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Abstract 

Much work has been done on the subject of low salinity waterflooding (LSWF) as a potential 

enhanced oil recovery method. It has been shown many times that reducing the salinity of the 

injected brine could have a positive effect on the oil recovery. Several mechanisms have been 

proposed to explain why and how LSWF works, but still no mechanism has been able to 

explain all obtained results. However, in many cases multicomponent ion exchange has been 

observed to play an important role, and it has been shown to cause effects like changes in the 

adsorption of polar organic species and altering the wettability of a system. Both of these 

effects can depend on altering the ionic composition of the formation water and the injected 

brine.  

In many laboratory experiments regarding low salinity waterflooding, potentially scale 

forming ions as Ba and Sr are left out of the synthetic brines to avoid in situ plugging. In this 

work, the effect of doing so was investigated through simulation and experimental studies,  

where the concentrations of Ba and Sr in the formation water were varied.  

The results indicate that leaving out Ba and Sr of the FW used in experimental studies can 

lead to an unrepresentative initial wettability, as increasing the concentrations causes the 

system to become more water wet. It was also shown that the variations in Ba and Sr 

concentrations had an effect on potential low salinity effects.  

A more systematic concentration variation, evaluating the effects of Ba and Sr alone should 

be performed, and also effects of Ba and SR in different COBR systems should be tested. 
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1. Introduction 

Water injection has been used to increase oil recovery since the late 1800’s. Initially it was 

thought that the increased recovery was a strictly mechanical effect, caused by pressure 

maintenance and displacement. However, work done by Tang and Morrow (1996, 1997, 

1999) indicated that lowering the salinity of the injected brine could increase the oil recovery.  

In the later years, much research has been done on low salinity (LS) water injection both in 

the lab and in field tests. (Morrow et al. 1998, Tang and Morrow 1999, McGuire et al. 2005, 

Lager et al. 2006, Seccombe et al. 2008). This has resulted in the conclusion that injecting LS 

brine could indeed lead to more oil being recovered. Many attempts have been made to 

explain why and how low salinity water flooding (LSWF) works (more details in section 2.7), 

but still there is no single mechanism that has been able to explain all experimental results.  

In the later years, experiments have been performed indicating that not only the salinity of the 

injected brine will have an effect, but also the chemical composition (Suijkerbuik et al. 2012, 

Fjelde et al. 2013a). Suijkerbuik et al. (2012) showed that varying the concentrations of 

different ions would lead to different wettability alterations, even though the salinity was kept 

constant. The work done by Fjelde et al. (2013a) indicated that the LS effect could depend on 

the amount of divalent ions present on the clay surface. And as different clays show different 

affinity for different ions (Dolcater et al. 1968), this may also indicate that the types of ions 

present in the injected brine could play a role.  

In most LSWF laboratory experiments, potentially scale forming divalent cations, such Ba 

and Sr, are left out of the artificial formation water (FW) to avoid in-situ plugging. If the 

results showed by Suijkerbuik et al. (2012) and Fjelde et al. (2013a) are correct, this may give 

a misleading image the amount of divalent ions on the clay surface and hence give an 

unrepresentative image of the wettability after aging.  

The objective of this thesis is to explore whether the presence of Ba and Sr in the formation 

water will have any effect on initial wettability of a core and/or wettability alteration and 

recovery during a LSWF. Rock, oil and brines similar to Fjelde et al. (2012 and 2013a) are 

used. Concentrations of Ba and Sr in the FW are chosen by simulation. The formation brines 

are composed to avoid precipitation, and the injected low salinity brine is the one showing the 

lowest concentration of divalent ions on the clay surface after flooding.   
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2. Theory 

2.1 – Classical Steps in Oil Recovery 

Traditionally, oil recovery has been divided into the stages; primary, secondary and tertiary 

(Green and Willhite, 1998). They described the production in a chronological sense.  

2.1.1 – Primary Recovery 

The first recovery stage relies on the natural displacement energy of the reservoir to drive the 

oil towards the well (Green and Willhite, 1998). These natural energy sources are (Green and 

Willhite 1998, Glover 1997): 

 solution-gas drive 

 gas-cap drive 

 natural water drive 

 fluid and rock expansion  

 gravity drainage 

 combination or mixed drive 

The recovery efficiency from this stage is usually low, and the pressure in the formation may 

decrease rapidly resulting in solution gas formation (Zolotukhin and Ursin, 2000).  

2.1.2 – Secondary Recovery 

When the natural drive has diminished to unreasonably low efficiencies, it is augmented by 

injecting water or immiscible gas to displace oil towards the producing wells (Green and 

Willhite 1998, Glover 1997). Water injection is much more efficient than immiscible gas 

injection, and today, secondary recovery is almost synonymous with water injection. 

2.1.3 – Tertiary Recovery 

Primary and secondary recovery methods usually don’t recover more than 35% of the original 

oil in place (OOIP) (Glover 1997, Green and Willhite 1998). The tertiary stage includes all 

the oil that is recovered, after secondary injection is no longer economically feasible. Tertiary 

processes include miscible gasses, chemicals and/or thermal energy to displace more oil when 

the secondary water injection has become uneconomical.  
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Today however, many reservoir production operations are not conducted in this specific 

order. A so-called tertiary process may for example be implemented instead of regular water 

injection. This has led to the use of the term “enhanced oil recovery” (EOR).  

2.2 – EOR 

The Norwegian Petroleum Directorate (NPD) defines EOR as a term used for advanced 

methods of reducing the residual oil saturation in the reservoir (NPD 2013). The processes 

involve the injection of a fluid or fluids into the reservoir to supplement the natural energy as 

well as to interact with the crude oil/rock/brine (COBR) system to obtain favorable conditions 

for additional oil recovery (Green and Willhite, 1998). These interactions might, for example, 

lead to reduced interfacial tensions (IFT), oil swelling, reduction of oil viscocity, wettability 

alteration or favorable phase behavior.  

The main objectives for EOR are (Zolotuchin and Ursin 2000, Green and Willhite 1998) 

 Maintain reservoir pressure at a desired level 

 Enhance displacement efficiency by reducing the residual oil saturation – improving 

the effectiveness of the displacing fluid to mobilize the oil in the places in the 

formation where it reaches the oil (microscopic sweep efficiency). 

 Improve sweep efficiency by improving the mobility ratios between all displacing and 

displaced throughout the process – improve the injected fluids ability to contact the 

reservoir in a volumetric sense (macroscopic sweep efficiency). 

An ideal EOR process would contact the entire reservoir removing all oil from the pores 

contacted by the fluid – residual oil saturation (    ) will be zero.  

2.3 – Displacement Forces 

In LSWF, oil is displaced by an immiscible fluid. The main forces acting on the fluids, having 

an impact on displacement efficiency are; gravity forces, viscous forces and 

capillary/interfacial forces (Bavière 1991, Green and Willhite 1998, Glover 1997). The 

interplay among the forces will to a large extent govern the residual saturations in a porous 

medium. 
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2.3.1 – Gravity Forces 

The density differences between the fluid phases, will lead to the arise of gravity forces 

(Green and Willhite 1998). It can be described by equation 2.1: 

              2.1 

Where     is the pressure gradient due to gravity,    is the density difference between the 

phases, g is the gravitational acceleration and   is the dip angle of the formation. The gravity 

forces will be more severe for cases where there is a large density difference between the 

phases, and where there is a large dip in the formation. 

2.3.2 – Viscous Forces 

The viscous forces in a porous medium are reflected in the magnitude of the pressure drop 

that occurs as a result of flow of a fluid through the medium (Green and Willhite 1998). 

Viscous force in a porous medium can be expressed in terms of Darcy’s law (equation 2.2); 

    
 ̅   

 
    2.2 

Where    is the pressure drop across the porous medium,  ̅ is the average velocity of fluid in 

the pores, µ is the fluid viscosity, L is the length of the porous medium and k is the 

permeability of the porous medium.  

2.3.3 – Capillary Forces 

Whenever immiscible phases coexist in a porous medium, surface energy related to the fluid 

interfaces influences the saturations, distributions and displacement of the phases (Green and 

Willhite 1998). Capillary forces are exerted by the fluid-fluid interface where the droplet is 

bounded by another fluid (Bavière 1991). This force, which is a tensile force, is quantified in 

the terms of IFT. IFT is defined as the force per unit length required to create additional 

interfacial area (Green and Willhite 1998).  

 Capillary forces and IFT depend on the physical properties of the interface, as well as the 

surface deformation (Bavière 1991). At pore scale, capillary forces are much larger than the 

other forces, and are therefore often the controlling factor of fluid distribution.  
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2.3.4 – Capillary Number  

The outcome of a flooding process is determined by the interplay from all of the forces, and 

the relative magnitudes of them are very important for the recovery obtained in a core flood 

(Green and Willhite 1998). One way of expressing this is through the capillary number (  ), 

which is the ratio of the viscous to the capillary forces. This can be expressed as shown in 

equation 2.3: 

   
  

  
 

   

       
     2.3 

It has been shown that increasing    can lead to a reduction in residual oil saturation (Green 

and Willhite 1998). This can be achieved by: increasing viscosity of displacing fluid, reducing 

the IFT, increasing the flooding velocity (usually not an option in reservoir scale), or by 

altering the wettability.  

2.4 – Wettability 

Fluid distribution in a porous medium is not only affected by the forces at fluid/fluid 

interfaces, but also by the forces at fluid/solid interfaces (Green and Willhite 1998). When 

two immiscible fluids are in contact with a solid surface, there is a tendency for one of the 

fluids to be preferred by the surface. The preferred phase is termed the wetting phase, the 

other is termed the non-wetting phase.  

A COBR system can either be water-wet, oil-wet or intermediate/mixed-wet (Green and 

Willhite, 1998). In a water-wet core, containing low viscosity oil, there is typically water 

filling the small pores and a water film lining the walls of the large pores, leaving the oil 

phase to reside in the middle as shown in Figure 1 (Green and Willhite 1998). When flooded 

by water, the water phase maintains a fairly uniform front, displacing the oil in front of it 

(Anderson 1986). The connection of the oil will become weaker and eventually break off, 

leaving some residual oil trapped in the center of the pores surrounded by water. In a system 

containing oil with low viscosity, almost all of the remaining oil is immobile, and hardly any 

more oil is produced after water breakthrough (Agbalaka and Dandekar 2008). 

In an oil-wet system, oil is typically occupying the small pores as well as wetting the walls of 

the larger pores, while the water occupy the center of the larger pores, as shown in Figure 1. 

During waterflooding, channels or fingers of water will form through the center of the larger 
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pores, pushing the oil in front of them (Anderson 1986). The water breaks through early, and 

most of oil will be recovered after water breakthrough.  

 

Figure 1 - Effect of wettability on fluid distribution in water wet and oil wet system (Green 

and Willhite, 1998) 

Intermediate wettability occurs when both fluids shows tendencies of wetting the formation, 

one only slightly more than the other (Green and Willhite 1998). Mixed wettability results 

from variation or heterogeneity in chemical composition of the rock leaving some parts of the 

core water-wet, and some parts oil-wet. This result in a reduced recovery at breakthrough 

compared to water-wet cores, but with extended production after breakthrough (Donaldson 

and Alam 2008).  

In theory, a simple way of determining the wettability state is by measuring the contact angle 

between the fluids interface and the solid surface through the water phase as shown in Figure 

2 (Green and Willhite 1998, Glover 1997). In terms of contact angle, Zolotukin and Ursin 

(2000) classified the wettability states as given in Table 1. This is however difficult in 

reservoir rock due to the complexity of the pore structure. In the petroleum industry, it is more 

usual to describe changes in the capillary pressure and relative permeability curves as shown 

in Figure 5. This will be further looked into in the following sections.  
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Figure 2 - Contact angles for various wetting properties ( Glover, 1997) 

  

Contact angle values [degrees]: Wettability state: 

0-30 Strongly water-wet 

30-90 Preferentially water-wet 

90 Neutral wettability 

90-150 Preferentially oil-wet 

150-180 Strongly oil-wet 

Table 1 - Wettability expressed by contact angles (Zolotukin and Ursin, 2000) 
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There are many factors affecting the wettability of a COBR system (Green and Willhite 1998, 

Bavière 1991, Zolotukin and Ursin 2000): 

 

 

 Rock mineral composition 

 Pore structure 

 Pore geometry 

 Pore size 

 Brine composition 

 Salinity 

 pH 

 Temperature 

 Oil composition 

They all affect wettability in different ways, and to isolate the parameters in wettability 

studies are difficult. Suijkerbuijk et al. (2012) concluded that wettability is a property of a 

COBR ensemble, rather than a function of a single variable. Conclusions made for a particular 

ensemble may not necessarily apply for other COBR systems.  

The wettability is an important factor when evaluating the fluid entrapment, flow and 

distribution in a pore space (Bavière 1991). This is due to its influence on capillary pressure, 

fluid saturations and relative permeability characteristics. Relative permeability curves and 

capillary pressure curves may be used to characterize the wettability of a system (Anderson 

1986).  

Wettability alteration in one of the dominant mechanisms of many EOR methods (Nasralla et 

al. 2011). It is widely accepted that mixed-wet conditions usually result in the lowest     

values after injection of several pore volumes (Green and Willhite 1998). For field 

applications     may not be reached as it is it not feasible to inject several pore volumes (PV) 

of fluid into the reservoir.  
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2.5 – Relative Permeability 

Usually, permeability measurements are made with a single fluid filling the pores (Glover, 

1997). In petroleum reservoirs, this is rarely the case, as two, and sometimes three, phases 

tend to be present. If more than one phase is present, one would expect the permeability to 

either fluid to be lower than for the single fluid, since part of the pore space is occupied by the 

other fluid(s). The relative permeability of a particular fluid is the ratio of its effective 

permeability at a particular saturation to the absolute permeability of the system, as given by 

equation 2.4 (Glover, 1997). Here,     represents relative permeability of the investigated 

fluid. The sum of the relative permeabilities in a system is always     

 

    
   

 
 

                            

                     
   2.4 

In laboratory tests, one fluid is displaced by another, and hence the effective permeabilities 

are measured over a range of saturations enabling construction of relative permeability. 

curves. Typical relative permeability curves for a water-wet and an oil-wet system are shown 

in Figure 3. 

 

Figure 3 - Relative permeability curve for a (a) water-wet and (b) an oil-wet system 

(Anderson 1986) 
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The relative permeabilities of a COBR system depend strongly on the wettability (Green and 

Willhite 1998). Most systems fall somewhere between the two extremes of totally water-wet, 

and totally oil-wet (Glover 1997). However, knowledge of the two extreme cases will make 

interpreting intermediate data easier.  

Here, three stages of flooding water-wet and oil-wet cores, containing low viscous oil, will be 

compared; start (at initial water saturation (   )), during and end (at    ) (Glover 1997). An 

example of relative permeability curves for a water-wet vs. a mixed-wet system is shown in 

Figure 5. 

Start: 

In a water-wet system the water will not flow at    ; oil relative permeability (   )    and 

water relative permeability (   )   .  

In an oil-wet system an applied pressure differential is required for the water to enter the 

pores. 

During: 

In a water-wet system, the injected water migrate in a piston-like manner, causing extended 

production after breakthrough to be limited. 

In an oil-wet system the injected water flows through the largest flow channels first causing 

an earlier breakthrough than for the water-wet system.     falls and     rises rapidly, but 

production is maintained long after initial water breakthrough. 

End: 

In a water-wet system, most of the oil is produced prior to the water breakthrough, and hence 

    is reached soon after breakthrough. 

In an oil-wet system, a very large volume of water is needed before     is reached.  

Intermediate/mixed wet systems will give rel-perm curves somewhere in between the two 

extreme cases. A change in wettability will alter the curves one way or the other depending on 

the change being towards more water-wet or more oil-wet.  
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2.6 – Capillary Pressure 

Because the interface between two immiscible fluids is in tension, a pressure difference exists 

across the interface (Green and Willhite 1998). This pressure difference is known as the 

capillary pressure (  ).    can be calculated from equation 2.5: 

   
        

 
    2.5 

    is the IFT between oil and water,   is the contact angle between water and the solid, and r 

is the radius of the capillary/pore. Hence, the defined capillary pressure is a function of IFT, 

the wetting condition (through  ) and pore size. 

Plateau also developed the more complex expression for calculating    shown in equation 2.6 

(Green and Willhite, 1998):  

    (
 

  
 

 

  
)    2.6 

Where    and    are the radii of curvature as shown in Figure 4: 

 

Figure 4 - Wetting of spheres showing radii of curvature to use in equation 2.6 (Green and 

Willhite, 1998) 
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In a porous medium, there are many factors affecting the capillary pressure (Castellan, 1983). 

Some examples of such factors are: 

 Pore size and geometry 

 Interfacial tension of the two immiscible fluids 

 The wetting condition 

 Saturation and saturation history 

Capillary pressure can both aid and disrupt fluid displacement in a porous medium and it also 

determines the saturation distribution (Castellan 1983). At the end of a flooding process,    is 

usually 0 at the outflow end. The water saturation at this point is therefore determined by 

  (   )   . If     (water saturation at the end of the flooding) is sufficiently low, this may 

give a wrong image of the average water saturation in the rest of the core at the end of the 

flooding. This is often the case if the core is short and/or the flooding rate is low. This effect 

is called the “capillary end effect”. 

 

2.6.1 – Capillary Pressure Curves 

Due to the complexity of pore structure in a formation, it is impossible to use equations 2.4 

and 2.5 to calculate the capillary pressure in a porous media (Engler 2012).    is therefore 

measured as a function of the saturation of the wetting phase, and capillary pressure can be 

viewed as the necessary pressure to force non-wetting fluid to displace the wetting fluid. In a 

   curve plot, as shown in the upper part of Figure 5, it is usual to present two curves: the 

imbibition curve and the drainage curve. The imbibition curve represents displacing of the 

non-wetting phase by the wetting phase, and the drainage curve represents non-wetting phase 

displacing wetting phase. As the wetting fluid has a natural tendency to saturate the rock, the 

imbibition curve will present a lower    than the drainage curve for a given saturation. Also, 

     is required to force the non-wetting fluid into the rock. (Engler 2012, Abdallah et al. 

2007) 

The capillary pressure curve will be altered if the wettability conditions change. For example, 

the imbibition and drainage curves for a strongly water-wet system are positive over most of 

the saturation range, indicating spontaneous imbibition of water, while in a mixed wet system 

the curves have both positive and negative portions, indicating that spontaneous imbibition of 
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both phases can occur (Abdallah et al. 2007). Many EOR methods cause a wettability 

alteration which can be characterized using the capillary pressure curve.  

 

Figure 5 -  Capillary Pressure and Relative Permeabilty Curves for Water-Wet (left) and 

Mixed-Wet (right) systems. (the dotted curves represent primary drainage, the dashed curves 

represent imbibition and the continous curves represent drainage (Abdallah et al. 2007) 
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2.7 – Low Salinity Water Flooding 

Low salinity water injection is an EOR method consisting of injecting water of lower salinity 

than the formation brine into a reservoir. It originates from work done by Bernard (1967) 

showing improved oil recovery after flooding with fresh water. Later Jadhunandan and 

Morrow et al. (1990, 1991) and Morrow (1996) showed that composition of the injected brine 

could have an effect on oil recovery. Tang and Morrow (1997 and 1999) worked further on 

this idea, and they performed experiments indicating that injecting brine with low salinity 

could be beneficial. 

Since then, much work has been done on the subject. Results from both laboratory work and 

field tests, have shown that reducing salinity of the injected water can increase the oil 

recovery (Morrow et al. 1998, Tang and Morrow 1999, McGuire et al. 2005, Lager et al. 

2006, Seccombe et al. 2008).  It has also been shown that LSWF can be effective both as a 

secondary and a tertiary flood.  

A set of criteria for LSWF to work has been listed in the literature (Morrow and Buckley, 

2011): 

 Presence of formation water containing multivalent cations 

 Polar components in the oil 

 Active clay on/in the rock 

However, even though all of these criteria are fulfilled, there have been examples of cases 

where injection of low salinity water (LSW) showed little or no effect (Skrettingland et al. 

2011, Morrow and Buckley 2011). Hence the criteria are considered to be necessary, but not 

sufficient.  

A list of causing mechanisms has been proposed during the years: 

 Migration of mixed wet clay particles (Tang and Morrow, 1998) 

 pH increase and alkaline like flooding (McGuire et al. 2005) 

 Expansion of the electrical double layer (Ligthelm et al. 2009) 

 Local pH increase (Austad et al. 2010) 

 Multicomponent ion exchange (MIE) (Lager et al. 2006) 

But so far, no mechanism has been recognized as the “true” one, as none of them can explain 

all the obtained experimental results. The reason for the “confusion” is probably the 
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complexity of the COBR interactions in the reservoir, and hence the many parameters 

involved.  Both Morrow and Buckley (2011) and Austad et al. (2010) have made the 

suggestion that the low salinity effect probably is a result of different mechanisms acting 

together. 

 

2.7.1 – Proposed Mechanisms 

Release of fines/Mixed Wet Clay Particles 

The first mechanism proposed was put forward by Tang and Morrow (1999). It suggested that 

the increased oil recovery was caused by the release of oil bearing fines. The clay particles 

remain undisturbed as long as they are contacted by high salinity brine, leaving them with 

their oil-wet nature (Lager et al. 2006). As low salinity water in injected, clay particles detach 

from the pore surface, exposing underlying surfaces, increasing the water-wetness of the 

system. Tang and Morrow (1999) supposed that releasing of these mixed wet clay particles, as 

shown in Figure 6, mobilized previously retained oil droplets, increasing the oil recovery.  

The migration of fines is also related to a permeability reduction due to plugging of pores 

(Tang and Morrow 1999). This plugging may make the water “change its path”, causing 

unswept areas to be reached by water, and hence increasing oil recovery even more. 

However, many LSWF experiments, with positive results, having neither traces of fines in the 

effluent or reduction in permeability (Lager et al. 2006, Morrow and Buckley 2011). This has 

caused the migration of fines to be considered as a side effect, rather than a causing 

mechanism. 
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Figure 6 - Mobilization of mixed-wet clay particles during LSWF (Tang and Morrow, 1999) 

pH Increase 

Many low salinity studies show a significant pH increase. Based on this, McGuire et al. 

(2005) proposed a mechanism indicating that a sufficient rise in pH could make the LSWF act 

like an alkaline flooding. 

The rise in pH is caused by two concomitant reactions: carbonate dissolution and cation 

exchange between the clay minerals and the invading water (Lager et al. 2006). The 

dissolution of carbonates will result in an excess of     increasing the pH, caused by the 

following reactions: 

 

              
  

 

   
           

      

The dissolution reactions are slow, and are depending on the carbonate mineral concentration 

present in the rock. The cation exchange reaction is much faster.    ions present in the water 

will exchange with cations previously adsorbed to the clay, causing the pH to rise.  

If the pH is elevated to 9 or more, this would make the LSWF act like an alkaline flooding 

where surfactants are generated in-situ (McGuire et al. 2005). This causes an alteration of the 

wettability and IFT which control the forces holding the oil in the pores. The surfactants can 

also alter the wettability of the system, and it may also act as an emulsifying agent bringing 

dispersion of oil into the water.  
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However, it is widely accepted that for an alkaline process to work, the acid number (AN) of 

the oil must be above 0.2 (Lager et al. 2008). Some of the best results from LSWF are from 

reservoirs containing oil with very low acid numbers (AN<0.05). Also, according to Lager et 

al. (2008), no experiments showing a pH increase has been performed at reservoir conditions 

with live fluids. Most reservoirs contain    , which will act like as a pH buffer, and reaching 

a pH of 9 or more is unlikely. 

Double Layer Expansion 

Expansion of the electrical double layer (EDL) was proposed as a possible explaining 

mechanism by Ligthelm et al. (2009).  

The structure of ions in a solvent adjacent to a charged solid is described by the EDL (Lee et 

al. 2010). In the layer closest to the surface charge the ions are strongly bound, while in the 

second layer, the ions are in motion in the adjacent liquid, but the concentration of ions is 

higher than in the rest of the fluid, as illustrated in Figure 7. 

The thickness of the EDL is defined as the distance over which the concentration of the ions 

differs from the bulk value (Lee et al. 2010). This thickness is dependent of electrolyte 

concentration and ion valency – low ionic strength and ion valencies lead to a thicker double 

layer.  

 

 

Figure 7 - The electrical double layer (Lee et al. 2010) 
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Polar organic components can bond to the negative clay surface either directly (positive 

components) or by cation bridging (negative components) (Lee et al. 2010). The high salinity 

brine might retain the oil components, but as the LSW is injected, the divalent cations on the 

clay surfaces will be exchanged by monovalent cations. The decrease in ionic strength on the 

clay surface will cause the EDL thickness to increase, thickening the water film surrounding 

the clay (as shown in Figure 8) and making it more water-wet.   

 

Figure 8 - Effect of salinity on EDL (Lee et al. 2010) 

Local pH Increase 

In 2010, Austad et al. put forward a chemical mechanism explaining the low salinity effect by 

a local pH increase. They assumed that the EOR effect of LSWF is caused by improved water 

wetness, and that parameters as clay properties, polar components in the crude oil and the 

initial formation water (FW) composition and pH will play a major role in the process.  

The clay acts as a cation exchanger, where initially both acidic and basic organic material are 

adsorbed together with inorganic cations from the FW. At reservoir conditions, an equilibrium 

is established. When low salinity brine is injected, this equilibrium is disturbed and a net 

desorption of cations occur. To compensate for this loss of cations,    ions from the water, 

close to the clay surface, are adsorbed. This induces a local pH increase close to the clay 

surface, causing the reactions between adsorbed acidic and basic material as shown in 

equations 2.7 and 2.8: 
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                     2.7 

                               2.8 

The proposed mechanism for desorbing the acidic and basic components is illustrated in 

Figure 9. 

Suijkerbuijk et al. (2012) however, rejected this mechanism as a full explanation to the low 

salinity effect. They performed experiments injecting brine with lower pH than the formation 

brine, still showing an increase in oil recovery. They also showed results indicating that 

increasing the Mg concentration in the formation brine will make the rock more oil-wet. 

Hence, the Mg will aid the oil in binding to the surface. In Austad’s mechanism on the other 

hand, the oil and the Mg will compete for the adsorption sites.  

 

 

Figure 9 – Local pH increase mechanism. Upper: Desorption of basic material. Lower: 

Desorption of acidic material. The initial pH at reservoir conditions may be in the range of 5. 

(Austad et al. 2010) 

 

 

 

 



31 
 

Multicomponent Ion Exchange 

The MIE mechanism was put forward by Lager et al. in 2006. They performed geochemical 

analysis on the low salinity effluents, indicating that MIE chromatography play a dominant 

role for the water chemistry during flooding. The basis of chromatography is that all ions in 

the pore water compete for the mineral exchange sites (Lager et al. 2008). And as the natural 

exchangers show different affinity for the different cations, the ratio of sorbed over solute 

concentration will vary for each cation type.  

There are eight possible mechanisms that may cause adsorption of organic matter onto clay 

(Lager et al. 2006): 

 Cation exchange 

 Protonation 

 Anion exchange 

 Water bridging 

 Cation bridging 

 Ligand exchange 

 Hydrogen bonding 

 Van der Waals interactions 

It has been shown that, out of these, ligand exchange, Van der Waals interactions and cation 

bridging dominates in regard to adsorbing organic matter onto clay surfaces, as shown in 

Figure 10. 

On an oil-wet surface, some organic components will be adsorbed to the clay surface through 

bonding between polar components in the oil and already adsorbed multivalent cations. At the 

same time, some organically polar compounds will be adsorbed directly on the clay surface. 

The injection of LSW, will through MIE, replace both the binding divalent cations and the 

polar components, and replace them with uncomplexed cations. This will lead to a more 

water-wet surface, increasing oil recovery.   
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Figure 10 – The diverse adhesion mechanisms occurring between clay surface and crude oil 

(Lager et al. 2008) 
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2.8 – Clays and Affinity to Ions 

The presence of clay was listed by Tang and Morrow (1999) as one of the criteria for LSWF 

to increase oil recovery. Clay minerals are generally crystalline in nature, and their properties 

are determined by the structure of the clay crystals. Clay minerals can generally be divided 

into four different main groups (da Costa Ferriera 2012, Austad et al. 2010); Kaolinite, Illite, 

Montmorillonite and Chlorite. Properties of the different clay types are listed in Table 2: 

 

Property: Kaolinite: Illite/Mica: Montmorillonite: Chlorite: 

Layers (Si:Al): 1:1 2:1 2:1 2:1:1 

Particle size 

[micron]: 

5-0.5 Large sheets to 

0.5 

2-0.1 5-0.1 

CEC 

[meq/100g]: 

3-15 10-40 80-150 10-40 

Surface area 

BET-   

[       

15-25 50-110 30-80 140 

Table 2 - Properties of actual clay minerals (IDF 1982) 

Common sandstone reservoir clays commonly have a crystal structure made up of sheets of 

tetrahedral silica and octahedral aluminum layers (Austad et al. 2010). See Figure 11 

Structural charge imbalances, either in the silica or in the aluminum layer and also on the end 

surfaces, cause a negative charge on the clay surface. This makes the clay a natural cation 

exchanger. 
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Figure 11 – Common sandstone reservoir clays crystal structure. Upper: Tetrahedral silica, 

Lower: Octahedral aluminum (www.groundwaterresearch.com.au) 

Cation exchange capacity (CEC) is defined as the degree of which a clay can hold and 

exchange cations (Tree Fruit Soil and Nutrition 2004). Different clay types have different 

CEC, and they also show different affinities towards different ions (Dolcater et al. 1968). 

Generally, the relative affinity for cations is believed to be Li < Na < K < Mg < Ca < Sr < Ba 

< H (IDS 1982, Suarez and Zahow 1989, Bennet 2013). This means that at equal 

concentrations, Ca will be more successful at replacing K, than K will be at replacing Ca. 

However, it is possible for a cation with lower affinity to replace a cation of higher affinity if 

the concentration of the low affinity cation is sufficiently high. Guoy theory predicts that the 

double layer contains a much higher concentration of multivalent ions relative to monovalent 

ions, due to charge density (Bennet 2013). However, this preference for divalent ions 

decreases with increasing ionic strength. I.e. In seawater, the dominant exchangeable cation is 

Na, while in dilute waters, the dominant exchangeable cation is Ca.  

 

 

 

http://www.groundwaterresearch.com.au/reference_files/hydrology_and_the_clay_minerals/structure.htm
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2.9 – Possible Effects of Ba and Sr Present 

There have been several studies showing that salinity of the injected brine is not the only 

important factor in LSWF (Nasralla et al. 2011, Suijkerbuijk et al. 2012, Fjelde et al. 2013a). 

The chemical composition of the injected water, as well as the initial formation water, may 

play a role in whether the low salinity effect will be obtained or not. Suijkerbuijk et al. (2012) 

performed experiments where the relative concentration of Ca and Mg was varied. The results 

showed that using a Ca rich formation brine during aging would lead to a less water-wet 

system than a Mg rich formation brine. This led them to conclude that leaving out potentially 

scale forming divalent cations, such as Ba and Sr could lead to a misleading image of the 

initial wettability of the system. 

Simulations and experiments performed by Fjelde et al. (2013a) show a strong indication that 

reducing the amount of divalent ions on the clay surface may be an important criteria for 

obtaining low salinity effect (LSE). Leaving out Ba and Sr may cause a unrepresentative 

prediction of the amount of divalent cations on the clay surface initially, as well as the amount 

of divalent cations being replaced. 

 

2.10 – Investigating the effects of Ba and Sr  

To investigate the effects of Ba and Sr being present in the FW simultions, using the 

PHREEQC modeling program has been run and compared with experimental results. 

Modeling of both saturation with FW and flooding was performed varying the concentrations 

of Ba and Sr in the FW. During the floodings, oil production and the effluents pH and ionic 

composition was monitored.  
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3 Simulations and PHREEQC 

3.1 – PHREEQC 

PHREEQC version 2 is a computer program for simulating chemical reactions and transport 

processes in natural or polluted water (Parkhurst and Appelo, 1999). It is based on 

equilibrium chemistry of aqueous solutions interacting with minerals, gases, solid solutions, 

exchangers and sorption surfaces.  

 The system is capable of simulating a wide range of aqueous geochemical reactions including 

(Parkhust and Appelo 1999, Omekeh 2013): 

 Mixing of waters 

 Dissolution and precipitation of phases to achieve equilibrium with the aqueous 

phase 

 Effect of changing temperature 

 Ion exchange equilibria 

 Surface complexion equilibria 

 Advective transport modeling 

Any number of solution compositions, solid solution, exchange or surface-complexation 

assemblages can be defined independently. PHREEQC is oriented toward a system 

equilibrium, rather than just aqueous equilibrium. It allows any combination of solution (or 

mixture of solutions), gas phase and assemblages to be brought together, any irreversible 

reaction can be added, and the resulting system to be brought to equilibrium. If kinetic 

reactions are defined, they are integrated with an automatic time-step algorithm, and system 

equilibrium is calculated after each time-step. 

There are, however a number of limitations that need to be considered, as PHREEQC is only 

a general geochemical program (Parkhust and Appelo 1999): 

 Ion-association and Debye Hückel expressions are used to account for the non-

ideality of aqueous solutions. This works well for solutions with low ionic 

strength, but may not be as adequate in solutions with higher ionic strengths (SW 

and above). Some adjustments had been made to the Debye Hückel expressions 
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for the major ions, and the model may be reliable in sodium chloride dominated 

systems. 

 The thermodynamic activity of an exchange species is assumed to be equal to its 

equivalent fraction in the ion-exchange model. In many field studies, ion-

exchange modeling requires experimental data for reliable model application. 

 Ideality is assumed when determining the activities for the components in a non-

ideal, binary solid solution. This is usually an oversimplification. 

 The model is not capable of detecting some physical impossibilities in the 

chemical system that is modeled.  

3.2 – Simulations 

The main purpose of the simulations was to determine compositions for the synthetic brines to 

be used in the experimental study. The compositions selected were based on potential 

precipitation and amount of divalent ions adsorbed on the clay surfaces. According to Fjelde 

et al. (2013a), the LS brine selected for flooding should be the one ending up with the lowest 

concentration of divalent ions adsorbed. These simulations were done with brine/rock 

interactions only. 

If Calcite mineral is present in the rock, the precipitation/dissolution of calcite is an important 

mechanism in a LSWF process.  This is because it may significantly alter the composition of 

the injected brine. Another important mechanism affecting the composition of the injected 

brine is ion exchange. Both mechanisms will probably alter the composition of the injected 

brine. To get an accurate image of what is happening in the reservoir, it is important to look at 

the brine actually contacting the formation (Omekeh 2013, Fjelde et al. 2013a). 

In the experiments, rock similar to the one used by Fjelde et al. (2013a) is flooded. To be able 

to compare the results, the LSW used should be similar to the ones used by them. They 

performed floodings using diluted FW, and LSW only containing KCl. These are therefore the 

two brines that were simulated when determining which LSW inject, and the one ending up 

with the lowest amount of divalent ions on the clay surface was chosen for the experiments. 

As the saturation of the cores with FW where performed at room temperature the simulations 

for chossing the Ba and Sr concentrations in the initial formation brine, both room 

temperature and reservoir conditions were used. This was done because the precipitation of 

      and       are both temperature dependent reactions. Concentrations was chosen so 
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that there was no expectancy of precipitation at any part of either the preparation or flooding 

of the cores. 

 

3.2.1 – Simulation Procedure 

In the simulations run here, advective-trasport calculations were used to simulate advection 

and chemical reactions as the water moves through a 1D column. Based on IRIS experience 

on similar simulations, the column was divided into 20 cells with identifying numbers 1-20. 

Each cell contained a defined solution (the FW) numbered in the same way as the cells. 

Initially, all the cells contained the same brine, which was brought to equilibrium with the 

formation with defined composition. A second solution, solution 0 (the FW), was defined, and 

“injected” into the column by shifting solution 0 to cell 1, solution 1 to cell 2 and so on. 200 

shifts where performed for each injected brine, equivalent to injecting 10 pore volumes (PV) 

of water. As the water “moved through” the column, cation exchange was integrated in each 

cell, while maintaining equilibrium with the solid-phase assemblage. When the injected brine 

was changed, the current cell solutions was saved, a new solution 0 composition (LSW) was 

defined, and a second series of 200 advection-transport calculations was performed. 

The input parameters used in the simulations were: 

 In-situ brine composition 

 Injection brine composition (when determining FW composition, this 

composition was equal to the in-situ brine) 

 Mineral composition of the rock 

 CEC of the rock 

 Dimensions of core plug 

 

For each shift, the solution composition, the amount of ions on the clay surface, and the 

potential precipitation of      ,       and      , as a result of the previous step, where 

monitored.  

In this study simulations for choosing Ba and Sr concentrations in the saturating FW was run 

first, and then simulations for choosing which LSW composition to use for the floodings. 
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4 Experimental 

Reservoir rock and stock tank oil (STO) from a sandstone oil reservoir in the North sea were 

used in the coreflooding experiments, performed at     . FW samples from this oil reservoir 

were used to determine the composition of the synthetic formation water.  

4.1 – Brines 

Compositions of the three synthetic formation brines (FW1, FW2 and FW3) and the low 

salinity brine (LSW-KCl) used are given in Table 3. FW1 is formation water without Ba and 

   . FW2 is formation water with 3x the reported Sr concentration (   2200 ppm) and 15x 

original Ba concentration (   300ppm).  W3 is formation water with 3x Sr concentration and 

1000x Ba concentration (   1 000ppm). 

Salt FW1 FW2 FW3 LSW-KCl 

NaCl 77.4 77.4 77.4 0 

Na2SO4 
0 0 0 0 

NaHCO3 
0 0 0 0 

KCl 0.42 0.42 0.42 0.0989 

MgCl2*6H2O 3.55 3.55 3.55 0 

CaCl2*2H2O 21.75 21.75 21.75 0 

SrCl2*6H2O 
2.25 6.75 6.75 0 

BaCl2*2H2O 0 0.53 34.93 0 

LiCl 0 0 0 0 

Table 3 - Compostitions of synthetic brines used  

4.2 – Crude Oil 

The STO was prefiltered through a 0.45µm oil filter at     before it was used in the 

experiments. 
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4.3 – Rock 

The clay content of the core plugs was approximately 13wt%. The CEC of the rock was 

2meq/100g and the clay fraction was mainly composed of illite, smectite, glauconite and 

chlorites.  

4.4 – Experimental Procedure 

4.4.1 – Core Preparation 

The reservoir core plugs were cleaned using cycles of toluene and methanol, before they were 

dried using   . One core was then saturated with FW1, one with FW2 and one with FW3, and 

absolute permeability was determined using multirates. Effluent samples of 5 PV where taken 

out. Using the unconfined porous disc method, the cores were drained to     by gradually 

increasing the pressure of humidified nitrogen up to15 bar.  

The cores were than mounted into tri-axial core holders, and an overburden pressure of 50 

bars and a backpressure of 5 bars were established.  

The nitrogen was then replaced by 3 PV of kerosene (mixture of Isopar H and toluene in a 

volume ratio 4:1) at a rate of 1 ml/min and the temperature was increased to    . The 

kerosene was than replaced by 1.5 PV of a mixture of kerosene and STO (in the volume ratio 

1:1) at a rate of 0.5 ml/min, before this mixture was replaced by 3 PV of STO also at a rate of 

0.5 ml/min. The core plugs were aged for 7 days before another 2 PV of STO was injected. 

The core plugs were aged for another 7 days before    (   ) was determined using 

multirates.  

A sketch of the flooding set-up used is illustrated in Figure 12. 
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Figure 12 – Sketch of experimental flooding set up 

4.4.2 – Flooding 

After aging, the cores are first flooded with 10 PV of the same FW as they were saturated 

with, and then 10 PV of LSW-KCl. Both flooding steps are performed at a rate of 0.05 

ml/min. Effluent samples of 5 ml were taken out. An overview of the floodings is shown in 

Table 4. 
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Experiment Aging Brine Flooding steps 
Volume injected 

[PV] 

1 FW1 

FW1 10 

LSW-KCl 10 

2 FW2 

FW2 10 

LSW-KCl 10 

3 FW3 

FW3 10 

LSW-KCl 10 

Table 4 - Overview of flooding experiments 

4.4.3 – Analysis 

The effluent samples taken out during the saturations where analysed for ionic composition 

using Inductive Coupled Plasma (ICP) and pH. The ICP analysis has an uncertainty of   15% 

for Ba, Ca, K, Mg, Na and S and   20% for Sr. The pH measurements have an uncertainty of 

±0.01 after calibration. 

During the flooding, pressure drop across the core (dP) was monitored. 

The effluent samples were used to monitor oil production, water phase pH and ionic 

composition.  
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5 Results 

5.1 – Simulation Results 

5.1.1 – Choice of brines 

Saturation Brines 

In the simulations run to choose FW compositions, the concentrations of Ba and Sr were 

varied. The main issue was to avoid precipitation, and to study the effect of Ba and Sr 

concentrations on the amount of divalent cations adsorbed on the clay surfaces. In the 

experimental study, the saturation with FW and the draining to     on the unconfined porous 

plates was performed at room temperature, and the core flooding experiments where carried 

out at    .. Therefore the simulations were run at both room temperature and 80  as the 

precipitation of       and       are both temperature dependent reactions. 

The FW used by Fjelde et al. (2013a) contained       . The first simulations showed that 

pretty much any concentration of both Ba and Sr would lead to precipitation of       and 

       It was therefore decided to remove the        from the FW. The composition of 

FW1 was the same as the FW used by Fjelde et al. (2013a), except        was removed. 

This composition was chosen to make sure that removing the        would not have any 

effect. See Table 5. (This is also the conclusion that can be drawn from the LSWF 

simulations, as the amount of ions on the clay surface was pretty much identical for the FW1 

and the FW used by Fjelde et al. (2013a) (as shown in Table 6). 

The elevated Sr concentration of    2200ppm used in both FW2 and FW3 was chosen, as this 

was the highest possible concentration not leading to precipitation of       at any 

temperature.  

Precipitation of       did not seem to be an issue here, as simulations with Ba concentration 

as high as   38000 ppm were run without the saturation index indicating any precipitation.  

The Ba concentration in FW2 was chosen to be   300 ppm, as this is a typical concentration 

seen in North Sea petroleum sandstone reservoirs (Merdhah and Yassin 2007). The Ba 

concentration in FW3 of    1 000 ppm was chosen to get an “extreme” example of the 

potential effects. 
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The saturation simulations were run with the assumption that FW was already in the core, and 

in equilibrium with the formation. The solution/effluent concentrations and the amount of the 

different ions present on the clay surface during the simulated flooding with FW therefore 

remained at about a constant level. The simulations were therefore not able to show the actual 

reactions that took place in the experiment when air was replaced with FW.  For this reason 

the effluent profiles from the simulations are not presented here.  

The amount of the different ions that were adsorbed on the clay surface in the FW saturated 

cores are shown in Table 5. X represents the exchange site the ion was adsorbed to. The 

results for FW1 and FW** (FW used by Fjelde et al. (2013a)) indicated that removing the 

       will not have any effect on the ion exchange. The results for FW2 indicate that 

increasing the concentration of Ba and Sr will slightly increase the amount of divalent ions on 

the clay surface and hence reduce the amount of monovalent ions. The results for FW3 

indicate that a large increase in Ba will have a significant effect on the amount of adsorbed 

divalent ions. The amount of divalent ions adsorbed was increased by 34 % compared with 

FW2, and by 43% compared to FW1.  
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 FW1 FW2 FW3 FW** 

NaX [moles] 0.1274 0.1232 0.0985 0.1274 

KX [moles] 0.0065 0.0063 0.0053 0.0065 

CaX2 [moles] 0.0324 0.0303 0.0221 0.0324 

MgX2 [moles]                                     

BaX2 [moles] 0 0.0005 0.0231 0 

SrX2 [moles] 0.0021 0.0060 0.0044 0.0021 

Divalent 

[moles] 
0.0345 0.0368 0.0495 0.0345 

Monovalent 

[moles] 
0.1339 0.1295 0.1039 0.1339 

** Composition of FW used by Fjelde et al. (2013a) 

Table 5 - Amount of ions retained on clay surfaces after saturation with different formation 

waters. X represents the exchange site the ion is adsorbed to.  

Flooding brines 

LSW composition was selected based on simulation evaluating the same LS brines as used by 

Fjelde et al. (2013a). They used FW diluted 1000x, and LS brine only containing KCl. The 

brine that should be used is the one leading to the lowest concentration of divalent cations on 

the clay surface. The amounts of the different ions on the clay surfaces given by the 

simulations are shown in Table 6. All the simulations indicated that flooding with LS brine 

only containing KCl would lead to the lowest concentrations of divalent ions, and hence this 

brine was chosen for the flooding experiments.  
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Saturation brine: FW1 FW2 FW3 FW** 

Flooding brine: LSW-KCl LSW2* LSW-KCl LSW2* LSW-KCl LSW2 LSW-KCl LSW2* 

NaX 

 [moles] 

0.0711 0.0632 0.0681 0.0589 0.0513 0.0342 0.0711 0.0632 

KX 

[moles] 

0.0027 0.0024 0.0026 0.0022 0.0019 0.0013 0.0027 0.0024 

CaX2  

[moles] 

0.0669 0.0700 0.0645 0.0663 0.0501 0.0511 0.06690 0.0700 

MgX2  

[moles] 

                                                                        

BaX2 

[moles] 

0 0 0.0004 0.0006 0.0243 0.0294 0 0 

SrX2  

[moles] 

0.0018 0.0028 0.0054 0.0078 0.0045 0.0074 0.0018 0.0028 

Divalent  

[moles] 

0.0687 0.0798 0.0703 0.0747 0.0790 0.0879 0.0687 0.0798 

Monovalent  

[moles] 

0.0737 0.0655 0.0707 0.0611 0.0532 0.0355 0.0737 0.0655 

*The FW used for saturation diluted 1000x 

Table 6 – Simulated amounts of ions on the clay surface in cell 20 after flooding a FW 

saturated formation with 10 PV of low salinity brine. 
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5.1.2 – Flooding simulations 

In the flooding simulation, the amount of ions retained on the clay surfaces after 10 PV of FW 

has been injected was approximately equal to the values given in Table 5. This was due to the 

oil not being present in the simulations, and because of the assumption that the core was 

already saturated with a brine of similar composition as the one used for flooding. 

When LSW-KCl was injected, the concentrations of the different ions varied through the 

formation. The concentrations of ions on the clay surfaces after 10PV of LSW-KCl had been 

injected are given in Table 7. Similar for all the cores were that the total amount of divalent 

ions adsorbed seem to increase when LSW-KCl was injected. In all the simulations, the 

amount of Na adsorbed was reduced in all the cells. This was probably due to the clays having 

the least affinity towards Na (IDS 1982, Suarez and Zahow 1989, Bennet 2013). When 

concentration of Na in the brine contacting the formation was reduced, other ions were 

preferred.  

K concentration was, as expected, increased in the first cells in Simulation 1 and 2, but as 

water moved through the formation, the amount of K adsorbed was reduced. This was 

probably due to the K concentration being so low, that the released ions, that were either 

replaced by K or released by dissolution in the first cells, will be preferred over K by the 

formation in the later cells. Hence K, and also Na was released. In Simulation 3, the increase 

in K adsorbed in the first cells was not seen, and the amount of K adsorbed was reduced in the 

entire core.  

In Simulation 1 and 2 the amount of Ca adsorbed in the first cell seemed to return to 

approximately the same value as after flooding with FW1. See Table 7. In the later cells 

however, the amount of Ca adsorbed was significantly increased. This was probably due to 

the precipitation of calcite and further Ca being “preferred” by the formation. In Simulation 3, 

the increase in Ca concentration adsorbed was largest in the first cell, and then smaller and 

smaller later in the formation.  

The amount of Mg adsorbed was significantly increased in the first cell of both Simulation 1 

and 2. In the later cells however, the Mg concentration was reduced to a lower value than after 

flooding with FW. In Simulation 3, the amount of Mg adsorbed was reduced through the 

entire formation indicating that Mg was released.  
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As seen in Table 6, the amount of Sr adsorbed remained the same throughout the entire 

flooding in both Simulation 1 and 2. In Simulation 3, some Sr was released from the first 

cells, but in the last half of the core, the amount for Sr adsorbed remained constant.  

Ba did not seem to whether be released or retained in simulations 1 and 2. The amounts 

adsorbed remained the same throughout the floodings. In Simulation 3 the amount of Ba 

adsorbed was reduced in the first cells indicating that some Ba was being released.  

 

Saturation 

brine 

FW1 

(Simulation 1) 

FW2 

(Simulation 2) 

FW3 

(Simulation 3) 

Dimensionless 

distance: 

0 0.5 1 0 0.5 1 0 0.5 1 

NaX [moles]: 0.023 0.060 0.096 0.021 0.055 0.091 0.021 0.043 0.069 

KX [moles]: 0.015 0.002 0.004 0.014 0.002 0.003 0.001 0.002 0.003 

CaX2 

[moles]: 

0.033 0.068 0.050 0.031 0.066 0.050 0.068 0.052 0.038 

MgX2 

[moles]: 

0.047    
      

   
      

0.047    
      

   
      

   
      

   
      

   
      

SrX2 [moles]: 0.022 0.002 0.002 0.006 0.006 0.006 0.0035 0.0044 0.0044 

BaX2 

[moles]: 

0 0 0  
      

 
      

 
      

0.018 0.023 0.023 

Monovalent 

[moles]: 

0.038 0.062 0.099 0.035 0.057 0.094 0.022 0.044 0.071 

Divalent 

[moles]: 

0.102 0.071 0.052 0.084 0.073 0.054 0.095 0.079 0.066 

Table 7 - Concentrations of different ions present on the clay surfaces after flooding with 

10PV of FW and than 10PV of LSW-KCl. The concentrations are given at dimensionless 

distance 0, 0.5 and 1 representing cells 1, 10 and 20 respectively. 
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5.2 – Experimental Results 

5.2.1 – Fluid Properties and Core Data 

Viscosities of the fluids in the core flooding experiments (at    ) are given in Table 8 and 

the properties of the three composite cores are given in Table 9. 

 FW1 FW2 FW3 LSW-KCl STO 

Viscocity 

[cP] 

0.419 0.421 0.446 0.355 1.5 

Table 8 – Fluid viscocities at 80  

 

Core no Lenght 

[cm] 

Diameter 

[cm] 

Kabs 

[mD] 

PV 

[ml] 

Φ 

[fraction] 

    

[fraction 

PV] 

1 7.989 3.735 95.92 21.99 0.25* 0.25 

2 7.810 3.740 90.80 21.54 0.25* 0.28 

3 7.810 3.740 92,46 21.62 0.25* 0.32 

* assumed based on IRIS experience for same reservoir rock (Fjelde, 2013b) 

Table 9 - Properties of the composite cores used in the flooding experiment 

 

5.2.2 – Saturation of the cores with different FW 

The ionic composition of the effluent samples taken during saturation of Core1, Core2 and 

Core3 with FW are given in Figure 13, Figure 14 and Figure 15 successively. Increased 

concentration of K initially was seen in all the floodings. This may be due to contamination of 

the rock during drilling of the well with KCl mud (Fjelde 2013b) 
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The results showed that the ionic composition of the FW affected the reactions with the 

formation. Saturating Core1 with FW containing no Ba and only low concentrations of Sr 

(FW1), showed a high release of Mg in the beginning, while Ca concentration remained 

approximately at injected level. See Figure 13. At the same time the concentration of Na and 

Sr were reduced initially, indicating that these ions were adsorbed on the clay surface. The 

formation also seemed to release some Ba when the other concentrations were pretty much 

stabilized. This release of Ba was still going on when the saturation of Core1 was ended, 

indicating that the formation was not yet in equilibrium with  FW1. Core1 was flooded with a 

lower number of PVs compared to the other two cores due to rate delivering problems with 

the pump used. 

 

Figure 13 - Ionic compostition of effluents during saturation of Core1 with FW1 
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As shown in Figure 14, increasing the concentration of Ba and Sr (FW2) caused higher 

adsorption of the monovalent ions (Na and K). The amount of Ca released was increased, but 

the amount of both Mg and Sr released was reduced. Both Ba and Sr were adsorbed initially 

before the effluent concentration stabilized at approximately injected level (The difference 

between the produced and injected level is within the uncertainty level of the ICP analysis 

(±15%)). 

 

Figure 14 - Ionic compostition of effluents during saturation of Core2 with FW2 
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Increasing the Ba concentration even more (FW3) reduced the adsorption of monovalent ions 

significantly. See Figure 15. The amount of Na in the effluents was approximately constant 

throughout the flooding. The amount of Ca released was increased, while the amount of Mg 

released was reduced. Also, the adsorption of Sr was significantly reduced, indicating that the 

Ba ions may be preferred over Sr at some of the adsorptions sites on the clay due to higher 

affinity (IDS 1982, Suarez and Zahow 1989, Bennet 2013).  

 

Figure 15 - Ionic compostition of effluents during saturation of Core3 with FW3 
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5.2.3 Oil Production Differential Pressure across the Core and Relative Permeabilities  

End point relative permeabilities and residual oil saturation (   ) after each flooding step is 

given in Table 10 and the oil saturation and dP for the flooding experiments are given in 

Figure 16, Figure 19 and Figure 21 successively. For comparison,    and dP plot from 

Experiment 1 performed by Fjelde et al. (2012) is shown in Figure 17 (Flooding with FW – 

sea water – FW diluted 100x – FW diluted 1000x). 

 

Core No Aging 

Brine 

       (   ) Flooding 

steps 

       (   ) 

1 FW1 0.25 0.71 

FW1 (0.37) 0.087 

LSW-KCl (0.30) 0.14 

2 FW2 0.28 0.83 

FW2 0.42 0.093 

LSW-KCl 0.32 0.18 

3 FW3 0.32 0.81 

FW3 0.29 0.084 

LSW-KCl 0.26 0.10 

Table 10 – End point relative permeabilities and residual oil saturation  after each flooding 

step 

When FW1 was injected into Core 1, most of the oil was produced before the water 

breakthrough, and the dP seemed to settle at a stable level until about 6 PV of brine had been 

injected. See Figure 16.     after 6 PV was 0.092 (determined by injection rate of 0.05 

ml/min). The following pressure buildup shown was probably caused by blockage in the 

flooding rig. There was a drop in pressure right before the FW injection was ended, and the 

0.5 ml of STO produced immediately after starting LSW-KCl injection came from the dead 

volume (DV) of the rig and was hence produced during the FW injection. After LSW-KCl 

had been injected, a bypass flooding of the rig at high rate was performed. This resulted in an 

additional production of about 1.8 ml of STO. A permeability measurement of Core1 using 

multirate was then performed, showing that the permeability of the core had not been 

significantly reduced. See Figure 16. Unfortunately, it was not possible to know the exact 
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production period during LSW-KCl, and hence it is difficult to evaluate the wettability of the 

system.  

The results from Experiment 1 presented by Fjelde et al. (2013a) showed faster production 

during FW injection than Core1 in the present study. The     reached by Fjelde et al. (2013a) 

was also significantly lower. The relative permeability results presented by Fjelde et 

al.(2013a) (see Figure 18) show higher    (   ) and lower    (   ) than Core1. This all 

indicates that removing     from the FW causes the core to become less water wet.  

 

 

Figure 16 - Oil saturation, dP and flooding rate during flooding of Core1. Red line is dashed 

due to unknown production profile.  
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Figure 17 - Oil saturation and dP Experiment1 Fjelde et al. (2012) 

 

 

Figure 18 - Estimated relative permeability curves from Experiment 1 presented by Fjelde et 

al. (2012) 
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As shown in Figure 19, initial production during FW2 injection to Core2 was a slightly faster 

than during FW1 injection in Core1.  However, the     reached in Core2 was higher than in 

Core1, which indicates a more water wet system. This was also confirmed by the relative 

permeabilities showing a significantly higher    (   ) for Core2. Injecting the LSW-KCl 

brine to Core2 caused a significant decrease in    . However, the production was slow, and 

more PV should probably have been injected as it appeared that the core had not reached 

equilibrium when the injection was ended. As STO was produced during LSW-KCl, dP did 

not decrease as expected. The effluent concentration of S from Core2 had an increase during 

injection of LSW-KCl  effluents from the two other cores did’t have. In the ICP analysis, S 

detected could be    
  ,    and    . If the elevated S concentration was due to an elevated  

   
   concentration,  the pressure increase might be due to precipitation of       and/or 

     . See Figure 20. This might cause the permeability to decrease, and hence the dP to 

increase. The increase in S concentration  was also seen in the effluents from the two other 

cores but to a much smaller degree. 

 

 

Figure 19 - Oil saturation and dP during flooding of Core2 
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Figure 20 - Effluent S concentrations during LSW-KCl flooding from all three cores. 

 

When FW3 was injected into Core3, most of the oil was produced almost immediately. See 

Figure 21. Also the     reached was lower than for the two other cores. The relative 

permeability values for the FW3 flooding were similar to the ones in Core2. Similar     

value, at a lower     combined with the oil being produced faster indicate that the extreme Ba 

concentration caused Core3 to become more water wet than Core2. When injecting LSW-KCl 

in Core3 a small amount of oil was slowly produced. The amount produced during the LS step 

was however much smaller than for Core1 and 2. This was also confirmed by a smaller 

change in     than for the two other cores. The logging of the dP failed, and only manual 

recordings are available for Core3. However, the dP seem to remain rather constant through 

the LSW-KCl flooding. 

 

0

20

40

60

80

100

120

140

160

180

7 9 11 13 15 17 19

S 
[m

g/
l]

 

PV injected 

S produced Core1 S injected
S produced Core2 S produced Core3



60 
 

 

Figure 21 - Oil saturation and dP during flooding of Core3 
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5.2.4 – pH 

When FW1 was injected in Experiment 1, the effluent pH was higher than the injection level  

as shown in Figure 22. This indicates a reaction between the formation and the injected brine. 

When the LSW-KCl was injected, the pH of the effluent increased even more. According to 

Omekeh et al. 2012, this pH increase was probably due dissolution of calcite during FW 

injection which causes the pH to remain low. As the LSW was injected, the dissolution of 

calcite is smaller causing the pH to rise. The pH results were similar to the ones reported by 

Fjelde et al. (2012) for injection of FW – SW – FW diluted 100x and FW diluted 1000x. and 

LSW-KCl   (shown in Figure 23 and Figure 24) indicating that removing    
   will not have 

an effect on the pH. 

 

 

Figure 22 - Effluent pH during injection of FW1 and LSW-KCl to Core 1 
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Figure 23 – pH from Experiment1 – core flooded with FW – SW – FW diluted 100x – FW 

diluted 1000x (Fjelde et al. 2012) 

 

 

Figure 24 - pH from Experiment 4 – core flooded with LSW-KCl only (Fjelde et al. 2013a) 
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When FW2 was injected in Experiment 2, the effluent pH seems to stay at approximately the 

same value as injected. See Figure 25. When LSW-KCl was injected, the effluent pH rose to a 

higher value than injected, indicating a reaction between the injected brine and the formation. 

The rise in pH was similar to the one seen in Core1. 

 

 

Figure 25 - Effluent pH during injection of FW2 and LSW-KCl to Core 2 

When FW3 was injected in Experiment 3, the pH of the effluent remained at approximately 

the same value as injected as shown in Figure 26. When the LSW-KCl was injected, the pH 

of the effluent rose to a higher value than injected, indicating a reaction between the injected 

brine and the formation. The pH rose to approximately the same level during LSWF in all the 

three cores, but to a higher level than obtained by Fjelde et al. (2013a) both when changing 

from FW to LSW (SW injected in between), as shown in Figure 23, and also when flooding 

with LSW-KCl only as shown in Figure 24. 
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Figure 26 - Effluent pH during injection of FW3 and LSW-Kcl to Core 3 
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5.2.5 – Ionic Composition of effluents 

The saturation floodings and drainage to     on unconfined porous plates where performed at 

room temperature. The corefloodings where performed at    , and the cores not being in 

equilibrium with the different FWs at the start of the FW floodings might be due to reactions 

caused by the temperature increase.  

Core1: 

Effluent ionic compositions from Core1 floodings are shown in Figure 27 (Ca, Mg, K and 

Na) and Figure 28 (Ba and Sr). Figures on the left show both FW1 and LSW-KCl injection, 

while the figures on the right give a closer look at the LSW-KCl injection. The results from 

the FW1 effluents show that very large amounts of all the ions were adsorbed. This could be 

due to injection of smaller FW volume due to pump failure, but as it seemed that all the ions 

(except for Ba) had reached injected level, it seems unlikely that that much retention should 

take place. Also, the shapes of the graphs are fairly similar, which might indicate 

measurement errors. The FW1 effluent results will therefore not be used for further 

interpretation. However, the concentrations in the last measurement points seem to have 

reached injected level, and effluent concentrations from the LSW-KCl injection are 

interpreted.  

When LSW-KCl was injected, Ca concentration remained above injected level indicating that 

Ca was being released from the formation, as seen in Figure 27. Mg concentration also 

remained above injected level until the end of the LSW-KCl injection. As shown by Figure 

27, the Na concentration remained above injected level through the entire injection, indicating 

that Na was being released. The K concentration was lower than injected all through the 

LSW-KCl injection. K was being retained by the formation, replacing Na, Ca, and Mg. This 

ion exchange was also seen in Experiment 4 performed by Fjelde et al. (2013a) where only 

LSW-KCl was injected. See Figure 30.  

 As shown in Figure 28. The concentration of Ba was quickly reduced and stabilized at 

injected level when LSW-KCl was injected. This indicates that most of the Ba present in the 

formation initially was released during FW1 injection. When LSW-KCl was injected some Sr 

was released before the concentration was reduced to injected level.  
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Figure 27 - Effluent concentrations of Ca, Mg, K and Na from Core1. Figures on the left 

show both FW1 and LSW-KCl injection, while figures on the right show LSW-KCl injection 

only  
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Figure 28 - Effluent concentrations of Ba and Sr from Core1. Figures on the left show both 

FW1 and LSW-KCl injection, while figures on the right show LSW-KCl injection only 

 

 
Figure 29 - Ionic comporition of Experiment 1 performed by Fjelde et.al (2012). Core was 

flooded with FW – SW – FW diluted 100x – FW diluted 1000x. 
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Figure 30 - Ionic composition of Experiment 4 performed by Fjelde et al. (2013a). Core is 

flooded with LSW-KCl only. 

 

Core2: 

The ionic composition of the effluents taken out during flooding of Core2 is shown in Figure 

31 (Ca, Mg, K and Na) and Figure 32 (Ba and Sr). Both FW2 injection and LSW-KCl 

injection are shown in the figures on the left, and only LSW-KCl flooding is shown in the 

figures on the right. The concentrations are plotted with respect to PV injected. Ca was 

adsorbed by the rock in the beginning of the FW2 injection, but stabilized at injected level 

rather quickly. This indicates that the FW2 was not in equilibrium with the formation. When 

changing to LSW-KCl, the Ca concentration remained above the injected level throughout the 

entire flooding. Also a small peak in Ca concentration was observed after about 17 PV had 

been injected. The variations in ion concentrations (Ca and Mg concentration increasing when 

Ba and Sr concentration decreased and vice versa) indicate that Ca was being released due to 

ion exchange.  

At the beginning for the FW2 injection, Mg was retained by the rock, as shown in Figure 31. 

After about 2 PVs had been injected, the Mg concentration had stabilized at injected level. 

When LSW-KCl was injected, the Mg concentration remained at a higher level than injected 

all through the flooding. This indicates that also Mg was being released. 
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The K concentration stabilized at injected level almost immediately when FW2 was injected. 

When switching to LSW-KCl, some K was released before the concentration was reduced to a 

value lower than injected. This indicated that K was being retained by the rock, replacing Ca, 

Mg, Sr, and Ba.  

As shown in Figure 31, Na was being retained by the rock initially, when FW2 was injected. 

The concentration then stabilized at injected level. When LSW-KCl was injected, the Na 

concentration remained above injected level. 

The concentration of Sr showed a small dip at the beginning of the FW2 injection, as seen in 

Figure 32, indicating that some Sr was retained by the core.  When changing to LSW-KCl, 

the Sr concentration stayed above injected concentration until the end of the injection. This 

indicates that Sr was being released by the formation.  

During the FW2 injection, the Ba concentration was initially much lower than injected value, 

indicating that Ba was being retained. See Figure 32. The concentration stabilizes at injected 

level after about 5 PV. When changing to LSW-KCl, a small amount of Ba was being 

released initially, before  the concentration stabilized at approximately injected level.  

During LSW-KCl injection, STO was slowly produced all the way through the injection 

period. This might have been caused by divalent ions being replaced by K all through the 

LSW-KCl injection. The amount of Ca and Mg that was released in Core 2 was smaller than 

in Core1. 
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Figure 31 - Effluent concentrations of Ca, Mg, K and Na from Core2. Figures on the left 

show both FW2 and LSW-KCl injection, while figures on the right show LSW-KCl injection 

only. 
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Figure 32 - Effluent concentrations of Ba and Sr from Core2. Figures on the left show both 

FW2 and LSW-KCl injection, while figures on the right show LSW-KCl injection only 

Core3: 

The ionic compositions of the effluents from Core3 are shown in Figure 33 (Ca, Mg, K and 

Na) and Figure 33 (Ba and Sr). Figures on the left side show both FW3 and LSW-KCl 

injection, and figures on the right give a closer look of the LSW-KCl injection.  In the 

beginning of the FW3 injection, early variations in effluent concentrations indicate that FW3 

was not in equilibrium with the rock. The Ca concentration showed a peak before it stabilized 

at injected concentration. This indicates release of Ca that might be caused by dissolution of 

calcite. As shown by Figure 29 and Figure 30, this increase in Ca concentration was also seen 

in the experiments performed by Fjelde et al. (2012). When LSW-KCl was injected in Core3, 

Ca was being released, because the produced concentration was higher than injected level 

until the end of the flooding (see Figure 33).  

During FW3 injection Mg was initially being retained. See Figure 33. The effluent 

concentration was lower than injected first, before stabilizing at injected level. When LSW-

KCl was injected Mg was released by the rock, and injected level was not reached until the 

end of the flooding.  
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As shown by Figure 33, Na was retained by the rock initially when FW3 was injected. The 

concentration than stabilized at injected level. When LSW-KCl was injected, the Na 

concentration remained above injected level, indicating that Na was released.  

During FW3 injection the K concentration shows a peak initially, before it stabilized at 

injected level. See Figure 33. The peak was not seen in Core2, indicating that some K might 

have been replaced by Ba. When LSW-KCl was injected, some K was released before the 

concentration was reduced to a value lower than injected, indicating that K was retained 

replacing Ca, Mg, Ba and Sr.   

As shown by Figure 34, the Sr concentration was kept at injected level all through the FW3 

injection. The retention of Sr in Core2 was not seen in Core3, indicating that the elevated Ba 

concentration caused less Sr to be retained by the core. When LSW-KCl was injected, the Sr 

concentration was higher than injected all through the flooding, indicating that Sr was being 

released.  

Ba was retained initially when FW3 was injected. See Figure 34. The effluent level reached 

injected level faster than in Core2, which would be expected as the injected concentration was 

higher. When LSW-KCl was injected, some Ba was released, before effluent level reached 

injected level.  

During LSW-KCl injection, the amount of divalent ions being replaced by K in Core3 was 

higher than in Core2. This caused some additional oil to be produced. However, the amount 

of additional oil that was produced from Core3 was smaller than from Core2. This might be 

because the    reached in Core3 after injection of FW3 was much lower than the     reached 

by the two other cores after FW injection, and the potential for LSWF was reduced.  
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Figure 33 - Effluent concentrations of Ca, Mg, K and Na from Core3. Figures on the left 

show both FW2 and LSW-KCl injection, while figures on the right show LSW-KCl injection 

only 
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Figure 34 - Effluent concentrations of Ba and Sr from Core3. Figures on the left show both 

FW3 and LSW-KCl injection,while figures on the right show LSW-KCl injection only 
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6  Discussion 

During the saturation of the cores, both the simulation and the experimental results show that 

varying the concentrations of Ba and Sr will have an effect on the reactions between the brine 

and the rock. In the literature it has been claimed that both Ba and Sr will have higher affinity 

to clay than Ca, Mg and K at equal concentrations (IDS 1982, Suarez and Zahow 1989, 

Bennet 2013). Suijkerbuijk et al. (2012) showed that the type of ions that are adsorbed on a 

clay surface will have an effect on the wettability of the rock. It was therefore expected that 

increasing concentration of Ba and Sr in the FW would cause more of these ions to be 

adsorbed, and hence alter the wettability. In this study, the simulation results showed that the 

amount of divalent cations retained on the clay surface would increase with increasing Ba and 

Sr concentration in the FW, and the experimental results indicated that higher concentrations 

of Ba and Sr will lead to a more water wet system initially.  

In the literature, mixed wet systems have been shown to yield lower     values than water wet 

systems (Jadhunandan and Morrow 1995). The production is however slower, water breaks 

through earlier and higher volume of injected water is needed to reach    . One would 

therefore expect faster production and higher     when wettability is altered toward more 

water-wet. This was the case when comparing Core1 and Core2, but Core3 reached a much 

lower     after FW flooding than both of the other cores (See Table 10). However the water 

relative permeability at the end of the FW floodings of Core2 and Core3 were of similar 

value. And as     was lower in Core3 than Core2, this indicated that Core3 was more water 

wet. This seemed to be caused by more Ca and K ions being replaced by Ba ions in the 

beginning of the FW3 injection than in the injection of FW2.  

On a field scale, the most important average     value is the one reached when the production 

is no longer economically feasible. For a mixed wet system the amount of water that has to be 

injected to reach the true     is higher than for a more water wet system (Jadhunandan and 

Morrow 1995). Therefore production might be ended before the true     is reached. Altering 

the wettability towards more water wet will probably increase    , however,     will increase 

and the oil will be produced faster. This might mean that the average remaining oil saturation 

at end of production will be lower for a water wet system than for a mixed wet system. In the 

experiments performed here, it was shown that increasing the Ba and Sr concentrations will 

lead to a more water wet system. The extreme concentration of Ba would be the most 

beneficial for fast oil recovery. However, this result may not be of big relevance as the Ba 
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concentration used was much higher than what will be found in a reservoir. The change 

towards more water wet was however also noticeable in the core saturated with a normal Ba 

concentration and a high Sr concentration. This indicated that leaving out Ba and Sr from the 

FW used in experimental studies might lead to an unrepresentative initial wettability.  

The FW composition was also shown to affect LS potential. According to Fjelde et al. 

(2013a), LSE will be seen where the amount of divalent ions adsorbed on the clay surface is 

reduced, and that this should be possible to predict using a simulator. However, the simulation 

results obtained here indicated that the amount of divalent ions adsorbed by the rock would 

increase when LSW-KCl was injected, and hence no additional oil production due to the LSW 

should be expected. The experimental floodings showed that this was not the case, as an 

increase in oil recovery during injection of LSW-KCl was seen in all three cores. The effect 

was however larger for Core1 and Core2 indicating that the extreme concentration of Ba in 

FW3 had a negative effect on the LS potential. At the same time, Core2 showed the best 

response to the LSWF, indicating that a reasonable concentration of Ba and a high 

concentration of Sr could have a positive effect.  

The difference between Cores 1 and 2 and Core3 was indicated by the simulation results. The 

amount of K adsorbed in simulation 3 (the Core3 experiment) does not increase in the first 

cells as expected, the amount of Na released was smaller and in the first cells Ca was being 

adsorbed instead of Mg and some Ba and Sr were released. Simulation 3 also showed the 

highest amount of divalent ions adsorbed on the formation. These differences are not seen in 

the experimental results. The effluent ionic compositions from LSW-KCl flooding of Core3 

show that K was being retained by the formation. And it would seem also like Core 3 was the 

one with the highest release of all the divalent ions divalent ions. This might not actually be 

the case however, as the concentrations of the different ions when LSW injection was started 

were so much higher than at the end of the injection. Compositional changes equal to the ones 

seen at the end would be too small to detect in the beginning.  

6.1 – Further work  

For further work, duplicate experiments are recommended to confirm the results and 

conclusions made in this study. Systematic in Ba and Sr concentrations should also be tested 

as the effect of increased Sr or Ba concentration alone has not been investigated. It might also 

be useful to test Ba concentrations somewhere between the concentrations used here, as the 
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high value used (300 ppm) was lower than the highest values reported in the literature (2180 

ppm), and the extreme value is not likely to be seen in any reservoir (Merhah and Yassin 

2007).  

In this work, only one type of sandstone, one basic FW and one crude oil has been used. The 

reaction between the ions in brine and the formation can vary with different mineral 

compositions, and also by the distribution of the minerals present. It would therefore be useful 

to test the effects on different COBR systems.  
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7  Conclusions 

Based on simulations and experimental studies of cores saturated with FW containing three 

different Ba and Sr concentrations, the following conclusions have been made: 

Leaving out Ba and Sr from synthetic FW used in the lab will have an effect on the obtained 

initial wettability of the rock. This could cause an unrepresentative image of what is actually 

going on in the formation. In the work done here, both production profiles and end point 

relative permeability calculations indicate that increasing concentration of Ba and Sr in the 

FW will lead to a more water wet system initially. 

Ion composition of the FW will have an effect on the potential for LSWF. The largest LSE 

effect is seen in the core containing high, but reasonable concentrations of Ba and Sr, both 

indicated by additional production in LSWF as well as increased    (   ).  

The presence of Ba only has a positive effect on the LS potential up to a certain level. The 

core saturated with FW containing an extreme concentration of Ba (19000 ppm) showed a 

much lower response to the LSW.  

The simulations gave a correct image regarding Core3 being different, but regarding a pre 

evaluation of the  LS potential, looking at the amount of divalent ions on the surface, it did 

not indicate that LSWF would yield any extra production.  
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