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Abstract
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Automatic evaluation of drilling fluid properties during conventional and

MPD operations

by Kurt Louis Krogsæter

The primary barrier to maintain well integrity in drilling operations is the drilling fluid.

With the current routines of evaluating the fluid properties and the increasingly use of

automated and advanced drilling technology, the margin of error could be fatal.

The main focus of this thesis is to evaluate if differential-pressure measurements could

be used to continuously evaluate fluid properties. An experimental set-up was built with

differential-pressure sensors across a horizontal and a vertical section. The density and

the friction factor were then calculated regardless of laminar or turbulent flow. The test

were performed with water.

During the testing phase, it was discovered that the pump characteristics were not

accurate for very low flow rates. For higher flow rates the experimental set-up showed

promising data values that could characterize the properties of water, but it still need

further work to achieve reliable data. . .
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Chapter 1

Introduction to the thesis topic

One of the main barriers to maintain well integrity in drilling operations is the drilling

fluid. It is therefore desirable to have the fluid column in an overbalanced pressure-

state in the well to prevent unintended influx of hydrocarbons. In today’s oil and gas

industry the pressure margins gets more and more narrow to reach the desired and

available hydrocarbon reserves. Therefore the parameters of the drilling fluid, rheology

properties and density, has to be carefully monitored.

With more marginal prospects and harsher climate the operations are located at, the

oil and gas industry needs to advance their technology to overcome these challenges

up ahead with respect to safety and environment. New and more complex drilling

fluid components have been introduced such as high-viscosity pills, polymers, weighting

materials and spacer fluids. These new additions to the drilling fluid creates an increased

challenge of estimating the rheology and density of the fluid without a good knowledge

of the substance. The current routine standard tests performed at the operation site is

done manually. Density of the drilling fluid is usually controlled every 15 minutes at

atmospheric pressure and temperature conditions. These estimation can be incorrect

accordingly to the true data values of the fluid properties. Within the well there is a

higher pressure and temperature environment, and this can lead to different rheology

properties than measured at surface.

A more stable and accurate way of anticipating the rheology of the drilling fluid, is

needed for the automated and advanced drilling technologies that are being used to-

day. By replacing the manually routine test with introducing an automated continuous

measurement test, can be very beneficial to automated well-control operations.

Carlsen [1] examined in her paper if it is possible to achieve constant on-line monitoring

of dynamic viscosity and frictional factor through a pipe with differential-pressure sensor

1



Chapter 1. Introduction to the thesis topic 2

across a pipe. Tests on a instrumental 20 meter horizontal 4 inch pipe indicated that

this is highly feasible. The tests were performed at the IRIS Ullring drilling and well

center test facilities.

1.1 Automated Drilling Hydraulics Laboratory

Previous students at the University of Stavanger have been developing and working

with an experimental rig set-up for evaluating rheology and fluid properties automat-

ically through an instrumented standpipe. The laboratory is a collaboration between

the University of Stavanger, International Research Institute of Stavanger (IRIS) and

partially founded by Statoil. The E-hall, Kjølv Egeland building, at the University of

Stavanger is reserved for the Department of Petroleum Engineering, and that is where

the laboratory for Automated Drilling Hydraulics Laboratory is located.

The first addition to the laboratory started in 2011 with Torsvik’s Master thesis [2].

A small scale operating drilling rig was built with all the necessary functions. The

rig model is built to simulate the circulation system used in real drilling operation,

and are operated through a PC using Simulink. All necessary pressure and flow data

from the flow loop can be monitored. Wang [3] contributed to further optimize the

rig for emulating Managed Pressure Drilling. The most recent contribution on the rig

was Hansen [4]. Two differential-pressure transmitters were implemented on the flow

loop. The first transmitter were placed on the horizontal section and the second on the

vertical stand pipe section with a distance of 0.855 meter. The last addition to the rig

were to examine rheological parameters, fluid density and frictional parameters. The

results given from the differential-pressure transmitters gave low quality data due to

disturbance in signals.

1.1.1 Objective and Scope of Work

In 2012 Hansen [4] presented in his thesis the fundamentals of drilling fluid hydrody-

namics, the three most commonly used rheology models, and the conventional way of

testing the drilling fluid properties in the industry. Since this thesis is a follow-up on

Eirik Hansen work, the fundamentals of drilling fluid technology will therefore not be

included in this thesis.

This thesis is focused around how to achieve rheology properties of a fluid with differential-

pressure readings in a flow path. So that real time data of fluid properties and rheology

such as fluid density, viscosity, Reynolds number and friction parameters can be ex-

tracted from continuous measurements. More importantly, the objective is to test with
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instruments that are capable to be used in the oil and gas industry. The differential-

pressure transmitter consist of metallic diaphragms and capillary diaphragms seals con-

taining silicon oil with known density. These diaphragms seals can be mounted directly

to the flow line with a flange. This should provide the differential relationship between

the capillary forces in the transmitter tubes and the liquid in the flow loop. Fluctuat-

ing fluid properties can then be continuous monitored, and thus avoid maintenance for

cleaning out the capillary tubes to the transmitter.

This thesis presents:

1. The build of the new addition to the Automated Drilling Hydraulics Laboratory.

2. Experimental testing on the new Instrumented Circulation Path with water to

verify if measurements are reliable accordingly to theoretical values.



Chapter 2

Theory

This Chapter will present a series of equations that have been used to determine the

fluid rheology and density. Matlab models are also included for estimating theoretical

values.

2.1 Pressure Loss Calculations

When calculating the pressure in a well it is necessary to have two parameters, the

density and frictional properties of the drilling fluid. The drill-string pressure and the

well-bore pressure have two main contributions, the hydrostatic pressure and the dy-

namic fluid pressure loss. The pressure loss is affected by the friction between the wall

of the pipe and the drilling fluid flow. Frictional pressure loss is also influenced by other

factors that are presented by the formulas in this Chapter.[5]

The assumption that has been taken in this thesis is that a Newtonian fluid are flowing

through a pipe. This means no compensations for shear thinning and non-Newtonian

viscosity is taken into account.

The pump pressure Pp is defined as

Pp = ρlgh (2.1)

and also equal to the sum of the hydrostatic pressure Ph and the dynamic fluid pressure

loss Pd.

Pp = Pd + Ph (2.2)

4
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In this case the hydrostatic pressure contribution is within the capillary tubes, and

is measured in the vertical section. The differential-pressure sensors are a concealed

chamber from the diaphragm seals to the transmitter, and the density of the silicone oil

based fluid is given by the producer. The formula is then given by

Ph = ρogh (2.3)

where ρo is the density of the silicon oil, g is the gravitational force and h is the height

of the vertical pipe length.

Further, the dynamic fluid pressure loss is measured between the differential-pressure in

the vertical pipe section dPver and the differential-pressure in the horizontal pipe section

dPhor.

Pd = dPver − dPhor (2.4)

The average fluid velocity of the fluid through a pipe is defined as

V =
Q

A
(2.5)

where Q is the flow rate from the pump and A is the cross sectional area of the pipe.

The Reynolds number, Re, gives a measure of the ratio of inertial forces to viscous forces.

This ratio is dimensionless. The formula for a pipe flow is defined as

Re =
V D

ν
(2.6)

where ν is the kinematic viscosity. The Reynolds number can also be written as:

Re =
ρlV D

µ
(2.7)

This shows that the kinematic viscosity is a ratio between the dynamic viscosity µ and

the density of the fluid.

ν =
µ

ρl
(2.8)
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The friction factor used in this thesis is the Darcy/Moody friction factor. For laminar

flow can be calculated from the Reynolds number.

flam =
64

Re
(2.9)

This equation is only used for Reynolds number Re < 2300. When the Reynolds number

exceeds 2300, the fluid flow will enter a turbulent state. The following equation, the

Haaland equation, is then

1√
fturb

= −1.8 log10[(
ε/D

3.7
)1.11 +

6.9

Re
] (2.10)

where the ε is the absolute roughness in pipe.

Finally the theoretical friction loss can now be estimated with a known length of the

pipe, L.

Pd =
fLρlV

2

2D
(2.11)

This will give an theoretical indication of differential-pressure values that are desirable

to achieve during testing.

2.2 Fluid Properties Calculations

In order to determine the density and apparent viscosity of the fluid flowing through

the pipe using only differential pressure sensors, it is necessary to reverse the equation

series in the previous section. This has to be done in the following order.

Combining formula from (2.1) to (2.4) will then give the density of the liquid in the flow

pipe ρl as shown.

ρl = ρo +
dPver + dPhor

gh
(2.12)

The density found here will be used further in the calculations to determine the friction

factor. The Darcy friction factor is found using the equation:

f =
2DdPh

ρV 2L
(2.13)
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Then the Reynolds number can be calculated. For laminar flow the equation (2.9) is

solved for Relam.

Relam =
64

f
(2.14)

When the flow regime is in a turbulent state the Haaland equation (2.10) has to be

solved with respect to Re.

Returb =
6.9

10
( 1
−1.8

√
f
) − (

ε/D

3.7
)1.11

(2.15)

From equation (2.7) the apparent viscosity can be written in the formula:

µ =
ρV D

Re
(2.16)

2.3 Modelling in Matlab

The equations given in Section 2.1 were used to make a Matlab model to compute the

expected values of the pipe friction. The Matlab code is included in Appendix C.

2.3.1 Theoretical Differential-Pressure Values

The plots below, Figure 2.1 to Figure 2.3, indicates the pipe friction that should be

expected during the testing phase. It also shows flow rates that should be applied to

stay inside the 0 - 100 mBar. These values should not be exceed, due to the range of

the differential-pressure sensors. The multiple lines represent increased liquid viscosity.

When the viscosity is increased, it can be seen on the plots that the pipe friction will

increase accordingly at a given flow rate. From Figure 2.4 to Figure 2.6, it is observed

the transition between laminar and turbulent flow at increased viscosity and flow rate.



Chapter 2. Theory 8

0 20 40 60 80 100
0

500

1000

1500

2000

2500

3000

3500

4000
pipe friction

l/min

P
a

Figure 2.1: Pipe friction across the pipe at different flow rates for 50 mm pipe diameter
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Figure 2.2: Pipe friction across the pipe at different flow rates for 24 mm pipe diameter
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Figure 2.3: Pipe friction across the pipe at different flow rates for 12 mm pipe diameter
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Figure 2.5: Relationship between headloss, flow rate and viscosity at 24 mm pipe
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Chapter 3

Building of the Instrumented

Circulation Path

3.1 Planning Phase & Rig Set-Up

This project is a part of a laboratory facility for automated well control that is being

built at the University of Stavanger. The project overview can be seen at Figure 3.1.

The structures of this facility that has been finished is the flow loop that Torsvik [2]

built during his Master thesis. This build represents the left side in Figure 3.1.

In this thesis it is planned to investigate and expand the facility with differential-pressure

sensors in the return flow. To be able to start the build of the Instrumented Circulation

Path, it would be necessary to do some planning ahead.

3.1.1 Research

The idea behind to monitor the return flow with differential-pressure, is to evaluate the

drilling fluid properties automatically immediately the fluid returns from the well. This

system can then detect attenuation influx by monitoring the drilling fluid rheology and

properties, and automatically adjust the MPD Choke.

First of all, the desired sensors had to be able to read low differential-pressure, prefer-

able 0-100 mBar. It should also be a sensor that can be used in the industry for real

scale testing and use for stable measurements in harsh environments. After a while

with researching the availability of sensors on the market, it was decided to order the

DeltabarS FMD 78 from Endress+Hausser. Further details about the sensor is discussed

in Section 3.2.2.

11
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Figure 3.1: Automated Drilling Hydraulics Laboratory

It was also decided to use the existing pump at the laboratory, due to the time limit

on the thesis. If new pump were to be ordered for this project, it has to have a stable

pump characteristics for low pressure flow rates. The present pump at the laboratory

were already connected to power supply and the control system that operates the flow

loop. By modifying the outlet of the pump and the Simulink model that operates the

pump, the pump could then be used for this project. The same tank as for the flow loop

were also decided to utilize.

For the actual pipe line it was first planned to have just one pipe diameter at 12 mm

for the circulation path. But after having several dialogues with the vendor of the

differential-pressure sensors, it was recommended to increase the diameter of the pipe.

The reason for this were because the smallest flanges for the metallic diaphragms came

in DN50. It was advised to use pipe diameter of 50 mm or larger. This encountered a

problem for the project. If the diameter had to be increased, meant that the length of

the pipe had to be increased to achieve readable differential-pressure. Lack of space in

the laboratory limited the horizontal pipe section to 3.5 m. After discussing the problem

with the supervisor, it was decided to build three different pipe diameters to compare

the results to each other. The three diameters were then 50 mm, 24 mm and 12 mm.

The pipes and pipe connections were purchased from local dealers in Stavanger for easy

access of new parts if something were missing. Transparent pipes of 4 m were purchased

from Crisma Plastic. Two sections for each pipe diameter, one for the horizontal section
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Figure 3.2: First draft of the Instrumental Circulation Unit

and the second for the vertical section. The bends and pipe connectors were purchased

from Ahlsell. All pipe parts consists of PVC material.

Before actual purchasing all the necessary parts for the build, some Matlab scaling were

performed to verify what input and output values could be expected. This is described

in Section 2.3.1.

3.1.2 3D modelling

To get an idea of how the finished result is going to be, some models were made in

Autodesk Inventor Professional 2013. This program can be purchased, or downloaded

through the Autodesk Education Community for educational purposes[6].

The first sketch of the Circulation Path were made as seen in Figure3.2. This sketch were

made before the dialogue with the differential-pressure vendor were taken place. The

figure gives an basic illustration of how the set-up is going to be. A pump is connected

to the bottom of the tank. The fluid will be distributes through a horizontal section

before it is directed upwards to a vertical section, and the fluid is then returned back to

the tank. Differential-pressure sensor are placed on both sections.

In the last part of the planning phase, some new sketches with three different flow paths

of the Instrumental Circulation Path were created to have a clear illustration to work

with. Figure 3.3 and Figure 3.4 are two options on how to distribute the flow in different

paths. It was decided to use Figure 3.4 to reduce the flow disturbance created in the

bends. The final concept drawing, Figure 3.5, will resemble the finished set-up.
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Figure 3.3: Pipe selector concept of the Instrumental Circulation Path

Figure 3.4: Final pipe selector concept of the Instrumental Circulation Path

Figure 3.5: Final concept drawing of the Instrumental Circulation Path
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3.2 Instrumented Circulation Path

This section will give a brief description of all components that have been used to build

the Instrumented Circulation Path.

3.2.1 Building

The flow from the pump is directed through a tee, and the hose connects the flow to the

Instrumental Circulation Path, as shown in Figure 3.6. The figure also shows a valve

that must be closed at all time when operating the Instrumental Circulation Path. This

is to prevent the fluid to go through another rig unit. Another important detail is the

relief valve located beside the valve to prevent over-pressure in the system.

The pipe selector have three different flow paths. Only one path can be active at the

time, because of there is only one differential-pressure sensor at each section. On the

other side of the tee where the hose is connected there is a drainage system. Draining

the system of liquid must be performed before changing to another flow path. Figure 3.7

will give a clear view of the system.

A small foundation of wood were made to attach the horizontal section. Since there are

crane rails in the roof, the horizontal section had to be placed as low as possible. The

vertical pipe section is mounted on a 4.5 m high sign post.

The first differential-pressure sensor is placed on the horizontal section, Figure 3.8, and

the second on the vertical section illustrated on Figure 3.10. Both sensors are placed

beneath the lowest measurement point according to the instructions for the sensors for

best possible results, and are 3.5 m apart from each measurement point. The placement

of the vertical sensor is seen on Figure 3.9. Hoses connected to the top of the vertical

section will return the fluid back to the tank.

Operating procedures can be found at Appendix A.

3.2.2 Equipment Specifications

In order for the PC to send and receive correct signals, a series of electrical components is

involved with the communication. The communication cabinate, Figure 3.11, distributes

output and input signals from the PC to the desired target. This sub section will

elaborate these different components.
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Figure 3.6: Open/Close valve for directing the flow into the circulation path

Figure 3.7: Pipe diameter selection and draining

Figure 3.8: Overview picture of horizontal section
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Figure 3.9: Connection between horizontal and vertical section

Figure 3.10: Overview picture of vertical section

Figure 3.11: Communication cabinate
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Figure 3.12: PCI box that communicates with the PC

3.2.2.1 PCI

There are two control cards in the communication box. One for the output signals(PCI

6703) and the second for the input signals(PCI 6221), Figure 3.12. These receive and

send signals into the analogue input and output ports from the instruments and pro-

cesses. The current they must receive and send is a 0-10 voltage signal. The computer

operator that uses Simulink communicates with the PCI boxes made by National In-

struments, and enables communication with the desired target.

3.2.2.2 Isolating Amplifier

Since the output signal from the differential-pressure sensors gives 4 - 20mA, they need

to be converted into 0-10V for the PCI boxes to understand the right input signal. This

is done by adding a isolating amplifier between the output signal from the differential-

pressure sensors and the PCI (6221) box. They are powered by 24 V and separates the

signals with a galvanic isolation. This isolation acts as a resistor. Four new isolating

amplifiers were added to the communication box to transform the signals, Figure 3.13.

See Appendix B

3.2.2.3 Motor and Tank

The manufacturer of the screw pump is PCM. Maximum flow rate that the pump delivers

is 14 m3/h. When adjusting the pump rate in Simulink, it will be given as % of maximum

pump capacity. The equation between % and mass rate [kg/h] is shown in equation (4.1).
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Figure 3.13: Signal converter from 4..20mA to 0-10V

Figure 3.14: Connection from the pump to the circulation path

At Figure 3.14 shows the suction point from the tank and outlet point of the pump. The

tank capacity is 300 l, and are located besides the pump. It is filled with water.

3.2.2.4 Differential Transmitters

The DeltabarS FMD 78, Figure 3.17, is delivered by Endress+Hauser. These are a

differential-pressure sensor with metal process isolating diaphragms and capillary di-

aphragm seals. An illustration of the diaphragm is shown in Figure 3.15. The field of

application is liquid level and differential-pressure. In this case the differential-pressure

application is used. Reference accuracy is up to ± 0.075% of the set span. The filling

oil in the purchased sensors is equal to ρ = 960 kg/m 3. The measuring range lies from

-100 to + 100 mBar, and the adjusted measuring range 0 to 100 mBar. They give a

signal output of 4-20mA HART. The ordered DeltabarS FMD 78 is mounted with a DN

50 flange connected at two points on each pipe section. The DN 50 flange is assembled

on top of a tee, this is shown in Figure 3.16.
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Figure 3.15: Diaphragm seal

Figure 3.16: Mounted diaphragm seal

Figure 3.17: DeltabarS FMD 78 sensor

3.3 Simulink Model

To get the real time data received from the DeltabarS, Simulink had to be modified.

Some changes were made in an existing Simulink file on the computer, now saved as

”difftest”. The changes are two new input signal from the PCI (6221), Figure 3.18.

The new additions to the PCI (6221) analogue input can be found in Appendix B. It is

also implemented real time data of fluid density, friction factor, Reynolds number and

viscosity with the formulas computed at Section 2.2. The overlay of the computed fluid

properties can be seen at Figure 3.19.
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Figure 3.18: Output signals in Simulink

Figure 3.19: Computation of fluid properties in Simulink



Chapter 4

Details of experiment

4.1 Experimental Data

Results given from this experimental set-up were to investigate if it is possible to deter-

mine the fluid properties at a given flow rate. The tests were performed on three different

pipe diameters, 50 mm, 24 mm and 12 mm. Water were pumped directly through the

pipeline and returned back to the tank. The pipeline consists of a horizontal section and

a vertical section. On each section there was placed a differential-pressure sensor with

a distance of 3.5 meter apart. It was used a tee to connect the flange to the pipeline

for the diaphragm. The differential-pressure sensors has a range of -100 to 100 mBar,

and the adjusted measuring range had a setting of 0 to 100 mBar. Pump settings were

controlled from the computer located at the laboratory.

The goal here was to see if fluid properties could be verified on a well known liquid

with differential-pressure readings. Also, the differential-pressure sensors are equipped

with metallic measuring diaphragms and capillary diaphragms seals. This forms a closed

system from the measure point on the pipe to the transmitter. The process isolating

diaphragms are deflected on both sides by the acting pressure in the pipe. The oil inside

the capillary tubes transfers the pressure to a resistance bridge. This is based on the

semi-conductor technology. The changes in the bridge gives an output of voltage which

depends on the differential pressure.

A total of 12 individual tests were performed distributed on the three pipe diameters.

All readings presented in this section had a time step of 0.0147 seconds. This is ap-

proximately 69 readings per second. Each test were performed with a constant flow

rate which is represented in the tables respectively. The raw data from the differential-

pressure sensor are used to estimate the fluid properties as seen in Chapter 2.

22
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The pump have a maximum pump rate of 14 m3/h, and the motor is regulated by

percentage of maximum pump rate on the computer. The relationship between pump

rate at 0 % to 100 % is then

Q = % of maximum pump rate× 14

3600
(4.1)

to convert the flow into m3/s.

4.1.1 Differential Pressure Tests Through 50 mm Pipe

For the 50 mm pipeline it was performed 5 individual tests at different flowrates as seen in

Table 4.1. Results from the Simulink model will give a direct reading of the differential-

pressure, density of the fluid, friction factor, Reynolds number and the viscosity of the

fluid. Figure 4.1 and 4.3 will show the direct voltage received from the differential-

pressure sensor without any filtering. The time range for the data sets is between 0

s to 140 s. To convert the voltage readings to mBar, the signal goes first through a
1

3.2s+1 low-pass filter then multiplied with 10. The mBar are then computed for the the

horizontal- and the vertical-section as seen on Figure 4.2 and Figure 4.4, respectively. It

can be observed that the hydrostatic pressure contribution is around 10 mBar. This is

a bit below the expected value, thus will give a lower density than calculated. This are

the raw data that has been used to evaluate fluid properties together with the output

signal to the motor pump.

% of maximum pump rate 0.04 0.1 0.2 0.3 0.4
color purple blue green red cyan

Table 4.1: Colors represent the different flow rates in 50 mm diameter pipe

Data collected from the 50 mm pipe line shows fairly stable measurements for low

pressure losses. The density, Figure 4.5, shows an average data value of 990 kg/m3.

This is only 10 kg/m3 below the real density of water. Further on the friction factor and

the Reynolds number is presented for the individual pump rates. The data can be seen

in Figure 4.6 and Figure 4.7 respectively. The last plot for the 50 mm diameter pipe,

Figure 4.8, represents the viscosity of the fluid. It can be concluded that measurements

with the color cyan and red can be discarded as good data. These two tests are the ones

with the highest pump rate. Comparing the resulting data sets it can be observed that

the average viscosity is in the range of ≈ 0.001 kgm−1s−1 at time 100 s.
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Figure 4.1: Voltage readings in horizontal line 50 - mm pipe diameter
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Figure 4.2: mBar in horizontal line 50 - mm pipe diameter



Chapter 4. Details of experiment 25

0 20 40 60 80 100 120 140
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

DPvertical
r
aw

time [s]

V
ol

t

Figure 4.3: Voltage readings in vertical line - 50 mm pipe diameter
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Figure 4.4: mBar in vertical line - 50 mm pipe diameter
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Figure 4.5: Density readings - 50 mm pipe diameter
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Figure 4.6: Friction factor readings - 50 mm pipe diameter
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Figure 4.7: Reynolds number readings - 50 mm pipe diameter
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Figure 4.8: Dynamic viscosity readings - 50 mm pipe diameter
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4.1.2 Differential Pressure Tests Through 24 mm Pipe

For the 24 mm pipe it was performed 4 measurements. The different flow rates are

represented in Table 4.2. Since the sensor range of the differential-pressure sensor is set

to 100mBar, the maximum pump pressure can not exceed 0.2% of maximum delivery

rate of the pump. This is equal to 2.8 m3/h. The time range of the recorded data is

varying from 60 sec to 120 sec.

% of maximum pump rate 0.05 0.1 0.15 0.2
color cyan blue red green

Table 4.2: Colors represent the different flow rates in 24 mm diameter pipe

Figure 4.9 and Figure 4.11 represents the raw data from the Deltabar S sensor from all

four data samples. No disturbance has been observed in the signals. The following plots

for mBar measurements at the horizontal section and the vertical section is represented

by Figure 4.10 and Figure 4.12, respectively. At this pipe diameter the density is varying

from 1015 kg/m3 to 995 kg/m3, Figure 4.13. This indicates a slightly better approach

to the theoretical value of water, but it has a bigger spread than it did for the 50 mm

pipe diameter. The friction factor, Figure 4.14, gave a higher value than calculated.

This resulted in a lower Reynolds number, Figure 4.15. Studying the plot of viscosity,

Figure4.16, will point out that for the pump rate of 0.05% gave very low viscosity values

and can therefore be discarded. The remaining data sets have a value between 0.001

kgm−1s−1 to 0.00145 kgm−1s−1.
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Figure 4.9: Voltage readings in horizontal line 24 - mm pipe diameter
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Figure 4.10: mBar in horizontal line 24 - mm pipe diameter



Chapter 4. Details of experiment 30

0 20 40 60 80 100 120
0

1

2

3

4

5

6

7

8

DPvertical
r
aw

time [s]

V
ol

t

Figure 4.11: Voltage readings in vertical line - 24 mm pipe diameter
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Figure 4.12: mBar in vertical line - 24 mm pipe diameter
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Figure 4.13: Density readings - 24 mm pipe diameter
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Figure 4.14: Friction factor readings - 24 mm pipe diameter
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Figure 4.15: Reynolds number readings - 24 mm pipe diameter
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Figure 4.16: Dynamic viscosity readings - 24 mm pipe diameter
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4.1.3 Differential Pressure Tests Through 12 mm Pipe

It could only be perform three different tests for the smallest pipe diameter. The reason

for this is the sensors range, as mention in previous section, and the restriction of the

pump. The pump itself can not be set lower than 0.03%. The reason for this, is that the

motor do not get enough start power to begin rotating. Table 4.3 refers to the pump

characteristics and their color represented in the plots. The time range of the recorded

data is varying from 90 sec to 120 sec.

% of maximum pump rate 0.03 0.04 0.05
color blue green red

Table 4.3: Colors represent the different flow rates in 12 mm diameter pipe

The pressure loss in the pipe is higher for smaller diameter due to the pipe friction against

the wall. This resulted in high pressure readings for low flow rates as shown in Figure

4.18 for the horizontal section, and Figure 4.20 for the vertical section. Comparing all

dimension, it can be seen that the dynamic fluid pressure loss (2.4) is stable around 10

mBar. The differential pressure in both horizontal and vertical section shows too low

values according to theoretical values. An interesting observation shows that the results

from differential-pressure readings at 0.05% are equal to the theoretical values at 0.04%.

Similar observations can be detected for measurements at 0.04% and 0.03%, compared

to theoretical values at 0.03% and 0.02%. This can indicate that the motor pump is

not reliable for small flow rates, and give false flow rate out. The density measurements

from Figure 4.21 is close up to the true density of water, and have a very small spread

when reached stable flow. Since the differential-pressure measurements are not correct

at given theoretical values, will the following results for the friction factor, Reynolds

number and the viscosity be incorrect. The data for these values are found at Figure

4.22, Figure 4.23 and Figure 4.24 respectively.
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Figure 4.17: Voltage readings in horizontal line 12 - mm pipe diameter

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80
DPhorizontal

time [s]

m
B

ar

Figure 4.18: mBar in horizontal line 12 - mm pipe diameter
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Figure 4.19: Voltage readings in vertical line - 12 mm pipe diameter
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Figure 4.20: mBar in vertical line - 12 mm pipe diameter
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Figure 4.21: Density readings - 12 mm pipe diameter
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Figure 4.22: Friction factor readings - 12 mm pipe diameter
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Figure 4.23: Reynolds number readings - 12 mm pipe diameter
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Figure 4.24: Dynamic viscosity readings - 12 mm pipe diameter



Chapter 5

Discussion of the experimental

results

Automated drilling requires accurate and continuous drilling-fluid properties measure-

ments. This section take the discussion if differential-pressure measurements are reliable

to evaluate the drilling-fluid properties on the basis of the results given in this thesis.

The most important factor to highlight is that with differential-pressure measurements,

the friction factor can be calculated regardless of the state of the flow. Neither the

turbulent flow nor the laminar flow is a factor to the differential-pressure measurements.

In theory this should be a reliable source of estimating the drilling-fluid properties.

5.1 Comparison of Theoretical Values and Measured Val-

ues

The majority of the density measurements were below the theoretical value of 998.2

kg/m3. The given density value of the oil in the diaphragm cells from the vendor is

960 kg/m3. This should give a result for Pd = 13.11 mBar. The measured Pd had an

average value of ≈10. From this it can be assumed that actually ρo is 969 kg/m3. If this

is implied, would most of the density measurements be equal to true theoretical values.

It seemed that the best measurements for the horizontal section were achieved with

pump rates between 0.1% and 0.2% of maximum pump pressure. At flow rates beneath

0.1% , the uncertainty were increased for the measurements, especially for 12 mm pipe

diameter. This can indicate that the assumption of equation (4.1) is incorrect for low

pump characteristics. Due to the restriction of the pump at low pump rates, the desired

amount of test data with different flow rates could not be achieved.
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If the flow rate were measured accurately with a Coriolis flow meter on the suction side,

would the calculation of the friction factor be more accurate. At current state, are the

flow rate measurements too uncertain by computing it from the % of maximum pump

pressure. In addition, a new pump should be added to the laboratory. The pump should

be designed to give low flow rates with minimal pulsation.

5.1.1 Evaluation of diaphragm sensors for differential-pressure mea-

surement

The sensors gave stable data feed throughout the test phase. Even with low differential-

pressure measurements, especially during the tests on 50 mm pipe diameter, it had very

little disturbance. Compared to the differential-pressure results Hansen [4] measured at

the flow loop, are the results from the diaphragm sensors very positive. If it is possible

to test with a new pump and have a Coriolis flow meter on the suction side, would the

test results be more true to theoretical values.



Chapter 6

Conclusion and future directions

The Instrumental Circulation Path has the potential to become a success to estimate

drilling fluid properties. But the necessary equipment to perform a stable test is currently

not in place. The uncertainties around the flow rate are too high to draw a clear

conclusion to rely on. Concerning the test results, it gave some decent values to indicate

the properties of water. Although some measurements could be discarded, it also showed

that for some data values the approximation of water properties could be concluded.

The implementation of the diaphragm sensors can be seen as a success. They gave

stable output values for both high and low differential-pressures. The next phase to

make the Instrumental Circulation Path reliable to give acceptable data, is to ensure

the correct output of the flow rate. As discussed in Chapter 5, a new pump and a

Coriolis flow meter must be added to the facility. When this is established, can future

test be performed with different types of drilling fluids with non-Newtonian properties.

40



Appendix A

Operating Procedures

Startup

1. Ensure the tank is filled up with liquid.

2. Close the valve connected to the other flow loop.

3. Close all valves related to the Circulation Path.

4. Mount the diaphragms at desired pipe diameter.

5. Open valve to the pipe diameter selected.

6. Ensure all extension cords are connected.

7. Run ”datafil” in Matlab.

8. Start up ”difftest” in Simulink.

9. Select correct pipe diameter in Simulink - /maling/Subsystem4.

10. Compile and connect to target.

11. Start the process with preferred settings.

12. Run until a stable flow have been reached

Shutdown

1. Stop the system.

2. Drain the water from the Circulation Path.
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3. Open all valves.

4. Unplug extension cords.

5. Extract data from Matlab.

6. Shut down computer.

7. Clean up potential spills.



Appendix B

Technical documentation related

to the Instrumental Circulating

Path

Table of analogue input ports on control card PCI (6221)

Innganger Kanalnr Skilleforsterkerkort Tilkobling Signaltype

PT101 0 G1 68, 67 Analog

PT102 8 G2 34, 67 Analog

PT103 1 G3 33, 32 Analog

PT201 9 G4 66, 32 Analog

PT202 2 G5 65, 64 Analog

PT203 10 G6 31, 64 Analog

PT204 3 G7 30, 29 Analog

Tilbakemeld MPD-ventil 4 G8 28, 27 Analog

Tilbakemeld WCV-ventil 12 G9 61, 27 Analog

Motor monitorering 5 60, 59 Analog

DP1 6 G12 25, 24 Analog

DP2 14 G13 58, 24 Analog

dPv 7 G14 57, 24 Analog

dPh 15 G15 23, 24 Analog
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Terminal blocks located at the middle in the communication

cabinet

Number Color Signal Type of equipment

7 White - dPv

8 Black + dPv

9 White - dPh

10 Black + dPh



Appendix C

Matlab codes

C.1 Headloss plot

close all

q = [1:100];

q = q./60000; % Flow Rate [l/min] to [m^3/s]

visc = [1:100];

visc = visc ./1000; %Pa*s]

for i = 1: length(q)

for j = 1: length(visc)

% --- Define constants for the system and its components

L = 3.5; % Pipe length [m]

D = 0.050; % Pipe diameter [m]

A = 0.25*pi*D^2; % Cross sectional area [m^2]

e = 0.0015e-3; % Roughness for drawn tubing

rho = 1000; % Density [kg/m^3]

g = 9.81; % Acceleration of gravity [m^2/s]

mu = visc(j); % Dynamic viscosity [kg/(m*s )]

nu = mu/rho; % Kinematic viscosity [m^2/s]

Q = q(i); % [m^3/s]

V = Q/A; % Velocity [m/s] ]

% --- Laminar solution

Re = V*D/nu;

flam = 64/Re;

dplam = flam * 0.5*(L/D)*rho*V^2;

% --- Turbulent solution

f = moody(e/D,Re);
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dp = f*(L/D)*0.5* rho*V^2;

pipefric(i,j) = dp;

end

end

figure

plot(visc);

title(’viscosity range ’);

xlabel(’m^2/s’);

ylabel(’kg/(ms)’);

figure;

plot(q);

title(’flow range ’);

xlabel(’l/min ’);

ylabel(’m^3/s’);

figure;

plot(pipefric );

title(’pipe friction ’)

xlabel(’l/min ’);

ylabel(’Pa ’);

figure;

mesh(visc ,q,pipefric );

xlabel(’m^2/s’);

ylabel(’m^3/s’);

zlabel(’Pa ’);

figure;

plot(q,pipefric)

title(’q V dP ’)

xlabel(’m^3/s’);

ylabel(’Pa ’);

% --- Summary of losses

fprintf(’\ nReynolds Number: Re = %12.3e\n\n’,Re);

fprintf(’\tLaminar flow: ’);

fprintf(’flam = %8.5f; Dp = %7.0f (Pa)\n’,flam ,dplam)

fprintf(’\ tTurbulent flow: ’);

fprintf(’f = %8.5f; Dp = %7.0f (Pa)\n’,f,dp);

function f = moody(ed,Re ,verbose)

if Re <0

error(sprintf(’Reynolds number = %f cannot be negative ’,Re));

elseif Re <2000

f = 64/Re; return % laminar flow

end

if ed >0.05

warning(sprintf(’epsilon/diameter ratio = %f is not on Moody chart ’,ed));

end
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if Re <4000, warning (’Re = %f in transition range ’,Re);

end

findf = inline (’1.0/ sqrt(f) + 2.0* log10( ed/3.7 + 2.51/( Re*sqrt(f)) )’,’f’,’ed’,’Re ’);

fi = 1/(1.8* log10 (6.9/Re + (ed /3.7)^1.11))^2; % initial guess at f

dfTol = 5e-6;

f = fzero(findf ,fi ,optimset(’TolX ’,dfTol ,’Display ’,’off ’),ed ,Re);

% --- sanity check:

if f<0, error(sprintf(’Friction factor = %f, but cannot be negative ’,f));

end

C.2 Fluid properties

close all

g = 9.81; % Acceleration of gravity [m^2/s]

rhoo = 960; % Density [kg/m^3]

h = 3.5;

L = 3.5; % Pipe length [m]

D = 0.050; % Pipe diameter [m]

A = 0.25*pi*D^2; % Cross sectional area [m^2]

e = 0; %0.0015e-3; % Roughness for drawn tubing

t = Difftrykk.time;

dPhor = (Difftrykk.signals (2). values )*100; % Differential Pressure [Pa]

dPver = (Difftrykk.signals (1). values )*100; % Differential Pressure [Pa]

%Q = 0.04*(14/3600);

Q = regulering.signals (1). values .*(14/3600);% Flow Rate [l/min] to [m^3/s]

V = Q’/A ; % Velocity [m/s]

rhol = rhoo +((dPver ’-dPhor ’)/(g*h));

f2 =2*D*dPhor ’;

f3 =rhol ’.*V ’.^2*L;

f = (f3)’/(f4)’;

Re = (2.51)/( sqrt(f ’)*(10^( -1.0/(2.0* sqrt(f’))) -((e/D)/3.7)));

mu = (rhol ’*V*D)/Re ’;

figure;

plot(f4);

figure;

plot(t,dPver);

title(’dPvertical ’);

xlabel(’time [s]’);

ylabel(’Pa ’);
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figure;

plot(t,dPhor);

title(’dPhorizontal ’);

xlabel(’time [s]’);

ylabel(’Pa ’);

figure;

plot(t,rhol);

title(’Density ’);

xlabel(’time [s]’);

ylabel(’[kg/m^3]’);

%figure;

%plot(t,f);

%title(’Friction Factor ’);

%xlabel(’time [s]’);

%ylabel(’f’);

figure;

plot(t,mu);

title(’Dynamic Viscosity ’);

xlabel(’time [s]’);

ylabel(’[kg/(m*s)]’);

figure;

plot(t,Re);

title(’Reynolds number ’);

xlabel(’time [s]’);

ylabel(’Re ’);
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