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Abstract 

The study of reservoir performance during waterflooding is important to reservoir 

engineers. Numerous analytical, semi-analytical and numerical flow models with 

different assumptions have been submitted over the years, aiming to model and 

describe reservoir behavior and flow dynamics during an oil/water displacement 

process. Studying the effect that controlling forces such as viscous, gravity and capillary 

forces have on water saturation profiles, breakthrough time and oil recovery are 

important features of these models.  

In this thesis a derivation and an analytical solution procedure of the Buckley-Leverett 

equation is presented.  

A Buckley-Leverett model that includes capillary pressure is derived and solved 

numerically. The effect capillary forces have on saturation profiles, breakthrough time 

and oil recovery will be illustrated for different capillary pressures correlations and by 

varying a dimensionless number consisting of controlling flow parameters such as 

injection flow rate, fluid viscosity, length of porous media and capillary pressure. 

Also a derivation and numerical solution of a model for coupled fracture-matrix flow in 

fractured reservoir will be presented. Modified Buckley-Leverett theory including a time 

dependent transfer term that takes into account fluid exchange rate between matrix and 

fracture is used to simulate this waterflooding process. A demonstration of fracture, 

matrix and total oil recovery will be illustrated for a given case. Additionally, some 

effects that strong versus weak spontaneous imbibition have on fracture saturation 

profiles, breakthrough time and oil recovery will be investigated.  
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1 Introduction  

1.1 Objectives 

The thesis is divided into mainly 3 chapters. 

 In chapter two the Buckley-Leverett equation is derived and an analytical 

solution procedure is presented. 

 In chapter three the model in chapter two is expanded to also account for 

capillary forces. The model is derived again and numerical solutions are 

produced to demonstrate this capillary effect.   

 The fourth and last chapter presents a model for water injection in fractured 

porous media using modified Buckley-Leverett theory, and some characteristic 

effects are studied.  

 The thesis also includes an Appendix where Matlab codes used in order to obtain 

figures are listed. Reference to appendix is seen as, for example, [A1] in the figure 

text. 

1.2 Acknowledgement 

The thesis was written with excellent guidance from Steinar Evje at University of 

Stavanger.  
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2 The two-phase porous media equation in 1D  

This chapter consists mainly of previous work from [1], except for section 2.3. Some 

minor modifications have been made and all figures have been somewhat improved. 

[1] We will in this chapter consider a line between the injection well and the producing 

well, with length L and constant cross section A. As injected water follows the pathway, 

we will study how the saturation changes as a function of both distance, x, and time, t, 

using the non-linear hyperbolic partial differential equation, the Buckley-Leverett 

equation. 

 
 
  

  
   

  ( )

  
   0 

 

 

Several assumptions are needed in order to derive the model and obtain an analytical 

solution. These are 

 Immiscible flow of two incompressible fluids, water and oil. 

 Homogeneous, incompressible reservoir, i.e. constant porosity   and constant 

absolute permeability,  . 

 Capillary pressure is zero. 

 Gravity forces are neglected. 

 Reservoir initially filled with oil only. 

 Constant injection rate of water at one end and production at the other end. 

 A unique physical solution exists. 

 Mass is conserved. 
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2.1 Derivation of the model 

2.1.1 Derivation of the Buckley-Leverett equation from mass balance 

[1] Consider an infinitesimal element of rock having porosity  , an area  , and a length 

   in the direction of flow as shown in figure 1. 

 

 

 

 

 

 

The mass rate of water entering the element at   is (q   ) . Where    and   denotes 

volume rate and density respectively. At       , the mass rate of water leaving the 

element is (    )    . The mass rate of water accumulating is     
 

  
(    ), where 

   is the water saturation. 

Due to mass balance, the mass of water entering the element in the rock, minus the mass 

of water leaving must be equal to the rate of water accumulation in the element. We 

thereby have: 

 
(    )  (    )         

 

  
(    ). 

 

(2.1.1) 

For a given function  , we have by definition, when    0: 

  (   )   (      )

  
    

  

  
. 

 

(2.1.2) 

Hence we can write: 

  

  
(    )    

 

  
(    )   0. 

(2.1.3) 

Figure 1 Mass flow rate of water through a linear volume element Aφdx. 
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Due to the assumption that the fluid are incompressible, the densities,    and   , will be 

constant, both as function of time and distance. This leads us to: 

  

  
(  )    

 

  
(  )   0       

 

  
(  )    

 

  
(  )   0.       

 

(2.1.4) 

Darcy’s equations for oil and water respectively  are written as 

 
       

     

  
(
   

  
)   

(2.1.5) 

   

 
       

     

  
(
   

  
)  

(2.1.6) 

where   is the absolute permeability,     and     are the relative permeabilities for oil 

and water respectively, and where    and    are the phase pressures for oil and water 

respectively. 

Inserting equation (2.1.5) and (2.1.6) into equation (2.1.4) gives 

  

  
(
    

  

  

  
)    

   

  
  

 

(2.1.7) 

  

  
(
    

  

  

  
)    

   

  
. 

(2.1.8) 

Next we introduce the fluid mobility,    and   , as functions of effective permeability 

divided by viscosity. 

  ( )   
    ( )

  
     ( )   

    ( )

  
. 

By doing so, equation (2.1.7) and (2.1.8) becomes 

 

  
(  

  

  
)    

   

  
        

 

  
(  

  

  
)    

   

  
. 

Using the constraint;        1 and by adding the above equations we obtain  

 

  
(  

  

  
)   0                            
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which implies that  

 
       

  

  
  

(2.1.9) 

is independent of position  , i.e. constant.  

The Darcy velocities, or fluid flux are written as               

        
  

  
              

  

  
. 

        is the total flux and with (2.1.9) yields 

   

  
   

 

  
. 

(2.1.10) 

Eliminating the pressure term in the mass conservation equation for water using 

relation (2.1.10), give us the Buckley-Leverett equation. Mass balance of water is 

expressed by 

 
   

  
   

 

  
(  

  

  
)    0  

and the result after substitution becomes 

  

 
  

  
    

  ( )

  
   0  

 

(2.1.11) 

 

where      is the water saturation and  ( ) denotes water fractional flow function 

defined by 

  

 ( )   
  ( )

  ( )
   

   ( )
  

⁄

   ( )
  

⁄  
   ( )

  
⁄

. 

 

 

(2.1.12) 
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2.1.2 Dimensionless variables 

[1] It is useful to introduce dimensionless position    and dimensionless time    

Let    
 

 
        

 

  
 . 

We have that 

  

  
   

  

   

   

  
   

  

   

1

 
. 

Equation (2.1.11) becomes  

   

 
(
  

  
)  

  

   
 0   

 

(2.1.13) 

and  

  

  
   

  

   

   
  

   
  

   

 

  
. 

Inserting the above equation, and rearranging, equation (2.1.11) can be written as 

  
  

   
   

  ( )

   
   0. 

Without the subscript D, the dimensionless Buckley-Leverett equation is written as 

 
 
  

  
   

  ( )

  
   0. 

 

(2.1.14) 

From now on, unless otherwise stated, dimensionless variables are used, implying that 

0       1 and     0. 
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2.1.3 Corey relative permeabilities 

[1] Corey relative permeabilities are an often used approximation of relative 

permeabilities. This uses few parameters that can be defined. Normalized Corey type 

relative permeabilities are specified using expressions  

        (1   )     

 

(2.1.15) 

     (   )   . 

 

(2.1.16) 

Since we have neglected residual saturations, we may simplify by setting the end point 

permeabilities,          1. The homogenous reservoir assumption also suggests 

constant values for the Corey exponents,    and   . They are normally chosen with    

and    1. If Corey relative permeabilities are used,  ( ) is completely determined by 

specifying Corey exponents   ,    and viscosity ratio,  . 

In this chapter, we set   0.5 and       2, as these are common values. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2:[A1] Plot of Corey relative permeabilities, given by equation (2.1.15) and (2.1.16).  
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2.1.4 Fractional flow 

[1] We want the fractional flow equation (2.1.12) to be a function of the water 

saturation,  . Rearranging (2.1.12) we obtain 

  

 ( )  
   

        
  

 

 

 

(2.1.17) 

where         and     (1   )    and also viscosity ratio,   
  

  
. 

The flux function then becomes 

 
  ( )   

   

     (1   )  
  

 

(2.1.18) 

and the derivative might be written as 

 
 ’( )   

 (1   )          [  (1   )     ]

(     (1   )  ) 
. 

(2.1.19) 

 

 

 

 

 

 

 

 

 

 

Figure 3:[A2] Fractional flow curve, equation (2.1.18) (left) and its derivative [A3], equation (2.1.19) (right). 
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2.2 Analytical solution of the Buckley-Leverett equation 

[1] In this chapter we lay out a procedure for obtaining the analytical solution of 

equation (2.1.14). In simple steps this is to: 

1. Determine the front saturation height     

2. Find the position    of    

3. Find the saturation distribution behind the front 

2.2.1 Solution procedure 

Determination of the front saturation height 

[1] We draw the saturation movement by multiplying the derivative of the fractional 

flow function with elapsed time T. Unless otherwise stated, we set T=0.5.  

 

 

 

 

 

 

 

 

 

 

Mathematically this suggest that for any given position x, there is multiple values for the 

saturation. Physically this cannot be true.  

 

 

 

Figure 1: [A4] Saturation movement, unphysical solution. 
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Unique solution 

[1] In order to obtain a unique solution we use a material balancing argument. The 

amount of water injected in the well, must be equal in either solution, being physical or 

non-physical. 

Looking at figure 5, we see that area non-physical can be found by 

 
                   ∫  ( )     (  (1)    (0))   

 

 

  
 

and 

                           ∫   ( )   
 

  
      ’(  )     (1    (  )).    

So we set 

                                  

 

    ’(  )     (1   (  )     

 

  [   ’(  )    (1   (  ))]     

 

    ’(  )    1   (  )    1. 

 

 

And we find the relation 

  ’(  )   
 (  )

  
.              

 

(2.2.1) 
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This means that if this is true, both areas are equal.  

 

 

 

 

 

 

 

 

 

 

We can determine the front saturation height,   , from equation (2.2.1), by 

 
 ( )    ( )  

 ( )

 
 0. 

(2.2.2) 

 

 

 

 

 

 

 

 

 

Figure 2: [A5] Area balancing 

 

Figure 6: [A6] Determination of front saturation height  
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Where the function  ( ) intersect the horizontal line,  ( )  0, gives the front 

saturation height   .  

Remark: We can also determine    graphically by drawing the tangent line going from 

the origin to the inflexion point. The steepness of the tangent line is equal to the speed of 

which the saturation front is moving.  The steepness is given by equation (2.2.1). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: [A7] Graphical determination of front saturation 
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Obtaining the position of the front,     

[1] Since   (  ) is the speed of the front, we find the position of the front by multiplying 

with elapsed time, T.  

      ’(  ) . (2.2.3) 

 

Saturation distribution behind the front 

[1] We may also calculate saturation behind the front for a given position. 

     ’( ) . (2.2.4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: [A8] Saturation distribution after elapsed time, T 
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The solution 

[2] Once the front saturation is obtained we can plot the solution at different values of T 

and see how the saturation distribution varies. 

 

 

 

 

 

 

 

 

 

 

 

From (2.2.3) we know that the speed of which the saturations are moving is given by 

     ( )  
 

 
. 

The point at which the water has reached the producing well is equal to 1, and since the 

highest speed of the saturation is at the front, we may introduce the breakthrough time 

as  

 
    

1

  
 

1

  (  )
. 

 

(2.2.5) 

Figure 9 shows the solution using the breakthrough time as reference. Note that the 

solution at       has its front at   1. 

 

Figure 9: [A8] Saturation movement at different times 
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2.3 Numerical solution 

[2] In order to study numerical solutions of the Buckley-Leverett model the relaxed 

scheme presented by Jin and Xin [22] in [2] is used. See references and appendix for a 

comprehensive description. This scheme has been tested for many different hyperbolic 

conversation laws and has proven itself to be accurate. A central in space-explicit in time 

discretization is used. A description of the discretization and the stability criterion will 

be given in the next model where capillary pressure is included.  

The figure below shows a comparison of water saturations profiles obtained analytically 

and numerically with different number of nodes. 

 

 

 

 

 

 

 

 

 

From figure 10 we observe that the numerical solution is converging towards the 

analytical solution for increasing number of nodes. For nodes,   100, the numerical 

solution gets reasonable accurate. This explicit scheme has a fairly strict stability 

condition on the time step, especially when the capillary pressure term is included. 

  100 appear like a good choice to achieve acceptable accuracy and still maintain a 

low computational time. This value of   will be used in later analysis unless otherwise 

stated. 

Figure 10: Comparison of analytical solution and numerical solutions with different number of nodes   
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3 The Buckley-Leverett equation including capillary pressure 

In the previous model only viscous forces were accounted for. We will now extend the 

model by adding another major element, namely capillary forces. This model will 

represent the physics of the water-oil displacement more accurately and will give a 

better understanding of the water injection process.   

3.1 Derivation of the model 

[1, 2] Recall from derivation of the ordinary Buckley-Leverett model that:  

  

  
(  )    

 

  
(  )  0       

 

  
(  )    

 

  
(  )  0.       

 

(3.1.1) 

Darcy’s equations for oil and water respectively  are written as 

 
     

     

  
(
   

  
)   

(3.1.2) 

   

 
     

     

  
(
   

  
). 

 

(3.1.3) 

Inserting Eq. (3.1.2) and (3.1.3) into Eq. (3.1.1) gives 

  

  
(
    

  

   

  
)   

   

  
  

 

(3.1.4) 

  

  
(
    

  

   

  
)   

   

  
. 

 

(3.1.5) 

We get the Darcy velocities,    and   , from Darcy laws as follows: 

 
      (

   

  
)   

(3.1.6) 

 

 
      (

   

  
)   

(3.1.7) 
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where   

  ( )  
    ( )

  
     ( )  

    ( )

  
. 

By substituting Eq. (3.1.6) and (3.1.7) into Eq. (3.1.4) and (3.1.5) we obtain 

 
 

   

  
 

   

  
 0  

   

  
 

   

  
 0 . 

 

(3.1.8) 

Now we introduce capillary pressure   ( ) defined as the difference between oil and 

water pressure 

   ( )     ( )    ( )  (3.1.9) 

 

The total velocity,   , is given by  

 
          (   

   

  
   

   

  
)

  (  

   

  
   

   

  
   

   

  
)

  (  

   

  
   

   

  
)    

   

  
   

   

  
  

(3.1.10) 

where the total mobility  

           .  

Using the constraint;    +    = 1 and by adding the two equations from (3.1.8) we 

obtain 

  

  
    

 

  
(  

   

  
   

   

  
)  0  

(3.1.11) 

which implies that the velocity,   , is independent of position, i.e. constant and is 

determined from boundary conditions. 

From equation (3.1.10) it follows that  

 
    ∫

1

  
 

 

(  

   

  
   )     

(3.1.12) 

which can be used to obtain    once water saturation   is known.   
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We can rewrite the continuity equation for water, Eq. (3.1.8),using       (
   

  
 

   

  
) 

 
φ

 S 

 t
 

 

  
(  

   

  
)  

 

  
(  

   

  
)  0. 

 

(3.1.13) 

From equation (3.1.10) it follows that               

    

  
 

  

  
(
   

  
)  

  

  
. 

(3.1.14) 

Inserting the above equation into Eq. (3.1.13) we get 

 
 

   

  
 

 

  
(  [

  

  
 

  

  
(
   

  
)])  

 

  
(  

   

  
)  0. 

 

(3.1.15) 

Recall that the fractional flow function  ( ) are defined as  

 

 ( )   
  ( )

  ( )
   

   ( )
  

⁄

   ( )
  

⁄  
   ( )

  
⁄

. 

(3.1.16) 

Using Eq. (3.1.16) in Eq. (3.1.15) gives that 

 
 

   

  
 

 

  
(   ( ))  

 

  
(   ( )

   

  
   

   

  
)  0. 

 

(3.1.17) 

From Eq. (3.1.16) we see that  

   ( )         ( )  

and by using the equation above, Eq. (3.1.17) can be written in the form 

 
 

   

  
 

 

  
(   ( ))   

 

  
(   ( )

   

  
). 

(3.1.18) 
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In view of Eq. (3.1.18) a model has been obtained of the form 

 
 

  

  
   

  ( )

  
 

 

  
( ( )

   

  
)  

(3.1.19) 

 

where  ( ) is given by Eq. (3.1.16) and the diffusion coefficient  ( ) is given by 

  ( )      ( ) (3.1.20) 

 

The figure below shows the fractional flow function plotted together with the 

corresponding relative permeabilities and a plot of the diffusion coefficient for a given 

set of parameters (   3    2   0.5    2) 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 11: [A1,A2] Flux function, f(s), with corresponding relative permeabilities and [A9] diffusion coefficient, a(s). 
nw=3, no=2, M=0.5 
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3.2 Dimensionless variables 

[1,2] Recall that 

  
  

   
   

  ( )

   
   0 

for the ordinary Buckley-Leverett model where the capillary pressure effects is 

neglected, i.e.    0  and where    
 

 
        

 

  
 . 

We now introduce reference capillary pressure     , and reference viscosity   , and 

define dimensionless capillary pressure      and dimensionless oil viscosity     as 

     
  

    
     

  

  
  

Then the dimensionless Buckley-Leverett equation including capillary pressure can be 

written as (without the subscript D) 

  S

 t
 

  ( )

  
  

 

  
( ( )

   

  
)    

    

     
  

    (3.2.1) 

   

where 

 
 ( )   

   

   
 ( ). 

(3.2.2) 

 

The dimensionless, characteristic number,  , relates the viscous and capillary forces and 

depends on reference capillary pressure and viscosity, length of porous media and total 

injection flow velocity. This number determines which effect the capillary forces will 

have on the displacement process.   

The function,  ( ), is called the diffusion coefficient and depends on relative 

permeability of oil, dimensionless viscosity of oil and the fractional flow function. 
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3.3 Discretization of the model 

[1,2] We are not able to compute analytical solutions of equation (3.2.1). So in order to 

solve and obtain solutions for this model we need discretize the model and make use of 

a numerical scheme.  

First we discretize the problem’s domain. This is done by dividing the domain into a 

uniform grid in space and time. 

 

 

 

 

 

The grid is divided into K special cells with length    1  . We associate      ⁄  with 

the cell interface for   0 …    and    with the cell center for   1 …   .  Likewise for N 

time steps of length    1   where        for   1 …   . 

We may write the model  

  S

 t
 

  ( )

  
  

 

  
( ( )

   

  
)  

      

in a more general form 

     ( )   ( ( )  ( ) )   (  0)    ( ). 

 

(3.3.1) 

A discretization in the interior domain of the equation above is given by 

 

 

 

 

  
      

 

  
 

1

  
(     ⁄

       ⁄
 )

 
 

  
(     ⁄

 
     

     
 

  
      ⁄

 
   

       
 

  
)   

(3.3.2) 

for cell   2 …    1. 

Figure 12: Discretization in space and time 
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And a solution for the unknown   
    can be written as 

 
  

      
  

  

  
(     ⁄

       ⁄
 )

 
   

  
(     ⁄

 
     

     
 

  
      ⁄

 
   

       
 

  
) 

        

(3.3.3) 

where  

 
      ⁄

  
1

2
(    

    
 )  

    (3.3.4) 

and the function   takes the form 

 
     ⁄

  
1

2
( (  

 )   (    
 ))  

1

2
 (    

    
 )  

    (3.3.5) 

where   is an appropriate value such that   max[  ( )] and the function   is called 

the numerical flux and is an approximation of  ( ). 

3.3.1 Discretization at the boundary 

 For cell   1 the following discretization is used 
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(     ⁄

     ⁄
 )

 
 

  
(     ⁄

 
   

     
 

  
    ⁄

 
   

     
 

  2⁄
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3.4 Stability  

[1,2] In order to have stability when using explicit numerical schemes, we are required 

to apply the necessary condition known as the Courant-Friedrich-Lewy, CFL-condition. 

CFL stability conditions 

   

  
max[  ( )]  1                  

  

   
max[ ( )    

 ( )]    
1

2
   

(3.4.1) 

 

where max[  ( )] is an estimate for the maximum value of the derivative to the 

fractional flow function  ( ) and where max[ ( )     ( )] is the product of the absolute 

maximum value of the diffusion coefficient  ( ) multiplied with the absolute maximum 

value of the derivative to the capillary pressure function   ( ).    and    represents the 

time steps and space steps respectively. 

Both CFL conditions have to be satisfied to ensure that the numerical scheme is stable. In 

most cases the strictest condition will be the second order condition 
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3.5 Capillary pressure correlations 

3.5.1 Capillary Pressure Correlation for Mixed-Wet Reservoirs 

 

      [
   

(
      

1     
)
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1     
)
   

] 

 

(3.5.1) 

 

[3] An imbibition curve from    to     is obtained by the equation above, where    , 

   ,    ,     and    are constants that must be specified. The constraints on the constants 

are that    ,    ,     are positive numbers and     is a negative number.     and      are 

residual saturations (in this thesis         0).   

If we set             |   |  1 , equation (3.5.1) reduces to: 

      [
1

(  )
 

1

(  )
]. 

Unless otherwise stated,     0.5     0.5     1      1    0.1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: [A10] Secondary imbibition capillary pressure curve using Skjaeveland correlation with the given parameters 
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3.5.2 A New Versatile Capillary Pressure Correlation 

[4] The new correlation [4] has a characteristic capillary pressure shape, but instead of 

having infinite values at the residuals which can cause problems for reservoir modeling, 

it has finite values that must be specified. “By using a finite correlation for the capillary 

pressure one avoids the mathematical problems of an infinite correlation without a 

significant sacrifice in accuracy when modeling the capillary transition zone. Despite the 

addition of parameters, the LET correlation remains easily accessible and applicable for 

full field reservoir simulations and engineering”. 

The spontaneous water saturation, which is the water saturation where the capillary 

pressure is zero, is determined by an imbibition test in the laboratory and is used as a 

defined parameter in this correlation. 

The structure of the mathematical LET function F(x) is:  

 
 (   )  

   
 

   
   (1     ) 

  
    (3.5.2) 

where the parameter   describes the lower part of the curve and the parameter   

describes the upper part in a similar way. The parameter   specifies the position of the 

slope of the curve. The normalized water saturation is defined as     
      

          
. 

Since the secondary imbibition curve for an oil-water system consist of a positive 

(spontaneous) part and a negative (forced) part, two LET functions are combined to 

address this process. The versatile LET correlation for secondary imbibition capillary 

pressure can be written as 

     
      

       
       

  
     

  
      (3.5.3) 

where     
   and     

  
 are the preset maximum and minimum values of the spontaneous 

and forced capillary pressure respectively.  The first term in Eq. (3.5.3) represent the 

positive spontaneous part of the imbibition curve, where the LET function is given by 
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and the second term in Eq. (3.5.3) represents the negative forced part of the imbibition 

curve, where the LET function is 
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    (3.5.5) 

By substituting equation (3.5.4) and (3.5.5) into equation (3.5.3) we can write the 

secondary imbibition capillary pressure LET correlation as 
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By rearranging the equation above, the E-parameter in the spontaneous imbibition term 

can be calculated by 
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(3.5.7)   

where the spontaneous water saturation       normally is defined from imbibition tests 

in the laboratory.  

 

 

 

 

 

 

 

Remark: This is a simplified version of the LET correlation for the secondary imbibition 

capillary pressure. A constant term called the threshold pressure, which is used to raise 

or lower the slow varying part of the curve, has been neglected in equations (3.5.3, 3.5.6 

and 3.5.7). 

Figure 14: [A10] Variation in the forced E-parameter,    
   Figure 15: [A10] Variation of the spontaneous saturation,        
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3.6 Water saturation profiles - Effects of including capillary pressure  

Figure 16 shows a comparison of water saturation distributions, obtained by solving the 

modified Buckley-Leverett model given in Eq. (3.2.1) numerically, with different 

capillary pressure correlations. It also contains an analytical (exact) solution and a 

numerical solution obtained from the first BL model given by Eq. (2.1.14), where the 

capillary pressure is assumed to be zero.  

Figure 17 shows the associated capillary pressure curves. The yellow curve is not 

described in the paper, but is simply given by [7]        ( ) where   is a constant 

that must be specified. In this paper   0.217. 

Unless otherwise stated, the parameters from the table are used in this chapter. 

Parameters [Lomeland] [Skjaeveland] 

      100     
   1     1 

  0.5     
  

  1      1 

   3    
  

 50     0.5 

   2    
   2     0.5 

  0.5    
  

 1    0.1 

  0.833    
      

  
 1  

       0.5  

 

  

 

 

 

 

 

 Figure 16: Comparison of water saturation distributions                 Figure 17: Corresponding capillary pressure curves,    
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It is observed from Figure 16 that the saturation profile produced from the numerical 

solution, where capillary pressure is neglected, seems to have a relative sharp front. 

Once we include a capillary pressure term we see that the displacement front tends to 

smooth/smear out. This smearing effect depends strongly on the parameter  , the 

greater the value of   the more the front gets smeared out.  

To further demonstrate the effects of including capillary pressure we use the LET-

correlation with varying values of the empirical parameter    
  

 and the spontaneous 

water saturation      . Figure 18 and 19 illustrates the water saturation behavior and 

associated capillary pressure curves, by varying    
  

 and       respectively.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18: Comparison of water saturation distributions with corresponding capillary pressure curves (varying    
  

 )  

Figure 19: Comparison of water saturation distributions with corresponding capillary pressure curves (varying      ),    
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From figure 18 and 19 we can observe that the shape of the capillary pressure curve is 

important for the associated saturation profile. For decreasing values of    
  

 and/or 

increasing values of        the capillary pressure curve becomes more “elongated”  thus 

less variation in the derivative of   ( ). This tends to smooth the displacement front and 

results in a lower average saturation, but a longer travelled distance. The increase in 

travelled distance is relatively greater than the decrease in average water saturation and 

as a result, oil recovery was observed to increase before breakthrough (figure 20, left). 

Note that an increase in oil recovery (before breakthrough) was observed for all 

saturation profiles that included capillary pressure. Due to higher sweep efficiency, the 

solution with neglected capillary effects has the highest recovery at breakthrough. After 

breakthrough, as more water is injected, the recoveries are observed to behave similarly 

(illustrated in figure 20 (right)). 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 20: Oil recovery before breakthrough,        .  ,    
  

 [     ] (left) and after breakthrough (right) 
with and without Pc-effect 
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[6] The importance of the capillary forces in the displacement process are mainly 

determined by the dimensionless number,   
    

     
. A reduction in injection rate, 

porous media length and/or reference viscosity i.e. reduced oil viscosity, will result in 

increased capillary contribution to displacement process. Figure 21 illustrates this for 

increasing values of  . The LET-correlation has been used to express the capillary 

pressure curve.  

 

 

 

 

 

 

 

For high numbers of  , where capillary effects are dominant, there is less variation in the 

saturation gradients, resulting in more linearized saturation profiles. Figure 22 

illustrates this at different dimensionless times, T. This result is in some agreement with 

results presented in [6] and references therein. 

 

 

 

 

 

 

 

Figure 21: Comparison of saturation profiles with increasing capillary effect 

Figure 22: Saturation profiles at different times with dominant capillary effects 
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3.7 Capillary end effects 

[8] In this section we also include capillary end effects in the numerical simulations. 

Capillary end effects are a phenomenon that arises mainly in experiments performed on 

small core samples  where the length of the “reservoir” is small. If the capillary pressure 

at the outlet of the core is set to be zero, the water saturation at the outlet takes the 

value that satisfy,   ( )  0, i.e. the spontaneous water saturation      . Figure 23 

illustrate this effect for different spontaneous water saturations. 

 

 

 

 

 

 

In figure 24 we observe that the recovery before breakthrough is similar to recovery 

illustrated in figure 20, but after breakthrough the gap between the curves tends to 

increase a bit which is the opposite of the curves in figure 20. “This is a result of capillary 

end effects where the porous media try to retain some water at the end of the media in 

an attempt to maintain equilibrium across the outlet where the capillary pressure is set 

to be zero”. 

 

 

 

 

 

 

Figure 23: Comparison of saturation profiles with capillary end effects for different spontaneous water saturations 

Figure 24: Recovery comparison with and without capillary end effects,        . ,    
    ,    
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4. A new model with modified Buckley-Leverett theory 

[5] A new Buckley-Leverett model was developed by Terez and Firoozabadi [5] for 

studying water injection in water-wet fractured porous media. This model includes a 

time dependent transfer term that takes into account fluid exchange rate between 

matrix and fracture. This modified model covers both cocurrent and countercurrent 

imbibition and is computationally very efficient.  

They performed experiments on Berea sandstone, Kansas outcrop chalk and Austin 

chalk. The experimental results from Berea sandstone and Kansas chalk, (see paper), 

were compared and matched with implicit fine grid simulations by Eclipse simulator and 

the modified Buckley-Leverett model, BLM. The results showed overall a good match 

between experimental data and both simulations, but the computationally time were 

significantly less for the BLM. 

The BLM is used to explore the imbibition effect (both cocurrent and countercurrent) in 

a single block and to predict water injection in different types of multiblock systems. 

4.1 Derivation of the modified Buckley-Leverett Model (BLM) 

[5] Recall from the previous model that 

 
φ

 S

 t
   

  ( )

  
 

 

  
( ( )

   

  
)  

(4.1.1) 

In this model fracture capillary pressure is assumed to be zero, thus the right hand side 

of Eq. (4.1.1) vanishes. A transfer term,   , that represents the fluid exchange rate 

between matrix and fracture is included and parameters considering fracture properties 

are added.  

The modified model can be written as 
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(4.1.2) 

where S 
 

 is the fracture water saturation, and φ 
 

 is the effective fracture porosity. The 

effective fracture porosity is defined as the fracture volume divided by the total bulk 

volume of matrix and fracture. 
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The fracture fractional flow function,  (  
 
), is defined as 
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(4.1.3) 

where    
 

(  
 
) is the water relative permeability in the fracture and    

 
(  

 
) is the oil 

relative permeability. These are again given by: 
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(4.1.4) 
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where     and     are the endpoint values. In this chapter the Corey exponent   2.  

The expression for the transfer term   (   ) with variable fracture saturation can be 

written using Duhamel’s principle: 
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(4.1.6) 

“The time period from    to    is divided into   parts. Letting     and using the 

definition of an integral and integrating by parts, one obtains” 
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(4.1.7) 

The transfer term consists of a two terms; the first one account for the cocurrent 

imbibition and the second one for the countercurrent imbibition.   ,   ,    and    are 
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fixed parameters for a given set of matrix capillary pressure and matrix Corey relative 

parmeabilities. Only    varies with the injection rate.  

The parameters    and     represents the imbibition rate of the matrix blocks. These 

parameters can be estimated using fine grid simulation of a single field-size block. 

Calculations performed by Terez and Firoozabadi suggests that the saturation exponent, 

 , should take the value 0.5. See reference [5] for further details. 

4.2 Dimensionless form of BLM 

Like the two previous models, it is convenient to make the BLM dimensionless. 

Recall that 

  
  

   
   

  ( )

   
   0  

for the ordinary Buckley-Leverett model where the capillary pressure effects is 

neglected, i.e.    0  and where    
 

 
        

 

  
 . 

Since the transfer term consists of two terms we can divide it into      and      which 

represents the cocurrent imbibition rate and the countercurrent imbibition rate 

respectively. 

We use the expressions above in Eq. (4.1.2), and introduce two new dimensionless 

numbers,    and   , that depends on the length of porous media, total injection flow 

velocity and the transfer term parameters   ,   ,    and   .  

The dimensionless BLM equation can be written as (without the subscript D) 
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4.3 Discretization of BLM 

Recall that a discretization of the left hand side of Eq. (4.2.1) can be written as  
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(4.3.1) 

where the function   takes the form 
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and where   is an appropriate value such that   max[  ( )] and the function   is 

called the numerical flux and is an approximation of  ( ). 

In the above and subsequent equations, the fracture water saturation subscripts   and   

are dropped for the sake of brevity.  

A discrete version of the transfer terms can be written in the form 
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By substituting Eqs. (4.3.1)-(4.3.4) into Eq. (4.2.1) we obtain a discretization of the BLM 
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and a solution for the unknown   
    can be written as 
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(4.3.6) 

for cell   2 …    1 and   1 …   . The transfer terms     (  
 ) and     (  

 ) are 

given by Eqs. (4.3.3)-(4.3.4). 

The boundary and initial conditions are 

  (    0)  1  (  0  )  0.  (4.3.7) 

 

To avoid having to summarize the ∑    (  
 )

 
    (      ) 

    term for every new time 

step we will try to find another way to express this summation term within the transfer 

term   . In the following derivation, parameters that are not included in the summation 

term within the transfer term will be dropped for the sake of brevity. The time step size, 

  , and the saturation exponent,  , will also be excluded until the derivation is finished. 

Recall that the transfer term has been divided into two parts. 

For time step  , an expansion of the summation term can be written as 
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At time step   1 we get 
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Note that;         (         )          (         )       

We now multiply Eqs. (4.3.10)-(4.3.11) with    (  ) and    (  ) respectively 
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By comparing Eqs. (4.3.12)-(4.3.13) with Eqs. (4.3.8)-(4.3.9) we see that     
   ̂ and     
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can be written as 
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We now include the excluded parameters together with the expressions for the 

summation terms given in Eqs. (4.3.14)-(4.3.15) and we obtain new expressions for the 

transfer terms evaluated at time step   1  
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It is beneficial to evaluate the transfer term at time step   in order to maintain an 

explicit solution. This reduction from time step   1 to   may result in some stability 

problems. 
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The substitution of Eqs. (4.3.18)-(4.3.19) into Eq. (4.3.6) completes the new formulation 

and a solution for   
    can be written as 
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(4.3.20) 

for cell   2 …    1 and   1 …   . The transfer terms     (  
 ) and     (  

 ) are 

given by Eqs. (4.3.18)-(4.3.19), the numerical flux   
  is given by Eq. (4.3.2) and the 

dimensionless constants    and    can be found in Eq. (4.2.1). 

Figure 25 illustrates the effect the transfer term has on the fracture saturation profile.  

 

 

 

 

 

 

 

 

Figur 25: Effect of transfer term on fracture water saturation profiles at different times, the dashed 
lines represents solutions for qw=0 
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It is observed that as the saturation front moves along the fracture water is lost to 

matrix due to spontaneous imbibition.  This result in a decreasing fracture water front 

saturation and also tends to decrease the velocity which the front is traveling with, and 

consequently an increase in breakthrough time is observed.  The parameters used to 

obtain figure 25 are presented in section 4.4. 

4.4 Numerical investigation 

[5, 9] We consider a water-wet porous media consisting of a fracture with porosity 

   1 and matrix with porosity    0.2. The media is initially saturated with oil and 

residual saturations are neglected i.e.         0. The system considers immiscible 

flow of two incompressible fluids, water and oil. Fracture capillary pressure is assumed 

zero and the matrix capillary pressure and relative permeabilities are incorporated in 

the transfer term. 

 

 

 

 

 

 

 

The length between injector and producer is set to    1    and the length in y and z-

direction is set to       0.245  . This gives a total volume,    0.06   , which can 

be separated into a matrix volume,    0.05   , and a fracture volume,    0.01   .   

We want to express the volumes in terms of pore volumes. The total pore volume is 

given by 

                         0.02            (4.4.1) 

Note that 1 fracture pore volume is equal to 1 matrix pore volume i.e.        .           

Figure 26: Cross section of the porous media seen from above 
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For the first demonstration we will use the following constant input parameters: 

Injection rate    
 

 
      ⁄  1.16  10      ⁄ , injection velocity         ⁄  

1.93  10     ⁄ , fracture Corey exponent    2, fracture capillary pressure is assumed 

zero and the transfer term parameters are set to    0.10,     0.02,    1.11  

10           2.78  10           0.5, and thus the dimensionless constants becomes 

   
 (    )

  
 0.576    

 (    )

  
 0.029.  

Remark: SI units have been used, as opposed to units used in [5]. Similar ratios between 

transfer term parameters presented in [5] have been used in this demonstration. 

To study the oil recovery we can divide the total oil recovery into two parts, recovery 

from fracture,     and recovery from matrix,   . For this case where         
 

 
     

we can write the total oil recovery as follows 
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where  ( )  ∑   
  

        and   ( )  ∑   
 
      , and where    

 

 
 0.01. 

 

 

 

 

 

 

 

 

It is observed that after injection of 3    , ca. 89 % of the oil in the fracture has been 

produced and ca. 54 % matrix-oil has been produced due to spontaneous imbibition. It is 

observed that the fracture recovery rate is highest both before and after breakthrough.  

Figure 26: Fracture, matrix and total oil recovery 
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To study the difference between strong and weak spontaneous imbibition, simulations 

at different injection rates were performed. It is observed that a decrease in injection 

rate i.e. a decrease in injection velocity results in a proportional increase of the 

dimensionless numbers    and   , which in turn increases the transfer term effect, 

resulting in a higher fracture-matrix fluid exchange i.e. stronger spontaneous imbibition.  

From figure 27 we observe that as the injection rate decreases more water is lost to 

matrix and as a result a higher breakthrough time is obtained. Recall that dimensionless 

time is equal to pore volumes injected and that the solution at       has its front at 

  1. 

 

 

 

 

 

 

 

 

 

Note that: The same parameters as in the previous example have been used to obtain 

figure 27 and 28. Only the injection velocity have been varied, except for the case when 

injection rate    0.125        . Recall that the cocurrent imbibition parameter    

might vary with the injection rate based on observations made by Terez and Firoozabadi 

[5]. It was observed that simulations performed at    0.125         with the given 

   produced unrealistic solutions. Thus    has been reduced by a factor of 1.6 at this 

injection rate. 

 

Figure 27: Comparison of fracture water saturation distribution for different injection rates at       
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Although water is lost to matrix and hence oil recovery from the fracture is reduced, 

relatively more oil is recovered from matrix at a given time due to spontaneous 

imbibition resulting in a higher total recovery compared with only recovery from 

fracture with transfer term set to zero (compare with blue line in figure 28). Figure 28 

illustrates the increase in breakthrough time and recovery as injection rate is reduced.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28: Oil recovery at breakthrough for different injection rates, strong vs. weak spontaneous imbibition 
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Appendix A 

Matlab codes for analytic solution 

load ParaScalar.DEF; 

N    = ParaScalar(1,1); 

T = ParaScalar(1,2); 

a    = ParaScalar(1,3); 

NSTEP = ParaScalar(1,4); 

M    = ParaScalar(1,7); 

no = ParaScalar(1,8); 

nw = ParaScalar(1,9); 

 

%% Ant Noder (N)   TIME     e f'   NSTEP       mu_o  mu_w  M  nw  no    T 

% 

%                 CASE I                             CASE analytical 

     100            0.5       4      20          2    1   0.5  2   2    0.5 

 

Corey relative permeabilities [A1] 

function [fw,fo] = rel_perm(u,no,nw) 

  
fw   = zeros(size(u)); 
fo   = zeros(size(u)); 

  
fw = u.^nw; 
fo = (1-u).^no; 
 

%Plot Corey relperms 

figure(2) 

s = 0:0.01:1; 

[kw,ko] = rel_perm(s,no,nw); 
plot(s,kw,'-g','LineWidth',2);hold on 
plot(s,ko,'-r','LineWidth',2);hold on 
drawnow; 

title('corey relperms'); 

xlabel('s-axis') 

ylabel('kri') 

 

Fractional flow curve [A2] 

function f=Fflux(u,M,no,nw) 

  
f   = zeros(size(u)); 

  
[fw,fo] = rel_perm(u,no,nw); 

  
f = fw./(fw+M*fo); 

 



Models for water flooding, imbibition and coupled fracture-
matrix flow in a fractured reservoir 

 

Spring 2013 Page 51 
 

%Plot f(s) 

s=0:0.01:1; 
F = Fflux(s,M,no,nw); 
plot(s,F,'-','LineWidth',2);hold on 
axis([0 1 -0.1 1.1]); 
drawnow; 
grid on 
xlabel('s-axis') 
ylabel('f-axis') 
hold off 

 

[1] Fractional flow derivative [A3] 

function f=Fflux_Df(s,M,no,nw) 

  

f = zeros(size(s)); 

  

f(:) = ((M.*(((1-s(:).^(nw-1)).*s(:).^(no-1).*(no.*(1-

s(:))+s(:).*nw)))))./((s(:).^no+M.*(1-s(:)).^nw)).^2 

 
%plot Df 

figure(3) 

s = 0:0.01:1; 

plot(s,Fflux_Df(s,M,no,nw),'-');hold on 

drawnow; 

title('flux function Df(s)'); 

xlabel('s-axis') 

ylabel('Df-axis') 

 

 

[1] Saturation movement, unphysical solution [A4] 

function f = Fflux_DfT(s,M,no,nw,T) 

  

f = zeros(size(s)); 

 

f(:) = T.*((M.*(((1-s(:).^(nw-1)).*s(:).^(no-1).*(no.*(1-

s(:))+s(:).*nw)))))./((s(:).^no+M.*(1-s(:)).^nw)).^2; 

  

% plot s(x) unphysical solution 

figure(4) 

plot(Fflux_DfT(s,M,no,nw,T),s),'-';hold on 

drawnow; 

title('Saturation movement, unphysical solution'); 

xlabel('x-axis') 

ylabel('s-axis') 
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[1] Saturation movement, area balancing [A5] 

function f = DfT_sol(s,M,no,nw,T) 

  

f = zeros(size(s)); 

  

f(:) = T.*((M.*(((1-s(:).^(nw-1)).*s(:).^(no-1).*(no.*(1-

s(:))+s(:).*nw)))))./((s(:).^no+M.*(1-s(:)).^nw)).^2; 

 
% plot s(x) the solution with area     

  

figure(5) 

xstar = T*((M*(((1-sstar^(nw-1))*sstar^(no-1)*(no*(1-

sstar)+sstar*nw)))))/((sstar^no+M*(1-sstar)^nw))^2; 

plot(DfT_sol(s,M,no,nw,T),s),'-';hold on 

s = 0:0.01:sstar; 

line([xstar;xstar],[0;sstar]); 

  

drawnow; 

title('Saturation movement Area balancing'); 

xlabel('x-axis') 

ylabel('s-axis') 

 

[1] Determination of front saturation height [A6] 

function f = Fflux_tangent(s,M,no,nw) 

  

f = zeros(size(s)); 

  

f(:) = (s(:).*((M.*(((1-s(:).^(nw-1)).*s(:).^(no-1).*(no.*(1-

s(:))+s(:).*nw))))) ... 

    ./((s(:).^no+M.*(1-s(:)).^nw)).^2)-s(:).^no./(((s(:).^no)+(M.*(1-

s(:)).^nw))); 

 

% plot determination of the front saturation height function 

figure (6) 

sstar = fzero(@(x) Fflux_tangent(x,M,no,nw),0.5); 

fstar = sstar^no/((sstar^no)+(M*(1-sstar)^nw)); 

plot(s,Fflux_tangent(s,M,no,nw),'-');hold on 

drawnow; 

 

S  = sstar = 0.5774  
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[1] Graphical determination of the front saturation [A7] 

% plot flux function f(s) 

figure(7) 

s = 0:0.01:1; 

plot(s,Fflux_f(s,M,no,nw),'-');hold on 

drawnow; 

title('flux function f(s)'); 

xlabel('s-axis') 

ylabel('f-axis') 

  

%tangent to fractional flow curve 

sstar = fzero(@(x) Fflux_tangent(x,M,no,nw),0.5) 

fstar = sstar^no/((sstar^no)+(M*(1-sstar)^nw)) 

% gradient a 

a = fstar/sstar; 

s = 0:0.01:1; 

g = s(:).*a; 

plot(s,g),('--g');hold on 

 

[1] Saturation distribution after time T [A8] 

% plot s(x) the solution,  

figure (8) 

xstar = T*((M*(((1-sstar^(nw-1))*sstar^(no-1)*(no*(1-

sstar)+sstar*nw)))))/((sstar^no+M*(1-sstar)^nw))^2; 

s = sstar:0.01:1; 

plot(DfT_sol(s,M,no,nw,T),s),'-';hold on  

drawnow; 

title('Saturation movement'); 

xlabel('x-axis') 

ylabel('s-axis') 

s = 0:0.01:sstar; 

line([xstar;xstar],[0;sstar]); 

 

Diffusion coefficient, a(s) [A9] 

function f = diff_coeff(u,F,ko,mu_oD) 

  
f   = zeros(size(u)); 
f = (-1/mu_oD).*(ko.*F); 

 
% plot diffusion coefficient a(s) 
subplot(2,2,3) 
A = diff_coeff(s,F,ko,mu_oD); 
plot(s,A,'-b','LineWidth',2);hold on 
axis([0 1 -0.14 0]); 
grid on 
legend('a(s)') 
title('Diffusion coefficient a(s)'); 
xlabel('s-axis') 
ylabel('a-axis') 
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Capillary pressure correlations [A10] 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%    Capillary pressure functions 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
function Pc=cap_pressure(u,B,cw,co,aw,ao,Pmax,Pmin,Es,Ef,Ls,Lf,Ts,Tf) 

  
Pc = zeros(size(u)); 

  
%Capillary pressure correlation for mixed-wet reservoirs 

  
%Pc = B.*((cw./(u+0.01).^aw) + (co./((1-u+0.01).^ao))); 

  
% [7] 
%Pc = -B*log(u+0.01); 

  
%A new versatile capillary pressure correlation, 

  
Pc = ((Pmax.*((1-u).^Ls))./(((1-u).^Ls)+(Es.*((u).^Ts))))... 
    +((Pmin.*((u).^Lf))./(((u).^Lf)+(Ef.*((1-u).^Tf)))); 

 

%E-parameter for spontaneous imbibition 

 
function Es=Es(Swsin,Pmax,Pmin,Ef,Ls,Lf,Ts,Tf) 

  
Es = zeros(size(Swsin)); 

  
Es = -((Pmax*((Swsin^Lf)+(Ef*((1-Swsin)^Tf))))/(Pmin*(Swsin^Lf))+1)... 
    *(((1-Swsin)^Ls)/(Swsin^Ts)); 

 

% plot capillary pressure function Pc(s) 

%Note: Constants need to be specified; 

%B,cw,co,aw,ao,Pmax,Pmin,Ef,Ls,Lf,Ts,Swsin 
figure(2) 
subplot(2,2,1) 
Es = Es(Swsin,Pmax,Pmin,Ef,Ls,Lf,Ts,Tf) 
Pc = cap_pressure(s,B,cw,co,aw,ao,Pmax,Pmin,Es,Ef,Ls,Lf,Ts,Tf); 
plot(s,Pc,'-r','LineWidth',2);hold off 
drawnow; 
grid on 
legend('P_c(s)') 
title('Capillary pressure, P_c(s)'); 
xlabel('s-axis') 
ylabel('P_c-axis') 
hold on 
%Swsi 
Swsi = fzero(@(s) 

cap_pressure(s,B,cw,co,aw,ao,Pmax,Pmin,Es,Ef,Ls,Lf,Ts,Tf),0.4) 
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Appendix B 

Matlab codes for numerical solution of the BL-equation including capillary pressure 

Note: I got handed a complete numerical code and a solution procedure. All 

modifications conducted by me alone or in cooperation with my supervisor are noted 

with the symbol “**”. 

% Relaxed Scheme 

 
function 

%%[v2]=sol_relaxedScalar_ny(v0,dt,x,dx,e,M,no,nw,e2,eps,B,cw,co,aw,ao,mu_oD

,Pmax,Pmin,Es,Ef,Ls,Lf,Ts,Tf,Sws) 

  
n = length(x); 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Bestem antall ordinaere tidssteg 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%dT = [0.75*dx/(e) , **0.25*dx^2/(e2)] 
**dT = min(dT) 

  
nstep = fix(dt/dT +1.5); 
dT = dt/nstep; 
fprintf(1,'\n----------------------------------------\n'); 
fprintf(1,'       Relaxed Scheme Scalar   \n'); 
fprintf(1,'------------------------------------------\n'); 
fprintf(1,'Antall steg               : %d\n', nstep); 
fprintf(1,'Antall noder              : %d\n', length(x)); 
fprintf(1,'max Df                    : %f\n', e); 
fprintf(1,'max (a(s)*DPc)            : %f\n', e2); 
fprintf(1,'min(dT)                   : %f\n', dT); 
fprintf(1,'epsilon                   : %f\n', eps); 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Beregn loesning ved vanlig metode 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
v1         = zeros(size(v0)); 
v1_s       = zeros(size(v0)); 
w1_s_half  = zeros(size(v0)); 

  
v2         = zeros(size(v0)); 
f_s        = zeros(size(v0)); 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
**kr_o       = zeros(size(v0)); 
**kr_w       = zeros(size(v0)); 
**a_s        = zeros(size(v0)); 
**Pc_s       = zeros(size(v0)); 
**a_s_half   = zeros(size(v0)); 
**DPc_s_half = zeros(size(v0)); 
**DPc_s_L    = zeros(size(v0)); 
**a_s_half_L = zeros(size(v0)); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
fpl          = zeros(size(v0)); 
fmi          = zeros(size(v0)); 
Dfpl         = zeros(size(v0)); 
Dfmi         = zeros(size(v0)); 
sigma_pl     = zeros(size(v0)); 
sigma_mi     = zeros(size(v0)); 

  
ts = cputime; 

  
v1 = v0; 

  
lambda = dT/dx; 
i_dx   = 1/dx; 

  
I=2:n-1; 
J=1:n-1; 
K=1:1; 

  
for i=1:nstep 

   
    %%%%%%%%%%%%%% 
    %%  Step 1  %% 
    %%%%%%%%%%%%%% 
    v1_s = v1; 
    v1_s_L = 1.0; 

     
    f_s   = Fflux(v1_s,M,no,nw);      
    f_s_L = Fflux(v1_s_L,M,no,nw); 

     
   **[kr_w,kr_o] = rel_perm(v1_s,no,nw); 
   **kr_o_L = rel_perm(v1_s_L,no,nw); 

     
   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
**a_s    = -(kr_o/mu_oD).*f_s; 
**Pc_s   = cap_pressure(v1_s,B,cw,co,aw,ao,Pmax,Pmin,Es,Ef,Ls,Lf,Ts,Tf); 

     
**a_s_L =  -(kr_o_L/mu_oD).*f_s_L; 
**Pc_s_L =  cap_pressure(v1_s_L,B,cw,co,aw,ao,Pmax,Pmin,Es,Ef,Ls,Lf,Ts,Tf); 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
    fpl(K,:)  = f_s(K,:) + e*v1_s(K,:);  
    fmi(K,:)  = f_s(K,:) - e*v1_s(K,:); 
    Dfpl(K,J) = i_dx*(fpl(K,J+1)-fpl(K,J)); 
    Dfmi(K,J) = i_dx*(fmi(K,J+1)-fmi(K,J)); 

        
    fpl_L  = f_s_L + e*v1_s_L;  
    fmi_L  = f_s_L - e*v1_s_L; 
    Dfpl_L = i_dx*(fpl(K,1)-fpl_L); 
    Dfmi_L = i_dx*(fmi(K,1)-fmi_L); 
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    %%%%%%%%%%%%%%% 
    % sigma_pluss % 
    %%%%%%%%%%%%%%%   
    sigma_pl_L  = Sigma( Dfpl_L,Dfpl(K,1) ); 
    sigma_pl_LL = Sigma( 0,Dfpl_L ); 

     
    sigma_pl(K,1) = sigma_pl_L;   
    sigma_pl(K,n) = 0;  
    sigma_pl(K,I) = Sigma( Dfpl(K,I-1),Dfpl(K,I) ); 

     
    %%%%%%%%%%%%%%% 
    % sigma_minus % 
    %%%%%%%%%%%%%%%   
    sigma_mi(K,1) = Sigma( Dfmi_L,Dfmi(K,1) );    
    sigma_mi(K,n) = 0;  
    sigma_mi(K,I) = Sigma( Dfmi(K,I-1),Dfmi(K,I) ); 

     

    
    % MUSCL Case 
    w1_s_half(K,J) = 0.5*( fpl(K,J) + 0.5*dx*sigma_pl(K,J) ) ... 
                   + 0.5*( fmi(K,J+1) - 0.5*dx*sigma_mi(K,J+1) ); 

     
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%            
    % Legg inn beskrivelse av a(s) og Pc(s)     

     
    **a_s_half(K,J)  = 0.5*(a_s(K,J+1) + a_s(K,J)); 
    **DPc_s_half(K,J) = ((Pc_s(K,J+1) - Pc_s(K,J))/dx); 

   
    **DPc_s_L = (Pc_s(K,1) - Pc_s_L)/(dx*0.5);  
    **a_s_half_L = a_s(K,1); 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

                
    % flux at inlet end 
    w1_s_half_L = f_s_L; 
     

    % interior domain 

 
**v2(K,I) = v1_s(K,I) - lambda*(w1_s_half(K,I) - w1_s_half(K,I-1))... 
             + lambda*eps.*((a_s_half(K,I).*DPc_s_half(K,I)) -   

            (a_s_half(K,I-1).*DPc_s_half(K,I-1))); 

     
    % first cell 

    
    **v2(K,1) = v1_s(K,1) - lambda*(w1_s_half(K,1) - w1_s_half_L)... 
       + lambda*eps.*((a_s_half(K,1) * DPc_s_half(K,1)) - (a_s_half_L *  

       DPc_s_L)); 

     

         
    % last cell 
     %v2(1,n) = v2(1,n-1); 

 

     %including capillary end effects 

     **v2(1,n) = Sws; 
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%% Update to prepare for new local timestep  %%    

  
 v1 = v2;    % relaxating scheme  

  
end 
etime = cputime - ts; 
fprintf(1,'CPU-tid                   : %f\n', etime ); 
%%%%%%%%%%%%%%%%%%%%%%% 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Van Leer limiter         % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function Sigma=Sigma(u,v) 

  
Sigma = zeros(size(u)); 
L = abs(v) >= 0.0001; 
theta = zeros(size(L)); 

  
Sigma(~L)=0; 

  
theta(L)=u(L)./v(L); 
Sigma(L)=v(L).*( (abs(theta(L))+theta(L))./(1+abs(theta(L))) ); 

  
%Sigma = zeros(size(u)); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%    Solution Procedure 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

  
% grid in space 
dx = 1.0/N; 
x  = 0+0.5*dx:dx:1.0-0.5*dx; 
n  = length(x); 

  
% les inn initial data 
u0 = zeros(1,n); 
u0 = init_func(x); 

  
 % plot initial data (sjekk) 
figure(1) 
subplot(2,2,2) 
plot(x,u0(:),':','LineWidth',2);hold on 
axis([0 1 -0.1 1.1]); 
drawnow; 
grid on 
title('Initial Water Saturation s_0'); 
xlabel('x-axis') 
ylabel('s-axis') 

  
pause 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%    Solution Procedure 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
u     = zeros(1,n); 
u_pre = zeros(1,n); 

  
oil_recovery = zeros(1,NSTEP+1); 

  
% first timestep 
u_pre = u0; 

  
dt = Time./NSTEP; 
t  = 0:dt:Time; 
oil_recovery(1) = 0; 

  
for step = 1:NSTEP 
fprintf(1,'\n------------------------------------------\n'); 
fprintf(1,'Bestemmer lÖsning ved tid : %f\n', dt*step); 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  Calculate solution 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 

**[u]=sol_relaxedScalar_ny(u_pre,dt,x,dx,a,M,no,nw,a2,epsi,B,cw,co,aw,ao,mu

_oD,Pmax,Pmin,Es,Ef,Ls,Lf,Ts,Tf,Swsi); 
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% calculate oilrecovery 
oil_recovery(step+1) = dx*sum(u); 

  
% plot oilrecovery 
figure(1) 
subplot(2,2,4) 
plot(t,oil_recovery,'-g','LineWidth',2);hold off 
title('Oil Recovery'); 
xlabel('time-axis') 
ylabel('oilrecovery-axis') 
axis([0 Time 0 1]); 
grid on 
drawnow; 
hold on 

  
% plot initial data + solution 
figure(2) 
subplot(2,2,4) 
plot(x,u0(:),':','LineWidth',2);hold on 
title('Water Saturation Distribution s(x)'); 
xlabel('x-axis') 
ylabel('s-axis') 
plot(x,u(:),'-','LineWidth',2); 
axis([0 1 -0.1 1.1]); 
grid on 
drawnow;  
hold on 

  
% Oppdatering av initial data for hyperpolic part 
u_pre = u; 

  
pause 

  
%%%%%%%%%%%%%%%%%%%%%%% 
end  % time step loekke 

  
% print to file 
Tabell_1 = [x; u]; 
fid = fopen('num.data','w'); 
fprintf(fid,'%f %f\n', Tabell_1); 
fclose(fid); 

  
pause 

  
% plot exact solution in the same plot as numerical solution 
load sol.data 
hold on 
x1  = sol(:,1); 
u1  = sol(:,2); 
figure(2) 
subplot(2,2,4) 
plot(x1,u1,'-r','LineWidth',2); 
grid on 
%legend('initial saturation','exact solution','numerical solution')  
hold on 
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Appendix C 

Matlab codes for numerical solution of the modified Buckley-Leverett equation 

Note: I got handed a complete numerical code and a solution procedure. All 

modifications conducted by me alone or in cooperation with my supervisor are noted 

with the symbol “**”. 

% Relaxed Scheme 

 
function 

**[v2,q1_s]=sol_relaxedScalar_qw_ny1(v0,q0,dt,x,dx,e,M,no,nw,sigma1,sigma2,

eps1,eps2,m) 

  
% Relaxed Scheme 

  
n = length(x); 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Bestem antall ordinaere tidssteg 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
dT = 0.75*dx/(e); 
nstep = fix(dt/dT +1.5); 
dT = dt/nstep; 
fprintf(1,'\n----------------------------------------\n'); 
fprintf(1,'       Relaxed Scheme Scalar   \n'); 
fprintf(1,'------------------------------------------\n'); 
fprintf(1,'Antall steg               : %d\n', nstep); 
fprintf(1,'Antall noder              : %d\n', length(x)); 
fprintf(1,'max Df                    : %f\n', e); 
fprintf(1,'dT                        : %f\n', dT); 
fprintf(1,'Cocurrent constant        : %f\n', eps1); 
fprintf(1,'Countercurrent constant   : %f\n', eps2); 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Beregn loesning ved vanlig metode 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
v1         = zeros(size(v0)); 
v1_s       = zeros(size(v0)); 
w1_s_half  = zeros(size(v0)); 

  
v2         = zeros(size(v0)); 
f_s        = zeros(size(v0)); 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
**q1         = zeros(size(v0)); 
**q1_s       = zeros(size(v0)); 
**q2         = zeros(size(v0)); 
**q1_loc_old = zeros(size(v0)); 
**q2_loc_old = zeros(size(v0)); 
**q1_loc_new = zeros(size(v0)); 
**q2_loc_new = zeros(size(v0)); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
fpl          = zeros(size(v0)); 
fmi          = zeros(size(v0)); 
Dfpl         = zeros(size(v0)); 
Dfmi         = zeros(size(v0)); 
sigma_pl     = zeros(size(v0)); 
sigma_mi     = zeros(size(v0)); 

   
ts = cputime; 

  
v1 = v0; 
**q1 = q0; 

  
lambda = dT/dx; 
i_dx   = 1/dx; 

  

  
I=2:n-1; 
J=1:n-1; 
K=1:1; 

  
for i=1:nstep 

   
    %%%%%%%%%%%%%% 
    %%  Step 1  %% 
    %%%%%%%%%%%%%% 
    v1_s = v1; 
    v1_s_L = 1.0; 

     
  **q1_s = q1; 

     
    f_s   = Fflux(v1_s,M,no,nw);      
    f_s_L = Fflux(v1_s_L,M,no,nw); 

     
  **q1_loc_old = q0; 
  **q2_loc_old = q0; 
  **q1_s = SOURCE(v1_s,q1_loc_old,q2_loc_old,dT,sigma1,sigma2,eps1,eps2,m); 

       
    fpl(K,:)  = f_s(K,:) + e*v1_s(K,:);  
    fmi(K,:)  = f_s(K,:) - e*v1_s(K,:); 
    Dfpl(K,J) = i_dx*(fpl(K,J+1)-fpl(K,J)); 
    Dfmi(K,J) = i_dx*(fmi(K,J+1)-fmi(K,J)); 

        
    fpl_L  = f_s_L + e*v1_s_L;  
    fmi_L  = f_s_L - e*v1_s_L; 
    Dfpl_L = i_dx*(fpl(K,1)-fpl_L); 
    Dfmi_L = i_dx*(fmi(K,1)-fmi_L); 

 

    %%%%%%%%%%%%%%% 
    % sigma_pluss % 
    %%%%%%%%%%%%%%%   
    sigma_pl_L  = Sigma( Dfpl_L,Dfpl(K,1) ); 
    sigma_pl_LL = Sigma( 0,Dfpl_L ) 
    sigma_pl(K,1) = sigma_pl_L;   
    sigma_pl(K,n) = 0;  
    sigma_pl(K,I) = Sigma( Dfpl(K,I-1),Dfpl(K,I) ) 
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    %%%%%%%%%%%%%%% 
    % sigma_minus % 
    %%%%%%%%%%%%%%%   
    sigma_mi(K,1) = Sigma( Dfmi_L,Dfmi(K,1) );    
    sigma_mi(K,n) = 0;  
    sigma_mi(K,I) = Sigma( Dfmi(K,I-1),Dfmi(K,I) ); 

     
  **q1_s(K,I); 

  
    % MUSCL Case 
    w1_s_half(K,J) = 0.5*( fpl(K,J) + 0.5*dx*sigma_pl(K,J) ) ... 
                   + 0.5*( fmi(K,J+1) - 0.5*dx*sigma_mi(K,J+1) ); 

                

    
    % flux at inlet end 
    w1_s_half_L = 1.0; 

            
    % interior domain 

     
  **v2(K,I) = v1_s(K,I) - lambda*(w1_s_half(K,I) - w1_s_half(K,I-1)) – 

              dT*q1_s(K,I); 

     
    % first cell  
  **v2(K,1) = v1_s(K,1) - lambda*(w1_s_half(K,1) - w1_s_half_L) –  

              dT*q1_s(K,1); 

    
    % last cell 
     v2(1,n) = v2(1,n-1);   

  
   **q1_loc_new = exp(-sigma1*dT)*(q1_loc_old+v2); 
   **q2_loc_new = exp(-sigma2*dT)*(q2_loc_old+v2); 

           
%% Update to prepare for new local timestep  %%    

  
 v1 = v2;    % relaxating scheme   
**q1_loc_old = q1_loc_new; 
**q2_loc_old = q2_loc_new; 
**q1 = q1_s; 
**q1 = q2; 

  
end 
etime = cputime - ts; 
fprintf(1,'CPU-tid                   : %f\n', etime ); 
%%%%%%%%%%%%%%%%%%%%%%% 
function Sigma=Sigma(u,v) 

  
Sigma = zeros(size(u)); 
L = abs(v) >= 0.0001; 
theta = zeros(size(L)); 

  
Sigma(~L)=0; 

  
theta(L)=u(L)./v(L); 
Sigma(L)=v(L).*( (abs(theta(L))+theta(L))./(1+abs(theta(L))) ); 

  
%Sigma = zeros(size(u)); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%    Transfer term qw 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
**function qw=SOURCE(u,q1_loc_old,q2_loc_old,dT,sigma1,sigma2,eps1,eps2,m) 

  
**qw = zeros(size(u)); 

  
**qw = ((eps1*((u.^m)-(sigma1*dT*((q1_loc_old*exp(-             

        sigma1*dT))+((u.^m)*(exp(-sigma1*dT)))))))+... 

       (eps2*((u.^m)-(sigma2*dT*((q2_loc_old*exp(-     

        sigma2*dT))+((u.^m)*(exp(-sigma2*dT)))))))); 

  

 
%Viscous and transfer term parameters 
L    = 1; 
%L    = 0.4553 %Berea single slab 
u_t  = 0.5*(3.8564*10^-6) %Demonstration case 0.5 PVt/day 
 

%Transfer term constants 
sigma1 = 1/(25*3600); %Demonstration case @ 0.5 PVt/day 
sigma2 = 1/(100*3600); %Demonstration case @ 0.5 PVt/day 
R1 = 0.10; %Demonstration case @ 0.5 PVt/day 
R2 = 0.02; %Demonstration case @ 0.5 PVt/day 
m = 0.5; 

  
eps1 = (L*R1*sigma1)/u_t; 
eps2 = (L*R2*sigma2)/u_t; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%    Solution Procedure 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 

% grid in space 
dx = 1.0/N; 
x  = 0+0.5*dx:dx:1.0-0.5*dx; 
n  = length(x); 

  
% les inn initial data 
u0 = zeros(1,n); 
u0 = init_func(x); 
**q0 = zeros(1,n); 
**q0 = init_func_qw(x); 

  
% plot initial data (sjekk) 
figure(1) 
subplot(2,2,2) 
plot(x,u0(:),':','LineWidth',2);hold on 
axis([0 1 -0.1 1.1]); 
drawnow; 
grid on 
title('Initial Water Saturation s_0'); 
xlabel('x-axis') 
ylabel('s-axis') 

   
pause 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%    Solution Procedure 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
u     = zeros(1,n); 
u_pre = zeros(1,n); 

  
%Legg inn qw og qw_pre 
**qw   = zeros(1,n); 
**qw_pre = zeros(1,n); 

  
oil_recovery = zeros(1,NSTEP+1); 

  
% first timestep 
u_pre = u0; 
**qw_pre = q0; 

  
dt = Time./NSTEP; 
t  = 0:dt:Time; 
oil_recovery(1) = 0; 

  
for step = 1:NSTEP 
fprintf(1,'\n------------------------------------------\n'); 
fprintf(1,'Bestemmer lÖsning ved tid : %f\n', dt*step); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  Calculate solution 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
**[u,qw]=sol_relaxedScalar_qw_ny1(u_pre,qw_pre,dt,x,dx,a,M,no,nw,sigma1,     

                                  sigma2,eps1,eps2,m); 

  
% calculate oilrecovery 
%oil_recovery(step+1) = dx*sum(u) 
**oil_recovery(step+1) = dx*sum(u)*0.5+dx*sum(qw)*0.5; 
%oil_recovery(step+1) = dx*sum(qw)*0.5 

 
% plot oilrecovery 
figure(1) 
subplot(2,2,4) 
plot(t,oil_recovery,'-g','LineWidth',2);hold on 
title('Oil Recovery'); 
xlabel('time-axis') 
ylabel('oilrecovery-axis') 
axis([0 Time 0 1]); 
grid on 
drawnow; 
hold on 

  
% plot initial data + solution 
figure(1) 
subplot(2,2,3) 
plot(x,u0(:),':','LineWidth',2);hold on 
title('Water Saturation Distribution s(x)'); 
xlabel('x-axis') 
ylabel('s-axis') 
plot(x,u(:),'-','LineWidth',2); hold on 
axis([0 1 -0.1 1.1]); 
grid on 
drawnow;  
hold on 

  
% Oppdatering av initial data for hyperpolic part 
u_pre = u; 
**qw_pre = qw; 
%q1_loc_old=q1_loc_new 

  
pause 

  
%%%%%%%%%%%%%%%%%%%%%%% 
end  % time step loekke 

  

 

 

 

 

 


