
n,

 m
l/

m
in

Re
m

ai
ni

ng
 O

il 
Sa

tu
ra

ti
on

, S
o

Pore Volumes Water Injected, Vi/Vp

Core 8 - Mixed wet    

So Q    (ml/min)

0

2

4

6

8

10

12

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35

Q
 in

je
ct

io
n,

 m
l/

m
in

Pr
es

su
re

 d
ro

p,
 m

ba
r

Pore Volumes Water Injected, Vi/Vp

Core 8 - Mixed wet

Pressure drop (mbar) Q    (ml/min)

0

2

4

6

8

10

12

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20 25 30

Q
 in

je
ct

io
n,

 m
l/

m
in

Re
m

ai
ni

ng
 O

il 
Sa

tu
ra

ti
on

, S
o

Pore Volumes Water Injected, Vi/Vp

Core 9 - Mixed wet    

So Q    (ml/min)

0

2

4

6

8

10

12

0

100

200

300

400

500

0 5 10 15 20 25 30

Q
 in

je
ct

io
n,

 m
l/

m
in

Pr
es

su
re

 d
ro

p,
 m

ba
r

Pore Volumes Water Injected, Vi/Vp

Core 9 - Mixed wet

Pressure drop (mbar) Q    (ml/min)



66 
 

remains constant. Also, typical capillary number ranges from 1 * 10 -8 to 10 -6 in water 

flooding, and from 1 * 10 -6 to 10 -4 in surfactant flooding as in the previous studies 

(strongly oil- and water- wet rocks). 

 

 

     
 

 
Figure 3.33 Capillary Desaturation Curve, CDC. a ) Core 7 on the left, b) Core 8 on the Right, c) Core 9 on 

the bottom 
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3. n-Decane flooding: 

 

Figures 3.34, 3.35 and 3.36 show that after water and surfactant flooding methods have 

been applied to mixed wet rocks, the rocks did not change wettability because the trend 

after breakthrough is almost flat and quite similar to oil wet rocks (mixed wet 11). 

 

    
Figure 3.34 Core plug 7 during n-Decane flooding a) Left, Remaining Oil Saturation curve, b) Right, 

Pressure drop across 

 

     
Figure 3.35 Core plug 8 during n-Decane flooding a) Left, Remaining Oil Saturation curve, b) Right, 

Pressure drop across 
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Figure 3.36 Core plug 9 during n-Decane flooding a) Left, Remaining Oil Saturation curve, b) Right, 

Pressure drop across 

 

 

A summary of final conditions after water and surfactant flooding is shown in Table 3.15 

 

Table 3.15 Final conditions of mixed core plugs 

Core 
Initial Conditions Water flooding Surfactant 

flooding 
n-Decane 
flooding 

Swi        
(frac) 

Sor        
(frac) 

kw               
(mD) 

krw           
(frac) 

Sorw            
(frac) 

krw           
(frac) 

Sorc            
(frac) 

kro              
(mD) 

Swi            
(frac) 

7 0.01 0.99 497 1.15 0.00 1.34 0.00 0.35 0.24 
8 0.13 0.87 398 0.95 0.10 1.23 0.10 0.18 0.25 
9 0.16 0.84 312 0.68 0.00 0.88 0.00 0.11 0.35 
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CONCLUSIONS 

 

- In the static experiments, untreated minerals like calcite, quartz and kaolinite that are 

present in Berea sandstone show a water-wet surface, whereas when they are treated 

with 3.0 wt % Quilon L solution, all of them change into an oil-wet surface.  

 

- In the stability test, Quilon L treatment is not affected by surfactant or cleaning with 

MeOH in treated core plug because the wettability keeps as strongly oil wet all time. 

Loss of surfactant is greater in treated core plug (with 3.0 wt % Quilon L solution) 

compared with the untreated core plug. 

 
- Reduction of remaining oil saturation, So, in water flooding is less effective for 

strong water wet rocks than strong oil wet rocks, but conversely in surfactant flooding 

is more effective for strong water wet rocks than strong oil wet rocks. 

 
- Archie exponent, n, obtained in experiments is 2 for strong water wet, more than 5.2 

for strong oil wet and around 3.8 for mixed wet rocks as it was expected according to 

several studies.  

 
- In mixed wet rocks, water flooding is very effective to reduce remaining oil saturation 

to a low value or close to zero as it was expected according to Salathiel 11 model. 

Therefore, it is not necessary to implement surfactant flooding.  

 
- Pressure drop during water flooding in mixed wet rocks is quite similar to strong oil 

wet, but very low compared with strong water wet. 

 
- During water flooding, capillary umber trend is flat in strongly water wet rocks which 

mean that there is no oil recovery (So keeps constant). Conversely, there is an 

inclination in strongly oil- and mixed-wet rocks (So reduces). This phenomenon 

occurs at lower Nca (typically ranges from 1 * 10-8 to 10-6). 
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- In surfactant flooding, the effect is opposite as in water flooding. Capillary number 

trend is inclined in strongly water wet (So decreases sharply). Nevertheless, Nca 

keeps flat in strongly oil wet or mixed rocks systems. This phenomenon occurs at 

higher Nca (typically ranges from 1*10-6 to 10-4).  

 
- Surfactant used in the experiments did not affect the Quilon L treatment in core plugs.  
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Appendix A 
 

Titration of Surfactants 

 

A lot of methods have been studied depending on the nature of the surfactants (anionic, 

nonionic, cationic and amphoteric): one-phase titration, two-phase titration, etc. 

Nevertheless, according to Thomas M. Schmitt 36 the most useful methods for volumetric 

determination of ion surfactants are based on titration of a cationic surfactant with an 

anionic surfactant or the titration of an anionic surfactant with a cationic surfactant. 

 

Two-phase titration 

 

It is based on a reaction between anionic surfactants and cations to form a neutralized ion 

pair. In a two phase system the ion pair is therefore extracted continually into the organic 

phase as it is formed. 

 

Procedure 

 

A modification of the standard procedure proposed by Thomas M. Schmitt xx has been 

adapted for the present research: 

 

1. First, weigh approximately 0.3 g from effluent samples (formation water with 

surfactant) 

2. After, add 4.0 g of water-soluble cationic dye (methylene blue proposed by Epton 

method) and 1.5 g of chloroform. 

3. Then, titrate with the benzethoniumchoride (Hyamine) and shake every time that 

titrant is added. The end point is given when the blue color of the phases are equal. 

4.  To calculate the concentration of surfactant, the following equation is used: 
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Conc(mg/g) = {[(MHya*vHya - MMB* mMB *mChol)/(mChol+mMB + msamp+vHyam)]/msamp} * 

MWSurfact 

 

Where:  

msamp = mass of fluid: formation water with surfactant (g) 

 mMB = mass of methylene blue (g) 

 M MB = 0.0002 g/mol (molecular weight of methylene blue) 

mChloroform = mass of chloroform (g) 

vHyamine = volume of hyamine (ml) 

M Hyamine = 0.004 g/mol (molecular weight of hyamine) 
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Appendix B 
 

Determination of Chloride Ion Concentration by Titration (Mohr’s Method) 37 

 

Mohr’s method is used to determine the chloride ion concentration of a solution (water 

sample) by titration with silver nitrate (AgNO3). As the silver nitrate is added to the 

solution, a silver chloride precipitation (AgCl) is formed given by the following chemical 

reaction: 

 

Ag +   +   Cl-AgCl 

 

The end point of the titration occurs when all the chloride ions are precipitated. Then 

additional silver ions react with the chromate ions of the indicator, potassium chromate, 

to form a red-brown precipitate of silver chromate. 

 

2Ag +   +   CrO4
2-   Ag2CrO4 

 

Procedure 

 

1. Pipette 5 ml (around 5.6 g) of formation water sample into a conical flask, and add 2 

drops of potassium chromate indicator (K2CrO4). A faint lemon-yellow solution is 

obtained as shown in Figure 1. 

 

 
Figure 1 Formation water sample + potassium chromate indicator 37 
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2. Titrate the solution with silver nitrate (AgNO3). Silver chloride (AgCl) will form as a 

white precipitation at the beginning, and then by continuing titration, it will change 

into a red-brown color which is the end point as shown in Figure 2. 

 

 

Figure 2 End point of titration 37 

 

Then, the following equations are used to calculate the accessible volume of water: 

 

Cl -  =  0.1 * AgNO3 (ml) /  Vsample (ml) 

 

Vw = [(CCl – Sample  -  C Cl – NO3FW ) / C Cl – FW] * V collected 
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