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Abstract	  
 

This thesis is an event study concerning earnings announcements in the Norwegian stock 

market, during the time period of 2007-2010. The study serves as a method of testing the 

efficiency of the Norwegian capital market, originating from the efficient market hypothesis. 

Several studies have confirmed a high degree of efficiency in capital markets, but some have 

also detected delayed stock-price responses to new value-altering information; a phenomenon 

referred to as the post-earnings-announcement drift. The methodology applied in this thesis 

first estimates the expected earnings via a time-series model, before estimating the event’s 

abnormal returns by a market model. In this way the amount of information conveyed by 

earnings announcements can be determined, along with whether or not there are opportunities 

for earning abnormal stock returns associated with an event. My main result is that the 

Norwegian market appears to be largely efficient, with a couple of minor deviations. Earnings 

announcements that differ from expectations are confirmed to cause abnormal returns, but I 

find that the negative earnings surprises yield results easiest to interpret. I also detect 

indications that the speed of response to earnings news can be related to trading frequency 

and state of the economy. I do not, however, find any evidence of a post-earnings-

announcement drift in my data.  
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Preface	  
 
This thesis concludes my two-year graduate studies work in the area of applied finance, 

during which I have gained knowledge in numerous interesting aspects of the field. Topics 

range from pricing theories to macroeconomic factors affecting capital markets to behavioral 

finance issues, and so on. In position to decide on a topic for my master thesis, I had to review 

my previous courses to search for a specific field of interest in which I would immerse myself 

for the remaining time of my degree. One of the theoretic aspects that attracted me was the 

efficient market hypothesis. It seemed to me puzzling that if the markets are as efficient as 

predicted by this concept, why do so many individuals devote extensive time and money 

researching companies to discover underpriced securities? That is the reason I decided to 

design a research project that would indicate the strength of the efficient market hypothesis, 

by the use of Norwegian data. Specifically, I decided to perform an event study on earnings 

announcements and surprises; a very applicable method for testing market efficiency.  

 

Before I shall proceed, I would like to thank my advisor, Bernt Arne Ødegaard, for the supply 

of both data and useful advice along the way. This process has involved a long time of 

analyzing a heavy load of data, necessarily demanding a great amount of time. But the study 

has certainly been interesting and educational. This is the largest school project I have single-

handedly completed, and I hope the resulting paper offers the reader some intriguing insights. 
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1	   Introduction	  
 

The efficient market hypothesis has existed in the finance literature since the 1960s, as the 

concept was proposed and developed by Eugene Fama. Since then, the hypothesis has been 

widely tested, yielding results both to its favor and disfavor. Certainly, the idea might be 

perceived as “pessimistic” to individuals who earn their living searching for underpriced 

securities with the intention to earn profits higher than the rest of the market. If the efficient 

market hypothesis holds, then any individual would be better off just holding a portfolio of an 

approximation of the market (e.g. an index portfolio) than costly information searching in 

securities. Obviously, the prospect of earning an abnormal return in stock investments is an 

attractive aspect of spending time researching these markets. This is probably a key reason for 

the heavy research activity regarding market efficiency. Investors would be interested in 

learning the extent to which their time spent searching for mispriced securities is profitable – 

if everyone could earn the same return just by indexing the market, then active portfolio 

management would plainly be a waste of time and money. As I will later explain in more 

detail, the underlying essence of the efficient market hypothesis is that “if there is an 

abnormal return to be earned, someone else has already exploited the opportunity”.  

 

Extensive research has been performed on the subject “market efficiency”, mostly in the 

United States. The most important literature will be reviewed in chapter 3; spanning over 

nearly fifty years of researching efficiency in capital markets. The purpose of this paper is to 

examine whether the results that have been documented in the U.S. also apply to the 

Norwegian stock market. The Norwegian market differs from the American one (as well as 

other large, well-developed capital markets such as the Japanese and British stock markets) in 

more than one way. There could be a possibility that the well-documented efficiency in the 

U.S. capital market does not appear with the same conviction in a much smaller market like 

Norway. In this way, my research is an investigation of the universality of this phenomenon. 

 

To “examine the capital market efficiency” is needless to say a vague formulation of a 

research problem. In order to test the hypothesis, it is often useful to examine the effects of a 

specific event that is believed to convey price-altering information to the capital market. Such 

an analysis is referred to as en event study; a heavily applied research method for testing 

market efficiency. Many types of events can be studied, such as announcements of mergers, 

dividend payouts and earnings. This paper will study earnings announcements as a means for 
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examining the efficiency of the Norwegian capital market. All listed companies are required 

to disclose quarterly earnings reports to the public; creating a huge number of individual 

events to study. It would be more problematic to study e.g. merger announcements, since 

there are only a few of these happening each year in a small market such as Norway. But with 

nearly 200 listed companies of varying size on the Oslo Stock Exchange, each announcing 

quarterly earnings; the events available for investigation are numerous. Event studies have 

been performed to a great extent. One puzzling empirical finding related to earnings 

announcements, is that stock prices of companies that have experienced a positive (negative) 

earnings surprise tend to drift upward (downward) for a long period after the announcement. 

This phenomenon is referred to as the “post-earnings-announcement drift”. If capital markets 

are efficient, the earnings surprise should be incorporated almost immediately in stock prices, 

due to the many individuals watching over the market and making quick decisions; resulting 

in the stock’s new “fair value” to be achieved very quickly after the announcement. This 

prediction has been contradicted by research in U.S. capital markets, but does the same 

phenomenon appear in the Norwegian market? This paper will examine whether the market is 

able to efficiently incorporate news, or if the earnings response is partly delayed, possibly 

creating a drift. We will find out which is stronger as I perform my investigation of earnings 

announcements’ effect on stock returns and the post-earnings announcement drift. 

 

In addition to studying inefficiencies and the presence of opportunities to earn abnormal stock 

returns, earnings-announcement event studies also seek to examine the information content of 

quarterly or annual earnings. The regulative organs in accounting intend to set standards that 

make sure there is real information content in financial reports. Event studying hereby is a 

very useful method of examining the information that is conveyed by financial disclosures 

(MacKinlay, 1997); in how the market participants react to new information. Hence, the 

importance of performing an event study of earnings announcements is both due to 

documenting market efficiency/inefficiency, and to map the informative value of a specific 

type of information disclosure, e.g. earnings announcements.   

 

One specific aspect that is worth investigating more closely is whether the effects of earnings 

news differ according to the state of the economy. During the recent years, we have witnessed 

enormous transformations. The Norwegian stock market reached all-time highs in the former 

half of 2008, before the financial crisis led to worldwide market crashes. Currently, the 

Norwegian stock indices are climbing their way back towards the top. With these fluctuations 
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throughout the sample period, I intend to devote some attention to examining how the varying 

state of the economy affects the results. Figure 1.1 illustrates the fluctuations of the Oslo 

Stock Exchange’s All-Share Index (OSEAX) during the years 2007 to 2010. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.1. The Norwegian stock market’s fluctuations during recent years, illustrated by the 
OSEAX index, January 2007 through December 2010 
 

The thesis will proceed as follows: first, in chapter 2 I will review the most important 

previous research in the field of capital market efficiency, with emphasis on earnings-

announcement event studies. Chapter 3 will present the choice of empirical methods for the 

study, including time-series models for estimating expected earnings and methodology for 

event studies. In chapter 4, I will describe the data included in the analysis. Chapter 5 will 

present the results from the study; determining whether there is evidence of a post-earnings 

announcement drift in the Norwegian stock market, along with other results provided by the 

analysis.  
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2	   Background	  and	  Literature	  Review	  
	  

2.1	   The	  Efficient	  Market	  Hypothesis	  

 

2.1.1	   	   Introduction	  to	  the	  Efficient	  Market	  Hypothesis	  
 

Credit for a preliminary definition of the expression efficient market can be given to Eugene 

Fama (1965): 

  

“A situation where successive price changes are independent is consistent with the 
existence of an “efficient” market for securities, that is, a market where, given the 
available information, actual prices at every point in time represent very good 
estimates of intrinsic values” (p. 90) 

  

Fama, the acknowledged developer behind the efficient market hypothesis, has written several 

important papers on the subject. His 1970 paper reviewing theory and empirical work in 

support of the hypothesis, provides a more simply formulated and still well-recognized 

definition of an efficient market: “A market in which prices always “fully reflect” all 

available information is called “efficient” ” (p. 383). How does one define a market that “fully 

reflects all available information”? This basic definition of the efficient market can be further 

extended into three definable categories: weak form, semi-strong form and strong-form 

efficiency. The weak form of capital market efficiency states that prices reflect all historic 

price information. Fama (1970) justifies that the weak-form efficient market hypothesis has 

been extensively confirmed. Attention in the 1970s was then devoted to testing the semi-

strong form; in which prices reflect all publicly available information. Finally, strong-form 

efficiency is defined as having absolutely all information, including insider information, 

reflected in security prices. As Fama states, this would mean that company insiders (such as 

managers) are able to take advantage of currently undisclosed information to which they have 

exclusive access. 

 

Fama (1970) concludes that “the evidence in support of the efficient markets model is 

extensive, and (…) contradictory evidence is sparse” (p. 416). At the same time, he also notes 

that real-world market frictions such as 1) transaction costs, 2) various degrees of information 

availability among investors and 3) diverse opinions of how specific information influences 

value can be potential, though not necessary, sources of market inefficiency.  



	   11	  

2.1.2	   	   Anomalies:	  Capital	  Market	  Inefficiency?	  
	  

2.1.2.1	  	   Introduction	  

Though reasonably supported in early empirical work (for example as noted in Fama, 1970 

and 1991), puzzling anomalies have been documented in later work that contradicts the 

efficient market hypothesis. I will only review this part of the literature very briefly, since my 

paper will not focus on these anomalies, but I will display them in order to show that there 

have been documented contradictions to the efficient market hypothesis that argue against 

accepting the concept naively.  

 

2.1.2.2	  	   The	  Size	  Effect	  

Studies (beginning with Banz, 1981, and Reinganum, 1981) have shown that small-

capitalization firms earn higher returns than predicted by the Capital Asset Pricing Model 

(CAPM) (developed by Sharpe, 1964, and Lintner, 1965), also known as the size effect. But 

Schwert (2002) states that the anomaly has disappeared since these papers were published. He 

also points out that this could be due to decreasing distance between risk premiums of small 

and large capitalization stocks.  

 

2.1.2.3	  	   The	  Turn-of-the-Year	  Effect	   	   	   	  

There has also been evidence that the small-firm effect mainly occurs in January, giving rise 

to an anomaly referred to as the turn-of-the-year effect, or the small-firm-in-January effect 

(Keim, 1983, Reinganum, 1983). The effect is according to Scwert (2002) “still reliably 

positive” (p. 9), even though it has experienced a slight decrease since its first discovery.  

 

2.1.2.4.	  	   The	  Value	  Effect	  

Research has shown that so-called value firms, with high earnings relative to price, earn 

higher returns than predicted by the CAPM (e.g. Basu, 1977). This effect can also be applied 

to high D/P (dividend-to-price) or B/M (book-to-market) ratios. But these effects are rather 

likely to be caused by the CAPM being a model unable to fully capture security risk than the 

market being inefficient, as observed by Ball (1978).   
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2.1.2.5	  	   The	  Three-Factor	  Model	  

Fama and French (1993) later developed an extended CAPM as a possible solution for its 

failure-to-account-for-risk problem. Their three-factor model added two factors to the 

traditional CAPM market beta: a size factor (market capitalization) and a value factor (book-

to-market ratio). They associate the low book-to-market ratio stocks (growth stocks) with the 

largest deviation for their three-factor model; still they find that portfolios grouped into 

market capitalization, book-to-market ratio, dividend yield and earnings-to-price ratio do not 

yield abnormal returns significantly different from zero when using the three-factor model. 

 

These are a few examples that demonstrate that the efficient market hypothesis to a certain 

extent can be rejected in semi-strong form, giving reason to believe that there are 

opportunities in the stock market to earn above-normal returns. But as I will present in a bit, 

solid evidence has also been documented in favor of the hypothesis. 

 

2.2	   Event	  Studies	  

	  

2.2.1	   	   Introduction	  
 

Event studies are the cleanest evidence we have on efficiency 
  Fama, 1991, p. 1602 

 

In earlier empirical work, an event study is referred to as a semi-strong-form test of market 

efficiency (e.g. Fama, 1970). Similar to the study at hand, these tests were focusing on one 

particular event, and examining the stock-price adjustment to the new public information. 

Over the years numerous researchers have performed event studies, whether the topic of 

interest were stock splits, dividend announcements or quarterly earnings. Kothari and Warner 

(2006) note that there were over 500 published event studies. They also state that “the basic 

statistical format of event studies has not changed over time” (p. 7), and that the intention of 

event studies is still to measure mean and cumulative abnormal returns of the securities in the 

sample, induced by an event. The abnormal return can be defined as “(…) the (unexpected) 

change in security holder wealth associated with the event” (Kothari and Warner, 2006, p. 

10).  In an event study, the researcher hypothesizes that markets adjust to new information 

immediately; hence “markets are informationally efficient” (Kothari, 2001, p. 116).  
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2.2.2.	  	   Long-‐Horizon	  and	  Short-‐Window	  Event	  Studies	  
 

Kothari (2001) specifies a long-horizon event study as a measurement of abnormal returns for 

the one to five years following an event. Long-horizon studies are subject to troubling factors 

such as data problems and misleading estimations of risk. This paper will not focus on long-

horizon event studies, since the study is concerned with short-period returns induced by an 

event. By Kothari’s definition, short-window event studies can be characterized as studies 

estimating the abnormal returns up until one year from the event date.   

 

2.2.3	   	   Introduction	  to	  Event	  Study	  Methodology	  
 

When testing for market efficiency, the researcher must always use a model of “normal 

returns” – the tests are jointly testing market efficiency and the asset-pricing model. As Fama 

(1991) notes, this creates a joint-hypothesis problem with the consequence that conclusions 

about market inefficiency cannot be accepted naively without acknowledging a potential 

model misspecification’s effect on the results. One way to possibly minimize this problem is 

to use daily data in event studies, allowing a precise measure of how quickly the stock price 

responds (Fama, 1991). Brown and Warner (1985) find that when the stock price response to 

a given event is large and mainly occurs over a few days, the method for estimating abnormal 

returns is of little significance. The average annual return on stocks is about 10%, constituting 

an average daily return of only 0.04%. Using e.g. monthly returns would cause the joint-

hypothesis problem to be far more serious.  

 

The transition from using mainly monthly returns to daily or intraday returns is one of the 

methodological changes in event studies through time since the early publications (Kothari 

and Warner, 2006). Also, the procedures for performing long-horizon event studies have 

evolved into more sophisticated ones, resulting from new findings in the 1990s on “the 

statistical properties of long-horizon security returns” (Kothari and Warner, p. 8).  

 

Event study methodology will be reviewed more thoroughly in section 3.2, along with the 

reasoning for the particular choice of research methods for this purpose. The next section will 

review some of the earlier research on earnings announcements applying event study 

methodology. 
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2.3	   Research	  on	  the	  Information	  Content	  of	  Earnings	  

	  

2.3.1	   	   Introduction	  
 

Kothari (2001) defines firm value in an efficient market as “the present value of expected 

future net cash flows, discounted at the appropriate risk-adjusted rate of return” (p. 108-109).  

Hence, if earnings announcements have informational value about higher/lower future 

earnings, it should be reflected immediately in security prices. A company releasing higher-

than-expected earnings will be anticipated by the market to increase earnings in the future, 

and thereby experiencing a jump in the value of the company’s stock. But how much 

information content is there really in earnings, and how well is the market able to incorporate 

it? 

	  

2.3.2	   	   Earnings	  Predictability	  
 

First, a few empirical results concerning the behavior of earnings, and the extent to which 

they are predictable, will be emphasized. In pioneering earnings research, Ball and Brown 

(1968) find that more than half of all the information that flows to the market about a firm 

during the year is captured in that year’s income number. The authors also point out that the 

market’s expectation of a firm’s annual earnings can be derived from regressing a given 

firm’s change in income on the average change in income for all the firms in the market. This 

points to the fact that economy-wide effects explain a large fraction of the change in a firm’s 

earnings. Similarly, as Kothari (2001) explains, earnings changes from one period to the next 

are not unpredictable from a market perspective, since the information set reflected in prices 

contains information about future earnings changes. In this manner, only a portion of the 

earnings change is a surprise to the market. He also points out that “in an efficient market, the 

anticipated portion of the earnings change is irrelevant in explaining contemporaneous 

returns” (p 130).  
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2.3.2.1	  	   The	  Time-Series	  Properties	  of	  Earnings	  

Several studies have shown that seasonally differenced quarterly earnings are positively 

correlated from one quarter to the next, and that changes in adjacent quarterly earnings are 

related. Some of these include Watts (1975) (referred to in Foster, 1977), Griffin (1977), 

Foster (1977) and Freeman and Tse (1989). Foster finds that annual earnings can be described 

by a submartingale process (in which next period’s expected earnings are equal to or greater 

than this period’s earnings), but quarterly earnings do not follow this process. Quarterly 

earnings series appear in Foster’s paper to have both a seasonal and an adjacent-quarter 

component. The detected time-series properties of earnings are of special interest for this 

particular study, making it feasible to estimate expected earnings without having access to 

analyst forecasts. 

 

Research by Bernard and Thomas (1989) indicates that the market fails to adequately revise 

its expectation of future earnings as current earnings deviate from expectations. Following up, 

Bernard and Thomas (1990) document evidence that stock prices partly reflect a naïve 

earnings expectation, meaning that future earnings are expected to equal the earnings in the 

comparable quarter the preceding year. But as pointed out, quarterly earnings have been 

documented to behave differently, with a positively correlated seasonal component. For 

example, if earnings in the third quarter of 2010 exceed the earnings in the third quarter of 

2009, the efficient market builds up an expectation of earnings in the fourth quarter of 2010 

higher than otherwise. If the market succeeds to fully incorporate the implications of last 

quarter’s earnings, the mean reaction to this quarter’s earnings should be zero. Along with 

Rendleman et al (1987) (referred to in Kothari, 2001) and Freeman and Tse (1989), Bernard 

and Thomas’ (1989, 1990) study indicates that the market behaves as though quarterly 

earnings follow a random-walk process (like annual earnings), and fails to fully recognize the 

seasonal time-series properties. However, Brown and Han (2000) detect this phenomenon 

only in smaller firms, where investors are relatively unsophisticated. The implication is that 

for large, heavily traded firms which are constantly monitored by numerous high-skilled 

analysts, the market expectation of quarterly earnings are likely to be aligned with the 

detected time-series properties of quarterly data. 
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2.3.3	   	   Previous	  Research	  on	  Earnings	  and	  Returns	  
 

This section summarizes important research on earnings announcements and their 

informational value. Both Beaver (1968) and May (1971) conclude that earnings 

announcements (including the days around which they occur) are associated with much larger 

price changes than on average (during periods without any financial reporting). These results 

support the view that earnings announcements carry information that affects firm value.  

 

It also appears that the earnings information’s characteristics influence the market reaction. 

Transitory earnings, for instance, represent in several cases the main component of large 

earnings surprises. Beaver et al (1979) proved that abnormal returns associated with extreme 

earnings changes (as a result of transitory earnings) are not as large as those associated with 

non-extreme earnings changes. These results can be interpreted as the market not expecting 

these extreme changes to persist, thereby inducing a smaller price response. Another factor 

that diversifies the responses to different firms’ earnings is market capitalization. Related to 

the small-firm anomaly from section 2.1.2.2, Chambers and Penman (1984), as well as their 

reference Atiase (1980), find that the price reactions to small firms’ earnings appear to be 

larger than to those of large firms. The sign of the earnings surprise also seems to be a 

determinant factor, as in Chambers and Penman’s study. They find that the price variability 

on the days following a significant price-affecting earnings surprise is larger if the earnings 

number was perceived as “bad news” than “good news”.  

 

When studying price responses to earnings news, it is important to be aware of their 

implications for return variance. An increase in variance around earnings announcements was 

preliminarily documented by Beaver (1968). Ball and Kothari (1991) recognize that this leads 

to increasing required or expected returns. In their study of earnings announcements, they 

estimate a separate beta for each day of the event period, constituting a CAPM expected 

return for each day. But even after controlling for risk variation, their evidence concludes that 

stocks experience abnormal returns on the event day; this being most apparent for small firms. 

 

Some studies have focused on examining whether the informational value of earnings has 

declined since the studies of the 1960s and 1970s. Studies like Landsman and Maydew (1999) 

and Buchheit and Kohlbeck (2002), as well as their reference study Kross and Kim (1999), 
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find no evidence that the information content in earnings has declined since the pioneering 

studies in the field. These studies actually find an increase over time with respect to 

information content. Buchheit and Kohlbeck’s results also document an upward trend in the 

amount of information analysts and investors draw from earnings announcements, but the 

authors point out “the results do not imply that earnings announcements have become 

increasingly useful over time” (p. 152). Nonetheless, the evidence proving that earnings still 

have informational value implies that even today it should be possible to discover abnormal 

returns associated with earnings surprises, similar to the pioneering studies in the 1960s and 

1970s. 

 

As reviewed above, several studies have documented a positive relation between earnings 

announcements, security price movements and return variability, implying that earnings do in 

fact convey information to the capital market about firm value. This is a good starting point 

for an analysis seeking to examine market efficiency – if the news contain informational 

value, how quickly is the market able to incorporate it? An efficient market predicts 

immediate price reaction to new information, where “(…) subsequent price movement is 

expected to be unrelated to the event-period reaction or its prior return” (Kothari, 2001, p. 

187). Kothari states that substantial evidence from short-window event studies confirms that 

capital markets are very efficient, with the ability to quickly incorporate news into prices. In 

fact, Lee (1992) documents that the price reaction to earnings majorly occurs within 30 

minutes of the earnings being released to the public, by finding statistically significant 

reaction immediately, and then none after. However, some studies have documented 

contradictions to the efficiency evidence from the general portion of short-window event 

studies. These studies will be reviewed in section 2.4.  

 

2.3.4	   	   Some	  Results	  from	  Other	  Countries	  
 

While the great majority of the research in the field of earnings announcements has been 

performed using data from U.S. firms, I was able to find a couple of studies investigating 

other countries. Annaert et al (2002) use Belgian (semi-annual) stock market data, and find, 

consistent with most U.S. studies, that both good and bad earnings news cause significant 

average abnormal returns for the firm’s stock on the announcement day. They also find a 

significant difference between above- and below-expectations news. Similarly, Pellicer and 
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Rees (1999) examine the market’s reaction to earnings announcements in Spain, and also find 

a relation between earnings announcements and abnormal volatility, a presence of positive 

abnormal returns, and increasing betas around announcements. Because Spain does not have 

the long experience of applying the accounting and security market practices consistent with 

those in the U.K. and the U.S., the authors suspect that the relation between accounting 

numbers and security prices might be different from what has been previously documented by 

U.S. research. But they do indeed find that earnings announcements are followed by positive 

returns, and that both expected and unexpected earnings cause abnormal returns, although the 

latter is “mainly driven by the results for the smaller firms in the sample” (p. 604).  

 

These are only two studies using data from nationalities other than the U.S., but they both 

yield results similar to the previously reviewed literature. The findings indicate that abnormal 

event-related returns exist on a universal level, not only limited to the large, highly developed 

U.S. market. My study acts as a further extension of investigating the relation between 

earnings announcements and security returns, using data from other national markets. 

	  

2.4	   The	  Post-Earnings-Announcement	  Drift	  

	  

2.4.1	   	   Introduction	  
 

Some special attention will be devoted to the anomaly known as the post-earnings-

announcement drift, referred to by Shivakumar (2007) as the “longest standing anomaly in the 

finance and accounting literature” (p. 434). Such an anomaly represents a contradiction to the 

efficient market hypothesis. The drift implies market under-reaction to earnings news, 

meaning that the information is not immediately reflected in prices with its full implication 

for firm value, and that prices need some time to completely adjust. The drift has been widely 

documented, since its discovery by Ball and Brown (1968). Some of the follow-up supporting 

studies include Brown and Kennelly (1972), Watts (1978), Foster, Olsen and Shevlin (1984), 

Mendenhall (1991) and Ball and Bartov (1996).  
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2.4.2	  	   Previous	  Research	  
 

Ball and Brown (1968) established that security prices do not always immediately reflect the 

new earnings information – firms experiencing a positive (negative) earnings surprise have 

been documented to experience a drift in estimated cumulative abnormal returns upward 

(downward) for some time after the event day.  Brown and Han (2000) have however detected 

a certain asymmetry to the drift, in that the drift seems to follow positive, and not negative, 

earnings surprises. 

 

Bernard and Thomas (1989) propose two possible reasons for the post-earnings-

announcement drift: first, there is the possibility that a part of the price response to new 

information is delayed, due to failure to assimilate available information, or to cost exceeding 

gains of immediately exploiting this information for a large number of traders. Second, when 

the drift has been observed in research where the normal returns are estimated with the 

CAPM, studies have shown that the model fails to properly adjust the securities for risk (e.g. 

Ball, Kothari and Watts, 1993, and Foster, Olsen and Shevlin, 1984). Ball, Kothari and Watts 

solve this problem by allowing beta to shift annually, and find the post-earnings-

announcement drift to be no longer significant (similar to how Ball and Kothari (1991) solved 

the risk-adjustment problem as reviewed in section 2.3.3). Foster, Olsen and Shevlin’s study 

shows an inverse relationship between firm size and the absolute magnitude of the drift. 

Bernard and Thomas’ results support this finding. They also find that much of the drift is in 

fact concentrated around next quarter’s earnings announcement, which suggests that the 

market does not fully recognize the implication of current earnings for future earnings, in line 

with the discussion of the time-series properties of earnings in section 2.3.2.1.  

 

In section 2.1.2, some documented anomalies in contradiction to the efficient market 

hypothesis were briefly introduced. Questions have been raised about whether the post-

earnings-announcement drift exists independently of these other anomalies, such as the size 

effect and the book-to-market effect in Fama and French’s (1993) three-factor model. Kraft 

(1999) (referred to in Kothari, 2001) finds that the drift is not integrated in the other 

anomalies, while Fama and French (1996) find evidence implying that the post-earnings-

announcement drift could possibly be explained by their three-factor model. 
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But what are the implications of the post-earnings-announcement drift for securities trading? 

Kothari states,  

 

“The post-earnings announcement drift appears to be incremental to a long list of 
anomalies that are inconsistent with the joint hypothesis of market efficiency and an 
equilibrium asset-pricing model” (p. 196).  

 

He also notes, “fundamental analysis can yield a rich return in an inefficient market” (p. 208) 

because of all the empirical evidence supporting the suspicion about capital markets being 

informationally inefficient. A few years later, Shivakumar (2007) pointed out that a trading 

strategy utilizing the post-earnings-announcement drift is still profitable, nearly forty years 

after it first realization. A study by Francis, LaFond, Olsson and Schipper (2007) confirms 

that information uncertainty is one reason why the market might under-/overreact to earnings 

surprises. They suggest that since information uncertainty is tightly bound to accounting 

quality, less restrictive accounting standards in a country will lead to greater post-earnings-

announcement drift.  

 

2.4.3	   	   A	  Few	  Remarks	  
 

It can seem astonishing that the post-earnings-announcement drift has been so well 

documented as a profitable strategy since its discovery more than forty years ago. As I have 

pointed out, it can exist because of information uncertainty, real-world frictions and the 

market’s failure to revise its expectations of future earnings from current earnings surprises. 

On the other hand, several short-window event studies have concluded to confirm capital 

market efficiency. It will be interesting to see if I am able to detect signs of a post-earnings-

announcement drift in the Norwegian stock market, or if the results are able to confirm an 

efficient market in Norway. But before I can begin presenting my results, I will discuss the 

rationale for my specific choice of models in both time-series estimation and the estimation of 

abnormal returns due to earnings surprises. This will be the topic for chapter three. 
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3	   Empirical	  Methods	  
	  

3.1	   Time-Series	  Models	  for	  Estimating	  Expected	  Earnings	  

 

3.1.1	   	   Introduction	  	  
	  

The research of Griffin (1977) and Foster (1977), as well as Foster’s reference Watts (1975), 

provided early evidence of the time-series properties of quarterly earnings. A mutual result is 

that quarterly series can be described as a combination of 1) movement from one quarter to 

the next, and 2) the seasonal quarter-by-quarter movement over time. Brown and Rozeff 

(1979) propose an ARIMA model (autoregressive integrated moving average), with the 

disadvantage that estimation requires the Box-Jenkins ARIMA software (as referred to in 

Foster, 1977). Foster proposes a simpler model that can be applied without the software. The 

Foster model has been shown to perform just as well as more complex models (Kothari, 

2001).  

 

3.1.2	   	   Time-‐Series	  Models	  
 

To extend the discussion of the behavior of quarterly earnings in section 2.3.2.1, I will show 

this concept more formally. Foster (1977) presents two basic models for forecasting expected 

quarter t-earnings, originally developed by Brown and Kennelly (1972), and referred to as 

“naïve models”: 

 
Model 1: E (Qt) = Qt-4    Model 2: E (Qt) = Qt-4 + δ 

 
The distinction between the models lies in model 2 incorporating drift term; δ. The drift term 

in this application means the average quarterly change for the given quarter (1,2,3 or 4) in the 

time series. In application of the model, Beaver (1974) (referred to in Foster, 1977) finds 

indications of first-order autocorrelation, meaning that there is some pattern in the past series 

that forecasting future values so far fails to take advantage of. These findings are related to 

the discovery that quarterly time-series are not independent, as discussed in section 2.3.2.1. 

Foster extends model 2 to incorporate a first-order autocorrelation term: 

 
E (Qt) = Qt-4 + φ1 (Qt-1 – Qt-5) + δ 



	   22	  

The model can be estimated via an auto-regression of the first order, (an A.R. (1) model), 

where the drift term represents a constant, and φ1 the first-order autoregressive coefficient. 

According to Foster, models that include a drift term are generally superior in forecasting 

compared to models excluding the drift term. One example of a study on earnings 

announcements applying the model is Bernard and Thomas (1989). However, as Foster also 

expresses, a disadvantage of this simple model is that one cannot know that the A.R. (1) 

process applies to all firms. One way of solving this issue is to estimate the autoregressive 

process of each individual firm, by use of the Box-Jenkins methodology (as referred to in 

Foster, 1977). Fitting the seasonal time-series to each individual firm’s autocorrelation 

process is likely to yield greater forecast accuracy, but for the purpose of this study, I choose 

to estimate expected earnings using a simpler model – the A.R. (1) model shown above. 

Estimating a model for each individual firm will be extensively time-consuming, as well as 

demanding greater amounts of data (for example, a third order auto-regression requires 

earnings data for each quarter t, t-4, t-8 and back to t-12). In addition, my purpose of use for 

the time-series model is to obtain an estimate of the market’s expectations of earnings, not to 

forecast earnings per se, so a simple model like the A.R. (1) model seems appropriate. 

Besides being simple to estimate, the first-order model takes into account both the quarterly 

component, and the adjacent-quarter component, which will produce an estimate of expected 

earnings that most likely is applicable for this specific purpose. 

 

3.1.3	   	   Analyst	  Forecasts	  vs.	  Time-‐Series	  Models	  
 

Many U.S. studies have examined the forecast accuracy of analysts versus time-series models, 

and evidence has been detected in favor of both, e.g. Brown and Rozeff (1979) and Collins 

and Hopwood (1980) for analysts, and Imhoff and Paré (1982) and O’Brien (1988) (the latter 

referred to in Kothari, 2001) for time-series forecasting. Kothari (2001) makes an important 

point that consensus analyst forecasts are a better proxy for market expectations of earnings. 

The problem for this study, however, is that consensus analyst forecasts are not readily 

available in Norway (unless you have access to news databases such as I/B/E/S or SME 

Direkt). For that reason, I choose to conduct my study using Foster’s (1977) auto-regressive 

model for estimating expected quarterly earnings. The model is well validated to yield good 

forecasts, while still remaining a comparatively simple model relative to the Box-Jenkins 

ARIMA-models, that would require additional software. 
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3.2	   Event	  Study	  Methodology	  

	  

3.2.1	   	   Introduction	  
 

In this section, methodology for conducting an event study will be reviewed, with the 

intention to detect abnormal returns associated with earnings announcements. As mentioned 

in section 2.2.3, the general procedure for conducting an event study has not drastically 

changed since the pioneering studies in the late 1960s, except for a few improvements. There 

is “a general flow of analysis” (MacKinlay, 1997, p. 14), although there is no required point-

by-point list to finalize. In section 2.2.3, event study methodology was briefly introduced, so 

the background and development of event studies will be no further emphasized. The main 

intention is to measure abnormal stock returns associated with an event, which in this case is 

earnings announcements for various firms. This methodological review will begin with 

discussing models for measuring a stock’s “normal” returns that would be predicted in 

absence of the event, following up with defining, and describing methodology for measuring, 

abnormal returns. Lastly, the procedure for calculating the cumulative abnormal return, which 

is the aggregated abnormal return for the specific event across time and securities, will be 

defined. This analysis follows the methodology described in MacKinlay (1997) as the 

standard blueprint for event studies.  

 

3.2.2	   	   Models	  of	  Normal	  Returns	  
 

MacKinlay describes two categories of models: statistical and economic models. The 

distinction lies in statistical models using assumptions from statistics and economic models 

from investor behavior in modeling expected returns (but it is required that statistical 

assumptions are added to the economic models in order to use them in practice). Statistical 

models impose the assumptions that “asset returns are jointly multivariate normal and 

independently and identically distributed” (MacKinlay p. 17), which the author defines 

sufficient for the constant mean return model and the market model, seldom causing 

problems. 
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3.2.2.1	  	   Statistical	  Models	  

The simplest model, the Constant Mean Return Model, uses a constant-return parameter and a 

disturbance term (with expected value of zero) to define a stock’s normal return. The Market 

Model uses the return on the broad market to define firms’ expected returns, and will be 

described in more detail below. The market model can also be extended to multifactor models, 

adding other factors besides the market return to explain security returns, but these models 

have shown little increases in explanatory power over the plain market model (MacKinlay). 

 

3.2.2.2	  	   Economic	  Models	  

The Capital Asset Pricing Model (CAPM) is probably the best-known asset return model 

among students of finance. The model needs little introduction, but the essence lies in relating 

individual security returns to its covariance with the market. As noted in section 2.3.3, 

correctly estimating risk (beta) with the CAPM can be problematic. Another economic model 

is grounded in the Arbitrage Pricing Theory (APT), where the normal return for a security is 

estimated with various explanatory risk factors. But research has shown that the market factor 

has the heaviest power in explaining expected returns, hence the APT does not offer 

important benefits relative to the market model (Brown and Weinstein, 1985).  

 

3.2.2.3	  	   The	  Market	  Model	  

The discussion so far has pointed in favor of the market model as the most beneficial model 

for estimating normal returns. The market model, relating individual security returns to the 

market return, has shown to have high explanatory power. The model can be expressed as: 

 

Rit = αi + βiRmt + εit    E(εit = 0) var(εit) = σε

2 

 

The equation explains security i’s return in period t, where the constant parameter αi and the 

parameter βi for the market return variable (Rmt) are estimated econometrically for each 

individual security. The security return also includes an error term, with expectation zero. 

Before estimating this model for each firm, the estimation window needs to be defined. 

MacKinlay, for example, uses the 250 trading days before the event window (the time period 

over which one measures abnormal returns related to an event). The closest approximation for 

“the return on the market portfolio” is a broad stock market index, e.g. the S&P 500 in the 

United States. After collecting data on both the return on the individual stock and the return 
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on the market index across the estimation window, the market model is estimated by OLS 

methodology for each sample firm. Then the abnormal returns for each security can be 

estimated as the residual terms – the deviation between the actual return and the return 

predicted by the market model, for each event window day. MacKinlay states that the benefit 

of choosing the market model over the constant mean return model is that the market model 

eliminates the part of the return that stems from the variance in the market return. In this way, 

the abnormal return obtains less variance, consequently creating easier access to detecting 

event effects. Exactly how beneficial the specific market model turns out depends on the 

model’s R2 – a higher R2 means greater advantages from using the market model (relative to 

the constant mean return model).  

 

3.2.3	   	   Abnormal	  Returns	  
 

MacKinlay defines an abnormal return as “the actual ex post return of the security over the 

event window minus the normal return of the firm over the event window” (p. 15). After 

estimating the normal return using the market model (or one of the alternative models in 

section 3.2.2), abnormal returns for security i and event date τ is defined as: 

 

ARiτ = Riτ - E(Riτ | Xτ)  

 

The term Xτ represents the information the model for estimating normal returns is 

conditioning upon. Using the market model, the conditional variance of abnormal returns is 

defined as: 

   
 

L1 represents the length of the estimation window, and as L1 becomes large, the second term 

moves towards zero and the conditional variance of abnormal returns can be approximated by 

the first term, which is the squared standard error of regression for each market model. By 

choosing a sufficiently long estimation window, estimating the variance of abnormal returns 

required to test the null hypothesis becomes unproblematic. 
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Before estimating abnormal returns, one needs to define the length of the event window. The 

event (e.g. earnings announcements) may be easily definable in time as one particular day, but 

it is often of interest to measure how stock returns behave during the days before and after the 

event. Then the researcher will be able to capture if the market participants assemble 

information before the announcement (MacKinlay), and if there is a quick versus a delayed 

price response (related to a post-earnings-announcement drift). MacKinlay’s example on 

earnings announcements applies an event window of 41 days, including the announcement 

date and the 20 trading days both before and after this date. This constitutes a short-window 

event study, as reviewed in section 2.2.2. Hence, the problematic aspects of long-horizon 

studies as discussed in that section are not relevant for this type of study. First, the difficulties 

of properly adjusting expected returns for risk do not apply in the same way in a short-

window study as a long-horizon study. Second, given that daily data is being used, the 

average daily return on stocks is nearly zero, so that any return that deviates remarkably from 

the market return can be easily detected as an abnormal return. With these arguments, I 

conclude that the market model’s estimated abnormal returns are likely to be valid.  

 

3.2.4	   	   Cumulative	  Abnormal	  Returns	  
 

Observing a long line of abnormal returns for an individual firm does not say much about the 

event of interest. Therefore, the abnormal returns must be aggregated across time for each 

event firm. This produces the security’s cumulative abnormal return (CAR). If the dates T1 

and T2 represent the last day of the estimation window and the event window respectively, 

CAR is calculated from date τ1 to date τ2, where T1 < τ1 ≤ τ2 ≤ T2, in MacKinlay’s (1997) 

notation. Then CAR for security i across the event window is defined by the following 

equation: 

 	    

In order to infer conclusions about the earnings announcement’s event effects, it is also 

necessary to aggregate across securities. A proposed method of detecting the cumulative 

abnormal returns associated with an event can be done in four steps. First, three types of 

earnings announcement events are defined (as in MacKinlay, 1997): “good news” (where 

actual earnings exceed forecast by 2.5% or more), “bad news” (where actual earnings fall 

below 2.5% of forecast) and “no news” (where the announced earnings are within 2.5% of 
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forecast). However, for the purpose of this study, close to none of the earnings 

announcements are within 2.5% of forecast, even within 5% there are very few occurrences. 

For that reason, a no-surprise event is defined as an earnings number within 10% or forecast. 

(When using EPS data, a 10% deviation is still very close to the forecasted value, since EPS 

numbers are generally small compared to measures of net earnings etc.). When companies are 

categorized, CAR across firms in each category can be calculated in order to detect 

conclusive results about positive, negative or non-existent earnings surprises’ effects on 

security returns. When the securities are assigned to categories, the second step is to calculate 

the sample abnormal return in each category, for each of the 41 days in the event period. In 

this study, I calculate these sample abnormal returns on a quarter-by-quarter basis before 

aggregating across the entire sample. The sample abnormal return for period τ, τ = T1 + 1, …, 

T2, is defined as: 

 

 
 

The sample variance of the abnormal returns can be calculated in the following manner: 

 

 
 

The term σε
2 is the squared standard error of the market model regression for each firm. The 

variance formula requires however that the number of days in the estimation period is large.  

 

Step three is to aggregate the sample abnormal returns for each quarterly announcement 

period into one sample abnormal return for each event day across all the sample quarters, for 

the three news categories. Then, the fourth step is to calculate the cumulative abnormal return 

for each category: 
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The conditional variance of cumulative abnormal returns is defined as: 

 

 
 

When cumulative abnormal returns are defined, the null hypothesis that the event has no 

effect on returns can be tested. The cumulative abnormal returns’ statistical properties are 

then assumed to be: expected value zero, variance as noted above. Testing the null hypothesis 

H0 can be completed by calculating the value of θ1: 

 

 
 

The null hypothesis can also be tested on individual days, since special attention should be 

given to the event date and the most adjacent dates. The sample abnormal return for that day 

can then be divided by the one-day sample standard deviation for the corresponding earnings 

news category. Both these forms of testing the null hypothesis will be applied in this study, 

but before the results will be presented, a presentation of the included data is necessary. 
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4	   	  Data	  Description	  
	  

4.1	   The	  Oslo	  Stock	  Exchange	  

	  

As presented in chapter 2, most research in the field of market efficiency in general, and 

specifically event studies, are performed using data from U.S. exchanges. What distinguishes 

my study is the use of data from Norwegian firms, listed on the Oslo Stock Exchange. The 

Oslo Stock Exchange is Norway’s only regulated market for securities exchange, and offers 

trading of stocks, bonds, derivatives and most other financial instruments. The 25 most liquid 

stocks are listed in the OBX index, containing some of Norway’s largest companies. The 

other listed stocks on the Oslo Exchange are grouped into the “OB Match” and “OB 

Standard” categories. To be included in the former, a stock must either have at least 10 trades 

a day, or hold a liquidity provider scheme. The latter category contains the remaining firms. 

Besides the OBX, the (currently 61) most traded firms on the exchange comprise the 

benchmark index OSEBX. The broadest index on the Oslo Exchange is the all-share index 

(OSEAX), containing all listed companies.  

	  

The industry breakdown on the Oslo Stock Exchange possesses a certain unique character, 

given that almost 30 percent of the stocks are Energy (oil) companies, with Industrials being a 

strong runner-up. About half of the listed firms are in either the Energy or Industrials 

category. In contrast, the sectors Telecom and Utilities only contain a couple of firms. This 

factor could possibly create difficulties in determining whether there are differences between 

industries in the event effects. There are also other things that distinguish the Norwegian 

stock market from the U.S. market. First, the U.S. has several exchanges, while Norway only 

has one. Norway has far fewer listed companies, and comparatively few large-capitalization 

stocks. Another difficulty of the Norwegian stock market is that a great number of shares are 

thinly traded (the OB Standard stocks do not guarantee 10 or more trades a day). Pellicer and 

Rees (1999) examine data from Spain, where thin trading is a severe problem as well. They 

use a market model for the most traded firms (in the IBEX35 index, comparable to the OBX), 

and a market-adjusted model for the other firms, where abnormal returns for firm i on day τ is 

defined as  

 

ARiτ = Riτ – Rmτ 
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However, I choose to consistently apply the market model to all the firms in the sample. Even 

if a stock is very little correlated with the market, its expected return per trading day will be 

very close to zero, and any unusual return away from zero would constitute an abnormal 

return.  

	  

4.2	   Event	  Study	  Definition	  

	  

4.2.1	   	   The	  Event	  and	  the	  Event	  Date	  
	  

As already clarified, the event of interest for this study is earnings announcements from 

Norwegian listed companies. The study concerns announcements for the 16 quarters of the 

years 2007 through 2010. Each firm releases a date on which it will disclose its quarterly 

report to the public some time ahead of the announcement, so the event date is easily 

definable in time. Some definition must be made, however. Some firms release their reports in 

the morning, mostly before the stock exchange’s opening bell, while other firms release 

reports after closing hours. The identification of event date will be as follows: for firms 

announcing earnings before or during a trading day, the event date will be the date of the 

announcement. For firms announcing earnings after trading hours, the event date will be 

defined as the first trading day after the announcement. The event dates are retrieved from the 

Oslo Stock Exchange’s Newsweb, where listed companies release their earnings reports as 

well as other financial and firm-related information. 

	  

4.2.2	   	   Event	  Window	  
	  

In order to capture the effect of public information collecting ahead of the event as well as 

any signs of a post-earnings-announcement drift, the event window will be defined as the 20 

trading days before the announcement date, the event date, and the 20 trading days after this 

date. This comprises a 41-day event window, similar to MacKinlay’s (1997) example of a 

standard event study. 
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4.2.3	   	   Estimation	  Window	  
	  

In estimating a market model for each firm for each event period, an estimation window of 

250 trading days before the event window is applied (approximately one calendar year), as 

suggested by MacKinlay (1997). I will assume this is a sufficiently large number of days in 

order to apply the variance definition of abnormal returns from section 3.2.3.  As MacKinlay 

also points out, it is necessary to avoid an overlap between the event window and the 

estimation window, for event effects on returns not to affect the estimation of normal returns. 

Figure 4.1 illustrates the time dimension of the event study.  

 

 
Figure 4.1. Timeline for event study 

	  

4.3	   Data	  Selection	  and	  Collection	  

 

Similar to previous event studies on earnings announcements, a couple of criteria for a given 

firm to be included in the sample must be defined. First, the firm must have published 

financial reports for at least ten consecutive quarters before the first sample quarter (quarter 1 

2007). Second, the company must have been listed on the Oslo Stock Exchange for at least 

250 trading days preceding the event period for quarter 1, 2007. An earnings per share (EPS) 

number is used as the measure of earnings in this analysis. 

 

In argument of criterion one, earlier studies using time-series earnings forecasts have required 

available quarterly earnings to be at least ten (e.g. Foster, Olsen and Shevlin, 1984, Bernard 

and Thomas, 1989). Bernard and Thomas, however, apply a seasonal random-walk model to 

the cases where less than 16 quarterly observations are available. This model is similar to 

“Model 1” under section 3.1.2. For the purpose of this study, the random-walk model is 

applied to cases where less than ten previous quarterly earnings are available, and the A.R.(1) 
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model (in section 3.1.2) otherwise. EPS data is retrieved from Oslo Børs Information as well 

as some additional financial reports from the Stock Exchange’s Newsweb. 

 

For criterion 2, it is necessary to have enough stock return data to be able to estimate the 

market models for each quarterly earnings period. The stock return data is retrieved from Oslo 

Børs Information. Only firms with the available amount of data as defined above are included 

in the study. This necessarily excludes some firms that have been listed on the exchange for a 

shorter time, causing the sample to be smaller than the number of listed stocks. This is to 

obtain a consistent sample of firms to examine across the entire period of interest.  

 

Additionally, data to represent the return on the market is necessary. The all-share index 

OSEAX is used to proxy for the market return, because it is the broadest index in the 

Norwegian stock market, and includes all listed firms. Alternatively, the benchmark index 

OSEBX could represent the market, but this index only includes the most traded firms, 

thereby failing to capture some of the movement in the market viewed as a whole.   

 

The criteria resulted in a sample of the following industry breakdown of firms: 

 

Industry	   #	  Firms	  
Energy	   28	  
Industrials	   27	  
Information	  Technology	   20	  
Financials	   10	  
Health	  Care	   9	  
Consumer	  Discretionary	   8	  
Consumer	  Staples	   6	  
Materials	   6	  
Utilities	   2	  
Telecom	   1	  
Total	   117	  
 

Table 4.1. Industry breakdown of sample firms 

 

Additionally, the firms can be broken down into categories according to trading 

frequency/liquidity: OBX, OB Match and OB Standard, where the largest capitalization firms 

are typically in the first category. The sample then consists of 20 OBX-firms, 71 OB Match 

firms and 26 OB Standard firms. A sample of 117 firms, four years and four quarterly 
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earnings announcement per year constitutes a sample of 1872 events (see appendix for a 

complete list of sample firms).   

 

4.4	   Estimation	  of	  the	  Market	  Model	  

 

Estimating the market model for each firm for each of the 16 sample quarters produces a total 

of 1872 individual market models. As previously noted, the R2 of the market model measures 

the advantage of using this model compared to the constant-mean-return model. I find varying 

R2 values for the securities in the sample. Many stocks in Norway are thinly traded, with the 

consequence of a low R2, while the larger, more liquid companies’ market models have 

relatively high values of R2. This could point to a problem in correctly estimating the 

expected returns for some companies, but since daily returns are used (which are expected to 

be nearly zero), the market model will produce expected returns for these thinly traded 

companies very close to zero, and any deviation from zero will be definable as an abnormal 

return. As previously noted, the choice of normal-return model does not matter significantly 

when the study is concerned with daily returns. In the next chapter, I will finally present the 

results from my study of earnings announcements. 
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5	   Results	  
 

5.1	   Remarks	  on	  the	  Time-Series	  Model	  for	  Expected	  Earnings	  

 

In this chapter, the results from this event study of earnings announcements are presented. 

First, I would like to make a few remarks regarding the time-series model and its 

performance. Although the model has been proven by earlier research to produce fairly good 

estimates of earnings, it does not necessarily imply that the model’s expected earnings are in 

line with the market’s expectations. Working with the model, I find in several cases that it 

defines a positive earnings surprise, but the stock’s abnormal return on the announcement date 

is negative, and vice versa. Intuitively, it does not seem very likely that the company should 

experience a drop in stock value following a positive earnings surprise (unless other news 

coincide with the announcement). With this remark, I warn the reader that some of the results 

might be influenced by the time-series model wrongfully assigning events to the good-news, 

no-news or bad-news categories.  

 

With a reference to section 2.3.2.1, where it was noted that the market often has a “naïve” 

earnings expectation, with expected earnings in quarter t equal to the actual earnings in 

quarter t-4, I also performed the analysis applying a seasonal random-walk model (Model 1 in 

section 3.1.2). If it is the case that the market expects earnings in this quarter to be equal to 

the last quarter’s earnings, such a model would be a better proxy for the market expectation of 

earnings. Some firms did indeed switch news categories, but the end results from using this 

model for expected earnings differ very little from the results which I now shall present, 

indicating that using the A.R. (1) time series model is the best available method in absence of 

consensus analyst forecasts for the expected-earnings portion of the study. This is justified by 

the fact that the model incorporates both a drift term and an adjacent-quarter component in 

addition to the change-from-last-quarter component. In line with Brown and Han’s (2000) 

finding that the market only expects a random-walk process of quarterly earnings in the case 

of small firms with unsophisticated investors, I believe that in a highly developed market with 

many professional analysts and sophisticated investors it is more likely that the market’s 

expectations also take account of the additional component.  
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5.2	   Full	  Sample	  Results	  

	  

The sample consisting of 1872 earnings announcements resulted in 797 positive earnings 

surprises, 931 negative surprises and 144 non-surprise events. As mentioned in section 4.2.3, 

very few of the earnings announcements were within proximity to the forecasted value. If the 

“no news” earnings category would be defined as deviations within the 2.5% range (as in 

MacKinlay, 1997), close to none events would end up in this category. Even when the 10% 

range is applied, less than 8% of the announcements could be categorized as “no news”. The 

figures 5.1, 5.2 and 5.3 illustrate the cumulative abnormal returns for the three categories. 

 

 
Figure 5.1. Abnormal returns and cumulative abnormal returns for the good-news category 

 

 
Figure 5.2. Abnormal returns and cumulative abnormal retunrs for the no-news category 
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Figure 5.3. Abnormal returns and cumulative abnormal returns for the bad-news category 

 

At first glance, figure 5.1 indicates that the CAR starts drifting upward in the good-news 

category a few days before the event, and then drifts downward before stabilizing. For the 

bad-news events in figure 5.3, however, the CAR appears to be close to zero up until the 

event, but starts drifting downward from the announcement day. As also indicated by the 

figure, this originates from a large negative sample abnormal return on the day zero. For the 

no-news category in figure 5.2, the cumulative abnormal returns are apparently mainly 

random, not following a specific path, except for quite a strong downward drift towards the 

end of the event window. Whether these results can be verified to document that the abnormal 

returns are significant still needs to be tested more formally, using the methodology from 

section 3.2.4. The results from the full sample are presented in table 5.1. 
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Table 5.1. Abnormal and cumulative abnormal returns for the sample firms that were 
assigned to the three groups “good news”, “no news” and “bad news” earnings 
announcements, expressed as percentages. One-day standard deviations (%) are also listed. 
 

Day	   Good	  News	   No	  News	   Bad	  News	  
	   AR%	   CAR%	   AR%	   CAR%	   AR%	   CAR%	  
-20	   .1123	   .1123	   -‐.0946	   -‐.0946	   -‐.1252	   -‐.1252	  
-19	   .1644	   .2767	   .0366	   -‐.0580	   .0253	   -‐.0999	  
-18	   -‐.0638	   .2129	   .2379	   .1799	   .1232	   .0233	  
-17	   .0652	   .2781	   -‐.7430	   -‐.5631	   -‐.0261	   -‐.0029	  
-16	   .0985	   .3766	   -‐.3592	   -‐.9223	   -‐.0129	   -‐.0158	  
-15	   .2375	   .6141	   -‐.1769	   -‐1.0992	   -‐.0156	   -‐.0314	  
-14	   .0287	   .6428	   .1403	   -‐.9589	   -‐.2143	   -‐.2457	  
-13	   .1912	   .8341	   -‐.0336	   -‐.9925	   .0589	   -‐.1869	  
-12	   -‐.1140	   .7201	   -‐.2295	   -‐1.2220	   .1595	   -‐.0274	  
-11	   .1204	   .8404	   .4502	   -‐.7718	   .0566	   .0292	  
-10	   .0657	   .9061	   .2872	   -‐.4845	   .0985	   .1277	  
-9	   .1030	   1.0092	   .1541	   -‐.3305	   -‐.1951	   -‐.0675	  
-8	   -‐.0654	   .9438	   .0927	   -‐.2378	   .0074	   -‐.0600	  
-7	   .1144	   1.0581	   .1213	   -‐.1165	   -‐.0778	   -‐.1379	  
-6	   -‐.1491	   .9091	   -‐.1650	   -‐.2814	   -‐.0104	   -‐.1482	  
-5	   .2066	   1.1157	   -‐.5349	   -‐.8163	   -‐.2442	   -‐.3924	  
-4	   -‐.0423	   1.0733	   .4115	   -‐.4048	   .0468	   -‐.3456	  
-3	   -‐.0771	   .9963	   -‐.0742	   -‐.4790	   .0226	   -‐.3230	  
-2	   .3423	   1.3385	   .1595	   -‐.3195	   .1232	   -‐.1998	  
-1	   .4999	   1.8384	   .8108	   .4913	   .2022	   .0024	  
0	   .4480	   2.2864	   -.0548	   .4365	   -1.5456	   -1.5432	  
1	   -‐.2955	   1.9909	   -‐.4508	   -‐.0142	   -‐.3768	   -‐.1.9200	  
2	   -‐.1856	   1.8054	   -‐.0744	   -‐.0087	   -‐.2412	   -‐2.1611	  
3	   -‐.1858	   1.6196	   .2159	   .1272	   -‐.1284	   -‐2.2896	  
4	   .0097	   1.6293	   -‐.0535	   .0738	   -‐.0755	   -‐2.3650	  
5	   .1978	   1.8270	   .0134	   .0871	   -‐.1427	   -‐2.5077	  
6	   -‐.1078	   1.7192	   -‐.4009	   -‐.3138	   -‐.3682	   -‐2.8759	  
7	   -‐.0039	   1.7153	   .3074	   -‐.0064	   -‐.0832	   -‐2.9591	  
8	   .1098	   1.8251	   .0436	   .0373	   -‐.0823	   -‐2.8768	  
9	   -‐.1665	   1.6585	   -‐.0542	   -‐.0169	   -‐.1003	   -‐2.9771	  
10	   .1672	   1.8258	   -‐.3080	   -‐.3249	   -‐.0979	   -‐3.0750	  
11	   -‐.2498	   1.5760	   .0594	   -‐.2654	   .1091	   -‐2.9659	  
12	   -‐.0146	   1.5613	   -‐.1882	   -‐.4536	   -‐.0256	   -‐2.9915	  
13	   .1553	   1.7167	   -‐.1412	   -‐.5948	   -‐.0816	   -‐3.0731	  
14	   -‐.1634	   1.5333	   -‐.2805	   -‐.8754	   .1351	   -‐2.9380	  
15	   -‐.0644	   1.4889	   -‐.3945	   -‐1.2699	   .0015	   -‐2.9365	  
16	   .1252	   1.6141	   .0297	   -‐1.2402	   .0062	   -‐2.9303	  
17	   -‐.1339	   1.4802	   -‐.7533	   -‐1.9935	   -‐.3643	   -‐3.2946	  
18	   .1467	   1.6269	   .3172	   -‐1.6763	   -‐.1184	   -‐3.4130	  
19	   -‐.0059	   1.6210	   -‐.5248	   -‐2.2011	   -‐.0077	   -‐3.4207	  
20	   -‐.1110	   1.5100	   -‐.2413	   -‐2.4424	   .1558	   -‐3.2649	  
σ  σ .1370	   σ .3441	   σ .1274	  
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As expected, the results show statistically significant abnormal returns on the day of the 

event, in the cases where earnings differed from forecast by 10% or more. Using the one-day 

standard deviation for each category, a test can be performed to determine whether the sample 

abnormal return on the event day is significantly different from zero on a 95% confidence 

level. The test calculates the value of θ1 as presented in section 3.2.4. For both the good news 

and bad news categories the null hypothesis is rejected, with θ1-values of 3.27 and -12.13 

respectively. The null hypothesis is more clearly rejected for the bad news firms. 

Additionally, the negative abnormal return on day one after the announcement also proves 

significant for this category. This “drift” does not apply to the good news category. However, 

the good-news group has a significant negative day-one abnormal return. In addition, the 

sample abnormal returns on the two days before the event are positive and significant. For the 

no news category, I do not find any significant abnormal returns, as expected.  

 

The results so far indicate that the Norwegian stock market is clearly efficient, in that earnings 

news are quickly reflected in security prices. However, for the bad news category, some of the 

reaction seems to be delayed, as shown by the statistically significant negative abnormal 

return on the day after the event. MacKinlay (1997) explains such a finding with varying 

hours of announcing earnings during the trading day. Some firms release earnings at a late 

hour, thereby affecting price response on the day after. This could hold for some of the 

securities in the sample, as the time of day for announcements differ, but as previously stated, 

the event dates have been adjusted so that day zero will be set to the first trading day after the 

announcement if the company releases earnings after the closing bell. Even if a firm 

announces its earnings at 2PM, an efficient market should predict that the price response 

occurs during the remaining hours of the trading day. With this justification, I will interpret 

the results as the price response being slightly delayed for the bad news firms. Possibly, the 

market needs some time to become aware of the full implications of the bad-news earnings 

for the fair stock price. Also, the discovery that the bad-news events induce negative 

abnormal returns on the days after the announcement is in line with the reported finding of 

Chambers and Penman (1984), that price variability on days following earnings 

announcements are larger for negative than positive surprises.   

 

The fact that the good-news firms show significant positive abnormal returns also on the two 

days before the announcement could possibly imply that there is some information that leaks 

out to the public ahead of the announcement. Other company-specific news could signal to 
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investors that the company’s earnings have experienced growth this quarter from the year 

before. The case could also be that insider trading occurs. These could be possible reasons for 

the abnormal returns, but there could also be other, more random causes behind them. The 

other result I find in the good-news category, is that the sample shows significant negative 

abnormal returns on the day after the event. A possible explanation could be market 

overreaction on the day of the event – the market might act excessively optimistic when 

discovering positive earnings surprises, but later on learn that the initial price response 

exceeded what should have been the fair price response grounded in fundamental value. 

 

So far the results indicate under-reaction to negative earnings surprises, and overreaction to 

positive surprises. But what about the cumulative abnormal returns? In testing the 

significance of the cumulative abnormal returns over the 41-day event window, I find that 

only the CAR of the bad-news category is statistically significant, with a θ1-value of -4.00. 

Correspondingly, the value of θ1 for the good-news category is 1.72 and for the no-news 

category -1.11. Again, these results indicate some market overreaction to positive earnings 

surprises, since there are positive abnormal returns on the event day, but no significant CAR. 

The results also confirm the bad-news firms to have significant negative abnormal returns 

across an event window of 41 days. 

	  

5.3	   Differences	  in	  Trading	  Frequency/Liquidity	  

	  

The sample firms were divided into three groups, according to their categorization on the 

Oslo Stock Exchange: OBX, OB Match and OB Standard, where the former group contains 

the most traded and the latter the least traded firms. The sample firms are categorized 

accordingly in order to detect any differences in event-related abnormal returns with respect 

to how frequently the shares are traded. The suspicion is that the most liquid stocks are the 

most heavily researched ones, and that any news should be reflected very rapidly in their 

prices, and equivalently, the most thinly traded stocks will experience a slower response. With 

that being said, an efficient market hypothesizes in either case that the price response occurs 

quickly. Table 6.2 summarizes the results with respect to the statistical significance of 

abnormal returns. 
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Day	   OBX	   OB	  Match	   OB	  Standard	  
	   θ1	  good	   θ1	  no	   θ1	  bad	   θ1	  good	   θ1	  no	   θ1	  bad	   θ1	  good	   θ1	  no	   θ1	  bad	  
-‐2	   NO	   NO	   NO	   YES	  (+)	   NO	   NO	   NO	   NO	   NO	  
-‐1	   NO	   NO	   NO	   YES	  (+)	   NO	   NO	   NO	   YES	  (+)	   NO	  
0	   NO	   NO	   YES	  (-)	   YES	  (+)	   NO	   YES	  (-)	   YES	  (+)	   NO	   YES	  (-)	  
1	   NO	   YES	  (+)	   NO	   YES	  (-)	   YES	  (-)	   YES	  (-)	   NO	   NO	   YES	  (-)	  
2	   NO	   YES	  (+)	   NO	   NO	   NO	   YES	  (-)	   NO	   NO	   NO	  
CAR	   NO	   NO	   NO	   NO	   NO	   YES	  (-)	   NO	   YES	  (-)	   NO	  
 
Table 5.2. Does the sample have abnormal returns significantly different from zero on the 
given day? + or – indicates positive or negative abnormal returns. 
 

The most traded companies in the Norwegian stock market, the OBX, show only significant 

day-zero abnormal returns in the bad-news category, with a θ1 of -2.73. The abnormal returns 

for the good-news and no-news cases are not statistically significant. However, I find 

significant positive abnormal returns in the no-news category on day one and day two after 

the event. This could be due to other important news about one or a few firms affecting the 

sample (since only 21 firms are included), or that the no-news firms are wrongfully placed in 

this category, due to the time-series model’s failure to produce expected earnings in line with 

market expectations.  

 

The OB Match group consists of companies that are less heavily traded than the OBX, but 

contain the greatest share of sample events. In this category, I find significant day-zero 

abnormal returns both in the good-news and bad-news groups, but not for the no-news firms. 

These results are in line with the theoretical prediction. Similar to the results from the sample 

in full, the good-news firms have significant positive abnormal returns on the two pre-event 

days, and negative abnormal returns on the first post-event day. The no-news category 

actually turns out to have significant negative abnormal returns on day one after the event. 

This could be due to under-reaction in this category, or wrongful placement due to the time-

series model’s predictions. For the bad-news firms, the significant abnormal returns from the 

event date are extended to day one and two after the event. Again, this points to a certain 

sluggish price response to negative earnings news. Finally, testing the CAR across the event 

window, only the bad-news abnormal returns prove significant, with a θ1 of -3.74.  

 

The OB Standard category presents significant abnormal returns in the good-news and bad-

news groups, but not in the no-news group. Unlike the OB Match stocks, the OB Standard 

good-news events did not produce any significant abnormal returns on the days surrounding 

the event. The bad-news events, however, show negative abnormal returns on day one after 
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the event, similar to the results from the full sample. Testing the CAR across the event 

window, only the no-news firms have significant (negative) abnormal returns. This could be 

due to other types of information affecting one or few firms in a small sample (26 firms), or 

again, misleading estimates of expected earnings from the time-series model.  

 

The clearest evidence from the trading-frequency categorization is seen from the bad-news 

events. Both the OB Match and the OB Standard groups show a slower price response to bad 

news than the OBX. Since the more liquid OBX group did not show any negative abnormal 

returns on the days after the event, these results could indicate that less traded stocks respond 

slower to news. For the case of positive earnings surprises, the OBX firms did not have the 

day one “correction” that was detected in both the OB Match sample and the full sample, 

indicating that the prices of the more heavily traded firms move quicker to the new “correct” 

levels, reflecting fundamental value. 

	  

5.4	   Differences	  Between	  Industry	  Groups	  

	  

The sample firms were also divided into industry groups, as presented in table 4.1 under 

section 4.3. As previously pointed out, some industry groups in Norway contain very few 

firms, which makes it difficult to infer conclusions about event effects, but the results from 

this categorization of the sample will still be presented. 

  

Table 5.3 summarizes the results from testing the null hypothesis that the event has no effect 

on returns, using each industry group as a separate sample. On the event day for the good-

news cases, only five out of ten sectors have significant positive abnormal returns, compared 

to eight out of ten for the bad-news cases. Again, the negative-surprise events bring forth the 

most verifiable results. When differentiating between industry groups in this manner, the 

delayed response that has been previously discovered appears to be limited to the energy 

sector (day-one negative abnormal returns) and partly the IT sector (day-two, but not day-one, 

negative abnormal returns). Correspondingly, the finding from the full sample that the good-

news firms had significant positive abnormal returns on the two days before the event, 

appears in this context to be driven by Consumer Staples, Materials and in part Energy and 

Industrial firms. The Telecom, Financials and Utilities sectors show the least evidence of 

abnormal returns. 
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Day	   Consumer	  Discretionary	   Consumer	  Staples	   Energy	  
	   θ1	  good	   θ1	  no	   θ1	  bad	   θ1	  good	   θ1	  no	   θ1	  bad	   θ1	  good	   θ1	  no	   θ1	  bad	  
-‐2	   NO	   NO	   YES	  (+)	   NO	   NO	   NO	   YES	  (+)	   NO	   NO	  
-‐1	   NO	   NO	   NO	   YES	  (+)	   NO	   NO	   NO	   NO	   NO	  
0	   YES	  (+)	   NO	   YES	  (-)	   YES	  (+)	   NO	   YES	  (-)	   NO	   NO	   YES	  (-)	  
1	   NO	   NO	   NO	   NO	   NO	   NO	   NO	   NO	   YES	  (-)	  
2	   NO	   NO	   NO	   NO	   NO	   NO	   NO	   NO	   NO	  
CAR	   NO	   NO	   NO	   NO	   NO	   NO	   NO	   NO	   NO	  
 
Day	   Financials	   Health	  Care	   Industrials	  
	   θ1	  good	   θ1	  no	   θ1	  bad	   θ1	  good	   θ1	  no	   θ1	  bad	   θ1	  good	   θ1	  no	   θ1	  bad	  
-‐2	   NO	   NO	   NO	   NO	   NO	   NO	   YES	  (+)	   NO	   NO	  
-‐1	   NO	   NO	   NO	   NO	   NO	   YES	  (+)	   NO	   NO	   NO	  
0	   YES	  (+)	   NO	   NO	   YES	  (+)	   NO	   YES	  (-)	   NO	   NO	   YES	  (-)	  
1	   NO	   NO	   NO	   YES	  (-)	   NO	   NO	   NO	   NO	   NO	  
2	   NO	   NO	   NO	   NO	   NO	   NO	   NO	   NO	   NO	  
CAR	   NO	   NO	   NO	   NO	   NO	   NO	   NO	   NO	   NO	  
 
Day	   Information	  Technology	   Materials	   Telecom	  
-1	   θ1	  good	   θ1	  no	   θ1	  bad	   θ1	  good	   θ1	  no	   θ1	  bad	   θ1	  good	   θ1	  no	   θ1	  bad	  
-‐2	   YES	  (+)	   NO	   NO	   NO	   NO	   NO	   NO	   NO	   NO	  
-‐1	   NO	   YES	  (+)	   NO	   YES	  (+)	   NO	   NO	   NO	   NO	   NO	  
0	   NO	   NO	   YES	  (-)	   YES	  (+)	   NO	   YES	  (-)	   NO	   NO	   YES	  (-)	  
1	   NO	   YES	  (-)	   NO	   NO	   NO	   NO	   NO	   NO	   NO	  
2	   NO	   NO	   YES	  (-)	   NO	   NO	   NO	   NO	   NO	   NO	  
CAR	   YES	   NO	   YES	   NO	   NO	   NO	   NO	   NO	   NO	  
 
Day	   Utilities	  
	   θ1	  good	   θ1	  no	   θ1	  bad	  
-‐2	   NO	   NO	   NO	  
-‐1	   NO	   NO	   NO	  
0	   NO	   NO	   NO	  
1	   NO	   NO	   NO	  
2	   NO	   NO	   NO	  
CAR	   NO	   NO	   NO	  
 
Table 5.3. Does the industry group have abnormal returns significantly different from zero on 
the given day? + or – indicates positive or negative abnormal returns. 
 

The results from this sample categorization should be interpreted with caution, due to the 

small size of some sectors. It is difficult to draw any general conclusions about the industry 

grouping’s implications for abnormal event-related returns, but this categorization does point 

out to a certain degree what sectors pull the heaviest weight in the full sample’s detected 

abnormal returns.  
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5.5	   Differences	  in	  Time	  Periods	  

 

The final sample breakdown included in this study is by different time periods. The data was 

pooled into four groups according to year, so that each of the four years 2007 to 2010 could 

be studied separately. The motivation behind this was to investigate whether the time period 

surrounding the most recent financial crisis would display different effects from earnings 

news than other time periods. The heat of the crisis occurred in the latter part of 2008, in 

contrast to the first half of the year, when the Norwegian stock market reached all-time high 

levels, before plummeting towards the end of the year. Table 5.4 summarizes the number of 

good, bad and non-present earnings surprises for each of the sample years. 

 

 

 

 

 

Table 5.4. Event categorization on an annual basis 

 

The table shows that the year 2008 had a greater fraction of events in the bad-news category 

and a smaller fraction in the good-news category corresponding to the other years. Table 5.5 

presents the main results from treating the time periods as separate samples. 

 
Day	   Q1-2007	  –	  Q4-2007	   Q1-2008	  –	  Q4-2008	   Q1-2009-Q42009	  
	   θ1	  good	   θ1	  no	   θ1	  bad	   θ1	  good	   θ1	  no	   θ1	  bad	   θ1	  good	   θ1	  no	   θ1	  bad	  
-‐2	   NO	   NO	   NO	   NO	   NO	   NO	   YES	  (+)	   NO	   NO	  
-‐1	   YES	  (+)	   NO	   NO	   YES	  (+)	   YES	  (+)	   NO	   NO	   NO	   NO	  
0	   NO	   NO	   YES	  (-)	   YES	  (+)	   NO	   YES	  (-)	   NO	   NO	   YES	  (-)	  
1	   NO	   NO	   YES	  (-)	   NO	   NO	   NO	   NO	   NO	   NO	  
2	   NO	   NO	   NO	   NO	   NO	   NO	   NO	   NO	   NO	  
CAR	   YES	  (-)	   NO	   YES	  (-)	   NO	   YES	  (-)	   NO	   YES	  (+)	   NO	   NO	  
 
Day	   Q1-2010	  –	  Q4-2010	  
	   θ1	  good	   θ1	  no	   θ1	  bad	  
-‐2	   NO	   NO	   NO	  
-‐1	   NO	   NO	   NO	  
0	   NO	   NO	   YES	  (-)	  
1	   NO	   NO	   YES	  (-)	  
2	   NO	   NO	   NO	  
CAR	   NO	   NO	   YES	  (-)	  
Table 5.5. Does the annual time period have abnormal returns significantly different from 
zero on the given day? + or – indicates positive or negative abnormal returns. 

#	  of	  events	   2007	   2008	   2009	   2010	   Sum	  
Good	  News	   198	   171	   219	   209	   797	  
No	  News	   50	   39	   34	   21	   144	  
Bad	  News	   220	   258	   215	   238	   931	  
Sum	   468	   468	   468	   468	   1872	  
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Studying the sample on an annual basis, I actually find that the positive abnormal returns on 

day zero in the good-news category are only significant in 2008, and not in 2007, 2009 or 

2010. I also find that the day-zero negative abnormal returns in the bad-news category in 2008 

are significant with a θ1-value of -7.78, with no significant abnormal returns on the 

succeeding days. With the exception of 2009 (when the effects of the crisis still were highly 

present), the other years showed significant negative abnormal returns on day one. This could 

indicate that during (and after) the financial crisis, the price response to bad news was quicker 

than usual, possibly because investors were more alert with respect to learning new critical 

information about firms during times of market distress. The positive abnormal returns 

limited to 2008 could imply that good news were perceived as “very good” during a time in 

which the market fell hard, causing excessive optimism and investment in these companies. 

Alternatively, the optimism could be limited to the former half of 2008, when the market 

conditions were far more beneficial. 

 

To isolate the specific time period associated with the financial crisis, I decided to investigate 

the earnings announcements from quarter 3, 2008 through quarter 1, 2009 as one sample, 

consisting of announcement dates from October 2008 to May 2009. During this time, the 

Norwegian market had experienced a sharp drop, but started to grow again. Testing the null 

hypothesis, I find no significant abnormal returns in the good-news category on the event 

date, but a significant positive cumulative abnormal return. This points to the suspicion that 

not all the positive return due to good news was captured at once, or possibly that investors 

were careful on the event date with respect to excessively investing in the company, even 

though the stock appears to be perceived as a good buy. The story is however different for the 

bad-news case – similar to the year 2008 in total, the abnormal day-zero returns are negative 

and significant, with no significant abnormal returns on the days following, again indicating 

that for the bad-news events, the price responses occurred quickly during the period of and 

surrounding the financial crisis. Finally, as expected, the no-news events induced no day-zero 

significant abnormal returns neither in this period. The results are summarized in table 5.6. 
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Table 5.6. Does the given time period have abnormal returns significantly different from zero 
on the given day? + or – indicates positive or negative abnormal returns. 
 

The results from separating the sample into different time periods with respect to the financial 

crisis indicate that negative news are more quickly reflected in security prices during times of 

market distress. But this conclusion should not be inferred without recognizing that there 

could be a significant amount of noise in the market surrounding financial crises. The 

implication is less precise estimates, creating difficulties in drawing any conclusions from the 

results. All though they indicate that bad news are reflected quicker than usual, disturbing 

factors in times of market turmoil could largely influence the results. The positive earnings 

surprises for Q3-2009 to Q1-2009 did not produce any abnormal returns on the announcement 

date, but the CAR is significant across the event window. The significant abnormal returns on 

day zero in 2008 could actually be limited to the former half of the year, due to more 

optimistic market conditions. As for the financial crisis, pessimism had a stronger presence in 

the market, probably destroying the believability of growth in future earnings. In total, the 

positive abnormal returns appear to be limited in time. The resulting implication for this study 

is that it becomes difficult to draw a general conclusion concerning the stock market reaction 

to positive earnings surprises. 

 

 

 

 

 

 

 

 

 

 

 

Day	   Q3-2008	  –	  Q1-2009	  
	   θ1	  good	   θ1	  no	   θ1	  bad	  
-‐2	   YES	  (-)	   NO	   NO	  
-‐1	   NO	   YES	  (+)	   NO	  
0	   NO	   NO	   YES	  (-)	  
1	   NO	   NO	   NO	  
2	   NO	   NO	   NO	  
CAR	   YES	  (+)	   NO	   NO	  
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6	   Conclusion	  
 

This paper has been concerned with estimating and investigating the abnormal stock returns 

associated with a specific event, in this case earnings announcements or surprises. I have been 

simultaneously searching for evidence of efficiency in the Norwegian market, and for the well 

documented, puzzling anomaly called the post-earnings-announcement drift. A sample of 117 

listed companies has been investigated throughout a four-year period of quarterly earnings 

announcements. The analysis was performed using a time-series model for expected earnings, 

and then grouping the events according to actual earnings below, above or around the 

expected earnings. Then the abnormal returns associated with the event were defined using a 

market model for normal returns. Various sub-categorization of the sample was also made in 

order to detect event effects dependent on specific characteristics.  

 

My overall result is that the Norwegian stock market appears to be mainly efficient, just like 

the efficient market hypothesis has been widely confirmed in numerous earlier studies. In our 

time and day, with a sophisticated and developed securities market, and with a great number 

of investors and analysts watching over it at all times, it is highly believable that the 

hypothesis should prove to be true.  

 

Analyzing the data and testing the null hypothesis that earnings announcements have no effect 

on security returns, I find evidence that rejects the null. Earnings announcements do contain 

informational value – the abnormal returns on the event day for both positive and negative 

earnings surprises are significantly different from zero. However, I find stronger evidence of 

abnormal returns in the bad-news category, with a wider margin for rejecting the null 

hypothesis. In fact, I find that the significant positive abnormal returns for positive earnings 

surprises are mainly limited to 2008. With this in mind, it becomes somewhat problematic to 

infer any clear conclusions about positive earnings surprises’ effect on security returns, but I 

will state that announcements that deviate from the expectation (either way) do induce 

abnormal security returns, although of varying magnitude. 

 

The results from the analysis are well aligned with the efficient market hypothesis, but I was 

also able to detect a few deviations. For the earnings announcements that fell into the bad-

news category, I found significant negative abnormal returns also on the next day after the 

event date, indicating that some of the market response to negative earnings surprises is 
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delayed. This could potentially signal tendencies of market under-reaction to bad news. One 

possible explanation is that it takes some time for the market participants to fully understand 

the implications of the negative earnings surprise, and its effect on the stock’s fair value. I 

also detected two contradictions to efficiency in the good-news category. First, these events 

had significant positive abnormal returns on the two days leading up to the announcement. 

The fact that the abnormal returns on day zero in this category was harder to verify than for 

the bad news category can be due to this finding. For instance, some news might have been 

leaked to the market ahead of the announcement that indicated earnings growth in the 

company, hence causing abnormal returns to be spread more evenly throughout these days. It 

is noteworthy that this only applies to the good-news category, but at the same time it is likely 

that firms about to announce disappointing earnings are more cautious with respect to 

signaling this to the market ahead of the announcement. The second finding for the good-

news events is that they caused significant negative abnormal returns on the first day after the 

event A possible interpretation could be market overreaction on the event date – investors 

might readjust their beliefs in the aftermath of an earnings surprise, necessarily causing some 

negative return. 

 

I introduced the post-earnings-announcement drift in the literature review section, and stated 

that this anomaly has been documented by several studies. These results, however, are unable 

to find any evidence of this drift, except for the negative abnormal return on day one after the 

event for the bad-news group. This again points in favor of an efficient Norwegian stock 

market. It appears to be true that most investors are able to exploit new information rather 

quickly. Most of the studies in favor of the drift’s survival were performed decades ago, and it 

is not at all astonishing that in the information-technology age we now exist in, information 

travels quickly and is reflected in security prices just as fast, with very limited opportunities to 

earn above-normal returns with a trading strategy exploiting the post-earnings-announcement 

drift. As reviewed in section 2.4.2, one possible explanation for the drift is that costs can 

exceed gains of immediately exploiting opportunities, which can explain why some of the 

negative return is delayed until the next day. It might not be feasible for all investors to take 

advantage of the new information as fast as they would like. Aside from that, the only finding 

in my sample that could possibly relate to the drift is that the cumulative abnormal returns for 

the negative-surprise events keep drifting downward from the event date and until the end of 

the event window (20 days after the announcement). But since none of these abnormal returns 
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after day one are significantly different from zero, I do not have evidence to state that a 

downward drift in returns follows bad-news events. 

 

An extension of the analysis involved grouping the sample events further, and categorizing 

them according to firms’ trading frequency, firms’ industries and time period of event. First, 

investigating firms in three different groups depending on their trading frequency, I find a 

quicker response to negative earnings surprises in the category with the most traded firms 

than the other groups. These findings are well aligned with my initial suspicion: the most 

heavily traded firms are likely to be the most researched and monitored ones, hence causing 

news to be reflected very quickly without any “correcting” readjustments on the following 

days. Also, such a finding can be related to the presented small-firm anomaly (section 

2.1.2.2), where small firms earn higher abnormal returns. In this case, the largest firms are 

concentrated in the group with the highest trading frequency. 

 

Throughout the sample period, 2007 to 2010, the market has been through a turbulent and 

fluctuating time, from the Norwegian market’s all-time highs to the deep fall of the financial 

crisis, and back to economic and stock market growth. Having witnessed these events in the 

past years, I thought it would be interesting to analyze differences in event-effects between 

time periods. First, dividing the sample into four sub-samples, each corresponding to one 

year, I find that the day-one negative abnormal return for the bad-news cases are limited to 

the years 2007 and 2010. The year of the crisis, 2008, and the year of the aftermath, 2009, 

showed only significant abnormal returns on the event date. These results indicate a certain 

tendency of increased speed of response to new information in times of market turmoil. I 

believe this could be a likely consequence of market participants becoming more alert and on 

guard in order to quickly acquire and exploit new information. On the other hand, increasing 

market noise in troubled financial times creates difficulties in rejecting the null hypothesis, 

since this noise in returns contributes to less precision in the coefficient estimates. Another 

surprising finding in application of this sample grouping, is that the significant positive 

abnormal returns are exclusively present in the year 2008. This finding could be a result of 

unusual market conditions, for example excessive optimism devoted to good-news firms, 

especially given the Norwegian market’s booming conditions in the former half of 2008. But 

these results also further destroy the validity of the positive abnormal returns in the full 

sample, since they appear to be limited to a certain time period. Once again, the significance 

of these returns appears to be weaker than of the abnormal returns in the bad-news category. 
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I will conclude this paper with stating that even though the Norwegian stock market is 

relatively small, it appears to be highly efficient, and that the results lead me to believe that 

the post-earnings-announcement drift is a phenomenon of past days. But I do find some 

delayed responses to (bad) news, which I think means that new information arrives 

continuously, market participants perceive it differently, and later on differences of opinions 

resolve. After a day or two, all significant abnormal returns seem to have disappeared. It is 

somewhat more difficult to infer conclusions about the good-news category, as the abnormal 

returns related to these events proved to have varying significance. The efficiency indicated 

by the results from this study suggests that the Norwegian stock market consists of numerous 

sophisticated players, and possesses the fundament for being informationally efficient. 

 

The analysis could possibly have come out differently if consensus analyst forecasts were 

applied instead of estimating expected earnings via time-series models. Having forecasts that 

are even more aligned with the true market expectations (which is indeed the deciding factor 

for whether or not there is an earnings surprise) could possibly have produced stronger 

results, with stronger evidence to reject the null hypothesis. But either way, I doubt that any 

evidence of an extensive post-earnings-announcement drift would be discovered. It would 

also be of interest to examine whether my results turn out similar for the years to come, as the 

economy grows even stronger up from the economic downturn – or alternatively, if the 

macroeconomic state develops in a completely different direction. 
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Appendix	  A:	  List	  of	  Sample	  Firms	  
	  
#	   Company	  Name	   Industry	   OSE	  Group	  
1	   ABG	  Sundal	  Collier	  Holding	  ASA	   Financials	   OB	  Match	  
2	   Acta	  Holding	  ASA	   Financials	   OB	  Match	  
3	   AF	  Gruppen	  ASA	   Industrials	   OB	  Match	  
4	   Aker	  ASA	   Energy	   OB	  Match	  
5	   Aker	  Seafoods	  ASA	   Consumer	  Stapes	   OB	  Match	  
6	   Aker	  Solutions	  ASA	   Energy	   OBX	  
7	   Aktiv	  Kapital	  ASA	   Financials	   OB	  Match	  
8	   American	  Shipping	  Company	  ASA	   Industrials	   OB	  Standard	  
9	   Apptix	  ASA	   Information	  Technology	   OB	  Match	  
10	   Arendals	  Fossekompani	  ASA	   Utilities	   OB	  Standard	  
11	   Atea	  ASA	   Information	  Technology	   OB	  Match	  
12	   Belships	  ASA	   Industrials	   OB	  Match	  
13	   Bionor	  Pharma	  ASA	   Health	  Care	   OB	  Match	  
14	   Biotec	  Pharmacon	  ASA	   Health	  Care	   OB	  Match	  
15	   Birdstep	  Technology	  ASA	   Information	  Technology	   OB	  Match	  
16	   Blom	  ASA	   Information	  Technology	   OB	  Match	  
17	   Bonheur	  ASA	   Energy	   OB	  Match	  
18	   Borgestad	  ASA	   Financials	   OB	  Match	  
19	   BWG	  Homes	  ASA	   Consumer	  Discretionary	   OB	  Match	  
20	   Byggma	  ASA	   Materials	   OB	  Standard	  
21	   Camillo	  Eitzen	  &	  Co	  ASA	   Industrials	   OB	  Standard	  
22	   Cermaq	  ASA	   Consumer	  Staples	   OB	  Match	  
23	   ContextVision	  AB	   Health	  Care	   OB	  Match	  
24	   Data	  Respons	  ASA	   Information	  Technology	   OB	  Standard	  
25	   DiaGenic	  ASA	   Health	  Care	   OB	  Match	  
26	   DnB	  NOR	  ASA	   Financials	   OBX	  
27	   DNO	  International	  ASA	   Energy	   OB	  Match	  
28	   DOF	  ASA	   Energy	   OB	  Match	  
29	   Dolphin	  Group	  ASA	   Information	  Technology	   OB	  Standard	  
30	   Domstein	  ASA	   Consumer	  Staples	   OB	  Match	  
31	   Eidesvik	  Offshore	  ASA	   Energy	   OB	  Match	  
32	   Eitzen	  Maritime	  Services	  ASA	   Industrials	   OB	  Match	  
33	   Ekornes	  ASA	   Consumer	  Discretionary	   OB	  Match	  
34	   Eltek	  ASA	   Information	  Technology	   OB	  Match	  
35	   FARA	  ASA	   Information	  Technology	   OB	  Match	  
36	   Farstad	  Shipping	  ASA	   Energy	   OB	  Standard	  
37	   Fred	  Olsen	  Energy	  ASA	   Energy	   OBX	  
38	   Frontline	  Ltd.	   Energy	   OBX	  
39	   Funcom	  N.V.	   Information	  Technology	   OB	  Match	  
40	   Ganger	  Rolf	  ASA	   Energy	   OB	  Match	  
41	   GC	  Rieber	  Shipping	  ASA	   Energy	   OB	  Standard	  
42	   Golar	  LNG	  Ltd.	   Energy	   OB	  Match	  
43	   Golden	  Ocean	  Group	  Ltd.	   Industrials	   OBX	  
44	   Goodtech	  ASA	   Industrials	   OB	  Match	  
45	   Green	  Reefers	  ASA	   Industrials	   OB	  Match	  
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#	   Company	  Name	   Industry	   OSE	  Group	  
46	  
47	  

Grenland	  Group	  ASA	  
Gyldendal	  ASA	  

Energy	  
Consumer	  Discretionary	  

OB	  Standard	  
OB	  Standard	  

48	   Hafslund	  ASA	   Utilities	   OB	  Match	  
49	   Havila	  Shipping	  ASA	   Energy	   OB	  Standard	  
50	   Hexagon	  Composites	  ASA	   Industrials	   OB	  Match	  
51	   Hurtigruten	  ASA	   Consumer	  Discretionary	   OB	  Match	  
52	   IGE	  Resources	  AB	   Materials	   OB	  Match	  
53	   Ignis	  ASA	   Information	  Technology	   OB	  Match	  
54	   IM	  Skaugen	  SE	   Energy	   OB	  Match	  
55	   Imarex	  ASA	   Financials	   OB	  Match	  
56	   Inmeta	  Crayon	  ASA	   Information	  Technology	   OB	  Match	  
57	   Itera	  ASA	   Information	  Technology	   OB	  Standard	  
58	   Jinhui	  Shipping	  and	  Transportation	  Ltd.	   Industrials	   OB	  Match	  
59	   Kitron	  ASA	   Information	  Technology	   OB	  Match	  
60	   Komplett	  ASA	   Consumer	  Discretionary	   OB	  Standard	  
61	   Kongsberg	  Automotive	  Holding	  ASA	   Consumer	  Discretionary	   OB	  Match	  
62	   Kongsberg	  Gruppen	  ASA	   Industrials	   OB	  Match	  
63	   Kverneland	  ASA	   Industrials	   OB	  Standard	  
64	   Lerøy	  Seafood	  Group	  ASA	   Consumer	  Staples	   OB	  Match	  
65	   Mamut	  ASA	   Information	  Technology	   OB	  Match	  
66	   Marine	  Harvest	  ASA	   Consumer	  Staples	   OBX	  
67	   Medi-‐Stim	  ASA	   Health	  Care	   OB	  Standard	  
68	   Namsos	  Trafikkselskap	  ASA	   Industrial	   OB	  Standard	  
69	   Navamedic	  ASA	   Health	  Care	   OB	  Standard	  
70	   Nio	  Security,	  Inc.	   Information	  Technology	   OB	  Standard	  
71	   NorDiag	  ASA	   Health	  Care	   OB	  Match	  	  
72	   Nordic	  Semiconductor	  ASA	   Information	  Technology	   OB	  Match	  
73	   Norsk	  Hydro	  ASA	   Materials	   OBX	  
74	   Norske	  Skogindustrier	  ASA	   Materials	   OB	  Match	  
75	   Norwegian	  Air	  Shuttle	  ASA	   Industrials	   OB	  Match	  
76	   Norwegian	  Car	  Carriers	  ASA	   Industrials	   OB	  Match	  
77	   Odfjell	  SE	   Industrials	   OB	  Match	  
78	   Olav	  Thon	  Eiendomsselskap	  ASA	   Financials	   OB	  Standard	  
79	   Opera	  Software	  ASA	   Information	  Technology	   OB	  Match	  
80	   ORIGIO	  a/s	   Health	  Care	   OB	  Match	  
81	   Orkla	  ASA	   Industrials	   OBX	  
82	   Petroleum	  Geo-‐Services	  ASA	   Energy	   OBX	  
83	   Petrolia	  ASA	   Energy	   OB	  Match	  
84	   Photocure	  ASA	   Health	  Care	   OB	  Match	  	  
85	   Prosafe	  SE	   Energy	   OBX	  
86	   PSI	  Group	  ASA	   Information	  Technology	   OB	  Standard	  
87	   Q-‐Free	  ASA	   Information	  Technology	   OB	  Match	  
88	   Questerre	  Energy	  Corporation	   Energy	   OBX	  
89	   Rieber	  &	  Søn	  ASA	   Consumer	  Staples	   OB	  Match	  
90	   Rocksource	  ASA	   Energy	   OB	  Match	  
91	   Royal	  Caribbean	  Cruises	  Ltd.	   Consumer	  Discretionary	   OBX	  
92	   SAS	  AB	   Industrials	   OB	  Match	  
93	   Scana	  Industrier	  ASA	   Materials	   OB	  Match	  
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#	   Company	  Name	   Industry	   OSE	  Group	  
94	  
95	  

Schibsted	  ASA	  
SeaBird	  Exploration	  PLC	  

Consumer	  Discretionary	  
Energy	  

OBX	  
OB	  Match	  

96	   Seadrill	  Ltd.	   Energy	   OBX	  
97	   Sevan	  Marine	  ASA	   Energy	   OBX	  
98	   Siem	  Offshore	  Inc.	   Energy	   OB	  Match	  
99	   Skiens	  Aktiemølle	  ASA	   Financials	   OB	  Standard	  
100	   Solstad	  Offshore	  ASA	   Energy	   OB	  Standard	  
101	   Solvang	  ASA	   Industrials	   OB	  Standard	  
102	   Songa	  Offshore	  SE	   Energy	   OB	  Match	  
103	   Star	  Reefers	  Inc.	   Industrials	   OB	  Standard	  
104	   Statoil	  ASA	   Energy	   OBX	  
105	   Stolt-‐Nielsen	  Ltd.	   Industrials	   OB	  Match	  
106	   Storebrand	  ASA	   Financials	   OBX	  
107	   TECO	  Maritime	  ASA	   Industrials	   OB	  Match	  
108	   Telenor	  ASA	   Telecom	   OBX	  
109	   TGS-‐NOPEC	  Geophysical	  Company	  ASA	   Energy	   OBX	  
110	   Tomra	  Systems	  ASA	   Industrials	   OB	  Match	  
111	   TTS	  Group	  ASA	   Industrials	   OB	  Match	  
112	   Veidekke	  ASA	   Industrials	   OB	  Match	  
113	   Vizrt	  Ltd.	   Information	  Technology	   OB	  Match	  
114	   Voss	  Veksel-‐	  og	  Landmandsbank	  ASA	   Financials	   OB	  Standard	  
115	   Wilh.	  Wilhelmsen	  Holding	  ASA	   Industrials	   OB	  Match	  
116	   Wilson	  ASA	   Industrials	   OB	  Standard	  
117	   Yara	  International	  ASA	   Materials	   OBX	  
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Appendix	  B:	  Full	  Sample	  Results	  
	  
Table	  of	  abnormal	  returns,	  cumulative	  abnormal	  returns	  and	  values	  of	  θ1	  for	  the	  full	  sample.	  AR	  
and	  CAR	  are	  expressed	  as	  percentages.	  The	  θ1	  value	  is	  the	  test	  parameter	  for	  the	  null	  hypothesis	  
that	  the	  event	  has	  zero	  effect	  on	  returns	  on	  the	  given	  day.	  The	  one-‐day	  standard	  deviations	  are	  
listed	  at	  the	  bottom	  of	  the	  table.	  
	  

Day	   Good	  News	   No	  News	   Bad	  News	  
	   AR%	   CAR%	   θ1	   AR%	   CAR%	   θ1	   AR%	   CAR%	   θ1	  

-‐20	   .1123	   .1123	   .82	   -‐.0946	   -‐.0946	   -‐.27	   -‐.1252	   -‐.1252	   -‐.98	  
-‐19	   .1644	   .2767	   1.20	   .0366	   -‐.0580	   .11	   .0253	   -‐.0999	   .20	  
-‐18	   -‐.0638	   .2129	   -‐.47	   .2379	   .1799	   .69	   .1232	   .0233	   .97	  
-‐17	   .0652	   .2781	   .48	   -‐.7430	   -‐.5631	   -‐2.16	   -‐.0261	   -‐.0029	   -‐.21	  
-‐16	   .0985	   .3766	   .72	   -‐.3592	   -‐.9223	   -‐1.04	   -‐.0129	   -‐.0158	   -‐.10	  
-‐15	   .2375	   .6141	   1.73	   -‐.1769	   -‐1.0992	   -‐.51	   -‐.0156	   -‐.0314	   -‐.12	  
-‐14	   .0287	   .6428	   .21	   .1403	   -‐.9589	   .41	   -‐.2143	   -‐.2457	   -‐1.68	  
-‐13	   .1912	   .8341	   1.40	   -‐.0336	   -‐.9925	   -‐.10	   .0589	   -‐.1869	   .46	  
-‐12	   -‐.1140	   .7201	   -‐.83	   -‐.2295	   -‐1.2220	   -‐.67	   .1595	   -‐.0274	   1.25	  
-‐11	   .1204	   .8404	   .88	   .4502	   -‐.7718	   1.31	   .0566	   .0292	   .44	  
-‐10	   .0657	   .9061	   .48	   .2872	   -‐.4845	   .83	   .0985	   .1277	   .77	  
-‐9	   .1030	   1.0092	   .75	   .1541	   -‐.3305	   .45	   -‐.1951	   -‐.0675	   -‐1.53	  
-‐8	   -‐.0654	   .9438	   -‐.48	   .0927	   -‐.2378	   .27	   .0074	   -‐.0600	   .06	  
-‐7	   .1144	   1.0581	   .83	   .1213	   -‐.1165	   .35	   -‐.0778	   -‐.1379	   -‐.61	  
-‐6	   -‐.1491	   .9091	   -‐1.09	   -‐.1650	   -‐.2814	   -‐.48	   -‐.0104	   -‐.1482	   -‐.08	  
-‐5	   .2066	   1.1157	   1.51	   -‐.5349	   -‐.8163	   -‐1.55	   -‐.2442	   -‐.3924	   -‐1.92	  
-‐4	   -‐.0423	   1.0733	   -‐.31	   .4115	   -‐.4048	   1.20	   .0468	   -‐.3456	   .37	  
-‐3	   -‐.0771	   .9963	   -‐.56	   -‐.0742	   -‐.4790	   -‐.22	   .0226	   -‐.3230	   .18	  
-‐2	   .3423	   1.3385	   2.50	   .1595	   -‐.3195	   .46	   .1232	   -‐.1998	   .97	  
-‐1	   .4999	   1.8384	   3.65	   .8108	   .4913	   2.36	   .2022	   .0024	   1.59	  
0	   .4480	   2.2864	   3.27	   -.0548	   .4365	   -.16	   -1.5456	   -1.5432	   -12.13	  
1	   -‐.2955	   1.9909	   -‐2.16	   -‐.4508	   -‐.0142	   -‐1.31	   -‐.3768	   -‐.1.9200	   -‐2.96	  
2	   -‐.1856	   1.8054	   -‐1.35	   -‐.0744	   -‐.0087	   -‐.22	   -‐.2412	   -‐2.1611	   -‐1.89	  
3	   -‐.1858	   1.6196	   -‐1.36	   .2159	   .1272	   -‐.63	   -‐.1284	   -‐2.2896	   -‐1.01	  
4	   .0097	   1.6293	   .07	   -‐.0535	   .0738	   -‐.16	   -‐.0755	   -‐2.3650	   -‐.59	  
5	   .1978	   1.8270	   1.44	   .0134	   .0871	   .04	   -‐.1427	   -‐2.5077	   -‐1.12	  
6	   -‐.1078	   1.7192	   -‐.79	   -‐.4009	   -‐.3138	   -‐1.17	   -‐.3682	   -‐2.8759	   -‐2.89	  
7	   -‐.0039	   1.7153	   -‐.03	   .3074	   -‐.0064	   .89	   -‐.0832	   -‐2.9591	   -‐.65	  
8	   .1098	   1.8251	   .80	   .0436	   .0373	   .13	   -‐.0823	   -‐2.8768	   .65	  
9	   -‐.1665	   1.6585	   -‐1.22	   -‐.0542	   -‐.0169	   -‐.16	   -‐.1003	   -‐2.9771	   -‐.79	  
10	   .1672	   1.8258	   1.22	   -‐.3080	   -‐.3249	   -‐.90	   -‐.0979	   -‐3.0750	   -‐.77	  
11	   -‐.2498	   1.5760	   -‐1.82	   .0594	   -‐.2654	   .17	   .1091	   -‐2.9659	   .86	  
12	   -‐.0146	   1.5613	   -‐.11	   -‐.1882	   -‐.4536	   -‐.55	   -‐.0256	   -‐2.9915	   -‐.20	  
13	   .1553	   1.7167	   1.13	   -‐.1412	   -‐.5948	   -‐.41	   -‐.0816	   -‐3.0731	   -‐.64	  
14	   -‐.1634	   1.5333	   -‐1.19	   -‐.2805	   -‐.8754	   -‐.82	   .1351	   -‐2.9380	   1.06	  
15	   -‐.0644	   1.4889	   -‐.47	   -‐.3945	   -‐1.2699	   -‐1.15	   .0015	   -‐2.9365	   .01	  
16	   .1252	   1.6141	   .91	   .0297	   -‐1.2402	   .09	   .0062	   -‐2.9303	   .05	  
17	   -‐.1339	   1.4802	   -‐.98	   -‐.7533	   -‐1.9935	   -‐2.19	   -‐.3643	   -‐3.2946	   -‐2.86	  
18	   .1467	   1.6269	   1.07	   .3172	   -‐1.6763	   .92	   -‐.1184	   -‐3.4130	   -‐.93	  
19	   -‐.0059	   1.6210	   -‐.04	   -‐.5248	   -‐2.2011	   -‐1.53	   -‐.0077	   -‐3.4207	   -‐.06	  
20	   -‐.1110	   1.5100	   -‐.81	   -‐.2413	   -‐2.4424	   -‐.70	   .1558	   -‐3.2649	   1.22	  
CAR	   	   	   1.72	   	   	   -1.11	   	   	   -4.00	  
σ 	   	   .1370	   	   	   .3441	   	   	   .1274	  
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Appendix	  C:	  Results,	  Sample	  According	  to	  Trading	  Frequency	  
	  
Tables	  of	  abnormal	  returns,	  cumulative	  abnormal	  returns	  and	  values	  of	  θ1	  for	  the	  OBX	  ,	  Ob	  
Match	  and	  OB	  Standard	  samples.	  The	  θ1	  value	  is	  the	  test	  parameter	  for	  the	  null	  hypothesis	  that	  
the	  event	  has	  zero	  effect	  on	  returns	  on	  the	  given	  day.	  The	  one-‐day	  standard	  deviations	  are	  listed	  
at	  the	  bottom	  of	  the	  table.	  
	  

C1.	  OBX	  Sample	  

Day	   Good	  News	   No	  News	   Bad	  News	  
	   AR%	   CAR%	   θ1	   AR%	   CAR%	   θ1	   AR%	   CAR%	   θ1	  

-‐20	   -‐.4786	   -‐.4786	   -‐2.13	   -‐.1778	   -‐.1778	   -‐.26	   .0331	   .0331	   1.22	  
-‐19	   -‐.1990	   -‐.6776	   .89	   .0679	   -‐.1099	   .10	   .1420	   .4751	   .52	  
-‐18	   -‐.0758	   -‐.7534	   -‐.34	   1.0673	   .9574	   1.57	   -‐.1842	   .2908	   -‐.68	  
-‐17	   -‐.1755	   -‐.9289	   -‐.78	   -‐.4481	   .5093	   -‐.66	   -‐.2721	   .0187	   -‐1.00	  
-‐16	   .0843	   -‐.8446	   .38	   -‐.4475	   .0619	   -‐.66	   -‐.2111	   -‐.1924	   -‐.78	  
-‐15	   .0564	   -‐.7882	   .25	   -‐.1288	   -‐.0669	   -‐.19	   -‐.1279	   -‐.3203	   -‐.47	  
-‐14	   -‐.0908	   -‐.8790	   -‐.40	   .5741	   .5072	   .85	   .0060	   -‐.3143	   .02	  
-‐13	   -‐.0574	   -‐.9365	   -‐.26	   -‐.4923	   .0149	   -‐.73	   -‐.1364	   -‐.4507	   -‐0.50	  
-‐12	   .1750	   -‐.7615	   .78	   -‐.4479	   -‐.3230	   -‐.50	   .3089	   -‐.1418	   1.13	  
-‐11	   -‐.0207	   -‐.7822	   -‐.09	   .9946	   .6716	   1.47	   -‐.2197	   -‐.3615	   -‐.81	  
-‐10	   .2110	   -‐.5711	   .94	   .1287	   .8003	   .19	   -‐.2041	   -‐.5656	   -‐.75	  
-‐9	   .0133	   -‐.5579	   .06	   -‐.4538	   .3465	   -‐.67	   -‐.2501	   -‐.8157	   -‐.92	  
-‐8	   .2202	   -‐.3377	   .98	   -‐.7469	   -‐.4004	   -‐1.10	   -‐.0160	   -‐.8317	   -‐.06	  
-‐7	   .0196	   -‐.3181	   .09	   1.2047	   .8043	   1.78	   .0180	   -‐.8208	   .04	  
-‐6	   -‐.0843	   -‐.4023	   -‐.38	   -‐.1668	   .6375	   -‐.25	   -‐.0471	   -‐.8679	   -‐.17	  
-‐5	   .2799	   -‐.1225	   1.25	   .6179	   1.2554	   .91	   -‐.2288	   -‐1.0968	   -‐.84	  
-‐4	   .4910	   .3685	   2.19	   -‐.2521	   1.0034	   -‐.37	   .0210	   -‐1.0758	   .08	  
-‐3	   -‐.2552	   .1133	   -‐1.14	   -‐1.0244	   -‐.0211	   -‐1.51	   -‐.0400	   -‐1.1158	   -‐.15	  
-‐2	   .2338	   .3471	   1.04	   .0520	   .0309	   .08	   -‐.1928	   -‐1.3086	   -‐.71	  
-‐1	   .3137	   .6609	   1.40	   .4112	   .4421	   .61	   -‐.0800	   -‐1.3885	   -‐.29	  
0	   .1358	   .7967	   .61	   .1977	   .6398	   .29	   -.7391	   -2.1276	   -2.71	  
1	   .2514	   1.0481	   1.12	   1.9333	   2.5731	   2.85	   -‐.1610	   -‐.2.2887	   -‐.59	  
2	   .4306	   1.4787	   1.92	   1.5753	   4.1484	   2.32	   .0550	   -‐2.2337	   .20	  
3	   -‐.4091	   1.0696	   -‐1.82	   -‐.4953	   3.6532	   -‐.73	   -‐.2701	   -‐2.5038	   -‐.99	  
4	   -‐.1822	   .8874	   -‐.81	   .7445	   4.3977	   1.10	   .6641	   -‐1.8397	   2.44	  
5	   .1304	   1.0178	   .58	   .6812	   5.0788	   1.01	   .0191	   -‐1.8206	   .07	  
6	   -‐.1869	   .8309	   -‐.83	   -‐.3961	   4.6828	   -‐.58	   .1543	   -‐1.6663	   .57	  
7	   -‐.2292	   .6017	   -‐1.02	   .1602	   4.8430	   .24	   .4967	   -‐1.1696	   1.82	  
8	   -‐.4121	   .1896	   -‐1.84	   .1044	   4.9473	   .15	   .8140	   -‐.3556	   2.99	  
9	   .2606	   .4502	   1.16	   -‐.8354	   4.1119	   -‐1.23	   .3446	   -‐.0110	   1.27	  
10	   -‐.3823	   .0678	   -‐1.70	   .2148	   4.3267	   .32	   -‐.1518	   -‐.1628	   -‐.56	  
11	   -‐.0800	   -‐.0121	   -‐.36	   .3434	   4.6701	   .51	   .0278	   -‐.1350	   .10	  
12	   .1980	   .1858	   .88	   -‐.3896	   4.2805	   -‐.57	   -‐.3057	   -‐.4407	   -‐1.12	  
13	   .1967	   .3826	   .88	   -‐.6015	   3.6789	   -‐.89	   -‐.1986	   -‐.6393	   -‐.73	  
14	   -‐.3329	   -‐.0497	   -‐.48	   -‐.0933	   3.5856	   -‐.14	   .0679	   -‐.5714	   .25	  
15	   -‐.0683	   -‐.0186	   -‐.30	   -‐.3152	   3.2704	   -‐.47	   .2457	   -‐.3257	   .90	  
16	   -‐.1230	   -‐.1416	   -‐.55	   -‐.9874	   2.2831	   -‐1.46	   .1807	   -‐.1450	   .66	  
17	   -‐.2518	   -‐.3933	   -‐1.12	   -‐.5374	   1.7456	   -‐.79	   -‐.2403	   -‐.3853	   -‐.88	  
18	   -‐.3072	   -‐.7006	   -‐1.37	   -‐.2724	   1.4732	   -‐.40	   .2325	   -‐.1527	   .85	  
19	   -‐.0582	   -‐.7588	   -‐.26	   1.1060	   2.4891	   1.50	   -‐.2806	   -‐.4333	   -‐1.03	  
20	   .0120	   -‐.7468	   .05	   -‐.2636	   2.2255	   -‐.39	   .0294	   -‐.4039	   .11	  
CAR	   	   	   -.52	   	   	   .52	   	   	   -.23	  
σ 	   	   .2244	   	   	   .6776	   	   	   .2723	  
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C2.	  OB	  Match	  Sample	  
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C3.	  OB	  Standard	  Sample	  
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Appendix	  D:	  Results,	  Sample	  According	  to	  Industry	  Groups	  

Tables	  of	  abnormal	  returns,	  cumulative	  abnormal	  returns	  and	  values	  of	  θ1	  for	  the	  10	  industry	  
group	  samples.	  The	  θ1	  value	  is	  the	  test	  parameter	  for	  the	  null	  hypothesis	  that	  the	  event	  has	  zero	  
effect	  on	  returns	  on	  the	  given	  day.	  The	  one-‐day	  standard	  deviations	  are	  listed	  at	  the	  bottom	  of	  
the	  table.	  
	  
D1.	  Consumer	  Discretionary	  Sample	  
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D2.	  Consumer	  Staples	  Sample	  
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D3.	  Energy	  Sample	  
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D4.	  Financials	  Sample	  
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D5.	  Health	  Care	  Sample	  
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D6.	  Industrials	  Sample	  
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D7.	  Information	  Technology	  Sample	  
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D8.	  Materials	  Sample	  
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D9.	  Telecom	  Sample	  
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D10.	  Utilities	  Sample	  
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Appendix	  E:	  Results,	  Sample	  According	  to	  Time	  Period	  
	  
Tables	  of	  abnormal	  returns,	  cumulative	  abnormal	  returns	  and	  values	  of	  θ1	  for	  the	  four	  annual	  
samples,	  plus	  the	  Q3-‐2008	  to	  Q1-‐2009	  sample.	  The	  θ1	  value	  is	  the	  test	  parameter	  for	  the	  null	  
hypothesis	  that	  the	  event	  has	  zero	  effect	  on	  returns	  on	  the	  given	  day.	  The	  one-‐day	  standard	  
deviations	  are	  listed	  at	  the	  bottom	  of	  the	  table.	  

E1.	  2007	  Sample	  
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E2.	  2008	  Sample	  
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E3.	  2009	  Sample	  
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E4.	  2010	  Sample	  
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E5.	  Q3-2008	  to	  Q1-2009	  Sample	  
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Appendix	  F:	  Sammendrag	  
	  

I denne masteroppgaven studeres resultatkunngjøringer for et utvalg av 117 selskap i det 

norske aksjemarkedet, over tidsperioden 2007 til 2010. Studien tjener som en metode for å 

teste hvor effisient det norske kapitalmarkedet er, med bakgrunn i markedseffisienshypotesen; 

et begrep som har figurert i finanslitteraturen siden 1960-tallet. Begrepet ble først utviklet av 

Eugene Fama (se Fama, 1965, 1970, 1991). Essensen ligger i at markedet fanger opp ny 

informasjon raskt, slik at det ikke er mulig å oppnå risikojustert avkastning utover den som 

oppnås i det brede markedet. Hvis denne hypotesen holder, vil tid og penger benyttet til å lete 

etter informasjon om underprisede aksjer i markedet være bortkastet. En grunn til den brede 

forskning som har blitt nedlagt i hypotesen om effisiente markeder er trolig et ønske om å 

kartlegge hvorvidt fundamental aksjeanalyse gir belønning. Denne studien utføres som et 

eventstudie. En slik studie undersøker en spesifikk hendelse som forventes å gi informasjon til 

markedet, og studerer hvor vidt den fører til unormal avkastning. Studien bekrefter eller 

forkaster nullhypotesen om at hendelsen ikke har betydning for aksjeavkastningen. 

 

Det meste av forskningen innen markedseffisiens kommer fra USA, og hypotesen har blitt 

solid bekreftet, men avvik, eller såkalte ”anomalier”, har også blitt avdekket. Blant annet har 

en vedvarende drift i avkastning i samme retning som resultatoverraskelsen blitt funnet i flere 

studier (for eksempel Ball og Brown, 1968, Brown og Kennelly, 1972, Foster, Olsen og 

Shevlin, 1984, Ball og Bartov, 1996). Denne refereres til som ”the post-earnings-

announcement drift” i litteraturen. Et slikt fenomen står i direkte motsetning til hypotesen om 

effisiente markeder. Det har også i flere studier blitt bevist at en strategi som går ut på å 

utnytte denne driften er lønnsom, se for eksempel Shivakumar (2007), hvilket impliserer at i 

et marked som ikke er informasjonsmessig effisient, kan fundamental analyse gi store 

gevinster.  

 

Det jeg ønsker å undersøke i min masteroppgave, er for det første om resultatkunngjøringer 

har informasjonsmessig verdi. For det andre, ønsker jeg å finne ut hvor raskt markedet er i 

stand til å inkorporere denne informasjonen; med andre ord hvor effisient det er. Til sist leter 

jeg etter tegn på den dokumenterte driften som beskrevet over. Metodemessig deles 

undersøkelsen i to. Den første delen går ut på å estimere markedets forventede resultater (her 

EPS) ved hjelp av en tidsseriemodell, mens den andre delen tar for seg estimeringen av de 

unormale avkastningene som følge av resultatkunngjøringen. Flere studier har dokumentert at 
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kvartalsvise resultattall kan estimeres via tidsseriemodeller (for eksempel Griffin, 1977, og 

Foster, 1977). I denne oppgaven bruker jeg en enkel sesongdifferensiert A.R.(1)-modell med 

drift for å finne et estimat på markedets forventning. Alle de kvartalsvise resultatene deles inn 

i tre grupper: positive resultatoverraskelser (”gode nyheter”), negative overraskelser (”dårlige 

nyheter”) og ingen overraskelse (”ingen nyheter”). Deretter estimeres selskapenes normale 

avkastning i perioden (”vinduet”) rundt resultatkunngjøringen (20 dager før og etter pluss 

dagen for kunngjøringen, totalt 41 dager) ved hjelp av en markedsmodell. Slik er det mulig å 

kartlegge den spesifikke hendelsens betydning for aksjeavkastningene i perioden rundt 

resultatkunngjøring.  

 

Resultatene viser at datoen for resultatkunngjøring fører med seg statistisk signifikant 

unormal avkastning i kategoriene ”gode nyheter” og ”dårlige nyheter”, men ikke i ”ingen 

nyheter”-kategorien, i tråd med hva som bør forventes. Dette tolkes som at 

resultatannonseringer gir informasjonsmessig verdi til aktørene i markedet. Det understrekes 

også at nullhypotesen kan forkastes med bredere margin i kategorien ”dårlige nyheter”. I 

tillegg viser resultatene at den signifikante unormale avkastningen i ”dårlige nyheter”-

gruppen strekker seg videre til dag 1 etter hendelsen. Dette indikerer en viss treghet i 

markedets fullstendige oppfatning av nyhetenes betydning for aksjeverdien. For de ”gode 

nyhetene” fantes signifikant unormal avkastning de to dagene før hendelsen, og negativ 

avkastning dagen etter. En mulig forklaring på det første kan være at informasjon som 

signaliserer økt inntjening lekkes ut til markedet i dagene før resultatet slippes. En mulig 

årsak til at dette fenomenet kun opptrådte i de positive tilfellene, kan være at selskap som er i 

ferd med å slippe dårlige resultat er mer forsiktige med hensyn til å signalisere dette til 

markedet i dagene før resultatet slippes. Den negative avkastningen dagen etter kan muligens 

forklares med en viss overreaksjon på positive resultatoverraskelser, som ”korrigeres” kort tid 

etter den initielle reaksjonen. Helhetlig tyder resultatene på at det norske aksjemarkedet er 

svært effisient, i og med at aksjekursene raskt reflekterer ny informasjon, men som nevnt har 

et par unntak blitt funnet, som indikerer overreaksjon på gode nyheter og underreaksjon på 

dårlige nyheter.  

 

Utvalget av 1872 resultatkunngjøringer ble videre kategorisert etter tre kriterier, for å 

undersøke om enkelte faktorer påvirker resultatene. Denne underkategoriseringen ble utført 

etter 1) handelsfrekvens/likviditet, 2) bransje og 3) tidsperiode. I den første anvendelsen ble 

selskapene gruppert etter kategoriseringen på Oslo Børs: OBX, OB Match og OB Standard; 
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hvorav synkende likviditet. De klareste resultatene syntes i kategorien med de negative 

overraskelsene, der de indikerte at nyheter fanges raskere opp for de mest handlede aksjene, 

noe som gjerne relateres til at disse aksjene er de mest analyserte og overvåkte. I anvendelsen 

hvor aksjene ble gruppert etter de 10 bransjesektorer på Oslo Børs, var det vanskelig å trekke 

noen store konklusjoner, siden enkelte bransjer kun inneholder et par selskap, men 

undersøkelsen viste delvis hvilke bransjer som dro vekten i de signifikante positive og 

negative unormale avkastningene. Til sist, kategoriseringen av resultatkunngjøringene etter 

tidsperiode ble gjort for å avdekke om det er noen forskjeller i resultatannonseringenes 

effekter med hensyn til finanskrisen i 2008. Aksjemarkedet har i perioden 2007 til 2010 vært 

gjennom enorme omveltninger; dermed ville det være interessant å se om effektene av 

resultatoverraskelser endrer seg gjennom ulike makroøkonomiske tilstander. Først ble 

utvalget delt i fire, hver gruppe som ett år. I tillegg ble perioden 3. Kvartal 2008 til 1. Kvartal 

2009 spesielt studert som et eget utvalg. Resultatene indikerer at negative 

resultatoverraskelser fanges raskere opp i ”unormale” markedstider, men da det gjerne er mer 

støy i avkastninger forbundet med finanskriser, blir det vanskelig å dra generelle 

konklusjoner, da estimatene ikke er like sikre som ellers. I tillegg viser 

tidsperiodegrupperingen at de positive unormale avkastningene på kunngjøringsdatoen kun er 

signifikante i 2008, og ikke i verken 2007, 2009 eller 2010. Men igjen, støy i markedet gjør at 

resultatene ikke kan naivt aksepteres som konklusjoner. 

 

Etter denne undersøkelsen, kan jeg i det store og hele konkludere med at det norske 

aksjemarkedet ser ut til å være effisient. Dette er intet overraskende funn, da vi lever i en 

høyteknologisk tid som gjør at informasjon sprer seg raskt og bredt. Grunnen til at enkelte 

avvik fra markedseffisiens har blitt avdekket i studien kan være usikkerhet blant 

markedsaktører om hva den nye informasjonen faktisk betyr for den sanne selskapsverdien, 

noe som gjør at det tar lenger tid å fullstendig inkorporere nyhetene i aksjekursene. Det kan 

også hende at ikke alle investorer har mulighet til å utnytte den nye informasjonen 

umiddelbart, men likevel ser det ut til at informasjon reflekteres relativt rakst i aksjekursene. 

Etter en dag eller to, når uenighet blant aktører løses opp, ser all unormal avkastning ut til å ha 

forsvunnet. Dermed har jeg ikke funnet noen tegn på ”the post-earnings-announcement drift” 

som har blitt dokumentert i mange amerikanske studier. Resultatene peker heller mot at det 

norske aksjemarkedet, til tross for at det er lite i verdenssammenheng, består det av mange 

sofistikerte aktører og selskaper som overvåkes av intelligente analytikere, og dermed har de 

rette grunnpilarene på plass for å være informasjonsmessig effisient.  


