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ACTIVE VS. PASSIVE DEFENSE AGAINST 
A STRATEGIC ATTACKER

KJELL HAUSKEN; GREGORY LEVITIN

The article analyzes how a defender determines a balance between protecting an object
(passive defense) and striking preventively against an attacker seeking to destroy the
object (active defense). The attacker analogously determines a balance between attacking
and protecting against the preventive strike. The defender makes its decision about
striking preventively based on its estimate of the probability of being attacked. In both
cases of preventive strike and no preventive strike, the defender anticipates the most

harmful attacker’s strategy. The influence of the ratio between the player’s resources
and the contest intensities on the solution of the game is analyzed.

Keywords: Survivability; active defense; passive defense; attack; protection; contest
intensity.

1. Introduction

The distinction between active and passive defense is important. Some defensive
measures, such as protective shields, are by their nature defensive. Other measures,
and especially those equipped with manpower, can generate active defense which
means exerting effort when certain conditions are met. Various kinds of sensors can
also cause conditional active defense.

Earlier research has considered passive defense in the sense of defending against
incoming attacks. Azaiez and Bier [2007] consider the optimal resource allocation for
security in reliability systems. They determine closed-form results for moderately
general systems, assuming that the cost of an attack against any given compo-
nent increases linearly in the amount of defensive investment in that component.
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Bier et al. [2005] and Bier and Abhichandani [2002] assume that the defender min-
imizes the success probability and expected damage of an attack. Bier et al. [2005]
analyze the protection of series and parallel systems with components of different
values. They specify optimal defenses against intentional threats to system relia-
bility, focusing on the tradeoff between investment cost and security. The optimal
defense allocation depends on the structure of the system, the cost-effectiveness of
infrastructure protection investments, and the adversary’s goals and constraints.
Levitin [2007] considers the optimal element separation and protection in complex
multi-state series-parallel system and suggests an algorithm for determining the
expected damage caused by a strategic attacker. Patterson and Apostolakis [2007]
introduced importance measures for ranking the system elements in complex sys-
tems exposed to terrorist actions. Michaud and Apostolakis [2006] analyzed such
measures of damage caused by the terror as impact on people, impact on environ-
ment, impact on public image etc.

Bier et al. [2006] assume that a defender allocates defense to a collection of loca-
tions while an attacker chooses a location to attack. They show that the defender
allocates resources in a centralized, rather than decentralized, manner, that the
optimal allocation of resources can be non-monotonic in the value of the attacker’s
outside option. Furthermore, the defender prefers its defense to be public rather
than secret. Also, the defender sometimes leaves a location undefended and some-
times prefers a higher vulnerability at a particular location even if a lower risk could
be achieved at zero cost. Dighe et al. [2009] consider secrecy in defensive allocations
as a strategy for achieving more cost-effective attacker deterrence. Zhuang and Bier
[2007] consider defender resource allocation for countering terrorism and natural
disasters.

It is sometimes suggested that attack is the best defense, but not always. This
paper seeks to determine when it is optimal to stay on the defensive and await
the blow, and when it is optimal to go on the offensive and strike preventively.
Our focus is on the quite challenging defense optimization where the defender has
a fixed resource which can be used passively or actively. The attacker has one
resource which is used for attack, and one resource which is used to protect against
a preventive strike by the defender. The attacker distributes its fixed resource
between attacking the defender and protecting itself against a preventive strike
by the defender.

Consider as a motivating example the battle situation when the attacker is deter-
mined to attack the defender’s facility that is camouflaged. The attacker attacks
the facility if it succeeds to locate it (with an exogenously given probability z). The
defender can passively wait for the attack hoping that the attacker either will not
locate the facility or the facility protection will withstand the attack. Alternatively,
the defender can try to destroy the attacker’s facilities. In this case the defender
reveals its location and will be certainly attacked if it fails to destroy the attack
facilities.
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Section 2 presents the model. Section 3 solves the model and analyzes the
solutions. Section 4 concludes.

2. The Model

Nomenclature

r Total defender’s resource
R Total attacker’s resource
ρ Ratio r/R between defender’s and attacker’s resources
X Fraction of attacker’s resource allocated to attack
x Fraction of defender’s resource allocated to preventive strike
V (x, X) Vulnerability of attacker’s facility
v(0, 1) Vulnerability of defended object in the case of no preventive strike
v(x, X) Vulnerability of defended object in the case of preventive strike
m Contest intensity in strike against the attacker
µ Contest intensity in attack against the defender
z Estimated probability of attack against the defender if there is no

preventive strike
zmin Threshold value of attack probability to justify preventive strike
P (0, 1) Probability of destruction of the defended object in the case of no

preventive strike
P (x, X) Probability of destruction of the defended object in the case of

preventive strike
W Probability of destruction of the defended object in the minmax game

The defender anticipates an attack from the attacker and estimates the prob-
ability of attack to be 0 ≤ z ≤ 1. The attack can be directed against an object
owned or controlled by the defender, or against the defender itself. The defender
can defend its object in two ways: implementing the preventive strike against the
potential attacker (active defense) and protecting its object against the impact
(passive defense). In the case of the preventive strike, the defender distributes its
resource r between strike effort xr and protection effort (1 − x)r (where x > 0). If
the attacker survives the preventive strike, it attacks the defender with probabil-
ity 1 (revenge attack). In the case of no preventive strike, the defender allocates its
entire resource r into protection (x = 0). We exclude the case of preventive strike
without the use of resources (x = 0) from consideration because this strategy just
provokes a revenge attack without having chance to destroy the attacker’s facilities.
This strategy is a priory worse than the no preventive strike strategy because it
increases the attack probability from z to 1 without affecting the players’ resource
distribution (the players’ effort distribution is the same for no preventive strike and
preventive strike with x = 0).

The probability of the object destruction is obtained as a product of object
vulnerability (conditional probability of the object destruction given it is attacked)
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and the probability that the object is attacked. In the case of no preventive strike the
attack probability is z. In the case of the preventive strike the attack probability is
equal to the probability of the attacker’s survival in the preventive strike. The object
vulnerability depends on the protection and attack efforts and contest intensity as
it will be shown later.

The attacker distributes its resource between the attack effort XR and protection
effort (1 − X)R, where 0 < X ≤ 1. We exclude X = 0 since that guarantees zero
destruction probability which the attacker maximizes. The defender has one free
choice variable x and minimizes the probability of the object destruction. The
attacker has one free choice variable X and maximizes the probability of the object
destruction. The defender builds the system over time. The attacker takes it as
given when it chooses its attack strategy. Consequently, we consider a two period
zero sum game where the defender moves first choosing x and anticipating the
attacker’s best response. The attacker can move with choosing X or changing X

after the defender chooses x, but before the preventive strike. (The attacker can or
cannot observe x. In the former case it optimizes X , in the latter case it can just
guess). We require that the preventive strike, if it occurs, occurs before the revenge
attack.

The defender’s and attacker’s resources can be monetary budgets, but can also
be actual resources which may be combinations of manpower, ammunition, etc. In
order to divide the resources into x versus 1 − x and X versus 1 − X we require
some degree of quantitative divisibility for the various defense and attack resources.

The vulnerability of the attacked object is determined by the common ratio
form of the attacker-defender contest success function (Tullock, 1980; Skaperdas,
1996)

v =
T µ

T µ + tµ
, (1)

where T is the attacker’s effort, t is the defender’s effort, ∂v/∂T > 0, ∂v/∂t < 0,
and µ ≥ 0 is a parameter for the contest intensity. When µ = 0, t and T have
equal no impact on v regardless of their size which gives 50% vulnerability. When
0 < µ < 1, there is a disproportional advantage of exerting less effort than one’s
opponent. When µ = 1, the efforts have proportional impact on the v. When
µ > 1, exerting more effort than one’s opponent gives a disproportional advantage.
Finally, µ = ∞ gives a step function where “winner-takes-all”. The parameter µ can
be illustrated by the history of warfare. Low intensity occurs in situations where
neither the defender nor the attacker can get a significant upper hand. Examples
are the time prior to cannons and modern fortifications in the fifteenth century, and
entrenchment used with the machine gun in World War I (Hirshleifer 1995:32–33).
High µ occurs when one or the other opponent more easily can get the upper hand.
Airplanes, tanks, and mechanized infantry in World War II allowed both the offense
and defense to concentrate firepower more rapidly, which intensified the effect of
force superiority.
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In the case of no preventive strike, x = 0, the greatest destruction probability
is achieved when the attacker chooses X = 1. Inserting t = r and T = R into (1),
the probability of destruction P (0, 1) of the defended object is

P (0, 1) = zv(0, 1) = z
Rµ

Rµ + rµ
=

z

1 + ρµ
. (2)

where v(0, 1) is the vulnerability of the defended object in the case of no preventive
strike, T = R is the attacker’s attack effort, t = r is the defender’s resource, and µ

is the contest intensity in the attack against the defender.
In the case of preventive strike the defender exerts effort T = xr to strike and

the attacker exerts effort t = (1 − X)R to defend its facility. The vulnerability of
the attacker’s facility is

V (x, X) =
(xr)m

(xr)m + [(1 − X)R]m
=

1
1 + [(1 − X)/(ρx)]m

, 0 < x, X ≤ 1. (3)

where m has the same interpretation as µ. In the revenge attack the defender exerts
the remaining effort t = (1−x)r to protect and the attacker exerts the effort T = XR
to strike the object. The vulnerability of the defended object in the revenge attack
given the attacker survives the preventive strike is

v(x, X) =
(XR)µ

(XR)µ + [(1 − x)r]µ
=

1
1 + [ρ(1 − x)/X ]µ

, 0 < x, X ≤ 1. (4)

In the case of preventive strike the probability of destruction of the defended
object is

P (x, X) = [1 − V (x, X)]v(x, X)

=
1

1 + [ρx/(1 − X)]m
· 1
1 + [ρ(1 − x)/X ]µ

, 0 < x, X ≤ 1. (5)

The probability of the object destruction given the optimal defender’s decision
about the preventive strike is W = min{P (x∗, X

∗
), P (0, 1)}, where (x∗, X

∗
) is the

solution of the zero sum game with attacker utility (5), which is a negative utility
for the defender.

Summing up, the formal definition of the zero-sum game in extensive form
is that the defender moves first choosing the strategy x from the strategy set
0 < x ≤ 1, and deciding whether it is worth to attack preventively, i.e. 0 < x ≤ 1
versus x = 0, while the attacker moves second choosing the strategy X from the
strategy set 0 < X ≤ 1. The defender minimizes the probability W of object
destruction, which can be interpreted as a negative utility which the defender max-
imizes. The attacker maximizes W which can be interpreted as the attacker’s utility.
The interpretation of z is the estimation by the defender of the probability of an
attack.



November 23, 2011 9:58 WSPC/0219-1989 151-IGTR 00281

3. Model Solution and Analysis

The local minmax solution of the game can belong either to the point x = 0, X = 1
or to the point (x∗, X

∗
) where 



∂P

∂X
= 0,

∂P

∂x
= 0.

(6)

Solving the problem (6) and obtaining the optimal x∗ and X
∗

the defender
can decide whether the preventive strike is beneficial by comparing P (x∗, X

∗
) with

P (0, 1) obtained in (2). The preventive strike is justified if P (x∗, X
∗
) < P (0, 1), i.e.

1
1 + [ρx∗/(1 − X∗)]m]

1
1 + [ρ(1 − x∗)/X∗ ]µ

<
z

1 + ρµ
, 0 < x∗, X

∗ ≤ 1. (7)

The attacker exerts maximum attack effort R if the defender chooses passive
defense, and exerts attack effort X

∗
R if it survives the defender’s preventive strike.

It follows from (7) that the defender should strike preventively if according to
its estimates the probability of the attack against the defended object z exceeds
the threshold value zmin, where

zmin =
1 + ρµ[

1 +
(

ρx∗
1−X∗

)m] [
1 +

(
ρ(1−x∗)

X∗

)µ] , 0 < x∗, X
∗ ≤ 1. (8)

Differentiating (5) gives

∂P

∂X
=

ρm
(

x
1−X

)m
m

(1−X)

[
1 + ρµ

(
1−x
X

)µ] − ρµ
(

1−x
X

)µ µ
X

[
1 + ρm

(
x

1−X

)m]
[
1 + ρm

(
x

1−X

)m]2 [
1 + ρµ

(
1−x
X

)µ]2 ,

∂P

∂x
=

ρm
(

x
1−X

)m
m
x

[
1 + ρµ

(
1−x
X

)µ] − ρµ
(

1−x
X

)µ µ
1−x

[
1 + ρm

(
x

1−X

)m]
[
1 + ρm

(
x

1−X

)m]2 [
1 + ρµ

(
1−x
X

)µ]2 .

(9)

System (6) can be rewritten in the form



ρm

(
x

1 − X

)m
m

(1 − X)

[
1 + ρµ

(
1 − x

X

)µ]

= ρµ

(
1 − x

X

)µ
µ

X

[
1 + ρm

(
x

1 − X

)m]

ρm

(
x

1 − X

)m
m

x

[
1 + ρµ

(
1 − x

X

)µ]

= ρµ

(
1 − x

X

)µ
µ

1 − x

[
1 + ρm

(
x

1 − X

)m]

(10)
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Dividing both sides of the first equation by the corresponding sides of the second
one we obtain

x

1 − X
=

1 − x

X
(11)

from which follows that x∗ = 1−X
∗
. Hence the defender’s resource ratio allocated

to preventive strike plus the attacker’s resource ratio allocated to attack equals
one. If the defender eagerly strikes preventively, the attacker must protect itself
and decreases its attack.

Substituting 1 − X with x in the first equation of (10) yields

x∗ =
mρm(1 + ρµ)

mρm(1 + ρµ) + µρµ(1 + ρm)
, X

∗
=

µρµ(1 + ρm)
mρm(1 + ρµ) + µρµ(1 + ρm)

,

x∗

X∗ =
mρm(1 + ρµ)
µρµ(1 + ρm)

(12)

Inserting (12) into (5) and (7) gives

P (x∗, X
∗
) = [(1 + ρm)(1 + ρµ)]−1, zmin = (1 + ρm)−1, (13)

It is always possible for P (0, 1) = z(1 + ρµ)−1 to be lower than P (x∗, X
∗
) if z is

low, but the preventive strike is preferable if z = 1. Equation (13) means that the
threshold value of the attack probability to justify the preventive strike does not
depend on the contest intensity in the attack against the defender. Comparing (13)
and (2), the attacker strikes preventively if z > zmin, and otherwise chooses passive
defense.

It can be seen from (12) that in the case of identical contest intensities (m = µ)
the resource distribution parameters for both players are the same: x = X = 1/2
and P (x∗, X

∗
) = (1 + ρm)−2. This means that in the case of identical conditions of

both attacks, both players allocate their resources equally among the protection and
attack efforts independently of the value of the resource ratio ρ (see the discussion
in the Appendix).

In the case of equal resources ρ = 1 we get P (x∗, X
∗
) = 0.25 and x∗ = m/(m +

µ), X
∗

= µ/(m+µ). Hence the defender allocates more resources, and the attacker
less resources, into the preventive strike contest if that contest has the highest
intensity.

The object destruction probabilities corresponding to the extreme values of
contest intensities are presented in Table 1.

Table 1. Object destruction probabilities corresponding to the extreme values of contest
intensities.

m = 0, µ = 0 m = ∞, µ = 0 m = 0, µ = ∞ m = ∞, µ = ∞
ρ < 1 W = min{0.25, z/2} W = z/2 W = min{0.5, z} W = z
ρ > 1 W = min{0.25, z/2} W = 0 W = 0 W = 0
ρ = 1 W = min{0.25, z/2} W = min{0.25, z/2} W = min{0.25, z/2} W = min{0.25, z/2}



November 23, 2011 9:58 WSPC/0219-1989 151-IGTR 00281

m=µ=1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2ρ

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2ρ

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2ρ

x* X* W Zmin

m=0.5,µ=2

x* X* W Zmin

m=2,µ=0.5

0

0.2

0.4

0.6

0.8

1

x* X* W Zmin

Fig. 1. x∗, X
∗
, W and zmin as functions of ρ for z = 0.6 and different combinations of m and µ.

Figure 1 presents x∗, X
∗
, W and zmin as functions of ρ for z = 0.6 and different

combinations of m and µ.
It can be seen that zmin decreases with ρ, which means that the preventive attack

is not beneficial for the defender when it has much less resources than the attacker.
When the preventive strike is beneficial both players allocate more resources into the
preventive strike contest as ρ increases when m > 1, and allocate less resources into
this contest as ρ increases when m < 1. When both contests have the same intensity
both players distribute their resources evenly between the contests. It can be seen
from (12) that with the growth of ρ the optimal defender’s resource distribution
parameter asymptotically approaches the value limρ→∞ x∗(ρ) = (1+µ/m)−1, which
yields W = [(1 + (1 + µ/m)−m)(1 + (1 + µ/m)−µ)]−1.
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Fig. 2. x∗, X
∗
, W and zmin as functions of m for z = 0.6 and µ = 1.

Figure 2 presents x∗, X
∗
, W and zmin as functions of m for z = 0.6 and µ = 1

for two values of ρ. When the attacker is superior (ρ = 0.5), the defender does not
strike preventively when m > 0.6, since it then succeeds poorly in the contest with
the attacker which chooses X

∗
= 1. In this case the object destruction probability

W = z/1.5 does not depend on m according to (2). As m approaches infinity
the object destruction probability in the case of the preventive strike approaches
P = 1/1.5 which is always greater than in the case of no preventive strike. When
the defender is superior (ρ = 2), the defender always strikes preventively, and
increasingly so as m increases since a high m requires more resources to succeed with
the preventive strike. Indeed, for ρ = 2, µ = 1 in the case of preventive strike P =

1
1+2 · 1

1+2m = 1
3(1+2m) which is always lower than in the case of no preventive strike:

z
1+2 = 0.6

3 = 1
3·1.6667 . As m approaches infinity the object destruction probability

approaches 0.
Figure 3 presents x∗, X

∗
, W and zmin as functions of µ for z = 0.6 and m = 1

for two values of ρ. When the attacker is superior (ρ = 0.5), the defender never
strikes preventively since m = 1 is too high to succeed against the attacker, and
since z = 0.6 is low and the defender prefers passive defense. As µ approaches
infinity the object destruction probability W approaches the value of z = 0.6 (in
the case of attack the defender cannot survive), whereas the preventive strike for
ρ = 0.5, m = 1 and µ = ∞ according to (13) yields P = 0.667. When the defender
is superior (ρ = 2), the defender always strikes preventively, and decreasingly so
as µ increases since a high µ requires more resources to succeed with the passive
defense. As µ approaches infinity the object destruction probability approaches 0 in
both cases with and without the preventive strike. However, for ρ = 0.5 and m = 1
this probability in the case of preventive strike equals 1

1+2 · 1
1+2µ ≈ 0.333

1+2µ , which is
always lower than in the case of no preventive strike: z

1+2µ = 0.6
1+2µ .
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Fig. 3. x∗, X
∗
, W and zmin as functions of µ for z = 0.6 and m = 1.

4. Conclusion

We show how a defender allocates resources between passively protecting an object
and actively striking preventively against an attacker which seeks to destroy the
object. Analogously, the attacker allocates resources between attacking and pro-
tecting itself against the preventive strike. The preventive strike, if it occurs, occurs
before the revenge attack.

In the case of the preventive strike, the probability of destruction of the defended
object equals the attacker’s survivability in the preventive strike multiplied with the
object’s vulnerability. The preventive strike is justified if the destruction probability
is lower than when choosing passive defense which causes the attacker to allocate
its entire resource to the attack. With passive defense the defender estimates the
probability of being attacked. Passive defense is preferable if the defender estimates
a low probability of attack, but the preventive strike is always preferable if the
defender estimates a certainty of being attacked.

We define the game between the attacker and the defender and show that in the
solution of this game the fraction of the attacker’s resource allocated to attack plus
the fraction of the defender’s resource allocated to preventive strike always equals
one. If the defender chooses a large preventive strike, the attacker protects itself
and decreases its attack effort. If the contest intensities in the active preventive
strike contest and the passive defense contest are equal, both players allocate their
resources equally among the protection and attack efforts independently of how
resourceful they are. If the players are equally resourceful, the defender allocates
more resources, and the attacker less resources, into the preventive strike contest if
that contest has the highest intensity. Analytical expression for the optimal resource
distributions and the resulting probability of system destruction are obtained. The
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condition of the preventive strike efficiency is formulated. Examples are provided
for illustration.

Appendix

The following is the proof that x = X = 1/2 is the minmax solution of the game
when m = µ and x > 0:

g(x) = P (x, 1/2) =
1

1 + (2ρx)m
· 1
1 + (2ρ(1 − x))m

,

g′(x) = − (2ρ)mxm−1 − (2ρ)m(1 − x)m−1 + (4ρ2)mx(1 − x)m−1(1 − 2x)
(1 + (2ρx)m + (2ρ(1 − x))m + (4ρ2x(1 − x))m)2

g′(1/2) = 0; (A.1)

when 0 < x < 1/2, g′(x) < 0;

when 1/2 < x ≤ 1, g′(x) > 0

This means that g(X) has local minimum at X = 1/2 and global minimum at
x = 0 or x = 1/2

h(X) = P (1/2, X) =
1

1 +
[

ρ
2(1−X)

]m · 1
1 +

[
ρ

2X

]m

=
1

1 +
[

ρ
2(1−X)

]m

+
[

ρ
2X

]m +
[

ρ2

4X(1−X)

]m

h′(X) = − m(ρ/2)m

(1 − X)m+1Xm+1
· Xm+1 − (1 − X)m+1 − [

ρ
2

]m (1 − 2X)(
1 +

[
ρ

2(1−X)

]m

+
[

ρ
2X

]m +
[

ρ2

4X(1−X)

]m)2 .

h′(1/2) = 0; (A.2)

when 0 < X < 1/2, h′(X) > 0;

when 1/2 < X ≤ 1, h′(X) < 0

This means that h(X) has local maximum at X = 1/2 and global maximum at
X = 1 or X = 1/2. Thus, one of the points x = X = 1/2 or x = 0, X = 1 are the
minmax solutions of the game for m = µ.

Though we cannot prove that the points (x∗, X
∗
) determined by (12) or (0, 1)

are the minmax solutions of the game for m �= µ, the numerical simulations show
that they always are when x > 0.
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