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Abstract 

Sequence Stratigraphic Analysis of the Jurassic Period on the Horda 

Platform, Northern North Sea, Using State-of-the-Art 3D Seismic 

Interpretation- Tools and Methodologies 

 

Kristine Sigvaldsen Vindenes, B. S. 

The University of Stavanger, 2013 

Supervisor:  Sylvia Nordfjord 

 

A sequence stratigraphic analysis of the Jurassic sequence on the Horda Platform 

is the main focus for this study. The analyzed interval comprises the stratigraphic record 

from three mega-sequences; the Base Cretaceous Unconformity to top Brent Group 

(Upper Jurassic), Brent Group (Middle Jurassic) to top of Statfjord Formation (Lower 

Jurassic), and Statfjord Formation to top Triassic. These mega-sequences were used as a 

steering framework for a tracked HorizonCube (HC) that is generated based on a 

SteeringCube. The HC generates a dense set of automated horizons tracked in a dip-field, 

which is used to create a WheelerCube. The WheelerCube can be used to interpret 

systems tracts and their respective bounding surfaces with distance versus relative 

geologic time.  

The main objective of this thesis is to determine whether the results generated 

from these new sequence stratigraphic tools- and methodologies used in OpendTect (dGB 

Earth Sciences) will improve the sequence stratigraphic interpretation of seismic data, 

and if they are more time-efficient and user friendly.  

WheelerCube interpretations based on 3D and 2D HC-tracking are compared with 

each other and with previous studies from the Jurassic sequence on the Horda Platform. 

The results from this analysis show that the WheelerCube generated from the 3D 

HorizonCube-tracking displays a low resolution and inaccurate outcome. This result 



 vi 

leads to a different systems tracts interpretation than the WheelerCube from 2D HC-

tracking. The different results depend on the HC-tracking, which is poor and time-

consuming in 3D whereas good and time-efficient in 2D.  

As a consequence of the poor HC-tracking in 3D, the WheelerCube does not 

improve the sequence stratigraphic interpretation compared to previous studies from the 

same area.  

Suggestions for improvement of the sequence stratigraphic interpretation are 

creating a 2D grid of the WheelerCubes generated from 2D–tracking, as well as 

generating a smaller 3D cube that is less constrained by faults. Unfortunately, there was 

no time to perform these suggestions during the remainder of this thesis. 
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NOMENCLATURE 

HST: Highstand systems tract 

LST: Lowstand systems tract 

TST: Transgressive systems tract 

U: Unconformity 

SU: Subaerial unconformity 

MFS: Maximum flooding surface 

SB: Sequence Boundary 

BCU: Base Cretaceous Unconformity 

FM: Formation 

GP: Group 

HC: HorizonCube 

SC: SteeringCube 

IL: Inline 
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1.0 INTRODUCTION 

The objectives of this study are (1) to use new seismic interpretation tools in order to 

describe and sub-divide stratigraphic units into sedimentary packages by studying seismic 

reflection patterns in time domains (Mitchum, Vail, & Sangree, 1977) and on a Wheeler 

transformed domain, and (2) to test if these newer types of modeling will improve the 

sequence stratigraphic interpretation of seismic data, and if they are more time-efficient and 

user friendly. 

 

The study area is located on the Horda Platform which is situated on the eastern side 

of the Viking Graben in the northern North Sea approximately 80 km offshore Norway 

(Bolle, 1992) (Figure 1). The Viking Graben is 40-100 km wide, trends NNE and is flanked 

by terraces of fault blocks tilted away from the graben (Horstad & Larter, 1997; Osivwi, 

2012). During the Permian-Triassic period the entire North Sea was an area of continental 

deposition which was subsiding rapidly (Bolle, 1992). Later on this area became a failed 

intracratonic rift system where fluvial deposits accumulated near the rift margins, and finer 

lacustrine sediments were laid down toward the center of the basins (Bolle, 1992). 

The Horda Platform forms an easterly tilted block which is located on the margin of 

an Upper Jurassic rift where subsidence and structural rotation were small compared to the 

deeper graben where more pronounced block rotation took place (Stewart et al., 1995). 

According to Stewart et al. (1995) subtle movements may have been enough to influence the 

stratal stacking patterns on the platform. 

Previous studies from this area state that the Jurassic strata were deposited during a 

long-term global transgression that began in the Triassic and reached its peak in the Turonian 

(Upper Cretaceous) (Fischer, 1981, 1982; Hallam, 1977; Haq, Hardenbol, & Vail, 1987; Vail, 

Mitchum, & Thompson, 1977). Moreover, according to Stewart et al. (1995) during the 

Jurassic period the Horda Platform received a steady supply of coarse clastic sediment from 

the eastern side of the developing graben system leaving an almost complete stratigraphic 

record of transgressions and regressions along the shore line. 

 

This study focuses on the seismic volume NH0301 (block 31/2, 31/3, 31/5 and 31/6) 

located on the Horda Platform, northern North Sea, covering the Troll West Field (Figure 2). 

The analyzed Jurassic interval comprises the stratigraphic record from three mega-sequences; 

the area between the Base Cretaceous Unconformity (Upper Jurassic) and Brent Group 
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(Middle Jurassic), Brent Group to top of Statfjord Formation (Lower Jurassic), and Statfjord 

Formation to top Triassic.  

 

This thesis synthesizes the application of sequence stratigraphic techniques which are 

compiled into an interpretation software called OpendTect (provided by dGB Earth 

Sciences). The methodology steps include (1) interpreting three mega-sequences and 44 

faults in Petrel (Schlumberger), (2) perform SteeringCube- and HorizonCube modeling in 

order to process seismic data and tracking horizons in a dip-field on a 3D seismic cube and 

on a single inline, and (3) generate, analyze and compare a WheelerCube (i.e. Wheeler-

diagram in 4D) and the systems tracts with previous studies to see if they give a more 

comprehensive interpretation of the area of interest. 
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2.0 THEORY AND PREVIOUS STUDIES 

2.1 General Sequence Stratigraphy 

2.1.1 BASIC CONCEPTS OF APPLIED SEQUENCE STRATIGRAPHY 

The geological term sequence stratigraphy is widely used in the petroleum industry 

and in the continuous search for hydrocarbons. Generally, it deals with the recognition and 

interpretation of genetically interrelated packages of sedimentary strata that can be delineated 

by unconformities and/or conformities within a framework of time surfaces (Nystuen, 1998). 

According to Catuneanu et al. (2011) this framework ties changes in stratal stacking patterns 

to the responses to varying accommodation and sediment supply through time. Moreover, 

Catuneanu et al. (2011) further states that stratal stacking patterns enable determination of the 

order in which these strata were laid down, and hence explaining the geometric relationships 

and the architecture of sedimentary strata. 

When performing a sequence stratigraphic analysis, the main tools used are the 

stacking pattern of strata and the key surfaces that bound successions defined by different 

stratal stacking patterns (Catuneanu et al., 2011). The three types of sequence stratigraphic 

units are the sequences, systems tracts, and parasequences, where each type of unit is defined 

by specific stratal stacking patterns and their bounding surfaces (Catuneanu et al., 2011). 

These units are seen in the Wheeler diagram which is used to understand the relation of rock 

units in 2D space as a function of absolute geologic time (Wheeler, 1958). 

A sequence is defined by Galloway (1998) as “a three-dimensional stratigraphic unit 

consisting of relatively conformable, genetically related strata bounded in whole or in part by 

surfaces of nondeposition or erosion (unconformities)”. Generally, a hierarchy of sequences 

can be observed in shallow marine coastal successions (Mitchum & Wagoner, 1991; 

Wagoner, Campion, Mitchum, & Rahmanian, 1990) where it depends partly on the type of 

data available for study (Stewart et al., 1995). According to Stewart et al. (1995) “the large 

scale cycles are interpreted as low frequency (2
nd

 order) sequences (Mitchum & Wagoner, 

1991). The sequences are divided into different orders of duration, where 2
nd

 order has a 

general time span of more than 4 million years, and 3
rd

 and 4
th

 order sequences have time 

spans between 1 – 4 million years to several thousand years (Stewart et al., 1995). The thick, 

low frequency 2
nd

 order sequences  are easier to define from reflection seismic profiles 

compared to 3
rd

 and 4
th

 order, which are thinner, have a higher frequency, and are generally 

beyond the resolution of conventional 2D seismic (Stewart et al., 1995). 
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Today there are different types of sequence stratigraphic approaches, because 

sequence stratigraphy is a genetic, process-based analytical approach to stratigraphic 

interpretation that involves conceptual depositional models, and there are nomenclatural 

preferences and arguments as to which stratigraphic surfaces is best to be elevated when it 

comes to choosing the sequence boundary (Catuneanu et al., 2011) (Figure 3A). 

In this study the sequence stratigraphic approach used is the genetic sequence as 

defined by Frazier (1974) and Galloway (1989) (Figure 3B). The reason for choosing this 

approach lies within the geological data used, which is primarily the study of seismic data 

and the Wheeler-diagram, without the use of well log correlation- and core analysis. 

According to Galloway (1989) “the genetic sequence paradigm emphasizes preserving 

the stratigraphic integrity of three-dimensional depositional systems and does not rely on 

widespread development of subaerial erosion surfaces caused by eustatic falls of sea level to 

define sequence boundaries.” The maximum flooding surface (Frazier, 1974; Galloway, 

1989; Posamentier, Jervey, & Vail, 1988; J. C. Van Wagoner et al., 1988) is used as sequence 

boundary when following a genetic sequence stratigraphic approach, which is a sedimentary 

veneer or surface that records the depositional hiatus occurring over a large part of the 

transgressed shelf and adjacent slope (Galloway, 1989). The maximum flooding surface is 

relatively easy to map across a basin due to their common association with regionally 

extensive shale units, and they are often easier to map on seismic lines and well logs then the 

subaerial unconformities (Catuneanu, 2006). 
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Figure 3: A) Timing of sequence boundaries for the various sequence stratigraphic 

approaches (modified from Catuneanu et al. 2010). 1.: Depositional sequence I (Mitchum, 

Vail, & Thompson, 1977) and depositional sequence II (Haq et al., 1987; Posamentier & 

Vail, 1988). 2.: Depositional sequence III (Christie-Blick, 1991; J. C Van Wagoner, 

Mitchum, Campion, & Rahmanian, 1990; J. C. Van Wagoner et al., 1988) and depositional 

sequence IV (Helland-Hansen & Gjelberg, 1994; Hunt & Tucker, 1992, 1995). 3.: T-R 

sequence (Embry & Johannesen, 1992; Johnson & Murphy, 1984). 4.: Genetic sequence 

(Frazier, 1974; Galloway, 1989). RSL: Relative sea level (Catuneanu et al., 2011). B) Genetic 

stratigraphic sequence approach defined by Galloway (1989) with maximum flooding surface 

as sequence boundary located at the end of a transgression. 

2.1.2 KEY STRATIGRAPHIC SURFACES 

It is important to recognize and identify the key stratigraphic contacts such as the 

sequence boundary, maximum flooding surfaces and unconformity surfaces because they 

indicate times when facies belts have shifted position and sediments have been eroded from 

the shelf areas and redeposited into the basin (Stewart et al., 1995). In addition, they have a 

significant impact on the field architecture and the modeling of regional reservoir distribution 

(Stewart et al., 1995).  

 The maximum flooding surface is, as mentioned previously (Ref. 2.1.1), the sequence 

boundary in this study. The sequence boundary is defined as a bounding surface of 

stratigraphic sequences (Nystuen, 1998). The maximum flooding surface is often represented 

on seismic data as high amplitude reflections with a good continuity (Stewart et al., 1995). 

This surface represents a change in stratal stacking patterns from transgression to highstand 

normal regression (Figure 3B), and is marked by a peak in magnitude on gamma ray logs 
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(Catuneanu et al., 2011; Stewart et al., 1995). It is commonly associated as a downlap surface 

in seismic data, typically being downlapped by the overlaying highstand systems tract 

indicate margin progradation (Catuneanu et al., 2011). 

The subaerial unconformity usually represents a hiatus, or hiatus combined with 

erosion (Nystuen, 1998), and is represented by top lap termination of seismic reflectors, and 

marks the end (top) of a regression on gamma ray logs. This surface indicates times when 

facies belts have shifted position and sediments are eroded on the shelf areas and later 

redeposited into the basin (Stewart et al., 1995). 

 

2.1.3 SYSTEMS TRACTS 

Systems tracts sub-divide sequences (Nystuen, 1998), and is defined by Brown and 

Fisher (1977) as “a linkage of contemporaneous depositional systems, forming the 

subdivision of a sequence”. Generally, systems tracts reflect the dominance of different 

processes during the relative sea level cycle (Stewart et al., 1995). The regime variables; 

eustasy, sediment supply and subsidence are contributors to the control of basin- fill and 

architecture, and a change in one regime variable must be compensated for by an adjustment 

in other regime variables (Galloway, 1998). 

The shoreline-related systems tracts consist of correlatable depositional systems 

genetically related to certain types of shoreline trajectory, i.e. forced regression, normal 

regression, and transgression (Catuneanu et al., 2011). This type of systems tracts are usually 

interpreted to form during specific stages of the relative sea-level cycle (Catuneanu et al., 

2011). 

The highstand systems tract is dominated by prograding shallow marine and deltaic 

facies deposited during the late rise and early fall of the relative sea level cycle (Stewart et 

al., 1995). Deposits from this systems tract form when sediment accumulation rates exceed 

the rate of increase in accommodation (Catuneanu et al., 2011). It rests on the maximum 

flooding surface and is located right below the sequence boundary (Stewart et al., 1995). The 

stacking patterns are represented by prograding and aggrading clinoforms with a downward 

dip, capped by a topset of fluvial, coastal plain and/or delta plain deposits (Catuneanu et al., 

2011).  

The lowstand systems tract includes deposits accumulating after the onset of relative 

sea-level rise, during normal regression, and rests on the unconformity surface and is right 

below the transgressive surface (Catuneanu et al., 2011; Stewart et al., 1995). The clinoform 
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structure of a lowstand systems tract shows onlapping reflectors, the stacking patterns exhibit 

forestepping and aggradation thickening downdip, and a top set of fluvial, coastal plain 

and/or delta deposits (Catuneanu et al., 2011). According to Catuneanu et al. (2011) “the 

lowstand systems tract sediments often fill or partially infill incised valleys that were cut into 

the highstand systems tract, and other earlier deposits, during forced regression”. In passive 

margins this systems tract would be confined to the shelf margin as shelf margin deltas and in 

the basin as turbidites (Stewart et al., 1995). 

Transgressive systems tract rests on a transgressive surface and is right below the 

maximum flooding surface/sequence boundary, and is deposited during relative rise of sea 

level (Stewart et al., 1995). The clinoform structure of a transgressive systems tract builds up 

a backstepping, onlapping, retrogradational stacking pattern (Catuneanu et al., 2011). The 

parasequences could also be aggradational if there is a high sediment supply (Catuneanu et 

al., 2011). 

 

2.2 Previous Studies 

2.2.1 STRUCTURAL SETTING OF THE HORDA PLATFORM 

 The Horda Platform is located to the east of the deep faulted Viking Graben in the 

Northern North Sea (Stewart et al., 1995). According to Stewart et al. (1995) “the North 

Viking Graben rift system was initiated in the Permo-Triassic as evidenced by the large half 

grabens seen below the Horda Platform with early Triassic syn-sedimentary infill”. A more 

uniform thickness distribution is found in the late Triassic to Lower Jurassic, which drapes 

the syn-rift sediments and may be seen as a late post rift sag fill resulting from thermal 

subsidence following rifting (Stewart et al., 1995). More or less uniform subsidence 

continued, and the lower part of the Middle Jurassic (Brent Group) had few evidence of syn-

sedimentary faulting (Stewart et al., 1995). Moreover, Stewart et al., (1995) state that faulting 

on the Horda Platform was generally north-south and individual fault blocks were tilted to the 

east, and renewed extension and rotation of fault blocks was initiated in the Early Bathonian 

and became more important in the Oxfordian. The actual major phase of tilting and rifting of 

these fault blocks occurred in the Kimmeridgian to Ryazanian, which resulted in the 

differentiating between the Viking Graben and the Horda Platform (Stewart et al., 1995). The 

group that could have been affected by these structural changes is the Viking Group with the 

Krossfjord, Fensfjord, Mid. Heather, and Sognefjord Formations.  
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2.2.2 DEPOSITIONAL SEQUENCE AND JURASSIC STRATIGRAPHY OF THE HORDA PLATFORM 

The Horda Platform is a key calibration area when it comes to the sequence 

stratigraphy of the Late-Middle to Upper Jurassic (Fensgjord-Sognefjord Formations) of the 

North Sea (Stewart et al., 1995). The reason is the high amount of seismic data interpretation 

covering the Horda platform in addition to excellent sedimentological and biostratigraphic 

data from more than 30 wells (Stewart et al., 1995).  

The Jurassic strata were deposited during a long-term global transgression that began 

in the Triassic and reached its peak in the Turonian (Fischer, 1981, 1982; Hallam, 1977; Haq 

et al., 1987; Vail et al., 1977), expressing itself as a progressive onlap in the basin (Sneider, 

Clarens, & Vail, 1995). The eastern margin of the North Viking Graben on the Horda 

Platform received a steady supply of course clastic sediments from the eastern side of the 

developing graben system during the Jurassic period. As a consequence of this an almost 

complete stratigraphic record of cyclical shore line transgressions and regressions (Stewart et 

al., 1995).  

The Late-Middle to Upper Jurassic of the Horda Platform comprise sands that range 

from very fine grained, highly micaceous to course grained, which are deposited in shallow 

marine shelf to shore-face environments (Stewart et al., 1995). According to Stewart et al. 

(1995) no fluvial or coastal plain facies have been identified. High energy shore-face 

sandstones were deposited in north-south oriented linear trends parallel with the structural 

grain of the Viking Graben (Stewart et al., 1995). The sands are organized dominantly into 

10-30 m thick coarsening-upwards units separated by condensed horizons (Stewart et al., 

1995). 

Figure 4 shows the stratigraphic synopsis of the Jurassic of the north eastern North 

Sea proposed by Stewart et al. (1995). 
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Figure 4: Stratigraphic synopsis of the Jurassic, east northern North Sea modified after 

Stewart et al. (1995). MFS: Maximum flooding surface, SB: Sequence Boundary. 

 

2.2.3 KROSSFJORD, FENSFJORD AND SOGNEFJORD FORMATIONS 

 Figure 4 shows that Krossfjord and Fensfjord Formations (Middle Jurassic) prograde 

westward, and Sognefjord Formation (Upper Jurassic) retrogrades eastward. According to 

Stewart et al. (1995) the sequence boundaries in the Fensfjord (Middle Jurassic) and 

Sognefjord (Upper Jurassic) Formations conform to the definition of genetic stratigraphic 

sequence (Galloway, 1989) and parasequences (Wagoner et al., 1990) since no 3
rd

 order 

erosive sequence boundaries have been confirmed within these formations. No erosional 

sequence boundaries were produced because the magnitude of relative sea level fluctuations 

were small (Stewart et al., 1995). Moreover, two orders of maximum flooding event are 

inferred: 1) 2
nd

 order flooding intervals occurring at the point where the 3
rd

 order sequence 

stacking pattern changes from backwards-stepping to forward stepping mode, and 2) 

maximum flooding surface bounding 3
rd

 order high frequency sequences (Stewart et al., 

1995) (Figure 4). 
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 Stewart et al. (1995) suggest that stacking of coarse grained sand bodies in west Troll 

and thinning eastwards in the inferred direction of the basin margin could cause axial (north 

to south) transport of sediment, and may reflect a gentle eastward tilt of the Horda Platform 

which began in the Late Callovian-Oxfordian times. This tilt (clearly indicated in the 

Kimmeridgian) caused a reduction in accommodation space and erosion occurred over Troll 

West resulting in higher energy depositional conditions because the area was uplifted above 

wave base for a longer period of time (Stewart et al., 1995). 

 

2.2.4 BRENT GROUP 

The Brent Group (Middle Jurassic) consists of deltaic lithofacies deposited during a 

regressive period which reaches its peak marked by a sequence boundary in the Early 

Bajocian (Stewart et al., 1995). According to Eynon (1981) the deltaic systems prograded 

from the south controlled by an area of domal uplift at the triple junction between the Central, 

Witch Ground and Viking Graben (Stewart et al., 1995). The delta retrograded from the Late 

Bajocian to Early Callovian and according to Helland-Hansen et al. (1992) there was a 

reworking of the delta top to form the Tarbert Formation. Differential subsidence resulted in 

a marked thickening of the Brent Group across the edge of the Horda Platform, and tectonic 

activity was limited during the deposition of the lower part of Brent Group (Stewart et al., 

1995). The tectonic regime started to change from more or less uniform, slow subsidence to 

more rapid subsidence with associated fault block rotation during deposition of the upper part 

of the Brent Group (Stewart et al., 1995). Due to this change in subsidence rate there is a 

change from the sheet-like facies distributions and axial sediment transport systems of the 

Bajocian to local, basinal parallel facies distribution with depositional transport from the 

basin margin of the Late-Middle Jurassic (Stewart et al., 1995). A maximum flooding surface 

is located in the Late Bathonian as suggested by Stewart et al. (1995) which resulted from the 

relative sea level rise and retreat of the Brent delta system from the Horda Platform area 

(Figure 4).  
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2.2.5 DUNLIN GROUP AND STATFJORD FORMATION 

 According to Marjanac (1995) the Lower Jurassic Dunlin Group formally consists of 

Drake, Cook, Amundsen, Johansen and Burton Formations. The Johansen Formation consists 

of sandstones that are reinterpreted as a northwestward prograding delta, the Cook Formation 

also consists of sandstones (basinward-dipping and basinward-wedging sedimentary bodies), 

whereas Amundsen and Drake Formations have silty claystones and sandstones (Marjanac, 

1995). The Dunlin Group is deposited during a regressive cycle with progradation westwards, 

and an erosional unconformity (sequence boundary) is located above the Johansen Formation 

(Early Pliensbachian) (Figure 4). The top of Statfjord Formation (Hettangian) marks the 

beginning of a regressive cycle, and transition from the non-marine Triassic below to the 

marine shales of the Lower Jurassic above (Sneider et al., 1995) (Figure 4). 

 

2.3 DEPOSITIONAL ENVIRONMENT AND RESERVOIR STRATIGRAPHY 

Deposition of very fine grained, highly micaceous to coarse grained sands from the 

Horda Platform took place on a coast-attached shelf as cyclic sequences with alternations 

between transgressive sandstones and siltstones, proximal progradational shoreface facies and  

coastal distributaries (Bolle, 1992; Stewart et al., 1995). No fluvial or coastal plain facies 

have been identified (Stewart et al., 1995). According to Bolle, (1992) the sequence 

architecture is controlled by minor regional sea level fluctuations that are framed in the major 

overall late Callovian to early Volgian regional transgression.  

The Troll Field has a prominent oil-water contact seen as a flat-spot on seismic data 

(Figure 5). The oil- and gas reservoir contains medium- to coarse grained, hardly 

consolidated sands and fine micaceous sandstones and siltstones of Middle to Upper Jurassic 

age, located in the Viking Group (Bolle, 1992). Gamma-ray logs from the Viking Group in 

the central and northern North Sea show shales and claystones with some thin, areally 

restricted intercalations of sandstones (Bolle, 1992). The Viking Group consists of the 

Sognefjord, Heather, Fensfjord, and Krossfjord Formations that comprise a stacked shallow 

marine sandstone sequence (Bolle, 1992). 
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2.4 OpendTect 

2.4.1 OPEN SOURCE SEISMIC INTERPRETATION SYSTEM 

 OpendTect is the only available open source seismic interpretation platform used in 

the oil and gas industry today (Groot, 2010). According to Groot (2010) “OpendTect allows 

interpreters to target and calculate attributes, test attribute parameters within a highly visual 

environment, and create their own attributes to find the optimal setting for their data”. 

 

2.4.2 STEERINGCUBE MODELING 

A SteeringCube is a volume that stores information about the dip and azimuth of the 

seismic events in inline and crossline direction at every sample point ("How To Manuals," 

2013). The purpose of the SteeringCube is to calculate multi-trace attributes on 2D or 3D 

seismic by extracting and filtering data along seismic events, auto-track chrono-stratigraphic 

horizons, and finally to compute attributes based on local dip-azimuth information only 

("How To Manuals," 2013). The dip and azimuth information is used to improve attribute 

accuracy and object detection power ("OpendTect Workflows Documentation 4.4," 2012). 

The SteeringCube follows the dip trace by trace using full steering where the dip/azimuth is 

updated at every trace position ("OpendTect Workflows Documentation 4.4," 2012). 
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Figure 5: Inline 861 from the Troll West Field indicating the prominent flatspot (oil-

water contact). 
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When creating a SteeringCube it is recommended to apply a dip-steered median filter 

on the input seismic volume (Figure 6) in order to remove random noise and to enhance 

laterally continuous seismic events (Figure 7).  If the seismic data is less noisy the dip steered 

median filter step-outs (inline/crossline/sample) should be lower, whereas for seismic with a 

lot of noise the step-outs should be higher. The dip-steered median filter does not sharpen 

edges (faults), whereas a fault enhancement filter should be applied to low quality seismic 

data in order to smooth the seismic with sharp fault breaks ("OpendTect Workflows 

Documentation version 4.4," 2012). In this thesis, only a dip-steered median filter is applied 

to the seismic data as this is the only input needed for the SteeringCube in order to create a 

HorizonCube. 

 

 

Figure 6: Example of seismic section without dip-steered median filter (Qayyum & Groot, 

2013). 
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Figure 7: Example of seismic section after applied dip-steered median filter (Qayyum & 

Groot, 2013). 

 

There are two types of SteeringCubes namely the Background SteeringCube (Figure 

8) and the Detailed SteeringCube (Figure 9). The Detailed SteeringCube adds a mild 

smoothing to the seismic data where noise is removed but details such as dip associated with 

fault drag remains visible, i.e. local information is preserved (Qayyum & Groot, 2013). The 

Background SteeringCube is a heavily filtered/smoothed version of the Detailed 

SteeringCube where only the regional information is preserved displaying primarily the 

background structure with dip/azimuth information and details and noise removed (Qayyum 

& Groot, 2013). 

The Detailed SteeringCube has three different types of steering algorithms that can be 

used; the BG Fast Steering, the FFT Steering, and Event Steering. According to Qayyum and 

Groot (2013) the BG Fast algorithm computes dip from the gradient of the unwrapped 

instantaneous phase, whereas the Fast Fourier Transform (FFT) algorithm computes dip from 

maximum amplitude in 3D Fourier transformed domain, and lastly the Event algorithm 

computes dip between similar events. 
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Figure 8: Example of background SteeringCube (BG, 5x5x5) on a seismic inline (861) on the 

Horda Platform. 
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Figure 9: Example of detailed SteeringCube (FFT, 3x3x3) on seismic inline (861) on the 

Horda Platform. 

   

2.4.3 HORIZONCUBE MODELING 

A HorizonCube is used as an automated method for mapping seismic horizons ("How 

To Manuals," 2013). The purpose of the HorizonCube is to track the horizons using a dip-

based tracking algorithm so that the mapping becomes easier and more efficient. The process 

of dip-steering is that the dip-azimuth of the seismic events can be used to create a local 

horizon at each position in a 3D volume by following the dip and azimuth information from 

the center outwards ("OpendTect Workflows Documentation 4.4," 2012). The advantage of 

using dip-steered auto-tracking as opposed to a conventional amplitude auto-tracking is that 

the dip-steered method tracks in dip fields which are more continuous than the amplitude 

fields ("How To Manuals," 2013). Also, the resulting horizons can be patchy and 

discontinuous when using the amplitude auto-tracking method ("How To Manuals," 2013). 

Finally, most of the sequence stratigraphic surfaces change seismic phase from one area to 
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another due to a lateral change in facies ("How To Manuals," 2013) therefore these surfaces 

can be hard to map using a conventional mapping method.  

There are two types of HorizonCube modeling which are the model driven and the 

data driven. When using the model driven technique the tracking of the seismic events is 

either relative to the upper or lower horizons, or proportional (Figure 10). The purpose of the 

model driven technique is mainly visualization (e.g. stratal slicing). On the other hand, by 

using the data driven technique the seismic events follow the dip by utilizing the 

SteeringCube as input. The data driven technique is mainly used for sequence stratigraphic 

purposes, but this method requires the use of high quality and clean seismic images. 

 

 

 

When selecting the data driven modeling the HorizonCube differentiates between two 

types of applications; the continuous and the truncated (Figure 11). The first is used for low 

frequency models, geological modeling and attribute visualization in 3D ("How To 

Manuals," 2013), whereas the latter is applied for sequence stratigraphic interpretation, 

wheeler transformation and attribute visualization in 3D ("How To Manuals," 2013). When 

truncating the HorizonCube the closely spaced events are removed, and a maximum density 

value is used as input parameter referring to the number of events within a seismic sampling 

rate ("OpendTect Workflows Documentation version 4.4," 2012). All horizons within a 

truncated and continuous HorizonCube represent correlated 3D stratigraphic surfaces that are 

assigned a relative geologic age (Groot & Qayyum, 2013).  
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Figure 10: Example of model driven HC-tracking with proportional tracking of 

seismic events from seismic inline 861 on the Horda Platform. 
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Figure 11: Example of data driven HC-modeling with truncated (top) versus 

continuous (bottom) events on seismic inline 861 on the Horda Platform. 

 

Generating a HorizonCube is an iterative process, meaning that several HorizonCubes 

need to be generated in order to end up with a satisfactory one where the tracking honors the 

correct seismic reflectors and structural features. The workflow in Figure 12 shows the inputs 

needed in order to generate a HorizonCube. The outputs of the HC are Wheeler 

transformations, sequence stratigraphy analysis, inversion and well correlation. 

Commonly the default parameters are good enough to use, however, it might be 

necessary to change the filtering parameters if the tracking is not adequate. By realizing areas 

with high noise disturbance from the SteeringCube one can change the filtering parameters 

(inline/crossline/sample) to remove this noise and use the new SteeringCube as input to the 

data driven HorizonCube. This method is used to optimize the HorizonCube-tracking (Figure 

13).  
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Figure 12: Workflow for generating a HorizonCube. 

 

Figure 13: Workflow for optimizing the HorizonCube. 

2.4.4 WHEELER TRANSFORMED DOMAIN 

 A Wheeler transform is the seismic equivalent of the Wheeler diagram (Qayyum & 

Groot, 2012), and it is generated using the HorizonCube and seismic volume as input 

parameters. The Wheeler diagram displays rock units plotted in a 2D chart with absolute 

geologic time (y-axis) versus distance in space (x-axis) showing the temporal-spatial 

relationship between rock units (Qayyum & Groot, 2012). In a Wheeler transformed domain 

the seismic data is flattened along flattened chronostratigraphic horizons, displaying relative 

geologic time on the y-axis (Qayyum & Groot, 2012). An example of a WheelerCube, which 

is in four dimensions, is shown in Figure 14.  
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Figure 14: Wheeler transform of systems tract interpretation (left) and the corresponding base 

level curve indicating relative rise and fall generated in OpendTect (Bruin & Bouanga, 2007). 

TST: Transgressive systems tract, HST: Highstand systems tract, FSST: Falling stage 

systems tract, and LST: Lowstand systems tract. 
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3.0 METHODOLOGY 

 3.1 Seismic Interpretation in Petrel 

The first step before interpreting the seismic data was to do a seismic-well tie in order 

to determine the age of the formations of the three mega-sequences. The time-depth 

relationship was extracted by using the sonic and density logs to create a synthetic 

seismogram by using a wavelet extraction from ~1500 - ~2500 ms. A synthetic seismogram 

for well 31/2-1 was created and the seismic reflectors were time-shifted in order to fit the 

BCU-reflection, which was used as correlation marker as it is a strong, prominent reflection 

and easy to recognize on the seismic. The different lithological well top depths of the Jurassic 

strata and Troll West Field formations are from the Norwegian Petroleum Directory, and 

these were assigned to the wells penetrating the interval of interest, i.e. from the BCU until 

top of the Statfjord Formation (Figure 18). 

Three megasequences were interpreted in Petrel, the Base Cretaceous unconformity, 

the Top Brent Group and the Top Statfjord Formation. The horizons were manually tracked 

every 40 inline/crossline intervals, and time surface- and time-thickness maps were generated 

for each horizon. 

A total of 44 faults were interpreted in Petrel and used as input in OpendTect when 

later performing sequence stratigraphic interpretation. Moreover, the surface maps and time-

thickness maps were generated for the megasequences by the ‘Make/edit surface’ process in 

Petrel. 

 

3.2 Sequence Stratigraphic Application and Interpretation in OpendTect 

 The megasequences and faults interpreted in Petrel were imported into OpendTect by 

using a Petrel Connector provided by Schlumberger (Ocean Store). 

 

3.2.1 STEERINGCUBE MODELING 

In order to know which type of steering algorithm to use, three different types were 

tested out on a seismic inline (IL861), in addition to different values for the dip-steered 

median filter. These SteeringCube types were the BG Fast Steering, Event Steering, and 

lastly the FFT Steering. The purpose of testing the different algorithms was to see which type 
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generated the best input SteeringCube to the HorizonCube. The background SteeringCube 

was used as input to the dip-steered median filter since the smoothing in unfaulted areas 

works better with this type of dip-steering. 

The final SteeringCube (Figure 27) for the seismic volume in this study was computed 

using a sliding 3D Fourier analysis technique where the cube is transformed to the Fourier 

domain and the dip is determined ("OpendTect Workflows Documentation 4.4," 2012). The 

type of steering used was a standard 3x3x3 Fast Fourier Transform (FFT) with a median filter 

applied and a heavily smoothed background SteeringCube as input.  

 

3.2.2 HORIZONCUBE MODELING 

Since HorizonCube modeling is an iterative process, several different HorizonCubes 

were generated in order to test the different parameters and SteeringCubes used as input. The 

HorizonCube was created using the FFT SteeringCube generated, the three interpreted mega-

sequences; the BCU, Brent Group and Statfjord Formation, and the interpreted faults as input 

parameters (Figure 15). The megasequences were first gridded then trimmed against the 

faults before adding them into the HorizonCube workflow.  

The chosen HorizonCube modeling was data driven, and the tracking started at the 

center tracking continuous events with a fixed spacing of 16 ms, filling spaces larger than 20 

ms by 100 traces. The stepout was set to 1 (inline) and 4 (crossline). When the workflow for 

this process was complete, the HorizonCube was truncated using a maximum density of 2 

(the default parameter). Two final HorizonCubes were created to test the difference of 

HorizonCube tracking in 3D and 2D. 
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Figure 15: Workflow for generating a HorizonCube. Input parameters include seismic 

volume, dip-steered median filter, background and detailed SteeringCubes, horizons and 

faults. 

 

3.2.3 CREATING THE WHEELERCUBE 

The WheelerCube was generated by using the HorizonCube as input together with the 

seismic volume of the study area (NH0301). The WheelerCube is displayed in the Wheeler 

transformed domain, where the main difference between 2D Wheeler diagram and 4D 

transformed domain is that the vertical axis for the first is in absolute geologic time, whereas 

for the latter it is in relative geologic time ("OpendTect Workflows Documentation version 

4.4," 2012). 

 

3.2.4 DIVIDING INTO SYSTEMS TRACTS AND IDENTIFYING KEY STRATIGRAPHIC SURFACES 

As explained previously in section (2.1.2), Stewart et al., (1995) sub-divided the 

sequences into systems tracts reflecting the dominance of different processes during the 

relative sea level cycle. The systems tracts were assigned to the proper interval by selecting 

the genetic sequence model and label corresponding sequence stratigraphic surfaces.  

Moreover, the systems tracts from the 3D WheelerCube were identified by correlating 

the tracked HorizonCube-lines with the time-lines on the WheelerCube, starting from the top 

of Statfjord Formation until the BCU. The systems tracts were separated by bounding 

surfaces where the transgressive systems tracts are capped by the maximum flooding surface, 

i.e. the sequence boundary, and the highstand systems tracts are capped by an unconformity. 
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Empty spaces seen on the WheelerCube were interpreted as non-depositional hiatuses or 

truncated strata. 

The 2D WheelerCube interpretation was performed the same way as the 3D 

interpretation, however, in addition to correlating the HC-tracked horizons with 

corresponding WheelerCube lines it was also possible to notice some stratal terminations 

from the HC-tracking. The stratal terminations indicated whether the system was prograding 

or retrograding represented by downlapping or onlapping reflectors, respectively.  

The systems tracts were added to the seismic section in OpendTect by using a 

HorizonCube-slider, which illustrates the spatial relationships of each single 

chronostratigraphic horizon (Figure 16 and Figure 17). The base level curve was 

automatically generated by OpendTect based on the genetic sequence model and the assigned 

systems tracts. 

 

Figure 16: Assigning systems tracts to its proper interval for 3D HorizonCube by using the 

HorizonCube-slider. 
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Figure 17: Assigning systems tracts to its proper interval for 2D HorizonCube by using the 

HorizonCube-slider. 
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4.0 SEQUENCE STRATIGRAPHIC INTERPRETATION OF DATA 

4.1 Interpretation in Petrel 

The seismic line in Figure 18 displays the result of the time-depth well-tie, where the 

formation tops are located very near their corresponding seismic reflectors. In Figure 19 the 

main faults interpreted are displayed.  

 

 

Figure 18: Seismic inline 861 displaying well 31/2-1 with formations located at correct 

depths by performing a time-depth conversion and wavelet extraction.  X-axis is in TWT 

(ms). 
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 Three surface maps (time-structural maps) of the interpreted megasequences are 

shown in Figure 20, Figure 21 and Figure 22 showing the geological structures covered by 

the seismic volume NH0301. A time-structural map indicates where structural highs and lows 

are located. The three surface maps have more or less the same structural features and trends, 

where the main structural highs (trending N-S) are located to the east and the main structural 

lows are located west. The time-structural maps illustrate three major normal faults striking 

N-S with a dominantly westerly dipping direction leading to the structural high located on the 

eastern side of the fault. 

 The majority of the interpreted faults strike NNE-SSW, whereas only a couple of 

faults strike E-W. The fault heave increase with depth, as seen especially close to the shelf 

edges in the structural lows, indicated by red boxes on the surface maps. 
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The time-thickness map between the BCU and Brent Group shows that the main 

depocenter is located furthest towards east where the greatest sediment accumulation is 

located (Figure 23). The sediments thicken to the SE (indicated by a purple and dark blue 

color) and are thinning to the NW (indicated by a green and yellow color). There is another 

depocenter located right after the shelf edge furthest to the west, and there is a significant 

thinning of the sediments located on top of the shelf edge (Figure 23).  

 The time-thickness map between Brent Group and Statfjord Formation shows 

generally a homogenous sediment thickness over the entire area (Figure 24).  
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4.2 SteeringCube 

Figure 25 displays the seismic inline 861 without a dip-steered median filter applied, 

whereas Figure 26 has been filtered. The difference between before and after applying this 

filter to the seismic data is not significant as the NH0301 seismic cube is already of high-

resolution. Therefore, the seismic does not need to be filtered for making the reflectors more 

continuous. 

The generated SteeringCube (Figure 27) displays positive and negative dip values, 

where the hot colors are negative dips and the cold colors are positive dips. The higher 

positive values are located above the reservoir and interval of interest (~1,5 – 2,3 s), whereas 

the majority of the negative dip values are located in the interval of interest and typically 

around major fault zones. The SteeringCube in crossline direction displays areas with more 

noise disturbance (spikes in dip) typically located around the major faults (Figure 28). 
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4.3 HorizonCube 

The HorizonCube tracking in the 3D volume is poor as the HorizonCube does not 

follow the faults used as input (highlighted area on Figure 29, Figure 30 and Figure 31). In 

particularly, the noisy areas shown on the SteeringCube in crossline dip direction (Figure 28) 

make it difficult to track the HC properly in these specific areas. 

Truncated HorizonCube-tracking on a 2D section is shown in Figure 32. The tracking 

in 2D is a lot more precise and detailed than in 3D. 
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4.4 WheelerCube 

 The generated WheelerCube displays variations in sequence stratigraphy 

interpretations and the temporal and special relationship (ref. 2.1.1). Primarily, two 

WheelerCubes were generated, one for the entire study area, i.e. the Jurassic sequence on the 

Horda Platform (3D volume), and one for only one single 2D inline. These WheelerCubes are 

based on the time-lines generated by the HorizonCube tracking, which again is supposed to 

honor the stratal termination patterns seen on the seismic data. 

The WheelerCubes show significant differences both visually and theoretically. 

Firstly, the WheelerCube for the 3D volume displays fewer time-lines, whereas the 

WheelerCube for IL861 has numerous chronostratigraphic surfaces creating a more detailed 

sequence stratigraphic framework to interpret. Secondly, the thickness (in relative geologic 

time) of the time-lines is different between the two WheelerCubes, where they are thicker in 

the 3D Wheeler transform compared to the single 2D inline Wheeler transform.  In 

theoretical terms, the two Wheeler transforms provide two separate interpretations as to 

where the systems tracts are assigned and their bounding surfaces, and thereby also the 

depositional cycles. 

 There are some evident errors seen in the 3D WheelerCube caused by the 

HorizonCube tracking wrong reflectors. Also, presence of faults makes the WheelerCube 

interpretation difficult. The HorizonCube tracking struggles to follow the correct horizons 

around the tilted fault block. The HorizonCube also tracks the flatspot as a reflector which is 

not the case as it represents a fluid response, the oil-water contact.  

Figure 33 and Figure 34 show the WheelerCubes generated from the HorizonCube 

tracking in 3D and 2D, and Figure 35 and Figure 36 show the most reasonable interpretation 

assigned for these WheelerCubes. 
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4.4.1 INTERPRETATION OF WHEELERCUBE FROM 3D HORIZONCUBE TRACKING 

 Three full sequences are identified with maximum flooding surfaces as sequence 

boundaries. The depositional cycles are defined by Stewart et al. (1995) as 2
nd

 order 

sequences with a time span of more than 4 million years (Ref. 2.1.1). The stratal terminations 

on the seismic section (Figure 35B) are difficult to recognize as the HorizonCube struggles to 

follow the proper horizons and neglects the structural features in this area (Ref. 4.3). 

Therefore, the main interpretation is based on the composition of the WheelerCube. Also, 

because of the incomplete and unsatisfactory tracking in 3D, an exact age-definition is 

difficult to determine for the systems tracts (Figure 35A). However, the megasequences can 

be recognized from the Wheeler transformed domain and on the seismic section (i.e. 

imported horizons), so the approximate ages for these areas are possible to determine. 

Starting from the bottom of the 3D WheelerCube, the base level curve and 2
nd

 order 

sequences (Figure 35C) shows an overall regression from the first maximum flooding surface 

(MFS) until subaerial unconformity (SU2), indicated by a drop in base level in Figure 35C. 

This regression is followed by an overall transgression starting at SU2 and lasting until the 

MFS in sequence 3, seen in Figure 35D as lowstand systems tracts and transgressive systems 

tracts. The higher, 2
nd

 order sequences display transgressive/regressive events throughout the 

study area, from the first sequence LST (top of Statfjord Formation) until the top 

unconformity (U).  

 Four lowstand systems tracts are interpreted basinward, and one is interpreted 

landward, represented in the seismic inline (Figure 35B) as onlapping, retrograding reflectors. 

The LST located below SB1 represents the top of Statfjord Formation of Lower Jurassic age 

(Hettangian). However, this LST is located on a chronostratigraphic horizon which stretches 

eastward where there is no corresponding horizon tracked by the HC in the seismic inline. 

Therefore, the LST is only interpreted to represent a part of this time-line, whereas the more 

eastern part is undefined. The same problem is seen from the time-line interpreted as 

sequence 2 HST, where the western part is undefined as it is not represented by any tracked 

reflector on the seismic section. 

A small lowstand systems fan is interpreted basinward just above SB2 as it is 

independent from the other lowstand systems tracts. It is represented by an incorrect, light 

blue time-line generated by the HC seen in Figure 35B. The LST located in sequence 2 is 

interpreted to be a thick, retrograding/aggrading package of deposited sediments with an 

overlying TST and HST of Middle Jurassic age. This large LST seems to be aggrading which 
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indicates more shoreline deposits. Moreover, there is an incised valley interpreted to the east 

of this LST, which could work as a sediment conduit to the coeval prograding depositional 

system. However, the HC-tracked horizons merge in this area (marked in Figure 35B with a 

red box) making the HC-tracking map several horizons as one instead of separate events. 

Therefore, the LST looks to be a separate event even though it most probably is not. This 

problem is also the case for the overlaying TST and HST where the smaller systems tracts 

located more landward are interpreted separately, but should actually be connected with the 

more basinward systems tracts. 

The sequence 3 LST rests on the SU3 and right below the U1 and BCU. The 

interpretation in this area is difficult as the BCU might have removed parts of stratigraphy on 

top of the fault blocks, and other structures which affect the HC-tracking and thereby also the 

output of the WheelerCube. 

 Four maximum flooding surfaces are interpreted on top of the transgressive systems 

tracts and act as sequence boundaries (Figure 35B). However, these relative, geologic time-

lines do not always follow the geologic structures and traces on the seismic by crossing both 

the faults and the horizons in some places. In addition, the flat spot (which is the oil-water 

contact) is interpreted to be a chronostratigraphic horizon (SB3), which is not truly the case.  

 Three subaerial unconformities are interpreted located on top of the HST. The 

subaerial unconformities are not easy to recognize on the seismic by truncating events, so the 

interpretation is mainly based on the systems tracts generated from the WheelerCube. The 

time-line SU2 falls on the seismic reflector representing the Brent Group of Middle Jurassic 

age, where the HST is resting on top of SB2. The more eastern part of this time-line is located 

on the shelf edge created by the tilted fault block seen on the seismic in line Figure 35B, and 

is therefore interpreted to be a subaerial unconformity (eroded) continuing westward. 

 The WheelerCube has several areas where no deposition is indicated by green, empty 

spaces. These areas could be interpreted as hiatus, but when studying the seismic line the HC 

should have tracked more horizon events in these areas. Also, the majority of the horizon-

slices generated by the HC are located primarily in the center of the study area (Figure 35B), 

therefore the relative geologic time-line generated by the WheelerCube is located in this same 

specific area, where the surrounding spaces are interpreted to be areas of non-deposition.  
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4.4.2 INTERPRETATION OF WHEELERCUBE FROM 2D HORIZONCUBE TRACKING 

 Two complete sequences are interpreted from the 2D WheelerCube, and two half 

sequences. The overall trend shows two regressive depositional cycles indicating a drop in 

relative sea level, with smaller transgressive cycles in between. The regressive cycles are 

represented in the WheelerCube as thick, 2
nd

 order (sensu Stewart et al., 1995) HSTs with the 

subaerial unconformity located in top. The stratal termination patterns of the tracked time-

slices (reflectors) in Figure 36B are difficult to interpret as they are numerous, short 

interpretations which rarely show any specific trend individually. As a consequence of this 

the colors of the reflectors are used as guidance when comparing the seismic line and the 

WheelerCube in Figure 36D, as these colors represent the timing and thus the thickness of the 

systems tracts. 

 A LST of Lower Jurassic age is interpreted as resting on top of Statfjord Formation, 

and represents the Cook, Amundsen and Johansen Formations. Following this LST is a TST 

represented in Figure 36D as retrograding time-lines. On top of the TST is the maximum 

flooding surface, which is the first sequence boundary of an estimated age of approximately 

180 Ma. The first full sequence HST represents the prograding Drake Formation (~174 Ma) 

and the Brent Group (~168 Ma). The subaerial unconformity (SU1) resting on top of the HST 

has an age of approximately 168 Ma. 

 The LST in sequence 1 is interpreted to be of approximately 166 Ma as it represents a 

thick sandstone wedge which could be the Krossfjord Formation. The following TST is 

interpreted to be the Krossfjord Formation retrograding, and a maximum flooding surface is 

located on top indicating the next sequence boundary. 

In sequence 2 the HST represents the prograding Fensfjord Formation of Middle 

Jurassic age (~163 Ma). The SU2 marks the division between this HST and the next systems 

tract which is the Heather Formation located in a LST followed by a TST with retrograding 

sediments with an approximate age of 157 Ma.  

The HST containing the Sognefjord Formation is the last systems tract interpreted and 

is found in the Upper Jurassic, close to the BCU. The age of the time-lines above the 

unconformity (U) is difficult to determine as this area has undergone erosion.  
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When comparing the WheelerCubes generated from the 2D and 3D HorizonCube 

tracking there are evident differences between them. Firstly, the Wheeler transform for a 

single inline displays numerous, thinner chronostratigraphic events. Secondly, this 2D 

Wheeler indicates a higher accumulation of sediments deposited westward than what is 

indicated from the 3D Wheeler transform. The overall depositional trend is first a regression 

followed by a transgression for the 3D Wheeler transform, whereas the opposite is interpreted 

in 2D. 
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4.5 Systems Tracts Interpretation 

 OpendTect automatically generates the base level curve according to what type of 

depositional sequence model is used for the systems tracts interpretation. When comparing 

the interpretation from the 3D and 2D HorizonCube-tracking it is evident from Figure 37A 

that more lowstand deposits are interpreted in the 3D WheelerCube, whereas more highstand 

deposits are interpreted in the 2D WheelerCube (Figure 37B). However, the lowstand 

sediments are deposited towards west, meaning that both figures indicate a prograding system 

in this direction. 
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5.0 DISCUSSION AND FURTHER WORK 

5.1 Comparison with Previous Sequence Stratigraphic Analysis 

The differences and similarities between the sequence stratigraphic analyses from 

previous studies and the results obtained in this thesis can be seen from Figure 38 and Figure 

39. Figure 38 explains the stratigraphic synopsis of the Jurassic period in the east northern 

North Sea proposed by Stewart et al., (1995), whereas Figure 39 shows the sequence 

stratigraphic interpretation generated from the 2D WheelerCube.  

The interpretations of the generated 3D and 2D WheelerCube examples are on a small 

regional scale, i.e. ~8 km, whereas the sequence stratigraphic analysis proposed by Stewart et 

al. (1995) is on a much larger scale of ~40 km. However, the relative sea level rise and fall 

are still recognized from the transgressive/regressive events from both scales.  

When comparing the two interpretations seen in Figure 38 and Figure 39, there are both 

differences and similarities between them. Firstly, when it comes to the differences Figure 38 

suggests that the first 2
nd

 order sequence is a regression from Hettangian until Early 

Pliensbachian capped by an erosional unconformity, whereas Figure 39 suggests a 

transgression in this same time interval capped by a maximum flooding surface in the Early 

Toarcian. However, a maximum flooding surface marking the end of a transgressive cycle is 

also found in Figure 38 in the Early Toarcian similar to the 2D interpretation generated from 

the HorizonCube. Also, the prograding Brent Group is seen in Figure 38 as a regressive cycle 

with an erosional unconformity on top followed by a hiatus in the Bajocian/Aalenian. This 

same regression is seen in Figure 39 as a highstand systems tract representing the prograding 

Brent Group, capped by a subaerial unconformity and followed by a condensed section.  

Moreover, Tarbert, Krossfjord and Fensfjord Formations belong to the 2
nd

 order 

transgressive sequence from Early Bathonian to Early Oxfordian seen from Figure 38 

modified after Stewart et al. (1995). Figure 39 suggests a retrogradation of Krossfjord 

Formation from Early Bathonian until the maximum flooding surface located in Middle 

Bathonian. The Fensfjord Formation is interpreted to be located in a highstand systems tract, 

prograding westward with a subaerial unconformity on top (Early Oxfordian). The Heather 

Formation is interpreted to be depostied during a regression in Figure 38, whereas during a 

transgression in Figure 39. The Sognefjord Formations is interpreted in both figures to be 

deposited during a regression from Kimmeridgian until Tithonian/Volgian capped by an 

unconformity. 
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5.2 Optimizing the HorizonCube and WheelerCube 

 The HorizonCube tracking in 3D is poor as it does not follow the proper seismic time 

lines and the chronostratigraphic events. In addition, this process is very time-consuming as 

the HC-tracking in 3D takes up to 24 hours to run. If the outcome of the HC-tracking is not 

satisfactory, it is necessary to change the filtering parameters for the SteeringCube and re-do 

the workflow in Figure 40.  

 

 

Figure 40: Workflow for optimizing the HorizonCube. 

 

By changing the filtering parameters for areas with a lot of noise (spikes in dip), there 

could potentially be improvement in the HC-tracking. Figure 41 shows an inline 861 with 

highlighted areas that are experiencing a lot of noise disturbance. It is recommended to 

change the filtering in the crossline dip to remove as much noise as possible by increasing the 

step-out and time range values. 

Data Preparation 

- Filter seismic 

-Filter SC  

Create 
HorizonCube 

Quality Check 
HorizonCube 

- Crossing events? 

- Follows structures? 

- Tracks the correct horizons? 

Optimize HorizonCube 

- Change filtering parameters 

- Insert more horizons/faults 

- Reduce cube size 

- Generate 2D grid 

New HorizonCube 
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Figure 41: SteeringCube with 3D HC-tracked events in crossline dip of IL861 displaying 

errors highlighted by red boxes. 

 

 The HC-tracking also depends on the input framework horizons and faults, i.e. how 

precise and accurate the interpretation is. By performing a thorough horizon- and fault 

mapping, i.e. ensuring that the correct reflectors are mapped and that the horizon terminates 

close to the fault, this could potentially improve the HC-tracking. Also, it is important to 

quality check (QC) the HC-tracking outcome and identify any crossing horizons or areas 

where the HC does not honor structural features. If the QC is not satisfactory, then it could be 

necessary to re-do the mapping-step in the workflow (Ref. 2.4.3, Figure 12). 

  

Another way to optimize the HorizonCube is to interpret and import more horizons 

and faults to the HorizonCube. If more input information is provided for the HC-modeling 

the tracking has more parameters to be guided by and hence the tracking may become easier. 

In this project, two additional horizons were interpreted by using the 3D autotracking 

in OpendTect; the Krossfjord and Johansen Formations. The result of adding these horizons 

to the 3D HorizonCube (Figure 42) are still spikes and un-tracked areas. Again, the HC-
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tracking is poor because the autotracking does not follow the correct horizon reflectors. A 

suggestion to further work is to track more horizons in a conventional, more time-consuming 

way and later use them as input horizons to the HC. The results could be improved greatly 

and the output WheelerCube interpretation could become both more accurate and more 

comprehensive as the WheelerCube displays more time-lines.  

 

 

Figure 42: 3D HorizonCube (IL861) with five input horizons: The BCU, Brent GP, Statfjord 

FM, Krossfjord FM and Johansen FM. HC-modeling was data driven (truncated events). 

Black boxes highlight areas that are un-tracked and include spikes. 

 

By performing HC-tracking on a smaller cube volume which is less affected by 

faulting and other structural features, this could result in a better HC-tracking outcome. Also, 

by reducing the cube size, the HC-tracking time is also reduced, which is a significant benefit 

since tracking in 3D generally takes a long time (at least 12 hours).  

 

Moreover, for further work another suggestion for improving the interpretation of the 

sequence stratigraphy for the Jurassic Period on the Horda Platform is that instead of 

performing HC-tracking in a 3D volume, it is possible to do HC-tracking on some inlines and 

create a 2D grid (Figure 43A). Figure 44 and Figure 45 show the WheelerCube 

interpretations with assigned systems tracts for the inlines 1385, 861 and 585. By creating a 

2D grid the HorizonCube tracking becomes more accurate and a lot more time-efficient.  This 

leads to an easier and more detailed WheelerCube interpretation that clearly shows the 

transgressive and regressive events. 
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5.3 Petroleum Significance 

 Modern seismic interpretation is all about getting as much geological value of seismic 

data as possible. The HorizonCube generates a dense set of 3D automated horizons which 

should automatically terminate against mapped fault planes with extremely tight intersections 

(Groot, 2010). According to Groot (2010) an advantage of dip-steered auto-tracking is that by 

tracking in dip fields lead to a set of continuous, chronologically consistent horizons, rather 

than patchy horizons from conventional tracking in amplitude domains. Therefore, more 

geology could be extracted from the 3D seismic by the use of this type of tracking, and hence 

detailed attributes can be generated for better understanding of the subsurface. One of these 

attributes is the Wheeler transformed domain which has a crucial role when it comes to 

building detailed sequence stratigraphic frameworks and interpreting the seismic data 

(Qayyum & Groot, 2012). The Wheeler domain can help predict reservoir age, systems tracts, 

and areas of prospectivity (Qayyum et al., 2012). According to Qayyum et al. (2012) Wheeler 

transforms are today a key element which aims to increase geologists insight into the 

depositional history of sedimentary packages, improve seismic facies and lithofacies 

predictions, and provide accurate targeting of reservoir, source rock, and seal potential. By 

flattening 2D and 3D seismic data, moving data from the structural domain to the Wheeler 

domain, this will increase the understanding of the spatial distribution and timing of sediment 

deposition (Qayyum et al., 2012). 

 This study reveals that tracking in a dip-field by the use of the HorizonCube attribute 

on 3D seismic data is a time-consuming process, and the results presented in section 4.4.1 are 

not satisfactory enough for extracting the amount of geological data needed to generate a 

proper, detailed seismic- and Wheeler interpretation. However, HC-tracking on a 2D seismic 

line gives very good results both for tracking chronostratigraphic surfaces in the structural- 

and Wheeler transformed domain. As mentioned in section 5.2, a suggestion for further work 

is to create a 2D grid of the 2D WheelerCubes or smaller 3D WheelerCubes, and from these 

WheelerCube interpretations it may be possible to identify sequence stratigraphic traps, seal 

and potential reservoirs. 
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6.0 CONCLUSION 

In conclusion, the results obtained from the state-of-the-art methodologies studied in 

this thesis show mainly similarities when comparing the interpretation of the Jurassic 

sequence on the Horda Platform from the 2D Wheeler transformed domain with previous 

studies from the same area. However, the generated WheelerCubes from the 3D and 2D 

HorizonCubes show two different interpretations for the depositional cycles, where an overall 

retrograding system is interpreted form the 3D WheelerCube, whereas an overall 

progradation/regression is interpreted from the 2D WheelerCube.  

This type of detailed sequence stratigraphic modeling provides important information 

about the subsurface which can be used in the petroleum industry for both prospect 

evaluation and optimization of producing fields. A well functional HC could definitely help 

to better understand the depositional environments and facies distribution, as well as to 

illustrate the strata architectural patterns and geometries in order to predict the potential 

hydrocarbon for exploration. 

As a consequence of the poor HC-tracking in 3D, for this study the WheelerCube does 

not improve the sequence stratigraphic interpretation compared to previous studies from the 

same area. Moreover, the HC-modeling is an iterative process and is thus time-consuming as 

HC-tracking takes at least 24 hours to run. However, the HC-tracking on a 2D seismic line is 

both time-efficient and precise, so the resulting WheelerCube is easy to interpret and 

generates a much more comprehensive interpretation of the Jurassic sequence. But this takes 

away some of the main benefits of this methodology, which is to be able to stratal slice 

through the 3D data. 

A 2D grid of the WheelerCubes generated from 2D HC–tracking is proposed as one 

solution to improve the interpretations and to save time. However, there was no time to do 

this during the remainder of this thesis. Another suggestion to try out could be to generate a 

smaller 3D cube that is less affected by faults, and that also could have been conditioned 

more. The application does not seem to be mature enough or user friendly for what it is 

intended to do. 
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