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Abstract: A risk limit conflict measure is developed as the product of the two 
players’ maximum probabilities of being recalcitrant when pursuing a preferred 
equilibrium. Although the justification for it is different, the measure is 
equivalent to Axelrod’s (1970) measure, which is the ratio of infeasible joint 
demand and joint demand above the threat point which he illustrated 
graphically. Axelrod did not justify his measure beyond informal verbal 
descriptions. The article furthermore offers an equilibrium selection in favour 
of the player with the largest risk limit. The equilibrium selection is different 
from Harsanyi and Selten’s (1988, p.90) equilibrium selection, which assigns 
equal weight to four payoff differences, which the article argues is not realistic. 
The equilibrium selection is also compared with Hausken (2007). 
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1 Introduction 

Struggle for preferred equilibria is common when players attempt to agree on standards, 
or agree on procedures for interaction. It is a crucial characteristic, for example, at the 
start-up of most social institutions (Knight, 1992). The significance of games with two 
Pareto-superior Nash equilibria is substantial. This article develops a risk limit conflict 
measure for such games, and presents a method for selecting between the two equilibria. 

Axelrod (1970) presented a conflict measure, which is the ratio of the area of 
infeasible joint demand, and the area of joint demand, for two players. His presentation is 
gametheoretic, but lacks mathematical rigour, and he provides a verbal reference to 
five properties. This article considers the risk limits of two players, and uses these to 
develop a risk limit conflict measure which, remarkably, is shown to be equivalent to 
Axelrod (1970) measure. The measure is demonstrated to satisfy two properties. 



The article proceeds to consider Harsanyi and Selten’s (1988) risk dominance 
criterion, which is a comparison of Nash products, which determines which equilibrium 
gets selected. Harsanyi and Selten (1988) assign equal weight to four payoff differences. 
In contrast, this article uses the risk limit approach to argue that these four payoff 
differences play different roles in the players’ reasoning processes. The reasoning implies 
a new equilibrium selection method where the player with the highest risk limit gets his 
preferred equilibrium. The article further compares with Hausken’s (2007) equilibrium 
selection based on the players’ win probabilities. The conflict measure and three 
equilibrium selection methods are illustrated for the six games 64–69 in Rapoport and 
Guyer’s (1966, p.213) taxonomy, which are conflict games with two equilibria where 
neither player has a dominating strategy. See van Damme (2002) and van Huyck (1997) 
for further discussions of equilibrium selection. 

Section 2 develops a risk limit conflict measure. Section 3 presents the two properties 
of the conflict measure. Section 4 develops a new equilibrium selection proposition. 
Section 5 compares with Harsanyi and Selten’s (1988) risk dominance criterion. Section 
6 compares with Hausken’s (2007) equilibrium selection. Section 7 illustrates the conflict 
measure and three equilibrium selection methods. Section 8 concludes. 

2 A risk limit conflict measure 

Consider the game in Table 1 where a1 ≥ b1 ≥ t1, b2 ≥ a2 ≥ t2, a1 ≥ d1, b2 > d2 or a1 > d1,  
b2 ≥ d2.1 The two pure strategy equilibria are (a1, a2) and (b1, b2). Row Player 1 prefers 
(a1, a2), and column Player 2 prefers (b1, b2). 
Table 1 Two-person two-strategy game with two equilibria 

I II
I a1, a2 t1, t2 
II d1, d2 b1, b2 

Let us first link Table 1 to Harsanyi and Selten’s (1988) application of the notion of risk 
dominance2 as a criterion for equilibrium selection. They state that (a1, a2) risk dominates 
(b1, b2) if 

( )( ) ( )( )1 1 2 2 1 1 2 2a d a t b t b d>− − − − (1)

which is a comparison of Nash products.3 Mathematically, Harsanyi and Selten (1988) 
assign equal weight to the four payoff differences in (1). This means that only the four 
payoff differences as such matter, not whether the differences pertain to equilibrium or 
non-equilibrium outcomes. Consider first equilibrium (a1, a2). Player 1 prefers a1 relative 
to d1 which gives the difference a1 – d1. Player 2 prefers a2 relative to t2 which gives the 
difference a2 – t2. Then consider equilibrium (b1, b2). Player 1 prefers b1 relative to t1 
which gives the difference b1 – t1. Player 2 prefers b2 relative to d2 which gives the 
difference b2 – d2. Equal weight to these four payoff differences means equal weight to 
(t1, t2) and (d1, d2) which places these two non-equilibrium outcomes on an equal footing. 



This article argues that (t1, t2) and (d1, d2) are not on an equal footing. Consider 
equilibrium (a1, a2). Player 1 does not prefer to switch from I to II since a1 ≥ d1. The 
payoff d1 is irrelevant for Player 1’s process of reasoning. In contrast, Player 2 prefers the 
other equilibrium and may prefer to switch from I to II. Although a2 ≥ t2, Player 2 
observes that since b2 ≥ a2, the only way to reach (b1, b2) is to switch from I to II. This 
may cause t2, but it may also cause b2 if Player 1 is thereby induced to switch from I to II 
as a consequence of Player 2’s challenge. Hence, t2 indeed plays a role in Player 2’s 
process of reasoning. Analogously for equilibrium (b1, b2), the payoff d2 is irrelevant in 
Player 2’s reasoning, while t1 is relevant in Player 1’s reasoning if he challenges Player 2. 

Consequently, (d1, d2) is irrelevant for the players’ processes of reasoning when they 
focus their attention on either of the two equilibria. Prior to playing the static game in 
Table 1, i.e., prior to making independent, effectively simultaneous, choices, we assume 
that the players engage in pre-play communication. They reason such that each can hold 
out or acquiesce. They either both hold out, one holds out and the other acquiesces, one 
acquiesces and the other holds out, or both acquiesce. It is dysfunctional for both players 
to acquiesce. We assume that the pre-play communication takes place over a time interval 
such that if one acquiesces, then the other does not. Hence, the players consider (t1, t2) as 
relevant for their reasoning, while (d1, d2) is not relevant. 

Let us determine the highest probability or risk of conflict between (a1, a2) and 
(b1, b2). Assume without loss of generality that the players anchor their focus on 
equilibrium (a1, a2). q1 is the probability that Player 1 sticks to his first strategy given that 
Player 2 challenges, and q2 is the probability that Player 2 sticks to her challenge given 
that Player 1 does not acquiesce. Hence, q1q2 is the probability or risk of conflict, 
implying the threat point (t1, t2). In the threat point, each player may acquiesce, or exhibit 
aggressive, recalcitrant, stubborn, hard-headed, conflictful behaviour by attempting to 
induce (persuade, convince, force) the other player to accept one’s own preferred 
equilibrium. Player 2’s expected payoff of a challenge is q1t2 + (1 – q1)b2, and she gets a2 
otherwise. Player 2 challenges when 
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Equation (2) does not mean that the players play conditional strategies. We consider a 
static game, but pre-play communication allows the players to reason about their payoffs 
dependent on which strategy the other player chooses. When *

1 1 ,q q<  Player 2 should 
challenge, otherwise she should not. Increasing q1 means that Player 2 incurs a higher 
risk of conflict when challenging. The maximum risk that Player 2 is willing to incur is 

*
2 1 ,r q<  defined as Player 2’s upper acceptable risk limit. The numerator in (2) is zero 

when b2 = a2. This implies zero risk limit *
2 1 0.r q= =  That Player 2 accepts a risk limit 

of 0, means that she accepts no risk, she never challenges, and she gets a2. Conversely, 
*

2 1 1r q= =  when a2 = t2. That Player 2 accepts a risk limit of 1, means that she accepts 
maximum risk, she always challenges, and she gets t2. Given that Player 2 challenges, the 
expected payoff to Player 1 if he resists is q2t1 + (1 – q2)a1, and he gets b1 otherwise. 
Player 1 resists if 
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When *
2 2 ,q q<  Player 1 should resist the challenge, otherwise he should acquiesce. 

Increasing q2 means that Player 1 incurs a higher risk of conflict when resisting. The 
maximum risk that Player 1 is willing to incur is *

1 2 ,r q<  defined as Player 1’s upper 
acceptable risk limit. The numerator in (3) is zero when a1 = b1. This implies zero risk 
limit *

1 2 0.r q= =  Hence, Player 1 accepts no risk, acquiesces, and gets b1. Conversely, 
*

1 2 1r q= =  when b1 = t1. Thus, Player 1 accepts maximum risk, resists the challenge, and 
gets t1. 

When both q1 and q2 are low, the risk q1q2 of conflict is low. *
1q  and *

2q  are 
maximum individual probabilities of individual conflictful behaviour, and r1 and r2 are 
the maximum individually acceptable risks. As q1 and q2 increase, conflict gets avoided 
when *

1 1q q>  or *
2 2.q q>  The most interesting point is the highest q1 where Payer 2 

challenges combined with the highest q2 where Payer 1 resists, which gives conflict. The 
probability of this occurrence is * *

1 2 1 2 ,q q r r=  which is the joint maximum probability that 
both players choose their respective conflictful strategies. It is a maximum since each of 
the constituents *

1q  and *
2q  are maximum individual probabilities of conflictful 

behaviour. The degree of conflict cannot get any higher than this, since if q1 increases 
above *

1 ,q  Player 2 does not challenge, and if q2 increases above *
2 ,q  Player 1 

acquiesces. However, if *
1q  and *

2q  increase, the degree of conflict increases. Given this, 
we propose the risk limit conflict measure 
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Figure 1 Illustration of risk limit conflict measure 

The product c of the risk limits is the product of the maximum degrees of recalcitrance 
the players assign to each other, which is the maximum degree of conflict between the 
players. Equation (4) has a very remarkable feature. Namely, Axelrod (1970) has 
suggested the same conflict measure in 1970, though without the risk limit considerations 
in (2) and (3). Let us briefly recapitulate his analysis which is intuitive, graphic with 
utility diagrams, and laced with examples of feasible and unfeasible outcomes using 
apples and oranges. Axelrod (1970, Chapter 2, pp.19–57) develops his measure based on 
a dialogue between an empiricist and a theoretician. First, they develop a ‘no agreement 
point’, which corresponds to (t1, t2) in Figure 1. 



‘Either player can veto anything other than the no agreement point’ (p.20). Then they 
agree that ‘normalising a game has no effect on the amount of conflict of interest’ (p.28). 
The next step is to agree graphically, referring to Figure 1, that an area of joint demand 
exists spanned out by the threat point (t1, t2) and the outmost point determined by the best 
payoff (a1, b2) each player can possibly obtain under his most favourable circumstances. 
Furthermore, the small black rectangle spanned out by (b1, a2) and (a1, b2) is ‘the 
proportion of the joint demand area which is infeasible’ (p.57). Axelrod thereafter 
concludes that a conflict measure should equal the latter small black rectangle divided by 
the larger rectangle spanned out by (b1, a2) and (a1, b2). This, amazingly, expresses the 
same area as that developed mathematically in (4) using the risk limit approach. But, the 
notion of risk limits is absent in Axelrod’s analysis. Axelrod further argues without proof 
that his intuitive procedure, in the form of a narrative of what conflict entails, satisfies the 
five properties symmetry, independence, continuity, boundedness, additivity, and that 
‘there is no other way to satisfy’ these five properties (p.32). Axelrod concludes (p.57) 
that the measure ‘makes sense intuitively’ ‘because the less incompatible are the goals of 
the players, the more the region of feasible agreements bulges and thus the less conflict of 
interest there is’. 

The contribution of this article is to provide a more rigorous foundation for the 
conflict measure in (4) in terms of how the two players reason strategically by focusing 
on their risk limits. That the conflict measure is equivalent to that suggested by Axelrod 
strengthens it since the robustness of a result benefits from reaching that result 
multifariously. Let us link the risk limit approach to Axelrod’s analysis. Equation (4) 
consists of a small rectangle in the numerator, and a larger rectangle in the denominator. 
In the two-dimensional utility diagram for the two players in Figure 1, the risk limit 
conflict measure is the relation of the small black rectangle (a1 – b1)(b2 – a2) of risky 
conflictful behaviour to the large rectangle (a1 – t1)(b2 – t2) of joint demand.4 Axelrod 
(1970, p.57) refers to the small rectangle as ‘the proportion of the joint demand area 
which is infeasible’,5 and to the large rectangle as the area of joint demand spanned out 
by the threat point (t1, t2) and the outmost point determined by the best payoff (a1, b2) 
each player can possibly obtain under his most favourable circumstances. 

The risk limit conflict measure increases when the black rectangle (area of infeasible 
joint demand) becomes larger or the large rectangle (area of joint demand) becomes 
smaller by increasing (t1, t2). Altering (b1, a2) changes only the small rectangle, altering 
(t1, t2) changes only the large rectangle, while altering (a1, b2) changes both rectangles. At 
the limit when the two rectangles overlap, which means b1 = t1 and a2 = t2, the conflict 
measure is 1. 

Conversely, the risk limit conflict measure decreases when the black rectangle 
becomes smaller or the large rectangle becomes larger by decreasing (t1, t2). At the limit 
when the small rectangle disappears, which means a1 = b1 and b2 = a2, or the large 
rectangle becomes infinitely large while the small rectangle is finite, which means t1 →
− ∞  or t2 → − ∞ , the conflict measure is 0. 



3 Two properties of the conflict measure 

Equation (4) satisfies the following two properties. 

Property 1 A conflict measure should be lowest when the two Nash equilibria are 
identical or non-discriminating, and should increase as the product of the 
payoff difference each player experiences between the two equilibria 
increases. 

Property 2 A conflict measure should be highest when the Nash equilibria in question 
are weak (weakly dominant), and should decrease as the product of the 
payoff difference each player experiences between his non-preferred 
equilibrium and the threat point increases. 

Let us link the two properties to the risk limit approach. Property 1 implies no conflict 
when a1 = b1 and b2 = a2 (the small black rectangle disappears). Property 2 implies 
maximum conflict when b1 = t1 and a2 = t2 (the two rectangles overlap). Player 2’s upper 
acceptable risk limit in (2) equals zero when the numerator is zero, which occurs when 
b2 = a2 (Property 1). Conversely, Player 2’s upper acceptable risk limit equals one when 
a2 = t2 (Property 2). Analogously, Player 1’s upper acceptable risk limit in (3) is zero 
when a1 = b1 (Property 1), and one when b1 = t1 (Property 2). 

4 A new equilibrium selection proposition 

The conflict measure in (4) is such that (d1, d2) plays no role, and (d1, d2) is also absent in 
(2) and (3). The reason is that Player 2 (and not Player 1) prefers to switch strategy to 
avoid (a1, a2), which may give the threat point (t1, t2), and that Player 1 (and not Player 2) 
prefers to switch strategy to avoid (b1, b2), which may also give (t1, t2). The players’ risk 
limit reasoning processes cause transition between the two equilibria through (t1, t2), and 
not through (d1, d2). Hence, (d1, d2) does not enter the players’ thought and evaluation 
processes when choosing among (a1, a2) and (b1, b2). Since (d1, d2) is irrelevant, we 
propose that (a1, a2) risk dominates (b1, b2) if6 
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The player with the highest risk limit gets his preferred equilibrium. No risk, no gain. 
A player with zero tolerance for risk can most reasonably expect his non-preferred 
equilibrium. Let us formulate (5) as an equilibrium selection proposition. 

Proposition: Equilibrium (a1, a2) is selected if r1 > r2, equilibrium (b1, b2) is selected if 
r1 < r2, and there is no equilibrium selection if r1 = r2, where r1 and r2 are defined in 
(2),(3), and (5) based on the game in Table 1. 

Proof: Follows from (2), (3) and (5). 

5 Comparison with Harsanyi and Selten’s (1988) risk dominance criterion 

The absence of (d1, d2) in the risk limit and conflict measures amounts to criticising 
Harsanyi and Selten’s (1988, p.90) application of the notion of risk dominance as a 
criterion for equilibrium selection, as expressed in (1), where (d1, d2) plays a role. The 
problem with Harsanyi and Selten’s (1988) conceptualisation is that it mathematically 
assigns equal weight to four payoff differences. 



6 Comparison with Hausken’s (2007) equilibrium selection 

Hausken (2007) argues that Player 1’s incentive to be stubborn in insisting on his 
preferred equilibrium depends on two factors. First, it depends on a1 – b1, which 
expresses the extent to which Player 1 prefers equilibrium (a1, a2) rather than (b1, b2). 
Second, it depends on a2 – t2, which is Player 2’s lack of inclination to go along with 
Player 1’s preferred equilibrium (a1, a2). Multiplying these two effects, (a1 – b1)(a2 – t2) 
expresses Player 1’s incentive to be stubborn. The analogous expression (b2 – a2)(b1 – t1) 
expresses Player 2’s incentive to be stubborn. Dividing with the sum of the two 
expressions to scale the sum of the two players’ stubbornness incentives to be equal to 
one gives the players’ stubbornness 
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The probability that Player 1 wins his preferred (a1, a2) is s1(1 – s2), and the probability 
that Player 2 wins her preferred (b1, b2) is (1 – s1)s2. Hence, Hausken (2007) defines 2

1s  

and 2
2s  as the players’ win probabilities or power. He further suggests the equilibrium 

selection 

( )( ) ( )( )1 2 1 1 2 2 2 2 1 1s s a b a t b a b t> ⇔ >− − − − (7)

which differ from both (5) and (1). 

7 Illustration of the conflict measure and three equilibrium selection 
methods 

Rapoport and Guyer (1966) developed a taxonomy of 78 2 × 2 games, which is the 
number of non-equivalent games when accounting for ordinal preference orderings.7 The 
78 games are divided into three classes. 

Class I Each player has a dominating strategy 

• No-conflict games (1–6)

• Games with strongly stable equilibria (7–11)

• Games with strongly stable deficient equilibrium (12, prisoner’s dilemma)

• Games with stable equilibria (13–18)

• Games with threat-vulnerable equilibria (19–21)

 Class II One player has a dominating strategy 



• No conflict games (22–30)

• Games with stable equilibria (31–36)

• Games with threat-vulnerable equilibria (37–39)

• Games with force-vulnerable equilibria (40–48)

• Games with unstable equilibria (49–57)

Class III Neither player has a dominating strategy 

• Two-equilibria no conflict games (58–63)8

• Two-equilibria games with equilibrium outcome (64–65)

• Two-equilibria games with non-equilibrium outcome (66–69)

• Games without equilibria (70–78)

Rapoport and Guyer (1966, p.209) argue for Game 64, shown in Table 2, that (3, 4) 
is the natural outcome since Player 1 has no threat at his disposal at (4, 3). If Player 1 
switches from I to II, Player 2 immediately switches from I to II causing (3, 4). In 
contrast, Player 2 has both threat and force at his disposal at (3, 4). It is to Player 1’s 
advantage to switch voluntarily from I to II so that the return to (3, ) will be via an 
outcome that is better for him [(2, 1) rather than (1, 2)]. Rapoport and Guyer (1966, 
p.209) argue with one sentence that Game 65 is similar to Game 64, which is more
controversial (note that their objective is to classify games, not to provide necessarily 
convincing arguments for the most controversial games). Below, we show how the risk 
limits are different for Games 64 and 65. 
Table 2 Six two-equilibria conflict games 

Game 64 65 66 67 68 69

4, 3 1, 2 4, 3 1, 2 4, 2 1, 1 4, 2 1, 1 4, 3 1, 1 4, 3 2, 2 
2, 1 3, 4 3, 1 2, 4 3, 3 2, 4 2, 3 3, 4 2, 2 3, 4 1, 1 3, 4 

r1 1/3 2/3 2/3 1/3 1/3 1/2
r2 1/2 1/2 2/3 2/3 1/3 1/2
c 1/6 1/3 4/9 2/9 1/9 1/4
Equilibrium 
selection 

(3, 4) (4, 3) Indifferent (3, 4) Indifferent Indifferent 

s1 1/3 2/3 1/2 1/5 1/2 1/2
s2 2/3 1/3 1/2 4/5 1/2 1/2
Hausken 
(2007) 

(3, 4) (4, 3) Indifferent (3, 4) Indifferent Indifferent 

(a1 – d1)(a2 – t2) 2 1 1 2 4 3
(b1 – t1)(b2 – d2) 6 3 1 2 4 3
Harsanyi and 
Selten (1988) 

(3, 4) (2, 4) Indifferent Indifferent Indifferent Indifferent 



Rapoport and Guyer (1966, p.209) argue that Games 66–69 are preemption games with 
no natural outcome. Game 66 is the chicken game (Fudenberg and Tirole, 1991), 
Rasmusen (2001, pp.71, 85). If one preempts (daredevil) and the other does not 
(chicken), the first earns a high payoff and the second a low payoff. If none preempt, 
their payoffs are intermediate. If both preempt, the result is disastrous for both. One 
example is two teenagers driving against each other in stolen cars. Another example 
[Taylor, (1987), p.37] is two factories discharging polluted material into a lake. If both 
pollute, an ecological catastrophe follows. No pollution is beneficial, but costly for each. 
Each prefers to free ride on the other’s pollution restraint. 

Game 67 is similar but preemption by Player 2 gives (3, 4) which improves the payoff 
for both players compared with the non-Pareto optimal payoff (2, 3). Game 68 is the 
battle of the sexes (Hausken, 1998; Taylor, 1987), which Rapoport and Guyer (1966, 
p.209) refer to as a ‘benevolent’ chicken game. Each player, by preempting, increases the 
payoff of both. This makes coordination more prominent making the game relevant for 
standard setting. For example, consider two dominant companies within an industry with 
different software preferences, due to sunk costs in training and earlier software 
investments. Both companies realise that mutual gains can be reaped within the industry 
by agreeing on one type of software, but each benefits additionally if its own preference 
gets implemented. A second example is a couple discussing whether to spend the evening 
at the movies or the theatre. They prefer to be together, but the wife prefers the cinema 
and the husband prefers the theatre. 

In Game 69, each player prefers to preempt, but it prefers even more that the other 
player does the preemption. Assume that the natural outcome is a quarrel, which both 
players seek to settle. Although the player choosing a conciliatory apology earns a higher 
payoff than if the quarrel persists, he earns a lower payoff than if he waits for the other 
player to choose the conciliatory apology. The conciliatory apology by the preemptor can 
be interpreted as ‘losing face’. But, the preemptor can also be interpreted as a hero who 
seeks higher benefits for others than for himself. Rapoport and Guyer (1966, p.210) 
observe that the hero in this game is different from a martyr who seeks to benefit others 
and harm himself. (A player switching from the equilibrium in the prisoner’s dilemma is 
a martyr. His motivation may be to ‘teach by example’, since the Pareto optimal outcome 
follows if the other player follows suit.) 

In Table 2, we illustrate the proposition in Section 4 by characterising the six games 
64–69. 

The first two rows below the six matrices are the risk limits r1 and r2 of Players 1 and 
2. The third line is the conflict measure in (4). The proposition and (5) dictate the
equilibrium (3, 4) for Games 64 and 67, and the equilibrium (4, 3) for Game 65, shown in 
italics. No equilibrium selection is made for Games 65, 66, 69 since r1 = r2. These 
equilibrium selections are shown in the fourth line. (3, 4) is chosen for Game 64 since 
Player 2 receives 2 in the threat point (t1, t2), while Player 1 receives only 1. Hence, 
Player 2 is in a stronger position and is more willing to risk the threat point than Player 1. 
For Game 67, both players receive only 1 in the threat point, but Player 2 accepts it more 
willingly since earning only 2 in the non-preferred equilibrium is only marginally better 
than the threat point. Game 65 selects (4, 3). Player 1 loses 2 through the equilibrium 
switch, and loses 1 more in the threat point. Player 2 loses only 1 through the equilibrium 
switch, and loses 1 more in the threat point. Hence, player 1 is willing to risk the most to 
secure his preferred equilibrium. 



The fifth and sixth lines are the players’ stubbornness defined in (6) based on 
Hausken (2007), which gives the equilibrium selection in the seventh line. The 
equilibrium selection is the same as in this paper for these examples, but since 
stubbornness is different from risk limit, the equilibrium selection methods are generally 
different. 

The eighth and ninth lines in Table 2 are the two sides of Harsanyi and Selten’s 
(1988, p.90) inequality in (1). Their equilibrium selections are shown in the last line. 
They select equivalently with this paper for Game 64, do not select for Games 66–69, and 
select oppositely to this paper for Game 65 because of the low d2 = 1, which causes a 
large Nash product on the RHS in (1). As argued in this article, (d1, d2) is irrelevant for 
equilibrium selection since it does not enter the players’ reasoning processes when 
choosing among the equilibria. Observe the symmetry, for both the equilibria and the 
non-equilibria, in the three games, 66, 68, 69 where none of the methods offer 
an equilibrium selection. In contrast, observe the equilibrium asymmetry combined with 
the symmetric threat point (t1, t2) = (1, 1) in Game 67 where the risk limit conflict 
measure selects the equilibrium (3, 4) over equilibrium (4, 2), while Harsanyi and Selten 
(1988) make no equilibrium selection since the (irrelevant) asymmetric (d1, d2) = (2, 3) 
compensates for the equilibrium asymmetry generating indifference. 

8 Conclusions 

This article develops a risk limit conflict measure for games with two Pareto-superior 
Nash equilibria, and presents a method for selecting between the equilibria. The conflict 
measure is the product of the two players’ maximum probabilities of being recalcitrant 
when pursuing a preferred equilibrium. The measure is equivalent to Axelrod’s (1970) 
measure, which is the ratio of infeasible joint demand and joint demand above the threat 
point. Axelrod provided no justification beyond informal verbal descriptions for his 
conflict measure. Two properties are presented which support the measure. These state 
that a conflict measure should be lowest when the two Nash equilibria are identical or 
non-discriminating, and highest when the Nash equilibria in question are weakly 
dominant. The risk limit approach implies a new equilibrium selection method where the 
player with the highest risk limit gets his preferred equilibrium. 

Aside from the two Nash equilibria and the threat point, the 2 × 2 conflict game has a 
fourth outcome, which plays no role in the players’ reasoning, and thus plays no role in 
the conflict measure and equilibrium selection. This stands in contrast to Harsanyi and 
Selten’s (1988, p.90) equilibrium selection which assigns equal weight to four payoff 
differences, which means that all the four outcomes in the game are influential. Harsanyi 
and Selten (1988) present a risk dominance criterion, which is a comparison of Nash 
products, which determines which equilibrium gets selected. The article further compares 
with Hausken’s (2007) equilibrium selection based on how stubbornly the players’ insist 
on their preferred equilibria. The conflict measure and three equilibrium selection 
methods are illustrated and discussed for the six games 64–69 in Rapoport and Guyer’s 
(1966, p.213) taxonomy. 
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Notes 
1 Table 1 represents Games 64–69 in Rapoport and Guyer’s (1966, p.213) ordinal taxonomy. 

The most well-known of these are the Battle of the Sexes (Game 68), Chicken (Game 66), and 
Game 69 with several names such as ‘Let George do it’, ‘Apology’, ‘Hero’, ‘Sacrificed 
leader’. The Games 64, 65, 67 are hybrid asymmetric games. 

2 Zeuthen (1930) originated the principle of risk dominance as a dominance relation based on 
comparing the various players’ risk limits. Subsequently, Ellsberg (1961) discussed the 
principle related to his paradoxes, and Harsanyi (1977, pp.280–288) analysed it. Harsanyi and 
Selten (1988, p.86ff) provide three axioms, which uniquely determine the given risk 
dominance relationship. These are invariance with respect to isomorphisms, best-reply 
invariance, and payoff monotonicity. There is no axiom of independence of irrelevant 
alternatives. As Harsanyi and Selten (1988, p.86ff) point out, ‘the nature of the problem of 
equilibrium point selection in non-cooperative games does not seem to permit a satisfactory 
solution concept that can be characterised by a set of simple axioms’. 



3 If the inequality is reversed, (b1, b2) risk dominates (a1, a2), and if the Nash products in 
(1) are equal, (a1 – d1)(a2 – t2) = (b1 – t1)(b2 – d2), there is no risk dominance between 
(a1, a2) and (b1, b2). 

4 The risk limit conflict measure does not depend on the equilibrium from which one starts. The 
areas would have been the same had we started from the equilibrium (b1, b2) and let Player 1 
challenge Player 2. 

5 It is the jointly infeasible expectation of an additional gain in case of a conflict. 
6 If the inequality is reversed, (b1, b2) risk dominates (a1, a2), and when the risk limits in (5) are 

equal, r1 = r2, there is no risk dominance. 
7 Each player has 4! = 24 preference orderings, which gives 24 × 24 = 576 games. Some of 

these are equivalent by interchanging rows or columns. Each of 66 non-equivalent games 
generates 8 equivalent games, and each of 12 non-equivalent games generates 4 equivalent 
games, i.e., 66 × 8 + 12 × 4 = 576. 

8 Games 58–63 are labelled by Rapoport and Guyer (1966) as no conflict games since one 
equilibrium Pareto dominates the other equilibrium. These do not satisfy our requirements for 
Table 1 and are excluded. One example is the stag hunt game 61. Harsanyi and Selten (1988, 
p.359) correctly argue that the stag-stag equilibrium should be selected since it dominates the
hare-hare equilibrium, although the latter risk dominates the former. See Février and Linnemer 
(2006) for a recent study. 




