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In Hirshleifer’s (1995) model for unitary actors, combined fighting/production abruptly breaks down when inter-
group decisiveness of fighting is above a certain value (above one) or income requirements are not met. Accounting
for the collective action problem, this article gives the opposite result that fighting/production is stable also for large
decisiveness parameters (above one) and strict income requirements for each agent. The stable fighting/production
equilibrium gets gradually easier to perturb off balance for high inter-group decisiveness, high costs of fighting,
different fighting efficiencies, and equal group sizes. The equilibrium number of groups that can be sustained
decreases in the inter-group decisiveness and increases in the cost of fighting.
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INTRODUCTION

In an interesting contribution entitled ‘Anarchy and its Breakdown’, Jack Hirshleifer (1995)
defined anarchy as a non-chaotic spontaneous order in which participants can seize and defend
resources without regulation from above. Each contestant balances between productive
exploitation of the current resource base and fighting to acquire or defend resources. He found
that anarchy is sustainable only when the ‘decisiveness parameter’ is sufficiently low (less
than one), which means that there are strongly diminishing returns to fighting effort, and when
incomes exceed a viability minimum.1 This may occur when resources are defendable,
predictable, and dispersed. When decisiveness is larger than one, anarchy becomes
dynamically unstable. This may occur when resources are concentrated, which may lead to
‘winner-take-all’ battles, and dictatorship by the strongest. As the population increases, fight-
ing spreads and incomes fall below the viability limit. Hirshleifer (1995: 26, 48ff) exemplifies

*Email: kjell.hausken@uis.no. I thank Martin C. McGuire for extensive comments, and Jack Hirshleifer for
suggesting the analysis of a model where a ‘defector’ contributes only to production, while a ‘cooperator’ contrib-
utes, at cost c, to the group fighting effort, in contrast to Hausken (2000a) where cooperators are producers who also
determine their group’s share, while defectors merely consume the product.

1 In the ratio form of the Contest Success Function the decisiveness parameter is the exponent to which each effort
is raised. When the exponent is zero, efforts are irrelevant and distribution is egalitarian. When the exponent is one,
distribution is proportional to effort. When the exponent is infinite, winner takes all.

anarchy, with dispersed resources, with international struggles for control of the 
globe’s resources, gang warfare in prohibition-era Chicago, miners versus claim 
jumpers in the California gold rush, the era prior to the introduction of cannons and 
modern fortifications in the 15th century, animal territoriality, and male elephant seals who 
fight to sequester ‘harems’ of females.



A basic assumption in Hirshleifer’s (1995: 27) analysis is to ‘treat [competing] groups as
unitary actors that have somehow managed to resolve the collective action problem [among
themselves].’ But the collective action problem ought not be assumed away. The purpose of
this article therefore is to incorporate the conflict inherent within competing groups into
Hirshleifer’s model. The article analyzes for groups (firms, nations, organizations, multiplic-
ities, collectivities) the trade-off between peaceful production and fighting (such as interfer-
ence struggles, strikes, lockouts, litigation, rent-seeking, or other non-productive self-serving
activities). Throughout history, peaceful production has been an ideal sought by many. Firms
want their employees to produce so the firm can flourish. Nations want their inhabitants to be
productive to increase output, welfare and power. Alas, there is an inherent instability to
universal production. Agents on all sides fight to appropriate the production of others and
defend against theft by others. This article determines the balance between production and
fighting for groups dependent on a variety of parameters.

For monolithic groups, earlier work has determined the equilibrium fractions of actors who
specialize in production versus fighting (e.g. Grossman & Kim, 2000). Other work has deter-
mined how each of two unitary actors balances between fighting effort and productive effort.2

This article incorporates elements of the former models in assuming that agents specialize in
either production or fighting. It is related to the latter models in assuming that all production
goes into a common pool that is then distributed between groups (and the agents comprising
those groups) by fighting. The main conceptual innovation is to let each agent pursue one of
two occupations. Each agent specializes either in production or fighting, making a decentral-
ized choice strictly to advance his own private welfare since there is no decision-making
authority at the group level.

The introduction of groups and analysis of internal incentive structures and decision
processes of its members is empirically interesting and an essential analytical innovation for
several reasons. Collective action among members within a group is essential to group behav-
ior and to the outcome of competition among groups. It can seldom be abstracted away, and
accounting for it generally gives different results. Groups are central to many economic
phenomena (e.g. collective rent seeking3, collective goods, joint interaction within and
between countries, etc) and no less so with respect to production versus fighting. Group size
per se is an important factor in the outcome of conflict in addition to the equilibrium fractions
of producers and fighters, while group heterogeneity realistically allows for a diversity of
agents in each group. Groups exist in the real world and should be modeled as such to capture
the richness of within-group and inter-group phenomena. Moreover, as this article demon-
strates, decisiveness in inter-group fighting leads to understanding the complex dynamic
stability conditions in the equilibrium fractions of producers and fighters in each group.

This article bears particular relationship to two earlier advances by Hausken (2000a) and
Hirshleifer (1995). In Hausken’s (2000a) analysis, the degree of cooperation (in public goods

2 See Hausken (2005), Hirshleifer (1988, 1991ab, 1995), Skaperdas (1992), Skaperdas and Syropoulos (1997).
When reduced to certain minimal characteristics, there is an isomorphism between a model with a ‘yes/no
dichotomy’ on the part of each agent choosing one extreme or the other where the numbers of each type come into a
balanced equilibrium, and a model in which the typical agent balances between fighting effort and productive effort
assuming a scaled choice along a continuum. In the aggregate the models operate analogously. For the latter models
many actors are necessary, while for the former two actors are sufficient.

3 Hausken (2005); Katz et al. (1990); Nitzan (1991, 1994).

production) within a group determines how successfully it competes with another group. If
one group has many more cooperators than another, its inter-group cooperation is deemed
successful. But free-rider incentives will reduce the number of cooperators. In a group with
too few cooperators, inter-group cooperation is unsuccessful, and no one wants to be the first
to initiate cooperation. The result is universal defection where everyone free-rides.



This article assumes a different incentive structure and strategy set for each agent. Here, (in
contrast to Hausken, 2000a) a cooperator contributes, at a cost, to his group’s fighting effort,
while a defector contributes only to production. Our rationale is that in the real world, fighting
is usually costlier and riskier than producing. So in this model someone who does not incur
the cost of fighting is a ‘free rider’ – he is depending upon his neighbors to protect him against
criminals and other outside predators. With no cooperators in a group, no one fights for the
group and its members receive zero income or product. Similarly, with no defectors, there is
no production, which gives non-positive income. This article determines the conditions under
which these two extreme equilibria and combined intermediate cooperation/defection equilib-
ria are obtainable. We further illustrate non-equilibrium behavior dependent on the cost of
fighting, decisiveness of competition, the number of agents in each group, and the fighting and
productive efficiencies.

My approach here takes its inspiration from, and is greatly indebted to, Hirshleifer’s (1995:
26) analysis of anarchy defined not as ‘chaos’ but rather ‘as a spontaneous order’ where ‘each
contestant balances between productive exploitation of the current resource base and fighting
to acquire or defend resources.’ Assuming unitary actors, Hirshleifer (1995: 33) derives two
conditions under which anarchy breaks down. The first is that ‘an excessively large decisive-
ness parameter m (i.e. m > 1) leads to dynamic instability; that is, movement toward a corner
solution’ where one actor gets the entire product, and the other gets nothing. ‘A second source
of breakdown is income inadequacy. Suppose that some minimum income y is required to
sustain life for an individual actor or for a group to preserve its institutional integrity. Then
anarchy cannot be stable if the equilibrium of the dynamic process implies income Yi<y for
either contender’ (Hirshleifer, 1995: 33). Incorporating the collective action factor into the
problem, this article also derives the impact of the decisiveness parameter, and of income
adequacy. The two models supplement each other, one assuming unitary actors, and one
accounting for collective action.

The fighting/production equilibrium analyzed in this article does not correspond to Adam
Smith’s division of labor, where fighting is absent. The equilibrium corresponds better with
Hobbes’ state of nature with ‘war of each against all.’ Insights from the two philosophies are
useful for a theory of the division of labor between production and fighting.4

The next section presents the model. The section after analyzes the equilibrium fractions of
producers and fighters in each group. The fourth section considers the effects of changes in the
decisiveness parameter and cost of fighting, while the fifth section compares the results with
Hirshleifer’s. The sixth section generalizes to n groups, and describes the maximum number
of groups that can be sustained given that each agent within each group has to meet a
Malthusian survival level of income. The seventh section concludes.

THE MODEL

In each of two groups, with n1 and n2 members, an agent who chooses to ‘fight/cooperate’ 

must incur a cost c of fighting effort. If he chooses ‘not-to-fight/to-defect/to-produce’, he does 

not incur this cost. By assumption, an agent cannot be involved in both activities. A defector 

contributes only to production. Production of both groups is placed in a common pool and has 

to be fought for. Fighting is interpreted as cooperation since if no agents in a group fight for

4 Hirshleifer (1994) presents in a Presidential Address a related argument for the need of a dual philosophy where
both Coases’s and Machiavelli’s theorems are natural ingredients.



the group, the group earns zero income. Thus, a cooperator contributes to the group fighting 
effort, and not to production. In the real world, fighting is often costlier (riskier) than produc-
ing. Not incurring the cost of fighting amounts to free-riding with respect to fighting. The 
cost c represents physical hardship, risk and stress associated with fighting and preparedness, 
the cost of injuries, expenses for acquiring the skills, tactics, and strategies of fighting, and 
expenses for equipment and the build-up of a fighting infrastructure. We define h1−1 as the 
number of ‘other’ agents in the group who are fighting, q1 is the number of ‘other’ agents 
who are producing. Letting 1 stand for the individual himself (‘Ego’=Agent j), it follows that 
n1=h1−1+q1+1. Fighting (cooperation) by agent j gives h1 fighters (cooperators) in group 1. 
Aggregate production of the two groups is given by (n1−h1)b1+(n2−h2)b2, where hi is the 
number of fighters and bi is the productive efficiency of each worker/defector. The total 
product is divided and distributed between groups in accordance with their respective 
fighting powers (hi fi)m, where fi is the fighting efficiency and m is the decisiveness 
parameter, i=1,2. We use the ratio formula as our contest success function (Skaperdas, 1996; 
Tullock, 1980). A fighter j in group 1 thus receives an income:5 

where S−j is the set of strategies by all the n1−1+n2 agents in the two groups except agent j in
group 1 who chooses to fight. The subscript 1j refers to agent j in group 1. We divide by n1 in
equation (1) since the collective action problem is most prominent when benefits are equally
divided among cooperators and defectors, while cooperators incur a larger cost of cooperation.
If each individual’s income were allocated within its group according to its degree of fighting-
cooperation, then cooperators would earn more than defectors, the collective action problem
would become less prominent, and the results would resemble Hirshleifer’s (1995) analysis
for unitary actors. In equation (1), aggregate group product is reduced by diversion of effort
to fighting. Fighting involves both a private cost c and a social cost. The private cost is a
deduction from the agent’s earned share, whereas the social cost is suffered by everyone in the
form of reduced group production.

Now if agent j decides to produce rather than to fight, there will be h1−1 fighters in group 1
giving agent j an income 

The incomes to agents in group 2 are found by permuting the indices in equations (1) and
(2). Fighters/cooperators confer an external benefit on producers/defectors by increasing their
group’s share, and an external cost on producers/defectors by reducing the total product. At
the same time, fighters/cooperators impose two external costs on the adversary, namely by
reducing total product and by reducing the adversary’s share. The Pareto optimal allocation is
zero fighters/cooperators, which gives the maximum number of producers/defectors, and to let
their total product be maximized and distributed arbitrarily.

5 It is straightforward to endogenize the within-group sharing rule and show that egalitarian sharing is an
equilibrium. See Noh (1999) for a fuller treatment of within-group sharing rules.
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EQUILIBRIUM ANALYSIS

Each agent chooses the profession that gives the highest income. A necessary and sufficient
condition for agent j in group 1 to fight/cooperate with his fellow cooperating group members,
is P1j(S−j, c) > P1j(S−j, 0). Inserting equations (1) and (2) gives

The analogous requirement for group 2 is found by permuting the indices. Equilibrating
variables are h1 and h2. We first determine h1 for group 1 assuming h2 to be fixed, and h2 for
group 2 assuming h1 as fixed. We secondly determine the overall equilibrium h1 and h2 for
both groups. We thirdly carry out comparative statics of h1 and h2. When equation (3) is
satisfied, then the marginal agent j for whom the condition is being evaluated wishes to fight;
of course no current fighter wishes to produce having already decided against it. Given that
agent j fights, h1 has then increased by 1, and we may ask whether another current non-
fighter wishes to switch to fighting. So long as the inequality is maintained then current non-
fighters wish to become fighters. Thus, we can imagine a step-by-step process whereby the
number of fighters increases until either a value of h1 is reached at which c=cr1 (treating h1 as
real here), or else h1=n1 is reached. If, in contrast to equation (3), we begin at c > cr1 then the
opposite occurs. Current fighters wish to switch to production, and we can again imagine a
one-by-one process whereby they do so until either a value of h1 is reached at which c=cr1 or
h1=0.

Property 1

When the status (including a possible non-equilibrium situation) within group 2 is taken as
given assuming h2 > 0, a Nash equilibrium in fighting/production strategies for the members
of group 1 is a value of h1 such that either h1=0 and c > cr1 (an all-production stable
equilibrium where group 1 loses its entire product); or 0<h1<n1 and c=cr1 (an interior stable or
unstable equilibrium6), or h1=n1 and c<cr1 (an all-fighting total war stable equilibrium with no
production in group 1).

Proof

The proof follows from equations (1)–(3).

Property 2

For the special case that h2=0, a Nash equilibrium in fighting/production strategies for the
members of group 1 is a value of h1 such that either h1=0 and c > (n2b2 − b1)/n1 (an all-production
stable equilibrium); or h1=1 and 0<c<(n2b2 − b1)/n1 (a stable equilibrium).

6 At an unstable equilibrium h1=h1
u no agent has an incentive to switch strategy in any direction, but if h1 is

externally perturbed, h1 either increases or decreases to a stable equilibrium h1=h1
s. In contrast, perturbation of a

stable equilibrium causes movement back to h1=h1
s.
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Proof

Assume h2=0 and h1=0. The first agent in group 1 to fight will do so if the benefit is
larger than the cost. Without fighting assume that he gets a share (1/n1)[(n1 − 0)b1] = b1 of
his group’s production. This means that, in the absence of fighting, there is no redistribu-
tion across groups, and no redistribution across agents, so that all production is distributed
by individual productivities. With fighting the agent incurs a cost c, but group 2 loses its
entire production, and the fighting agent gets a share (1/n1)[(n1 − 1)b1 + n2b2] − c accord-
ing to equation (1). Hence, the first agent will fight when c < (n2b2 − b1)/n1. Each non-
fighting member of group 1 gets the same benefit as the one fighting member, but does
not incur the cost. Hence there will only be one fighter in group 1 since the cost c cannot
be negative.

Property 3

For the special case that h2=1, a Nash equilibrium in fighting/production strategies for the
members of group 1 is a value of h1 such that either h1=0 and

; or h1=1 and

, which simplifies to 0<c<(1 − 1/n1)b1 when
f1=f2, b1=b2, n1=n2.

Proof

Assume h2=1 and h1=0. The first agent in group 1 to fight will do so if the benefit is larger than
the cost. Without fighting he gets 0 since group 1’s entire production is lost to group 2. With
fighting the agent incurs a cost c, but the two groups will share their joint production. Inserting

h1=h2=1 into equation (1) gives , so the agent will
fight if this is positive, which is usually the case, and will otherwise not fight. Inserting f1=f2,
b1=b2, n1=n2 gives (1 − 1/n1)b1 − c.

Property 4

The corner solution h1=n1 and h2=n2 is not possible. For the special case that h2=n2, a Nash
equilibrium in fighting/production strategies for the members of group 1 is a value of h1, 0 ≤
h1 < n1, such that c=cr1. There will be zero fighters in group 1 if

Proof

Assume h2=n2 and h1=n1. This gives zero production. Using equation (1), each fighter in group
1 earns −c. If one agent in group 1 decides to produce rather than to fight, equation (2) gives

 which is positive, which means that at least one

agent will switch to cooperation. Each fighter earns the same but incurs the cost c. Hence,
fighters will switch to cooperation until an equilibrium is reached where each fighter is indif-
ferent between fighting and production. With fighting he incurs a cost c, but if he switches to
cooperation, his group – and thus himself – earns lower income. The equilibrium is determined
by c=cr1, using equation (3). If there were to be one fighter h1=1 in group 1, his income would
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be . If this last fighter switches to cooperation, his

income is zero.

Properties 1–4 for group 2 are found by permuting the indices.
Property 4 states that 100% fighting by all agents in both groups, h1=n1 and h2=n2, is not

possible. There is no production in this hypothetical case, which gives zero income, and addi-
tionally there is a cost of fighting. However, as stated in Property 1, 100% fighting in one of
the groups is possible. As a digression to the rent seeking literature, this means that over-
dissipation of the rent never occurs. Production and conflict models, as discussed by Hausken
(2005), are such that the agents never earn negative income, and they adjust their production
versus fighting accordingly.

However, 100% production by all agents in both groups, h1=h2=0, is possible. Property 2
states that it occurs when c > (n2b2 − b1)/n1, which is usually a large number, and especially
large if there are many agents in group 2, and few members in group 1. Such a large cost of
fighting prevents its occurrence. The all-production equilibrium h1=h2=0 with income bi to
each producer occurs only if the cost c is so large that no first fighter has an incentive to incur it.

The first fighter in group 1 receives (1/n1)[(n1 − 1)b1 + n2b2] − c, does not fight if this income
is less than b1, but fights if 0<c<(n2b2 − b1)/n1. h2=0 and h1=1 cause zero income to each
producer in group 2 and a large income to the first fighter in group 2, and also the second
fighter, in group 2, given that the cost c of fighting is not too large. This causes h2=2 and h1=1.
When c is not too large the groups thus inch up on each other until an internal equilibrium is
reached. This equilibrium falls short of the impossible all-fighting situation h1=n1 and h2=n2.
Figure 1 shows the ‘breakeven cost’ cr1=cr from equation (3) for group 1 dependent on h1

given h2=400 fighters in group 2, where b1=b2=n1=n2=1000, f1=f2=1. The value h1
u is an unsta-

ble equilibrium value of h1, and h1
s is a stable equilibrium value of h1.

FIGURE 1 Requirement c<cr as a function of h1 for h2=400 for four values of the decisiveness m.Equations (1) and (2) imply that group 1 in isolation (where h2=n2=0) specializes in produc-
tion alone since c > 0.7 When there are no attackers against one’s group, fighting within the
group has no value. We exclude the possibility that an agent can get paid from an external
source to fight. With egalitarian inter-group distribution (m=0), which means that each group

7 Contrast this with Hausken’s (2000a) model where group 1 in isolation gives prisoner’s dilemma characteristics
when 1=b1/n1<c<b1.

[( / ) ]1 1 1 1 1 1 2 2− ( ) ( ) +( )[ ] −n b f f n f c
m m m

FIGURE 1 Requirement c<cr as a function of h1 for h2=400 for four values of the decisiveness m.



gets an equal amount, equations (1) and (2) give 100% production in group 1 when c > −b1/
2n1 illustrated with cr= −0.5 in Figure 1. Since c > 0, this is always satisfied. For 0 < m < 1 the
requirement for fighting is lenient when h1 is small, as the very first agents to fight may
increase their income. cr declines toward a small positive value as h1 increases. For m > 1, h1

considerably lower than h2=400 causes a strict requirement for c because the benefits from
fighting by agent j gets expropriated by group 2. For intermediate h1, the requirement c < cr is
lenient inducing agent j to fight even at considerable cost c. For high h1 the incentives for agent
j to free-ride increases if c is high.

Consider the curve m=4 in Figure 1. When c > 3, h1 falls to zero. An intermediate cost
c=cm=0.6 gives three possibilities. When 0<h1<h1

u=141, any fighter prefers to produce and no
current producer prefers to fight, so h1 falls to 0. For h1

u<h1<h1
s=543, each current producer

wishes to fight, and no fighter wishes to produce, so h1 increases to h1
s, at which point no

further incentive exists for either a fighter or a producer to switch. For h1 > h1
s each current

fighter has an incentive to produce, pushing h1 back to h1
s. Hence, h1

s is a stable equilibrium,
while h1

u is an unstable equilibrium.
The overall Nash equilibrium (h2

o,h1
o) is determined by the four curves h1

s=h1
s(h2,·)

h1
u=h1

u(h2,·), h2
s=h2

s(h1,·), h2
u=h2

u(h1,·), shown in Figure 2 for m=4, c=0.6. The agents
inevitably move to the overall stable internal Nash equilibrium
(h2

o,h1
o)=(h2

s(h1
s,·),h1

s(h2
s,·))=(646,646). If initially located inside the ‘heart’ spanned partly by

the thick unstable equilibrium curves h1
u=h1

u(h2,·) and h2
u=h2

u(h1,·), and partly by h1
s=h1

s(h2,·)
and h2

s=h2
s(h1,·), they do so directly. If located outside the heart but sufficiently close to the

diagonal in the upper right part of Figure 2, they also do so directly in a leftward and downward
movement. Assume that fighting is higher in group 1 than in group 2 which gives positioning
outside the heart in the upper left part of Figure 2. The unstable equilibrium curve h2

u(h1,·) along
the upper boundary of the heart causes leftward movement reducing h2. This causes less need
for fighting in group 1, so h1 decreases too. This causes leftward and downward movement
outside the heart. Because of the unstable equilibrium curve h2

u(h1,·), h2 eventually decreases
to zero. We know from Property 2 than when h2=0, h1 can decrease to h1=0 only with substantial

FIGURE 2 Mutual reaction curves h1
s=h1

s(h2,·), h2
s=h2

s(h1,·), h1
u=h1

u(h2,·), h2
u=h2

u(h1,·), m=4, c=0.6.



cost c > (n2b2 − b1)/n1 of fighting, which gives c>999 with the given parameters. For this uncom-
mon case the heart disintegrates to nothingness, which does not happen in Figure 2 since c=0.6.
Usually, the cost of fighting is lower, so h1 decreases to h1=1. When h1=1, Property 3 with
permuted indices implies that the first agent in group 2 will switch to fighting when 0<c<(1 −
1/n2)b2, which is clearly satisfied with the given parameters. Consequently, the leftward and
downward movement outside the heart leads to either the all-production equilibrium
(h2,h1)=(0,0) for the uncommon case of substantial fighting cost, or movement to (h2,h1)=(0,1)
and thereafter (h2,h1)=(1,1) for the more common case of moderate fighting cost. The latter
common case demonstrates successful movement into the heart along the diagonal.
(h2,h1)=(1,1) is usually not an equilibrium since movement to either (h2,h1)=(1,2) or
(h2,h1)=(2,1) causes competitive advantage to one of the groups. Hence the two groups can be
expected to inch up on each other until a stable internal equilibrium is reached. This occurs when
(h2

o,h1
o)=(646,646) in Figure 2. If fighting is lower in group 1 than in group 2, which gives posi-

tioning outside the heart in the lower right part of Figure 2, the argument is analogous. h1

decreases to zero, h2 decreases to zero or one, causing either the stable uncommon (h2,h1)=(0,0)
or the common (h2,h1)=(1,1) with subsequent escalation inside the heart to (h2

o,h1
o)=(646,646).

FIGURE 2 Mutual reaction curves h1
s=h1

s(h2,·), h2
s=h2

s(h1,·), h1
u=h1

u(h2,·), h2
u=h2

u(h1,·), m=4, c=0.6.

Property 5

Assume two identical groups, which implies cr1=cr2=cr, where f1=f2, n1=n2, m>1. First, one
unique overall Nash all-fighting equilibrium (h2

o,h1
o)=(n2,n1) is impossible. Second, when

c=cr(h1
s(h2

s,·),h2
s(h1

s,·),·) for 0<h1
s(h2

s,·)=h2
s(h1

s,·)<n1=n2, an overall stable internal Nash
equilibrium (h2

o,h1
o)=(h2

s(h1
s,·),h1

s(h2
s,·)) is reached given confinement to the heart. Third,

when ∀hi, c>cr(h1,h2,·) ∀hi, 0≤hi≤ni, i=1,2, there exists one unique overall Nash all-production
total peace equilibrium (h2

o,h1
o)=(0,0).

Proof

The proof follows from equations (1)–(3), Properties 1–4, and applying Figures 1 and 2. 

Property 5 states that the shaded area (corresponding to the heart in Figure 2) cannot exhaust
the entire parameter space ∀hi, since (h2

o,h1
o)=(n2,n1) is impossible. As c increases, the

increased cost of fighting causes the heart to be shorter and fatter.
Property 5 has implications for how the design, monitoring, and external regulation of

competing groups affect strategic behavior within them. A key issue is whether location within
or outside the heart occurs. Similarities in fighting levels more likely ensure confinement to
the heart. Given such confinement to the heart, an internal equilibrium is eventually reached.
In contrast, differences in fighting levels more likely ensure location outside the heart. Such
differences may be induced by providing incentives to raise the fighting level in one group to
be sufficiently larger than that of the other group, or by providing disincentives so that the
fighting level in the other group gets lowered to be sufficiently lower than that of the first. This
ensures the avoidance of the heart but requires sustained external inducement. Either group
may deter the other unilaterally, but only temporarily. Unless external means are imposed to
settle a situation outside the heart, movement through (h2,h1)=(1,0) or (h2,h1)=(0,1) occurs
with subsequent escalation to (n2,n1).8

8 Figure 2 suggests that movement into, but not out of, the heart is possible. This is because h1
s=h1

s(h2,·) and
h2

s=h2
s(h1,·) are within or on the border of the shaded area. It cannot be ruled out that parameter combinations exist

incompatible with the latter event, allowing movement also out of the heart. Subsequent return to the heart through
movement through (h2,h1)=(1,0) or (h2,h1)=(0,1) cannot be avoided, however, with subsequent escalation to (h2

o,h1
o).



EFFECTS OF CHANGES IN THE DECISIVENESS PARAMETER AND COST OF 
FIGHTING

For two identical groups, equation (3) is analytically solvable with respect to the equilibrium
variable hi=h1=h2 when m=2 and m=1. The solutions are available on request. It can be shown
that when m=1, cr is always downwards sloping in hi.9 Assuming identical groups where
b1=b2=n1=n2=1000, f1=f2=1, Table I shows the equilibrium fighting for decisiveness m=1,2,4
and costs c=0.6 and c=4 of fighting.

The upper right value hi
o=646 corresponds to Figure 2 where m=4 and c=0.6. Decreasing

decisiveness m gives gradually less fighting, which makes the heart shorter and fatter. As
Hirshleifer (1995: 32) shows, ‘in military struggles, low m corresponds to the defense having
the upper hand. On the western front in World War I, entrenchment plus the machine gun
made for very low decisiveness m.’ When the defense is superior to attack, an especially stable
equilibrium is reached. The equilibrium (477,477) for m=2 is harder to tilt off balance, since
the heart is shorter and fatter. Furthermore, the equilibrium (313,313) for m=1 is almost
impossible to tilt off balance.

As the fighting cost c increases, the heart grows smaller and narrower.10 Cost c=4 and m=4
gives (h2

o,h1
o)=(308,308). An example of this case is two poor groups that both have to invest

heavily in production (n1-h1 and n2-h2 are large) in order to meet their minimum income or
Malthusian survival level. The two groups cannot engage in heavy costly fighting. Each group
has modest means to secure its production. Although the equilibrium is stable, not much
perturbation is needed to tilt it off balance. If increased capacity for fighting is injected
temporarily to one group from an outside source, that group may temporarily increase its
fighting, which causes first the other group, and then both groups, to reduce their fighting.
After movement through (h2,h1)=(1,0) or (h2,h1)=(0,1) as illustrated earlier, the groups again
escalate to (308,308).

COMPARISONS OF THE RESULTS WITH HIRSHLEIFER’S

Our more stable anarchy when the decisiveness parameter, m, is low can be compared with
Hirshleifer’s (1995: 33) result 1 ‘that for an interior stable equilibrium, the decisiveness
parameter must lie in the range 0 < m < 1,’ which is his ‘condition for dynamic stability.’ If
this condition is not met (i.e. m > 1), Hirshleifer’s (1995: 49–50, Ex. 1) analysis for unitary
actors reveals dynamic instability and movement toward a corner solution where one actor
gets the entire resource base and the other gets nothing. In this model, in contrast, where the
collective action problem is accounted for within each group, such abrupt dynamic instability

9 When m=2, cr is downwards sloping in hi when hi is larger than a small number which is slightly less than one
when ni is large.

10 Increasing b1and b2 has a similar effect as decreasing c, and vice versa. We consider bi proportional to ni, which
is often realistic and means that the benefits reaped by one agent do not reduce the benefits received by another
agent. An alternative is to consider bi as constant. Then the benefits of production are divided between the group
members, giving smaller share to each as ni increases.

TABLE I Fighting hi
o=h2

o=h1
o for decisiveness m=1,2,4 and fighting costs c=0.6 and c=4.

m=1 m=2 m=4

c=0.6 hi
o=313 hi

o=477 hi
o=646

c=4 hi
o=101 hi

o=182 hi
o=308



for specific ranges of m does not occur. Multiple agents within each group cause a smooth
trade-off between fighting and production, with no abrupt switches from dynamic stability to
instability at specific parameter values, such as for m=1 in Hirshleifer’s analysis. One agent’s
behavior, no matter how extreme, has limited impact on the whole group, especially when the
group is large. This stands in contrast to Hirshleifer’s (1995) analysis for two unitary agents
where altering m has more abrupt impact causing instability and a corner solution when m>1.
Groups that fight with each other over their joint production have a stabilizing impact on them-
selves and on the agents within each group, ruling out the corner solution demonstrated by
Hirshleifer (1995) for large decisiveness.

For groups, as m decreases, there is a gradual increase in the degree of anarchic stability,
and reduced fighting. More perturbation is needed to tilt the stable equilibrium off balance.
Conversely, increasing m does not cause abrupt instability, but makes the heart in Figure 2
slimmer and longer (shaped like a carrot). This causes a gradual transition toward more fight-
ing, and a stable equilibrium, which is more easily tilted off balance. That the stable equilib-
rium is more easily tilted off balance for large rather than small decisiveness correlates with
the dynamic instability demonstrated by Hirshleifer (1995) for large decisiveness and unitary
actors. The reason for this linkage is that reducing the number of agents to one in each group
gives similar, but not equivalent, models. The similarity is that the two agents fight for their
joint production in both models, applying the same contest success function with a given deci-
siveness parameter. The difference is that this article dichotomously assumes that an agent
either fights incurring a cost c, or does not fight incurring no cost. Applying equations (1) and
(2), Table II shows the group model with one agent in each group.

Inserting n1=n2=1 into Property 2 and its permuted version implies that Table II has one
unique all-production equilibrium (b1,b2) when c > b2 − b1 and c > b1 − b2. When b1 = b2, this
is always satisfied, and it is satisfied when c is sufficiently large while b1 and b2 are not too
different. When b2 < b1 − c, agent 1 produces, and agent 2 fights and secures the entire produc-
tion, which is the production of agent 1 since agent 2 does not produce. Although agent 2
secures the entire production in this case, this result does not depend on the decisiveness m as
evident from Table II and equations (1) and (2) when n1=n2=1. Hence, there is no instability
as that found by Hirshleifer (1995) for unitary actors. Conversely, when b1 < b2 − c, agent 2
produces, and agent 1 fights and secures the entire production of agent 2. The individual
productivities b1 and b2 play a role in Table II, but the decisiveness m and fighting efficiencies
f1 and f2 play no role in Table II, although these play a role when n1 ≥ 2 or n2 ≥ 2. In accordance
with Property 4, three of the outcomes in Table II are possible, while the all-fighting solution
(−c,−c) is not possible.

In contrast to the group model, Hirshleifer (1995) assumes non-dichotomously that each
agent has a resource that can be divided into fighting versus production, which generates an
optimal trade-off between the two activities for each agent. In the group model in this article
the trade-off between fighting and production is expressed as the number of agents in each
group that chooses one rather than the other activity.

My group model gives no corner solution with all-fighting and gives no corner solution with
all-production unless the cost of fighting is extremely large or the groups are small with similar

TABLE II The Group Model with One Agent in Each Group

Agent 2

Fight (h2=1) Produce (h2=0)

Agent 1 Fight (h1=1) (−c,−c) (b2−c,0)
Produce (h1=0) (0,b1−c) (b1,b2)



productivities b1 and b2 (Property 2 and Table II). However, high decisiveness causes
considerable fighting and low income as the agents in each group strive to get greater shares
of total production. In Hirshleifer (1995), one agent gets the upper hand when m>1, leading to
a corner solution where he gets the entire product, and the other gets nothing. In my group
model, no single group gets the entire joint product because the free-rider incentive for each
agent prevents one group from getting sufficiently ahead of the other. A corner solution with
all-fighting, therefore, is never reached. As agents within each group strive to appropriate
more and more, they stop short of universal fighting, which would give no aggregate produc-
tion to fight for. Thus, whereas Hirshleifer’s (1995) model with unitary actors implies that
anarchy breaks down for m>1, our group model suggests that anarchy is stable for large values
of m, although it is more easily perturbed off balance. Let us formulate this as a property.

Property 6

Hirshleifer’s model for unitary actors gives dynamic stability in the form of an interior stable
equilibrium when the decisiveness parameter lies within the range 0<m<1, and dynamic insta-
bility and movement toward a corner solution where one actor gets the entire resource base,
and the other gets nothing, when m>1. In contrast, accounting for the collective action problem
in a group model gives no abrupt switch from dynamic stability to dynamic instability for one
specific value of the decisiveness parameter, but instead dynamic stability is preserved for
large decisiveness substantially above one. Such a ‘Hirshleifer effect’ of dynamic instability
is, however, more easily perturbed off balance by an exogenous shock for large rather than for
small decisiveness.

Simulations of our ‘group model’ that demonstrate these properties are available on request.
As two examples of asymmetry, first, reducing the size of group 1 to n1=500 while keeping
n2=1000 causes (h2

o,h1
o)=(483,500) and an asymmetric heart. Agents in the small group 1

fight maximally, and agents in the large group 2 fight slightly less, in accordance with Hirshle-
ifer’s (1991a) paradox of power. Second, doubling the fighting efficiency in group 1 to f1=2
while keeping f2=1 reduces group 1’s fighting to (h2

o,h1
o)=(725,469).

Finally, note that inter-group mobility promotes production (is peace-inducing). Imagine
universal production (total peace) and that agent j in group 1 decides to fight. This causes
movement of all agents to group 1, which captures all production, after which agent j switches
to production. Setting the income in equation (1) for fighting equal in the two groups implies
n1/n2 = (h1F1/h2F2)m. For an alternative model of inter-group mobility see Hausken (2000b).

AN EQUILIBRIUM NUMBER OF GROUPS11

Hirshleifer (1995: 37–39) determines for unitary actors an equilibrium number of actors (e.g.
nations) where each meets a Malthusian survival level of income (viability limit, zero-profit
condition). Accounting for the collective action problem, Generalizing equations (1)–(3) to n
groups gives: 

11 I am indebted to Jack Hirshleifer for the insights from his work on ‘exogenous vs. endogenous variation’ of the
‘number of competitors’ (Hirshleifer 1995: 37–39).
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I have performed simulations to show the stable equilibrium values h1
s and incomes P1jc=P1jd

dependent on the number n of groups, with ni=n1=1000, fi=f1, bi=b1=n1. These demonstrate
how the number h1

s of fighters increases, and the income P1jc=P1jd decreases as the number n
of competing groups increases, making the Malthusian survival level more difficult to meet.
Hence, there is a maximum number of groups that can be sustained. The survival level is more
easily met when the cost c of fighting for each agent increases, or the inter-group decisiveness
m decreases.

CONCLUSION

In Hausken’s (2000a) model for groups each agent can choose to fight/defect incurring no cost
of effort, or to produce/cooperate incurring a cost of effort. Agents are propelled from
universal defection (free-riding) to universal cooperation (production) given confinement
within a sector. In Hausken (2000a) cooperation is required for production whereas in this
article cooperation is required for fighting, and free-riders defect to production. A cooperator
is allowed to contribute but is required to pay a cost of fighting. A defector contributes only to
production, and pays no cost. This article shows how agents are propelled from universal
production to combined fighting/production given confinement within a shape that is formed
like a heart. If located outside the heart, fighting de-escalates, and the heart is entered with
subsequent escalation to a combined fighting/production equilibrium. This equilibrium falls
well short of the all-fighting situation that would give no production to fight for, and which
never occurs. Over-dissipation is not possible, in contrast to the rent-seeking literature. With
infinitely high cost of fighting, the heart disintegrates to an all-production equilibrium.

In Hirshleifer’s (1995) model for unitary actors, combined fighting/production (anarchy)
frequently breaks down when the decisiveness of fighting is above a certain value (above one)
or available income is inadequate. The breakdown leads to a corner solution where one actor
gets the entire resource base, and the other gets nothing. Accounting for the collective action
problem within each group, this article gives the opposite result: fighting/production is stable
even for large decisiveness parameters (above one) and strict income requirements for each
agent. One agent’s behavior, no matter how extreme, has limited impact on the whole group,
especially when the group is large. Groups that fight with each other over their joint produc-
tion have a stabilizing impact on themselves and on the agents within each group, ruling out
the instability demonstrated by Hirshleifer (1995) for large decisiveness. No group captures
the entire product because of the free-rider incentive for each agent. The linkage to Hirshlei-
fer’s (1995) model is that for high inter-group decisiveness in the contest success function,
over a considerable range (shown by a long and narrow heart in Figure 2) fighting persists in
a stable equilibrium. However, in this range equilibrium can be perturbed off balance through
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a shock. As decisiveness m decreases, the heart region in Figure 2 becomes shorter and broader
requiring a larger shock to be perturbed off balance. This stable fighting/production equilib-
rium grows gradually easier to perturb off balance as decisiveness, or costs of fighting
increase, as fighting efficiencies become more different, and as group sizes approach equality.

Hirshleifer (1995: 46–48) pointed out that ‘military technology’ has often ‘moved in the
direction of higher decisiveness m, threatening dynamic stability, leading ‘the most militarily
effective contender to become a hegemon.’ This holds for centralized unitary actors, but not
for decentralized groups of voluntary agents. The collective action problem with its incen-
tives for free-riding is often interpreted to have negative consequences. This article,
however, illustrates a positive consequence of decentralized decision (in a democratic spirit)
downward by each individual agent within each group when the decision concerns choice of
peaceful or combative action. And the positive benefit results from free-riding, which gives a
superior outcome to that of monolithic groups where all agents act identically through social
pressure or dictatorial politics. ‘Democratic’ groups fighting for their joint production may
cause some agents in the weaker group to fight harder, and some agents in the stronger group
to free-ride with respect to fighting, thereby preventing one group from becoming a hege-
mon. History shows that agents in weak groups sometimes fight fiercely to get ahead, while
agents in strong groups sometimes grow decadent and may slack-off, cutting back on fight-
ing. One illustration of this is Hirshleifer’s (1991a) paradox of power. Most empirics show
that democracies seldom wage war with each other, and seldom exterminate each other. This
article shows how collective action typified by free-riding within groups moderates their
fighting with each other to the benefit of both. Not merely when war is inefficient but also
when decisiveness of conflict is large, a considerable degree of peaceful coexistence is
possible, and significant production is maintained within each group. The reader is referred
to Hirshleifer (1995: 43–49) for discussions of limitations and possible extensions, many of
which also hold for this article.

This article has further shown the maximum number of groups that can be sustained when
each agent within each group has to meet a Malthusian survival level of income. The number
of fighters increases, and the income of each decreases as the number n of competing groups
increases, making the Malthusian survival level more difficult to meet. The survival level is
more easily met when the cost of fighting increases, or inter-group decisiveness decreases.
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