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Abstract  

 

Social interactions play an important role in economic decision making. In this thesis I 

examine the effects of social influence on sickness absence. While I study social interaction 

effects among i) family members, ii) colleagues, and iii) neighbors, the main focus are on 

neighbors.  

 

I use Norwegian data provided by Statistics Norway to analyse if the percentage of one’s 

family members, colleagues, and neighbors on sick leave affects an individual’s likelihood of 

being on sick leave. The results indicate presence of social interaction effects in all three 

groups. The estimated family effect suggests an increased sick leave probability of 0.07 

percent if the percentage of one’s family members on sick leave increases with one percent. 

Individual’s faced with a one percent increase in the percentage of his or her colleagues on 

sick leave, show a 0.28 percent increased probability of receiving sick pay. Finally, the 

estimated neighborhood effect show that a one percent increases in the percentage of 

neighbors on sick leave show an increased sick leave probability of 0.39 percent.  

While I do find support for social interaction effects across all models, I acknowledge the 

methodological challenges related to estimating group effects using the above approach. To 

address one of these challenges, I estimate a neighborhood model that accounts for the so-

called reflection problem. The result from this model is consistent with the simpler model, 

providing further evidence of social influence on individual sickness absence by neighbors. 

Lastly, I estimate a spatial model to assess the impact by nearby geographical neighborhoods 

on sickness absence in a focal neighborhood. The result indicates that the percentage of 

individuals on sick leave in a focal neighborhood is influenced by these neighboring 

neighborhoods. 
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 1. Introduction 

In spite of generally good health and long life expectancy among Norwegians, the costs 

related to sick leave and early retirement in Norway are double that of the OECD country 

average based on GDP (OECD, 2012).  

Identifying the determinants of sickness absence has been highly researched. Economic 

studies mostly focus on economic incentives (e.g., Johansson & Palme, 1996), workplace 

characteristics (e.g., Arai & Thoursie, 2004), and macroeconomic fluctuations (e.g., Arai & 

Thoursie, 2005). While these determinants have been found important to the fluctuations in 

sickness absence, they cannot fully explain differences in patterns of sickness absence across 

and within regions (Bokenblom & Ekblad, 2007). It has also proved difficult to explain the 

observed patterns by benefit rules, socioeconomic factors and general (measurable) health 

conditions (Lindbeck, Palme, & Persson, 2007). Thus, it has been argued that observed 

patterns in sickness absence could be related to social interaction, such as group effects on 

individual behavior (Lindbeck et al., 2007).       

 

Empirical estimation of social interaction effects often rely on estimating how the behavior of 

the individual are affected by the average behavior of the individual’s reference group 

(Bokenblom & Ekblad, 2007). The results from existing studies do indicate that the average 

behavior of the group is often important in explaining individual sickness absence (e.g., 

Bokenblom & Ekblad, 2007; Dale-Olsen, Nilsen, & Schøne, 2010; Lindbeck et al., 2007).  

 

The purpose of this thesis is also to investigate if social interaction effects are important in 

understanding individual sickness absence. I study social interaction effects among i) 

neighbors, ii) family members, and iii) colleagues. First I replicate parts of the study by 

Lindbeck et al. (2007) which examines social interaction effects within neighborhoods. 

Second, I examine family effects, and third I use Dale-Olsen et al.'s (2010) study as a 

benchmark to model the effects of colleagues on sickness absence. Finally, I apply spatial 

econometrics to more closely examine neighborhood effects. Although I examine social 

interaction effects in three different groups, one of which has not previously been examined 

(i.e. family), it will become clear throughout the thesis that the main focus is on social 

interaction effects among neighbors.  
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The data set used in this thesis is obtained from a database called FD-trygd provided by 

Statistics Norway. This database contains detailed records for every Norwegian from 1992 to 

2003. My empirical analysis mostly relies on data from 2003. This sample contains 1,527,533 

workers, living in 13,123 different neighborhoods, working in 14 different industries. The 

data set only reports people that have been on sick pay for more than 16 days. Employers 

cover compensation for shorter durations, and thus are not systematically reported at the 

individual level. The estimates reported in this thesis should thus be interpreted as the 

probability of receiving sick pay above 16 days.  

 

My results show indication of social interaction effects among all the three groups that I 

study. Results obtained from estimating family effects suggest an increased sick leave 

probability of 0.07 percent if the percentage of one’s family members on sick leave increases 

with one percent. Individuals faced with a one percent increase in the percentage of his or her 

colleagues on sick leave, show a 0.28 percent increased probability of receiving sick pay. 

Finally, a one percent increases in the percentage of neighbors on sick leave show an 

increased sick leave probability of 0.39 percent. Moreover, using spatial analysis at the 

neighborhood level, I find that the percentage of individuals on sick leave in nearby 

geographical neighborhoods affects sickness absence in a focal neighborhood.  

There are many well-known methodological challenges related to estimating group effects. I 

control for one of these, the reflection problem, by adopting an approach used by Lindbeck et 

al. (2007), where they examine how immigrants are affected by the sickness absence of 

natives living in the neighborhood where they settle after arriving in Sweden. The estimated 

effect for this model suggest that if the percentage of Norwegians on sick leave in a 

neighborhood increase with one percent, an immigrant’s probability of being on sick leave 

increases with 0.24 percent.  

The reminder of this thesis is organized as follows: In section two existing research into the 

effects of social interaction on sickness absence is reviewed. In section three I present some of 

the concerns that have been raised concerning measuring social interaction effects. In section 

four I provide a review of the sickness benefit system in Norway, and characteristics of the 

Norwegian labor market. This is followed by a presentation of the data set in section five. I 

then move on to present the empirical strategy and results in section six. Finally, I draw 

conclusions based on the findings and discuss their implications in section seven. In the final 

section I also discuss limitations of the current study and directions for further research.  
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2. Existing Literature 

 

According to Dale-Olsen et al. (2010) the importance of social influence and norms for 

absenteeism has been studied in the social psychology and management literatures at least 

since Chadwick-Jones, Nicholson, and Brown (1982) documented the large variance in 

absence across industries, organizations, and intra-organizational units.  

In the economic literature there is a large and growing body of research focusing on the 

importance of social interaction on a wide variety of output variables like; educational choices 

(Lalive & Cattaneo, 2009), labor supply (Grodner & Kniesner, 2006), retirement decisions 

(Duflo & Saez, 2003), and disability behavior (Rege, Telle, & Votruba, 2012).    

This thesis relates directly to the economic literature by focusing on the role of social 

interaction effects on sickness absence. The literature on social interaction effects and 

sickness absence is small but growing. Dale-Olsen et al. (2010) use Norwegian data to 

examine how colleagues affect each other’s work absence. They use two measures of sickness 

absence i) the number of sickness absence spells, and ii) the duration of sickness absence. 

Their preferred estimates suggest that social interaction effects at the workplace do exist, and 

that the effects are noticeable in size. However they also recognize that, even after controlling 

for endogeneity as well as including a large battery of control variables, they cannot draw 

unambiguous conclusions about the exact nature of the relationships they present. E.g., the 

results could still be partly driven by workload caused by absence from other colleagues.  

Rieck, Marshall, and Vaage (2012) investigate whether teachers’ sickness absence is affected 

by the average absence level of fellow teachers, using Norwegian data. They adopt different 

approaches where methodological problems such as the reflection problem and intra-group 

correlation are mitigated. Their results show that the significance of the social interaction 

effects critically depends on their ability to control for unobserved school characteristics. 

 

Bokenblom and Ekblad (2007) use Swedish data to analyse social interaction effects among 

colleagues. They estimate to what extent an individual’s share of sickness absence is 

influenced by the share of sickness absence of the worker’s colleagues. Their results show 

positive and significant peer group effects. Furthermore, their results are robust over different 

model specifications and qualitatively equivalent when different estimations strategies are 

applied. They find that, on average, it takes two to three years for a new employee to adopt 

the pattern of the work group. Lastly, they find evidence of peer effects to be an intra-gender 
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and intra-age group phenomenon which strengthens their belief that the peer effect reflects 

some form of social phenomenon. 

Lindbeck et al. (2007) use Swedish data to analyse if the average level of sickness absence in 

a neighborhood affect individual sickness absence through social interactions. They adopt 

several different approaches to deal with well-known methodological problems. Their results 

are robust in the sense that regardless of approach and identifying assumption, the estimated 

group effects are statistically significant.  

A closely related study to the context that I examine in this thesis, is the recent study 

conducted by Markussen and Røed (2012) on administrative panel data from Norway. They 

use a fixed-effects methodology to examine how social insurance dependency spreads within 

neighborhoods, families, ethnic minorities, and former schoolmates. Their estimated network 

effects are both quantitatively and statistically significant, and rise rapidly with "relational 

closeness" in a way that establishes endogenous social interaction as a central causal 

mechanism. They find no evidence that social interactions cross ethnic borders.  

3. Measuring Social Influence 

As evident from the existing literature, empirical estimation of social interactions often rely 

on estimating how the behavior of the individual is affected by the average behavior of the 

individual’s reference group. There are several methodological challenges related to the 

estimation of group effects using this approach (Lindbeck et al., 2007). In the following I 

review some of these methodological challenges, starting with homophily (or “correlated 

effects”).  

3.1. Homophily 

 “Homophily is the principle that a contact between similar people occurs at a higher rate than 

among dissimilar people” (McPherson, Smith-Lovin, & Cook, 2001, p. 416). Initial studies on 

informal network ties showed substantial homophily in terms of demographic characteristics 

such as age, sex, ethnicity, education, and psychological characteristics often linked to 

demographic characteristics (McPherson et al., 2001). Ever since, researchers have studied 

homophily over a wide range of different relations from marriage and friendships, to 

appearing with someone in a public space (McPherson et al., 2001). Despite some subtle 
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differences, in general the patterns of homophily are remarkably robust (McPherson et al., 

2001).  

Broadly speaking we can identify two theoretically distinct mechanism by which homophily 

arises – choice homophily and induced homophily (Kossinets & Watts, 2009). The former is 

where homophilous ties can be attributed to individual, psychological preferences, and the 

latter emerges as a consequence of the homogeneity of structural opportunities for interaction, 

like at a workplace (Kossinets & Watts, 2009).   

“While geography is the physical substrate on which homophily is built, family connections 

are the biosocial web that connect us to those who are simultaneously similar and different” 

(McPherson et al., 2001, p. 431). While family ties have a somewhat different structure than 

more voluntary and less intense social ties like co-employment or friendship, there are still 

fundamental similarities (McPherson et al., 2001).  

Ties formed among co-workers are generally more heterogeneous in race and religion than 

ties formed elsewhere, and more homogeneous on sex and education. “Employees are 

especially likely to have ties to others who occupy their same job, and occupational sex 

segregation induces strong baseline homophily” (McPherson et al., 2001, p. 434).  Educational 

and occupational homophily has been documented by researchers in a large number of 

societies, although there are some indications that its level varies somewhat from country to 

country (McPherson et al., 2001).  

Because the homophily principle structures network ties of every type, including family, 

work, and neighborhood, the result is that people’s personal networks are homogenous with 

respect to many socio-demographic, behavioral and interpersonal characteristics (McPherson 

et al., 2001).   

Based on the well-documented homophily principle, it’s clear that when studying social 

interactions, it’s important to be cautious when interpreting the results. E.g., if it is found that 

the percentage of people in a neighborhood on sick pay affect individual’s sickness absence, 

this could be due to homophily. It is therefore important to try to control for such effects. 

Aral, Muchnik, and Sundararajan (2009) present a generalized statistical framework for 

distinguishing peer-to-peer influence from homophily in dynamic networks of any size. When 

accounting for homophily and individual characteristics their estimates of influence are 

substantially reduced (Aral et al., 2009).  
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3.2. The Reflection Problem 

Two hypotheses often advanced to explain the common observation that individuals 

belonging to the same group tend to behave similarly, are endogenous and correlated effects 

(Manski, 2003). Endogenous effects refer to the propensity for an individual’s behavior to 

vary with the behavior of the group (e.g., pressure to conform to group norms) .Whereas 

correlated effects is the tendency for people with similar unobserved characteristics to be in 

the same group (homophily), or being exposed to similar local differences (common cause). 

  

Trying to estimate social interactions based on how the behavior of the individual is affected 

by the average behavior of the individual’s reference group, give raise to a simultaneity 

problem. This simultaneity problem is what Manski (1993) defines as the “reflection” 

problem – group behavior affects individual i’s behavior, which in turn, affects the groups 

behavior. That is, we assume that the individual is affected by the average sickness absence of 

the group, but per definition, the average sickness absence under this assumption will then 

also be affected by the sickness absence of that same individual.
1
 Thus, the reflection problem 

hinders the identification of the endogenous from correlated effects (Bramoullé, Djebbari, & 

Fortin, 2009).  

 

Policy implications are the main reason why one is generally concerned about separating 

these two effects. Only endogenous effects have the potential to create so called “social 

multipliers” (Manski, 1993). Social multipliers would, in the context of this thesis, imply that 

if one where able to reduce sickness absence within a specific group, one would not only 

benefit from the specific cases, but also get a positive indirect effect on the rest of the group.  

According to Manski (2003) even innumerable empirical observations of the behavior of 

individuals in groups can’t per se distinguish between these effects. “To draw conclusions 

requires that empirical evidence be combined with sufficiently strong maintained assumptions 

about the nature of individual behavior and social interactions” (Manski, 2003, p. 12). 

Bramoullé et al. (2009) provide new results regarding the identification of peer effect by 

introducing an extended version of the linear-in-means model where interactions are 

structured through a social network. They assume that correlated unobservables are either 

                                                           
1
 This is also the case even when we exclude the individual from the average sickness absence in the group 

before estimating the effect.  
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absent, or treated as network fixed effects, and they provide an easy-to-check necessary and 

sufficient conditions for identification (Bramoullé et al., 2009).  

3.3. Unobserved heterogeneity  

Unlike the other methodological challenges, unobserved heterogeneity is a more general 

concern. It will however become clear that this is a special concern in my thesis, and thus 

addressed here.  

 

Unobserved heterogeneity is a form of omitted variable bias, and refers to omitted variables 

that are fixed for an individual (or at least over a long time period) (Murray, 2006). With 

cross-sectional data, there is no particular reason to differentiate between omitted variables 

that are fixed, and omitted variables that change over time (Murray, 2006). Bias from 

unobserved heterogeneity is particularly important in non-linear regression models, because 

unlike linear regression models, estimated coefficients will be biased even if the unobserved 

heterogeneity is not correlated with the observed independent variables (Holm, Jæger, & 

Pedersen, 2008). When one has panel data, there are number of ways to address this potential 

problem (e.g., random effects). However, when one uses cross-sectional data as in this thesis, 

it’s difficult to deal effectively with potential bias from unobserved heterogeneity because 

there is little information in the data that allows me to identify and correct the potential bias 

(Holm et al., 2008).  

4. Institutional Details 

4.1. The Norwegian Public Sickness Benefit System  

Sickness benefits provide compensation for loss of income for workers who are unable to 

work due to illness or injury. In Norway you are entitled to sick pay from the first day of 

sickness if you are employed, and have been so for the last four weeks. The entitlement is 

limited to a maximum of one year. Workers who are not able to return to work after this 

period are offered rehabilitation and benefits to qualify for other types of work. 

Spells of sickness up till three days is based on self-certification
2
, while longer spells require 

certification by a physician.
3
 Employers compensate workers the first 16 days of sickness 

                                                           
2
 Self-certification may be used for 24 calendar days during a 12-month period.  
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absence. After this period, sick pay is publicly disbursed and administrated by the Norwegian 

labor and welfare administration (NAV).   

The part of the worker’s income that entitles sick pay
4
, have to be at least 50 percent of the 

basic amount to have right to sick pay from NAV.
5
 For most workers the benefit level is set to 

100 percent of previous earnings. Workers with labor income that exceeds six times the basic 

amount are not compensated for income above this threshold, though the majority of 

employers offer top up for these high income workers. For a detailed review of the Norwegian 

public benefit system I refer to chapter eight of Folketrygdloven (1997).  

4.2. Characteristics of the Norwegian Labor Market 

 

The Norwegian labor market is characterized by a high degree of organization, high 

contractual coverage, and a relatively highly coordinated and centralized wage determination 

(NOU 2011:1). In the following I review some other important characteristics of the 

Norwegian labor market.  

4.2.1. Participation in the Labor Market 

Participation in the labor market in Norway is high and among the highest in the OECD-area 

(NOU 2009: 10). The participation is highest among 30- and 40-year olds, and after the age 

62 there is a great departure from the labor market (NOU 2010: 1).    

Labor force participation increased dramatically since the 1970s, largely due to women’s 

entry into the labor market (NOU 2009: 10). The gender differences in labor force 

participation have since been significantly reduced. In 2008 the difference in employment 

rates between women and men was about 6 percentage points, compared to over 30 

percentage points in the early 1970s (NOU 2009: 10). The largest gender gap in terms of 

labor force participation is found in the age group 60-64 (NOU 2009: 10). Here, the 

participation rate is about 12 percentage points higher among men than among women (NOU 

2009: 10). The fact that the differences increase with age reflect both differences in labor 

                                                                                                                                                                                     
3
 If the workplace is part of the “Intergraded working life (IW)”-treaty, workers can use self-certification up to 

eight calendar days. Employers are entitled to allow longer absence period than 3 days without being certified by 

a physician.  
4
 The income base for sick pay is generally the work income he or she received immediately before the disability 

occurred.   
5
 The basic amount is used as the basis for calculating Norwegian social security and pension benefits. By May 

2012, the basic amount was equal to 82,122 NOK.  
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market attachment for different cohorts, and that more women than men leave the workforce 

after aged 50 (NOU 2009: 10).  

Labor force participation increases with education level. People with university or college 

degrees has about 30 percentage points higher employment rates than those with lower 

secondary school as their highest education (NOU 2009: 10). The difference increases with 

age, reflecting that those with low educational level leave the labor market earlier. 

Educational importance is somewhat greater for women than for men. For women the 

difference is 33 percentage points, while the difference is 26 percentage points among men 

(NOU 2009: 10). The increased level of education in recent decades has significantly 

contributed to reduced wage inequality between the genders (NOU 2009: 10). 

4.2.2. Part Time Workers   

A special feature of the Norwegian labor market is the high levels of part-time work. Data 

from the European Working Conditions Survey (EWCS) shows that while 27 percent of 

Norwegian employees report that they work part-time, the general corresponding figures for 

EU were 17 percent (NOU 2010: 1).
6
 Like all the other countries in EU/EEA, women make 

up the largest proportion of part-time workers (NOU 2010: 1). 41 percent of female 

employees in Norway work part-time, compared to 13 percent of male employees (Statistisk 

Sentralbyrå, 2013a). 

4.2.3. Labor Immigration 

Labor immigration to Norway varies from year to year. From 2004 until 2008 there were 

particularly high growths in labor immigration to Norway (NOU 2010: 1). Much of this 

increase was due to the expansion of EU that led to Norway being a part of a labor market 

with 500 million people (NOU 2010: 1). In parallel with the economic downturn in 2008, the 

immigration slowed down (NOU 2010: 1).  

Norway has been a part of a common Nordic labor market since 1954 (NOU 2010: 1). This 

means that immigrants from other Nordic countries do not need a work permit to work in 

Norway, and thus not included in most statistics regarding labor immigration and work 

permits (NOU 2010: 1).  

                                                           
6
 Norway participated in this study in 2000 and 2005 as part of the EEA agreement.  
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4.2.4. Sickness Absence 

As mentioned in the introduction, the direct costs related to sickness absence are very high in 

Norway. This is both a direct result of a generous sickness benefit system as well as high 

absence rates. From 2011 to 2012,
7
 the sickness absence rate increased not only in all counties 

in Norway, but also in all sectors (Statistisk Sentralbyrå, 2013b).
8
 The strongest increase was 

found in local government (Statistisk Sentralbyrå, 2013b). In addition, all industries except 

one faced increased sickness absences rates (Statistisk Sentralbyrå, 2013b).  

The sickness absence rate increased both for men and women in this same period. The rate 

increased from 8.3% to 8.6% for women, whereas there was an increase from 5.0% to 5.2% 

for men (Statistisk Sentralbyrå, 2013b).
9
 The age groups 45-49 and 50-54 had the highest 

increase in sickness absence reported by a physician (Statistisk Sentralbyrå, 2013b). The only 

group facing decreased sickness absence were men in the age 60-64 (Statistisk Sentralbyrå, 

2013b).  

5. Data Set Description  

The data set used in this thesis is obtained from a database called FD-trygd provided by 

Statistics Norway. This database contains detailed records for every Norwegian from 1992 to 

2003, including individual demographic information, socioeconomic data, current 

employment status, and geographic identifiers.  

The data used in this thesis is cross-sectional data covering the time period 2000-2003. Except 

for section 6.5., all analysis relies on data from the last year of which I have observations, 

namely 2003.  

The data set only reports individual’s that have received sick pay longer than 16 days during 

the year. Employers cover compensation for shorter durations, and thus are not systematically 

reported at the individual level. The estimated probability of receiving sick pay reported in 

this thesis is therefore the probability of receiving sick pay above 16 days.  

Even though the data set covers the entire population in Norway, I confine the study to 

workers in the age group 18-64. I exclude any persons identified in FD-trygd as self-

                                                           
7
 Changes reported are one year from the 4

th
 quarter of 2011 to the 4

th 
quarter of 2012.  

8
 Sickness absence rate measures days lost due to own illness as a percentage of scheduled man days. 

9
 The sickness absence rates reported here are not seasonal or flu adjusted.  
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employed, or receivers of disability benefits. I use family, neighborhood and workplace 

identifications to match each individual in the sample to their group of belonging. I exclude 

individuals with less than five colleagues and individuals with more than one workplace. 

Applying these restrictions yields a sample for the 2003 data of 1,527,533 workers, living in 

13,123 different neighborhoods, working in 14 different industries. Appendix 1 provides a list 

of the socioeconomic variables that are included in the models in this thesis, and Table 1 

provides summary statistics of these.  

6. Empirical Strategy and Results 

In this section I start by examining social interaction effects among neighbors. Most models 

were first estimated as linear probability model’s (LPM’s).
10

 As I will discuss there are 

several potentials challenges with this approach. All LPM’s were thus subsequently estimated 

using logit regressions. I then compare all models represented thus far over time, to see if the 

results are consistent over time. Next I examine whether there is indications of social 

interaction effects among family members, before examining social interaction effects among 

colleagues. The section ends with a spatial analysis, to more closely examine neighborhood 

effects.  

6.1. A First Look at the Data 

To study neighborhood effects I use basic statistical units (grunnkrets) as the geographic unit 

of analysis. In Norway there are about 14,000 basic statistical units, which provide stable, 

coherent and generally homogeneous geographical units (Statistisk Sentralbyrå, 1999). In the 

following these will be referred to as “neighborhoods”.  

To assess local variation in sickness absence, I first examined the percentage of individuals 

that received sick pay across neighborhoods in 2003.  Let inS  be the binary variable measuring 

if individual i living in neighborhood n received sick pay during the year (1 = received sick 

pay), nS the average percentage of people that received sick pay in that neighborhood, and nS

the average of nS . The average percentage of people receiving sick pay across neighborhoods 

                                                           
10

  A LPM is an ordinary least squares (OLS) regression with a binary dependent variable. 
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in the sample nS  is 20.97%, while the standard deviation of nS is 5.54%.
11

 In the following, I 

will try to explain this variation.    

I started with the following LPM to examine if the local variation simply reflects observable 

socioeconomic factors: 

ininin XS   ,                                                                                                                 (1) 

where X represents three types of socioeconomic variables: individual characteristics, 

characteristics of the individual’s workplace, and neighborhood characteristics, as described 

in Appendix 1.
12

  The socioeconomic variables explain very little of the local variation in 

sickness absence, with R
2 

= 0.0429. Table 2 shows the estimated model.  

To examine how much of the variation in the percentage of people on sick pay across 

neighborhoods that can be explained by X, I used the following generalized linear model 

(GLM):  

nnn XS   .                                                                                                                 (1’) 

According to Papke and Wooldridge (1996) the GLM method is better than running a linear 

model on the logit-transformed dependent variable. It takes into account that one cannot do 

logit transformation of zeroes and ones, which would lead to missing values. Moreover GLM 

takes into account that the error terms have non constant variance (heteroscedasticity). 

To estimate this model, the measures of the socioeconomic variables represented by X were 

changed to average neighborhood levels, reducing the number of observations from 1,527,533 

to 13,123. The socioeconomic variables have relatively high explanatory power on the 

variation of average percentage of people on sick pay across neighborhoods. While the 

standard deviation of nS  for this “sample” is 8.61%, the standard deviation of the estimated 

dependent variable nS
ˆ  has dropped to 3.23% after controlling for the average socioeconomic 

                                                           
11

 The percentage of people receiving sick pay inS  in the 2003 sample as a whole is 20.98%.  
12

 Note that the municipality specific variables listed in Appendix 1 are not included in X. I have not included 

income. The reason is that reported income is affected by the individual’s sickness absence. Including income 

among the explanatory variables would have given rise to a bias in the estimates. Several of my explanatory 

variables are, however, correlated with income – for instance, age, education, and industry.   
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variables represented by X . Nevertheless, there is still variation in sickness absence across 

neighborhoods left to be explained. See Table 2 for the model results.  

Next I estimated a mixed-effect model to see if the remaining variation (the average residuals

n ), are systematic rather than random. Specifically, I included random neighborhood-

specific intercepts n :  

.inninin XS                                                                                                          (1’’)  

The reported likelihood-ratio test confirms that this random-intercept model offers significant 

improvement over LPM (1) with fixed effects only (p = 0.0000), indicating that there are 

systematic neighborhood effects. Table 2 shows the estimated model.  

6.2. Measuring the Effect of Social Interactions in Neighborhoods 

As discussed earlier, the main aim of the thesis is to investigate if local variations across 

neighborhoods reflect “group” effects on individual’s probability of sickness absence. I adopt 

the well-used approach to examine group effects by including the percentage of individuals 

that received sick pay in a neighborhood
13

, and estimate its effect in the following model:
 14

   

.inninin SXS                                                                                                          (2) 

As mentioned in section three, there are several methodological challenges related to the 

estimation of group effects using this approach. When I nevertheless ran the LPM (2), I 

obtained the estimate ̂ = 0.3996, which is significant at the one-percent level, as seen in 

Table 2.
15

 The model has marginally higher explanatory power than LPM (1) (adjusted R
2
 = 

0.0457), suggesting presence of neighborhood effects. 

6.2.1. Self-categorization and Social Influence  

Festinger's (1954) social comparison theory postulates that humans have a drive to evaluate 

their opinions and abilities. The center of his theory is the “similarity hypothesis”, which 

                                                           
13

 All percentage variables included in the models in this thesis are actually proportions, because these variables 

are not multiplied by 100.  
14

 Individual i’s is excluded from the neighborhood percentage. The variables for average age for each 

neighborhood and workplace also exclude individuals i’s effect on the averages.  
15

 To see if this high estimate was mostly affected by the small neighborhoods in my data, I ran this same model 

for those neighborhoods that has at least 10 inhabitants. I was able to reject this hypothesis.  
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predicts that individuals prefer to compare themselves with similar others. According to 

Turner (1985) it is those who are regarded as members of the same category or group as 

oneself who exert influence. Hence, social influence results from a process of self-

categorization whereby the person perceives him- or herself as a group member possessing 

the same characteristics as other group members (Abrams, Wetherell, Cochrane, Hogg, & 

Turner, 1990). Abrams et al. (1990) conducted three experiments relating self-categorization 

and social influence. The subjects for the two first experiments were undergraduates who 

were enrolled in introductory psychology at the University of Dundee and participated as a 

course requirement. Subjects in the third experiment were high school student in the ages 16-

17. The results from the three experiments suggested that self-categorization can be a crucial 

determining factor in social influence, and that the extent of normative influence may largely 

depend on whether the source of influence is regarded as a member of one’s category 

(Abrams et al., 1990).      

 

If we believe in the estimate from LPM (2) and give our trust in these theories and findings, 

we would expect to see a higher estimate for the parameter of interest if we were to run this 

model for more similar people. The hypothesis being that more similar people have higher 

influential power on each other. When I ran LPM (2) separate for women, the results were as 

predicted: the estimated coefficient increased to F̂  = 0.4497, which is significant at the one-

percent level. However, I can’t exclude that this higher estimate is merely a result of 

homophily, rather than a result of higher influence. To see if similar patterns exists for males, 

I also ran model (2) separate for men. The result showed just the opposite of what I found for 

women: the estimated coefficient decreased to M̂  = 0.3451.  

 

The models I have looked at thus far give an indication that social interaction effects are 

present among neighbors. In the following section I will try to quantify group effects by 

adopting an approach used by Lindbeck et al. (2007) for dealing with the reflection problem. 

6.3. Immigrants  

To examine whether immigrants are affected by the absence behavior in the neighborhood 

where they settle down after arriving Norway, I used the following model: 

in

na

n
im

in

im

in SXS   .                                                                                                   (3) 
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Here, im

inS  is the binary variable measuring if immigrant i living in neighborhood n received 

sick pay during the year, and 
na

nS  is the percentage of native Norwegians that received sick 

pay in that neighborhood. Since the absence variable on the left-hand side refers to a different 

group of people than the absence variable on the right-hand side, there is no reflection 

problem in this case (Lindbeck et al., 2007). The identifying assumption is that there is no 

tendency among immigrants with a high propensity for sickness absence to settle down in 

neighborhoods where the absence rates among natives are particularly high (“reverse 

causation”) (Lindbeck et al., 2007).  

 

A limitation that I face with this model is that I don’t know when these “immigrants” moved 

to Norway. I only know that they came from abroad the last time they moved. There is thus a 

possibility that some “immigrants” have actually lived in the neighborhood longer than some 

of the “natives”.  

 

Since I want to study the influence of natives on immigrants, the analysis is confined to 

neighborhoods where the fraction of immigrants is less than 30 percent of total inhabitants.
16

 

The number of observations was drastically reduced to 37,673 as a result of missing data, the 

restriction I made, and the natural fact that most people living in Norway are not immigrants.  

 

As shown in Table 2, I obtained the estimate ̂ = 0.2355 which is significant at one percent 

level. There is however a possibility that this result depend on selection rather than on social 

interaction, thereby violating the basic assumption (Lindbeck et al., 2007). Like Lindbeck et 

al. (2007) I cannot rule out the possibility for some indirect mechanism by which immigrants 

with a strong propensity to call in sick, by self-selection would wind up in neighborhoods 

with many Norwegians having the same propensity. If this is the case, this may create a 

selection bias in the regression. While Lindbeck et al. (2007) were able to address this 

problem by focusing on recent immigrants, I’m not able to do this because of the limitation of 

my data. They found that the longer an individual has been in Sweden, the higher is the 

estimated social interaction effect. This could be interpreted in at least two ways: 1) 

immigrants take time to observe and adjust their behavior to the behavior of native Swedes, 

                                                           
16

 To see if the estimate was mostly affected by neighborhoods with larger proportions of immigrants, I ran the 

same model for those neighborhoods that have less than, or equal to 20 and 10 percent immigrants. I was able to 

reject this hypothesis.  
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and 2) the longer an immigrant has been in Sweden the more likely is self-selection bias 

(Lindbeck et al., 2007).    

6.4. Logit  

Most of the models this far were estimated using OLS. As mentioned, there are several 

potentials challenges with this approach. Unless the probability of receiving sick pay is the 

same for all individuals, the variances of the error terms will not be the same across cases, 

leading to heteroscedasticity (Aldrich & Nelson, 1984).
17

 Another potential problem arises 

from the fact that residuals are only free to take on two possible values; therefore they can’t 

be normally distributed (Aldrich & Nelson, 1984). These two problems suggest that the 

estimated standard errors will be wrong. Also, the predicted value of the dependent variable is 

free to vary between negative infinity and positive infinity, whereas probabilities only can 

range between zero and one. Thus the OLS assumption of linearity is highly unreasonable 

when dealing with a binary dependent variable (Aldrich & Nelson, 1984).  

Breusch-Pagan (BP) tests indicate that there is a significant degree of heteroscedasticity, and 

kernel density estimations (KDE) confirms that the residuals are not normally distributed. In 

the following I report the findings from the estimated logit regressions of the former estimated 

LPM’s. In addition to the estimated coefficients of interest, I also report mean marginal 

effects implied by the logit models and give interpretations of these.
18

  

6.4.1. Logit Model (1) 

A likelihood ratio (LR) test shows that the model fits the data better than an intercept-only 

model (P = 0.0000).  The linear predicted value from a “link test” in the statistical package 

Stata is statistically significant, indicating that the model is not completely misspecified. 

However since the link test is also significant, this usually means that I have either omitted 

relevant variable(s), or that the link function is not correctly specified. In addition, a Hosmer 

and Lemeshow's goodness-of-fit test indicates that the model fits the data poorly. Table 3 

gives the estimated logit model (1).  

                                                           
17

 All linear probability models were also estimated using heteroscedasticity consistent or “White” standard 

errors. The statistical significance of the estimates and the estimated coefficients of these regressions did not 

differ from the standard OLS estimates. 
18

 The mean marginal effects were obtained from post-estimation commands in Stata.   
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6.4.2. Logit Model (1’’) 

Judging both by the likelihood-ratio test comparing this model to an ordinary logit regression 

(P= 0.0000), and by the standard deviation of random intercepts (0.2004) being more than 62 

times its standard error (0.0032), the random intercepts in the output exhibits significant 

variation. This model offers thus a significant improvement over logit model (1), as shown in 

Table 3.   

6.4.3. Logit Model (2) 

A LR test shows that the model fits the data better than model (1) (P = 0.0000). As seen from 

Table 3, I obtained the estimate ̂ = 2.4682, which is significant at the one-percent level. The 

mean marginal effect for this coefficient is 0.3899, also seen in Table 3. This mean marginal 

effect suggest that if the percentage of individuals on sick leave in one’s neighborhood 

increase by one percent, the individual probability for sick leave increases with 0.39 percent.
19

 

As mentioned earlier however, I view this estimate mostly as an indication.  

When I ran model (2) separate for men and women, the result was unexpected: the estimated 

effect for females decreased to F̂  = 2.3756, whereas the estimated effect for males increased 

to M̂  = 2.4947, both significant at the one-percent level. However, the mean marginal effect 

for these estimated coefficients were 0.4427 and 0.3275 respectively. Thus, the direction of 

these estimates is consistent with the prior results.   

6.4.4. Logit Model (3)  

As shown in Table 3, I obtained the estimate ̂ = 1.5561 for logit model (3), which is 

significant at one percent level. The mean marginal effect (0.22196) suggest that if the 

percentage of Norwegians on sick leave in an immigrant’s neighborhood increases with one 

percent, this immigrant’s probability for sick leave increases with 0.24 percent. I consider this 

effect to be moderately large.  

Thus far the aim has been to analyse social interaction affects among neighbors. Results from 

the estimated models are consistent, and indicate the presence of social interaction effects. 

                                                           
19

 Mean marginal effects show change in percentage points. However, since the average absence variable on the 

right-hand side only marginally differs from the absence variable on the left-hand side, the calculated change in 

percentages for this model is equal to the change in percentage points (when rounded to two digits). Any models 

where I report a percentage change that is equal to the mean marginal effect, rest on the same explanation.  
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Moreover, model (3) which seek to quantify the social interaction effect show a moderately 

large effect. However, for reasons mentioned in section three I can’t establish endogenous 

social interaction effects as a central causal mechanism. In the next section I compare the 

models presented thus far over time. I then move on to study family effects before examining 

social interaction effects among colleagues. I finish my empirical analyse by furtherer 

examining neighborhood effects in a spatial context.  

6.5. Comparing the Models across Time 

Optimally I would want to estimate all the models using panel data. However, due to 

constraints, I had to do the analyses using cross-sectional data from 2003. Thus, I wanted to 

see if there were noteworthy differences between the years 2000-2003.The data and the 

variables are created the same way for all years. Table 4 reports some key comparisons of the 

models I have presented thus far. As seen from the table, although there is variation in the 

magnitude of the estimates, they are reassuringly close.  

In terms of statistical significance there is only one noteworthy difference. The estimated 

coefficient ̂  for model (3) is statistically significant only at a five percent level for the year 

2000, compared to one-percent level for the remaining years. What’s also interestingly is that 

the results from estimating model (2) separate for men and women, are the same across all 

years.
20

 I’m thus able to conclude that the findings I have reported thus far are not restricted to 

the year 2003.  

6.6. Measuring the Effect of Social Interactions in Families 

To see if I could find any indications of social interaction effects among family members, I 

used the following model: 

iffifif SXS   ,                                                                                                      (4) 

where ifS  is the binary variable measuring if individual i belonging to family f received sick 

pay in 2003, and fS is the percentage of individual i’s family on sick leave. Besides this, the 

model specification is identical to model (2).
21

 As seen from Table 5, I obtained the estimates 

                                                           
20

 Although not reported in Table 4, mean marginal effects were estimated all years to confirm this.  
21

 Individual i was excluded from the absence rate.  
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̂ = 0.0730, and ̂ = 0.4636 for LPM (4), and logit model (4) respectively. Both estimates are 

significant at the one-percent level. Also as seen in Table 5, the mean marginal effect is 

0.0693, suggesting an increased probability for sick leave of 0.07 percent if the percentage on 

sick leave in one’s family increases with one percent.   

There is thus indication of social interaction effects among family members. It’s worth 

mentioning that the estimated percentage change is smaller than the one estimated for logit 

model (2). Also note that the number of observations for this model is smaller than for model 

(2), because those individuals without family members were excluded from the regression.  

6.7. Measuring the Effect of Social Interactions at Workplace 

Next I wanted to analyse social interaction effects on sickness absence at the workplace. Here 

I used model (1) from Dale-Olsen et al.’s study (2010) as a benchmark. My model 

specification is as followed: 

iwwjwiwiw SZZS   4321 ,                                                                                  (5) 

where iwS  is the binary variable measuring if individual i working at workplace w received 

sick pay in 2003, iwZ  represents three types of socioeconomic variables; individual 

characteristics, characteristics of the individual’s workplace, and characteristics of the 

municipality where the workplace is located
22

, as described in Appendix 1.
23

 jwZ represents 

the individual specific characteristics reported in Appendix 1 of individual i’s average 

colleague j. wS is a measure of the percentage of i’s colleagues on sick pay during the year.
24

  

As shown in Table 6, for LPM (5) I obtained the estimate 4̂ = 0.2968 which is significant at 

the one-percent level. Running logit model (5) I obtained the estimate 4̂  = 1.8139, also 

significant at a one-percent level. The mean marginal effect is 0.2848. If the percentage of 

one’s colleagues on sick leave increases with one percent, it suggests an increased probability 

of 0.28 percent for receiving sick pay. Thus, I find indications of social interaction effects 

among colleagues. Note that the number of observations for this model is smaller than for the 

previous models because of missing data on where the workplace is located.  

                                                           
22

 I don’t have data for in which basic statistical unit the workplace is located, only the municipality. 
23

 Note that the neighborhood specific variables listed in Appendix 1 are not included in Z.  
24

 Individual i was excluded from the absence rate. 
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6.8. Spatial Analysis 

Thus far the focus has been on how individuals belonging in groups affect each other’s 

sickness absence behavior. In the following I introduce spatial econometrics to more closely 

examine neighborhood effects. Specifically I look at how nearby geographical areas affect the 

sickness absence of inhabitants in a focal neighborhood.   

6.8.1 Operationalization of the Weight Matrix  

The influence structure in a network is represented by a weight matrix, where each row 

displays the influence on an actor and the column displays the influence exerted by this actor 

(Leenders, 2002). With regard to operationalization of the weight matrix, two components 

play a role: the choice for an operationalization of nearest, and the choice for a particular 

normalization (Leenders, 2002). The former defines who constitutes the actor’s frame of 

reference, and the latter determines how social influence is allocated among these influencers 

(Leenders, 2002).  

In this thesis the bordering basic statistical units of neighborhood n (the first-order neighbors) 

are defined as the influencers, and those that do not border the neighborhood are assumed to 

have no influence. The weight matrix constructed is row normalized. This entails that if 

neighborhood n has three first-order neighbors, each of these influencers will have weight 1/3. 

I therefore assume that all first-order neighbors exert the same amount of influence on that 

particular neighborhood. A neighborhood with only one first-order neighbor will be fully 

influenced by this one neighbor (weight one).  

6.8.2. Model Specification  

Spatial regression models assume that individuals, or more generally units of analysis (in this 

case basic statistical units) can be located in a space (Bradlow et al., 2005). Typically, actions 

by individuals are assumed to be correlated in such a manner that individuals near one another 

in space generate similar outcomes (Bradlow et al., 2005). Using ordinary least squares to 

analyse this type of sample data has been found to produce residuals that vary systematically 

over space, a phenomenon known as spatial autocorrelation (LeSage, 2000).  

The spatial model is specified to include spatial lags of the dependent variable, of the 

explanatory variables, or spatial lags to reflect dependence in the disturbance process. 

Inclusion of one type of spatial lag does not mutually exclude another, and it is possible to 
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include all three types of spatial lag in one model. In the context of sickness absence, I 

assume that spatial spillovers emerge through the dependent variable. In other words, I 

assume that one’s sickness absence directly depend on the sickness absence in one’s 

neighboring neighborhoods. Thus, I include spatial lag of the dependent variable in the spatial 

model, which gives me the spatial simultaneous autoregressive (SAR) lag model.   

6.8.3. Measuring Spatial Effects at Neighborhood Level  

To examine how first-order neighbors affect the average sickness absence in neighborhood n, 

I ran a maximum likelihood estimation of the following SAR lag model:
25

 

nnenn SWXS  
log

,                                                                                               (6) 

where W is the weight matrix, and ne denotes first-order neighbors. The dependent variable is 

here logit-transformed, hence the subscription log.
 26

 The mean continuous age variables were 

here scaled to fit the magnitude of the other variables.
27

 All other variables are the same as in 

model (1’). Because I didn’t have available information about the first-order-neighbors for 

some neighborhoods, these neighborhoods were excluded from the regression. The number of 

observations is thus smaller than for model (1’).  

As seen from Table 7, I was able to find a positive and highly significant neighboring 

neighborhood effect ( ̂ = 0.05348) which reflects the clear spatial pattern that is exhibited in 

Figure 1.
28

 The odds ratio for this estimate is 1.0549
29

, and the corresponding percentage 

change in odds ratio is 5.49. This shows that the odds will increase with 5.49% if the 

percentage of first-order neighbors on sick leave increases with one percentage point. For this 

model specification odds represent the percentage of individuals on sick leave, divided by the 

percentage of individuals who are not on sick leave. Thus, there is indication that the 

percentage of individuals on sick leave in a focal neighborhood is affected by the percentage 

sickness absence in first-order neighborhoods. 

                                                           
25

 Models (1) to model (5) were estimated using the statistical package Stata. The spatial analysis was however 

estimated using the statistical package R.  
26

 Prior to the logit-transformation, I manipulated observations that took the values zero or one, for the reasons 

mentioned in section 6.1. The observations were changed to 0.01 and 0.99 respectively.  
27

 Mean age, mean age squared, and mean age quadratic, were divided by 100, 1,000, and 10,000 respectively.  
28

 This map was created based on the 1,527,533 individuals living in 13,123 different neighborhoods in the 2003 

sample.   
29

 The odds ratio is calculated as e
0.05348

, and the percentage change in odds ratio is calculated as [(e
0.05348*100

) – 

(e
0.05348*99

)/ (e
0.05348*99

)]*100. This change is constant for all adjacent pairs of values. 
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7. Conclusions and Discussions    

In this thesis I investigated whether social influence play a role in explaining observed 

patterns in sickness absence in Norway. Although I examine social interaction effects among 

family members, colleagues and neighbors, the main focus is on the latter. The results show a 

consistent indication of social interaction effects for all three groups.  

Due to the methodological challenges discussed in this thesis, one should be cautious before 

claiming the presence of endogenous social interaction effects. Logit model (3), where the 

reflection-problem is controlled for, is one attempt to more carefully assess social interaction 

effects among neighbors. The estimated effect suggest that if the percentage of Norwegians 

on sick leave in a neighborhood increase with one percent, an immigrant’s probability for sick 

leave (above 16 days) increases with 0.24 percent. In addition, the spatial analysis conducted 

at the neighborhood level indicates that the percentage of individuals on sick leave in nearby 

geographical areas affects sickness absence in a focal neighborhood.  

In addition to the methodological challenges discusses in this thesis, it is worth mentioning a 

key assumption made about the groups that I study. This assumption is that group members 

(as defined in this thesis) have social contact. For families this is likely to be a fairly realistic 

assumption. However for colleagues and neighbors the assumption is fairly strict. That being 

said, a particular strength of the data set used in this thesis is the detailed geographical data. 

Compared to using municipality (e.g., Bokenblom & Ekblad, 2007) which are far coarser 

geographical regions, basic statistical units in Norway were subdivided to give general and 

stable geographical units more suitable for statistics within smaller geographic areas 

(Byfuglien & Langen, 1983). One could argue that a natural assumption would be that the 

finer the division into “neighborhoods”, the more likely one is to capture those neighbors who 

interact. On the other hand, Christakis and Fowler (2012) have found evidence form different 

health behavior studies indicating that a friend who lives hundreds of miles away appears to 

have a similar effect as a friend who live next door, and thus that social distance appears to 

matter much more than physical distance. Not knowing the exact relationship other than 

assuming that there is some sort of interaction between colleagues, neighbors, and family 

members, this highlights the importance of network data to identify endogenous social 

interaction effects. In recent years there have been real progress in obtaining unbiased 

estimates of group effects using field experiments over social networks (e.g., Aral & Walker, 
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2011a; Castillo & Carter, 2003; Nickerson, 2008). A promising strategy for understanding the 

dynamics of social influence at scale are randomized trials (Aral & Walker, 2011b).  

The analysis in this thesis was conducted on cross-sectional data. As we know, there are 

however many advantages by applying panel data, one of them being able to control for 

unobserved heterogeneity. The spatial analysis in this thesis was only conducted at 

neighborhood level, as a result of computationally challenges. Besides the needs for network 

data and field experiments, applying panel data, and bringing the spatial analysis down to 

individual level, could provide new and interesting insights in explaining observed patterns in 

sickness absence.   
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                           Table 1. Summary statistics of socioeconomic variables 

Obs. Mean Std.Dev. Min Max

Age 1,527,553 40.1330 11.6846 18 64

Age squared 1,527,553 1,747.19 952.6874 324 4,096

Age quadratic 1,527,553 81,131.67 62,608.09 5,832 262,144

Education level 1 1,527,553 0.0295 0.1693 0 1

Education level 2 1,527,553 0.3094 0.4622 0 1

Education level 3 1,527,553 0.4238 0.4942 0 1

Education level 4 1,527,553 0.2373 0.4254 0 1

Female 1,527,553 0.4789 0.4996 0 1

Not married 1,527,553 0.3788 0.4851 0 1

Married 1,527,553 0.5018 0.4999 0 1

Divorced/separated 1,527,553 0.1090 0.3117 0 1

Widowed 1,527,553 0.0104 0.1016 0 1

Has children aged 11 or younger 1,527,533 0.3056 0.4607 0 1

Born in Norway 1,527,533 0.936 0.2448 0 1

Industry type 1 1,527,533 0.0073 0.0853 0 1

Industry type 2 1,527,533 0.0191 0.1371 0 1

Industry type 3 1,527,533 0.1371 0.3440 0 1

Industry type 4 1,527,533 0.0088 0.0934 0 1

Industry type 5 1,527,533 0.0630 0.243 0 1

Industry type 6 1,527,533 0.1399 0.3469 0 1

Industry type 7 1,527,533 0.0277 0.1642 0 1

Industry type 8 1,527,533 0.073 0.2601 0 1

Industry type 9 1,527,533 0.0256 0.1576 0 1

Industry type 10 1,527,533 0.0915 0.2883 0 1

Industry type 11 1,527,533 0.0808 0.2883 0 1

Industry type 12 1,527,533 0.099 0.2986 0 1

Industry type 13 1,527,533 0.1965 0.3973 0 1

Industry type 14 1,527,533 0.0307 0.1726 0 1

Number of employees 1 1,527,533 0.3376 0.4729 0 1

Number of employees 2 1,527,533 0.1728 0.3780 0 1

Number of employees 3 1,527,533 0.1532 0.3601 0 1

Number of employees 4 1,527,533 0.2225 0.416 0 1

Number of employees 5 1,527,533 0.1139 0.3178 0 1

Average age at workplace 1,527,533 40.1330 5.7768 18 62.5

Densely populated neighborhood 1,527,533 0.8036 0.3973 0 1

Average age in neighborhood 1,527,533 40.1332 2.3534 18 64

Average age in municipality 1,527,420 40.1333 0.9869 35.7 49.3
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Table 2. Neighborhood effects: linear probability models 1 - 3

               Model (1)                Model (1'')                Model (2)                Model (3)

Adjusted R-squared 0.0429 0.0457 0.0535

Coefficients  Std. Err. Coefficients  Std. Err. Coefficients  Std. Err. Coefficients  Std. Err.

Explanatory variables

Age 0.07063***  0.00098 0.07009***  0.001 0.06984***  0.00098  0.07341***  0.00612

Age squared -0.00168***  0.00003 -0.00166***  0.00003 -0.00166***  0.00003 -0.00175***  0.00016

Age quadratic 0.00001***  2.05e-07 0.00001***  2.06e-07 0.00001***  2.04e-07 0.00001***  1.31e-06

Education level 1 0.07721***  0.00208 0.07391***  0.00208 0.07344***  0.00208 0.06055***  0.00657

Education level 2 0.10141***  0.00099 0.09494***  0.00101 0.0946***  0.00099 0.10887***  0.00605

Education level 3 0.0452***  0.00091 0.04112***  0.00092 0.04106***  0.00091 0.04405***  0.00521

Female 0.08416***  0.00073 0.08516***  0.00073 0.08509***  0.00073 0.08320***  0.00432

Not married -0.06710***  0.00331 -0.06711***  0.00331 -0.06689***  0.00331 -0.10938***  0.02507

Married -0.06671***  0.00322 -0.06541***  0.00322 -0.06531***  0.00322 -0.08587***  0.02469

Divorced/separated 0.00301  0.00333 0.00223  0.00333 0.00218  0.00333 -0.03456  0.02524

Has children aged 11 or younger 0.0258***  0.00083 0.02467***  0.00084 0.02451***  0.00083 0.02713***  0.00471

Born in Norway -0.02142***  0.00137 -0.02067***  0.00138 -0.02086***  0.00137 -0.04147***  0.00418

Industry type 1 0.03246***  0.00433 0.03114***  0.00434 0.03076***  0.00432 0.04112  0.03133

Industry type 2 0.01033***  0.00311 0.01614***  0.00314 0.01363***  0.00311 -0.03349*  0.0181

Industry type 3 0.05347***  0.00223 0.04986***  0.00224 0.04909***  0.00223 0.02720*  0.01534

Industry type 4 0.02693***  0.00400 0.02330***  0.00401 0.02376***  0.00399 -0.00278  0.03763

Industry type 5 0.07879***  0.00246 0.07431***  0.00246 0.07402***  0.00246 0.05534***  0.01805

Industry type 6 0.01729***  0.00228 0.01465***  0.00228 0.01454***  0.00228 -0.01013  0.01577

Industry type 7 0.03409***  0.00293 0.03134***  0.00293 0.03165***  0.00292 0.03454**  0.01697 

Industry type 8 0.07209***  0.00237 0.06881***  0.00237 0.06866***  0.00237 0.04915***  0.0161

Industry type 10 0.01219***  0.00232 0.01161***  0.00232 0.0116***  0.00232 0.00671  0.01517

Industry type 11 0.02678***  0.00232 0.02305***  0.00233 0.02313***  0.00232 0.00647  0.01649

Industry type 12 0.05492***  0.00232 0.04994***  0.00232 0.05016***  0.00232 0.01269  0.01544

Industry type 13 0.09932***  0.00218 0.09379***  0.00218 0.09355***  0.00217 0.04952***  0.01487

Industry type 14 0.03745***  0.00276 0.03683***  0.00276 0.03665***  0.00275 0.02138  0.01749

Number of employees 1 0.00806***  0.0012 0.00430***  0.00121 0.00408***  0.0012 0.01292*  0.00677 

Number of employees 2 0.02237***  0.00129 0.01930***  0.0013 0.01893***  0.00129 0.02716***  0.00734

Number of employees 3 0.02409***  0.0013 0.0214***  0.00131 0.02101***  0.0013 0.03282***  0.00727

Number of employees 4 0.0226***  0.0012 0.02062***  0.00120 0.02040***  0.0012 0.01933***  0.00647

Average age at workplace -0.00147***  0.00007 -0.00161***  0.00007 -0.00161***  0.00007 -0.00227***  0.00043

Densely populated neighborhood -0.01085***  0.00083 -0.00874***  0.00099 -0.00482***  0.00084 0.00114  0.00723  

Average age in neighborhood -0.00087***  0.00014 -0.00087***  0.0002 -0.00114***  0.00014 -0.00288***  0.00077

Random-effects Parameter 0.03187  0.00051

Percentage on sick leave in neighborhood 0.39959***  0.00593

Percentage of natives on sick leave 0.23550***  0.02932

Constant -0.73601***  0.01454 -0.7146***  0.01558 -0.78896***  0.01454 -0.68250***  0.09036

N 1,527,553 1,527,553 1,527,553 37,673

 Note: The dependent variable for each model is the binary variable for if the individual has been on sick leave or not during the year. 

 * Significant at 10%, ** significant at 5%, *** significant at 1%
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Table 3. Neighborhood effects: logit models 1 - 3

               Model (1)                Model (1'')                Model (2)                Model (3)

Pseudo R-squared 0.0423 0.0451 0.0582

Coefficients  Std. Err. Coefficients  Std. Err. Coefficients  Std. Err. Coefficients  Std. Err.

Explanatory variables

Age 0.49474***  0.00672 0.49479***  0.00678 0.49124***  0.00673 0.57168***  0.0473

Age squared -0.01159***  0.00017 -0.0116***  0.00017 -0.01151***  0.00017 -0.01356***  0.0012

Age quadratic 0.00009***  1.35e-06 0.00009***  1.36e-06 0.00009***  1.35e-06 0.00011***  9.70e-06

Education level 1 0.47429***  0.01248 0.45589***  0.01259 0.45106***  0.01252 0.42861***  0.04558

Education level 2 0.6047***  0.00627 0.56854***  0.00639 0.56543***  0.00631 0.70054***  0.04098

Education level 3 0.28854***  0.00599 0.26589***  0.00607 0.26517***  0.00601 0.32352***  0.03807

Female 0.53943***  0.0047 0.54987***  0.00473 0.54731***  0.00471 0.59372***  0.03097

Not married -0.31884***  0.01828 -0.32124***  0.01841 -0.31915***  0.01832 -0.59746***  0.14800

Married -0.31776***  0.01765 -0.31166***  0.01776 -0.30975***  0.01768 -0.43413***  0.14474

Divorced/separated 0.05866***  0.01825 0.05437***  0.01837 0.05368***  0.01829 -0.13379  0.14798

Has children aged 11 or younger 0.15755***  0.00526 0.15129***  0.00532 0.15026***  0.00527 0.18227***  0.03254

Born in Norway -0.13271***  0.00832 -0.1297***  0.00849 -0.12958***  0.00834 -0.2941***  0.02945

Industry type 1 0.23903***  0.02908 0.23104***  0.02930 0.22691***  0.02914 0.31808  0.21719

Industry type 2 0.05004**  0.02222 0.09103***  0.0225 0.07447***  0.02224 -0.45495***  0.16265

Industry type 3 0.38311***  0.01521 0.36320***  0.01535 0.35781***  0.01523 0.25536**  0.12173

Industry type 4 0.1911***  0.02753 0.17005***  0.02771 0.17264***  0.02757 -0.02917  0.31104

Industry type 5 0.55371***  0.01658 0.52906***  0.01669 0.52629***  0.01661 0.46802***  0.13656

Industry type 6 0.13233***  0.01562 0.11638***  0.01572 0.11627***  0.01565 -0.03977  0.12546

Industry type 7 0.25885***  0.0195 0.24210***  0.01963 0.24432***  0.01953 0.28706**  0.12999

Industry type 8 0.49572***  0.01589 0.47913***  0.01599 0.47715***  0.01592 0.41510***  0.12535

Industry type 10 0.08094***  0.01603 0.07823***  0.01612 0.07787***  0.01606 0.09221  0.12127

Industry type 11 0.18831***  0.01592 0.16694***  0.01602 0.16687***  0.01594 0.08054  0.12975

Industry type 12 0.37861***  0.01575 0.35073***  0.01586 0.3517***  0.01577 0.14051  0.12285

Industry type 13 0.60478***  0.01473 0.57436***  0.01485 0.57193***  0.01476 0.37115***  0.11802

Industry type 14 0.27445***  0.01846 0.27278***  0.01855 0.27086***  0.01849 0.21357  0.13478

Number of employees 1 0.04957***  0.00762 0.02684***  0.00777 0.02582***  0.00764 0.10204**  0.04883

Number of employees 2 0.13813***  0.00815 0.12029***  0.00827 0.11807***  0.00816 0.19912***  0.05231

Number of employees 3 0.14584***  0.00817 0.13001***  0.00828 0.12733***  0.00819 0.23304***  0.05154

Number of employees 4 0.13760***  0.00761 0.12531***  0.00770 0.12379***  0.00762 0.14444***  0.04736

Average age at workplace -0.00881***  0.00045 -0.00973***  0.00045 -0.00962***  0.00045 -0.01505***  0.00303

Densely populated neighborhood -0.06533***  0.00515 -0.05388***  0.00621 -0.02533***  0.00520 0.01035  0.04902

Average age in neighborhood -0.00593***  0.0009 -0.00539***  0.00127 -0.00720***  0.00091 -0.02131***  0.00546

Random-effects Parameter 0.20047  0.0032

Percentage on sick leave in neighborhood 2.46819***  0.03688

[0.38988]  

Percentage of natives on sick leave 1.55607***  0.19844

[0.22196]

Constant -8.21780***  0.09862 -8.16429***  0.10533 -8.59250***  0.09905 -8.66151***  0.68681

N 1,527,553 1,527,553 1,527,553 37,673

 Note: The dependent variable for each model is the binary variable for if the individual has been on sick leave or not during the year. Mean

 marginal effects implied by logit models for the coefficient of interest in brackets. Reported pseudo R-squares are McFadden’s R-squared. 

 * significant at 10%, significant at 5%, *** significant at 1%.
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                                                 Table 4. Comparing the years 2000-2003

                              Year 2000 Year 2001 Year 2002 Year 2003

Statistics etc.    

Number of individuals 1,360,714 1,553,955 1,548,562 1,527,533 

Number of neighborhoods 13,136 13,149 13,142 13,123

Number of different industries 14 14 14 14

19.39 % 19.96 % 20.53 % 20.98 %

19.38 % 19.96 % 20.53 % 20.97 %

Standard deviation of 5.48 % 5.37 %  5.49 % 5.54 %

R
2
 LPM (1) 0.0424 0.0448  0.0437 0.0429

Standard deviation of        GLM (1’) 9.72 % 9.35 %  9.35 % 8.61%

Standard deviation of       in GLM (1') 3.26 % 3.25 % 3.13 % 3.23%

LR test mixed-effect model (1'') P  = 0.0000 P  = 0.0000  P  = 0.0000 P  = 0.0000

    LPM (2) 0. 3683*** 0.3921***  0.4056*** 0.3996***

Adjusted R
2
 LPM (2) 0.0449 0.0474 0.0466 0.0457

     LPM (2) 0.4070*** 0.4440***  0.4604*** 0.4497***

     LPM (2) 0.3261***  0.3405*** 0.349*** 0.3451***

     LPM (3) 0.1041** 0.2087*** 0.3138*** 0.2355***

LR test logit model (1) P  = 0.0000 P  = 0.0000 P  = 0.0000 P  = 0.0000

LR test logit model (1'') P  = 0.0000 P  = 0.0000 P  = 0.0000 P  = 0.0000

    logit model (2) 2.3848*** 2.5095*** 2.542*** 2.4682***

LR test logit model (2) P  = 0.0000 P  = 0.0000 P  = 0.0000 P  = 0.0000

     logit model (2) 2.2445***  2.4289*** 2.4738*** 2.3756***

     logit model (2) 2.4829***  2.5394*** 2.5501*** 2.4947***

     logit model (3) 0.7204** 1.4456*** 2.0672*** 1.5561***

* significant at 10%, ** significant at 5%, *** significant at 1%
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                        Table 5. Family effects: linear probability & logit model 4

                  Linear probability model (4)                 Logit model (4)

Adjusted R-squared/Pseudo R-squared 0.0449 0.0473

Coefficients  Std. Err. Coefficients  Std. Err.

Explanatory variables

Age 0.07633***  0.00141 0.60350*** 0.01048

Age squared -0.00185***  0.00004 -0.01438*** 0.00026

Age quadratic 0.00001***  2.97e-07 0.00011*** 2.11e-06

Education level 1 0.07094***  0.00315 0.43656*** 0.01963

Education level 2 0.08287***  0.00138 0.50507*** 0.00907

Education level 3 0.03328***  0.00125 0.21396*** 0.00859

Female 0.088***  0.00102 0.60663*** 0.00702

Not married -0.07174***  0.00748 -0.35899*** 0.0432

Married -0.06072***  0.00735 -0.29456*** 0.04217

Divorced/separated 0.00234  0.00777 0.04860 0.04464

Has children aged 11 or younger 0.02032***  0.00116 0.13293*** 0.00796

Born in Norway -0.02055***  0.00200 -0.12635*** 0.01275

Industry type 1 0.02738***  0.00593 0.20329*** 0.04284

Industry type 2 0.00716*  0.0043 0.02281 0.03238

Industry type 3 0.04461***  0.00302 0.33310*** 0.02150

Industry type 4 0.02332***  0.00529 0.17005*** 0.03830

Industry type 5 0.06590***  0.00333 0.49126*** 0.02357

Industry type 6 0.01041***  0.00308 0.07807*** 0.02209

Industry type 7 0.02631***  0.00407 0.21945*** 0.02876

Industry type 8 0.05903***  0.00326 0.42576*** 0.02281

Industry type 10 0.00418  0.00316 0.02386 0.02286

Industry type 11 0.02323***  0.00314 0.16811*** 0.02242

Industry type 12 0.04538***  0.00311 0.31821*** 0.02203

Industry type 13 0.08538***  0.00293 0.53329*** 0.02071

Industry type 14 0.03146***  0.0038 0.24035*** 0.02668

Number of employees 1 0.00698***  0.00167 0.04257*** 0.01123

Number of employees 2 0.02085***  0.0018 0.13458*** 0.01198

Number of employees 3 0.02034***  0.00182 0.12930*** 0.01207

Number of employees 4 0.02129***  0.00169 0.13703*** 0.01129

Average age at workplace -0.00137***  0.0001 -0.00855*** 0.00066

Densely populated neighborhood -0.00852***  0.00113 -0.05411*** 0.00745

Average age in neighborhood -0.00304***  0.00022 -0.02128*** 0.00146

Percentage on sick leave in family 0.07304***  0.00119 0.46364*** 0.00747

[0.06930]

Constant -0.71482***  0.02142 -9.03747*** 0.15476

N 757,421 757,421

 Note: The dependent variable is the binary variable for if the individual has been on sick 

 leave or not during the year. Mean marginal effect implied by logit model for the coefficient of 

 interest in bracket. Reported pseudo R-squared is McFadden’s R-squared. 

 * Significant at 10%, ** significant at 5%, *** significant at 1%.
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                                    Table 6. Workplace effects: linear probability & logit model 5

                 Linear probability model (5)              Logit model (5)

Adjusted R-squared/Pseudo R-squared 0.0510 0.0505

Coefficients  Std. Err. Coefficients  Std. Err.

Explanatory variables

Age 0.07121***  0.00099 0.50000***  0.00683

Age squared -0.00169***  0.00003 -0.01172***  0.00017

Age quadratic 0.00001***  2.06e-07 0.00009***  1.37e-06

Education level 1 0.06311***  0.00209 0.38949***  0.01271

Education level 2 0.08143***  0.00105 0.49006***  0.00665

Education level 3 0.03402***  0.00095 0.22644***  0.00626

Female 0.08418***  0.00079 0.54997***  0.00516

Not married -0.06817***  0.0033 -0.32832***  0.01838

Married -0.0649***  0.00321 -0.3082***  0.01773

Divorced/separated 0.00104  0.00332 0.04745***  0.01834

Has children aged 11 or younger 0.02463***  0.00083 0.15205***  0.00528

Born in Norway -0.01617***  0.00139 -0.10157***  0.00858

Industry type 1 0.01002**  0.00435 0.08100***  0.02949

Industry type 2 0.00115  0.00316 -0.01874  0.02268 

Industry type 3 0.02426***  0.00228 0.19028***  0.01562

Industry type 4 0.02014***  0.00402 0.14818***  0.0278

Industry type 5 0.04592***  0.00255 0.33863***  0.01724

Industry type 6 0.00016  0.00230 0.01751  0.01588

Industry type 7 0.00537*  0.00299 0.06302***  0.02002

Industry type 8 0.03525***  0.00241 0.25206***  0.01628

Industry type 10 0.00852***  0.00234 0.04062**  0.01627

Industry type 11 0.01902***  0.00234 0.13311***  0.01610

Industry type 12 0.05463***  0.00252 0.39564***  0.01719

Industry type 13 0.06311***  0.00227 0.38621***  0.01542

Industry type 14 0.02190***  0.00276 0.17021***  0.01865

Number of employees 1 -0.00318***  0.00124 -0.04421***  0.00797

Number of employees 2 0.00741***  0.00132 0.03094***  0.00841

Number of employees 3 0.00867***  0.00132 0.03708***  0.00839

Number of employees 4 0.01017***  0.00121 0.04723***  0.00773

Average age at workplace -0.02159***  0.00316 -0.12067***  0.02081

Densely populated municipality -0.00567***  0.00085 -0.03270***  0.00530

Average age in municipality 0.00428***  0.00036 0.02666***  0.00229

Average age squared of colleagues 0.00055***  0.00008 0.00311***  0.00055 

Average age quadratic of colleagues -4.53e-06***  7.13e-07 -0.00003***  4.67e-06 

Percentage of colleagues with education level 1 0.01958**  0.00862 0.07734  0.05538

Percentage of colleagues with education level 2 0.01934***  0.00261 0.43058***  0.01676

Percentage of colleagues with education level 3 0.01934***  0.00262 0.15212***  0.01726

Percentage female colleagues -0.02378***  0.00175 -0.15772***  0.01127

Percentage of colleagues not married 0.06240***  0.01523 0.48366***  0.09637

Percentage of colleagues married 0.01205  0.01497 0.13533  0.09466 

Percentage of colleagues divorced/separated 0.07009***  0.01544 0.51914***  0.09751

Percentage of colleagues with children aged 11 or younger 0.00762**  0.00332 0.03710*  0.02143

Percentage of colleagues born in Norway -0.04139***  0.00455 -0.27795***  0.02847

Percentage on sick leave at workplace 0.29681***  0.00319 1.81388***  0.01970

[0.28483]

Constant -0.77245***  0.04383 -8.76656***  0.28945

N 1,527,420 1,527,420

 Note: The dependent variable is the binary variable for if the individual has been on sick leave or not during

 during the year. Mean marginal effect implied by logit model for the coefficient of interest in bracket. Reported

 pseudo R-squared is McFadden’s R-squared. * Significant at 10%, ** significant at 5%, *** significant at 1%.
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                                          Table 7. Spatial effects at neighborhood level

     Spatial autoregressive model (6)

Pseudo R-squared 

Coefficients Asymptotic Std. Err.

Explanatory variables

Average age 58.78905*** 7.45125

Average age squared -14.31007*** 1.90835

Average age quadratic 1.11638*** 0.15574

Percentage with education level 1 1.19587*** 0.18328

Percentage with education level 2 1.22862*** 0.07671

Percentage with education level 3 0.44397*** 0.08108

Percentage females 0.57678*** 0.08032

Percentage not married -0.86409*** 0.10545

Percentage married -0.91880*** 0.08906

Percentage divorced/separated 0.14203 0.31090

Percentage with children aged 11 or younger 0.28713*** 0.05925

Percentage born in Norway 0.30859*** 0.11695

Percentage in industry type 1 -0.39284 0.28474

Percentage in industry type 2 -1.16451*** 0.29019

Percentage in industry type 3 0.35025 0.25213

Percentage in industry type 4 -1.14204*** 0.32639

Percentage in industry type 5 0.32811 0.26753

Percentage in industry type 6 0.08173 0.27047

Percentage in industry type 7 -0.54001* 0.28883

Percentage in industry type 8 -0.26017 0.26593

Percentage in industry type 10 -0.37186 0.28172

Percentage in industry type 11 0.11002 0.26079

Percentage in industry type 12 0.60292** 0.25799 

Percentage in industry type 13 0.77463*** 0.25026

Percentage in industry type 14 -0.34017 0.30389

Percentage with number of employees 1 -0.05064 0.08686

Percentage with number of employees 2 0.44316*** 0.09791

Percentage with number of employees 3 0.45673*** 0.10235

Percentage with number of employees 4 0.22786** 0.09874

Average of average age at workplace -0.01241** 0.00551

Densely populated neighborhood 0.09355*** 0.01438

Spatial neighborhood effect 0.05348*** 0.01082

Constant -9.38505*** 0.98859

N 12,996

 Note: The dependent variable is the percentage of peoples in the neighborhood on sick 

 leave. All explanatory variables are at average neighborhood level. Repported pseudo

 R-squared is Nagelkerke R-squared. 

 * Significant at 10%, ** significant at 5%, *** significant at 1%.
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                                                  Appendix 1. Socioeconomic variables

For the individual Age: Age  (from 18 to 64, continuous)

Age squared: Age squared  (continuous)

Age
 
quadratic: Age quadric  (continuous)

Education: Education level 1, Education level 2, Education level 3, 

Education level 4   (<9, 9-12, 13-15,    16; three dummies)

Gender: Female  (one dummy = 1 if female)

Marital status: Not married, Married, Divorced/separated, Widowed  (not 

married, married, divorced/separated, widowed; three dummies)

Has children aged 11 or younger: Has children aged 11 or younger  (one 

dummy = 1 if he/she has) 

Born in Norway: Born in Norway (one dummy = 1 if born in Norway)  

For the workplace Industry: Industry type 1, Industry type 2, … , Industry type 14 

(agriculture, mining, manufacturing, electronics, construction, wholesale,

hotel, transport, financial, real estate, public administration, education,

health, other; 13 dummies)

Size of workplace: Number of employees 1, Number of employees 2,  

Number of employees 3, Number of employees 4, Number of employees 5 

(5-25, 25-50, 50-100, 100-500, > 500; 4 dummies)

Average age at workplace: Average age at workplace  (continuous)

For the neighborhood Densely or sparsely populated area: Densely populated neighborhood  

(one dummy = 1 if densely)

Average age in neighborhood: Average age in neighborhood  (continuous)

For the municipality Densely or sparsely populated area: Densely populated municipality  (one 

dummy = 1 if densely)

Average age in municipality: Average age in municipality  (continuous)

Note: bold and cursive text shows the names used for the variables in the regression tables 




