Food Waste or Wasted Food

An empirical investigation of the determinants of food waste

Maaike Helene van Graas
June, 2014

DET SAMFU HAND MAS	NSKAPELIGE FAKULTET KOLEN VED UIS OPPGAVE
STUDIEPROGRAM: Master i \emptyset konomi og administrasjon	OPPGAVEN ER SKREVET INNEN F \varnothing LGENDE SPESIALISERINGSRETNING: Økonomisk Analyse ER OPPGAVEN KONFIDENSIELL? Nei (NB! Bruk rødt skjema ved konfidensiell oppgave)
TITTEL:	
Matavfall eller bortkastet mat	
ENGELSK TITTEL:	
Food Waste or Wasted Food	

FORFATTER(E)		VEILEDER: Gorm Kipperberg
Studentnummer: 207338	Navn: Maaike H. van Graas	

[^0]
Abstract

In the industrialized world large amounts of food are daily disposed of. A significant share of this waste could be avoided if different choices were made by individual households. Each day, every household makes decisions to maximize their happiness while balancing restricted amounts of time and money. Thinking of the food waste issue in terms of the consumer choice problem where households can control the amount of wasted food, we can model how households can make the best decisions.

In this thesis, the food waste issue has been investigated through empirical research. A preliminary survey mapped the respondents' habits on the topics of planning, shopping, and wasting food in addition to their background and lifestyle. Secondly, a weight form recording the amount of food waste, both edible and inedible, was filled out each day for 13 weeks. Together, this information formed a panel data set with 1400 observations.

The results from an extensive series of regressions show that the main variables affecting the amount of food waste are various planning variables, the level of education and income, household size, immigrants and diet. The frequency at which households eat leftovers before cooking new food is a behavioral variable which is significant. the amount of edible food waste is affected the number of days that households shop for, as it is shown that shopping for multiple days leads to lower amounts of edible food waste. These findings are consistent with the hypothesis. With regard to total food waste the regressions revealed that households with less fruit and vegetable waste after consumption have higher amounts of food disposal, which contradicts the hypothesis about that planning leads to less food being wasted. The education is consistent with the expectation that higher education leads to less food waste, however, the squared variable show a turning point around a level of education at a bachelor's degree. The income variable tells the same story as education, but here the turning points lies at a yearly income of $\$ 67,500$. The expectation that increased income leads to increased amounts of food waste is not exactly as the result.

List of Tables

4.1: Demographic data 18
4.2: Self-assessed behavioral questions. 19
4.3: Dependent variables for the combined data set 22
4.4: Independent variables for the combined data set 23
4.5: Hypotheses 25
5.1: Descriptive statistics for the preliminary data set 27
5.2: Descriptive statistics for the combined data set 28
5.3: Regressions on the preliminary data set 31
5.4: Pooled OLS and unadjusted random effect for total food waste disposal. 33
5.5: Cluster OLS and robust random effects for total food waste disposal 34
5.6: Pooled OLS and unadjusted random effect for edible food waste disposal 35
5.7: Cluster OLS and robust random effects for edible food waste disposal 36
5.8: Summary of regressions of significant variables for total food waste and edible food waste disposed 44
5.9: Unadjusted random effects with weekly dummy variables 46
List of Figures
3.1: Utility Maximization with Two Constraints 7
5.1: Total food waste and edible food waste per week. 29
5.2: Average weekly food waste in terms of income 37
5.3: Average weekly food waste in terms of education. 38
5.4: Average weekly food waste in terms of age 39
5.5: Average weekly food waste per meal in terms of age 40
6.1: Total food waste by household size 49

Acknowledgements

This thesis represents the completion of a Master's degree in Business Administration at the University of Stavanger Business School. During the course of this semester I have to the best of my ability used the skills that I have learned and applied this knowledge to an independent study.

I would like to take this opportunity to thank my supervisor throughout this research, Gorm Kipperberg, Ph.D. who has shown great interest and enthusiasm on the topic of this research and has given excellent advice. I was fortunate enough to receive the results from the questionnaire and weight form data from Seattle Public Utilities. I would especially like to thank Jenny Bagby at Seattle Public Utilities for giving me access to the data set and allowing me analyze it without any restrictions. The opinions stated here, however, are solely mine.

Lastly, a special thanks to my family, friends and fellow students, without your support this thesis would not have been possible.

Table of Contents

Abstract iii
List of Tables iv
List of Figures iv
Acknowledgements v

1. Introduction 1
2. Food Waste 3
3. The Consumer Choice Problem 6
3.1 Utility Maximization with One Constraint 6
3.2 Utility Maximization with Two Constraints 8
3.3 Utility Maximization and Household Waste Management 10
3.4 Simple Model of Food Handling 12
4. The Seattle Data \& Empirical Framework 16
4.1 The Econometric Framework 20
4.1.1. The preliminary questionnaire 20
4.1.2. Panel Data 22
4.2 Hypotheses 25
5. Econometric Estimation Results 27
5.1. The Preliminary data 30
5.2. The Food Waste Regressions 32
5.2.1. Total Food Waste $\left(\mathrm{Y}_{1}\right)$ 37
5.2.2. Total Food Waste Adjusted for Meals $\left(Y_{2}\right)$ 39
5.2.3. Total Food Waste Adjusted for Household Size $\left(Y_{3}\right)$ 41
5.2.4. Total Edible Food Waste $\left(\mathrm{Y}_{4}\right)$ 41
5.2.5. Edible Food Waste Adjusted for Meals $\left(\mathrm{Y}_{5}\right)$ 42
5.2.6. Edible Food Waste Adjusted for Household Size $\left(\mathrm{Y}_{6}\right)$ 43
5.3. Summary 43
5.4. Learning Tendencies 46
6. Analysis \& Discussion 48
6.1 Summary of Results 48
6.2 Learning variables 51
7. Conclusion 52
8. References 54
9. Appendices 56

1. Introduction

It is well known that people throw away too much food, and that a part of this waste could have been avoided. Hence it is of interest to study the determinants of food waste behavior and how does it vary in the population? That is the objective of this project.

This research paper is based on data from Seattle Public Utilities in Seattle (SPU), Washington, USA in the beginning of 2013 they conducted a project were households were asked to fill out a questionnaire and then were asked to weigh their food waste for 13 consecutive weeks. The goal of SPU's project was to develop a community food waste prevention pilot program, which should motivate the households of Seattle to reduce their food waste. For internal reasons SPU has not been able to analyze the data yet. The current project was designed to investigate how lifestyle and self-assessed behavior towards planning, shopping, and wasting food affect the amount of food waste, both edible and nonedible. This study will also look at the differences between total food waste, food waste adjusted for both the number of meals consumed and household size.

There are a number of dimensions to food waste; not only is it preferable for each household to reduce its food waste as they can save money on using all of their edible food before buying new groceries. Some people can also save on their utility bill if they are paying for the amount of waste discarded and live in a city that does provide garbage cans for organic waste. If every consumer is able to reduce especially their edible food waste significantly, this will lead to a smaller amount of food demanded in the market. The repercussions of a diminished total demand for food will lead to lower transportation costs, less strain on the agricultural industry that are not always able to produce the amount of the demand, which lead to food being imported from other countries, often from developing countries. This food has an opportunity cost in that the food could have been consumed domestically, but since these countries need the revenue they get by exporting the food, this option is often chosen. Thus, it is arguable that reducing food waste in the industrialized countries could lead to better food security in developing countries. Less local food waste will give the public waste disposal service less issues when it comes to handling waste. This will benefit the community economically as well, since there will be less funding needed for waste disposal.

When analyzing the data set, there are a few things that I am particularly interested in, which have made up the research questions. The research questions aimed to be answered based on the data are:

1) How does planning and attitude towards food shopping and wasting affect the amount of food wasted?
2) Are the determinants for total food waste different from the edible food waste disposal?

Chapter 2 presents some background information on the issue, while chapter 3 provides the theoretical framework of the consumer choice problem and more specifically utility maximization with a time and a budget constraint. Chapter 4 offers the outline of the survey and the econometric framework used in the various regressions conducted on the data collected. The results of these regressions are presented in chapter 5 , whereas the results and other project details are discussed in chapter 6 . Chapter 7 offers the final conclusions and some suggestions to further research on this topic.

2. Food Waste

The amount of edible food waste is estimated to be one third of the food produced for human consumption (Gustavsson et.al, 2011). The food supply chain (FSC) of vegetable and animal products is divided into five stages, and the food losses and wastes associated with each of these stages are (Gustavsson et.al, 2011):

- Agricultural production: Losses in regards to animal sickness or death, mechanical damage or spillage during harvest
- Postharvest handling and storage: Death during transportation to and condemnation at slaughterhouse, spillage and degradation during handling, storage, and transportation
- Processing: Spillage and degradation during industrial (incl. Slaughter) or domestic processing
- Distribution: Losses and wastes in the market system, e.g. supermarket
- Consumption: Losses and wastes during consumption in the household

This is the complete food supply chain, in this paper however, the focus will be on the last section of the chain, food waste in relation to consumption.

Food waste in this paper refers to food items intended for human consumption which have been discarded by the consumer, while edible food waste is defined as the amount of discarded food and drink that could have been consumed, but was discarded. Food waste is thus the sum of edible and non-edible food waste. It is also important to point out that food products intended for other use, for example for animals, biofuels and biomaterial, are not included in this definition (Parfitt, 2010).

The subject of food waste is a multidimensional issue with social, economic, and environmental aspects. The economic impact of food waste on households is that food cost money, and by consuming a larger portion of the food bought, families can save money. In the U.K it has been estimated that the average family could save about $£ 680$ a year (Waste and Resource Action Programme [WRAP], 2011). The social perspective roots in the reality that food is a scarce resource and like other scarce resources it can be reallocated to the parts of the world that have food shortages (Stuart, 2009). The environmental cost of food waste is divided into three parts; increasing food waste leads to a increase in the demand of
agricultural land; agriculture uses 70\% of global freshwater resources and an increase in production will lead to an increase in the water use; the use of fossil-fuel energy will increase with the increase in food production for example through transportation (FAO, 2013). In the UK it is estimated that food which could have been eaten at some point prior to being thrown away, is responsible for about 3% of the domestic greenhouse gas emissions (WRAP-WWF, 2011).

Others have studied the issue of food waste in an economic context. Graham-Rowe, Jessop and Sparks (2013) interviewed their participants about thoughts and feelings concerning purchasing food, food choices and preparation in the home, throwing away food and reducing food waste to elicit motivations and barriers to reduce food waste. Their findings were that the main motivations for reducing food waste were to save money and that it was a waste of good food (Graham-Rowe et.al, 2013, Brook Lyndhurst, 2007). Important barriers to reduce food waste were that people would buy large amounts of healthy food to establish an identity as a 'good' provider, buying in bulk to avoid multiple trips to the store, and little knowledge of the importance of minimizing for waste (GrahamRowe et al, 2013).

Packaging does also have an impact on food waste (Williams et al, 2011). A study in Sweden divided their participants into two groups and gave one group some education on the matter, while the other group received no treatment. During the 7 days of the study the participants were to answer questions about the household and shopping habits, keep a diary on food waste both in relation to meals and not and lastly answer questions on packaging. The study reveals that $20-25 \%$ of the food waste can be related to issues emptying food containers and the purchase of very large packages. When looking at the differences between the groups, the group that received the treatment in the form of education wasted half the amount of prepared food compared to the group without the treatment.

An American study points particularly to a number of economic incentives that could reduce food waste (Kantor et al, 1997). This study investigate food losses throughout the whole food supply chain, but the part related to food wasted by consumers focuses on preventing food waste and reducing solid waste. One economic incentive that the authors discuss in relation to preventing food waste is requiring the households to pay for the amount of waste that they generate. Education is a factor that will reduce food waste
according to the authors, who believe that a program teaching for example about portion sizes to reduce leftover food waste will lead to less food waste.

In 2006, 1862 interviews were conducted in the UK asking questions to explore household food behavior (Brook Lyndhurst, 2007). The main purpose was to collect information about how much is wasted, which groups waste more than others, the factors that lead to food being wasted, and which measures that could reduce the amount of food wasted. A second objective was to develop a "baseline", which future studies can use for comparison. The key findings were that consumers buy too much food when tempted by special offers, which lead to the food reaching its use by date and being disposed. Also the preparation f too much food for meals, will often lead to more food being disposed. They also found that young professionals, young families and social renters are the groups with the largest amounts of food waste.

In 2006, ten discussion groups were held in London were participants discussed their views and habits on the topics of food shopping, planning, preparation and disposal (Corrado, 2007). In principal they agreed that food waste was to be avoided because of financial and social reasons, where the social reasons included that they viewed food waste negatively and associated it with greed. Reasons for food waste included buying too much and thereby not being able to consume it before the expiration date. .

3. The Consumer Choice Problem

The consumer choice problem is a central topic of consumer theory, which is a part of microeconomics. Decisions made by individual single consumers or households on which goods and how much of each good to buy are not always conscious. These decisions are nevertheless made with the goal of maximizing one's own happiness, and of course cover basic needs such as housing, food and clothing. When maximizing utility for the consumer, scarce resources as income and time need to be taken into account as well. Thus the consumer choice problem is about maximizing utility given a fixed amount of time and/or a set budget reflecting total income.

3.1 Utility Maximization with One Constraint

The basic consumer choice problem ignores time constraints and states that the consumer has to choose quantities of consumption goods $1,2, \ldots, n\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ to maximize utility $\mathrm{U}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ subject to money income (I) and fixed prices ($\left.\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{\mathrm{n}}\right)$, all else equal. The problem can be stated formally as:
$\operatorname{Max} U=U\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
s.t. $P_{1} x_{1}+P_{2} x_{2}+\cdots+P_{n} x_{n} \leq I$

By introducing a new variable lambda, λ, in a Lagrangian framework we can find the functions of x 's that maximize utility, U, and stay within the money income, I. The new function will look like this:
$L\left(x_{1}, x_{2}, \ldots, x_{n}, \lambda\right)=U\left(x_{1}, x_{2}, \ldots, x_{n}\right)+\lambda\left[I-P_{1} x_{1}-P_{2} x_{2}-\cdots-P_{n} X_{n}\right]$

This function assumes that all of the income is used. To solve this equation, each of the variables in the Lagrangian framework needs to be partially derived. These derivatives are called the first-order conditions. The derivatives indicate whether the variable that the function is partially derived on is increasing if positive, decreasing if negative, or stable if equal to zero.

First-Order conditions for interior solutions:

1) $X_{1}: \frac{\partial L}{\partial X_{1}}=U_{1}-\lambda P_{1}=0 \rightarrow U_{1}=\lambda P_{1} \rightarrow \lambda=\frac{U_{1}}{P_{1}}$
2) $X_{2}: \frac{\partial L}{\partial X_{2}}=U_{2}-\lambda P_{2}=0 \rightarrow U_{2}=\lambda P_{2} \rightarrow \lambda=\frac{U_{2}}{P_{2}}$
n) $X_{n}: \frac{\partial L}{\partial X_{n}}=U_{n}-\lambda P_{n}=0 \rightarrow U_{n}=\lambda P_{n} \rightarrow \lambda=\frac{U_{n}}{P_{n}}$
$\mathrm{n}+1) \lambda: \frac{\partial L}{\partial \lambda}=I-P_{1} x_{1}+P_{2} x_{2}+\cdots+P_{n} x_{n}=0$

Equation 1-5 gives: $\lambda=\frac{U_{1}}{P_{1}}=\frac{U_{2}}{P_{2}}=\frac{U_{3}}{P_{3}}=\cdots=\frac{U_{n}}{P_{n}}$

The utility, $U_{1}, U_{2}, \ldots, U_{n}$, is the marginal "benefit" that the consumer gets from consuming one more unit of $x_{1}, x_{2}, \ldots, x_{n}$. The price of each good, $P_{1}, P_{2}, \ldots, P_{n}$, is the marginal cost for one more unit of $x_{1}, x_{2}, \ldots, x_{n}$. Therefore, we can say that lambda, λ, is a "benefit"-to-cost ratio for each $\operatorname{good} x_{1}, x_{2}, \ldots, x_{n}$.

One advantage with this model is that it identifies the amount of each good that yields the highest amount of happiness (utility) possible for the consumer while staying within the consumer's budget. There are a number of possibilities applications to this model and as will be shown later, it can be used with multiple constraints.

Figure 3.1: Utility Maximization with Two Goods

In order to show a graphic example we use a two-goods case, with x_{i} and x_{j}. In figure 3.1 it is shown how the optimal amount of each good, $\mathrm{x}_{\mathrm{i}}{ }^{*}$ and $\mathrm{x}_{\mathrm{j}}{ }^{*}$, is determined by the indifference curve, and the budget line. An indifference curve is a graphical way to showing the combination of goods that yield the same amount of utility at each point along the curve. The end points on the budget line are the points that show the amount the consumer would get if he/she would only buy one of the goods. If the above system of equations (1-6) is solved with prices and income kept as unspecified parameters, it would yield Marshallian demand for each good: $x_{j}^{*}=x_{i}\left(P_{i}, P_{n}, I\right), j=1,2, \ldots, n$.

3.2 Utility Maximization with Two Constraints

In 1965, Gary S. Becker explained that in a society where consumers are working fewer hours per week than ever, there is a necessity for time to become a part of the utility maximization model. Becker introduced time as a part of the utility maximization model in order to be able to analyze, for example, the consumer's choice between going to the movies and going to a restaurant.

Watching a movie might take up more time than going to a restaurant but yields a different amount of utility. The choice between these options could still favor the movies, given that it is within the consumer's budget and time constraints. Becker extended the modeling with the utility maximizing function and a resource constraint as the previous example. What Becker did next, was to identify a number of activities that yield an amount of utility, subject to the consumer's own preferences. These activities require both money and time, for example going to a restaurant or to the movies. Becker (1965) noted such commodities as:
$Z_{i}=f_{i}\left(x_{i}, T_{i}\right)$
$i=1,2, \ldots I$ goods

Where Z_{i} is a commodity that requires time and market goods and f_{i} is a production function that uses x_{i}, a vector of market goods, and T_{i}, a vector of time inputs, to produce the commodity.

A compact modern conceptualization of Becker's framework that bypasses the production function complexity is the following (Snyder \& Nicholson, 2012):
$U=U\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

Subject to:
$I=p_{1} x_{1}+p_{2} x_{2}+\cdots+p_{n} x_{n}$
$T=t_{1} x_{1}+t_{2} x_{2}+\cdots+t_{n} x_{n}$

Where, $x_{1}, x_{2}, \ldots, x_{n}$ are activities, $p_{1}, p_{2}, \ldots, p_{n}$ are money prices, $t_{1}, t_{2}, \ldots, t_{n}$ are time prices, I is exogenous income, and T is exogenous time. The consumer choice problem is formally written as:
$\operatorname{Max} U\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ s.t. $I \geq p_{1} x_{1}+p_{2} x_{2}+\cdots+p_{n} x_{n}=\sum_{i=1}^{n} p_{i} x_{i}$

$$
T \geq t_{1} x_{1}+t_{2} x_{2}+\cdots+t_{n} x_{n}=\sum_{i=1}^{n} t_{i} x_{i}
$$

(12)Lagrangian function:
$L\left(x_{1}, x_{2}, \ldots, x_{n}, \lambda, \mu\right)=U\left(x_{1}, x_{2}, \ldots, x_{n}\right)+\lambda\left[I-\sum_{i=1}^{n} p_{i} x_{i}\right]+\mu\left[\sum_{i=1}^{n} t_{i} x_{i}\right]$

Where λ is the Lagrange multiplier for the money constraint, and μ is the Lagrange multiplier for the time constraint.

First-order conditions assuming interior solutions:

1) $\mathrm{x}_{1}: \frac{\partial L}{\partial x_{1}}=U_{1}-\lambda p_{1}-\mu t_{1}=0$
2) $\mathrm{x}_{2}: \frac{\partial L}{\partial x_{2}}=U_{2}-\lambda p_{2}-\mu t_{2}=0$
N) $\mathrm{x}_{\mathrm{n}}: \frac{\partial L}{\partial x_{n}}=U_{n}-\lambda p_{n}-\mu t_{n}=0$
$\mathrm{N}+1) \lambda: \frac{\partial L}{\partial \lambda}=I-\sum_{i=1}^{n} p_{i} x_{i}=0$
$N+2) \mu: \frac{\partial L}{\partial \mu}=\sum_{i=1}^{n} t_{i} x_{i}=0$

The willingness to reduce the amount of one good for an extra unit of another good can be illustrated by combining equations (14) and (15):

1: $\frac{U_{1}}{\lambda}=p_{1}+\frac{\mu}{\lambda} t_{1}$
2: $\frac{U_{2}}{\lambda}=p_{2}+\frac{\mu}{\lambda} t_{2}$

Dividing (19) on (20) yields: $\frac{\frac{U_{1}}{\lambda}}{\frac{U_{2}}{\lambda}}=\frac{p_{1}+\frac{\mu}{\lambda} t_{1}}{p_{2}+\frac{\mu}{\lambda} t_{2}} \rightarrow \frac{M B_{1}}{M B_{2}}=\frac{M C_{1}}{M C_{2}}$

The Marshallian demand functions for a given activity, i, is a function of the money prices for all of the goods, the time prices for all of the goods, the total amount of money available, and the total amount of time available:
$x_{i}^{*}=x\left(p_{1}, p_{2}, \ldots, p_{n}, t_{1}, t_{2}, \ldots, t_{n}, I, T\right), \forall_{i}=1,2, \ldots, n$

3.3 Utility Maximization and Household Waste Management

The issue of how to dispose the waste that occurs when using the groceries bought at the supermarket to make a meal that is consumed by the household. Another way of viewing the issue of food waste and modeling how individual households make decisions related to food waste disposal is by studying the models of household waste management. Morris and Holthausen (1994) in their paper "The Economics of Household Solid Waste Generation and Disposal" modeled how household waste management can be viewed. By extending the utility maximization model, Morris and Holthausen (1994) have derived the Lagrangian equation for constrained optimization. To begin with let's see how the utility maximizing model would look like with three constraints; a production function, a time constraint and a budget constraint:
$\max _{\mathrm{Y}, \mathrm{H}, \mathrm{L}} U(X, L, R)$

Subject to:
$Q(Y, H, X, W, R)=0$
$T=B+H+L$
$\omega B=p Y+C(W-R)-s R+F$

We assume that:

$$
\frac{\partial U}{\partial x}>0, \frac{\partial U}{\partial L}>0, \text { and } \frac{\partial U}{\partial R} \geq 0
$$

Where:

$\mathrm{X} \quad$ vector of goods produced and consumed, $X=\left(x_{1}, \ldots, x_{n}\right)$
Y vector of goods purchased, $Y=\left(y_{1}, \ldots, y_{k}\right)$
T total time available
L amount of leisure time
H amount of time spent in household production
B amount of time spent in market activities, earning a paycheck
$\omega \quad$ wage per hour
W amount of waste material produced as a by-product of household production
R amount of recycled material
Q the household's production function in which Y and H are inputs, and X, W and R are the joint outputs
p a vector of prices for the purchased goods, $p=\left(p_{1}, \ldots, p_{k}\right)$
c cost per unit of waste collection
s the credit (price) of recycled waste produced
F a fixed fee for waste collection

Equation (23) is the utility maximizing function where the variables that the model aims to maximize are the amount of goods produced and consumed, leisure time and amount of recycled material. To find the optimal amounts of these variables, the household can choose
the amounts of goods purchased, time in household production, and leisure time. This function is maximized subject to three constraints; production (24), time (25) and budget (26). Equation (24) is the production constraint, which is a function of amount of goods purchased, produced and consumed, amount of time spent in household production, amount of waste material and amount of recycled material. Equation (25) is the time constraint that states that total time available equals the sum of the amount of time spent in market activities earning a wage, the amount of time spent in household production and amount of leisure time. Equation (26) is the budget constraint which implies that the time spent working in the market, yields a wage which has to pay for all of the goods purchased, the cost of waste minus the credit yielded by recycling waste and a fixed waste collection fee.

The author's go on to solve this model for a fixed-input production technology. The key insights for the analysis are that households have an incentive to reduce waste when there is a cost associated with waste and that an increase in the cost of waste collection will increase the amount of recycled material by the households.

3.4 Simple Model of Food Handling

Household waste management aims to decrease the amount of food waste that is disposed in the general garbage and recycle it by throwing it in the garbage for organic waste or by composting. Although this is good for reducing the amount of general waste, it does not reduce the amount of food waste. In a simple model based on chapter 3.1-3.3, a simple model of food handling could look like the modeling shown in equations (26) though (38). To start with, preparing a meal is a production, thus the production function for household meal production is:

$$
\begin{equation*}
m=m\left(Y, R, T_{m}, F\right) \tag{26}
\end{equation*}
$$

Where m is the household meal production, Y is the market goods for $m(\cdot), R$ is the re-used "food waste", T_{m} is the time use to produce meals, and F is the food waste generated in the meal production process.

Assumptions:

The market good, y , requires both money and time; $p_{y}>0, t_{y}>0$
Reusing "food waste" does not have a money price, but a time price; $p_{y}=0, t_{y}>0$
All partial derivatives are non-negative: $m_{y} \geq 0, m_{R} \geq 0, m_{T_{m}} \geq 0$, and $m_{F} \geq 0$

The concept of reusing "food waste", R, is that the consumer can choose between using leftovers of the items of Y that they already have bought, and buying a new item. If the consumer used half of a cucumber for a previous meal, then for the next meal, he/she can choose between using the other half of the cucumber that is in the fridge, or go to the supermarket and buy a new one. The preferences of the consumer on whether to choose the item in the fridge can be positive or zero, depending on their feelings towards using an item that will not be as fresh as a new item would be. Consumer preferences are modeled as:
$U=U\left(X, m\left(Y, R, T_{m}, F\right), T_{L}, R\right)$

Where, X is all of the consumption, except for the food consumed in the home, through $\mathrm{m}(\cdot)$, with $p_{x}=1$, and $t_{x}>1$, and T_{L} is the hours of leisure. We assume that $U_{x}>0, U_{m}>0$, $U_{T_{L}}>0$, and $U_{R} \geq 0$. There is thus an assumption that the utility of reusing food can be equal to zero.

In this model, there are two budgets, a money budget and a time budget:

Money budget: $I+w T_{W}-x-P_{y} Y-C(F-R)=0$
Time budget: $T-T_{L}-T_{W}-t_{y} Y-t_{R} R-T_{m}=0$

Where, w is the wage, C is the food disposal cost, and T_{w} is the amount of time spent working. We can merge the two constraints by solving the time budget for T_{w}, and insert this into the money budget, which gives:
$I+w\left(T-T_{L}-t_{y} Y-t_{R} R-T_{m}\right)-X-P_{y} Y-C(F-R)=0$

The consumer choice problem is formally written as:
$\operatorname{Max} U\left(X, m\left(Y, R, T_{m}, F\right), T_{L}, R\right)$
s.t. $I \geq w\left(T-T_{L}-t_{y} Y-t_{R} R-T_{m}\right)-X-P_{y} Y-C(F-R)$

The Lagrangian function:

$$
\begin{align*}
L\left(X, Y, R, T_{m}, F, T_{L}, \lambda\right) & =U\left(X, m\left(Y, R, T_{m}, F\right), T_{L}, R\right) \\
& +\lambda\left[I+w\left(T-T_{L}-t_{y} Y-t_{R} R-T_{m}\right)-X-P_{y} Y-C(F-R)\right] \tag{32}
\end{align*}
$$

First order conditions, assuming interior solutions:

1) $\mathrm{X}: \frac{\partial L}{\partial X}=U_{x}-\lambda=0 \rightarrow \lambda=U_{x}$
2) $\mathrm{Y}: \frac{\partial L}{\partial Y}=\frac{\partial L}{\partial m} \frac{\partial m}{\partial Y}=U_{m} m_{y}-\lambda w t_{y}-\lambda P_{y}=0$
3) R: $\frac{\partial L}{\partial R}=\frac{\partial L}{\partial m} \frac{\partial m}{\partial R}=U_{m} m_{R}-\lambda w t_{R}+U_{R}+\lambda C=0$
4) $T_{m}: \frac{\partial L}{\partial T_{m}}=\frac{\partial L}{\partial m} \frac{\partial m}{\partial T_{m}}=U_{m} m_{T_{m}}-\lambda w=0$
5) F: $\frac{\partial L}{\partial F}=\frac{\partial L}{\partial m} \frac{\partial m}{\partial R}=U_{m} m_{F}-\lambda C=0$
6) $T_{L}: \frac{\partial L}{\partial T_{L}}=U_{T_{L}}-\lambda w=0$
7) $\lambda: \frac{\partial L}{\partial \lambda}=I+w\left(T-T_{L}-t_{Y} Y-t_{R} R-T_{m}\right)-X-P_{y} Y-C(F-R)=0$

From equation (16) we can get the marginal benefit-marginal cost ratio of reusing "food waste": $U_{m} m_{r}+U_{R}+\lambda C=\lambda w t_{R} \rightarrow \frac{U_{m} m_{R}+U_{R}}{\lambda}+c=w t_{R}$. Since λ is the marginal utility of money, then by dividing non-monetary terms on the marginal utility of money, we get the monetary value. This implies that the monetary value of the marginal utility that the consumer gets from reusing "food waste" both in meals and as a concept in general plus the decreased cost associated with less disposal is the marginal benefit of reusing "food waste". The value of the time spent reusing "food waste" is the wage rate, thus the marginal cost is wage multiplied with the time spent.

If people have or perceive to have a relatively high time cost for getting meal inputs (y) and or a low marginal productivity of time as inputs into meal production, then household meal production, m, will be relatively low, all else held equal. People who have or
perceive to have high marginal utility for new-purchased food relative to the marginal utility of reused food, will use more new-purchased and less reused food in meal preparation, all else equal. This is also the case if the marginal utility for food waste is high relative to the marginal utility of reused food.

If the cost of disposal increases, then the amount of food waste will decrease and thus the amount of reused food will increase. On the other hand, if there is no cost for wasting food, which is the case in many cities, then the amount of reused food will be determined by the utility of reusing food in relation to the price of buying new food. Cities that do not charge the population for food waste, could use that as an incentive for getting the households to dispose less food, as food waste has an extra cost associated with the disposal of food.

The first condition implies that the marginal utility of money is equal to the marginal utility of the consumption of good X . The underlying assumption of decreasing marginal utility of $X, U_{x x}<0$, this implies that the marginal utility of money, λ, will decrease. As an effect of this, an increase in the money budget will decrease the marginal utility of money. This will lead to a decrease in the amount of reused food as the marginal cost of reusing food will decrease. Thus, we can assume that higher income will lead to a more wasteful behavior, all else equal.

4. The Seattle Data \& Empirical Framework

During the period January to March 2013, Seattle Public Utilities (SPU) in Seattle, Washington conducted a project wherein a number of their residential subscribers voluntarily weighed their food waste every day for 13 weeks. A preliminary questionnaire was used to get the respondents' personal information and habits related to food planning, shopping and waste. The goal of the project was to get information about the inhabitants' perceived and actual actions, and in particular how much food waste they produce per week. In order to get volunteers to participate in the project, an article about the project was written in SPU's newsletter that goes out to primarily single family residential customers with the residential bill that gets sent out every other month. Initially 170 customers volunteered after receiving detailed information about what the project entailed and what was expected of them. In the end 132 customers picked up the complementary kitchen scale to weigh their food waste, 125 participants answered the preliminary survey, and 123 participants weighed their food waste during all or some of the weeks. Both the preliminary survey and later, the weight forms, were answered in SurveyMonkey.

As mentioned above, the project was divided into two parts, starting with a preliminary questionnaire, which was followed by a diary survey where the respondent filled out information about how much food waste they had discarded that week, every day for 13 weeks. The preliminary questionnaire started by asking a number of questions related to food, followed by a number of questions on demographics and the living conditions of the respondents, e.g. how many lived in the household and their ages. In the weekly weighing form, the respondents were asked to fill out the weight of their food waste, both edible and inedible, in pounds and ounces, and the number of meals they had prepared. These needed to be filled out for each day. In addition they were asked to distribute the shares of where they had discarded the waste, and types of food waste. For instance, if they threw away the food waste in the curbside organics bin or in the kitchen sink disposal and if the food waste was fruit and vegetables or meat.

Not all the information that was collected was used in the regressions, for example information about whether the respondent owns or rents the home they live in, or primary
language spoken in the home. There are always considerations that need to be made on what to include in the regressions and what not. The reason for this is that including all of the variables could lead to high correlations among the independent variables or they might not be relevant in terms of what one wants to analyze. A complete statistical summary from the preliminary background survey is provided in appendix 1.

The demographic data collected from the preliminary questionnaire that is used in the various regressions are age, gender, education, income, household size, race, and whether one had immigrated to the United States or not. The questionnaire also asked about diet, if the household ate meat or not, and zip code. The distribution of these qualities was compared with the Seattle census were the information about gender, age, household size, and race is from the 2010 census, while the information about education, income, and immigrants is taken from the 2012 census. The reason for this is that in the US, a large census is done every five years, while information about education level and income distributions are provided more frequently and not at the same time as the general census. The distribution of the data collected and the Seattle census is shown in table 4.1.

The distribution of demographic traits of the respondents is quite different from the Seattle census. We have a large imbalance of women, ages between 35 and 64 years, higher educated, white people in 2-person households. Gender has a large bias with almost 74\% of the respondent being women. Age is skewed towards older people compared with the census. The distribution of the education sample is skewed towards a higher level of education compared to the census. According to the Seattle census, 22.8% of the population has postgraduate work or degree, while this number is 47.6% in the sample. The income distribution is fairly equal among the sample and the census. In the sample there is a slight clustering around $\$ 50,000$ to $\$ 100,000$. For household size, the sample has too few 1-person households, too many 2-person households, while the number of households consisting of 3 people or more is similar to the census. There is a larger amount of Caucasian people in the sample than the census, while there are too few African American and native Alaskan compared to the census. The immigrant sample distribution is relatively equal to the census. The distribution of zip codes was divided into two groups, the affluent north and the industrial south.

Table 4.1: Demographic data

Variable		Sample Seattle census	
Gender	Male ($\mathrm{n}=30$)	26,1 \%	50,0 \%
($\mathrm{N}=119$)	Female ($\mathrm{n}=88$)	73,9 \%	50,1 \%
Respondent's Age ($\mathrm{N}=123$)	$18-34$ years ($\mathrm{n}=12$)	9,8 \%	38,6 \%
	$35-54$ years ($n=60$)	48,8 \%	35,0 \%
	$55-64$ years ($n=30$)	24,4 \%	13,7 \%
	$65+$ years ($n=21$)	17,1\%	12,7\%
Education$(N=122)$	Less than high school or GED ($\mathrm{n}=0$)	0,0 \%	7,1\%
	High school graduate or GED ($\mathrm{n}=1$)	0,8\%	11,9 \%
	Some college or Associates degree ($\mathrm{n}=20$)	16,4\%	24,6 \%
	4 year college degree ($n=43$)	35,2 \%	33,7 \%
	Post graduate work or degree ($\mathrm{n}=68$)	47,6 \%	22,8 \%
$\left\lvert\, \begin{aligned} & \text { Income } \\ & (\mathrm{N}=100) \end{aligned}\right.$	\$0-\$49,999	25,0\%	40,2 \%
	\$50,000-\$74,999	27,0\%	17,0 \%
	\$75,000-\$99,999	19,0 \%	12,2 \%
	\$ 100,000 or more	29,0 \%	30,5 \%
Household Size ($\mathrm{N}=122$)	1-person household ($\mathrm{n}=25$)	20,5 \%	41,3 \%
	2-person hous ehold ($\mathrm{n}=57$)	46,7 \%	33,3 \%
	3 -person hous ehold ($\mathrm{n}=23$)	18,9 \%	12,2 \%
	4-or-more-person household ($\mathrm{n}=17$)	13,9\%	13,2 \%
Race ($\mathrm{N}=115$)	Caucasian ($\mathrm{n}=96$)	83,5 \%	69,5 \%
	Black or African American ($\mathrm{n}=1$)	0,9 \%	7,9 \%
	Asian ($\mathrm{n}=16$)	13,9 \%	13,8 \%
	Native Alaskan ($\mathrm{n}=1$)	0,9 \%	13,8 \%
	Combination ($\mathrm{n}=1$)	0,9 \%	0,8\%
Immigrant	Yes ($\mathrm{n}=17$)	14,5 \%	17,3 \%
($\mathrm{N}=117$)	No ($\mathrm{n}=100$)	85,5 \%	82,7 \%
Area ($\mathrm{N}=123$)	North ($\mathrm{n}=73$)	59,3\%	
	South ($\mathrm{n}=50$)	40,7\%	
Diet ($\mathrm{N}=126$)	Vegetarian ($\mathrm{n}=18$)	14,3\%	
	Non-vegetarian ($\mathrm{n}=108$)	85,7\%	

In the descriptive data set, the main focus of the regressions is to study the effect of the descriptive information, such as, age, education, income etc, on the various habitvariables, noted as questions 3 through 11, refer to table 4.2, in the preliminary questionnaire. Each of the behavioral y-variables has been recoded in SPSS. Examples of this are questions 3 through 5 , which in the preliminary questionnaire the respondent could be answered as "Always", "Often", "Occasionally", and "Never". Here "Always" was given the value 1 in the data set; "Often" was given the value 2 and so forth. In the regressions the
alternatives "Occasionally" and "Never" were merged and given the value 0, while the answer alternatives "Always" and "Often" were merged and given the value 1.

There is a huge advantage to using the output from the questionnaire this way. Asking answers with many possible answer alternatives often provides more accurate answers than if one had less alternatives to choose from and maybe none of the alternatives fitted. One can always choose to change a question with four answer alternatives into a question with two alternatives during the statistical processing.

The self-assessed behavioral questions (3 through 11) were regressed on the descriptive data, age, education, income, gender, household size, zip code and race. Table 4.2 shows how the behavioral questions have been coded.

Table 4.2: Self-assessed behavioral questions

Variable	Description	Scale
Q3 Pre-Shopping Indicator	Do you plan meals before you go shopping?	0: Occasionally/Never 1: Often/Always
Q4 Home-Prepared Meals Indicator	Do you make a shopping list based on how many meals you expect to eat at home before your next shopping trip?	0: Occasionally/Never 1: Often/Always
Q5 Shopping List Indicator	Does you shopping list note quantities of food to buy?	0: Occasionally/Never 1: Often/Always
Q6 Shopping Rate Indicator	When you buy food, how many days do you usually shop for?	0 : For up to three days 1: For four or more days
Q7 Preparation Indicator	How often do you peel, cut up, or otherwise prepare fruit and vegetables ahead of time to use as snacks and in meals?	0: Less than 75\% of the time 1: More than 75% of the time
Q8 Fruit Waste Indicator	About how muh of your fresh fruit and vegetables spoil before you can eat them?	0: More than 5\% 1: Less than 5\%
Q9 Leftovers Indicator	Do you use older food items before cooking newer food?	0 : Less than 75% of the time 1: More than 75% of the time
Q10 "Sell by" Date Indicator	Do you compost or throw away food when they are past their "Sell By" date?	0 : Sometimes/Always 1: Never
Q11 "Use by" Date Indicator	Do you compost or throw away food when they are past their "Use By" date?	0: Sometimes/Always 1: Never

For the weight form survey, a diary survey was used. Each respondent was asked to answer the same questions about how much food waste they had that week, where they had discarded the waste, and how much of different types of food (i.e. edible food waste, fruit and vegetables, etc.) had been discarded. Don Dillman (2000) described diary survey as a type of survey that "[...] share the need to truncate the implementation process in order to preserve data quality, maintain customer relations, and/or meet essential reporting deadlines." He goes on by explaining why a quick answer is needed in some cases and mentions people's forgetfulness as a main reason, which is the main reason in this survey
that the form of diary survey was chosen in order to collect the accurate information on how much food waste the participating households had each week.

A concern regarding diary surveys and this particular project is that the respondent realizes how much he or she throws away and actively reduces his or her waste during the length of the project, and as soon as the project is ended, goes back to the behavior form before the project start. The issue with this is that the reporting of the amounts of food waste becomes artificially low and does not reflect how much is normally wasted. The sample of respondents is supposed to reflect the general population of Seattle, Washington, as well as possible. If the respondents keep their reporting artificially low, these numbers do not really reflect the population.

When the descriptive analysis was finalized the data set with the weight form data was merged with the descriptive data. This was done by replicating the data from the descriptive survey with each of the respondent's food waste data for each of the weeks. Thus, each descriptive variable which used to have a total number of observations of 125 now had a total number of observations of 1400 . The implications of this include that the distribution of answers of some of the questions asked in the preliminary survey is slightly different. The reason for this is that not everyone answered the weight form survey all of the 13 weeks. In fact, on average, each respondent completed 11.2 of the 13 weeks, which leads to a total number of observations for the complete data set at 1,400 instead of 1,625 which would have been the number of observations had every one of the respondents of the preliminary questionnaire filled out the information about their food waste all of the 13 weeks that the project was going on.

4.1 The Econometric Framework

4.1.1. The preliminary questionnaire

For the preliminary questionnaire the primary focus was to investigate if a correlation between the self-assessed behavioral data and the descriptive data exist. This is a crosssection type of data set. The nine questions concerning food habits regarding planning, shopping, and wasting were the dependent variables in the regressions, while the questions related to income, gender, education, etc, were the independent variables. These
regressions were run as linear OLS regressions. The OLS estimator is the smallest sum of squared errors possible when drawing a regression line. The multiple OLS regression is:

$$
Y_{i}=\boldsymbol{\beta} \boldsymbol{X}_{\boldsymbol{i}}+u_{i}
$$

Where, Y_{i} is the dependent variable that are being regressed on the independent variables, \boldsymbol{X}_{i}, given their coefficients $\boldsymbol{\beta} . u_{i}$ is the error term, which contains everything that affects the dependent variable, but is not explained by the independent variables.

Some of the variables are so-called dummy variables; these variables are binary variables which yield the value 1 if the variable comes through and 0 if not. For example the gender variable, instead of having one value for male and another for female, the variable is given a value of 1 if female and 0 if not female, thus male. The variables for the descriptive data set are female, south, white, two-people household, three-people household, and minimum four-people household. The base group for the descriptive data is the group against which the comparisons are made; male, north, not white, and a one-person household. The general equation for the regression is:

$$
\begin{aligned}
& Y=\beta_{o}+\beta_{1} \text { Age }+\beta_{2} \text { Age }^{2}+\beta_{3} \text { Education }+\beta_{4} \text { Education }^{2}+\beta_{5} \text { Income }+\beta_{6} \text { Income }^{2} \\
& +\beta_{7} \text { DumFemale }+\beta_{8} \text { Dum2peopleHhld }+\beta_{9} \text { Dum3peopleHhld } \\
& +\beta_{10} \text { Dum4peopleHhld }+\beta_{11} \text { DumSouth }+\beta_{12} \text { DumWhite }+u
\end{aligned}
$$

This is the equation for all of the nine regressions that were done on the self-assessed behavioral questions in the preliminary survey. For a specific regression, with one of the question as the dependent, Y -variable the equation will be as follows:
$\widehat{Y_{l}}=\widehat{\beta_{0}}+\widehat{\beta_{1}}$ Age $+\widehat{\beta_{2}}$ Age ${ }^{2}+\widehat{\beta_{3}}$ Education $+\widehat{\beta_{4}}$ Education $^{2}+\widehat{\beta_{5}}$ Income + $\widehat{\beta_{6}}$ Income $^{2}+\widehat{\beta_{7}}$ DumFemale $+\widehat{\beta_{8}}$ Dum 2 peopleHhld $+\widehat{\beta_{9}}$ Dum3pplHhld + $\widehat{\beta_{10}}$ Dum4peopleHhld $+\widehat{\beta_{11}}$ DumSouth $+\widehat{\beta_{12}}$ DumWhite

Note that the base line for this equation is the same as for the general equation, and that (beta hat) are the specific beta variables for each independent, x-variable. The regressions
done for the preliminary questionnaire could maximum have 100 observations. The reason for this is that not everyone answered all of the questions in the survey.

4.1.2. Panel Data

Following the same households over a period of time, in this case 13 weeks, gives a time series dimension to the cross-section data set that we already have, and together the data set is a panel data set. Here, the dependent variables in the previous section have now become independent variables that affect the amount of food waste in each household. The new dependent variables are shown in table 4.4.

Table 4.3: Dependent variables for the combined data set

Y -variable	Description	Scale
Y_{1} Total Food Waste	The amount of food waste discarded by one household during one week, measured in ounces.	0-1770
Y_{2} Total Food Waste/Meals	The amount of food waste discarded by one household during one week adjusted for the number of meals consumed that week, measured in ounces.	0-55
Y ${ }_{3}$ Total Food Waste/Household Size	The amount of food waste discarded by one household during one week adjusted for the number of people living in the household, measured in ounces.	0-885
Y_{4} Total Edible Food Waste	The amount of edible food waste discarded by one household during one week, measured in ounces.	0-1760
Y ${ }_{5}$ Total Edible Food Waste/Meals	The amount of edible food waste discarded by one household during one week adjusted for the numer of meals consumed that week, measured in ounces.	0-55
Y_{6} Total Edible Food Waste/Household Size	The amount of edible food waste discarded by one household during one week adjusted for the number of people living in the household, measured in ounces.	0-880

One ounce is 28.35 grams to be exact. The independent variables which these dependent variables are regressed on in STATA are shown in table 4.4.

Table 4.4: Independent variables for the combined data set

X-variables	Description	Coding
X_{1} Question 3	Pre-Shopping Indicator	0: Occasionally/Never 1: Often/Always
X_{2} Question 4	Number of Meals Indicator	0: Occasionally/Never 1: Often/Always
X_{3} Question 5	Food Quantities Indicator	0: Occasionally/Never 1: Often/Always
X_{4} Question 6	Shopping Rate Indicator	0 : For up to three days 1: For four or more days
X_{5} Question 7	Preparation Indicator	0: Less than 75% of the time 1: More than 75% of the time
X_{6} Question 8	Fruit Waste Indicator	0: More than 5\% 1: Less than 5\%
X_{7} Question 9	Leftovers Indicator	0 : Less than 75% of the time 1: More than 75% of the time
X_{8} Question 10	"Sell by" Date Indicator	0 : Sometimes/Always 1: Never
X9 Question 11	"Use by" Date Indicator	0: Sometimes/Always 1: Never
X_{10} Age	Age of the respondent	
X_{11} Age 2	Age squared	
X_{12} Education	Respondent's number of years of education	
X_{13} Education ${ }^{2}$	Education squared	
X_{14} Income	Respondent's annual income	US \$
X_{15} Income ${ }^{2}$	Income squared	US \$
X_{16} Dummy Female	Respondent is female	If 1, else 0
$\begin{array}{ll} & \text { Dummy } \\ X_{17} & \text { SouthernZipCode } \end{array}$	Respondent lives in the southern part of Seattle, WA	If 1, else 0
X_{18} Dummy White	Respondent is white	If 1, else 0
X_{19} Dummy Immigration	Respondent is an immigrant	If 1, else 0
X_{20} Dummy Vegetarian	Respondent is vegetarian, pescetarian or vegan	If 1, else 0
x Dummy Two X^{21} PeopleHousehold	Respondent lives in a household consisting of two people	If 1, else 0
$X_{22} \begin{aligned} & \text { Dummy Three } \\ & \text { PeopleHousehold }\end{aligned}$	Respondent lives in a household consisting of three people	If 1, else 0
$\begin{array}{\|ll} X_{23} & \text { Dumm MinFour } \\ \text { PeopleHousehold } \\ \hline \end{array}$	Respondent lives in a household consisting of four or more people	If 1, else 0

The economic model of total food waste is: $Y_{1}=f\left(X_{1}, X_{2}, \ldots, X_{23}\right)$, which tells us that total food waste is a function of the x-variables, X_{1} through X_{23} The econometric model of total food waste is: $Y_{1}=\beta_{o}+\beta_{1} X_{1}+\beta_{2} X_{2}+\cdots+\beta_{23} X_{23}+\varepsilon$. Here β_{o} is the constant and β_{1} through β_{23} are the effect on Y_{1} given a unit change of its related X . Thus, if there is a unit change in X_{1}, there is a corresponding change in Y_{1} equal to β_{1}. The estimated model of total food waste is $\widehat{Y_{1}}=\widehat{\beta_{0}}+\widehat{\beta_{1}} X_{1}+\widehat{\beta_{2}} X_{2}+\cdots+\widehat{\beta_{23}} X_{23}$. Here, the " \wedge " indicates an estimate for each β and the dependent variable, Y_{1}. This is also the OLS model which was modeled in the preliminary survey.

In this combined data set, however, a few other methods were also applied for the regressions. The regular OLS regression assumes that all of the observations are individually and independently distributed (i.i.d.). The issue with this is that the current data set is not independently distributed as each household has up to thirteen observations. In order to take the household factor into account, we use a pooled OLS regression. The function for the pooled OLS estimator is:
$y_{i t}=x_{i t}^{\prime} \beta+a_{i}+u_{i t}, \quad$ Household no: $i=1, \ldots, N, \quad$ Week no: $t=1, \ldots, T$.

Where α_{i} is the unobserved effect (Wooldridge, 2006). This model does not acknowledge that there are 125 households with up to 13 observations per household. Using a cluster OLS model where the household no, i, is identified.

One of the assumptions of a multiple regression, which is a regression with more than one independent variable, is that the variance of the error term is constant. If this is not the case, we have something called heteroskedasticity. Instead of testing all of the regressions, Y1 through Y6, for heteroskedasticity, we can adjust the standard errors for heteroskedasticity. When adjusted by the inverse of the variance of the standard error, we have the weighted least squares (WLS) estimator. The model for panel data where the error term contains an unobserved effect is precisely that; an unobserved effects model:

$$
y_{i t}=\beta_{o}+\beta_{1} x_{i t 1}+\beta_{2} x_{i t 2}+\cdots+\beta_{23} x_{i t 23}+\alpha_{i}+u_{i t}, \quad t=1,2, \ldots, T .
$$

Where there is an assumption that the unobserved variable, α_{i}, has zero mean. This model is used further to model random effects (Cameron \& Trivedi, 2010).

If we assume that the unobserved effect α_{i} is uncorrelated with the independent variables, then the unobserved effects model becomes a random effects model:
$\operatorname{Cov}\left(x_{i t}, \alpha_{i}\right)=0, \quad \mathrm{t}=1,2, \ldots, \mathrm{~T} ; \mathrm{j}=1,2, \ldots, \mathrm{k}$.

Because α_{i} is an error term in the random effects model, this model i viewed as a specialization of the pooled OLS model (Cameron \& Trivedi, 2005). The random effects model should be used if there is reason to believe that differences between households affect the dependent variable. Since we have reason to believe that this is the case with this model, the random effects model is used both regular and robust, which increases the standard error in the case that there would be heteroskedasticity. Note that the random effects model has two errors terms, α_{i} and u_{i}. These errors have the potential to be serially correlated and heteroskedastic. By increasing the standard error for each coefficient, both of these issues will be controlled for.

4.2 Hypotheses

Based on the data that is going to be tested in SPSS and STATA and the research questions in the introduction, a number of hypotheses have been formulated. The hypotheses that form the base of the work in the software programs SPSS for the preliminary data set and STATA for the combined preliminary and food waste data are:

Table 4.5: Hypotheses

Hypothesis: Description:

I	Food and meal planning lead to a decrease in the amount of food waste
II	An increase in household size leads to an increase in the amount of food waste
III	The standard demographics affect food waste
IV	Vegetarians throw away less food waste than non-vegetarians
V	Immigrants throw away less food waste than non-immigrants

To begin with hypothesis I, the behavioral questions have as mentioned earlier been recoded so that the behavior which indicates the largest amount of planning required, yield the value 1 .

Thus, it is natural to think that people who plan their meals and shopping list before going shopping, people who shop for multiple days at a time, people who think that they throw away less food before consumption, and who do not look at the expiration date when throwing away food, have less food waste compared to people who are less concerned about these things.

The second hypothesis which states that each coefficient for household size dummy variable is positive and increasing in size is only applicable to the dependent variables total food waste, Y 1 and $\ln (\mathrm{Y} 1)$, and total edible food waste, Y 4 and $\ln (\mathrm{Y} 4)$, as the other dependent variables already are corrected for the number of people or number of meals. The logic behind this is that larger households throw away more food than smaller households.

The third hypothesis suggests that the standard demographics, age, education and income affect the amount of food wasted. For age it would be expected that older people waste less food than younger people, as wasting food used to be relatively more expensive and some food items were difficult to get. People with a higher level of education generally know more about the importance of not throwing away food, thus the assumption is that education affects food waste negatively, as a higher level of education leads to lower amounts of food waste. A higher income is usually associated with a higher level of wastefulness, as people with more means tend to buy more things and thus have larger amounts of waste. This should also apply to food waste, and thus it seems reasonable that income affects food waste positively.

A reason for why a lot of people become vegetarians is of concern of the environment and the way animals are treated. Thus it is logical that vegetarians are also concerned with other measures to improve the environment and thus consciously waste as little food as possible. The third hypothesis implies that vegetarians, vegans and pescetarians (vegetarians who eat fish and other seafood) throw away less food than non-vegetarians.

The fifth and last hypothesis which states that immigrants throw away less food than non-immigrants is based on the reality that a most of them immigrate to the US and other industrialized countries from a culture where food is a scare resource and should therefore not be wasted. Thus it seems sensible that first-generation immigrant households have lower amounts of food waste than non-immigrants.

5. Econometric Estimation Results

In this section the results of the regressions that were conducted as explained in the previous chapter will be presented. In addition, some descriptive and summarized data will be shown. For each dependent variable related to food waste amounts (Y1 through Y6) there are four different regressions. This was done for the direct input and the functional form loglevel. Regression analysis was also used to test for learning variables, i.e. if there is a significant decrease in the amount of food waste over time. All together there are 54 regressions for the combined preliminary and weight form data set, and there are also nine regressions for the preliminary data set itself.

Table 5.1: Descriptive statistics for the preliminary data set

Variable	Mean	Std. Dev.	Min	Max
Pre-Shopping Indicator	0,568	0,497	0	1
Home-Prepared Meals Indicator	0,480	0,502	0	1
Shopping List Indicator	0,504	0,502	0	1
Shopping Rate Indicator	0,752	0,434	0	1
Preparation Indicator	0,144	0,353	0	1
Fruit Waste Indicator	0,397	0,491	0	1
Leftovers Indicator	0,464	0,501	0	1
"Sell by" Date Indicator	0,492	0,502	0	1
"Use by" Date Indicator	0,144	0,353	0	1
Age	51,927	14,049	26	75
Age	2892	1504	676	5625
Education	16,569	1,548	12	18
Education	276,911	49,799	144	324
Income	74851	28631	25000	110
Income	$6,4 \mathrm{e}+09$	$4,2 e+09$	$6,25 \mathrm{e}+08$	$1,2 e+10$
Income	0,740	0,441	0	1
Female	0,467	0,501	0	1
Two-people Household	0,189	0,393	0	1
Three-people Household	0,139	0,348	0	1
minFour-people Household	0,407	0,493	0	1
Southern zip code	0,762	0,428	0	1
White race				

This chapter begins with an overview of the preliminary survey regressions and comments to these, followed by the regressions that were conducted for the combined data set with explanations. Lastly, the regressions done to explore the possibility of learning variables will
be presented and commented. The descriptive data for the independent and dependent variables in the preliminary data set are shown in table 5.1.

The descriptive data for both the dependent and independent variables used in the regressions for the combined preliminary data set and the weight form data are shown in table 5.2.

Table 5.2: Descriptive data for the combined data set

Variable	Mean	Std. Dev.	Min	Max
Total Food Waste	97,011	89,548	0	1770
Ln(Total Food Waste)	4,299	0,843	0	7,479
Total Food Waste per Meal	3,435	3,311	0	55,313
Ln(Total Food Waste per Meal)	0,929	0,803	-2,485	4,013
Total Food Waste per Person	44,798	42,674	0	885
Ln(Total Food Waste per Person)	3,553	0,783	0	6,786
Total Edible Food Waste	30,944	65,996	0	1760,000
Ln(Total Edible Food Waste)	2,995	1,280	0	7,473
Edible Food Waste per Meal	1,125	2,338	0	55
Ln(Edible Food Waste per Meal)	-0,429	1,307	-4,615	4,007
Edible Food Waste per Person	14,197	32,113	0	880,000
Ln(Edible Food Waste per Person)	2,207	1,298	0	6,780
Pre-Shopping Indicator	0,568	0,491	0	1
Home-Prepared Meals Indicator	0,494	0,500	0	1
Shopping List Indicator	0,499	0,500	0	1
Shopping Rate Indicator	0,755	0,430	0	1
Preparation Indicator	0,156	0,363	0	1
Fruit Waste Indicator	0,417	0,493	0	1
Leftovers Indicator	0,501	0,500	0	1
"Sell by" Date Indicator	0,485	0,500	0	1
"Use by" Date Indicator	0,143	0,350	0	1
Age	52,291	14,114	26	75
Age ${ }^{2}$	2933	1524	676	5625
Education	16,564	1,556	12	18
Education ${ }^{2}$	276,775	49,995	144	324
Income	75020	28187	25000	110000
Income ${ }^{2}$	6,4e+09	4,2e+09	6,25e+08	1,2e+10
Female	0,729	0,445	0	1
Southern zip code	0,409	0,492	0	1
White race	0,760	0,427	0	1
Immigrant	0,154	0,361	0	1
Vegetarian	0,140	0,347	0	1
Two-person household	0,507	0,500	0	1
Three-person household	0,184	0,387	0	1
minFour-people household	0,132	0,338	0	1

Table 5.2 continued

Variable	Mean	Std. Dev.	Min	Max
Week 2	0,084	0,278	0	1
Week 3	0,083	0,276	0	1
Week 4	0,079	0,270	0	1
Week 5	0,079	0,269	0	1
Week 6	0,079	0,269	0	1
Week 7	0,079	0,269	0	1
Week 8	0,074	0,262	0	1
Week 9	0,074	0,262	0	1
Week 10	0,075	0,263	0	1
Week 11	0,069	0,254	0	1
Week 12	0,068	0,252	0	1
Week 13	0,070	0,255	0	1

Two of the regressions in this analysis are those on total food waste and total edible food waste, graph 5.1 shows the weekly average of these variables over time:

Figure 5.1: Total food waste and edible food waste per week

This graph shows how the amounts weekly average weight of total and edible food wastes in ounces, over time. Total food waste fluctuates, but the average amount of food waste in
week 13 is higher than in week 1 . Edible food waste, on the other hand, is decreasing over time.

5.1. The Preliminary data

The regression results for the self-assessed behavioral dependent variables are shown in table 5.3. These regressions do not have a lot of significant independent variables. The regression on the Pre-Shopping Indicator, which is question 3 in the preliminary survey, has significant coefficients for the constant, education, education squared, and the dummy variable for Caucasian race. The Number of Meals Indicator has significant coefficients for the dummy variable for a Caucasian race, while the Food Quantities Indicator has significant coefficients for the constant, education, and education squared. The regression with the Preparation Indicator as dependent variable is correlated with income squared. The Fruit Waste Indicator has significant coefficients for age, education, and the dummy variable for a two-person household. The last regression on the "Use by" Date Indicator has significant coefficients for education and education squared. There were no significant coefficients in the regressions on the Shopping Rate Indicator, the Leftovers Indicator, and the "Sell by" Date Indicator.

Figure 5.3: Regressions on the preliminary data set

Table: 5.3	Pre-Shopping Indicator		Home-Prepared Meals Indicator		Shopping List Indicator		Shopping Rate Indicator		Preparation Indicator		Fruit Waste Indicator		Leftovers Indicator		"Sell by" Date Indicator		"Use by" Date Indicator	
	β	t	β	t	β	t												
Constant	4,26***	2,781	2,208	1,426	4,1**	2,750	0,725	0,536	1,204	1,055	1,825	1,259	2,358	1,480	-1,050	-0,668	-1,526	-1,350
Age	-0,275	-0,823	-0,297	-0,879	-0,211	-0,649	-0,108	-0,365	0,077	0,306	0,557*	1,766	-0,019	-0,055	0,140	0,409	-0,239	-0,973
Age ${ }^{2}$	0,045	0,714	0,051	0,799	0,043	0,706	0,014	0,262	-0,005	-0,115	-0,092	-1,567	0,001	0,020	-0,008	-0,131	0,057	1,253
Education	-1,69**	-2,392	-0,887	-1,239	-1,66**	-2,410	0,084	0,135	-0,726	-1,377	-1,119*	-1,669	-1,063	-1,441	0,867	1,194	1,129**	2,159
Education ${ }^{2}$	0,20**	2,308	0,103	1,167	0,19**	2,224	-0,014	-0,185	-0,101	1,541	0,128	1,542	0,132	1,449	-0,117	$-1,303$	-0,14**	-2,160
Income	-0,021	-0,152	0,076	0,554	-0,069	-0,522	0,058	0,489	0,166	1,640	0,104	0,816	0,020	0,143	-0,127	-0,924	-0,101	-1,017
Income ${ }^{2}$	0,004	0,239	-0,009	-0,575	0,014	0,931	-0,012	-0,887	-0,023*	-1,957	-0,014	-0,905	-0,004	-0,245	0,017	1,069	0,009	0,813
Dummy Female	-0,083	-0,658	0,091	0,706	-0,043	-0,346	0,023	0,202	-0,116	-1,235	0,051	0,431	-0,082	-0,617	0,017	0,132	-0,098	-1,056
Dummy 2-person hhld	-0,047	-0,327	0,162	1,120	-0,027	-0,194	0,076	0,600	0,006	0,052	0,260*	1,921	0,138	0,934	-0,118	-0,803	0,001	0,006
Dummy 3-person hhld	-0,017	-0,096	0,014	0,078	-0,154	-0,891	0,102	0,648	-0,026	-0,200	-0,032	-0,191	-0,027	-0,148	$-0,278$	$-1,526$	0,006	0,049
Dummy 4+ people hhld	-0,117	-0,622	0,307	1,618	-0,080	-0,440	0,148	0,895	0,135	0,961	-0,062	-0,347	0,059	0,301	-0,160	-0,829	0,135	0,970
Dummy South	-0,126	-1,172	-0,121	-1,115	-0,145	-1,389	0,103	1,082	0,043	0,534	-0,135	-1,340	0,005	0,045	-0,095	-0,875	0,004	0,052
Dummy Caucasian	0,30**	2,142	0,283*	1,997	0,292	2,142	0,057	0,643	-0,116	-1,111	0,011	0,086	0,194	1,335	0,072	0,499	-0,042	-0,405
$N=$		94		94		94		94		94		95		94		95		95
$\mathrm{R}^{2}=$		0,146		0,142		0,206		0,083		0,171		0,231		0,085		0,116		0,132

5.2. The Food Waste Regressions

There are four tables on regression output, where table 5.4 and 5.5 show the regressions on total food waste, total food waste per meal, and total food waste per person, while table 5.6 and 5.7 show the regressions on total edible food waste, edible food waste per meal, and edible food waste per person. The regressions on the combined data set are all conducted for two types of functional form; level-level, and log-level. A functional form of log-level is when the dependent variable is set in the natural logarithm. This gives the opportunity of getting the beta-variables in percentage change, instead of a number that indicates how the explanatory variables affect the output variable. It is also important to keep in mind that the regressors' variables are the changes in the dependent variable all else held constant (ceteris paribus).

The coefficients of the dummy variables in the log-level regressions need to be readjusted as they do not yield the percentage effects accurately (Halvorsen and Palmquist, 2010). To get the percentage effect of the dummy variables the equation that needs to be calculated is:
$100 \times g=100 \times\{\exp (c)-1\}$

Where g is the percentage change on Y , and c is the coefficient of the dummy variable. All of the regressions output tables show the coefficient of the dummy variables, however in the analysis \& discussion chapter, the relative effect will be addressed.

The types of regressions that are conducted are pooled and cluster OLS regressions, and unadjusted and robust Random Effects regression. The Random Effects regressions will from now on be referred to as unadjusted and robust RE regressions. The output of the various regressions performed on the dependent variables, total food waste, total food waste adjusted for meals and household size, total edible food waste, and edible food waste adjusted for meals and household size are followed in the next regression overviews, table 5.4 to table 5.7.

Table 5.4: Pooled OLS and unadjusted random effects for total food waste disposal

Table 5.4:		Total Food Waste				Total Food Waste Adjusted for Number of Meals				Total Food Waste Adjusted for Household Size			
		Y1		$\operatorname{Ln}(\mathrm{Y} 1)$		Y2		$\operatorname{Ln}(\mathrm{Y} 2)$		Y3		Ln (Y3)	
		OLS (pooled)	RE (unadjusted)										
Constant	β_{0}	2191,100***	2021,957***	25,309***	24,458***	45,725*	38,125	18,044***	15,773*	966,998***	948,250***	25,448***	24,433***
Pre-Shopping Indicator	β_{1}	11,655	11,995	0,091	0,089	0,447**	0,445	0,164***	0,139	5,515**	5,012	0,130**	0,121
Home-Prepared Meals Indicator	β_{2}	-5,609	-6,991	0,033	0,016	-0,177	-0,085	-0,021	-0,042	0,357	-0,628	0,018	-0,040
Shopping List Indicator	β_{3}	9,883	10,447	0,086	0,096	0,253	0,276	0,075	0,109	1,647	0,735	0,066	0,072
Shopping Rate Indicator	β_{4}	-14,354**	-16,161	$-0,187^{* * *}$	-0,188	$-1,119 * * *$	-1,199**	-0,341***	-0,347*	-10,974***	-11,982*	-0,184***	-0,185
Preparation Indicator	β_{5}	-0,042	-0,082	-0,020	0,018	-0,399	0,551	-0,075	-0,083	-9,268***	-8,312	-0,079	-0,018
Fruit Waste Indicator	β_{6}	35,084***	36,247**	0,318***	0,294*	0,591***	0,685	0,230***	0,201	20,566***	21,142***	0,389***	0,346***
Leftovers Indicator	β_{7}	$-42,528^{* * *}$	-46,065***	-0,385***	-0,405***	-0,765***	-0,638	-0,322***	-0,274*	-15,302***	-15,808**	-0,397***	0,402**
Sell by Date Indicator	β_{8}	2,675	3,292	0,075	0,104	0,342*	0,234	0,054	0,051	3,948	4,431	0,055	0,093
Use by Date Indicator	β_{9}	-4,535	-11,414	0,023	-0,026	-0,388	-0,510	-0,059	-0,130	-2,587	-3,804	0,042	-0,013
Age	β_{10}	-0,410	-1,026	0,024**	0,016	-0,106***	-0,174*	-0,011	-0,028	-0,203	-0,727	0,016	0,006
Age^{2}	β_{11}	0,004	0,010	-0,000*	0,000	0,001***	0,002*	0,000	0,000	0,003	0,008	0,000	0,000
Education	β_{12}	-251,068***	-230,543***	-2,635***	-2,533***	$-4,459 * * *$	-3,389	-1,943***	-1,640	-107,084***	-103,760***	-2,636***	$-2,504 * * *$
Education ${ }^{2}$	β_{13}	7,779***	7,158***	0,082***	0,079***	0,134***	0,101	0,059***	0,049	3,358***	3,245***	0,082***	0,078***
Income	β_{14}	-0,004***	$-0,003 * * *$	$-0,000^{* * *}$	-0,000***	$-0,000 * * *$	0,000	$-0,000 * * *$	0,000	$-0,002 * * *$	-0,002***	-0,000***	0,000***
Income ${ }^{2}$	β_{15}	0,000***	0,000***	0,000***	0,000***	0,000***	0,000	0,000***	0,000	0,000***	0,000***	0,000***	0,000***
Female Dummy	β_{16}	-14,619***	-10,081	-0,173***	-0,150	0,078	-0,137	0,057	-0,077	-3,314	-2,803	-0,121**	-0,112
South Dummy	β_{17}	1,786	-1,031	0,013	-0,052	0,360**	0,444	0,115**	0,123	0,654	-2,059	-0,008	-0,075
White Dummy	β_{18}	2,044	8,626	-0,012	0,088	-0,382	-0,464	-0,117	-0,114	-0,191	3,928	-0,022	0,087
Immigrant Dummy	β_{19}	6,897	7,802	0,101	0,157	-0,097	-0,086	0,068	0,114	-6,431*	-3,976	-0,021	0,066
Vegetarian Dummy	β_{20}	6,816	4,209	-0,011	0,036	-0,360	-0,506	-0,085	-0,120	-0,915	-1,478	-0,020	0,043
Two-person hhld Dummy	β_{21}	34,993***	35,826*	0,666***	0,654***								
Three-person hhld Dummy	β_{22}	73,044***	70,484***	1,069***	1,052***								
minFour-person hhld Dummy	β_{23}	82,204***	95,995***	1,092***	1,147***								
N		1009	1009	975	975	979	979	975	975	1009	1009	975	975
R^{2}		0,292	0,284	0,364	0,358	0,151	0,144	0,200	0,192	0,224	0,219	0,238	0,231
סu			55,257		0,547		1,929		0,610		22,861		0,535
$\delta \varepsilon$			50,135		0,505		1,687		0,464		24,151		0,505
ρ			0,548		0,540		0,567		0,633		0,473		0,529

Table 5.5: Cluster OLS and robust random effects for total food waste disposal

Table 5.5:		Total Food Waste				Total Food Waste Adjusted for Number of Meals				Total Food Waste Adjusted for Household Size			
		Y1		$\operatorname{Ln}\left(\mathrm{Y}_{1}\right)$		γ_{2}		$\operatorname{Ln}\left(Y_{2}\right)$		Y3		Ln(Y3)	
		OLS (cluster)	RE (robust)										
Constant	β_{0}	2191,1***	2021,957***	25,309**	24,458***	45,725*	38,125	18,044**	15,773*	966,998***	948,250***	25,448***	24,433**
Pre-Shopping Indicator	β_{1}	11,655	11,995	0,091	0,089	0,447	0,445	0,164	0,139	5,515	5,012	0,130	0,121
Home-Prepared Meals Indicator	β_{2}	-5,609	-6,991	0,033	-0,016	-0,177	-0,085	-0,021	0,042	0,357	-0,628	0,018	-0,040
Shopping List Indicator	β_{3}	9,883	10,447	0,086	0,096	0,253	0,276	0,075	0,109	1,647	0,735	0,066	0,072
Shopping Rate Indicator	β_{4}	-14,354	-16,161	$-0,187$	-0,188	-1,119**	-1,199**	-0,341**	0,347**	-10,974	-11,982*	-0,184	-0,185
Preparation Indicator	β_{5}	-0,042	-0,082	-0,020	0,018	-0,399	-0,551	$-0,075$	-0,083	-9,268	-8,312	-0,079	-0,018
Fruit Waste Indicator	β_{6}	35,084**	36,247**	0,318**	0,294**	0,591	0,685	0,230	0,201	20,566***	21,142***	0,389***	0,346***
Leftovers Indicator	β_{7}	$-42,528 * * *$		$-0,385 * *$	$-0,405 * *$	$-0,765$	0,638	-0,322**	0,274*	$-15,302^{* * *}$	$-15,808^{* * *}$	-0,397***	0,402***
Sell by Date Indicator	β_{8}	2,675	3,292	0,075	0,104	0,342	0,234	0,054	0,051	3,948	4,431	0,055	0,093
Use by Date Indicator	β_{9}	-4,535	-11,414	0,023	-0,026	-0,388	-0,510	-0,059	-0,130	-2,587	-3,804	0,042	-0,013
Age	β_{10}	-0,410	-1,026	0,024	0,016	-0,106	-0,174	-0,011	-0,028	-0,203	-0,727	0,016	0,006
Age ${ }^{2}$	β_{11}	0,004	0,010	0,000	0,000	0,001	0,002	0,000	0,000	0,003	0,008	0,000	0,000
Education	β_{12}	$-251,068 * * *$	$-230,54 * * *$	$-2,635 * *$	$-2,533 * * *$	-4,459	-3,389	$-1,943 * * *$	$-1,640$	$-107,084 * * *$	$-103,76 * * *$	$-2,636 * * *$	-2,504**
Education ${ }^{2}$	β_{13}	7,779***	7,158***	0,082***	0,079***	0,134	0,101	0,059***	0,049	3,358***	3,245***	0,082***	0,078***
Income	β_{14}	0,004***	-0,003***	-0,000***	-0,000***	$-0,000 * * *$	0,000	-0,000***	0,000	-0,002***	-0,002***	0,000***	-0,000***
Income ${ }^{2}$	β_{15}	0,000***	0,000***	0,000***	0,000***	0,000***	0,000	0,000***	0,000 *	0,000***	0,000***	0,000***	0,000***
Female Dummy	β_{16}	-14,619	-10,081	0,173	-0,150	0,078	-0,137	-0,057	-0,077	-3,314	-2,803	-0,121	-0,112
South Dummy	β_{17}	1,786	-1,031	0,013	-0,052	0,360	0,444	0,115	0,123	0,654	-2,059	-0,008	-0,075
White Dummy	β_{18}	2,044	8,626	-0,012	0,088	-0,382	-0,464	-0,117	-0,114	-0,191	3,928	-0,022	0,087
Immigrant Dummy	β_{19}	6,897	7,802	0,101	0,157	-0,097	-0,086	0,068	0,114	-6,431	-3,976	-0,021	0,066
Vegetarian Dummy	β_{20}	6,816	4,209	-0,011	0,036	-0,360	-0,506	-0,085	-0,120	0,915	$-1,478$	-0,020	-0,043
Two-person hhld Dummy	β_{21}	34,993**	35,826***	0,666***	0,654***								
Three-person hhld Dummy	β_{22}	73,044***	70,484***	1,069***	1,052***								
minFour-person hhld Dummy	β_{23}	82,204***	95,995***	1,092***	1,147***								
N		1008	1009	974	975	978	979	974	975	1008	1009	974	975
R^{2}		0,292	0,284	0,364	0,358	0,151	0,144	0,200	0,192	0,224	0,219	0,238	0,231
ठu			55,26		0,55		1,929		0,609		22,86		0,535
$\delta \varepsilon$			50,14		0,51		1,687		0,464		24,15		0,505
ρ			0,548		0,54		0,567		0,633		0,473		0,529

[^1]Table 5.6: Pooled OLS and unadjusted random effects for edible food waste disposal

Table 5.6:		Total Edible Food Waste				Total Edible Waste Adjusted for Number of Meals Y5 $\operatorname{Ln}(\mathrm{Y} 5)$				Total Edible Waste Adjusted for Household Size Y6 Ln(Y6)			
		Y4		$\operatorname{Ln}(\mathrm{Y} 4)$									
		OLS (pooled)	RE (unadjusted)	OLS (pooled) RE (unadjusted)		OLS (pooled)	RE (unadjusted)						
Constant	β_{0}	1833,941***	1743,096***	52,339***	48,838***	51,133***	49,430***	48,491***	42,547***	683,326***	686,226***	52,585***	48,278***
Pre-Shopping Indicator	β_{1}	-3,477	-1,947	-0,016	-0,091	0,058	0,092	0,197	0,070	0,200	0,319	0,136	0,336
Home-Prepared Meals Indicator	β_{2}	-1,689	-2,141	0,035	0,108	-0,002	0,031	-0,085	0,020	1,072	1,102	-0,010	0,059
Shopping List Indicator	β_{3}	$-1,897$	-2,623	0,021	0,006	-0,314**	-0,368	-0,092	-0,022	-2,702	-3,605	-0,033	-0,029
Shopping Rate Indicator	β_{4}	-20,898**'	-22,081**	-0,652***	-0,586**	-0,927***	$-1,038^{* * *}$	$-0,776 * * *$	-0,756**	$-11,207^{* * *}$	$-12,223 * * *$	-0,606***	-0,578*
Preparation Indicator	β_{5}	-7,513*	-9,658	-0,415***	-0,092	-0,358**	-0,405	-0,479***	-0,170	-6,655***	-7,091	-0,602***	-0,192
Fruit Waste Indicator	β_{6}	0,741	6,194	0,158	0,138	-0,043	0,155	0,201*	0,144	1,074	3,426	0,311***	0,234
Leftovers Indicator	β_{7}	$-23,243^{* * *}$	-26,901***	-0,753***	-0,789***	-0,739***	$-0,821 * *$	$-0,839 * * *$	$-0,816^{* *}$	-8,671***	-10,058**	-0,785***	-0,825***
Sell by Date Indicator	β_{8}	0,045	0,517	-0,022	-0,129	0,143	0,136	0,001	-0,169	1,582	1,656	0,005	-0,128
Use by Date Indicator	β_{9}	2,179	-0,719	0,206	0,324	0,269	0,187	0,337**	0,376	2,252	2,103	0,300*	0,424
Age	β_{10}	-0,906	-1,738	0,008	0,021	-0,033	-0,060	-0,030	-0,015	-0,291	-0,695	-0,020	0,001
Age ${ }^{2}$	β_{11}	0,008	0,016	0,000	0,000	0,000	0,001	0,000	0,000	0,003	0,007	0,000	0,000
Education	β_{12}	-214,275***	-203,016***	-5,936***	$-5,601 * * *$	-5,860***	5,631**	$-5,707 * * *$	$-5,075 * * *$	-78,208***	$-78,341^{* * *}$	$-5,933 * * *$	-5,527***
Education ${ }^{2}$	β_{13}	6,586***	6,271***	0,183***	0,174***	0,180***	0,175**	0,174***	0,156***	2,426***	2,439***	0,183***	0,172***
Income	β_{14}	-0,001***	-0,001	-0,000***	-0,000**	-0,000***	0,000	-0,000***	0,000	-0,001***	-0,001	-0,000***	-0,000**
Income ${ }^{2}$	β_{15}	0,000***	0,000	0,000***	0,000**	0,000***	0,000	0,000***	0,000	0,000***	0,000	0,000***	0,000**
Female Dummy	β_{16}	-2,873	-1,559	0,128	0,054	0,059	-0,013	0,398***	0,249	-0,843	0,985	0,256**	0,192
South Dummy	β_{17}	4,017	2,505	0,113	-0,042	0,216*	0,213	0,221**	0,183	1,547	0,520	0,146	0,016
White Dummy	β_{18}	1,275	3,917	-0,130	0,156	-0,206	-0,198	-0,267*	-0,156	-0,821	0,985	-0,247	0,015
Immigrant Dummy	β_{19}	$-12,349 * * *$	-14,332	-0,352**	-0,307	$-0,440 * * *$	-0,459	$-0,625 * * *$	-0,603	-7,822***	-7,732	$-0,779 * * *$	-0,692*
Vegetarian Dummy	β_{20}	7,186*	5,441	0,039	0,142	0,292*	0,060	-0,08	-0,106	1,743	1,539	-0,082	0,020
Two-person hhld Dummy	β_{21}	9,527**	10,440	0,258*	0,031								
Three-person hhld Dummy	β_{22}	24,987***	26,091*	0,503***	0,469								
minFour-person hhld Dummy	β_{23}	27,395***	38,085**	0,506**	0,495								
N		1009	1010	727	728	979	980	728	729	1009	1010	727	728
R^{2}		0,264	0,253	0,282	0,26	0,181	0,171	0,308	0,292	0,169	0,161	0,286	0,267
סu			34,614		0,903		1,302		0,968		15,692		0,923
$\delta \varepsilon$			30,29		0,889		1,164		0,896		15,761		0,889
ρ			0,566		0,508		0,556		0,539		0,498		0,519

Significant at the 90%-level, ${ }^{ *}$ Significant at the 95%-level, $* * *$ Significant at the 99%-level, error terms and t-statistics are available in appendix

Table 5.7: Cluster OLS and robust random effects for edible food waste disposal

Table 5.7:		Total Edible Food Waste				Total Edible Waste Adjusted for Number of Meals				Total Edible Waste Adjusted for Household Size			
		Y4		$\operatorname{Ln}(\mathrm{Y} 4)$		Y5		$\operatorname{Ln}(\mathrm{Y})$		Y6		Ln(Y6)	
		OLS (cluster)	RE (robust)										
Constant	β_{0}	1833,941***	1743,096***	52,339***	48,838***	51,133***	49,430***	48,491***	42,547***	683,326***	686,226***	52,585***	48,278***
Pre-Shopping Indicator	β_{1}	$-3,477$	$-1,947$	-0,016	-0,091	0,058	0,092	0,197	0,070	0,200	0,319	0,136	0,336
Home-Prepared Meals Indicator	β_{2}	-1,689	-2,141	0,035	0,108	-0,002	0,031	-0,085	0,020	1,072	1,102	-0,010	0,059
Shopping List Indicator	β_{3}	$-1,897$	-2,623	0,021	0,006	-0,314	-0,368	-0,092	-0,022	-2,702	-3,605	-0,033	-0,029
Shopping Rate Indicator	β_{4}	$-20,898 * *$	-22,081*	$-0,652 * * *$	-0,586**	-0,927**	-1,038**	$-0,776 * * *$	$-0,756 * * *$	$-11,207 * *$	$-12,223 * *$	$-0,606 * *$	$-0,578 * *$
Preparation Indicator	β_{5}	-7,513	-9,658	-0,415	-0,092	-0,358	-0,405	-0,479*	$-0,170$	-6,655*	-7,091*	-0,602**	-0,192
Fruit Waste Indicator	β_{6}	0,741	6,194	0,158	0,138	-0,043	0,155	0,201	0,144	1,074	3,426	0,311	0,234
Leftovers Indicator	β_{7}	$-23,243 * * *$	$-26,901^{* * *}$	$-0,753 * * *$	-0,789**	-0,739**	-0,821**	$-0,89 * * *$	$-0,816^{* * *}$	-8,671**	$-10,058 * *$	$-0,785 * * *$	$-0,825 * *$
Sell by Date Indicator	β_{8}	0,045	0,517	-0,022	-0,129	0,143	0,136	0,001	-0,169	1,582	1,656	0,005	-0,128
Use by Date Indicator	β_{9}	2,179	-0,719	0,206	0,324	0,269	0,187	0,337	0,376	2,252	2,103	0,300	0,424
Age	β_{10}	-0,906	-1,738	0,008	0,021	-0,033	-0,060	-0,030	-0,015	-0,291	-0,695	-0,020	0,001
Age ${ }^{2}$	β_{11}	0,008	0,016	0,000	0,000	0,000	0,001	0,000	0,0001	0,003	0,007	0,000	0,000
Education	β_{12}	-214,275***	-203,016***	$-5,936 * * *$	$-5,601 * * *$	$-5,860 * * *$	5,631***	$-5,707 * * *$	$-5,075 * * *$	-78,208***	$-78,3411^{* *}$	-5,933***	$-5,527 * * *$
Education ${ }^{2}$	β_{13}	6,586***	6,271***	0,183***	0,174***	0,180***	0,175***	0,174***	0,156***	2,426***	2,439***	0,183***	0,172***
Income	β_{14}	-0,001**	-0,001	-0,000**	-0,000**	0,000	0,000	-0,000*	-0,00003	-0,001**	-0,000*	-0,000**	-0,000**
Income ${ }^{2}$	β_{15}	0,000**	0,000	0,000**	0,000**	0,000	0,000	0,000*	0,000	0,000**	0,000	0,000**	0,000**
Female Dummy	β_{16}	$-2,873$	-1,559	0,128	0,054	0,059	0,013	0,398*	0,249	-0,843	-0,985	0,256	0,192
South Dummy	β_{17}	4,017	2,505	0,113	-0,042	0,216	0,213	0,221	0,183	1,547	0,520	0,146	0,016
White Dummy	β_{18}	1,275	3,917	-0,130	0,156	-0,206	-0,198	-0,267	-0,156	-0,821	0,885	-0,247	0,015
Immigrant Dummy	β_{19}	-12,349*	-14,332	$-0,352^{* *}$	-0,307	-0,44	-0,459	-0,625**	$-0,603^{*}$	$-7,822^{* *}$	$-7,732^{* *}$	$-0,779 * * *$	$-0,692 * *$
Vegetarian Dummy	β_{20}	7,186*	5,441	0,039	0,142	0,292	0,060	-0,080	-0,106	1,743	1,539	-0,082	0,020
Two-person hhld Dummy	β_{21}	9,527	10,440	0,258	0,031								
Three-person hhld Dummy	β_{22}	24,987**	26,091**	0,503*	0,469								
minFour-person hhld Dummy	β_{23}	27,399**	38,085**	0,506	0,495								
N		1009	1010	727	728	979	980	728	729	1009	1010	727	728
R^{2}		0,264	0,253	0,282	0,26	0,181	0,171	0,308	0,292	0,169	0,161	0,286	0,267
סи			34,61		0,903		1,302		0,968		15,69		0,923
$\delta \varepsilon$			30,29		0,889		1,164		0,896		15,76		0,889
			0,566		0,508		0,556		0,539		0,498		0,519

Significant at the 90%-level, ${ }^{ *}$ Significant at the 95%-level, ${ }^{* * *}$ Significant at the 99%-level, error terms and t-statistics are available in appendix

5.2.1. Total Food Waste (Y_{1})

For all eight regressions, the coefficient of the constant is significant on the 99\%-level. The coefficient of the Leftovers Indicator is significant and negative for all of these eight regressions, which is consistent with the hypothesis. The coefficient of the Fruit Waste Indicator is positive and significant for all of the regressions with total food waste as dependent variable, which is counterintuitive.

Both the coefficients of the education and income variables are significant and negative, however, their squared variables are positive. This suggests that respondents with more years of education and higher income throw away less food compared to respondents with low education and low income, but at some point the curve turns and there are higher amounts of food waste associated with higher education and higher income. Solving the partial derivative set equal to zero, will discover the minimum point. This is shown in figures 5.2 through 5.5.

Figure 5.2: Average weekly food waste in terms of income

The point, at which the curve changes direction, lies around a yearly income of $\$ 67,500$.

Figure 5.3: Average weekly food waste in terms of years of education

The turning point in figure 5.3 is at 16 years of education. Thus, the people with a bachelor's degree are the respondents that have the lowest amount of food waste.

The final coefficients which are significant for all of the regressions performed with total food waste as the dependent variable are the household size dummy variables. They are in accordance with the preconception that they are positive and increasing with household size. This means that the dummy variable for a minimum four people household is larger than the dummy variable for the three people household, which again is higher than the two people household variable.

The cluster OLS and the robust RE regressions are the ones that provide the most accurate estimates here. Even though these are less precise, they are still relevant. There are a few coefficients that are significant only for the pooled OLS and unadjusted RE regressions; the Pre-Shopping Indicator is positive for the pooled OLS regression, which is counterintuitive to what was assumed earlier. The Shopping Rate Indicator is negative for both the level and log-level pooled OLS. This is consistent with the hypothesis that households that shop for 4 or more days at a time have less food waste than households that shop for less than 4 days at a time. The coefficient for age squared is significant and negative for the log-level pooled OLS regression. The coefficient for the dummy variable for
female is negatively significant for the level-level and log-level pooled OLS regressions. This indicates that female respondents have less food waste than male respondents. How the age variables for the OLS regression are graphed is shown in figure 5.4.

Figure 5.4: Average weekly food waste in terms of age

5.2.2. Total Food Waste Adjusted for Meals $\left(\mathrm{Y}_{2}\right)$

The coefficient of the constant is significant for all of the regressions, except for the robust RE regressions. The only independent variable that is significant and negative for all of the regressions on Y_{2} is the Shopping Rate Indicator. The coefficient of the Leftovers Indicator is significant and negative for all of the log-level pooled and cluster OLS and unadjusted and robust RE regressions, and the level-level pooled OLS regression. For these regressions the coefficient of the variable indicate that people who more frequently eat leftovers before cooking new food, have a smaller amount of food waste than people who often cook new food before eating their leftovers.

Income and income squared have significant coefficients for the all of the OLS regressions, where income is negative and income squared is positive. This gives the same effect as in Figure 5.3. Education and education squared is significant for the pooled OLS regressions, and the log-level cluster OLS regression. The coefficients of the education variables are all negative; while the coefficient for the education squared variables are
positive, which yield the same convex curve as in Figure 5.4. The coefficients of the age and age squared variables are significant for the level-level pooled OLS and unadjusted RE regressions, were age is negative and the squared variable is positive. This gives a convex curve as for education and income, which is shown in figure 5.5.

Figure 5.5: Average weekly food waste per meal in terms of age

In addition to this, for the level and log-level pooled OLS regressions, the coefficients of the Pre-Shopping Indicator and the Fruit Waste Indicator are significant and positive. The fact that these coefficients are positive and therefore counterintuitive which implies that households who plan their shopping more often, and respondents who claim that they spoil less fruit and vegetables before consumption, actually waste more food per meal. The coefficient of the dummy variable for a southern zip code is also significant for these two regressions, and the coefficient is positive. The "Sell by" Date Indicator has a significant and positive coefficient for the level-level pooled OLS regression. The fact that the coefficient is positive is counterintuitive as it seems logical that a person who report to seldom throwing away food when it is past its "Sell by" date would throw away less food and a person who do this more often. A reason for this could be that people are more concerned with the "Use By" date than the "Sell By" date.

5.2.3. Total Food Waste Adjusted for Household Size $\left(\mathrm{Y}_{3}\right)$

The coefficients of the variables that are significant for all of the regressions on total food waste per person are the constant, which is positive, education (positive), education squared (negative), income (positive), income squared (negative), the Fruit Waste Indicator (positive), and the Leftovers Indicator(negative). The education and income coefficients are equal to what we have seen in regressions performed on total food waste and total food waste per meal. The indicator for how little fruit and vegetables are spoiled before consumed is positive, which as mentioned before is counterintuitive.

The Shopping Rate Indicator is significant and negative for both the log-level and level-level pooled OLS regressions, the level unadjusted RE and level robust RE regressions. This is in accordance with the assumption that people who shop for more days at time, waste less food. The coefficient of the Pre-Shopping Indicator is positively significant for the pooled OLS regressions. This implies that respondents who plan ahead of shopping trips, waste more food, which does not correspond with the hypothesis. For the log-level pooled OLS regression, the coefficient of the female dummy variable is significant and negative, which implies that women waste less food than men. For the coefficient of the pooled OLS regression the Preparation Indicator is significant and negative, which is in accordance with the intuition, and the dummy variable for immigrant is negative and significant which implies that an immigrant waste less food than ethnic Americans.

5.2.4. Total Edible Food Waste (Y_{4})

For all of these eight regressions, the coefficients of the Shopping Rate Indicator, the Leftovers Indicator and education are negative and significant, while the constant and education squared are positive and significant. All of these are consistent with intuition and previous findings.

The coefficients of the income variables, income and income squared are significant for all of the regressions except for the unadjusted RE regressions; their coefficients are respectively negative and positive. Other variables that have significant coefficients are the Preparation Indicator, which is negative and thus in keeping with the intuition, for both of the pooled OLS regressions. The coefficient of the dummy variable for immigrants is negatively significant for both of the log-level and level pooled OLS regressions and the level
cluster OLS regression. This implies that immigrants throw away less food than nonimmigrants. The coefficient of the vegetarian dummy variable is significant for the pooled OLS regression, and it has a positive coefficient, which entails that vegetarians throw away more food than non-vegetarians. When it comes to the household size dummy variables, it varies which regressions have significant coefficients, but they are all positive and increasing in size. All of the coefficients of the household size dummy variables are significant for both of the pooled OLS regressions, the coefficients of the three people and minimum four people household dummy variables are significant for the unadjusted RE regressions and the cluster OLS regression, while the coefficient of the three people household dummy variable is significant for the log-level cluster OLS regression.

5.2.5. Edible Food Waste Adjusted for Meals (Y_{5})

Similar to the total edible food waste regressions, the coefficients of the Shopping Rate Indicator, the Leftovers Indicator, the constant, education and education squared are the variables which are significant for all of the regressions for edible food waste per meal. The two self-assessed behavior variables have negative coefficients and thus consistent with the intuition presented earlier. The coefficients for education and education squared are respectively negative and positive, which we have seen in the other regressions as well. Other behavioral variables that are significant are; the coefficient of the Food Quantities Indicator which is significant for the pooled OLS regression; the coefficient of the Preparation Indicator is significant for both of the pooled OLS regressions and the log-level cluster OLS regression; the coefficient of the Fruit Waste Indicator is significant for the loglevel pooled OLS regression, and the coefficient of the "Use by" Date Indicator which is significant for the log-level pooled OLS regression. The descriptive variables that are significant are; the coefficients of the income variables for both of the OLS regressions and the log-level cluster OLS regression; the coefficient of the female dummy variable which is significant for the log-level pooled OLS regressions; the coefficient of the dummy variable for southern zip codes is significant for the pooled OLS regressions; the coefficient of the White dummy variable for the log-level pooled OLS regression; the coefficient of the immigrant dummy variable which is significant for the log-level pooled OLS regressions, the log-level
cluster OLS regression, and the log-level unadjusted RE regression; and the coefficient of the vegetarian dummy variable which is significant for the pooled OLS regression.

5.2.6. Edible Food Waste Adjusted for Household Size (Y_{6})

Consistent with the total edible food waste and the edible food waste per meal dependent variables, all of the regressions with edible food waste per person as dependent variables have significant coefficients for the Shopping Rate Indicator (negative), the Leftovers Indicator (negative), education (negative), education squared (positive), and the constant. Other self-assessed coefficients of behavioral variables that are significant are the Preparation Indicator which is significant for all of the pooled OLS regressions, and the robust RE regression, while the coefficient of the Fruit Waste Indicator is significant for the log-level pooled OLS regression. The income variables, income (negative) and income squared (positive) have significant coefficients for all of the OLS regressions, and both the log-level unadjusted and robust RE regressions. In addition to this, for the robust RE regression is the coefficient of income negatively significant. The coefficient of the female dummy variable is significant for the log-level pooled OLS regression, and the dummy variable for immigrants is significant for all of the regressions, except for the unadjusted RE regression.

All of the significant coefficients of the self-assessed behavioral variables are negative, except for the Fruit Waste Indicator which is positive. The last variable is as mentioned earlier not consistent with the hypothesis. The coefficients of the education and income variables in addition to the coefficient of the dummy variable for immigrants are consistent with earlier findings. The female dummy variable has a positive coefficient, while has in other regressions a negative coefficient.

5.3. Summary

Off all of these regressions, the two most relevant dependent variables are total food waste and edible food waste and the most accurate regressions are the cluster OLS and the robust Random Effects (RE) regressions.

Table 5.8: Summary of significant variables for the regressions on total food waste and edible food waste

Variable	Total Food W	Edible Food Waste
Pre-Shopping Indicator		
Number of Meals Indicator		
Food Quantities Indicator		
Shopping Rate Indicator		----
Preparation Indicator		
Fruit Waste Indicator	+ + + +	
Leftovers Indicator	----	----
"Sell by" Date Indicator		
"Use by" Date Indicator		
Age		
Age ${ }^{2}$		
Education	----	----
Education ${ }^{2}$	+ + + +	+ + + +
Income	----	---
Income ${ }^{2}$	++++	+ + +
Female Dummy		
South Dummy		
White Dummy		
Immigrant Dummy		
Vegetarian Dummy		
Two-person hhld Dummy	++++	
Three-person hhld Dummy	+ + + +	+ + +
minFour-person hhld Dummy	+ + + +	+ +

Table 5.8 indicates which coefficients were significant, how many of the regressions on each dependent variable, and whether the significant coefficients affect the dependent variable positively or negatively.

The variables that stand out here as having significant coefficients for all of the regressions are the Leftovers Indicator which has a decreasing effect on total and edible food waste, which is consistent with the hypothesis. The coefficients of education and income, where an increase in the level of education or income decreases the amounts of total and edible food waste and their squared variables show that a higher level of education or higher income results in increased amounts of total and edible food waste. The coefficients of the income variables are significant for all of the regressions, while the
coefficients of the education variables are significant for all of the regressions, except for the robust WLS regression.

The regressions on total food waste show that the coefficients on the Fruit Waste Indicator affect total food waste positively, thus an increase in the variable results in an increase in total food waste. This is counterintuitive as we expected that people who waste less fruit and vegetables prior to consumption, waste less. The coefficients of the household size dummy variables are significant and consistent with the expectation that a larger household waste more than smaller households.

Looking at the regressions for edible food waste in table 5.8, we see that the Shopping Rate Indicator has negatively significant coefficients in all of the regressions. This complies with the first hypothesis that the self-assessed behavioral questions affect food waste negatively. The coefficient of the immigrant dummy variable is significant and negative for the cluster OLS regressions, both the level-level and log-level. This implies that immigrants waste less edible food waste than non-immigrants, which fulfils the hypothesis. The coefficient for the three person household is significant for three of the regressions on edible food waste, while the coefficient for the minimum four people household is significant for the cluster OLS and robust random effects regressions. They are all positive and increasing in size, which meets the terms of the hypothesis.

5.4. Learning Tendencies

Table 5.8 - RE regression with weekly dummy variables:

These regressions are similar to the RE regressions without weekly dummy variables in the sense that they all have the same significant regressions disregarding the weekly dummy variables. Here, we can see with the exception of total edible food waste (Y 4), the weekly dummy variables are not negatively significant indicating that the respondents have not decreased their food waste during the time of the project.

However, the regression with total edible food waste as output variable, have some significant variables that could imply learning. The weekly variables for week $6,9,11,12$, and 13 are negative and significant. This is the only one of the six regressions that has this many significant week dummy variables, and this could mean that the participating households intentionally decreased their edible food waste.

6. Analysis \& Discussion

6.1 Summary of Results

In this part we will focus on the cluster OLS and robust Random Effects (RE) regressions for all of the output variables as these are the most "conservative" regressions. The dependent variables which will be the focus of this chapter are Total Food Waste, Y1 \& $\ln (\mathrm{Y} 1)$, and Edible Food Waste, $\mathrm{Y} 4 \& \ln (\mathrm{Y} 4)$. When looking at the amount of edible food waste relative to total food waste, we see that the share of edible food waste is about a third of total food waste.

Starting with the first hypothesis which states that planning lead to a decrease in the amount of food waste, the variables that stand out as having significant coefficients are the Shopping Rate Indicator, Fruit Waste Indicator, and the Leftovers Indicator. The Leftovers Indicator is the only one that has significant coefficients for all of the eight cluster OLS and robust RE regressions on total and edible food waste. The percentage effect for households, who eat leftovers before cooking new food, is a 40% decrease in total food waste and a 79% decrease in edible food waste, ceteris paribus. These numbers are taken from the log-level robust random effects in table 5.5 and 5.7 in the previous chapter. The Shopping Rate Indicator has significant coefficients for all of the regression with edible food waste as dependent variable. According to the log-level robust RE regressions in table 5.7, shopping for more than three days at a time, will lead to a 59% decrease in edible food waste, ceteris paribus. The Fruit Waste Indicator has significant coefficients for all of the regressions where the dependent variable is total food waste. The log-level robust RE regression shows that households who waste less than 5% of fruit and vegetables prior to consumption actually, waste 29% more food. These three Indicators tell two different stories in terms of the hypothesis. Whereas the Leftovers Indicator and Shopping Rate Indicator, show that planning reduces the amount of food waste, the Fruit Waste Indicator indicate that spoiling less fruit and vegetables, lead to an increase in food waste. One possible explanation for this could be that for this particular question, the respondents have more difficulty perceiving their own fruit and vegetable waste.

The second hypothesis, regarding the household size dummy variables, is fulfilled by the cluster OLS and robust random effects regressions. These three variables have significant
coefficients for all of the regressions on total food waste. Using the equation for transforming coefficients for dummy variables into percentage effects in a log-level regression in chapter 5.2 , yield that the a household with two people increase total food waste by 92\%; a three person household increase total food waste by 186\%; while a household with four or more people increase total food waste by 215%. Given that the average food waste for a one person household is 50 ounces per week, then this number is 96 ounces for a two-person household, 143 ounces for a three person household, and 157.5 ounces for the largest households.

Figure 6.1: Total food waste by household size

Figure 6.1, which graph the mathematical calculations above, shows how the marginal increase in total food waste is diminishing. The regressions on edible food waste partly supports the findings for total food waste as household size dummy variables have significant coefficients for three persons and minimum four persons households in all of the regressions, except for the log-level robust random effects regression.

The basic demographics that affect total and edible are education and income. Both the basic and squared variables have significant coefficients for all of the regression, with the exception of income and income squared which does not have significant coefficients in the robust random effects regression. The expectation prior to the analysis was that education would have a decreasing effect on food waste, while income would have an increasing effect
on food waste. The results of the regressions show that both education and income affect food waste negatively, as they both have negative coefficients, while their squared variables have positive coefficients, ceteris paribus. The regression results contradict the expectation, but confirm the hypothesis that education and income affect the amounts of total and edible food waste. The age variables was also a part of the hypothesis, but they do not have significant coefficients for any of the cluster OLS and robust random effects regressions on total and edible food waste.

The vegetarian dummy variable has one significant coefficient, which is for edible food waste in the cluster OLS regression. This significant coefficient indicates that vegetarians waste more edible food than non-vegetarians, which is not consistent with the hypothesis. A possible explanation for this is that many of the vegetarians live in households where not everyone in the household is a vegetarian, which could make the estimation not good enough to find a relationship between the amounts of food waste and type of diet.

The fifth and last hypothesis states that immigrants have less food waste than nonimmigrants. The coefficients for this variable are negatively significant for the cluster OLS regression on edible food waste. Thus, immigrants waste less edible food waste than nonimmigrants, and using the equation in chapter 5.2, we can calculate that being an immigrant household decreases the amount of edible food waste by 42%. This does confirm the hypothesis, but there is however a reason to question if the two regressions which are significant, is enough to conclude that the hypothesis is accepted.

The bottom line is that there are a number of significant coefficients that affects the hypotheses. The Shopping Rate and Leftovers Indicators confirm that planning affects the amount of food waste, whil the Fruit Waste Indicator contradicts this hypothesis. Larger households increase the amounts of total and edible food being disposed, which back up the hypothesis. The demographics for education and income fulfills the hypothesis of affecting food waste, but show a different picture than expected.

6.2 Learning variables

The regressions on the weekly dummy variables are not a part of the hyptheses, but it is important to acknowledge that the participants did not purposely reduce the amount of food waste during the course of the project. Even though total edible food waste did have significant and negative coefficients for week $9,11,12$, and 13 , which could imply that the participants reduced their amount of edible food waste intentionally. Here, it is possible to conclude that although the participants did not deliberately reduce their overall food waste, perhaps they got some insight on how much they threw away and tried to reduce the amount of edible food waste. However, since edible food waste per meal and per person are not significant it could might as well just be that the household overall prepared less meals and therby had less edible food waste. The regressions would have been a more accurate representation of the sample if the amount of observations would have been closer to 1,625 , which is the number of observations if all of the 125 participants who answered the preliminary questionnaire would have filled out their food waste information for all of the 13 weeks the project lasted. Send out preliminary questionnaire.

7. Conclusion

In the introduction two research questions were presented, the first asking how planning and attitude towards shopping and wasting affect food waste, and the second investigating the differences in the determinants between toal food waste and edible food waste disposal.

The answer to the first question is that eating leftovers, shopping for multiple days at a time and wasting little fruit and vegetables are the behavioral variables which affect the amount of food waste. The second question has a more complex answer as eating leftovers, education level, income and household size are the variable that influence both total and edible food waste. The amount fo fruit and vegetables being disposed and the two person household dummy variable are the variables which are only significant for total food waste. the number of days the household shops for at a time, and whether the household has an immigrant background are the variables that only affect edible food waste significantly.

In regards to the amounts of food beingw asted, one could claim that all edible food waste could have been avoided, and thus is wasteful. If this amount of about 30 ouces of food waste per week could have been avoided, which is equal to about 1 kilogram, then during the course of this projects where the paticipants weighed their food waste, each household could have wasted 24.4 pounds less. This amount is 13 kilos per household, and aggregating it up to all of the 125 participating households, 3047 pounds (or 1625 kilos) of food waste could have been avoided. These numbers may not seem very big when you look at them per week per household, but when multiplying them like this, shows how fast this number becomes a very large amount of food waste.

The survey from Seattle Public Utilities that resulted in the data used to in the analyses in this thesis, was well conducted. Although I could not influence the design of neither the questionnaire nor the weight form, I am happy with the amount of information that was possible to obtain throught the regression analyses performed.

Issues of concern that could possibly have made the regressions more precise would have been to get all of the respondents to answer all of the questions in the preliminary questionnaire, but more importantly, fill out the weight forms every week. The average amount of data that is included in the robust WLS regressions varies from 87 households with 728 observations and a average of each household completing 8.4 out of the 13
available weeks to 90 households with 1009 observations with each household completing 11.2 weeks out of the maximum of 13 .

There was also some concern regarding the accuracy of the answers in the preliminary questionnaires. Some irregularities were detected, which might imply that the respondent either misread the question or simply answered it wrongly. Respondents who answered that they had infants or children in the household on part-time basis, were not a included in the household size. This means that for the time the extra family member or if there were visitors in the household this wold only be reflected in the regressions with total food waste per meal and edible food waste per meal as dependent variables.

If the sample a good enough reflection of the general population in Seattle is a concern. The people who would participate in a projects like this, that requires quite a bit of effort to complete, are maybe people that are concerned with the issue of food waste and therefore already waste less than the general population.

Prior to this project, which was conducted in the beginning of 2013, there have to my knowledge not been similar projects were the participants are consumers who have weighed their food waste every day over the course of 13 weeks. There are multiple directions that further research could take.

One interesting project would be to have respondents perform a similar project, where they weigh their food waste over some specific amount of time. However, the group of respondents should be divided into two groups, where one group will not get any specific information concerning this project before the course of the project, while the other group would be informed on the findings here, for example that shopping for multiple days at a time helps reduce the total amount of food waste. They should also get information on the average amount of food waste, both edible and inedible for each household size so that they could continually compare the amount of their food waste with the mean of waste from this project. The possibility of finding differences among the two groups is large here, and the analyst on this data set could use econometric tools such as differences-in-differences. One possibility could be to hand out the preliminary survey at the end of the weighing period to compare with the first one and if the changes among the questionnaires are reflected in the weighting data.

8. References

Becker, G.S. (1965) "A Theory of the Allocation of Time" The Economic Journal. 75: 493-517.

Brook Lyndhurst. (2007) Food behaviour consumer research: quantitative phase.

Cameron, A.C., \& Trivedi, P.K. (2005) Microeconometrics: Methods and Applications. New York City, NY: Cambridge University Press.

Cameron, A.C., \& Trivedi, P.K. (2010) Microeconometrics Using STATA, Revised Edition. Texas, USA: Stata Press

Corrado, M. (2007) "Understanding Consumer Food Management Behaviour." Wrap, Banbury, UK.

Dillman, D.A.(2000). Mail and Internet Surveys: The Tailored Design Method. United States: John Wiley \& Sons, Inc.

Food and Agricultural Organization (FAO). 2013. Food wastage footprints: 2013.

Graham-Rowe, E., Jessop, D. C., Sparks, P. (2013) "Identifying motivations and barriers to minimising household food waste." Resources, Conservation and Recycling. 84: 15-23.

Gustavsson, J., Cederberg, C., \& Sonesson, U. 2011. "Global Food Losses and Food Waste: Extent, Causes and Prevention". Study conducted for the International Congress SAVE FOOD! At Interpack2011, Dusseldorf, Germany.

Halvorsen, R., \& Palmquist, R. (1980) "The Interpretation of Dummy Variables in Semilogarithmic Equations." The American Economic Review. 70:474-475.

Kantor, L., Lipton, K., Manchester, A., Oliveira, V. (1997) "Estimating and addressing America's food losses" Food Review 20: 2-12

Morris, G.E., and Holthausen, D.E. 1994. "The economics of household solid waste and disposal." Journal of Environmental Economics and Management. 26: 215-234.

Parfitt, J., Barthel, M., and McNaughton, S. 2010. "Food waste within food supply chains: quantification and potential for change to 2050." Phil. Trans. R. Soc., 365:3065-3081. Snyder, C., \& Nicholson, W. (2012) Microeconomic Theory: Basic Principles and Extensions. Canada: South-Western Cengage Learning.

Stuart, T. (2009) Waste: uncovering the global food scandal. London: Penguin Books.

Williams, H., Wikström, F., Otterbring, T., Löfgren, M., Gustafsson, A. (2011) "Reasons for household food waste with special attention to packaging" Journal of Cleaner Production. 24: 141-148.

Wooldridge, J.M. (2009) Introductory Econometrics. Canada: South-Western Cengage Learning.

WRAP (Waste \& Resource Action Programme). (2011) Sustainable Food - written evidence, House of Commons - Environmental Audit Committee - Publications SF31; 2011b.

WRAP \& WWF-UK (World Wide Fund for Nature - UK) (2011) The Water and Carbon Footprint of Household Food and Drink Waste in the UK

9. Appendices

Food Waste Weighing Pilot Demographic Questionnaire

1. Please enter the number of people in your household by what they eat.

Both meat and vegetables	Response Average	Response Total	Response Count	
Vegetarian or vegan	2.19	256	117	
Other	0.52	24	46	
		0.32	12	37
	answered question	$\mathbf{1 2 4}$		
	skipped question	$\mathbf{1}$		

2. If you chose "Other" for the question above, please briefly describe.

	answered question	8
	skipped question	117

3. Do you plan meals before you go shopping?

		Response Percent	Response Count
Olways	\square		11.3%

4. Do you make a shopping list based on how many meals you expect to eat at home before your next shopping trip?
$\left.\begin{array}{rlrl} & & & \begin{array}{r}\text { Response } \\ \text { Percent }\end{array} \\ \hline \text { Response } \\ \text { Count }\end{array}\right\}$
5. Does your shopping list note quantities of food to buy?

		Response Percent	Response Count
Always			18.5%
Often			23
Occasionally			31.5%
Never	\square	39.5%	49
			10.5%

6. When you buy food, how many days do you usually shop for?

	Response Percent	Response Count
Just for today $\quad \square$	2.4\%	3
For two to three days \square	22.6\%	28
For four to five days \square	33.1\%	41
For six to seven days \square	30.6\%	38
For more than a week \square	11.3\%	14
	answered question	124
skipped question		

7. How often do you peel, cut up or otherwise prepare fruits and vegetables ahead of time to use as snacks and in meals?

		Response Percent	Response Count
Almost always (75-100\% of the time)	\square	14.5\%	18
Most of the time (50-75\% of the time)		7.3\%	9
Often (25-50\% of the time)		26.6\%	33
Occasionally (5-25\% of the time)		32.3\%	40
Almost never	\square	19.4\%	24
		answered question	124
skipped question			1

8. About how much of your fresh fruits and vegetables spoil before you can eat them?

Less than 5%		Response Percent	Response Count
$5 \%-10 \%$			39.2%

9. Do you use older food items and leftovers before cooking newer food?
$\left.\begin{array}{rlrl} & \begin{array}{r}\text { Response } \\ \text { Percent }\end{array} \\ \text { Response } \\ \text { Count }\end{array}\right\}$
10. Do you compost or throw away items when they are past their "Sell By" date?
$\left.\begin{array}{rlrl}\text { Never } & & & \begin{array}{r}\text { Response } \\ \text { Percent }\end{array} \\ \text { Response } \\ \text { Count }\end{array}\right\}$
11. Do you compost or throw away items when they are past their "Use By" date?

	Response Percent	Response Count	
Sometimes	\square		13.7%

12. Which of the following ranges includes your age?

		Response Percent	Response Count
18-34		9.8\%	12
35-54	\square	48.0\%	59
55-64	-	24.4\%	30
65 or older	\square	17.1\%	21
Decline to answer	\square	0.8\%	1
		answered question	123
		skipped question	2

13. Please enter the number of people, living in your household, of the following ages.

	Response Average	Response Total	Response Count
Under 2	0.37	7	19
Ages 2-5	0.80	20	25
Ages 6-11	0.81	22	27
Ages 12-17	0.61	14	23
Ages 18-34	0.94	29	31
Ages 35-54	1.45	100	69
Ages 55-64	1.18	59	50
Ages 65 or greater	0.91	31	34
	answered question		122
	skipped question		3

14. Are you of Hispanic, Latino, or Spanish origin?

	Response Percent	Response Count
Yes $\quad \square$	1.6\%	2
No	92.7\%	115
Decline to answer	5.6\%	7
	answered question	124
	skipped question	1

15. What is your race? Check all that apply

		Response Percent	Response Count
White	\square	80.5%	99

16. What is the primary language spoken in your home?

	Response Percent	Response Count
English	$\square 91.9 \%$	114
Spanish	0.0\%	0
Russian	0.0\%	0
Vietnamese $\quad \square$	0.8\%	1
Chinese, Mandarin, Cantonese $\quad \square$	1.6\%	2
Aftican Languages (such as Somali, Amharic, Oromo, Tamazight)	0.0\%	0
Decline to Answer $\quad \square$	2.4\%	3
Other (please specify)	3.2\%	4
	answered question	124
	skipped question	1

17. Did you immigrate to the United States?

18. Please enter the number of cats, dogs, chickens or other pets/livestock at your home. If you do not have pets or livestock, please enter the number zero ("0").

Response	Response	Response
Average	Total	Count

Number of dogs
$0.34 \quad 31 \quad 91$

Number of cats
0.84

87

Number of chickens
0.35

25
72

Number of other pets

0.24	19	79

answered question
skipped question
19. Please identify your annual household income.
$\left.\begin{array}{rll} & & \begin{array}{c}\text { Response } \\ \text { Percent }\end{array} \\ \hline \text { Response } \\ \text { Count }\end{array}\right\}$
20. What is your home zip code?

98127		0.0\%	0
98129		0.0\%	0
98131		0.0\%	0
98132]	0.8\%	1
98133		6.6\%	8
98134]	0.8\%	1
98136	\square	2.5\%	3
98138		0.0\%	0
98139		0.0\%	0
98141		0.0\%	0
98144		4.9\%	6
98145	\square	0.8\%	1
98146	\square	0.8\%	1
98148		0.0\%	0
98151		0.0\%	0
98154		0.0\%	0
98155		0.0\%	0
98158		0.0\%	0
98160		0.0\%	0
98161		0.0\%	0
98164		0.0\%	0
98165		0.0\%	0
98166		0.0\%	0
98168		0.0\%	0
98170		0.0\%	0

98171	0.0%	0	
	98174		0.0%
	98175	98177	
	98178	0.0%	0
	98181		0.0%
	98185		0.0%

answered question
skipped question

21. Do you own or rent your home?

22. Who pays your utility bill from Seattle Public Utilities (water, garbage and sewer services)?

	Response Percent	Response Count
Myself or someone else in my household	93.5\%	116
My landlord $\quad \square$	1.6\%	2
Some other person $\quad \square$	2.4\%	3
Prefer not to answer $\quad \square$	2.4\%	3
	answered question	124
skipped question		

23. What is your gender?

	Response Percent	Response Count
Male \square	25.0\%	31
Female	70.2\%	87
Decline to answer	4.8\%	6
	answered question	124
skipped question		

24. What is the highest degree or level of school you have completed?

Dependent variable: Total Food Waste
regress Tot al FoodWaste Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Age AgeSquared Educat i on E
$>$ ducati onSquared I ncome IncomeSquar ed Femal e SouthDummy Wi teDumy Dumm grate e > Veget arianDumm Dum2ppl Dumßppl Dum4ppl

Source	SS	df	MS	Number of obs $=1009$ F(23, 17.63 Prob F $=0.0000$ R-squar ed $=$ 0.2917 Adj R-squar ed $=0.2751$ Root MSE $=66.072$	
Mbdel	1770466. 28	23	76976. 7946		
Resi dual	4300017.8	985	4365. 50031		
Tot al	6070484. 08	1008	6022. 30564		

Tot al FoodW-	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf .	I nt erval]
Q3	11. 65505	5. 775192	2.02	0. 044	3219511	22. 98814
Q4	-5.608751	5. 751743	-0.98	0.330	-16.89583	5. 678327
Q5	9. 88328	5. 89421	1. 68	0. 094	-1.683372	21. 44993
Q6	- 14. 35415	5. 680124	-2. 53	0. 012	- 25. 50069	-3. 207618
Q7	-. 0417777	6. 922014	-0. 01	0. 995	- 13. 62537	13. 54181
Q8	35. 08399	5. 69812	6. 16	0. 000	23. 90214	46. 26584
Q9	- 42.52783	5. 214886	-8. 16	0. 000	- 52. 76139	- 32. 29427
Q10	2. 675199	5. 249291	0.51	0. 610	-7. 62588	12. 97628
Q11	-4. 534928	7. 553574	-0.60	0. 548	- 19. 35787	10. 28802
Age	-. 4101829	1. 040472	-0.39	0. 693	-2.451978	1. 631613
AgeSquar ed	. 0035916	. 0097157	0. 37	0. 712	-. 0154743	. 0226575
Educat i on	-251. 068	33.87996	-7. 41	0. 000	- 317. 5532	- 184.5828
Educati ons-d	7. 779371	1. 055833	7. 37	0. 000	5.70743	9.851311
Income	-. 0035399	. 0004748	-7.46	0. 000	- . 0044716	-. 0026081
I ncomeSqua-d	$2.41 \mathrm{e}-08$	3. $23 \mathrm{e}-09$	7. 46	0. 000	1.78e-08	3. $05 \mathrm{e}-08$
Femal e	- 14.61894	5. 538889	-2. 64	0. 008	- 25. 48832	-3. 749559
Sout hDummy	1. 786005	4. 928363	0. 36	0. 717	-7.885293	11.4573
Whi t eDumm	2. 043576	6. 896071	0. 30	0. 767	-11.4891	15. 57626
Dumin mi at e	6. 896593	7. 726761	0.89	0. 372	- 8. 266213	22. 0594
Veget ari an -	6. 815998	6. 690737	1. 02	0. 309	-6. 31374	19. 94574
Dum2pp	34. 99297	6. 792993	5. 15	0.000	21. 66257	48. 32337
Dumbppl	73. 0444	8. 335733	8. 76	0. 000	56. 68657	89. 40224
Dumfppl	82. 2036	9. 35157	8. 79	0. 000	63.85231	100. 5549
_cons	2191. 1	271.4546	8. 07	0. 000	1658. 404	2723. 796

Dependent variable: $\boldsymbol{\operatorname { l n } (\text { Total Food Waste) }}$

regress LnY1 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Age AgeSquared Educati on EducationSq $>$ uar ed I ncome IncomeSquar ed Femal e Sout hDumy Whit eDumm Dum mi gr at e Veget ari a $>$ nDumm Dum2ppl Dum3ppl Dumfppl

Source	SS	df	MS
Mbdel	258.864824	23	11.2549924
Resi dual	452.092103	951	.475386017
Tot al	710.956927	974	.729935243

Number of obs	$=r$	975
F(23,	$951)$	$=$
Prob F	23.68	
R-squar ed	$=0.0000$	
Adj R-squar ed	$=$	0.3641
Root MSE	$=.3487$	
		.68948

LnY1	Coef .	Std. Err.	t	P>\| ${ }^{\text {\| }}$	[95\% Conf .	I nt erval]
Q3	. 0911753	. 0615161	1. 48	0. 139	-. 0295478	2118983
Q4	. 0327919	. 0609938	0.54	0. 591	-. 086906	1524899
Q5	. 0862732	. 0633757	1. 36	0. 174	-. 0380992	. 2106457
Q6	- . 1871309	. 0607118	-3. 08	0. 002	-. 3062755	-. 0679862
Q7	-. 0199256	. 0738583	-0. 27	0.787	-. 1648696	. 1250185
Q8	. 3179823	. 0606668	5. 24	0. 000	. 1989261	. 4370385
Q9	-. 3846575	. 0556348	-6. 91	0. 000	-. 4938386	-. 2754764
Q10	. 0745793	. 0559936	1. 33	0. 183	-. 035306	. 1844646
Q11	. 023189	. 0809273	0. 29	0.775	-. 1356278	1820057
Age	. 0236184	. 0113082	2.09	0. 037	. 0014265	. 0458104
AgeSquar ed	-. 0001919	. 000105	-1. 83	0. 068	-. 0003979	. 0000141
Educati on	- 2.634775	. 3606095	-7. 31	0. 000	- 3. 342457	-1. 927092
Educations~d	. 0822536	. 0112485	7. 31	0. 000	. 060179	. 1043283
Incore	-. 0000449	5. 05e- 06	-8. 88	0. 000	-. 0000548	-. 000035
I ncomeSqua-d	3. $13 \mathrm{e}-10$	3. $44 \mathrm{e}-11$	9. 09	0. 000	2. $45 \mathrm{e}-10$	3. $80 \mathrm{e}-10$
Femal e	-. 173055	. 0590418	-2. 93	0. 003	-. 2889222	-. 0571878
Sout hDummy	. 0130922	. 0525898	0.25	0. 803	-. 0901133	. 1162977
Whi t eDumm	-. 0120024	. 0733405	-0. 16	0. 870	-. 1559304	. 1319256
Dum mig grate	. 101307	. 0818142	1. 24	0. 216	-. 0592503	. 2618642
Veget ari an-y	-. 0113021	. 0711599	-0. 16	0. 874	-. 1509508	. 1283466
Dum2ppl	. 6657095	. 0722077	9. 22	0. 000	. 5240046	. 8074144
Dum3ppl	1. 068722	. 0888664	12. 03	0.000	. 8943248	1. 243118
Dumappl	1. 092431	0992235	11. 01	0.000	8977091	1. 287154
_cons	25. 30924	2. 888176	8. 76	0. 000	19. 64131	30. 97717

Dependent variable: Total Food Waste per Meal

. regress Tot FoodWasteTot Meal s Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Age AgeSquar ed Educa $>$ ti on Educati onSquared Income IncomeSquared Female SouthDumm WiteDumm Dumim $>$ igrate Veget arianDumy

Source	SS	df	MS
Model	916.206737	20	45.8103369
Resi dual	5150.86044	958	5.37668105
Tot al	6067.06718	978	6.20354517

Number of obs	$=$	979
F(20,	$958)$	$=$
Prob $>$	8.52	
R-squar ed	$=$	0.0000
Adj R-squar ed	$=$	0.1510
Root MSE	$=$	2.3333

Tot FoodVas -	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf .	I nt erval]
Q3	4466122	. 2026077	2. 20	0.028	. 0490062	8442183
Q4	-. 1765029	. 2027349	-0. 87	0. 384	-. 5743586	. 2213528
Q5	. 2528899	. 2119367	1. 19	0.233	-. 1630239	. 6688037
Q6	-1. 119258	. 2034606	-5. 50	0. 000	-1. 518538	-. 719978
Q7	-. 3989057	. 2435587	-1. 64	0. 102	-. 8768758	. 0790645
Q8	. 5909773	. 1930625	3. 06	0. 002	. 212103	. 9698515
09	-. 764765	. 1849691	-4. 13	0. 000	- 1. 127756	-. 4017736
Q10	. 3415428	. 1875871	1. 82	0. 069	-. 0265862	. 7096719
Q11	-. 3879685	. 2694346	-1. 44	0. 150	-. 9167187	. 1407818
Age	-. 1062312	. 0368964	-2. 88	0. 004	-. 1786383	-. 0338241
AgeSquar ed	. 0009479	. 0003403	2. 79	0.005	. 0002801	. 0016157
Educat ion	-4.459035	1. 203211	-3. 71	0. 000	-6. 820268	-2. 097803
Educations-d	. 1335028	. 0375286	3. 56	0. 000	. 0598549	. 2071506
I ncome	-. 0000724	. 0000168	-4. 31	0.000	-. 0001054	-. 0000395
I ncomeSqua-d	5. $44 \mathrm{e}-10$	1. $15 \mathrm{e}-10$	4. 74	0.000	3. $18 \mathrm{e}-10$	7. $69 \mathrm{e}-10$
Fermal e	-. 0778508	. 1933228	-0.40	0. 687	-. 4572357	. 3015342
Sout hDumy	. 3595503	. 1746911	2. 06	0. 040	. 016729	. 7023717
Whi t eDumm	-. 3816459	. 2441574	-1. 56	0. 118	-. 860791	. 0974992
Dumi mi grate	-. 0974493	. 2521239	-0.39	0. 699	-. 5922283	. 3973296
Veget arí an~y	-. 3600383	. 2263802	-1. 59	0. 112	-. 8042966	0842201
_cons	45.72518	9. 66513	4. 73	0. 000	26. 75791	64. 69245

Dependent variable: \ln (Total Food Waste per Meal)

Source	SS	df	MS
Mbdel	116.912118	20	5.84560591
Resi dual	469.089534	954	.491708107
Tot al	586.001652	974	.601644407

Nunber of obs	$=$	975
F(20,	$954)$	$=$
Prob \gg F	$=0.0000$	
R-squar ed	$=$	0.1995
Adj R-squar ed	$=$	0.1827
Root MSE	$=$.70122

LnY2	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf.	I nt erval]
Q3	16388	. 0615318	2. 66	0. 008	0431267	2846333
Q4	-. 0213414	. 0614383	-0. 35	0.728	-. 1419111	. 0992284
Q5	. 0748485	. 0645304	1. 16	0. 246	-. 0517893	. 2014864
Q6	-. 3410923	. 0616761	-5. 53	0.000	-. 4621288	-. 2200558
Q7	-. 0745154	. 0737102	-1. 01	0. 312	-. 2191681	. 0701374
Q8	2299207	. 0584805	3. 93	0. 000	1151554	344686
Q9	-. 3221975	. 0560557	-5. 75	0.000	-. 4322042	-. 2121907
Q10	. 0539475	. 0567892	0.95	0. 342	-. 0574988	1653938
Q11	-. 0592939	. 0815207	-0.73	0. 467	-. 2192745	1006866
Age	-. 0105059	. 0112019	-0.94	0. 349	-. 0324891	. 0114773
AgeSquar ed	. 0001018	. 0001033	0. 99	0. 324	-. 0001008	. 0003045
	-1.942506	. 3646832	-5. 33	0. 000	-2. 658179	-1. 226832
Educations-d	. 0585994	. 0113749	5. 15	0. 000	. 0362767	. 0809221
I ncome	-. 0000262	5. 08e- 06	-5. 17	0. 000	-. 0000362	-. 0000163
I ncomeSqua-d	2. $03 \mathrm{e}-10$	3. $47 \mathrm{e}-11$	5. 84	0. 000	1. $35 \mathrm{e}-10$	2.71e-10
Ferral e	-. 0573138	. 0585058	-0.98	0.328	-. 1721287	. 0575012
Sout hDummy	. 1153304	. 0530119	2. 18	0. 030	. 0112971	. 2193637
Whi teDumm	-. 1169551	. 0738851	-1. 58	0. 114	-. 2619512	. 0280411
Dumi mig grate	. 0683129	. 076398	0.89	0. 371	-. 0816146	. 2182403
Veget ari an-y	-. 0847642	. 0685782	-1. 24	0. 217	- . 2193458	0498174
_cons	18. 04374	2. 928312	6. 16	0. 000	12. 29706	23. 79042

Dependent variable: Total Food Waste per Person

. regress Tot FWHHS Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Age AgeSquared Educati on Educati $>$ onSquar ed Income IncomeSquared Femal e SouthDumm WiteDumm Dumimigrate Veget
$>$ ari anDumm

Source	SS	df	MS
Mbdel	279514.992	20	13975.7496
Resi dual	968227.164	988	979.987008
Tot al	1247742.16	1008	1237.83944

Number of obs	$=r$	1009
F(20, 988$)$	$=$	14.26
Prob $>$ F	$=$	0.0000
R-squar ed	$=0.2240$	
Adj R-squar ed	$=$	0.2083
Root MSE	$=31.305$	

Tot FWHHS	Coef .	Std. Err.	t	$P>\|t\|$	[95\% Conf .	I nterval]
Q3	5. 515233	2. 679289	2. 06	0.040	257483	10.
Q4	. 3568521	2. 69626	0. 13	0. 895	-4. 934202	5. 647906
Q5	1. 646943	2. 78996	0.59	0.555	- 3. 827985	7. 121871
Q6	-10. 97382	2. 683989	-4. 09	0.000	-16. 24079	-5. 706845
Q7	-9. 26849	3. 223173	-2. 88	0.004	- 15. 59354	-2. 94344
Q8	20. 56639	2. 555673	8. 05	0.000	15. 55122	25. 58156
Q9	- 15. 30215	2. 446629	-6. 25	0. 000	- 20. 10334	- 10. 50097
Q10	3. 947529	2. 479402	1. 59	0.112	-. 9179707	8. 813028
Q11	- 2. 586539	3. 549837	-0.73	0.466	-9. 552626	4. 379548
Age	-. 2027949	. 4761597	-0.43	0.670	-1. 137195	. 7316056
AgeSquar ed	0032399	. 0044209	0.73	0.464	-. 0054355	. 0119152
Educat i on	- 107. 0842	15. 9605	-6. 71	0.000	-138. 4045	-75.7638
Educations-d	3. 357818	. 4973555	6. 75	0.000	2. 381824	4. 333813
I ncome	-. 0022123	. 0002227	-9. 94	0.000	-. 0026492	-. 0017753
I ncomeSqua-d	1. $46 \mathrm{e}-08$	1. 52e- 09	9. 57	0. 000	1. 16e- 08	1. 75e- 08
Ferral e	- 3. 314372	2. 551373	-1. 30	0. 194	- 8. 321104	1. 692361
Sout hDumm	. 6544461	2. 306072	0. 28	0.777	- 3. 870916	5. 179808
Whi t eDumm	-. 1913429	3. 221188	-0.06	0.953	-6. 512498	6. 129813
Dumin mi gr e	-6. 431275	3. 400321	-1. 89	0.059	-13. 10396	2414053
Veget arí an~y	-. 915008	3. 015036	-0. 30	0. 762	-6. 831618	5. 001602
_cons	966.9977	128. 2111	7. 54	0.000	715. 4004	1218. 595

Dependent variable: $\ln ($ Total Food Waste per Person)

Source	SS	df	MS
Mbdel	142.024126	20	7.10120629
Resi dual	455.895439	954	.477877818
Tot al	597.919564	974	.613880456

Number of obs	$=$	975
F(20,	$954)$	$=$
Prob $>$	14.86	
R-squar ed	$=$	0.0000
Adj R-squar ed	$=$	0.2375
Root MSE	$=$.69129

LnY3	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf .	I nt erval]
Q3	1295788	060414	2. 14	0.032	0110192	2481384
Q4	. 0180107	060449	0. 30	0.766	-. 1006177	136639
Q5	. 0663779	. 0635016	1. 05	0. 296	-. 0582411	. 1909969
Q6	-. 1844415	. 060674	-3. 04	0. 002	-. 3035114	-. 0653715
Q7	-. 0786321	. 0726317	-1. 08	0. 279	-. 2211683	. 0639042
Q8	. 388653	. 0575708	6. 75	0.000	. 275673	501633
Q9	-. 3967646	. 0552349	-7. 18	0. 000	-. 5051605	-. 2883687
Q10	. 0553151	. 0560052	0.99	0. 324	-. 0545926	1652228
Q11	. 0421264	. 0803204	0.52	0. 600	-. 1154986	1997515
Age	. 0156367	. 0110001	1. 42	0. 155	-. 0059505	037224
AgeSquar ed	-. 0001085	. 0001015	-1. 07	0. 285	-. 0003077	0000907
Education	-2. 636097	. 3589515	-7. 34	0.000	- 3. 340523	-1. 931671
Educations-d	. 0824339	. 0111951	7. 36	0.000	. 0604641	. 1044038
I ncome	-. 0000469	5. $01 \mathrm{e}-06$	-9. 37	0.000	-. 0000567	-. 0000371
I ncomeSqua-d	3. $24 \mathrm{e}-10$	3. $42 \mathrm{e}-11$	9. 47	0.000	2.57e-10	3. $91 \mathrm{e}-10$
Fermale	-. 1214979	. 057523	-2. 11	0.035	-. 2343842	-. 0086117
Sout hDumm	-. 0078245	. 0521283	-0. 15	0. 881	-. 1101239	. 0944749
Whi teDumm	-. 022486	. 0724782	-0.31	0.756	-. 1647211	. 119749
Dum min grate	-. 0214667	. 0760809	-0. 28	0.778	-. 1707719	1278385
Veget ari an-y	$\text { -. } 0199865$	2. 80677	-0.30	0. 768	-. 1528447	1128716
_cons	25.44843	2. 883361	8. 83	0. 000	19. 78997	31. 10689

Dependent variable: Total Edible Food Waste

. regress Tot Ed Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Age AgeSquared Education Educations $>$ quared Income IncomeSquar ed Femal e SouthDumm WhiteDumm Dum ming ate Veget ari $>$ anDummy Dum2ppl Dum3ppl Durłfpl

Source	SS	df	MS
Mbdel	551947.542	23	23997.7192
Resi dual	1535268.68	986	1557.06762
Total	2087216.22	1009	2068.59883

Number of obs	$=r$	1010
F(23,	986)	$=15.41$
Prob $>$ F	$=0.0000$	
R-squar ed	$=0.2644$	
Adj R-squar ed	$=0.2473$	
Root MSE	$=39.46$	

Tot Ed	Coef.	Std. Err.	t	P> ${ }_{\text {t }}$ \|	[95\% Conf.	I nt erval]
Q3	- 3. 476907	3. 447766	- 1.01	0. 313	- 10. 24271	3. 28
Q4	-1. 689427	3. 434532	-0.49	0.623	-8. 42926	5. 050406
Q5	-1. 89723	3. 51984	-0. 54	0.590	-8.804469	5. 010008
Q6	- 20. 89843	3. 390808	-6. 16	0. 000	- 27.55246	- 14.2444
Q7	-7. 512699	4. 133667	-1. 82	0.069	- 15. 62449	. 5990968
Q8	. 7410681	3. 402096	0. 22	0. 828	-5.935112	7.417249
Q9	- 23.24284	3. 112308	- 7.47	0. 000	- 29. 35035	-17. 13533
Q10	. 0454925	3. 134516	0.01	0. 988	-6. 105597	6. 196582
Q11	2. 178916	4. 51117	0.48	0. 629	-6. 673681	11. 03151
Age	-. 9060732	. 6202277	-1. 46	0. 144	-2. 123191	. 3110448
AgeSquar ed	. 0075759	. 0057941	1. 31	0. 191	-. 0037943	0189461
Education	- 214.2747	20. 22972	- 10. 59	0. 000	- 253.9729	-174. 5764
Educations-d	6.585807	. 6304422	10. 45	0.000	5. 348644	7. 822969
Income	-. 0012017	- 0002835	-4. 24	0. 000	-. 0017582	-. 0006453
I ncomeSqua-d	8. 41e-09	1. 93e- 09	4. 36	0. 000	4. 62e-09	1. 22e- 08
Femal e	-2. 873395	3. 307364	-0. 87	0. 385	-9.363677	3. 616887
Sout hDumm	4. 016649	2. 943296	1. 36	0. 173	-1. 759195	9. 792493
Whit eDumm	1. 275287	4. 11849	0. 31	0.757	-6. 806727	9. 357301
Dumin mi gr a	-12. 34871	4. 614568	-2. 68	0.008	- 21. 40421	- 3. 293208
Veget arí an-y	7. 186175	3. 995646	1. 80	0. 072	-. 6547725	15. 02712
Dumpp	9.526698	4. 056348	2. 35	0.019	1.566631	17. 48677
Dumippl	24. 98666	4. 978017	5. 02	0.000	15. 21793	34. 75538
Dumppl	27. 39458	5. 58475	4. 91	0.000	16. 43522	38. 35394
_cons	1833. 941	162.0593	11. 32	0. 000	1515. 92	2151. 962

regress LnY4 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Age AgeSquared Educati on Educati onSq
$>$ uared I ncome IncomeSquared Femal e Sout hDumy Whit $>$ nDumm Dum2ppl Dum3ppl Dumappl

Source	SS	df	MS
Mbdel	347.225632	23	15.0967666
Resi dual	882.398091	704	1.25340638
Tot al	1229.62372	727	1.69136688

Number of obs	$=r$	728
F(23, 704)	$=12.04$	
Prob F	$=0.0000$	
R-squar ed	$=$	0.2824
Adj R-squar ed	$=$	0.2589
Root MSE	$=$	1.1196

LnY4	Coef .	Std. Err.	t	$P>\|t\|$	[95\% Conf .	I nt erval]
Q3	-. 0163063	. 1229261	-0. 13	0. 895	- 257652	2250393
Q4	. 0349265	. 1142953	0. 31	0.760	-. 189474	2593271
Q5	. 0214427	. 1213015	0.18	0. 860	-. 2167132	2595986
Q6	-. 6515152	. 1147298	-5. 68	0.000	-. 8767687	-. 4262617
Q7	-. 4149659	. 1555893	-2. 67	0. 008	-. 7204405	- . 1094914
Q8	. 1578062	. 1205477	1. 31	0.191	-. 0788698	. 3944822
Q9	-. 7528525	. 1095066	-6. 87	0. 000	-. 9678512	-. 5378538
Q10	-. 0221023	. 1061714	-0. 21	0.835	-. 2305528	. 1863482
Q11	. 2056557	. 1667585	1. 23	0. 218	-. 1217478	. 5330592
Age	. 0075257	. 0224632	0. 34	0. 738	-. 0365772	. 0516285
AgeSquar ed	-. 0001262	. 0002095	-0. 60	0.547	-. 0005375	. 000285
Educati on	-5. 935945	. 6528908	-9. 09	0. 000	-7. 217791	-4. 654098
Educations-d	. 1830885	. 0204254	8. 96	0.000	. 1429866	. 2231904
Income	-. 0000433	9. $50 \mathrm{e}-06$	-4. 55	0. 000	-. 000062	-. 0000246
I ncomeSqua-d	3. 05e-10	6. 59e-11	4. 63	0. 000	1. 76e-10	4. $34 \mathrm{e}-10$
Femal e	. 1275699	. 1175552	1. 09	0. 278	-. 103231	. 3583707
Sout hDumm	. 1126731	. 1051292	1.07	0. 284	-. 0937313	. 3190774
Whi t eDumm	-. 130293	. 153469	-0. 85	0. 396	-. 4316046	. 1710187
Dumb min grat	-. 3524542	. 176926	-1. 99	0. 047	-. 6998199	-. 0050884
Veget arí an~y	. 0386955	. 1335392	0.29	0.772	-. 2234873	. 3008784
Dum2ppl	. 2581085	. 1504948	1. 72	0.087	-. 0373637	. 5535808
Dum3ppl	. 5032851	. 1709266	2. 94	0.003	. 1676981	8388721
Dumfppl	. 5058273	. 2019514	2. 50	0. 012	. 1093282	9023264
_cons	52. 33887	5. 194126	10. 08	0. 000	42. 14103	62.5367

Dependent variable: Edible Food Waste per Meal

. regress Tot EdTot Meal s Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Age AgeSquared Education Ed $>$ ucati onSquared Income IncomeSquared Female SouthDumm WhiteDumm Dummigrate > Veget ari anDumy

Source	SS	df	MS
Mbdel Resi dual	506.438281	2297.80366	959
Tot al	2804.39601914		
	24195	979	2.86439422

Number of obs	$=r 980$	
F(20,	959)	$=10.57$
Prob $>$ F	$=0.0000$	
R-squar ed	$=0.1806$	
Adj R-squar ed	$=0.1635$	
Root MSE	$=1.5479$	

Tot EdTot Me-s	Coef .	Std. Err.	t	$P \gg 1 \mathrm{l}$	[95\% Conf .	I nt erval]
Q3	. 0577181	1352006	0.43	0.670	. 207605	3230413
Q4	-. 0016577	. 1353203	-0.01	0. 990	-. 2672159	. 2639004
Q5	-. 3137692	. 1414667	-2. 22	0. 027	-. 5913892	-. 0361492
Q6	-. 9272475	. 1357673	-6. 83	0. 000	- 1. 193683	-. 6608121
Q7	-. 3583919	. 162581	-2. 20	0. 028	-. 6774475	-. 0393363
Q8	-. 0429497	1288682	-0. 33	0. 739	-. 2958458	. 2099465
Q9	-. 7390395	123385	-5. 99	0. 000	-. 9811753	-. 4969038
Q10	. 1432834	. 1252157	1. 14	0. 253	-. 102445	. 3890117
Q11	. 268912	. 1798613	1. 50	0. 135	-. 0840552	. 6218792
Age	-. 0332484	. 0245609	-1. 35	0. 176	-. 0814476	. 0149508
AgeSquar ed	. 0002984	. 0002266	1. 32	0. 188	-. 0001464	. 0007431
Educat i on	-5. 860365	. 8031103	-7. 30	0. 000	-7. 436421	-4. 284308
Educations-d	. 1802573	. 0250495	7. 20	0. 000	. 1310992	. 2294154
I ncome	-. 0000326	. 0000112	-2. 91	0. 004	-. 0000546	-. 0000106
I ncomeSqua-d	2. $45 \mathrm{e}-10$	7. $66 \mathrm{e}-11$	3. 20	0. 001	9. 50e-11	3. $95 \mathrm{e}-10$
Ferral e	. 0585453	. 1290404	0.45	0. 650	-. 1946888	. 3117794
Sout hDumm	. 2164423	. 1166167	1. 86	0. 064	-. 0124111	. 4452956
Whi t eDumm	-. 2055622	. 1629881	-1. 26	0. 208	-. 5254166	. 1142922
Dumi mmi grat e	-. 4395937	. 1683053	-2. 61	0. 009	-. 7698828	-. 1093045
Veget ari an~y	. 2921314	151099	1. 93	0. 053	-. 0043914	5886542
_cons	51. 13275	6. 450101	7. 93	0. 000	38.4748	63.79069

Dependent variable: $\ln (E d i b l e$ Food Waste per Meal)

. regress LnY5 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Age AgeSquar ed Educati on EducationSq $>$ uar ed I ncome IncomeSquared Femal e Sout hDumy Whit eDumy Dum míg at e Veget ari a $>$ nDumm

Dependent variable: Edible Food Waste per Person

. regress Tot EdFWHHS Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Age AgeSquared Education Educa $>$ ti onSquar ed I ncome IncomeSquar ed Female Sout hDumm WhiteDumy Dum mim gr at e Veg $>$ et ari anDumy

Source	SS	df	MS
Mbdel	80668.153	20	4033.40765
Resi dual	396326.864	989	400.734949
Tot al	476995.017	1009	472.740354

Number of obs	$=r$	1010
F(20, 989$)$	$=10.07$	
Prob $>$	$=0.0000$	
R-squar ed	$=$	0.1691
Adj R-squar ed	$=$	0.1523
Root MSE	$=20.018$	

Tot EdFWHHS	Coef.	Std. Err.	t	$P \gg 1 \mathrm{l}$	[95\% Conf .	I nt erval]
Q3	2001902	1. 712729	0. 12	0. 907	- 3. 16081	3. 56119
Q4	1. 071519	1. 723974	0.62	0. 534	-2. 311547	4. 454586
Q5	- 2. 702442	1. 783892	-1. 51	0. 130	-6. 203091	. 7982058
Q6	-11. 20748	1. 715558	-6. 53	0.000	- 14. 57403	-7. 840932
Q7	-6. 655316	2. 061007	-3. 23	0. 001	- 10. 69977	- 2. 610867
Q8	1. 073641	1. 634106	0. 66	0. 511	- 2. 133073	4. 280355
Q9	-8. 671065	1. 563308	-5. 55	0. 000	- 11.73885	-5. 603284
Q10	1. 581723	1. 585305	1. 00	0. 319	-1. 529225	4. 692671
Q11	2. 25218	2. 269997	0. 99	0. 321	- 2. 202384	6. 706745
Age	-. 2906561	. 303684	-0. 96	0. 339	-. 886595	. 3052829
AgeSquar ed	. 0027244	. 0028209	0. 97	0. 334	-. 0028112	0082599
Educat i on	-78. 20826	10. 20479	-7. 66	0. 000	- 98.23378	- 58. 18274
Educations-d	2. 426257	. 3179995	7. 63	0. 000	1. 802226	3. 050289
I ncome	-. 0007655	. 0001424	-5. 38	0.000	-. 0010448	- . 0004861
I ncomeSqua-d	5. $06 \mathrm{e}-09$	9. $72 \mathrm{e}-10$	5. 21	0. 000	3. $15 \mathrm{e}-09$	6. $97 \mathrm{e}-09$
Fermal e	-. 8431733	1. 631282	-0. 52	0. 605	-4. 044346	2. 357999
Sout hDumm	1. 547363	1. 474658	1. 05	0. 294	- 1. 346455	4. 441182
Whi t eDumy	-. 8213133	2. 059824	- 0.40	0. 690	-4. 86344	3. 220814
Dumi mi grate	-7. 822484	2. 174381	- 3. 60	0. 000	- 12. 08941	- 3. 555552
Veget arí an~y	1. 742589	1. 927733	0. 90	0. 366	- 2.040329	5. 525506
_cons	683. 3264	81. 96203	8. 34	0. 000	522.4869	844.1658

Dependent variable: $\ln (E d i b l e$ Food Waste per Person)

. regress LnY6 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Age AgeSquared Education EducationSq $>$ uared Incore I ncomeSquared Femal e SouthDumy WhiteDumm Dumimigrate Veget aria $>$ nDumm

Source	SS	df	MS
Mbdel	364.219158	20	18.2109579
Resi dual	908.319186	707	1.28475132
Total	1272.53834	727	1.75039662

Number of obs	$=r$	728
F(20,	$707)$	$=$
Prob $>$	14.17	
R-squar ed	$=$	0.0000
Adj R-squar ed	$=$	0.2662
Root MSE	$=$	1.1335

LnY6	Coef .	Std. Err.	t	$P>\|t\|$	[95\% Conf .	I nt erval]
Q3	. 1364746	. 1168189	1. 17	0. 243	-. 0928788	365828
Q4	. 0095122	. 1133778	-0. 08	0. 933	-. 2321097	2130852
Q5	-. 033353	. 1223056	-0. 27	0. 785	-. 2734787	2067727
Q6	-. 605547	. 114871	-5. 27	0.000	-. 8310761	-. 3800179
Q7	-. 6019198	. 1512425	-3. 98	0. 000	-. 8988579	-. 3049816
Q8	3110131	. 1157662	2. 69	0.007	. 0837263	. 5382998
Q9	-. 7854185	. 1086826	-7. 23	0. 000	-. 9987979	-. 5720392
Q10	. 0047824	. 1066818	0.04	0. 964	-. 2046686	. 2142335
Q11	. 3001704	. 1666416	1. 80	0. 072	-. 0270012	. 627342
Age	-. 0199489	. 0217891	-0. 92	0. 360	-. 0627281	0228302
AgeSquar ed	. 0001657	. 0002006	0.83	0. 409	-. 0002281	0005595
Educat i on	-5.932567	. 6586579	-9. 01	0.000	-7. 225726	-4. 639407
Educati onS-d	. 1832552	. 0206096	8. 89	0. 000	. 142792	. 2237185
Income	-. 0000485	9. 51e- 06	-5. 10	0. 000	-. 0000672	-. 0000298
I ncomeSqua~d	3. $19 \mathrm{e}-10$	6. 62e-11	4. 81	0. 000	1. $88 \mathrm{e}-10$	4. $49 \mathrm{e}-10$
Fenal e	. 2564523	. 1116356	2. 30	0. 022	. 0372754	. 4756292
Sout hDummy	1461481	. 1054885	1. 39	0. 166	-. 0609601	. 3532563
Whi t eDumm	-. 2473253	. 1510142	-1. 64	0. 102	-. 5438153	. 0491647
Dumi mim grate	-. 7787965	. 1564877	-4. 98	0. 000	-1.086033	-. 4715602
Veget arí an~y	-. 0818029	. 1275392	-0. 64	0. 521	-. 3322039	168598
_cons	52. 58487	5. 250069	10. 02	0. 000	42. 27728	62.89246

Dependent variable: Total Food Waste

```
. regress Tot al FoodVAste Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Age AgeSquared Educati on Educa
> ti onSquared I ncome I ncoreSquared Femal e SouthDummy Wi teDummy Dummm grate Veget ari
> anDummy Dum2ppl Dum3ppl Dum4ppl, vce(cl uster Househol dNo)
```


(Std. Err. adj usted for 90 cl usters in Househol dNo)

Tot al FoodW-	Coef .	Robust Std. Err.	t	P> ${ }_{\text {t }}$	[95\% Conf .	I nt erval]
Q3	11. 65505	12. 49991	0.93	0. 354	- 13. 18201	36. 4921
Q4	-5. 608751	13.47571	-0. 42	0.678	-32. 3847	21. 1672
Q5	9. 88328	12. 61194	0. 78	0.435	-15. 17638	34. 94294
Q6	- 14. 35415	12. 73354	-1. 13	0. 263	- 39. 65543	10. 94712
Q7	-. 0417777	14. 99277	-0. 00	0.998	-29.83209	29. 74853
Q8	35. 08399	13. 91051	2. 52	0.013	7. 444107	62. 72388
Q9	-42.52783	11. 65735	-3. 65	0. 000	-65. 69073	-19. 36493
Q10	2. 675199	11. 69163	0. 23	0. 820	- 20. 55582	25. 90622
Q11	-4. 534928	15. 90921	-0. 29	0.776	- 36. 14619	27. 07633
Age	-. 4101829	1. 829439	-0.22	0.823	-4.045239	3. 224874
AgeSquar ed	. 0035916	. 0178077	0. 20	0. 841	-. 0317918	. 0389751
Educat i on	-251. 068	65.53981	- 3. 83	0.000	- 381.2942	-120.8418
Educations~d	7. 779371	2. 055956	3. 78	0.000	3. 694229	11. 86451
I ncore	-. 0035399	. 0010523	-3. 36	0. 001	-. 0056308	-. 0014489
I ncorreSqua~d	2. $41 \mathrm{e}-08$	7.06e-09	3. 42	0. 001	1. $01 \mathrm{e}-08$	3. $82 \mathrm{e}-08$
Ferral e	-14.61894	13. 54163	-1. 08	0. 283	-41. 52588	$\text { 12. } 288$
Sout hDummy	1. 786005	10. 71277	0.17	0. 868	- 19. 50004	23. 07205
Whi t eDumm	2. 043576	15. 4996	0.13	0. 895	- 28. 75381	32. 84096
Dumi mi gr at e	6. 896593	17. 94977	0.38	0.702	- 28. 76923	42. 56241
Veget arí an~y	6. 815998	14. 61662	0.47	0. 642	- 22. 22692	35. 85892
Dum2ppl	34.99297	13. 41254	2. 61	0.011	8. 342528	61.64341
Dumbppl	73. 0444	18. 32753	3. 99	0.000	36. 62798	109. 4608
Dumfppl	82. 2036	22.67774	3. 62	0. 000	37.14341	127. 2638
_cons	2191.1	532. 2815	4. 12	0. 000	1133.468	3248. 732

Dependent variable: \ln (Total Food Waste)

; regress LnY1 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Age AgeSquared Educati on Educati onSquared $>$ I ncome IncomeSquar ed Fenal e Sout hDumy WhiteDumm Dum mi grate Veget ari anDumy Dum $>2 \mathrm{ppl}$ Dumßppl Dumfppl, vce(cl uster Househol dNo)
Li near regressi on

Number of obs	$=$	975
F(22, 89$)$	\equiv	.
Prob $>$	$=$	0.3641
R-squar ed	$=$	0.36948
Root MSE	$=$.689

(Std. Err. adj usted for 90 cl usters in Househol dNo)

LnY1	Coef.	Robust Std. Err.	t	P> $\boldsymbol{l}_{\text {t }}$	[95\% Conf .	I nt erval]
Q3	. 0911753	. 1516956	0.60	0. 549	- . 2102406	3925911
Q4	. 0327919	. 1571128	0. 21	0. 835	-. 2793879	. 3449717
Q5	. 0862732	. 1412781	0.61	0.543	- . 1944433	. 3669898
Q6	-. 1871309	. 1426979	-1. 31	0. 193	-. 4706685	. 0964068
Q7	-. 0199256	. 1636076	-0. 12	0.903	-. 3450103	. 3051591
Q8	. 3179823	. 1486063	2. 14	0. 035	. 0227048	6132598
Q9	-. 3846575	. 1195504	-3. 22	0. 002	-. 6222015	-. 1471134
Q10	. 0745793	. 1366895	0.55	0. 587	-. 1970199	. 3461784
Q11	023189	. 1911662	0.12	0. 904	-. 3566542	. 4030322
Age	. 0236184	. 0277485	0.85	0.397	-. 0315173	. 0787542
AgeSquar ed	-. 0001919	. 000261	-0. 74	0. 464	-. 0007106	. 0003268
Educat i on	-2.634775	. 8137265	- 3. 24	0. 002	-4. 251632	-1. 017917
Educati onS~d	. 0822536	. 0255935	3. 21	0. 002	. 0313999	1331074
I ncome	-. 0000449	. 0000126	-3. 57	0.001	-. 0000699	-. 0000199
I ncomeSqua-d	3. $13 \mathrm{e}-10$	8. $13 \mathrm{e}-11$	3. 85	0. 000	1. $51 \mathrm{e}-10$	4. 74e-10
Fermal e	-. 173055	. 1381672	-1. 25	0. 214	-. 4475903	. 1014803
Sout hDumm	. 0130922	. 1263747	0.10	0. 918	- . 2380117	. 264196
Whit eDumm	-. 0120024	. 1431257	-0.08	0. 933	- . 2963901	. 2723853
Dumi mi grat e	. 101307	. 1704774	0.59	0. 554	-. 237428	. 4400419
Veget arían-y	-. 0113021	. 1620827	-0. 07	0.945	- . 333357	. 3107528
Dum2ppl	. 6657095	. 1907402	3. 49	0. 001	. 2867128	1. 044706
Dum3ppl	1. 068722	. 2002593	5. 34	0.000	. 6708106	1. 466633
Dum4ppl	1. 092431	. 2595191	4. 21	0. 000	5767725	1. 60809
_cons	25. 30924	6. 442239	3. 93	0. 000	12. 50865	38. 10983

Dependent variable: Total Food Waste per Meal

regress Tot FoodVAsteTot Meal s Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Age AgeSquar ed Education $>$ Educat i onSquar ed I ncome I ncomeSquar ed Femal e Sout hDumm Whi teDumm Dum mig grate Veg $>$ et ari anDumm, vce(cl uster Househol dNo)

(Std. Err. adj usted for 89 cl usters in Househol dNo)

Tot FoodVas~s	Coef.	Robust Std. Err.	t	P> t \|	[95\% Conf .	I nt er val]
Q3	4466122	. 4413456	1. 01	0. 314	-. 4304695	1. 323694
Q4	-. 1765029	. 4884502	-0.36	0.719	-1.147195	. 7941892
Q5	. 2528899	. 5274637	0.48	0.633	-. 7953334	1. 301113
Q6	-1. 119258	. 5257015	-2. 13	0.036	-2. 163979	-. 0745365
Q7	-. 3989057	. 5381607	-0. 74	0.461	-1. 468387	. 6705757
Q8	. 5909773	. 4628865	1. 28	0. 205	-. 3289123	1. 510867
Q9	-. 764765	. 5007496	-1. 53	0. 130	-1.7599	. 2303695
Q10	. 3415428	. 4125924	0. 83	0.410	-. 4783979	1. 161484
Q11	-. 3879685	. 6727212	-0. 58	0.566	- 1.724861	9489236
Age	-. 1062312	. 0980113	-1. 08	0. 281	-. 3010081	0885457
AgeSquar ed	. 0009479	. 0008863	1. 07	0. 288	-. 0008134	0027091
Education	-4.459035	3. 338473	-1. 34	0. 185	- 11.09355	2. 175478
Educations~d	. 1335028	. 1044026	1. 28	0. 204	-. 0739755	3409811
I ncome	-. 0000724	. 000042	-1. 72	0.088	-. 000156	0000111
I ncomeSqua-d	5. $44 \mathrm{e}-10$	2. $83 \mathrm{e}-10$	1. 92	0. 058	-1.87e-11	1. $11 \mathrm{e}-09$
Fermale	-. 0778508	. 4094424	-0. 19	0.850	-. 8915316	. 73583
Sout hDumm	. 3595503	. 4568505	0. 79	0.433	-. 5483441	1. 267445
Whi t eDumm	-. 3816459	. 5469429	-0. 70	0.487	-1.46858	. 7052881
Duni min gr at e	-. 0974493	5021239	-0. 19	0. 847	-1. 095315	9004163
Veget arían~y	-. 3600383	604789	-0.60	0. 553	-1. 561929	8418528
_cons	45. 72518	26. 35575	1. 73	0. 086	-6. 651329	98.1017

Dependent variable: $\ln (T o t a l$ Food Waste per Meal)

. regress LnY2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Age AgeSquared Education EducationSquared $>$ Income IncomeSquar ed Femal e SouthDumy Whi teDumm Dum mi gr at e Veget ari anDumy, vc $>\mathrm{e}(\mathrm{cl}$ uster Househol dNo)

Li near regressi on

Number of obs	$=$	975
F(19, 88$)$	\equiv	.
Prob $>$	$=$	
R-squar ed	$=$	0.1995
Root MSE	$=$.70122

(Std. Err. adj usted for 89 cl usters in Househol dNo)

LnY2	Coef.	Robust Std. Err.	t	P> ${ }_{\text {t }}$ \|	[95\% Conf .	I nt erval]
Q3	16388	1787469	0.92	0. 362	- . 1913418	5191018
Q4	-. 0213414	1800066	-0. 12	0. 906	-. 3790666	3363839
Q5	. 0748485	. 1664566	0.45	0. 654	-. 2559489	. 4056459
Q6	-. 3410923	. 1500408	-2. 27	0. 025	-. 6392668	-. 0429178
Q7	-. 0745154	. 1713673	-0.43	0. 665	-. 4150718	. 2660411
Q8	. 2299207	. 1483838	1. 55	0. 125	-. 064961	. 5248023
Q9	-. 3221975	. 1518786	-2. 12	0. 037	-. 6240242	-. 0203707
Q10	. 0539475	. 1476368	0. 37	0. 716	-. 2394495	. 3473445
Q11	-. 0592939	. 2305328	-0. 26	0. 798	-. 5174294	. 3988416
Age	-. 0105059	. 0309529	-0.34	0. 735	-. 0720184	. 0510065
AgeSquar ed	. 0001018	. 0002835	0. 36	0.720	-. 0004616	. 0006652
Educat i on	-1.942506	1. 074699	-1. 81	0. 074	-4. 078245	. 1932336
Educations~d	. 0585994	. 0336014	1. 74	0. 085	-. 0081763	1253751
I ncore	-. 0000262	. 0000127	-2. 06	0. 042	-. 0000515	-9.64e-07
I ncoreSqua-d	2. $03 \mathrm{e}-10$	8. $60 \mathrm{e}-11$	2. 36	0. 021	3. $18 \mathrm{e}-11$	3. $73 \mathrm{e}-10$
Fermal e	-. 0573138	. 1524243	-0.38	0. 708	-. 3602251	. 2455976
Sout hDumm	. 1153304	. 1524945	0.76	0.451	-. 1877204	4183812
Whit eDumm	-. 1169551	. 1461375	-0.80	0.426	-. 4073727	1734625
Dumin mi gr at	. 0683129	. 1557343	0. 44	0. 662	-. 2411763	. 377802
Veget arí an y	-. 0847642	2066104	-0. 41	0. 683	-. 4953589	3258305
_cons	18. 04374	8. 497353	2. 12	0.037	1. 157036	34. 93044

Dependent variable: Total Food Waste per Person

regress Tot FWHHS Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Age AgeSquar ed Educati on Educati onSqu $>$ ared I ncome I ncorreSquared Femal e Sout hDumm Wi teDumy Dum mí grate Veget ari anDumy $>$, vce(cl uster Househol dNo)

(Std. Err. adj usted for 90 cl usters in Househol dNo)

Tot FWHHS	Coef .	Robust Std. Err.	t	$P \gg 1$	[95\% Conf .	I nt er val]
Q3	5. 515233	5. 577173	0.99	0. 325	-5. 566491	16. 59696
Q4	. 3568521	6. 132142	0.06	0. 954	-11. 82758	12. 54129
Q5	1. 646943	6. 15916	0.27	0.790	- 10. 59118	13. 88506
Q6	-10. 97382	7. 130275	-1. 54	0. 127	- 25. 14152	3. 193885
Q7	-9. 26849	7. 431386	-1. 25	0. 216	-24. 0345	5. 497514
Q8	20. 56639	6. 514882	3. 16	0. 002	7. 621462	33.51132
Q9	-15. 30215	5. 444972	-2. 81	0.006	- 26.1212	-4.483111
Q10	3. 947529	5. 455183	0.72	0. 471	-6. 891803	14. 78686
Q11	-2. 586539	7. 716975	-0.34	0.738	-17.92	12.74693
Age	-. 2027949	. 9608697	-0. 21	0. 833	-2. 112023	1. 706433
AgeSquar ed	0032399	. 0096081	0.34	0.737	-. 0158512	0223309
Education	- 107.0842	30. 91354	- 3. 46	0.001	-168. 5087	-45. 65962
Educati onS-d	3. 357818	. 9638931	3. 48	0.001	1. 442583	5. 273054
Income	-. 0022123	. 0006668	- 3. 32	0. 001	-. 0035372	-. 0008874
I ncomeSqua-d	1. $46 \mathrm{e}-08$	4. 17e-09	3. 49	0. 001	6. 27e- 09	2. 28e- 08
Fermale	- 3. 314372	5. 893197	-0. 56	0.575	-15. 02403	8. 395285
Sout hDummy	. 6544461	5. 111592	0.13	0. 898	-9. 502178	10. 81107
Whi t eDumm	-. 1913429	6. 650146	-0. 03	0. 977	-13. 40504	13. 02236
Dumi min grate	-6. 431275	7. 809877	-0. 82	0.412	- 21. 94934	9.086784
Veget arí an~y	-. 915008	6. 740147	-0.14	0. 892	- 14. 30754	12.47752
_cons	966.9977	258. 6539	3. 74	0. 000	453. 058	1480.937

Dependent variable: $\ln (T o t a l$ Food Waste per Person)

. regress LnY3 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Age AgeSquared Educati on Educat i onSquar ed > I ncome I ncomeSquar ed Femal e Sout hDumm Wi teDumm Dumimi grate Veget ari anDumy, vc > e(cl uster Househol dNo)

Li near regression

(Std. Err. adj usted for 90 cl usters in Househol dNo)

LnY3	Coef .	Robust Std. Err.	t	$P>\|t\|$	[95\% Conf .	I nt erval]
Q3	1295788	. 1591922	0.81	0.418	- . 1867326	4458902
Q4	. 0180107	. 1588026	0.11	0.910	-. 2975267	333548
Q5	. 0663779	. 1491561	0.45	0. 657	-. 2299921	3627479
Q6	-. 1844415	. 1412692	-1. 31	0. 195	-. 4651402	. 0962573
Q7	-. 0786321	. 1679563	-0.47	0.641	-. 4123576	. 2550935
Q8	. 388653	. 1368957	2. 84	0. 006	. 1166441	. 660662
Q9	-. 3967646	. 1192503	-3. 33	0.001	-. 6337125	1598167
Q10	. 0553151	. 1349223	0.41	0. 683	-. 2127726	3234028
Q11	. 0421264	. 1911642	0. 22	0. 826	-. 3377127	. 4219656
Age	. 0156367	. 0266632	0.59	0. 559	-. 0373424	. 0686159
AgeSquar ed	-. 0001085	. 0002508	-0.43	0. 666	-. 0006068	. 0003898
Education	-2. 636097	. 8161929	- 3. 23	0. 002	-4. 257855	-1. 014339
Educati onS-d	. 0824339	. 0254985	3. 23	0. 002	. 031769	1330989
I ncome	-. 0000469	. 0000121	-3. 87	0. 000	-. 000071	-. 0000228
I ncomeSqua-d	3. $24 \mathrm{e}-10$	7. 91e-11	4. 10	0. 000	1. $67 \mathrm{e}-10$	4. 81e-10
Fermal e	-. 1214979	. 1464613	-0.83	0. 409	-. 4125135	. 1695176
Sout hDumm	-. 0078245	. 1264968	-0. 06	0. 951	-. 2591709	. 2435219
Whi t eDumm	-. 022486	. 1411012	-0. 16	0. 874	- . 3028511	. 2578791
Dumi mig grate	-. 0214667	. 1476558	-0.15	0. 885	-. 3148556	. 2719221
Veget arían-y	-. 0199865	. 1769947	-0. 11	0. 910	-. 3716713	3316982
_cons	25. 44843	6. 578254	3. 87	0. 000	12. 37758	38. 51928

Dependent variable: Total Edible Food Waste

regress Tot Ed Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Age AgeSquared Education EducationSquare $>$ d Income I ncomeSquar ed Femal e Sout hDumy WhiteDumm Dummigrate Veget ari anDumy Du $>\mathrm{m} 2 \mathrm{ppl}$ Dum3ppl Dumappl, vce(cl uster Househol dNo)
Li near regressi on

Number of obs	$=$	1010
F(22, 89$)$	\equiv	.
Prob $>$	$=$	
R-squared	$=$	0.2644
Root MSE	$=$	39.46

(Std. Err. adj usted for 90 cl usters in Househol dNo)

Tot Ed	Coef .	Robust Std. Err.	t	$P>\|t\|$	[95\% Conf .	I nt er val]
Q3	- 3. 476907	6. 834318	-0. 51	0. 612	- 17. 05655	10. 10274
Q4	-1. 689427	5. 957985	-0. 28	0.777	-13. 52782	10. 14896
Q5	-1. 89723	8. 668311	-0. 22	0.827	- 19. 12098	15. 32652
Q6	-20.89843	8. 939212	-2. 34	0. 022	- 38. 66045	3. 136407
Q7	- 7.512699	7. 63098	-0. 98	0. 328	- 22. 67529	7. 649896
Q8	7410681	9. 092962	0.08	0.935	- 17. 32645	18. 80859
Q9	- 23. 24284	8. 509642	-2. 73	0. 008	-40. 15131	-6. 334359
Q10	0454925	6. 690503	0.01	0. 995	-13. 2484	13. 33938
Q11	2. 178916	7. 478213	0.29	0.771	-12. 68013	17.03797
Age	-. 9060732	1. 194991	-0. 76	0. 450	- 3. 280495	1. 468349
AgeSquar ed	0075759	. 0117401	0.65	0.520	-. 0157515	0309033
Education	-214. 2747	45. 19799	-4. 74	0.000	- 304.0821	-124.4672
EducationS~d	6.585807	1. 417082	4. 65	0.000	3. 770095	9.401518
I ncome	-. 0012017	. 0005578	-2. 15	0. 034	-. 0023101	-. 0000934
I ncoreSqua-d	8. 41e- 09	3. 89e- 09	2. 16	0.033	$6.80 \mathrm{e}-10$	1. 61e-08
Fermal e	-2. 873395	5. 648269	-0. 51	0.612	- 14. 09639	8. 349596
Sout hDummy	4. 016649	5. 444841	0.74	0. 463	-6. 802134	14. 83543
Whi t eDumm	1. 275287	8. 366002	0.15	0. 879	- 15. 34778	17. 89836
Dumimi grat e	-12. 34871	7. 411502	-1. 67	0. 099	-27. 07521	2. 377786
Veget arí an~y	7. 186175	6. 645965	1. 08	0. 282	-6. 019215	20. 39157
Dum2pp	9. 526698	8. 873005	1. 07	0. 286	-8. 103773	27. 15717
Dumbpp	24. 98666	9.881299	2. 53	0.013	5. 352727	44. 62059
Dumfppl	27. 39458	13. 18578	2. 08	0.041	1. 194726	53. 59444
_cons	1833. 941	368. 2061	4. 98	0. 000	1102. 323	2565. 559

Dependent variable: \ln (Total Edible Food Waste)

```
. regress LnY4 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Age AgeSquared Education EducationSquared \(>\) I ncome I ncomeSquar ed Femal e Sout hDumy Whi teDumm Dummigrate Veget ari anDumy Dum \(>2 \mathrm{ppl}\) Dumßpl Dumppl, vce( cl uster Househol dNo)
```

Li near regressi on

Nunber of obs	$=$	728
F(22, 86$)$	$=$.
Prob $>$	$=$	0
R-squar ed	$=$	0.2824
Root MSE	$=$	1.1196

(Std. Err. adj usted for 87 cl usters in Househol dNo)

| LnY4 | Coef . | Robust Std. Err. | t | P>\|t| | [95\% Conf . | I nt erval] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Q3 | -. 0163063 | 3018612 | -0.05 | 0.957 | -. 6163864 | 5837738 |
| Q4 | . 0349265 | . 2349001 | 0.15 | 0. 882 | -. 4320394 | 5018925 |
| Q5 | . 0214427 | . 2877321 | 0.07 | 0. 941 | -. 5505497 | . 5934351 |
| Q6 | -. 6515152 | . 2209578 | -2.95 | 0. 004 | -1. 090765 | -. 2122657 |
| Q7 | -. 4149659 | . 3015858 | -1. 38 | 0.172 | -1. 014499 | . 1845668 |
| Q8 | . 1578062 | 27338 | 0.58 | 0.565 | -. 3856553 | . 7012677 |
| Q9 | -. 7528525 | . 2413434 | -3. 12 | 0. 002 | -1. 232627 | -. 2730777 |
| Q10 | -. 0221023 | . 2104795 | -0.11 | 0.917 | -. 4405216 | 396317 |
| Q11 | . 2056557 | . 3058893 | 0. 67 | 0. 503 | -. 4024322 | . 8137435 |
| Age | . 0075257 | . 0378563 | 0. 20 | 0. 843 | -. 0677302 | . 0827815 |
| AgeSquar ed | -. 0001262 | . 0003715 | -0.34 | 0. 735 | -. 0008648 | . 0006124 |
| Educat i on | -5. 935945 | 1. 011519 | -5. 87 | 0. 000 | -7. 946779 | - 3. 925111 |
| Educations~d | . 1830885 | . 0320584 | 5. 71 | 0.000 | . 1193586 | . 2468184 |
| I ncome | -. 0000433 | . 0000185 | -2. 34 | 0. 022 | -. 0000801 | -6. 49e- 06 |
| I ncomeSqua~d | 3. $05 \mathrm{e}-10$ | 1. $33 \mathrm{e}-10$ | 2. 30 | 0. 024 | 4. $13 \mathrm{e}-11$ | 5. $68 \mathrm{e}-10$ |
| Fermal e | . 1275699 | . 2057347 | 0. 62 | 0.537 | -. 2814172 | . 5365569 |
| Sout hDumm | . 1126731 | . 1997335 | 0.56 | 0. 574 | - . 2843839 | . 50973 |
| Whi t eDumm | -. 130293 | . 2685726 | -0.49 | 0. 629 | -. 6641977 | . 4036118 |
| Dumi mig grate | -. 3524542 | . 3490116 | - 1.01 | 0.315 | -1. 046266 | . 3413579 |
| Veget arían-y | . 0386955 | . 1908843 | 0.20 | 0. 840 | -. 34077 | . 418161 |
| Dum2pp | . 2581085 | . 2990022 | 0.86 | 0.390 | -. 3362881 | 8525052 |
| Dumbpp | . 5032851 | . 2975214 | 1. 69 | 0. 094 | -. 0881678 | 1. 094738 |
| Dumfpl | 5058273 | . 4501169 | 1. 12 | 0. 264 | -. 3889754 | 1. 40063 |
| _cons | 52. 33887 | 8. 237014 | 6. 35 | 0. 000 | 35. 96422 | 68. 71351 |

Dependent variable: Edible Food Waste per Meal

regress Tot EdTot Meal s Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Age AgeSquared Educati on Educati $>$ onSquar ed I ncome IncomeSquar ed Femal e Sout hDumy Whi teDumy Dum mig grate Veget ari an > Dumm, vce(cl ust er Househol dNo)

(Std. Err. adj usted for 89 cl usters in Househol dNo)

Tot EdTot Me~s	Coef .	Robust Std. Err.	t	P> t \|	[95\% Conf .	I nt er val]
Q3	. 0577181	2594578	0.22	0. 824	-. 4578998	573336
Q4	-. 0016577	. 2542349	-0. 01	0. 995	-. 5068961	5035807
Q5	-. 3137692	. 3480481	-0.90	0. 370	- 1.005442	3779033
Q6	-. 9272475	. 3830439	-2. 42	0.018	-1. 688467	- . 1660282
Q7	-. 3583919	. 305203	-1. 17	0. 243	-. 9649188	. 248135
Q8	-. 0429497	. 3545439	-0. 12	0. 904	-. 7475312	6616319
Q9	-. 7390395	332094	-2. 23	0.029	-1. 399007	-. 0790725
Q10	. 1432834	2744583	0. 52	0.603	-. 4021449	. 6887116
Q11	. 268912	. 3460711	0.78	0.439	-. 4188315	. 9566555
Age	-. 0332484	. 0557537	-0.60	0. 552	-. 1440471	0775504
AgeSquar ed	. 0002984	. 0005215	0. 57	0.569	-. 0007379	0013347
Educat i on	-5. 860365	1. 608822	- 3. 64	0. 000	-9.057561	-2. 663168
Educations-d	. 1802573	. 0504921	3. 57	0. 001	. 0799148	2805998
I ncome	-. 0000326	. 0000234	-1. 39	0. 167	-. 000079	0000139
I ncomeSqua-d	2. $45 \mathrm{e}-10$	1. $59 \mathrm{e}-10$	1. 55	0. 125	-6. 98e-11	5. $60 \mathrm{e}-10$
Fermal e	. 0585453	. 2269289	0.26	0.797	-. 3924281	. 5095188
Sout hDummy	. 2164423	. 2520112	0.86	0. 393	-. 284377	. 7172615
Whi t eDumm	-. 2055622	. 3737463	-0. 55	0. 584	-. 9483044	53718
Dumi min gr at e	-. 4395937	. 2657431	-1. 65	0. 102	-. 9677022	0885148
Veget arí an~y	2921314	. 3128525	0. 93	0. 353	-. 3295972	9138601
_cons	51. 13275	13. 34885	3. 83	0. 000	24. 60471	77. 66079

. regress LnY5 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Age AgeSquared Education Educati onSquar ed > Income I ncomeSquar ed Femal e SouthDumm WhiteDumm Dum migrate Veget ari anDumy, vc $>\mathrm{e}(\mathrm{cl}$ uster Househol dNo)

```
Li near regression
```


(Std. Err. adj usted for 86 cl usters in Househol dNo)

LnY5	Coef.	Robust Std. Err.	t	P> ${ }_{\text {t }}$	[95\% Conf	I nt erval]
Q3	197177	. 3196846	0.62	0.539	-. 4384415	8327956
Q4	-. 0850512	. 2338589	-0.36	0.717	-. 5500252	. 3799229
Q5	-. 0918075	. 2960434	-0.31	0.757	-. 6804211	. 4968061
Q6	-. 775828	. 2143499	- 3. 62	0.001	- 1. 202013	-. 3496431
Q7	-. 4785464	. 2871687	-1. 67	0. 099	-1. 049515	. 0924219
Q8	. 2009573	. 2709141	0.74	0.460	-. 3376925	. 7396072
Q9	-. 8390194	. 2524818	- 3. 32	0. 001	-1. 341021	- . 337018
Q10	. 0013913	. 2209755	0.01	0. 995	-. 4379672	. 4407497
Q11	. 3374022	. 3415665	0.99	0.326	-. 3417235	1. 016528
Age	-. 0300042	. 0374187	-0.80	0. 425	-. 1044025	. 0443941
AgeSquar ed	. 0002419	. 0003499	0.69	0.491	-. 0004538	. 0009375
Educat i on	-5. 706912	1. 136681	-5. 02	0. 000	-7. 966937	-3.446886
Educations-d	. 1741307	. 0358521	4. 86	0.000	. 1028471	. 2454143
Incore	-. 0000342	. 0000201	-1. 70	0.093	-. 0000742	5. 81e- 06
I ncomeSqua-d	2. $46 \mathrm{e}-10$	1. $40 \mathrm{e}-10$	1. 76	0. 082	- 3. 17e-11	5. $24 \mathrm{e}-10$
Fermal e	. 3982649	. 2108075	1. 89	0. 062	-. 020877	. 8174067
Sout hDummy	2211305	. 2265675	0.98	0. 332	-. 2293464	. 6716075
Whit eDumm	-. 2673937	. 2780019	-0.96	0.339	-. 820136	. 2853485
Dumi mig gr at e	-. 6247654	. 3089082	-2. 02	0.046	-1. 238958	-. 0105731
Veget ari an~y	-. 0803725	. 233077	-0. 34	0.731	-. 5437921	. 383047
_cons	48.49138	9. 255143	5. 24	0. 000	30. 08968	66.89309

Dependent variable: Edible Food Waste per Person

regress Tot EdFWHHS Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Age AgeSquared Education Educations $>$ quar ed I ncome I ncomeSquar ed Fenal e Sout hDumy Whit eDumy Dum mi grate Veget ari anDum $>\mathrm{my}$, vce(cl uster Househol dNo)
Li near regressi on

Nunber of obs	$=$	1010
$\mathrm{~F}(19$,	$89)$	\equiv
Prob $>$ F	$=$.
R-squar ed	$=$	0.1691
Root MSE	$=20.018$	

(Std. Err. adj usted for 90 cl usters in Househol dNo)

Tot EdFWHHS	Coef .	Robust Std. Err.	t	P> t \|	[95\% Conf .	I nt er val]
Q3	2001902	3. 250788	0.06	0. 951	-6. 259056	6. 659436
Q4	1. 071519	3. 157324	0. 34	0.735	-5. 202017	7. 345056
Q5	- 2. 702442	4. 284268	-0. 63	0.530	-11. 21519	5. 810307
Q6	-11. 20748	4.584243	-2. 44	0.016	- 20. 31628	-2. 09869
Q7	-6. 655316	3. 803159	-1. 75	0. 084	-14. 21211	. 9014791
Q8	1. 073641	4. 617269	0.23	0.817	-8. 100774	10. 24806
Q9	-8. 671065	4. 049859	-2. 14	0.035	- 16. 71805	-. 6240818
Q10	1. 581723	3. 376486	0.47	0. 641	-5. 127283	8. 29073
Q11	2. 25218	4. 089686	0.55	0. 583	-5.87394	10. 3783
Age	-. 2906561	. 5895137	-0. 49	0.623	- 1. 462007	. 8806952
AgeSquar ed	. 0027244	. 0058472	0.47	0. 642	-. 0088938	0143425
Educat i on	-78. 20826	18. 74831	-4. 17	0. 000	- 115. 4607	-40.95578
Educations-d	2. 426257	. 5901841	4. 11	0. 000	1. 253574	3. 598941
Income	-. 0007655	. 0003195	-2. 40	0.019	-. 0014003	-. 0001307
I ncorreSqua~d	5. 06e-09	2. 10e- 09	2. 42	0. 018	8. 97e-10	9. $22 \mathrm{e}-09$
Fermal e	-. 8431733	2. 902062	-0. 29	0.772	-6. 609508	4. 923161
Sout hDumm	1. 547363	2. 867437	0. 54	0.591	-4. 150172	7. 244899
Whit eDumm	-. 8213133	4. 506193	-0. 18	0.856	-9. 775022	8. 132396
Dumi mi gr at e	-7. 822484	3. 152805	- 2.48	0.015	- 14. 08704	-1. 557928
Veget arí an~y	1. 742589	3. 369734	0. 52	0. 606	-4.953	8. 438177
_cons	683. 3264	154. 1157	4. 43	0. 000	377. 1019	989. 5509

Dependent variable: $\ln ($ Edible Food Waste per Person)

. regress LnY6 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Age AgeSquared Education Educat i onSquar ed $>$ I ncome IncomeSquar ed Femal e SouthDumm WhiteDumm Dumimigrate Veget ari anDumy, vc $>\mathrm{e}(\mathrm{cl}$ uster Househol dNo)

```
Li near regression
```


(Std. Err. adj usted for 87 cl usters in Househol dNo)

LnY6	Coef.	Robust Std. Err.	t	$P \gg 1$	[95\% Conf .	I nt erval]
Q3	1364746	2948023	0.46	0. 645	-. 4495731	7225223
Q4	-. 0095122	. 2144974	-0.04	0. 965	-. 435919	.4168945
Q5	-. 033353	. 2877563	-0. 12	0. 908	-. 6053936	. 5386876
Q6	-. 605547	. 2006797	-3. 02	0.003	-1. 004485	-. 206609
Q7	-. 6019198	. 2846657	-2. 11	0. 037	-1. 167816	-. 0360231
Q8	. 3110131	. 2610084	1. 19	0. 237	- 2078544	. 8298805
Q9	-. 7854185	. 2218846	-3. 54	0. 001	-1. 226511	-. 3443265
Q10	. 0047824	. 2150475	0.02	0. 982	-. 4227178	4322827
Q11	. 3001704	. 3082566	0.97	0. 333	-. 3126235	. 9129644
Age	-. 0199489	. 0336109	-0. 59	0. 554	-. 0867651	. 0468673
AgeSquar ed	. 0001657	. 0003259	0.51	0. 612	-. 0004822	. 0008136
Educat i on	-5.932567	1. 06384	-5. 58	0.000	-8. 047411	- 3. 817722
Educations-d	. 1832552	. 0335776	5. 46	0.000	. 1165052	. 2500053
Incore	-. 0000485	. 0000186	-2. 61	0.011	-. 0000854	-. 0000116
I ncomeSqua-d	3. $19 \mathrm{e}-10$	1. $31 \mathrm{e}-10$	2. 44	0.017	5. $85 \mathrm{e}-11$	5. $79 \mathrm{e}-10$
Fermal e	. 2564523	. 2087766	1. 23	0. 223	-. 1585819	. 6714864
Sout hDummy	1461481	. 2051204	0.71	0. 478	-. 2616177	553914
Whit eDumm	-. 2473253	. 2775723	-0.89	0. 375	-. 7991208	. 3044701
Dumi mig grate	-. 7787965	. 2739506	-2. 84	0.006	- 1. 323392	-. 2342007
Veget ari an~y	-. 0818029	. 2094653	-0. 39	0. 697	-. 4982063	. 3346004
_cons	52.58487	8. 636182	6. 09	0. 000	35. 41671	69.75303

Dependent variable: Total Food Waste

Randomef ects GLS regression Group variable: Househol dNo				Number Number	of obs f groups	$\begin{array}{r} 1009 \\ 90 \end{array}$
$\begin{aligned} \text { R- } s q: \quad \begin{aligned} \text { within } & =0.0000 \\ \text { bet ween } & =0.4331 \\ & \text { over all } \end{aligned}=0.2835 \end{aligned}$				Obs per	$\text { group: } \begin{aligned} & \min n \\ & \\ & \\ & \operatorname{avg} \\ & \max \end{aligned}$	$\text { 11. } \begin{array}{r} 1 \\ 13 \end{array}$
Random effects u_i ~Gaussian $\operatorname{corr}\left(u_{-} i, X\right) \quad=0$ (assured)				Wald ch Prob >	$2(23)$	$\begin{array}{r} 50.27 \\ 0.0008 \end{array}$
Tot al FoodW-	Coef.	Std. Err.	z	$P>\|z\|$	[95\% Conf .	I nt erval]
Q3	11. 99464	17. 24739	0. 70	0. 487	-21. 80962	45. 79891
Q4	-6. 99125	16. 61987	-0. 42	0. 674	-39. 5656	25. 5831
Q5	10. 44702	17. 15447	0.61	0.543	- 23. 17513	44. 06917
Q6	-16. 16129	16. 61371	-0.97	0.331	-48. 72357	16. 401
Q7	-. 0820637	19. 9994	-0.00	0. 997	- 39. 28017	39. 11604
Q8	36. 24678	16. 27754	2. 23	0.026	4. 343385	68. 15017
Q9	-46. 06495	15. 00537	-3. 07	0. 002	-75. 47495	-16. 65496
Q10	3. 292427	14. 96606	0. 22	0.826	-26. 04052	32. 62537
Q11	-11.41398	21. 35286	-0. 53	0.593	- 53. 26481	30.43685
Age	-1.025684	2. 979979	-0.34	0.731	- 6.866335	4. 814967
AgeSquar ed	. 0095362	. 0280458	0. 34	0.734	-. 0454326	. 0645051
Educat i on	- 230.5431	96.55396	-2. 39	0.017	-419. 7854	-41. 30085
Educations-d	7. 158249	3. 003617	2. 38	0.017	1. 271267	13. 04523
I ncome	-. 0032823	. 0013792	-2. 38	0.017	-. 0059855	-. 0005791
I ncomeSqua~d	2. $30 \mathrm{e}-08$	9.40e- 09	2. 45	0.014	4. 63e-09	4. 15e- 08
Fermal e	-10. 0806	16. 17446	-0.62	0.533	-41. 78196	21. 62075
Sout hDumm	-1. 031201	14. 04467	-0.07	0.941	-28. 55824	26. 49584
Wi teDumm	8. 626177	19. 76931	0. 44	0. 663	- 30. 12096	47. 37332
Dum mmigrat e	7. 801767	22. 16372	0.35	0.725	- 35. 63833	51. 24187
Veget arí an~y	4. 209379	19. 55959	0. 22	0.830	- 34. 12672	42. 54548
Dum2ppl	35. 8264	20. 04334	1. 79	0.074	-3.45782	75. 11062
Dumbpp	70. 48335	24. 63254	2. 86	0.004	22. 20447	118. 7622
Dumappl	95.99478	26. 25328	3. 66	0.000	44. 5393	147.4503
_cons	2021. 957	774. 383	2. 61	0.009	504. 1942	3539. 72
sí gra_u si gra-e rho	$\begin{aligned} & \text { 55. } 257002 \\ & 50.135301 \\ & .54848204 \end{aligned}$	(fraction	vari	ce due t	u_i)	

Dependent variable: \ln (Total Food Waste)

. xtreg LnY1 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Age AgeSquar ed Education Educati onSq $>$ uar ed ncore I ncomeSquar ed Femal e SouthDumm Whi teDumm Dum migr ate Veget ar $>$ i anDumm Dum2ppl Dum3ippl Dunfppl, re

Random ef fects GLS regression Group vari abl e: Househol dNo

$\begin{aligned} & \text { R- sq: } \quad \begin{array}{ll} \text { wi thi } n & =0.0000 \\ & \text { bet ween } \end{array}=0.5221 \\ & \text { over all }=0.3581 \end{aligned}$	Obs per group:	min $n=$ avg $=$ $\max =$	$\begin{array}{r} 1 \\ 10.8 \\ 13 \end{array}$
Random effects u_i ~Gaussian $\operatorname{corr}\left(u_{-} i, X\right) \quad=0$ (assumed)	$\frac{\text { Wal d chi } 2(22)}{\text { Prob }>\text { chi } 2}$	=	

LnY1	Coef .	Std. Err.	z	$P>\|z\|$	[95\% Conf .	I nt erval]
Q3	. 0886004	. 1715255	0. 52	0.605	-. 2475834	4247843
Q4	-. 0158481	. 1651957	-0. 10	0. 924	-. 3396258	. 3079296
Q5	. 0955791	. 1709437	0.56	0. 576	-. 2394643	. 4306225
Q6	-. 1880712	. 1653459	-1. 14	0. 255	-. 5121432	. 1360009
Q7	. 0175181	. 2007804	0.09	0. 930	-. 3760042	. 4110404
Q8	. 2944881	. 1624525	1. 81	0.070	-. 0239129	. 6128892
Q9	-. 404819	. 1493135	-2. 71	0. 007	-. 6974681	-. 1121699
Q10	. 1038901	. 1491081	0. 70	0. 486	-. 1883564	. 3961366
Q11	-. 0260973	. 2135134	-0. 12	0. 903	-. 4445759	. 3923812
Age	. 0159357	. 0296958	0. 54	0. 592	-. 0422669	. 0741384
AgeSquar ed	-. 0001217	. 0002795	-0.44	0.663	-. 0006694	. 0004261
Education	-2. 532727	. 9667197	-2. 62	0. 009	-4.427463	-. 6379915
Educations-d	. 0789605	. 0300876	2. 62	0.009	. 0199899	. 137931
I ncome	-. 0000391	. 0000138	- 2. 84	0. 004	-. 000066	-. 0000121
I ncomeSqua-d	2. $82 \mathrm{e}-10$	9. 36e-11	3. 02	0.003	9. $88 \mathrm{e}-11$	4. $66 \mathrm{e}-10$
Ferral e	-. 1500372	. 1609461	-0.93	0. 351	-. 4654857	. 1654114
Sout hDummy	-. 0523659	. 1401279	-0. 37	0. 709	-. 3270115	. 2222798
Wi t eDumm	. 0877843	. 1966297	0.45	0.655	-. 2976028	. 4731714
Dum mig gr at e	. 1570658	. 2207038	0. 71	0.477	-. 2755057	. 5896373
Veget arí an-y	-. 0363487	1945675	-0. 19	0.852	-. 417694	. 3449966
Dum2ppl	. 6535885	. 200441	3. 26	0.001	. 2607314	1. 046446
Dum3ppl	1. 052489	2458485	4. 28	0.000	. 5706343	1. 534343
Dum4ppl	1. 147442	262145	4. 38	0.000	. 6336474	1. 661237
_cons	24. 45796	7. 75117	3. 16	0. 002	9. 26595	39. 64998
si gma_u si $\mathrm{gra}^{-} \mathrm{e}$ rho	$\begin{aligned} & .54728576 \\ & .50498882 \\ & .54013089 \end{aligned}$	(fraction	vari	ce due	u_i)	

Dependent variable: Total Food Waste per Meal

Dependent variable: $\ln ($ Total Food Waste per Meal)

Dependent variable: Total Food Waste per Person

Random ef f ects GLS regressi on Group vari abl e: Househol dNo				Number Number	obs groups	$\begin{array}{r} 1009 \\ 90 \end{array}$
R-sq: $\quad \begin{aligned} \text { within } & =0.0000 \\ \text { bet ween } & =0.3600\end{aligned}$ overall $=0.2191$				Obs per	group: $\begin{aligned} & \text { mín } \\ & \text { max } \\ &\end{aligned}$	11. $\begin{array}{r}1 \\ 13\end{array}$
$\begin{array}{ll} \text { Random effects } u_{-} i & \sim \text { Gaussi an } \\ \operatorname{corr}\left(u_{-} i, X\right) & =0 \text { (assumed) } \end{array}$				Wal d ch Prob >	$\text { hi } 2(20)$	$\begin{array}{r} 40.93 \\ 0.0038 \end{array}$
Tot FWHHS	Coef.	Std. Err.	z	$\mathrm{P}>1 \mathrm{z} \mid$	[95\% Conf	I nt erval]
Q3	5. 011528	7. 083607	0.71	0.479	-8. 872087	18. 89514
Q4	-. 6283708	6. 918302	-0. 09	0. 928	-14. 18799	12. 93125
Q5	. 7349057	7. 186327	0. 10	0.919	- 13. 35004	14. 81985
\bigcirc	-11.98153	6. 953789	-1. 72	0. 085	-25. 61071	1. 6477646
Q8	21. 14158	6. 564403	3. 22	0. 001	8. 275585	34. 00757
Q9	- 15.80768	6. 257018	-2. 53	0.012	- 28.07121	3. 544153
Q10	4. 430668	6. 242398	0.71	0.478	-7.804207	16. 66554
Q11	- 3.804477	8. 907617	-0.43	0. 669	- 21.26309	13. 65413
Age	-. 7273026	1. 201204	-0.61	0. 545	-3. 081618	1. 627013
AgeSquar ed	- 0079324	- 0112267	0. 71	0. 480	-. 0140715	. 0299363
Educations-d	- 3.244785	1. 255102	-2. 59	0. 010	- 7848307	-24.704739
I ncome	-. 0020112	. 0005703	-3. 53	0. 000	-. 003129	. 0008935
I ncomeSqua-d	1. $34 \mathrm{e}-08$	3. $89 \mathrm{e}-09$	3. 45	0. 001	5. $79 \mathrm{e}-09$	2. $10 \mathrm{e}-08$
Fermal e	-2. 803111	6. 632576	-0.42	0. 673	- 15. 80272	10. 1965
Sout hDumm	-2. 059046	5. 801989	-0.35	0. 723	-13.43074	9. 312643
Whit eDumy	3. 928242	8. 173439	0.48	0. 631	-12.0914	19. 94789
Dumin miate	- 3. 975758	8.79955	-0. 45	0. 651	- 21. 22256	13. 27104
Veget ari an-y cons	$\begin{array}{r} -1.477751 \\ 948.25 \end{array}$	$\begin{aligned} & 7.722685 \\ & 324.3782 \end{aligned}$	$\begin{array}{r} -0.19 \\ \text { 2. } 92 \end{array}$	$\begin{aligned} & 0.848 \\ & 0.003 \end{aligned}$	$\begin{array}{r} \text { 16. } 61394 \\ 312.4805 \end{array}$	$\begin{array}{r} 13.65843 \\ 1584.02 \end{array}$
si gma_u si gra e rho	$\begin{array}{r} 22.8607 \\ 24.151139 \\ .47257144 \end{array}$	(fraction of variance due to $u_{-} \mathrm{i}$)				

Dependent variable: In(Total Food Waste per Person)

LnY3	Coef.	Std. Er r .	z	$P>\|z\|$	[95\% Conf .	I nterval]
Q3	. 1211084	. 1645913	0.74	0.462	-. 2014846	. 4437014
Q4	-. 0400562	. 1604116	-0. 25	0.803	-. 3544571	. 2743447
Q5	. 0723611	. 167167	0.43	0. 665	-. 2552802	. 4000024
Q6	-. 1848277	. 1613923	-1. 15	0. 252	-. 5011508	. 1314954
Q7	-. 0180125	. 1945454	-0. 09	0.926	-. 3993145	3632896
Q8	. 3464212	. 1527305	2. 27	0.023	. 047075	. 6457675
Q9	-. 4018955	. 1451687	-2. 77	0.006	-. 6864209	-. 1173701
Q10	. 0926971	. 1449399	0.64	0.522	-. 1913799	. 3767741
Q11	-. 0133908	. 2067495	-0.06	0. 948	-. 4186124	. 3918307
Age	. 005922	. 0279292	0.21	0. 832	-. 0488183	. 0606623
AgeSquar ed	-. 0000201	. 0002611	-0.08	0. 939	-. 0005319	. 0004917
Education	-2. 504001	. 9407422	-2. 66	0. 008	-4. 347821	-. 6601798
Educations-d	. 0780506	. 0292827	2. 67	0.008	. 0206577	. 1354436
I ncore	-. 0000406	. 0000133	-3. 06	0. 002	-. 0000666	-. 0000146
I ncorreSqua-d	2. $89 \mathrm{e}-10$	9. 05e-11	3. 20	0.001	1. 12e- 10	4. 67e-10
Fenal e	-. 1124548	. 1539675	-0.73	0. 465	-. 4142255	. 1893158
Sout hDummy	-. 0753873	. 1350459	-0. 56	0.577	-. 3400724	. 1892978
Whi t eDumm	. 0869823	. 1894189	0.46	0. 646	-. 284272	. 4582366
Dumi mi gr at e	. 0662552	. 2041954	0. 32	0. 746	-. 3339604	. 4664708
Veget arían~y	-. 0427754	. 1791554	-0. 24	0. 811	-. 3939134	. 3083627
_cons	24.43316	7. 565028	3. 23	0.001	9. 605982	39. 26035
si gma_u si gra-e rho	$\begin{aligned} & .53474392 \\ & .50498882 \\ & .52859461 \end{aligned}$	(fraction	vari	ce due	u_i)	

Dependent variable: Total Edible Food Waste

Random ef fects GLS regression Group variable: Househol dNo	Number of obs Number of grou		$\begin{array}{r} 1010 \\ 90 \end{array}$
$\begin{array}{ll} \text { R- sq: } & \begin{array}{l} \text { withi } n=0.0000 \\ \text { bet ween } \end{array}=0.3826 \\ \text { over al } I=0.2533 \end{array}$	Obs per group:	min $=$ avg $=$ max =	11. $\begin{array}{r}1 \\ 13\end{array}$
Random effects u_i ~Gaussian corr(u_i, X) $=0$ (assumed)	$\begin{aligned} & \text { Whl d chi 2(23) } \\ & \text { Prob }>\text { chi } 2 \end{aligned}$	$=$ $=$	$\begin{array}{r} 40.99 \\ 0.0119 \end{array}$

Tot Ed	Coef .	Std. Err.	z	$\mathrm{P}>\|\mathrm{z}\|$	[95\% Conf .	I nt erval]
Q3	-1. 947137	10. 77817	-0. 18	0. 857	- 23. 07196	19. 17769
Q4	-2. 140547	10. 38349	-0. 21	0.837	- 22. 49181	18. 21071
Q5	-2. 622901	10. 71882	-0. 24	0. 807	- 23. 63139	18. 38559
Q6	- 22. 08096	10. 37869	-2. 13	0.033	-42. 42281	-1.739108
Q7	-9.657653	12. 49269	-0. 77	0. 439	- 34. 14287	14. 82756
Q8	6. 193507	10. 16531	0.61	0. 542	- 13. 73013	26. 11714
Q9	- 26. 90091	9. 372373	-2. 87	0. 004	- 45. 27043	-8. 531397
Q10	. 5174506	9. 347361	0.06	0. 956	- 17. 80304	18. 83794
Q11	-. 7188862	13. 32601	-0. 05	0. 957	- 26. 83739	25. 39961
Age	-1.737984	1. 861382	-0. 93	0. 350	- 5. 386226	1. 910259
AgeSquar ed	. 0158857	. 0175197	0. 91	0. 365	-. 0184524	. 0502237
Education	- 203. 0159	60.30252	- 3. 37	0. 001	- 321. 2067	-84.82516
Educations-d	6. 27101	1. 875874	3. 34	0. 001	2. 594364	9. 947656
I ncome	-.0009067 $6.23 \mathrm{e}-09$. 0008617 $5.87 e-09$	-1. 1. 05	0.293 0.288	-. 0025956	. $1.777 \mathrm{e}-08$
I ncomeSqua-d	6. $23 \mathrm{e}-09$ -1.55923	5. $87 \mathrm{e}-09$ 10.10267	1.06 -0.15	0.288 0.877	-5. 27e-09	1.77e-08
Sout hDummy	2. 505111	8. 771544	0. 29	0. 775	-14. 6868	19. 69702
Whi t eDummy	3. 916583	12. 34601	0.32	0.751	- 20. 28115	28. 11432
Dumi migrate	-14. 33232	13. 84353	-1. 04	0. 301	-41. 46514	12. 80051
Veget arí an -	5.440694	12. 22138	0.45	0.656	- 18. 51276	29. 39415
Dum2ppl	10. 43966	12. 52357	0.83	0. 405	- 14. 10608	34. 9854
Dumppp	26. 09099	15. 3924	1. 70	0. 090	-4. 077558	56. 25953
Dum4ppl	38. 08528	16. 38679	2. 32	0. 020	5. 967758	70. 20281
_cons	1743. 096	483.6413	3. 60	0. 000	795. 1768	2691. 016
si gra_u	34. 613522					
si gna rho	$\begin{aligned} & 30.294148 \\ & .56625304 \end{aligned}$	(fraction	vari	ce due	u_i)	

Dependent variable: Edible Food Waste per Meal

Dependent variable: Edible Food Waste per Person

Dependent variable: Total Food Waste

. xtreg Tot al FoodVaste Q Q4 Q Q Q Q7 Q8 Q9 Q10 Q11 Age AgeSquared Education Edu $>$ cationSquar ed Income incomeSquar ed Femal e Sout hDumm WhiteDumy Dumimigrate $>$ eget ari anDumm Dum2ppl Dumppl Dumfppl, re vce(robust)						
Random effects GLS regression Group variable: Househol dNo				Number of obs Number of groups		$\begin{array}{r} 1009 \\ 90 \end{array}$
$\begin{array}{ll} \text { R-sq: } & \text { within } \\ & =0.0000 \\ & \text { bet ween } \\ \text { overall } & =0.4331 \\ =0.2835 \end{array}$				Obs per group: $\begin{aligned} & \min n \\ & \text { avg } \\ & \max =\end{aligned} \quad 11 . \frac{1}{=}$		
Randomeffects u_i ~Gaussian $\operatorname{corr}\left(u_{-} i, X\right)=0$ (assumed)				$\begin{aligned} & \text { Wal d chi } 2(23) \\ & \text { Prob }>\text { chi } 2 \end{aligned}$		$\begin{array}{ll} = & 109.45 \\ = & 0.0000 \end{array}$
(Std. Err. adj usted for 90 cl usters in Househol dNo)						
Tot al FoodW-	Coef.	Robust Std. Err	z	P> ${ }_{\text {z }}$	[95\% Con	Interval]
	11. 99464	12. 77372	0.94	0.348	-13. 04139	37.03067
${ }^{4} 4$	-6. 99125	13. 33469	-0. 52	0. 600	-33. 12676	19. 14426
${ }_{06} 0$	10.44702 -16.16129	13. 6423	0.77 -1.14	0.444 0.252	-16. 2914	37.18544 11.51639
Q^{7}	-. 0820637	15. 60688	-0. 01	0. 996	-30.67099	30. 50686
\square^{8}	36. 24678	14. 83899	2. 44	0. 015	7.162881	65. 33067
O9	-46.06495	12. 671299	-3. 64	0. 000	-70. 90179	21. 22812
Q11	3.292427 -11.41398	12. ${ }^{12148629}$	0.25 -0.68	0.799 0.496	-22. 22023 -44.2686	28.60509
Age	-1.025684	2. 014618	-0. 51	0. 611	-4.974263	2. 922894
AgeSquar ed	. 00953532	. 0196868	0. 48	0.628	--. 0290492	0481216
Educations - d	-230.5431	2. 179321	- 3. 31	-0.001	-366.9521	- 94.13415
Income	-. 0032823	. 0011564	-2. 84	0. 005	-. 0055488	-. 0010158
I ncomeSqua-d	2. $30 \mathrm{e}-88$	7. $72 \mathrm{e}-09$	2. 99	0. 003	7.92e-09	3. $82 \mathrm{e}-08$
Southmal e	-10.0806 -1.031201	15. 1315073	-0. 67	0.505 0.925	- 32.73629	19. 3675292
Whit teDumy	8. 626177	16. 10768	0. 54	0. 592	-22. 94429	40. 19665
Dummingrate	7. 801767	19.3939	0.40	-0. 688	- 30.20957	45. 81311
Veget ${ }_{\text {Dun2ppo }}$		13. 95183	2.57 2.	0.010 0.018	-8. 881324	33. 17147
Dumpp	70. 48335	18. 39819	3. 83	0.000	34.42356	106. 5431
Dumppl cons	2021.957	264.3635	3. 58	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	$\begin{aligned} & 43.32911 \\ & 915.8248 \end{aligned}$	$\begin{aligned} & 148.6604 \\ & 3128.089 \end{aligned}$
$\begin{aligned} & \text { si gma_u } \\ & \text { si gma_e } \\ & \text { rho } \end{aligned}$	$\begin{aligned} & \text { 55. } 2577002 \\ & 50.135301 \\ & .54848204 \end{aligned}$	(fraction	varia	ce due	u_i)	

Dependent variable: $\ln (T o t a l$ Food Waste)

Dependent variable: Total Food Waste per Meal

(Std. Err. adjusted for 89 cl usters in Househol dNo)

Tot FoodMas~s	Coef.	Robust Std. Err.	z	$\mathrm{P}>1 \mathrm{z} \mid$	[95\% Conf .	I nt erval]
Q3	4452482	. 4347396	1. 02	0. 306	-. 4068257	1. 297322
Q4	-. 0845735	. 4790367	-0. 18	0. 860	-1. 023468	. 8543212
Q5	. 2756451	. 5457925	0. 51	0. 614	-. 7940886	1. 345379
Q6	-1. 19919	. 5838216	-2. 05	0. 040	-2. 34346	-. 0549212
Q7	-. 5507176	. 5424752	-1. 02	0. 310	-1.613949	. 5125141
Q8	. 6850102	. 536563	1. 28	0. 202	-. 3666339	1. 736654
Q9	-. 6383611	. 5732863	-1. 11	0. 265	- 1. 761982	. 4852594
Q10	. 2336853	. 4226522	0. 55	0. 580	-. 5946979	1. 062068
Q11	-. 5095045	. 6752906	-0. 75	0. 451	-1.83305	. 8140408
Age	-. 1737452	. 1119767	-1. 55	0. 121	-. 3932155	. 0457252
AgeSquar ed	. 0015578	. 0010094	1. 54	0. 123	-. 0004206	. 0035363
Education	- 3.388803	3. 558816	-0.95	0. 341	- 10. 36395	3. 586348
Educations-d	. 1013314	. 111786	0. 91	0. 365	-. 1177652	. 320428
I ncome	-. 0000507	. 0000449	-1. 13	0. 259	-. 0001388	. 0000373
I ncomeSqua-d	3. $94 \mathrm{e}-10$	3. $10 \mathrm{e}-10$	1. 27	0. 203	-2. 13e-10	1. $00 \mathrm{e}-09$
Ferral e	-. 1370102	. 3894494	-0. 35	0.725	-. 900317	. 6262967
Sout hDurmy	. 4438545	. 4722975	0. 94	0. 347	-. 4818316	1. 369541
Whi t eDumy	-. 4641805	. 586419	-0. 79	0. 429	- 1. 613541	. 6851796
Dumi mmi gr at e	-. 0862929	. 5391836	-0. 16	0. 873	-1. 143073	. 9704876
Veget arí an-y	-. 5061386	. 4657838	-1. 09	0. 277	-1. 419058	. 4067809
_cons	38. 12472	27. 53312	1. 38	0. 166	-15.8392	92. 08864
si gma_u	1. 9294316					
$\begin{array}{r} \text { si gma e } \\ \text { rЋo } \end{array}$	$\begin{aligned} & \text { 1. } 6870462 \\ & .56672279 \end{aligned}$	(fraction	vari	ce due	u_i)	

Dependent variable: \ln (Total Food Waste per Meal)

LnY2	Coef.	Robust Std. Err.	Z	$\mathrm{P}>\|\mathrm{z}\|$	[95\% Conf .	I nt erval]
Q3	1385265	. 1738223	0.80	0.425	- . 202159	479212
Q4	-. 0419474	. 1706634	-0. 25	0.806	-. 3764415	. 2925467
Q5	. 1092138	. 1661625	0.66	0.511	-. 2164588	. 4348864
Q6	-. 3472693	. 1546902	-2. 24	0. 025	-. 6504565	-. 044082
Q7	-. 0833075	. 1675836	-0. 50	0. 619	-. 4117652	. 2451503
Q8	. 2011726	. 1545393	1. 30	0. 193	-. 1017189	. 5040641
Q9	-. 2736071	. 163219	-1. 68	0.094	-. 5935106	. 0462963
Q10	. 0508233	. 1397733	0. 36	0.716	-. 2231273	. 3247739
Q11	-. 1302425	. 226856	-0. 57	0. 566	-. 5748722	. 3143871
Age	-. 0278235	. 0319578	-0. 87	0. 384	-. 0904595	. 0348126
AgeSquar ed	. 0002569	. 0002927	0.88	0. 380	-. 0003168	. 0008305
Education	-1.63959	1. 056621	-1. 55	0.121	-3.71053	. 4313502
Educations-d	. 0494489	. 0331362	1. 49	0. 136	-. 0154969	. 1143947
I ncome	- . 0000181	. 0000133	-1. 36	0. 174	-. 0000442	8. $00 \mathrm{e}-06$
I ncomeSqua-d	1. 51e-10	8. $98 \mathrm{e}-11$	1. 68	0. 094	- 2. 55e-11	3. $27 \mathrm{e}-10$
Fermal e	-. 0770751	. 1446258	-0. 53	0. 594	-. 3605364	. 2063862
Sout hDumm	. 1228416	. 149824	0. 82	0.412	-. 1708079	. 4164912
Wi teDurmy	- . 1136273	. 1573557	-0. 72	0.470	-. 4220388	. 1947843
Dumimi grate	. 1143165	. 1669537	0.68	0. 494	-. 2129068	. 4415398
Veget ari an \sim y	- . 1195285	. 1418657	-0.84	0. 399	-. 3975801	. 1585232
_ cons	15. 77264	8. 271523	1. 91	0. 057	-. 4392509	31. 98452
si gma_u	. 60997539					
$\begin{array}{r} \text { si graa e } \\ \text { rho } \end{array}$	$\begin{array}{r} .46414859 \\ .63330641 \end{array}$	(fraction	vari	ce due	u i)	

Dependent variable: Total Food Waste per Person

Dependent variable: $\ln ($ Total Food Waste per Person)

LnY3	Coef.	Robust Std. Err.	z	$\mathrm{P}>1 \mathrm{z} \mid$	[95\% Conf .	I nt erval]
Q3	1211084	1541877	0. 79	0. 432	-. 1810939	. 4233107
Q4	-. 0400562	. 1501457	-0.27	0.790	-. 3343363	254224
Q5	. 0723611	143229	0.51	0. 613	-. 2083626	. 3530848
Q6	-. 1848277	. 1443755	-1. 28	0. 200	-. 4677985	. 0981432
Q7	-. 0180125	. 1708302	-0. 11	0. 916	-. 3528335	. 3168086
Q8	. 3464212	. 1350319	2. 57	0. 010	. 0817636	. 6110789
Q9	-. 4018955	. 1180138	-3. 41	0.001	-. 6331983	-. 1705927
Q10	. 0926971	. 1296277	0. 72	0.475	-. 1613685	. 3467626
Q11	-. 0133908	. 1879651	-0.07	0. 943	-. 3817956	. 3550139
Age	. 005922	. 0255851	0.23	0.817	-. 0442239	. 0560678
AgeSquar ed	-. 0000201	. 0002426	-0. 08	0. 934	-. 0004956	. 0004554
Education	-2. 504001	. 7788554	-3. 21	0.001	-4.030529	-. 977472
Educations-d	. 0780506	. 0243739	3. 20	0.001	. 0302788	. 1258225
I ncome	-. 0000406	. 0000125	- 3. 24	0.001	-. 0000651	-. 000016
I ncomeSqua-d	2. $89 \mathrm{e}-10$	8. $06 \mathrm{e}-11$	3. 59	0. 000	1. $31 \mathrm{e}-10$	4. $47 \mathrm{e}-10$
Femal e	-. 1124548	. 1418973	-0.79	0. 428	-. 3905684	. 1656587
Sout hDummy	-. 0753873	. 1216294	-0. 62	0. 535	-. 3137766	. 1630019
Whi t eDumy	. 0869823	. 1479903	0.59	0.557	-. 2030732	. 3770379
Dumimi gr at e	. 0662552	. 1568911	0.42	0.673	-. 2412456	. 373756
Veget arii an y	-. 0427754	. 1866866	-0. 23	0.819	-. 4086744	3231237
_cons	24.43316	6. 294125	3. 88	0. 000	12. 09691	36. 76942
si gma_u	53474392					
si gra-e	$\begin{aligned} & .50498882 \\ & .52859461 \end{aligned}$	(fraction	vari	e due	u i)	

Dependent variable: Total Edible Food Waste

(Std. Err. adj usted for 90 cl usters in Househol dNo)

Tot Ed	Coef.	Robust St d. Err.	z	P> z 1	[95\% Conf .	I nterval]
Q3	- 1. 947137	7. 964886	-0. 24	0. 807	-17. 55803	13. 66375
Q4	- 2. 140547	6. 93286	-0.31	0. 758	-15. 7287	11. 44761
Q5	-2. 622901	10. 00466	-0.26	0.793	-22. 23167	16. 98587
Q6	-22. 08096	11. 90415	-1.85	0. 064	-45. 41266	1. 250742
Q7	-9. 657653	8. 72018	-1. 11	0. 268	-26. 74889	7. 433585
Q8	6. 193507	12. 04988	0. 51	0. 607	- 17.42382	29.81083
Q9	- 26.90091	9. 984501	-2. 69	0.007	-46. 47017	-7. 331648
Q10	. 5174506	8. 082743	0.06	0. 949	- 15. 32443	16. 35934
Q11	-. 7188862	8. 688279	-0.08	0. 934	-17.7476	16. 30983
Age	-1.737984	1. 456921	-1. 19	0. 233	-4. 593495	1. 117528
AgeSquar ed	. 0158857	. 0146521	1. 08	0. 278	-. 0128319	0446032
Education	- 203. 0159	51.60613	-3.93	0. 000	- 304.1621	-101. 8698
Educations-d	6. 27101	1. 619452	3. 87	0. 000	3. 096942	9.445078
Income	-. 0009067	. 0006586	-1. 38	0. 169	-. 0021975	0003842
I ncomeSqua-d	6. 23e- 09	4. $79 \mathrm{e}-09$	1. 30	0. 193	- 3. 15e-09	1.56e- 08
Ferral e	-1.55923	6. 578767	-0.24	0.813	- 14.45338	11. 33492
Sout hDumm	2. 505111	6. 141056	0.41	0. 683	-9.531138	14. 54136
Whi t eDumm	3. 916583	9. 289965	0.42	0. 673	- 14. 29141	22. 12458
Duminmigr at e	-14. 33232	8. 764534	-1. 64	0. 102	- 31.51049	2. 845856
Veget arían~y	5.440694	7. 363328	0.74	0. 460	-8.991164	19.87255
Dum2ppl	10. 43966	10.779	0.97	0. 333	- 10. 68679	31. 56611
Dumspl	26. 09099	11. 44197	2. 28	0. 023	3. 665135	48. 51684
Dum4ppl	38. 08528	16. 72539	2. 28	0. 023	5. 304116	70.86645
_cons	1743. 096	420. 2636	4. 15	0. 000	919. 3949	2566. 798
si gma_u	34. 613522	(fraction of variance due to u_i)				
si gma e	30. 294148					
rho	. 56625304					

(Std. Err. adjusted for 87 cl usters in Househol dNo)

LnY4	Coef.	Robust Std. Err.	z	$P \ggg 1$	[95\% Conf.	I nt erval]
Q3	-. 0913236	3123647	-0. 29	0. 770	-. 7035472	5208999
Q4	. 1081666	. 2360232	0. 46	0. 647	-. 3544303	5707635
Q5	. 0058519	. 292772	0.02	0. 984	-. 5679707	5796746
Q6	-. 5863429	. 278681	-2. 10	0. 035	-1. 132548	-. 0401381
Q7	-. 0919719	3168743	-0.29	0. 772	-. 7130341	5290903
Q8	. 1378661	. 2966118	0. 46	0. 642	-. 4434823	. 7192146
Q9	-. 7887592	. 2507668	-3. 15	0. 002	-1. 280253	-. 2972654
Q10	-. 1293446	. 2349491	-0. 55	0.582	-. 5898363	. 3311472
Q11	. 3235488	. 3032047	1. 07	0. 286	-. 2707215	. 917819
Age	. 0205028	. 0434536	0.47	0.637	-. 0646647	1056703
AgeSquar ed	-. 0002205	. 0004259	-0. 52	0. 605	-. 0010551	0006142
Education	-5. 600923	1. 149717	-4.87	0. 000	-7.854327	-3.347518
Educati ons-d	. 1740185	. 0362408	4. 80	0. 000	. 1029879	. 2450492
I ncome	-. 0000486	. 0000201	-2. 42	0.016	-. 000088	-9.24e- 06
I ncomeSqua-d	3. $56 \mathrm{e}-10$	1. $47 \mathrm{e}-10$	2. 42	0. 015	6. $79 \mathrm{e}-11$	6. $45 \mathrm{e}-10$
Ferral e	. 0541103	. 2177491	0.25	0. 804	-. 3726701	4808907
Sout hDumm	-. 042055	. 2304938	-0.18	0. 855	-. 4938145	. 4097045
Whi t eDumm	. 1559537	. 3046855	0. 51	0. 609	-. 4412189	. 7531263
Dumi mio grate	-. 3071591	. 3656219	-0.84	0.401	-1. 023765	. 4094466
Veget arí an-y	. 142382	. 2259263	0. 63	0. 529	-. 3004255	. 5851895
Dum2pp	. 0307127	. 3079501	0. 10	0. 921	-. 5728584	. 6342838
Dum3ppl	. 4688345	. 3281876	1. 43	0. 153	-. 1744013	1. 11207
Dum4ppl	. 4954467	. 4935114	1. 00	0. 315	-. 4718178	1. 462711
_cons	48.83759	9. 303632	5. 25	0. 000	30. 60281	67.07238
$\begin{array}{r} \text { si gra_u } \\ \text { si gma_e } \\ \text { rho } \end{array}$	$\begin{aligned} & .90331768 \\ & .88940241 \\ & .50776163 \end{aligned}$	(fraction	vari	ce due	u_i)	

Dependent variable: Edible Food Waste per Meal
xtreg Tot EdTot Meal s Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Age AgeSquar ed Educati on Educ
$>$ ati onSquared I ncome I ncomeSquar ed Femal e Sout hDump Wi teDumm Dummm grate Ve $>$ at i onSquared I ncome IncomeSqua
$>$ get ari anDumm, re vce(robust)
Random effects GLS regressi on
Group variable: Househol dNo
R-sq: $\quad \begin{aligned} & \text { wi thi } n=0.0005 \\ & \text { bet ween }=0.2769 \\ & \text { overal } I=0.1708\end{aligned}$
Random effects $u_{-} i \sim$ Gaussian
$\operatorname{corr}\left(u_{-} i, X\right) \quad=0$ (assumed)
Number of obs
$=$
$=$
980
89
Obs per group:

$\begin{array}{ll}\text { Wal d chi 2(19) } & = \\ \text { Prob }>\text { chi } 2 & = \\ \end{array}$
(Std. Err. adjusted for 89 cl usters in Househol dNo)

Tot EdTot Me-s	Coef.	Robust St d. Err.	z	$\mathrm{P}>1 \mathrm{z} \mid$	[95\% Conf .	I nt erval]
Q3	. 0915562	. 2872841	0. 32	0. 750	-. 4715102	6546227
Q4	. 0314715	. 2650164	0.12	0. 905	-. 4879511	. 5508942
Q5	-. 3682669	. 3772082	-0. 98	0. 329	-1. 107581	. 3710476
Q6	-1.037574	. 4938263	-2. 10	0.036	- 2.005455	-. 0696919
Q7	-. 4045721	. 3414558	-1. 18	0. 236	-1. 073813	. 2646689
Q8	. 1554361	. 4610323	0. 34	0.736	-. 7481705	1. 059043
Q9	-. 8208416	. 3791918	-2. 16	0.030	- 1. 564044	-. 0776393
Q10	. 1362123	. 3060864	0.45	0.656	-. 463706	. 7361305
Q11	. 1865259	. 3782817	0.49	0. 622	-. 5548926	. 9279445
Age	-. 0601356	. 0612782	-0.98	0. 326	-. 1802387	. 0599675
AgeSquar ed	. 0005594	. 0005863	0.95	0. 340	-. 0005898	. 0017085
Education	-5. 630959	1. 690642	- 3. 33	0. 001	-8. 944558	- 2. 317361
Educations-d	. 174534	. 0536724	3. 25	0.001	. 069338	. 27973
I ncome	-. 0000215	. 0000259	-0.83	0. 406	-. 0000722	. 0000292
I ncomeSqua-d	1. 61e-10	1. $83 \mathrm{e}-10$	0.88	0. 379	- 1. 98e-10	5. $20 \mathrm{e}-10$
Ferral e	-. 0134727	. 2325884	-0. 06	0.954	-. 4693376	. 4423922
Sout hDummy	. 2130549	. 2654421	0.80	0.422	-. 307202	. 7333119
Whit eDumm	-. 1976918	. 3977155	-0. 50	0. 619	-. 9771999	. 5818163
Duminmigrat e	-. 4590777	. 2945974	-1. 56	0. 119	-1. 036478	. 1183226
Vegetarían-y	. 0603214	. 2656313	0.23	0.820	-. 4603065	$.5809492$
_cons	49.4297	13. 98191	3. 54	0.000	22. 02565	76.83374
si gma_u	1. 3017934					
si gma e	1. 1639946					
rho	. 55571029	(fraction	vari	ce due	u_i)	

Dependent variable: Edible \ln (Food Waste per Meal)

(Std. Err. adj usted for 86 cl usters in Househol dNo)

LnY5	Coef .	Robust Std. Err.	z	$P \gg z 1$	[95\% Conf .	I nt erval]
Q3	. 0698578	. 3473218	0. 20	0.841	-. 6108804	7505959
Q4	. 0200043	. 2359333	0.08	0. 932	-. 4424165	. 4824251
Q5	-. 021764	. 3093261	-0. 07	0. 944	-. 628032	. 584504
Q6	-. 7560215	. 2731578	- 2.77	0. 006	- 1. 291401	-. 220642
Q7	-. 1702408	. 3219317	-0.53	0.597	-. 8012154	. 4607338
Q8	. 1437179	. 3151966	0.46	0. 648	-. 4740561	. 7614918
Q9	-. 8160079	. 2650996	- 3. 08	0. 002	- 1. 335593	-. 2964223
Q10	-. 1690435	. 2471909	-0. 68	0. 494	-. 6535287	. 3154417
Q11	. 3761354	. 35507	1. 06	0. 289	-. 319789	1. 07206
Age	-. 0149029	. 0413802	-0.36	0. 719	-. 0960066	. 0662009
AgeSquar ed	$\text { . } 0001031$. 000401	0. 26	0.797	-. 0006828	. 000889
Education	-5.074723	1. 248401	-4. 06	0. 000	- 7.521545	- 2. 627901
Educat i ons-d	. 1562292	. 039407	3. 96	0. 000	. 0789929	. 2334656
I ncome	-. 000034	. 0000223	-1. 52	0. 127	-. 0000777	9. $71 \mathrm{e}-06$
I ncomeSqua-d	2. $46 \mathrm{e}-10$	1.57e-10	1. 57	0. 116	-6. 08e-11	5. $53 \mathrm{e}-10$
Femal e	2. 249033	. 2183203	1. 14	0. 254	- . 1788669	. 676933
Sout hDummy	. 1824712	. 251794	0. 72	0. 469	-. 311036	. 6759784
Wi t eDummy	-. 1555116	. 2960132	-0. 53	0. 599	-. 7356868	. 4246636
Dumin mi grate	-. 6031674	. 340236	-1. 77	0.076	- 1.270018	. 0636829
Veget arí an \sim y	$\text { - } 1058246$	$\text { . } 1727486$	-0. 61	0.540	-. 4444056	2327564
_cons	42.54663	10. 12609	4. 20	0. 000	22. 69986	$\text { 62. } 3934$
si gma_u	. 96817487					
$\underset{\text { si gra }}{\substack{- \\ \text { ren }}}$	$\begin{array}{r} .89558285 \\ .53889028 \end{array}$	(fraction	vari	ce due		

Dependent variable: Edible Food Waste per Person
xt reg Tot EdFWHHS Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Age AgeSquar ed Educati on Educati
$>$ onSquar ed I ncome IncomeSquar ed Femal e Sout hDumm WhiteDumm Dum mi grate Veget
$>$ onSquar ed I ncome IncomeSquar ed Femal e Sout hDummy Wi teDumm Dum min grat e Veget
$>$ ari anDumm, re vce(robust)
Random effects GLS regression
Group vari abl e: Househol dNo
R-sq: $\quad \begin{aligned} & \text { withi } n=0.0000 \\ & \text { bet ween }=0.2785 \\ & \text { overal l }=0.1608\end{aligned}$
Random effects u_i ~ Gaussian
$\operatorname{corr}\left(u_{-} i, X\right)=0$ (assumed)

$\begin{array}{ll}\text { Kal d chi 2(19) } & = \\ \text { Prob }>\text { chi } 2 & = \\ \end{array}$
(Std. Err. adj usted for 90 cl usters in Househol dNo)

 $>$ ummy, re vce(robust)

Random effects GLS regression	Number of obs Number of groups		728
Group vari abl e: Househol dNo			87
R-sq: within $=0.0000$	Obs per group:	min $=$	1
bet ween $=0.3278$		$\operatorname{avg}=$	8. 4
overall $=0.2672$		$\max =$	13
Random effects u_i ~ Gaussi an	Wal d chi 2(19)	=	
corr($\left.u_{-} \mathrm{i}, \mathrm{X}\right) \mathrm{l}^{-}=0$ (assured)	Prob > chi 2	=	

(Std. Err. adj usted for 87 cl usters in Househol dNo)

LnY6	Coef.	Robust Std. Err.	z	$P>\|z\|$	[95\% Conf .	I nt erval]
Q3	033599	. 3264589	0. 10	0. 918	-. 6062486	6734466
Q4	. 0589403	. 227158	0.26	0. 795	-. 3862812	5041618
Q5	-. 0292947	3065429	-0. 10	0. 924	-. 6301077	. 5715183
Q6	-. 5780536	. 2596052	-2. 23	0. 026	-1. 08687	-. 0692368
Q7	-. 1918301	. 3206474	-0.60	0.550	-. 8202874	. 4366272
Q8	. 2335141	. 3047346	0.77	0. 444	-. 3637548	. 830783
Q9	-. 8249181	. 2454076	- 3.36	0. 001	-1. 305908	-. 3439281
Q10	-. 1276346	. 2427862	-0. 53	0. 599	-. 6034867	. 3482175
Q11	. 4235295	. 321012	1. 32	0. 187	-. 2056424	1. 052701
Age	. 0013801	. 0407865	0.03	0. 973	-. 07856	. 0813203
AgeSquar ed	-. 0000205	. 0003975	-0.05	0. 959	-. 0007996	. 0007585
Education	-5. 527415	1. 254545	-4.41	0. 000	- 7.986278	- 3.068552
Educat i ons-d	. 1718757	. 03961	4. 34	0. 000	. 0942416	. 2495099
I ncome	-. 0000512	. 0000211	- 2. 42	0. 015	-. 0000925	- 9. 81e- 06
I ncomeSqua-d	3. $48 \mathrm{e}-10$	1. $50 \mathrm{e}-10$	2. 33	0. 020	5. 50e-11	6. $41 \mathrm{e}-10$
Femal e	. 1920761	. 2198576	0.87	0. 382	-. 2388368	. 6229891
Sout hDummy	. 0156835	. 2351936	0.07	0. 947	-. 4452875	. 4766546
Whit eDumm	. 015438	. 3021604	0.05	0. 959	-. 5767856	. 6076615
Dumi min grat e	-. 6924488	. 3097068	-2. 24	0. 025	- 1. 299463	-. 0854345
Veget arí an \sim y	0198274	2375268	0.08	0. 933	$-.4457166$	4853714
_cons	$\text { 48. } 27771$	10. 0177	4. 82	0. 000	$\text { 28. } 64338$	$\text { 67. } 91204$
si gma_u	. 92297232					
si gna $\underset{\text { rho }}{ }$	$\begin{aligned} & .88940241 \\ & .51851626 \end{aligned}$	(fraction	vari	ce due	u i)	

Dependent variable: Total Food Waste

Dependent variable: Total Food Waste per Meal

Dependent variable: Total Food Waste per Person

Dependent variable: Total Edible Food Waste

Random effects GLS regression Group variable: Househol dNo				Number Number	f obs froups	$\begin{array}{r} 1010 \\ 90 \end{array}$
$\begin{array}{ll} \text { R- sq: } & \text { wi thi } n \\ & \text { bet wee } \\ \text { over al } \end{array}$	$\begin{aligned} & =0.0232 \\ & =0.3926 \\ & =0.2679 \end{aligned}$			Obs per		$\begin{array}{r} 1 \\ \text { 11. } \\ 13 \end{array}$
Random effects u_i ~Gaussian $\operatorname{corr}\left(u_{-} i, X\right) \quad=0$ (assumed)				$\begin{aligned} & \text { Wal d chi 2(} 35 \text {) } \\ & \text { Prob }>\text { chi } 2 \end{aligned}$		$\begin{array}{r} 66.23 \\ 0.0011 \end{array}$
Tot Ed	Coef .	Std. Err.	z	P> 71	[95\% Con	I nt erval]
week2	. 0225291	4. 55726	0.00	0.996	-8. 909536	8. 954594
week3	3. 566473	4. 57451	0.78	0.436	-5. 399402	12. 53235
week4	-1. 511296	4. 642493	-0. 33	0.745	-10. 61041	7. 587823
week5	-1. 759795	4. 713655	-0.37	0.709	-10. 99839	7. 478799
week6	-8. 128071	4. 708719	-1. 73	0. 084	-17. 35699	1. 100849
week7	-4. 636391	4. 680376	-0.99	0. 322	-13. 80976	4. 536977
week8	-7.436727	4. 788744	-1. 55	0. 120	-16. 82249	1. 949038
week9	-10. 6285	4. 788575	-2. 22	0.026	-20. 01393	- 1. 243063
week10	-6. 888498	4. 789272	-1. 44	0.150	-16. 2753	2. 498303
week11	- 11.09111	4.889121	-2. 27	0.023	-20. 67361	-1. 508607
week12	-10. 2243	4. 933376	-2. 07	0.038	- 19. 89354	-. 5550633
week13	-8. 340068	4. 845794	-1. 72	0.085	-17. 83765	1. 157514
Q3	-1. 875096	10. 44442	-0. 18	0.858	-22. 34577	18. 59558
Q4	-1. 306845	10. 06585	-0. 13	0. 897	-21. 03555	18. 42186
Q5	-2. 7068	10. 38804	-0. 26	0. 794	-23. 06698	17. 65338
Q6	- 22. 44598	10. 06085	-2. 23	0.026	-42. 16488	- 2. 727084
Q7	-10. 08607	12. 11153	-0. 83	0.405	-33. 82423	13. 6521
Q8	6. 690394	9. 857023	0.68	0.497	-12. 62902	26. 0098
Q9	-26. 08967	9. 088542	-2. 87	0. 004	-43. 90288	-8. 276452
Q10	. 0366033	9. 063058	0.00	0.997	-17. 72666	17. 79987
Q11	-. 9683153	12. 92941	-0.07	0. 940	- 26. 30949	24. 37286
Age	-1. 730924	1. 804265	-0. 96	0. 337	-5. 267219	1. 80537
AgeSquar ed	. 015952	. 0169814	0. 94	0. 348	-. 0173308	. 0492349
Educati on	- 201. 4381	58.46607	- 3.45	0. 001	- 316. 0295	-86. 84671
Educati ons-d	6. 221972	1. 818769	3. 42	0. 001	2. 657251	9. 786693
Incore	-. 0009398	. 0008352	-1. 13	0. 260	-. 0025768	. 0006972
I ncomeSqua-d	6. $44 \mathrm{e}-09$	5. $69 \mathrm{e}-09$	1. 13	0. 258	-4.71e-09	1. $76 \mathrm{e}-08$
Ferral e	-2. 502696	9. 797391	-0. 26	0. 798	-21. 70523	16. 69984
Sout hDumm	2. 847749	8. 505349	0. 33	0. 738	-13. 82243	19. 51793
Whit eDumm	3. 274871	11. 97422	0.27	0. 784	- 20. 19416	26. 74391
Dum mmi grat e	-14. 06941	13. 42208	-1. 05	0. 295	-40. 3762	12. 23738
Veget ari an-y	5. 328878	11. 84447	0.45	0.653	-17. 88585	28. 54361
Dum2pp	9. 643772	12. 13957	0.79	0.427	-14. 14934	33. 43688
Dum3ppl	25. 59402	14. 91783	1. 72	0.086	-3. 644401	54. 83244
Dumappl	36. 97506	15. 89973	2. 33	0.020	5. 812172	68. 13796
_cons	1737. 007	468.889	3. 70	0. 000	818.0015	2656. 013
si gma_u si gra-e rho	$\begin{aligned} & \text { 33. } 42053 \\ & 30.13824 \\ & 55150446 \end{aligned}$	(fraction	vari	e due	u_i)	

Dependent variable: Edible Food Waste per Meal

Dependent variable: Edible Food Waste per Person

. xt reg Tot EdFWHHS week2 week3 week4 week5 week6 week7 week8 week9 week10 week1 >1 week12 week13 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Age AgeSquared Education Educat i $>$ onSquar ed Income IncomeSquar ed Fenal e Sout hDumy WhiteDumy Dumm grate Vege > tarianDumy

Randomeffects GLS regression Group vari able: Househol dNo		Number of obs Number of groups		=	$\begin{array}{r} 1010 \\ 90 \end{array}$
R-sq:	$\begin{aligned} & \text { withi } n=0.0243 \\ & \text { bet ween }=0.2861 \end{aligned}$ $\text { overali }=0.1762$	Obs per group:	min avg avg max	=	11. $\begin{array}{r}1 \\ 13\end{array}$
Random corr	effects u_i ~Gaussian i, X) $=0$ (assumed)	$\begin{aligned} & \text { Wal d chi 2(} 32 \text {) } \\ & \text { Prob }>\text { chi } 2 \end{aligned}$		=	$\begin{array}{r} 53.76 \\ 0.0094 \end{array}$

Tot EdFWHHS	Coef.	Std. Err.	z	$\mathrm{P}>\mid \mathrm{zl}$	[95\% Conf.	I nt erval]
week2	1. 526263	2. 372907	0.64	0.520	- 3. 124549	6. 177075
week3	4. 771717	2. 381762	2. 00	0. 045	1035496	9. 439884
week4	1. 47634	2. 416772	0.61	0. 541	-3. 260446	6. 213126
week5	0352548	2. 4535337	0.01	0. 989	-4.77359	4. 8441
week6	-2. 257459	2. 450747	-0.92	0. 357	-7. 060836	2. 545918
week7	-2. 248559	2. 436334	-0.92	0. 356	-7. 023686	2. 526568
week8	-3. 086204	2. 492528	-1. 24	0. 216	-7. 971468	1. 799061
week9	-2. 765528	2. 492565	-1. 11	0. 267	-7. 650866	2. 11981
week10	-2. 568745	2. 492919	-1. 03	0. 303	-7.454776	2. 317286
week11	- 3. 229082	2. 544714	-1. 27	0. 204	-8. 21663	1. 758466
week12	- 3.823521	2. 567871	-1. 49	0. 136	-8. 856455	1. 209413
week13	- 1.486769	2. 522037	-0. 59	0. 556	-6. 429871	3. 456333
	4086038	4. 630692	0. 09	0.930	-8. 667387	9. 484594
Q4	1. 499878	4. 523166	0.33	0.740	-7. 365365	10. 36512
Q5	-3.641998	4. 69769	-0. 78	0. 438	-12. 8493	5. 565305
Q6	-12.40193	4. 545807	-2. 73	0. 006	-21. 31155	-3. 492311
Q7	-7. 349242	5. 433872	-1. 35	0. 176	-17. 99944	3. 300952
Q	3. 729908	4. 291559	0.87	0. 385	-4.681394	12. 14121
09	-9.73817	4. 091071	2. 38	0. 017	- 17. 75652	1. 719819
Q10	1. 380198	4. 080851	0. 34	0.735	-6. 618122	9. 378518
Q11	2. 146241	5. 822469	0.37	0. 712	-9. 265587	13. 55807
Age	-. 6891207	. 7850093	-0.88	0. 380	-2. 227711	8494692
AgeSquar ed	. 0066241	. 0073372	0.90	0. 367	-. 0077566	. 0210049
Education	- 77.78947	26. 36388	-2. 95	0. 003	- 129.4676	-26. 11134
Educations-d	2.4222	. 8204114	2. 95	0. 003	. 8142227	4. 030176
Incore	0005896	. 0003728	-1. 58	0. 114	-. 0013203	. 000141
I ncomeSqua-d	3. 78e- 09	2. $54 \mathrm{e}-09$	1. 48	0. 138	-1. 21e-09	8. $77 \mathrm{e}-09$
Fermal e	-1. 320904	4. 336983	-0. 30	0. 761	-9. 821234	7. 179426
Sout hDumm	. 734526	3. 793102	0.19	0. 846	-6. 699817	8. 168869
Wi t eDumy	5733921	5. 344726	0. 11	0. 915	- 9. 902079	11. 04886
Dum migrate	-7. 8563359	5. 752553	-1. 37	0. 172	-19.13116	3. 418437
Veget arían-y	1. 485395	5. 048016	0. 29	0. 769	-8. 408534	11. 37932
_cons	683.1977	212. 022	3. 22	0. 001	267. 6422	1098. 753
si gma_u	14. 914879	(fraction of variance due to u_i)				
$\begin{gathered} \text { si gna } \\ \text { rino } \end{gathered}$	$\begin{aligned} & 15.671053 \\ & .47529215 \end{aligned}$					

[^0]: OPPGAVEN ER MOTTATT I TO - 2 - INNBUNDNE EKSEMPLARER

 Stavanger, /..... 2014 Underskrift administrasjon:

[^1]: *Significant at the 90%-level, $* *$ Significant at the 95%-level, $* * *$ Significant at the 99%-level, error terms and t -statistics are available in appendix

