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ABSTRACT 

 

The push in the industry towards increasing the weather window for marine operations offshore leads to a 

focus on new technology. When performing workover operations in a subsea well, the workover riser is a 

physical connection between the well and the floating workover vessel. A floating vessel will experience wave 

induced motion and is therefore equipped with a heave compensator to allow for this relative motion without 

increasing the load to the riser. If the heave compensator fails or if the heave of the vessel exceeds the stroke 

length of the heave compensator, the workover riser can be subjected to an excessive axial force that could 

rupture the riser and damage subsea well barriers.   

A safety joint that is to be installed in the riser can improve the window for safe operation while reducing 

consequences if an accident were to occur. It is called the Telescopic Safety Joint (TSJ) and has been developed 

by FMC Technologies. The joint is designed to telescope when subjected to a predetermined axial force. The 

telescoping function of the joint will ensure that there is sufficient time for personnel onboard the vessel to 

activate the emergency disconnect function so that the riser can safely be disconnected from the well.  

The safety joint is a weak link. During installation of the workover system, the riser experiences loading 

conditions exceeding that of normal operation. There is a concern that the safety joint may take plastic damage 

during this installation. Hence the TSJ is equipped with an over-ride function that temporarily can increase the 

strength of the joint. The over-ride function works by pumping hydraulic pressure into external cylinders. The 

increase in the strength of the joint from the over-ride function depends upon the hydraulic pressure. This 

thesis studies the effect the over-ride function has on the weather window for installation of a workover 

system, comparing a fully pressurized over-ride function to a semi-pressurized over-ride function. 

Simulations in Orcaflex for various environmental conditions found the loads that the TSJ must be able to 

withstand for installation to be possible. A model of the joint was created in AUTODESK Inventor. Using ANSYS 

workbench, the model was tested to find out which loads that are acceptable and which loads leads to plastic 

damage of the joint both for the fully pressurized and semi-pressurized over-ride function. 

Combining the results for the fully- and semi-pressurized over-ride function test, with the results from the 

dynamic simulations performed in Orcaflex revealed an increase in installation window when using the fully 

pressurized over-ride function. The joint using the full capacity of the over-ride function was able to withstand 

620kNm before plastic damage took place. The joint using a semi-pressurized over-ride function began taking 

plastic damage at 400kNm. The over-ride function increases the bending moment capacity of the joint by 55%. 

Using the scatter diagram for the Draugen field to see how many observations has been made of the different 

sea states, the increased availability for installation when using the full capacity of the over-ride function, as 

opposed to the semi-pressurized joint was calculated. When installing the TSJ as the 2
nd

 riser joint, the 

availability increased by 21,7%. Installing the TSJ as the 3
rd

 joint increases the availability by 16,7%. Installation 

of the TSJ on the 4
th

 and 5
th

 joint gives an increase of respectively 2,8% and 0,3% when the full over-ride 

capacity is used. The over-ride functions proved to be so effective that the joint became stronger than the 

actual workover riser. Hand calculations showed that the riser would yield before the safety joint and thus the 

safety joint would not be a limiting factor for the workover installation activity if the over-ride function is 

active.  
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1. INTRODUCTION 

1.1 INTRODUCTION 

Technology that will enable larger weather windows for offshore activities whilst maintaining/increasing safety 

is of great interest for the industry. Marine operations in more challenging environmental conditions will 

amplify the motion of vessel and equipment so that there is an enlarged risk of accidental loads or impact. To 

reduce these risks the industry must implement extra safety measures to fulfill the rules and regulations for 

safe operation offshore. An activity that may be delayed due to weather is workover operations. During 

workover the vessel is connected to the well through a workover riser. The workover riser provides a conduit 

for fluid and equipment to be transferred between the vessel and the well without direct contact to the sea. 

The riser is a rigid steel pipe and workover vessels use heave compensators that enable heave motion of the 

vessel relative to the well. If however, this relative movement between the vessel and seabed is too large an 

excessive force may be exerted to the workover riser. A force with a magnitude that can lead to rupture of the 

riser, damage to the vessel or subsea equipment installed down with the well.  Such an accident can result in 

devastating consequences for the involved companies and personnel, but also environmental pollution. 

Various safety functions are implemented onboard the vessel and at the seabed to avoid such a situation, but 

the risk of accidents can never be neglected.  

A new type of weak link developed by FMC Technologies can improve the weather window for safe operation 

and greatly reduce the consequences if accidents were to occur. A weak link in a riser is designed to break off 

before an accidental axial load can damage any other equipment, thus the only damage to the system will be to 

the weak link itself. The FMC developed weak link is called the Telescopic Safety Joint (TSJ) and is shown in 

figure 1.1. At a predetermined axial tension this link splits and begins to slide apart. It never fully disengages, 

but telescopes. The joint is designed so that its telescoping stroke length always exceeds any heave motion of 

the vessel. While the joint is stroking there will be no discharge of the fluid contained within the workover riser 

to the external environment. Once an accident has occurred and the joint has begun telescoping, the TSJ 

provides sufficient time for the personnel onboard to safely disconnect the riser from the well. 

 

Figure 1.1 The Telescopic Safety Joint prototype by FMC Technologies (FMC Technologies, 2014) 

A challenge when using such a weak link is the loads it is subjected to during installation of the workover 

equipment. The workover riser may be used as running tool for installation of a Xmas tree, a Lower Riser 

Package (LRP) and an Emergency Disconnect Package (EDP). These tools combined has a dry weight exceeding 

100 tonnes. When using the workover riser as a running tool the tension and bending moment in the riser will 

be far above that of normal operational loads. This requires extra attention to the weak link as this is the most 

vulnerable point along the riser. The FMC developed TSJ is equipped with four over-ride cylinders that can 

temporarily increase the strength of the joint so that it does not take damage during installation. The over-ride 

cylinders work by applying an external hydraulic pressure. The magnitude of this pressure determines the 
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pretension in the joint and thus increases its strength. This thesis will study how these over-ride cylinders can 

increase the weather window for installation of a workover system, compared to installation using a weak link 

without the same over-ride capability.  

1.2 SCOPE OF THE THESIS 

During installation of an EDP, a LRP and a Xmas tree (hereafter referred to as the “equipment stack” or “stack”) 

the workover riser is used as a running tool. As the stack is lowered though the sea it is subjected to 

hydrodynamic forces. The forces exerted on the equipment stack along with its own weight generate load 

conditions in the riser that are larger than the operational loads. If the TSJ is to be installed in the riser it must 

be able to withstand these loads without taking damage. The TSJ is designed to be the weakest link along the 

riser and when it is subjected to an axial load above a certain magnitude it will begin to separate. The axial 

loads during installation will exceed the predetermined operational breaking load due to the large equipment 

stack connected to the riser. The TSJ is equipped with an over-ride function that temporarily increases the axial 

and bending stiffness of the joint. This makes the joint more suited to cope with the installation loads without 

taking plastic damage.  

The purpose of this thesis is to study the loads that the TSJ is subjected to during installation and to verify the 

effect of using the over-ride function is such cases. The effect of the bending moment to the TSJ will be of 

particular interest. The alternative to using the TSJ is to install a traditional weak link in the riser. The aim is to 

show how the over-ride function increases the weather window for installation of the Xmas tree stack.  

1.3 METHODOLOGY 

A model of the applicable installation scenario is created in ORCAFLEX 9.7. This model will be used for the 

dynamic simulations. The first task of creating a good model for the simulations is to calculate all relevant input 

data to OrcaFlex. Dimensions, coefficients for added mass and drag, mass moment of inertia etc. must be 

imported to the model data sheet for the riser and the equipment connected to this. A workover vessel must 

be chosen and its Response Amplitude Operator (RAO) will be plotted into the vessels data sheet. This thesis is 

written for Norske Shell and so a water depth that would be relevant for one of their fields in the Norwegian 

Sea is to be used. Once the model is complete, the simulations will show the loads in the workover riser during 

installation. A combination of different significant wave heights and zero up-crossing periods are going to result 

in different bending moments and axial tensions in the riser. The environmental data for the chosen field is 

supplied by Shell. The length of the riser will have an effect on the bending moment, so different riser lengths 

must be used. Once the location and magnitude of the largest loads have been found they can presented in 

matrices showing their dependence of significant wave heights and zero up-crossing periods.  

Once the distribution of dynamic loads in the workover riser is found, the next step will be to see how they are 

going to affect the TSJ if it was installed at the point exposed to the largest loads. AUTODESK Inventor will be 

used to create a model of the joint with dimensions supplied by FMC Technologies. With the help of ANSYS 

Workbench 13.0, this model can be used for a static structural simulation in order to see how much bending 

moment and tension the joint can withstand before taking plastic damage. The TSJ has an over-ride function 

that temporarily increases its load capacity. By comparing the ANSYS Workbench results of the joint with fully 

pressurized over-ride cylinders to a joint with semi-pressurized over-ride cylinders, it should be possible to see 

how much effect the over-ride function has on the strength of the joint. When the strength of the joint is 

known the installation window can be found using the results from OrcaFlex. Using the scatter diagram, the 

increased availability for installation of the workover system can be calculated.  
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The following five tasks sums up the work to be performed in this thesis: 

1. A workover installation using an 8 5/8” outer diameter, 7” inner diameter workover riser is chosen. 

2. Create a model of an installation scenario where an EDP, a LRP and a Xmas tree is being installed by 

the workover riser. Perform dynamic simulations in OrcaFlex 9.7 to find bending moments and axial 

forces that the safety joint will be subjected during installation.  

3. Test different values for significant wave heights and zero up-crossing periods that are applicable for 

the chosen area, along with different riser lengths. (environmental data from Shell metocean data) 

4. Perform finite element analysis using ANSYS of a simplified model of the TSJ to verify the effect of the 

over-ride cylinders. The analysis will compare the strength of the joint subjected to bending moments 

and increased axial loads when using the full capacity of the over-ride cylinders, to a version of the 

joint that has a reduced over-ride capacity.  

5. To show how the over-ride cylinders increase the weather window and whether the safety joint will 

limit the installation window. 

 

1.4 STRUCTURE OF THE THESIS 

This thesis is divided into five chapters. The first chapter contains the introduction to the scope of this thesis. 

This is to give the reader an understanding of the purpose of the simulations to be performed. The chapter will 

briefly clarify the reasons for installing a weak link in a workover riser. There is also a section explaining the 

limitations of the work performed.  

Chapter two provides further insight to reasons why such a weak link is critical to a workover system. This 

chapter shows how the workover riser is exposed to different loads during installation than for operation. The 

joint is described in sufficient detail for the reader to gain understanding of its various components and their 

function. The purpose of the over-ride system is described and how this system should increase the weather 

window for installation.  

Chapter three describes how the installation scenario will be modeled using the OrcaFlex software and which 

parameters that are used for the simulations. This includes the calculation of various coefficients and input 

values for the OrcaFlex simulations. The chapter also contains a description of the ANSYS workbench model. 

Chapter four presents the results from the OrcaFlex and the ANSYS workbench simulations. The data obtained 

from these simulations are used to conclude when installation of a workover system using the TSJ is acceptable 

and when it is not. The strength of the workover riser with respect to bending moment is calculated in order to 

see whether the TSJ will be the limiting factor when performing the installation. 

Chapter five contains the conclusions with discussion. The section includes recommendations for future work. 

1.5 LIMITATIONS FOR THIS THESIS 

This thesis will focus on an installation case where a Xmas tree is installed along with a LRP and an EDP at the 

Draugen field located in the Norwegian Sea, 150km north of Kristiansund. The steel workover riser is used as a 

running tool and has the dimensions; OD 8 5/8” and ID 7”. The water depth is 250m. Simulations are going to 

be performed for significant wave heights up to 5m, with zero up-crossing periods applicable for the Draugen 

field. All waves have a    heading towards the vessel. The RAO data for the Transocean Artic is used for the 

workover vessel. The thesis will only focus on the load effect on the TSJ and the workover riser during 

installation. Other components of the system that might take damage will not be covered. The final conclusion 

with acceptable installation conditions will only show which weather conditions that does and does not lead to 

plastic damage to the TSJ. Operational loads are not covered.  
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2. STATE OF THE ART 
This chapter describes the functional requirements of the Telescopic Safety Joint and also argues why the 

safety joint should be located close to the bottom end of the riser as opposed to being installed close to the 

mean water level. The chapter describes the different loading conditions the riser is subjected to during 

installation and operation. 

2.1 RISER TYPES 

There are two types of risers used for marine operations. The drilling riser (often referred to as a marine riser) 

and the workover riser. The difference between the two is explained briefly.  

THE DRILLING RISER/MARINE RISER 

For subsea wells the Blow Out Preventer (BOP) is situated at the seabed. The drilling riser is an extension of the 

well from the BOP to the drilling vessel. The drilling riser enables transfer of fluid and equipment from the 

vessel to the well without interaction with the sea. For drilling operations, the drilling riser guides the drill 

string while the annulus provides a conduit which permits the return of drilling fluid and cuttings to the surface. 

The drilling riser is only designed to withstand hydrostatic pressure and so the pressure from the well must 

never enter the riser bore. Hydrocarbons should hence never enter the riser.  The drilling riser will serve as a 

running and retrieving string for the BOP stack. Drilling risers are large diameter pipes, often with a nominal 

diameter exceeding 21”. (Baker, 1991, p.537) The drilling riser is usually used together with a Lower Marine 

Riser Package (LMRP) and BOP as seen in figure 2.1. 

 

Figure 2. 2 The drilling riser 

THE WORKOVER RISER 

A workover riser has many of the same applications as a drilling riser. The workover riser is an extension of the 

well from the seabed to the workover vessel. The riser enables transfer of fluid and equipment from the vessel 

to the well without interaction with the sea and serves as a running tool for equipment being installed or 

removed from the seabed. Unlike a drilling riser, the workover riser is designed to be in direct contact with the 

well stream. This means that the workover riser is exposed to well pressure and hydrocarbons. The workover 
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riser has a smaller diameter than a drilling riser. The outer diameter for the riser used in this report will be 8 

5/8”. The workover riser can be installed along with an Emergency Disconnect Package (EDP) and a Lower Riser 

Package (LRP), as seen in figure 2.2. 

 

2.2 THE WORKOVER RISER SYSTEM 

Performing a workover operation will not always include installation of a Xmas tree. If the Xmas tree is already 

installed, the workover operation only requires a LRP and an EDP in order to safely enter the well. A sketch of 

how the workover system is configured when installing a Xmas tree is shown in figure 2.2. For the reader not 

familiar with the system, a brief description of the relevant components and their function is given. (Subsea1, 

2014) 

 

Figure 2.2 The workover system configuration 

The Emergency Disconnect Package 

The EDP makes up a part of the well barrier together with the LRP during operations. It has a retainer valve 

situated in the main bore which is the main barrier of the EDP. If the workover vessel for some reason has to 

quickly abort the workover operation and disconnect from the well, it provides facilities for safe Emergency 

Quick Disconnect (EQD) of the workover riser from the LRP. As the name suggest, the EDP should only be used 

for emergency situations. (Subsea1, 2014) 

The Lower Riser Package 

The LRP is installed together with the EDP on top of the Xmas tree during the workover operations. The LRP is a 

part of the well barrier. Typically it comprises of minimum an isolation valve and a shear seal ram situated in 

the main bore. Both of these valves have the ability to contain well pressure, but can also sever any wireline or 

coiled tubing the might be located inside the bore during an emergency. (Subsea1, 2014) 

The Xmas tree 

The Xmas tree will act as a barrier between the well and the environment. It is a pressure vessel for well flow 

and will have accommodation for flow control elements and various systems for the well. (Subsea1, 2014) 
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2.3 TECHNOLOGY BACKGROUND 

(Tømmermo et al., 2014, p.1) 

2.3.1 OPERATIONAL RISKS 

When workover operations are being performed the heave compensator onboard the workover vessel allows 

for relative vertical movement between the vessel and the riser. If the heave compensator fails or the heave of 

the vessel exceeds the stroke length of the heave compensator cylinders, a tremendous force will be exerted 

on the workover riser.  

During workover operations the workover riser makes up a part of the primary well barrier. If the workover 

riser is damaged, the primary well barrier is damaged. If excessive loads are applied to the riser, the integrity of 

the subsea equipment at the bottom can be compromised. Damage to the subsea equipment will also mean 

damage to the well barriers.  

The NORSOK standard for System Requirements Well Intervention Equipment states: 

“System and equipment are to provide two independent levels of protection to prevent or 

 minimize the effects of a single malfunction or fault in the process equipment and piping  

system, including their controls.” (NORSOK D-002, 2000, p.8) 

A riser without any form of weak link would be vulnerable to such a failure. A malfunction in the heave 

compensator could directly result in large damage to important safety functions and barriers. 

The EDP is installed to disengage the riser from the LRP in order to avoid damage to rig and equipment in case 

of a situation that requires rapid disconnection. This disconnect sequence must be activated from rig 

personnel. If a situation where the workover riser very rapidly is exposed to extreme loads without warning, rig 

personnel might not be able to activate the emergency disconnect sequence quickly enough to avoid damage. 

There is also the unpredictable factor of human error. There may be hesitation or they may not even be aware 

of the situation until it is too late. Such a failure could occur if the vessel heave is too large for the heave 

compensator or the heave compensator locks up. This is what happened to Statoil’s deep water Trym in 1998 

(Statoil, 1998). The heave compensator suddenly locked and the riser was exposed to over 500 tonnes of 

tensile load of a period of five seconds. This lead to the riser breaking in six places and there were large 

damages to the drill floor. This all happened so quickly that the rig personnel did not have time to activate the 

emergency disconnect sequence.  

For several years, weak links have been used in risers as a physical barrier to prevent damage to subsea well 

barriers in an emergency situation. If extreme heave amplitudes of the vessel or failure/stroke out of the heave 

compensators occur, large tensile loads shall not be able to damage the integrity of the well barriers. A weak 

link installed in a drilling or workover riser prevents such a load from being transferred. The traditional weak 

link is designed so that it will rupture and split under a predetermined load lower than the critical load the well 

barriers can withstand. By doing so, the well can safely be controlled if an accidental load from topside where 

to occur. However, the riser recoil from such a rupture could damage the vessel and riser content will be 

released to the sea. This can lead to damage to the rig, personnel and also environmental discharge. The 

economic consequences of such a situation with respect to the well are also a major concern. Retrieval of the 

severed riser section for instance.  
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Figure 2.3 The Telescopic Safety Joint installed in the riser (Tømmermo et al., 2014, p.11) 

FMC has developed a Telescopic Safety Joint (TSJ) that does not rupture, but telescopes once subjected to 

excessive loading conditions. The safety joint is going to be installed as a riser joint in the workover riser, see 

figure 2.3. This will provide enough time to safely activate the emergency disconnect sequence and disconnect 

the riser from the Xmas tree stack properly without spillage and riser recoil. (Tømmermo et al., 2014, p.1) 

2.3.2 BENEFITS OF THE TELESCOPIC SAFETY JOINT 

The installation of a safety joint will be an independent layer of protection that minimizes the consequences of 

a heave compensator lockup. Most modern workover risers are installed with a weak link that breaks before 

damaging the equipment or drill floor, but there are other potential hazards that could occur if the riser link 

were to completely break. Riser recoil is an example that could lead to damage of the workover vessel.  

The pressure balanced TSJ from FMC is designed to be activated when subjected to a predetermined axial load. 

The joint is designed so that during normal operation the TSJ is retracted and behaves passively as a standard 

riser joint. When activated the joint begins telescoping while the contents of the riser bore are retained. 

Pressure compensating cylinders ensures that tension is kept in the riser; this is explained in more detail in 

section 2.5. The stroke length of the joint is set to be larger than the largest expected heave of the vessel. Once 

the TSJ has been activated the telescopic function gives rig personnel sufficient time to active the emergency 

disconnect sequence. Alternatively the safety joint can automatically disconnect the EDP when activated.  

2.3.3 CONCERNS WHEN INSTALLING A SAFETY JOINT 

A limitation when installing such a weak link in a workover riser may be the installation procedure. The 

workover riser can be used as a running tool for an equipment stack consisting of an EDP, a LRP and a Xmas 

tree. This equipment has a dry weight of 100 tonnes and will result in a temporary increased axial load to the 

workover riser and thus the safety joint. Since the safety joint is designed to be the weakest link along the riser, 

it may also be the most vulnerable to these increased loads. A safety joint may therefore become a restricting 

factor concerning when workover installation can, and cannot be performed. 
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2.4 WORKOVER RISER LOADS 

2.4.1 OPERATIONAL LOADS 

This section describes various load cases a workover riser is subjected to during operation. The purpose is to 

provide the reader with an understanding of the forces that the workover riser will encounter and why a safety 

joint should be located at the lower end as shown in figure 2.4. 

 

Figure 2.4 Location of the TSJ in the workover riser 

AXIAL LOADS 

The workover vessel will have some heave relative to the seabed and a heave compensation system enables 

vertical movement of the vessel without applying an extreme tension in the riser. 

If sufficient tension is not applied to the riser when the vessel is in the wave trough there is a risk that the riser 

might experience compressional forces and buckle. The riser tension declines with water depth so the bottom 

of the riser will have the least amount of tension. The bottom of the riser will therefore be the most vulnerable 

to buckling if the top tension is too low. A floating drilling unit will be equipped with a riser tensioning system 

to ensure that tension is kept at all sections throughout the riser. This will normally be based on a pneumatic 

spring principle. Large piston cylinder arrangements coupled to the top of the drilling riser using cables. The air 

pressure in the cylinder supports the weight of the riser and in addition applies a tension force so that there is 

a certain over-pull at the EDP/LMRP. Sufficient over-pull is required in order to ensure that the emergency 

disconnection sequence can be properly engaged. If over-pull is too low the EDP/LMRP may not be pulled away 

quickly enough and might therefore collide with the LRP/BOP after detachment.  (Baker, 1991, p.537) 

LATERAL FORCES 

Waves and ocean currents will generate lateral forces in the riser. The current velocity varies with time but this 

happens so slowly that it can be considered to be a steady force. This lateral force can create bending moments 

in the riser, but also result in vortex induced vibrations that can lead to fatigue. The current does not 

necessarily change with water depth which means that the drag force from the current on the riser can be as 

large or larger closer to the seabed.  
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Waves create oscillating forces on the riser that will only be at its largest for a short period at a time. Wave 

forces also make the riser vulnerable to fatigue. Unlike the current, waves forces decrease exponentially with 

water depth. Even large waves will have a negligible impact on the section of the riser located close to the 

seabed in a deep water situation. 

BENDING MOMENTS 

 

Figure 2.5 Bending moments in riser due to vessel offset 

Vessel offset may result in bending moments in the riser. The workover riser is equipped with slip joints at the 

top and bottom which allows some angular displacement. A vessel situated in deep water will be able to have a 

larger offset than a vessel in shallow water. However, one effect of the offset is that an inclination in the riser 

will displace the center of gravity such that a small arm occurs. By decomposing this displaced force vector, the 

effect of the vessel offset can be regarded as a force acting perpendicular to the riser, this is illustrated in figure 

2.5.  

When plotting the curve for the bending moment in riser the curve normally has two maxima. One located 

close to the water line and another closer to the bottom. This curve varies according to several parameters. In 

constant water depth the maxima increases linearly with vessel offset. For increasing water depth and 

increasing top tension, the maxima decrease. Buoyancy elements along the riser provide a lifting force. This will 

result in a decrease in the lower bending moment maxima to the point where it becomes non-existing. By 

increasing mud weight while keeping top tension constant, the lower bending maxima increase rapidly while 

the upper bending maxima stays constant. If however the top tension is adjusted to compensate for the 

heavier mud, there is not going to be a significant change in lower bending maxima.  

An example of how the bending moment may be distributed under certain circumstances is shown in figure 

2.6. The bending moment curve will vary according to factors such as weight of the content, top tension, 

current, drift off or water depth. The TSJ should to be located in a section of the riser where bending moments 

are low and is normally installed two or three riser lengths over the EDP, above the lower bending moment 

peak.  (Azar & Soltveit, 1978, p.1) 
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Figure 2.6 Example of bending moment distribution along a riser during operation (Azar & Soltveit, 1978, p.41) 

 

2.4.2 INSTALLATION LOADS 

 

Figure 2.7 Forces contributing to the motion of the equipment stack 

An installation scenario is illustrated in figure 2.7. The workover riser is used as a running tool for the Xmas 

tree, LRP and the EDP. The workover riser is assembled joint by joint on the deck. While each joint is installed 

there is a period where the equipment package is suspended from the vessel, hanging from the deployed 

section of the riser. During installation of the equipment stack the TSJ will be exposed to larger loads and 

stresses than normal operations. 
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AXIAL LOADS 

During installation the workover riser is going to be subjected to an increased axial load due to the weight of 

the equipment stack being lowered towards the seabed. At this point the heave compensator is not active, so 

the top section of the riser can be regarded as fixed to the vessel. No relative motion of the equipment stack 

and the vessel can occur at this point without bending/stretching of the riser. As the heave of the vessel forces 

the equipment package to follow the vertical motion, an increased tension force in the riser will be present due 

to the added mass and the inertia of the stack. 

LATERAL FORCES 

Once the equipment stack has been lowered through the splash zone it is subjected to dynamic loads from 

waves, currents and the vessels movement. All these loads are transferred through the riser. Since the 

equipment stack is suspended in mid-water there is a risk that the wave and current forces may result in large 

motions of the stack. Waves with period close to the systems natural frequency will be the most critical. These 

waves can create harmonic motions described in more detail in the latter. The wave forces declines 

exponentially with water depth and so as the equipment stack is lowered through the water, the forces from 

the waves are reduced. The current can have a damping effect on the equipment stack, but in small waves the 

lateral force from the current will apply a bending moment to the riser. 

HARMONIC MOTIONS OF SYSTEM 

 

Figure 2.8 Pendulum from an elastic band 

Where: 

    is the length of the pendulum [ ] 

    is the axial stiffness of the spring [  ⁄ ] 

   is the mass of the pendulum [  ] 

The workover riser is basically a long steel pipe. When a steel pipe is subjected to a tensile force its behavior 

can be compared to that of a very stiff rubber band. As long as the force is within the elastic range of the 

rubber band, it will go back to its initial length once the load is removed. The same applies for the steel pipe. 

The elastic modulus for the steel is far greater than that of rubber and so the elongation is not going to be as 

apparent.  The tensile load in this case is applied by the weight of the equipment lowered through the sea.  The 

complicating factor for this is that the workover riser is subjected to dynamic loads due to the waves and 

current. The model of the equipment stack connected to a can be compared to a pendulum hanging from an 

elastic band, seen in figure 2.8. 
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The natural period of a pendulum is described by: 

     √
  

 
                                                                                       

Where: 

    is the natural period of the pendulum [ ] 

Waves with periods close to the natural frequency of the vessel and riser system will induce harmonic motion 

which can lead to large amplitudes of the equipment. This can increase the stress in the riser. The pendulum 

motion can be critical with respect to bending moment.  

Another degree of freedom for the equipment stack is the vertical motion of the system. The workover riser 

has a certain stiffness. If a vertical force (like accelerations during heave of the vessel for instance) or motion is 

exerted the natural period of the system is: 

     √
 

  

                                                                                        

Where: 

    is the natural period of the spring [ ] 

The system can be modelled as a combination of both a pendulum and a spring. When the two respective 

natural periods fulfill the following relationship: 

       

By combining equations 2.1 and 2.2, the following relationship is found: 

 

√
  

 
  √

 

  

 

    
  

  

                                                                                          

 

When the length of the pendulum reaches this point, the system alternates between a pendulum motion and a 

vertical spring motion. When this occurs there is an increasing risk when installing in waves close to the natural 

period of the system. Even a small heave of the vessel can result in unwanted pendulum motion of the 

equipment stack. (Gudmestad, 2013) 

The complexity of the system makes foreseeing such a wave period more challenging. The damping of the 

system is going to reduce the amplitude of the heave of the equipment. The added mass of the equipment will 

also be difficult to accurately estimate.  

 

 



19 
 

2.5 DESIGN OF THE TELESCOPIC SAFETY JOINT FROM FMC TECHNOLOGIES  

(Tømmermo et.al, 2014, p.4) 

 

Figure 2.9 The Telescopic Safety Joint by FMC Technologies (Tømmermo et.al, 2014, p.11) 

The Telescopic Safety Joint developed by FMC Technologies is shown in figure 2.9. The following section 

presents the different properties of the TSJ. The properties are presented one by one in order to give the 

reader a better understanding of the function for each different component. The TSJ contains all of the 

components presented, although the sketches do not contain all details. This simplification has been done for 

the sake of the reader due to the complexity of the joint.  

The assembly 

The TSJ can be viewed as the assembly of two components shown by the upper and lower section in figure 

2.10. In passive mode these two sections are locked together and begin to slide apart (telescope) once a 

predefined axial load has been applied to the joint. As the two sections separate the content within the bore is 

not released to the external environment. 

 

 

Figure 2.10 Simplified assembly of the TSJ 

Tensile bolts 

When in retracted (passive) mode the TSJ is equipped with ten ductile tensile bolts; they are presented as red 

in figure 2.11. Any increased tension to the workover riser will be applied to these bolts. The bolts are ductile 

and are able to be elongated within their elastic regime before they rupture. By being ductile the chance of 

unplanned activation of the safety joint is reduced. The bolts are dimensioned to rupture at a predetermined 

axial load. Each bolt may be 1m long and can elongate 100mm before breaking. The tensile bolts are pre-

tensioned in order to avoid fatigue and unwanted movement of the piston in the pressure compensating 

cylinders described in the latter. 
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Figure 2.11 Assembly of the TSJ with tensile bolts 

 

Pressure compensating cylinders 

Internal pressure in a pipe will exert a longitudinal force on the pipe walls. This is known as the end-cap effect 

(Guo, Song, Ghalambor & Lin, 2014, p.65). To avoid fluctuations in the internal pressure of the safety joint from 

affecting the capacity of the tensile bolts, the TSJ is pressure balanced. Being pressure balanced, meaning that 

the TSJ uses the internal pressure that initially creates the end-cap effect, to counteract this very force. This is 

achieved by external short cylinders around the joint. Each cylinder is attached to the lower section whilst a 

piston is connected to the upper section. 

 

Figure 2.12 Configuration of the pressure compensating cylinders in the TSJ 

Figure 2.12 shows the location of the pressure compensating cylinders. The internal pressure from the joint is 

communicated to the short cylinders. The pressure will apply a force to the backside of each piston. Because 

the piston is connected to the upper section of the TSJ, this force pulls the two sections together, reducing the 

tension in the bolts. As the internal pressure rise, the force on the pistons increase and thus the tension in the 

bolts are not affected by the bore pressure in the riser. There are enough external short cylinders to ensure 

that their combined cross sectional area equals the cross sectional area of the safety joint bore.  
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Although pressure is communicated between the well bore and the cylinders, no actual fluid transfer occurs. 

The fluid from the riser bore may contain impurities from the well stream that could clog up the cylinders. The 

pressure is transferred via a rubber bellow inside the bore. The internal surface of the bellow is in direct 

contact with the well fluids, while the outer surface is in contact with the clean hydraulic fluid. If any of these 

cylinders fail (i.e. leakage) a floating piston above the cylinder will travel to an end stop and isolate that cylinder 

from the others. This ensures that functionality is maintained with an acceptable reduction in compensation 

force. 

 

Figure 2.13 Configuration of the long pressure balance cylinders in the TSJ 

Long pressure balance cylinders 

In the event of an accidental load where the tensile bolts rupture, the TSJ begins to stroke. In figure 2.12 the 

long cylinders are not shown. Their configuration can be seen in figure 2.13. The short pressure compensating 

cylinders are not designed for the long strokes that occur once the joints begin to telescope and so they 

become disabled. As the short cylinders are disabled, the long external cylinders are activated to provide the 

required stroke. These long cylinders provide the same pressure compensation effect as the shorter cylinders, 

but enables far longer stroke length. Below the piston of the long cylinders there is an under-pressure. Above 

the piston these cylinders are in direct communication with the well bore meaning that dirty well fluid can 

enter the cylinders. This is however an emergency situation and once the TSJ have begun to stroke, engaging 

the long cylinders; the EDP must be activated as quickly as possible.  

The over-ride system 

There are temporary loading conditions that exceed that of normal operation. Such a condition will be when 

installing the Xmas tree with a LRP/EDP using the workover riser as a running tool. The dry weight of this 

equipment can reach 100 tonnes and this may be tripled during dynamic motions. If the tensile bolts were 

strong enough to carry these loads, they would not be weak enough to rupture at the required load. Therefore 

the TSJ has a separate set of over-ride cylinders that increases the load bearing capacity of the TSJ during 

installation faces. These cylinders are in principal the same as the pressure compensating cylinders, but they 

can be connected to an external high pressure hydraulic source (see figure 2.14). This hydraulic pressure 

simulates a high pressure inside the bore. The cylinders generate a compressive force in the joint without the 

end-cap force being present. This makes the joint able to withstand the extra tension from the heavy 

equipment package without excessive tension being applied to the bolts. The over-ride cylinders are spaced 

evenly around the safety joint. This increases its resistance towards bending moments that may occur during 

installation. The thesis studies the effect these cylinders have on the joints resistance towards bending moment 

in particular. 
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Figure 2.14 Configuration of the over-ride cylinders in the TSJ 

 

Long sea pressure cylinders 

In order to ensure structural stability of the workover system as well as to being able to properly perform EQD, 

tension must be maintained in the riser at all times. An over-pull of 20-30 tonnes on the EDP is not unusual. 

The TSJ have therefore been provided with a function to maintain riser tension using the hydrostatic pressure 

of the surrounding sea water. Long cylinders with vacuum chambers similar to the long pressure balancing 

cylinders are open to the sea (see figure 2.15).  

 

Figure 2.15 Long sea pressure cylinders 

The hydrostatic pressure exerts a force above the vacuum chamber. Therefore a constant tension is kept in the 

piston extending from the cylinder even though riser pressure drops. This function is only activated when the 

TSJ is in telescoping mode. 
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2.6 SITUATIONS REQUIRING A WEAK LINK 

 

2.6.1 VESSEL DRIFT-OFF 

One situation where a TSJ would reduce consequences is during vessel drift off.  Dynamic positioning has 

become common practice on workover vessels. The vessel is equipped with thrusters that can rotate 360 

degrees. Using GPS the vessel is kept stationed above the well by using its thrusters to account for wind, waves 

and currents that normally would make the vessel drift. Dynamic positioning systems are very reliable and are 

have backup systems, but the risk of unintentional drift off cannot be excluded. There may be emergency 

events on board the vessel such as a fire or explosion that can cause the dynamic positioning system to 

malfunction. One of the consequences of the explosion onboard the Deepwater Horizon was the damage to 

the dynamic positioning system that led to the vessel unintentionally drifting off. Although there were several 

other factors leading to the large consequences of this accident, it is nevertheless an example that dynamic 

positioning systems can fail. If the vessel drifts off, the increased tension in the riser will at some point rupture 

the tensile bolts in the joint and it will begin to telescope. By telescoping the TSJ extends the time for the crew 

onboard the vessel to activate the EQD system. Alternatively the TSJ can be equipped with a function that 

automatically activates the EDP once the joint has begun telescoping. 

 

2.6.2 HEAVE COMPENSATOR LOCK UP/STROKE OUT 

All floating vessels experience heave motion when situated in waves and must be equipped with a heave 

compensating system to allow for relative motion between the vessel and well. The heave compensator system 

must function properly to avoid damaging loads to the riser and subsea equipment. A heave compensator has a 

finite stroke length and so workover operations should not be performed in certain sea states where there is a 

risk that the heave of the vessel may exceed this stroke. If an unforeseen large wave were to occur, the vessel 

could be lifted to a point where the heave compensator exceeds its maximum stroke length. In such a situation 

the vessel would pull the riser with an extreme force. A similar situation would occur if the heave compensator 

locks up. The damage in both of these cases would be eliminated by having installed a safety joint that would 

telescope and allow sufficient time to safely disconnect the riser from the well.  

The workover riser is a steel pipe. The elasticity of a steel pipe can be compared to a very stiff rubber band. 

How far the riser can be elongated within the elastic region depends upon the length of the riser. A short riser 

is not able to be stretched as far as a long riser. A workover riser in deep water has the ability to elongate far 

more than a workover riser situated in shallow water. This means that if the heave compensator lockup occurs 

in deep water there is a chance that the workover riser is able to stretch sufficiently without plastic damage to 

the riser itself, or its connection points. In shallow water the heave compensator lockup is far more likely to 

result in plastic damage and thus the installation of a safety joint is going to be even more vital in shallow water 

areas.    
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3. METHOD 
This chapter contains all input values that have been plotted into the OrcaFlex model as well as a description of 

the ANSYS workbench simulations. 

3.1 ORCAFLEX 9.7 

The dynamic simulations will be performed using OrcaFlex 9.7. OrcaFlex is developed by Orcina. The program is 

used for dynamic simulations of vessels and other installations offshore. The program allows the user to choose 

between different wave spectrums, water depths, vessels, mooring lines, risers and more (Orcina, 2014). This 

enables the user to create an offshore model and then perform dynamic simulations to find the forces, stress, 

displacements, velocities and accelerations etc. of the model. There is a wide range of applications for 

OrcaFlex. Among these are simulations of risers, hose systems, mooring, installation analysis, towing etc. For 

this project OrcaFlex will be used to simulate the loads in a workover riser when used as a running tool for 

installation of an equipment stack consisting of a vertical Xmas tree, a LRP and an EDP. The riser is suspended 

from a floating vessel that is subjected to waves and current. The waves are going to create a movement of the 

vessel as well as applying a force to the riser and the equipment. The combination of these motions and their 

resulting loads along the riser can then be obtained.  

In order to get an accurate model of the installation scenario, several input values must be plotted into 

OrcaFlex. The following sections will show which values that have been used for the OrcaFlex model and how 

they are calculated. 

 

3.2 WORKOVER VESSEL DATA 

THE TRANSOCEAN ARTIC 

 

 

Figure 3.1 Picture of the Transocean Arctic (offshore.no, 2014) 

The workover vessel to be used in the simulations is the semi-submersible Transocean Artic seen in figure 3.1. 

It is rated to a water depth of up to 500m and its size is 83m x 67m. Operational displacement is 36 260 tonnes. 

In order to get the correct motions of the vessel during waves, the Response Amplification Operator (RAO) for 

all 6 degrees of freedom has been plotted into OrcaFlex.  
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3.3 ENVIROMENTAL DATA SETTINGS 

The settings for the environmental data are described in the following sections. If there are any settings for the 

environmental data sheet that is not described here, the default settings from OrcaFlex has been not been 

changed.  

Often used terminology for this thesis (DNV-RP H103, 2011, p.13): 

The significant wave height,    

“The significant wave height,    is approximately equal to the average wave height  

(trough to crest) of the highest one-third waves in the indicated time period”  

The zero up-crossing period,    

“The zero-up-crossing period,    is the average time interval between two successive  

up-crossings of the mean sea level”  

 

3.3.1 SCATTER DIAGRAM 

Wave and current data supplied by Shell are used for the analysis. In agreement with Shell and FMC 

Technologies the upper limit for the dynamic simulations is the significant wave height,      . Table 3.1 

shows the combination of wave heights and periods taken from the all year scatter diagram from Shell’s 

metocean data. The green cells show which significant wave height/zero up-crossing period combinations has 

been observed at the Draugen area.   

Table 3.1 Wave heights – wave periods for Draugen (Shell, 2009) 

 

3.3.2 CURRENT 

The current may have a damping effect on the equipment stack. There is a possibility that installation without 

any sea current may result in larger motion and thereby larger stresses in the workover riser. A sensitivity 

analysis will be performed to find out if the absence of current results in larger loads on the riser. 

The current for the area can vary in intensity and the current profile as a function of the water depth will also 

change. The current speed is set to 0,5m/s for these simulations. The current speed does not change with 

water depth in these tests.  
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3.3.3 WAVE SPECTRUM 

Various wave spectrums can be chosen in OrcaFlex when performing a simulation. The location for the 

installation is the Draugen field, 150km north of Kristiansund. This area is located in the Norwegian Sea. Since it 

is in close proximity to the North Sea, the JONSWAP (Joint North Sea Wave Project) spectrum is chosen. This 

spectrum is an empirical relationship that defines the energy distribution with frequency within the ocean. The 

typical spectrum for the North Atlantic is the Pierson-Moskowitz spectrum. This spectrum is applicable for 

areas where the fetch length is so large that the waves can fully develop. North Sea conditions have more 

restricted fetch length and so the waves cannot fully develop. The JONSWAP spectrum has a narrower peak. 

The difference between JONSWAP and the Pierson-Moskowitz spectrum can be seen in figure 3.2. Only the 

significant wave height and zero up-crossing periods are plotted into the OrcaFlex settings once the JONSWAP 

spectra has been chosen. The spectral parameters automatically provided by the program are used. (Stewart, 

2005) 

 

Figure 3.2 The JONSWAP spectrum compared to the Pierson-Moskowitz spectrum 

3.3.4 WAVE SETTINGS 

 

Figure 3.3 Wave train settings from OrcaFlex. 

The wave settings can be seen in figure 3.3. The significant wave height (  ) and zero up crossing period (  ) 

will change depending the sea state to be tested. The number of wave components is chosen to be 100. Each 

component represents the part of the energy in the wave spectrum and covers a range of wave frequencies.  If 

there are relatively few components, each one is trying to represent a fairly wide range of frequencies. The 

greater the number of components the longer the program takes to perform each simulation. 100 components 

are usually sufficient to cover the whole frequency range. 
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3.4 THE WORKOVER RISER 

This section contains input values for the workover riser used in OrcaFlex. The workover riser is modeled as a 

homogenous steel pipe. The data sheet for the riser in OrcaFlex requires various parameters in order to 

perform the simulations correctly. All the values that have been plotted into the data sheet are shown in the 

following section. If there are any parameters on the riser data sheet that has not been shown here, the default 

settings from the software have not been changed.   

3.4.1 BOUNDARY CONDITIONS 

 

Figure 3.4 Boundary conditions for the riser 

The workover riser in OrcaFlex is suspended from the workover vessel, which in this case will be the 

Transocean Arctic. During installation the heave compensator is not active so the equipment stack has the 

same heave as the vessel. The connection between the riser and the vessel is fixed so that no angular 

displacement between the top section of the riser and the vessel can occur. Any horizontal displacement of the 

equipment relative to the rig are going to result in bending of the riser. Figure 3.4 shows how the top end of 

the riser has a completely stiff connection to the rig deck. The lower end of the riser has a stiff connection to 

the equipment stack. Nevertheless, it is expected that the largest bending moments are found at the very top 

of the workover riser. 

3.4.2 DIMENSIONS 

The dimensions for the workover riser are shown in table 3.2. This also includes surface roughness that is going 

to be used for calculation of drag coefficients later in this chapter. 

Table 3.2 Dimensional values for the workover riser 

Outer diameter (OD)                 
Inner diameter (ID)             
Surface roughness (k)         
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3.4.3 ADDED MASS  

(DNV RP-C205, 2010, p.116) 

The added mass for the riser is found using DNV Recommended Practice for Environmental Conditions and 

Environmental Loads. The relevant cross section is shown in table 3.3.  

Table 3.3 Added mass for a cylinder (DNV RP-C205, 2010, p.116) 

 

       

The added mass per meter of workover riser can be found using the formula: 

                                                                                               

Where: 

    is the cross sectional area of the displaced water column [  ] 

   is the density of sea water [    ⁄ ] 

Hence the added mass is: 

       
  

  ⁄        
         

 
 

       
  

 ⁄  

3.4.4 DRAG COEFFICIENT 

The workover riser is going to be exposed to the water particle velocity from the waves. Therefore the drag 

coefficient cannot be found using only data relevant for steady current. The ISO standard for Petroleum and 

natural gas industries - Fixed steel offshore structures propose a method of estimating the drag coefficient for a 

cylinder in un-steady current. This method is relevant for post-critical flow. 

Post critical flow  

For a certain Reynolds number, there is a distinct drop in the value of the drag coefficient (DNV RP-C205, 2010, 

p.56). This drop is dependent on the roughness of the cylinder. The roughness factor is found by dividing the 

surface roughness of the cylinder by its outer diameter. For applicable workover riser, the surface is assumed 

to be in the highly corroded steel range. 

The roughness factor calculated using values from table 3.2: 
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Figure 3.5 Drag coefficients as a function of Reynolds number and surface roughness (DNV RP-C205, 2010, p.56) 

Figure 3.5 shows the drag coefficients for a cylinder as a function of the Reynolds number. The curve for the 

drag coefficient will depend upon the surface factors. For the workover riser used in this thesis, the critical flow 

for a cylinder with this roughness factor occurs for         . To ensure that post-critical flow can be 

assumed for all simulations, the Reynolds numbers for the all wave conditions must be calculated. 

The Reynolds number: 

The Reynolds number is a dimensionless number that is used to describe flow patterns in fluid mechanics. The 

Reynolds number can be calculated from the relationship between the velocity of a fluid, the diameter of its 

obstruction and it kinematic viscosity (Finnemore & Franzini, 2002, p.236): 

   
  

 
                                                                                          

Where: 

    is the dimensionless Reynolds number 

   is the horizontal water particle velocity [  ⁄ ] 

   is the outer diameter of the cylinder [ ] 

   is the kinematic viscosity of the sea water [   ⁄ ] 
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The horizontal water particle velocity will vary with different wave heights and periods. The various velocities 

are calculated in the following sections. 

Maximum wave height (Gudmestad, 2013) 

To calculate the largest water particle velocities that occur for each wave condition, the maximum wave height 

must be used. The significant wave heights and zero up-crossing periods are shown in table 3.1. The maximum 

wave height for a 6 hour storm is approximately: 

           

Table 3.4 shows the maximum wave heights used for the further calculations. 

Table 3.4 Maximum wave height for the different sea states   

                                                     
                                                       

 

Linear wave theory for deep water waves (Gudmestad, 2013) 

In order to use deep water linear wave theory for calculating the water particle velocity, following criteria must 

be fulfilled: 

 

 
     

Where: 

   is the water depth [ ] 

   is the horizontal distance of the wave measured from crest to crest [ ] 

To calculate the wave length, the dispersion relation for deep water is assumed: 

  
 

  
                                                                                            

Where: 

   is the wave period [ ] 

The wave with the largest period will also be the longest. The zero up-crossing periods from the scatter 

diagram is used as the wave period for these calculations. The largest    in the scatter diagram has a period of 

16 seconds, thus the longest wave is calculated to be (Eq. 3.3): 

      

  
     

  ⁄

  
             

The water depth for the Draugen area is approximately 250m         

 

 
           

Linear wave theory for deep water can be used for all waves. 
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Horizontal water particle velocity (Gudmestad, 2013) 

The horizontal water particle velocity for a deep water wave is: 

  
      

 
                                                                                  

Where: 

    is the wave amplitude [ ] 

   is the frequency [   ] 

   is a constant [   ] 

   is the water depth where the velocity is calculated (mean water level is    ) [  ] 

The maximum horizontal water particle velocity (    ) at mean water level for a deep water wave: 

     
      

 
                                                                                    

  
  

 
                                                                                            

  
  

 
                                                                                           

   
    

 
                                                                                      

 

The horizontal water particle velocities are shown in table 3.5 

Table 3.5 Horizontal water particle velocity for all waves 

  - Horizontal water particle velocity  (m/s) 

   (s) 

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

   (m)                

4,750     5,0 4,3 3,7 3,3 3,0 2,7 2,5 2,3 2,1 2,0 1,9 

4,275    5,4 4,5 3,8 3,4 3,0 2,7 2,4 2,2 2,1 1,9 1,8 1,7 

3,800    4,8 4,0 3,4 3,0 2,7 2,4 2,2 2,0 1,8 1,7 1,6 1,5 

3,325    4,2 3,5 3,0 2,6 2,3 2,1 1,9 1,7 1,6 1,5 1,4 1,3 

2,850   4,5 3,6 3,0 2,6 2,2 2,0 1,8 1,6 1,5 1,4 1,3 1,2 1,1 

2,375   3,7 3,0 2,5 2,1 1,9 1,7 1,5 1,4 1,2 1,1 1,1 1,0 0,9 

1,900   3,0 2,4 2,0 1,7 1,5 1,3 1,2 1,1 1,0 0,9 0,9 0,8 0,7 

1,425  3,0 2,2 1,8 1,5 1,3 1,1 1,0 0,9 0,8 0,7 0,7 0,6 0,6 0,6 

0,950 3,0 2,0 1,5 1,2 1,0 0,9 0,7 0,7 0,6 0,5 0,5 0,5 0,4 0,4 0,4 

0,475  1,0 0,7 0,6 0,5 0,4 0,4 0,3 0,3 0,3 0,2     
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Using the water particle velocities, the Reynolds numbers has been calculated in table 3.6 using           

and kinematic viscosity              

Almost all values for the Reynolds number in table 3.6 are larger than     which exceeds the critical limit. The 

smallest Reynolds numbers occur at the lowest wave amplitude (         ), when    is larger than 5s. The 

minimum value for the Reynolds number is 40 359, larger than      . Hence all wave conditions can be 

assumed to be in the post critical flow. 

Table 3.6 Reynolds numbers for all waves 

Reynolds number for different waves 
    (m) 

   4,750 4,275 3,800 3,325 2,850 2,375 1,900 1,425 0,950 0,475 

(s)           

2         484 309  

3        484 309 322 873 161 436 

4     726 464 605 386 484 309 363 232 242 155 121 077 

5  871 756 774 895 678 033 581 171 484 309 387 447 290 585 193 724 96 862 

6 807 181 726 464 645 745 565 027 484 309 403 591 322 873 242 155 161 436 80 718 

7 691 870 622 683 553 496 484 309 415 122 345 935 276 748 207 561 138 374 69 187 

8 605 386 544 848 484 309 423 770 363 232 302 693 242 155 181 616 121 077 60 539 

9 538 121 484 309 430 497 376 685 322 873 269 061 215 248 161 436 107 624 53 812 

10 484 309 435 878 387 447 339 016 290 585 242 155 193 724 145 293 96 862 48 431 

11 440 280 396 253 352 225 308 197 264 169 220 140 176 112 132 084 88 056 44 028 

12 403 590 363 232 322 873 282 514 242 155 201 795 161 436 121 077 80 718 40 359 

13 372 545 335 291 298 036 260 782 223 527 186 273 149 018 111 764 74 509  

14 345 935 311 342 276 748 242 155 207 561 172 968 138 374 103 781 69 187  

15 322 872 290 585 258 298 226 011 193 724 161 436 129 149 96 862 64 575  

16 302 693 272 424 242 155 211 885 181 616 151 347 121 077 90 808 60 539  

Drag coefficient for steady state flow 

Using the roughness factor for the workover riser, the steady state drag coefficient can be found. (ISO 

19902:2007, 2011, p.295) 

A roughness factor of         gives: 

         

Drag coefficient for un-steady flow 

The drag coefficient can be read graphically (ISO 19902:2007, 2011, p.297). The drag coefficient here is plotted 

as a function of the Keulegan-Carpenter number. This graph applies for       

The Keulegan-Carpenter number is defined as: 

   
  

 
                                                                                          

Where: 

   is the outer diameter (OD) of the pipe [ ] 
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The values for    are shown in table 3.7  

Table 3.7 Keulegan-Carpenter numbers for each significant wave height 

                                                     

                                    

 

It should be noted that the Keulegan-Carpenter number does not change with the wave period.  

All values for       

The drag coefficients corresponding to each value for    are shown in table 3.8  

Table 3.8 Drag coefficients for each significant wave height 

                                                     

                                              0      

 

3.4.5 SEGMENT LENGTH 

An important setting for the simulations is the length of each segment in the riser. In OrcaFlex, bending of a 

line occurs at the nodes of each line. Each segment line will act as a rigid stick and so the bending occurs only at 

the nodes between the sticks. If a segment (stick) is too long, the line is not be able to bend into the shape that 

it naturally should due to the moment acting on it, the result of this is that both the deformation and the values 

for the bending moment becomes incorrect. The more segments a line is divided into, the more accurate the 

deformation and bending moment distribution becomes. However, the more segments to a line, the longer the 

simulations take to perform. The best way to decide the length of each segment is to perform simulations and 

use shorter segments each time. The bending moment values will start to converge towards a certain value at 

some point. The segment length should then be set small enough so that the output value is close to this 

converged value, but still long enough so that the simulations do not take too much time to perform (Orcina, 

2014). Testing with the model showed that the largest bending moments occurred at the top section of the 

riser and so this section must be divided into smaller segments than the middle and lower section.  The 

workover riser for the OrcaFlex model is therefore divided into 1m long segments at the 5m top section of the 

riser. The rest of the riser is divided into 5m section. Figure 3.6 shows the line segments in the 52m riser. 

 

 

Figure 3.6 Segment lengths for the workover riser in OrcaFlex 
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3.5 THE XMAS TREE STACK 

The true Xmas tree/LRP/EDP configuration is a quite complex structure with parameters and coefficients that 

are not easily available. Due to this the equipment stack used for the dynamic simulations in OrcaFlex must 

have a simplified geometry. Parameters in the data sheet have been found using various standards and 

assumptions. The following section provides explanation of how all values for the equipment stack plotted into 

the data sheet, have been found.  Any values in the data sheet that are not calculated in the following section 

will be a default value from the OrcaFlex software. 

 

3.5.1 DIMENSIONS 

The OrcaFlex model of the equipment stack is simplified to be a 6D buoy with the shape of a rectangular prism. 

In reality the EDP, LRP and Xmas do not all have the same width and length. Because only one value for the 

added mass and drag coefficients can be implemented, the equipment stack has the average width and length 

of the overall stack as a basis for the model. The height used will be the cumulative height. Dimensions are 

shown in table 3.9. 

Table 3.9 Dimensions for the equipment stack used in OrcaFlex 

 EDP LRP Xmas tree Model 
Length (Y)                     
Width  (X)             
Height (Z)                   
Mass                                       

 

Figure 3. 7 The geometry of the model used for the OrcaFlex simulations 

The equipment stack as it will appear in OrcaFlex is seen in figure 3.7. 
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3.5.2 ADDED MASS TO XMAS TREE STACK 

The Xmas tree stack will experience the effect of added mass in all directions of freedom. Rotational motion is 

not applicable since the stack is not going to be able to rotate in the simulations. Table 3.10 is taken from DNV 

Recommended Practice - Modelling and Analysis of Marine Operations. This table only applies for motion 

normal to a square cross section. The prism used for this model does not have a square cross section in any 

directions and hence a different approach is used for the added mass estimation. 

Table 3.10 DNV table for calculation of added mass for square prisms (DNV RP-H103, 2011, p.141) 

 

An alternative estimation is found from the same DNV document. This simplified approximation for the added 

mass in heave for a three dimensional body with vertical sides is (DNV RP-H103, 2011, p.70):  

    [  √
    

       
 ]                                                                          

  
√  

  √  

                                                                                    

Where: 

     is the solid added mass (solid mass for non-perforated structure) [  ] 

    is the added mass for a rectangular plate [  ] 

   is the height of the object [ ] 

    is the area of the submerged part of an object projected on a horizontal plane [  ] 

 

The added mass for a rectangular plate can be seen in table 3.11. 

Table 3.11 DNV table for calculation of added mass for flat plates (DNV RP-H103, 2011, p.141) 
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The added mass for rectangular plates: 

       

 

 
                                                                                       

Translational motion along the z-axis: 

The cross sectional area of the stack normal to the z-axis is calculated by:  

 
 ⁄              

Where   is the width of the cross section, in this plane the length along the y-axis. The height of the cross 

section, the value   is the length along the x-axis.  

With the added mass calculated from Eq. 3.12  

       
  

  ⁄       
 

 
            

            

                      

From Eq.11 

  
√      

    √      
      

From Eq.10 

     [  √
         

           
  ]                    

Translational motion along the x-axis: 

The cross section of the stack normal to the x-axis has the following ratio: 

 
 ⁄               

For this projection, the width   is the length along the z-axis. The height   is the length along the y-axis. 

Added mass calculated from Eq. 3.12  

       
  

  ⁄        
 

 
             

             

                     

From Eq.11 

  
√    

   √    
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From Eq.10 

     [  √
         

           
   ]                      

Translational motion along the y-axis: 

The cross section normal to the y-axis has the following ratio: 

 
 ⁄               

The width   is the length of the stack along the z-axis. The height   is the length along the x-axis. 

Added mass calculated from Eq. 3.12  

       
  

  ⁄        
 

 
           

            

                   

From Eq.11 

  
√    

     √    
      

From Eq.10 

     [  √
         

           
  ]                    

True added mass due to perforation: 

The value    describes the added mass for a solid prism. The true Xmas tree stack is not a solid block, but is 

perforated. The true added mass for the prism can be estimated as a function of the perforation of the stack. 

(DNV RP-H103, 2011, p.71) 

When       

                                                                                              

When        

       (           [
         

  
])                                                       

When         

        
    
                                                                                   

Where: 

    is the solid added mass (solid mass for non-perforated structure) [  ] 

   is the perforation rate [ ] 
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A perforation of        is assumed for the Xmas tree stack. Thus Eq.3.13 is used for the added mass 

calculations: 

       (           [
        

  
])           

               

                

               

 

3.5.3 ADDED MASS COEFFICIENT 

The added mass coefficient is defined as (DNV RP-H103, 2011, p.23): 

   
  

  
                                                                                         

Where:  

   is the cross section normal to the motion [  ].  

The added mass coefficient for motion along the x-, y- and z-axis using Eq.15: 

    
        

    
  

  ⁄         
      

    
         

    
  

  ⁄          
      

    
        

    
  

  ⁄        
      

 

3.5.4 DRAG COEFFICIENT 

The true equipment stack has a complex geometry and its drag coefficient cannot easily be found. Unless 

specific CDF studies or model tests have been performed, the following guideline for drag coefficients on 

typical subsea structures in oscillatory flow is (DNV RP-H103, 2011, p.70): 
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3.5.5 MASS COEFFICIENT 

The mass coefficient is defined as (DNV RP-C205, 2010, p.52):  

                                                                                             

 

For the Xmas tree stack the mass coefficients using Eq.3.16:  

         

         

         

3.5.6 MASS MOMENT OF INERTIA 

 

Figure 3.8 Rotational axis of the equipment stack 

Figure 3.8 shows the axis of rotation for the equipment stack. The mass moment of inertia is calculated by: 

   
 

  
                                                                                      

   
 

  
                                                                                      

   
 

  
                                                                                      

Where: 

   is the mass of the object [  ] 

Dimensions from table 3.9 give the following mass moment of inertia: 
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3.5.7 VOLUME OF THE STACK 

Using the dimensional values for the stack, the volume of the equipment would be      . Such a volume will 

displace so much water that the equipment stack would become buoyant. The actual equipment has large gaps 

between the pipes and its protective frame.  For this simulation the true volume of the equipment is assumed 

to be 50% of the calculated volume.  

       

3.6 SUMMARY OF ORCAFLEX INPUT 

The input data for the riser calculated in this chapter are shown in table 3.12.   

Table 3.12 Input data for the workover riser 

Riser data 
Outer diameter      ⁄           
Inner diameter             
       
Content Sea water          ⁄   

Material Steel 

Since the drag coefficient varies according to wave velocity, the drag coefficients shown in table 3.13 are used 

for the corresponding wave condition. 

Table 3.13 Drag coefficients for the workover riser 

Drag coefficients 

   5,0m 4,5m 4,0m 3,5m 3,0m 2,5m 2,0m 1,5m 1,0m 0,5m 

   1,07 1,07 1,07 1,07 1,11 1,12 1,20 1,20 1,30 1,60 

All input values used for the Xmas tree stack that were calculated in section 3.5 are shown in table 3.14. 

Table 3.14 Input values for the equipment stack 

Equipment stack data 
Weight (dry)           
Dimensions                 
True Volume      
Added mass x direction             
Added mass y direction            
Added mass z direction            
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3.7 ORCAFLEX SIMULATIONS 

 

Figure 3. 9 The workover vessel seen in OrcaFlex 

Figure 3.9 shows how the vessel with the suspended riser and equipment stack is displayed in OrcaFlex. Each 

riser joint is 13m long. Every simulation will test a situation where   number of riser joints has been deployed 

with an attached equipment stack consisting of an EDP, a LRP and a Xmas tree at the end. While a new riser 

joint is being installed on deck, the suspended riser section and equipment stack is exposed to waves and 

currents. These OrcaFlex simulations will reveal the bending moment and effective tension along the riser. 

The simulations are going to be run for different riser lengths in order to see its effect on the bending moment. 

This may clarify whether TSJ will be exposed to larger stresses if it, for instance, were to be installed as the 2
nd

 

joint as opposed to the 5
th

 joint. Gaining knowledge of these loads to the riser can help to determine which 

points along the riser the TSJ could safely be installed for the different sea states. As an example; the dynamic 

simulation may reveal that if the TSJ is installed as the 5
th

 riser joint, installation should not be performed for  

      when     . 

3.8 ANSYS WORKBENCH 13.0 

To conclude which wave conditions that are acceptable for the installation, the TSJ must be tested to find out 

which loads it can withstand. Using ANSYS workbench the loads from the dynamic simulations can be applied 

to a model of the joint in order to see which wave conditions that do not damage the joint. The model of the 

TSJ will be analyzed twice; one time when using the full capacity of the over-ride cylinders and another time 

using a lower pretension value. The aim is to see how/if these cylinders increase the joints resistance with 

respect to bending moment. If so, the OrcaFlex results can be used to find out what environmental conditions 

that is appropriate for installation with respect to the safety joint.  
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3.8.1 AUTODESK INVENTOR MODEL 

 

Figure 3.10 Autodesk Inventor model of the retracted TSJ 

Figure 3.10 shows the assembled model of the upper and lower section from Autodesk Inventor. This model is 

simplified in comparison to the real TSJ as it does not contain any of the external pressure compensating 

cylinders. The ten tensile bolts are equally spaced in a ring, each bolt being 328mm from the center of the joint. 

As for the over-ride cylinders, they are not in the model. To simulate their effect, large bolts will be used with a 

given pretension that is going to be of the same magnitude that the over-ride cylinders would apply. Each over-

ride bolt is located 250mm from the center. 

 

Figure 3.11 Close-up of the Tensile and Over-ride bolts 

The assembly interface is shown in closer detail in figure 3.11. The bolts can also be seen here. The four largest 

diameter bolts represents the over-ride cylinders. The ten smaller bolts are the tensile bolts. It is this section of 

the joint that will be of interest during the static simulations in ANSYS. 

Figure 3.12 shows the cross section of the joint assembly. The interface between the upper and lower segment 

is visible here. It is worth noting that the contact surface between the upper and lower joint sections does not 

extend all along the length of the joint. There is a gap between the inner pipe (the upper section) and the outer 

pipe (the lower section). The bolts prevent the assembly from sliding apart due to the applied axial tension in 

the joint. The simulations will show how the applied bending moment to the joint affects the stress in the 

tensile bolts that are located the furthest from the neutral axis. The bore of the joint is not pressurized and so 
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the end cap effect will not be present. The short external pressure balancing cylinders are not includes in the 

model, nor are any of the long stroke cylinders. 

 

Figure 3.12 Section cut view of the interface between the upper and lower sections of the joint 

 

3.8.2 ACCEPTANCE CRITERIA 

If the tensile bolts were to take plastic damage during installation they would no longer be able to function as 

intended. The purpose of the simulations is to find out at which magnitude of the bending moment the tensile 

bolts will begin to yield. The acceptable bending moment in the riser is the largest bending moment that can be 

applied to the joint without plastic deformation of the tensile bolts. Material properties and dimension for the 

tensile bolts are given in table 3.15. This information is provided by FMC Technologies. 

Table 3.15 Data table for the tensile bolts 

Number of tension bolts Diameter       Pretension 

                      

The applied bending moment to the joint will be acceptable as long as the maximum equivalent Von-Mises 

stress in all the bolts are within the elastic regime: 

                        

 

3.8.3 BOLT PRETENSION SETTINGS 

Bolts with pretension are used in order to simulate the effect of the tensile bolts and the over-ride cylinders. To 

reduce the complexity of the model the “no bolt simulation” is used for most of the bolts. This means that 

instead of adding the actual bolts in the model, the reaction forces from the bolts are placed at the washer 

surface. This gives the same pretension force as if bolts were to be used. When the tension in the joint 

increases the tension in each bolt would normally increase linearly due to its stiffness. The stiffness is defined 

by the Young’s modulus of the material. The “no bolt simulation” does not provide the effect from the bolt 

stiffness. Figure 3.13 shows where the reaction forces from the bolts will be placed on the model. 
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Figure 3.13 Reaction forces from the bolt pretension 

By not including all the bolts in the model, there are fewer elements for the program to solve. There would be a 

total of 14 bolts (10 tension bolts and 4 over-ride cylinders) if all were included. By reducing the number of 

elements in the model the solving will become quicker. Only the tensile bolts most exposed to the bending 

moment are included. A more accurate result would be obtained by including all 10 + 4 bolts in the simulation, 

but the “no bolt simulation” method provides a good approximation. (Montgomery, 2002, p.15) 

 

Pretension values: 

Information supplied from FMC Technologies about the pretension values are given in table 3.16. 

Table 3.16 Pretension values to be used in ANSYS workbench 

 Number of bolts Pretension for each bolt 
Tensile bolts 10 66kN 

Over-ride cylinders 4 490kN 

The assembly of the joint is only held together by friction and bolts. When performing the ANSYS workbench 

simulations with the semi-pressurized over-ride function, the pretension of the bolts will not be equal to zero. 

If a large axial force is applied to the joint with zero pretension from the over-ride bolts, the tensile bolts might 

yield immediately. Because of this, the over-ride bolts must always have some pretension. In the semi-

pressurized over-ride function simulation, the pretension of the over-ride bolts combined with the pretension 

from the tensile bolts shall equal the effective tension in the riser. For the second simulations where the over-

ride function is activated. The over-ride bolts will have the maximum pretension described in table 3.16.  
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Capacity of the tensile bolts 

The maximum tension force that can be applied to each tensile bolt prior to yielding is calculated from the data 

in table 3.15. 

                    
         

 
         

The tensile bolts already have a pretension of 66kN, hence this must be subtracted. The additional axial load 

capacity of each bolt is:  

                

Since there are ten bolts, the axial capacity of the joint when held together by the tensile bolts is: 

                   

 

3.8.4 TENSILE BOLTS 

 

Figure 3.14 Location of the three tensile bolts in the model 

Three tensile bolts are included in the model. These are located where the largest displacement occurs; 

furthest from the neutral axis. The bending moment is placed about the y-axis. The tensile bolt furthest away 

from the y-axis is subjected to the largest displacement and thus tensile stress. The placements of the tensile 

bolts are shown in figure 3.14.  
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3.8.5 SIMULATION 

 

Figure 3.15 Forces applied to the joint in ANSYS. 

The loading condition for the model is shown in figure 3.15. Since the pretension for the tensile bolts are given, 

they will be constant for all simulations. The purpose of the simulations is to see how the strength of the joint 

increase with larger pressure in the over-ride cylinders. One model will test the joint when the over-ride 

cylinders are fully-pressurized, so the over-ride bolts will have the maximum pretension. The other model will 

use a semi-pressurized version of the over-ride cylinders; hence this uses over-ride bolts with lower pretension. 

When applying a tension and a bending moment to the joint the simulations will show when the tensile bolts 

begin to yield. It is the magnitude of the bending moment applied to the joint that is of greatest interest. If the 

joint using fully-pressurized over-ride cylinders can withstand a larger bending moment than the semi-

pressurized joint, the actual effect of the over-ride function with respect to bending moment can be proven. 
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4. RESULTS 
This chapter presents the results from the simulations performed, as well as calculations of the strength of the 

workover riser. 

4.1 SENSITIVITY ANALYSIS 

Four sensitivity tests were performed in order to ensure that the correct data points were used. What duration 

each simulation would require to ensure that the optimal time step was chosen. The effect of sea current 

versus no sea current to find which conditions is the most critical to the system and which points along the riser 

were subjected to the largest loads. The results are shown in the latter. 

4.1.1 TIME STEP SENSITIVITY TEST 

To decide the correct time step for the OrcaFlex simulations a sensitivity analysis was performed. A 52m riser 

section with       and        was tested and the maximum bending moment in the riser was plotted. 

Different time steps were tested to see when the bending moment converged towards one value. If too short 

time step is chosen for the simulation, the result would be inaccurate. If the time step is too large the 

simulation will take unnecessary long time to perform. The results from the sensitivity analysis are shown in 

figure 4.1.  

 
Figure 4.1 Sensitivity analysis of the time step in OrcaFlex 

The time step test shows that the bending moment converge towards a fixed value for around 800s.  
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4.1.2 CURRENT SENSITIVITY TEST 

The current will generate a constant lateral force on both riser and equipment, but may also have a damping 

effect on the system. This damping may prevent harmonic motion from becoming too large. The maximum 

bending moment in the riser was plotted for           for one model with current of        and another 

model with zero current. The results are shown in figure 4.2.  

 
Figure 4.2 Comparison of bending moment in the riser with and without sea current 

Figure 4.2 shows that the “no current” situation gives a larger bending moment in the riser when       . 

This is due to the natural period of the system being large. When the waves have a period close to the natural 

period of the equipment stack the current will damp the harmonic motion of the system. For shorter wave 

periods where harmonic motion is not likely to occur, the current increase the bending moment in the riser. 

Since there are no waves with        in the scatter diagram, the installation with sea current is going result 

in larger bending moments in the riser. The OrcaFlex simulation will therefore have a sea current present.  

 

                 ⁄  

 

4.1.3 POINT OF MAXIMUM BENDING MOMENT 

Figure 4.3 shows the distribution of bending moment along a 39m riser in      and      . For all 

simulations performed, the maximum bending moment was always found at the top end of the riser. Due to 

this, all values for bending moment that will be presented are found at the top of the riser.   
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Figure 4.3 Distribution of bending moment along the workover riser 

 

                               

 

4.1.4 POINT OF MAXIMUM EFFECTIVE RISER TENSION 

 
Figure 4.4 The distribution of effective tension along the riser 

The distribution of maximum tension along the riser is shown in figure 4.4. The tension has a close to linear 

distribution, with the largest tension occurring at riser length =0m. This trend was seen in every simulation 

performed. 
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4.2 RESULTS OF THE DYNAMIC SIMULATIONS 

4.2.1 TEST 1 – RESULTS FOR THE 26M RISER SIMULATION (2ND  JOINT DEPLOYED)  

 

Figure 4.5 The workover vessel with two riser joints deployed. 

The first OrcaFlex simulation tested the loads in a 26m riser section deployed from the workover vessel. While 

the third joint is being connected at the deck, the deployed riser section is exposed to loads due to the motion 

of the vessel and the equipment package. A sketch of the scenario is seen in figure 4.5. 

 

BENDING MOMENT 

It was shown that the maximum bending moment for the riser always occur at the top; the connection point 

between the riser and vessel. Table 4.1 shows the maximum bending moments at the top of the riser during 

the 800s simulation. For each significant wave height, the bending moment in the riser increase with longer 

wave periods. This is due to the long waves being closer to the natural period of the system. For    above 10 

seconds the increase in bending moment is close to linear.  

Table 4.1 Maximum bending moment in the riser for different waves – test 1 
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Figure 4.6 The bending moment as a function of wave period (26m test) 

Figure 4.6 shows how the bending moment increase with larger zero up-crossing periods for each significant 

wave height. 

 
Figure 4.7 The bending moment as a function of the significant wave height (26m test) 

The bending moment as a function of the significant wave height is shown in figure 4.7.  
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EFFECTIVE TENSION 

Table 4.2 Maximum effective riser tensions for different waves – test 1 

 

It was shown that the largest effective riser tension occurs at the top of the riser. Table 4.2 shows the 

maximum effective riser tension for the 26m riser. 

 

4.2.2 TEST 2 – RESULTS FOR THE 39M RISER SIMULATION (3RD  JOINT DEPLOYED)  

 

Figure 4.8 The workover vessel with three riser joints deployed 

Figure 4.8 illustrates the second dynamic simulation. The 39m riser is suspended of the vessel with the 

equipment stack attached at the end. This simulates a situation where three riser joint have been deployed and 

the fourth joint is being connected at the deck. 
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BENDING MOMENT  

Table 4.3 Maximum bending moments in the riser for different waves – test 2 

 

The largest value for the bending moment for each sea state is plotted in table 4.3. All the values are in kNm. 

Figure 4.9  shows the correlation between bending moment and wave period. 

 
Figure 4.9 The bending moment as a function of wave period (39m test) 

The bending moment decrease with lower wave heights as expected. Figure 4.10 shows how the bending 

moment in the riser increases with the larger significant wave height.  
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Figure 4.10 The bending moment as a function of the significant wave height (39m test) 

 

EFFECTIVE TENSION 

The maximum effective tension along the riser is always at the top. Table 4.4 shows the riser tension for all 

wave conditions tested. From the table it can be shown that the difference between the maximum tension for 

the longest and highest wave compared with the shortest and smallest wave, is approximately 200kN. This is a 

minor difference compared to the bending moment table. 

Table 4.4 Maximum effective riser tensions for different waves – test 2 
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4.2.3 TEST 3 – RESULTS FOR THE 52M RISER SIMULATION (4TH JOINT DEPLOYED)  

 

Figure 4.11 The workover vessel with four riser joints deployed 

Figure 4.11 shows how the second dynamic simulation is performed. This illustrates a case where the fourth 

riser joint has been deployed and the fifth joint is being connected topside.   

BENDING MOMENT 

Table 4.5 Maximum bending moments in the riser for different waves – test 3 

 

Table 4.5 shows that the bending moment in the riser is considerably reduced compared to the first dynamic 

simulation model from test 1. This is due to the effect of the waves which decreases exponentially with water 

depth. All values are in kNm. 
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Figure 4.12 The bending moment as a function of wave period (52m test) 

The bending moments as a function of zero up-crossing periods are shown in figure 4.12.  

 

 
Figure 4.13 The bending moment as a function of the significant wave height (52m test) 

Figure 4.13 shows the bending moment as a function of the significant wave height. 
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EFFECTIVE TENSION 

Table 4.6 shows the effective tension for the 52m riser.  

Table 4.6 Maximum effective riser tensions for different waves – test 3 

 

 

4.2.4 TEST 4 – RESULTS FOR THE 65M RISER SIMULATION (5TH JOINT DEPLOYED) 

 

Figure 4.14 The workover vessel with five riser joints deployed  

Test 3 uses a 65m long workover riser, this is the case when five riser joints have been deployed and the sixth 

joint is being connected topside, as seen in figure 4.14. This was the longest riser length tested in OrcaFlex. 
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BENDING MOMENT 

Table 4.7 Maximum bending moments in the riser for different waves – test 4 

 

The values for the bending moment in table 4.7, continues the trend of the decreasing effect from the waves. It 

is worth noticing that the bending moment for the        simulation has hardly changed for any of the four 

tests. This is due to the steady current that does not decline with water depth. When the effect from the waves 

is almost not present, it is the force applied by the current that creates a bending moment in the riser. By 

assuming that the current has the same value throughout the water depth, the force exerted on the equipment 

stack will be constant. As the riser is lowered down, this constant force will result in an increasing bending 

moment at the top section of the suspended riser. So as the bending moment from the waves gradually 

decreases, bending moment from the current force increases.  All values are in kNm. 

 
Figure 4.15 The bending moment as a function of wave period (65m test) 

The bending moments as a function of the zero up-crossing periods are shown in figure 4.15.  
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Figure 4.16 The bending moment as a function of the significant wave height (65m test) 

The maximum bending moment in the riser as a function of the significant wave height is shown in figure 4.16. 

 

EFFECTIVE TENSION 

The values for the maximum effective tension for the 65m riser are shown in table 4.8. 

Table 4.8 Maximum effective riser tensions for different waves – test 4 
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4.3 RESULTS FROM ANSYS WORKBENCH 

 

4.3.1 RESULTS OF THE SEMI-PRESSURIZED OVER-RIDE FUNCTION TEST 

Table 4.9 shows the magnitude of the loads applied to the joint in ANSYS workbench. These loads apply for the 

semi-pressurized over-ride function test that studies the strength of the joint when the over-ride bolts has a 

low pretension.  

Table 4.9 Data table for the semi-pressurized Over-ride function test 

Semi-pressurized Over-ride function test 
 Number 

of bolts 
Location Magnitude Cumulative 

pretension 

Tensile bolts reaction force 10 Washer head of tensile bolts 66kN 660kN 

Over-ride bolts reaction force 4 Washer head of over-ride bolts 135kN 540kN 

Effective riser tension - Face of lower joint section - 1200kN 

Tensile bolts pretension 3 Head of bolts 66kN 198kN 

Bending moment - Lower section face (Y-axis) 400kNm 400kNm 

 

 

Figure 4.17 Yielding of tensile bolt at 400kNm 

The ANSYS workbench simulation revealed that yielding of the tensile bolt furthest away from the neutral axis 

began at 400kNm. The stress distribution is shown in figure 4.17. 

            

 

 

 



61 
 

4.3.2 RESULTS OF THE FULLY-PRESSURIZED OVER-RIDE FUNCTION TEST 

Table 4.10 shows the loads that were applied to the joint when studying the effect of the over-ride function 

when its maximum pretension is used. 

Table 4.10 Data table for the Active Over-ride function test 

Fully-pressurized Over-ride function test 
 Number 

of bolts 
Location Magnitude Cumulative 

pretension 

Tensile bolts reaction force 10 Washer head of tensile bolts 66kN 660kN 

Over-ride bolts reaction force 4 Washer head of over-ride bolts 490kN 1960kN 

Effective riser tension - Face of lower joint section - 1200kN 

Tensile bolts pretension 3 Head of bolts 66kN 198kN 

Bending moment - Lower section face (Y-axis) 620kNm 620kNm 

 

 

Figure 4.28 Yielding of tensile bolt at 620kNm 

When the over-ride bolt pretension was at full capacity, the yielding of the most outer tensile bolt began at 

620kNm. The result of the test is shown in figure 4.18. 

            

 

4.4 WEATHER WINDOW 

The results from the ANSYS workbench simulations showed that the maximum bending moment that could be 

applied to the joint before the tensile bolts began to yield was 400kNm when using the over-ride cylinders 

were semi-pressurized. The capacity of the joint increased to 620kNm when the four over-ride cylinders were 

fully pressurized. This is an increase of 55%. Combining these limits with the data tables obtained from the 

OrcaFlex simulation, it is be possible to determine when installation is acceptable and when it is not. The 

matrices in tables 4.11-4.14 are color coded to show which sea states that are acceptable for installation of the 

workover system. 



62 
 

4.4.1 INSTALLATION WINDOW FOR THE TSJ AS THE 2ND  RISER JOINT 

Table 4.11 Installation window for the TSJ as the 2nd joint 

 

Table 4.11 shows the sea states that will not lead to plastic damage to the safety joint when it has been 

installed as the 2
nd

 riser joint. The values in the table are taken from the all year scatter diagram and show how 

many observations that is recorded for each sea state. 

 

 

4.4.2 INSTALLATION WINDOW FOR THE TSJ AS THE 3RD  RISER JOINT  

Table 4.12 shows which wave conditions that are within the acceptable range for installation when the TSJ is 

installed as the 3
rd

 joint on the workover riser. 

Table 4.12 Installation window for the TSJ as the 3rd joint 
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4.4.3 INSTALLATION WINDOW FOR THE TSJ AS THE 4TH RISER JOINT  

The weather window for installation with respect to the TSJ is larger when the joint in installed as the 4
th

 riser 

joint. Since the riser is longer, the equipment package is less exposed to the wave forces. Less wave forces on 

the equipment stack means less bending moment in the riser and so there are more waves acceptable for 

installation. Table 4.13 shows which wave conditions that allow for installation of the equipment stack with the 

TSJ as a 4
th

 link, without any plastic damage to any of the joint’s tensile bolts.  

Table 4.13 Installation window for the TSJ as the 4th joint 

 

 

4.4.4 INSTALLATION WINDOW FOR THE TSJ AS THE 5TH RISER JOINT  

For the 65m riser, installation will be acceptable for all wave conditions as long as the over-ride function is 

active. When the over-ride cylinders are semi-pressurized there are 14 wave conditions that lead to plastic 

deformation of the tensile bolts. Table 4.14 shows which conditions that are acceptable for installation. 

Table 4.14 Installation window for the TSJ as the 5th joint 
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4.5 SUMMARY OF RESULTS 

Table 4.15 shows the amount of the time that installation of an EDP, LRP and Xmas tree stack can be performed 

when using the workover riser as a running tool. The table shows when the installation can be performed 

depending on which point along the riser the TSJ have been installed. The table compares the availability for 

the joint when the over-ride cylinders are semi-pressurized and when they are fully pressurized. This was 

calculated by summarizing all the observations done at the acceptable wave conditions and dividing them by 

the total number of observations that have been performed in the scatter diagram.  

Table 4.15 Availability for installation of EDP, LRP and Xmas tree at Draugen 

Percentage of time that installation can be performed 

 Telescopic Safety Joint installed as joint no. 

2 3 4 5 

TSJ with over-ride at full capacity 58,1 % 87,9 % 91,3 % 91,4 % 

TSJ with reduced over-ride pretension 36,4 % 71,2 % 88,5 % 91,1 % 

Increased availability for over-ride function 21,7 % 16,7 % 2,8 % 0,3 % 

 

4.6 STRENGTH OF THE RISER 

No matter how efficient the over-ride function might be, installation will not be possible if the workover riser 

cannot cope with the increased load conditions. Too see whether the safety joint will limit the weather window 

for installation, hand calculations was performed to find out which bending moment result in yielding of the 

workover riser. This is done using the equation for uniaxial Von-Mises stress (Gelgele, 2010, p.24) 

           √       
                                                                          

Where: 

     is the bending stress [   ] 

     is the axial stress [   ] 

    is the shear stress [   ] 

 

Axial stress 

The axial stress is calculated from the formula: 

 

   
    

 
                                                                                         

 

Where: 

   is the cross sectional area of the workover riser [   ] 

 

Dimension from table 3.2 gives the cross sectional area: 
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The effective riser tension used for the ANSYS simulations was            , hence: 

 

   
    

 
       

 

Shear stress 

The maximum shear stress that occurred in the riser during installation when two riser joint were deployed are 

shown in table 4.16. The green section shows where the installation is acceptable when the over-ride cylinders 

are fully pressurized. The maximum shear force that occurs within this area is 169kN. The riser must be able to 

withstand this shear force in order to not be the bottle neck of the operation. 

Table 4.16 Shear force in the workover riser 

 
 

           

The shear stress is found using      instead of      in Eq.4.2: 

  
    

 
       

Bending stress 

   
  

 
                                                                                          

Where: 

    is the distance from the neutral line to the point furthest from the center [  ] 

   is the moment of inertia [   ] 

 

  
         

  
                                                                                  

Using riser dimensions from table 3.2, the moment of inertia is calculated from Eq.4.4: 
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Maximum allowable bending moment in the riser 

According to workover riser data from Shell the yield strength of the riser can be up to       . Using this 

limit as the maximum allowable Von-Mises stress in the riser, the maximum allowable bending moment can be 

calculated. 

Combining Eq.4.1 with Eq.4.3 the maximum allowable bending moment can be written as:  

 

  
(√            

        ) 

 
 

 

Inserting all calculated values gives an allowable bending moment for the workover riser of: 

  
(√                         )
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5. CONCLUSIONS 

5.1 DISCUSSION 

To sum up the result from the simulations; the strength of the joint increased when maximum hydraulic 

pressure was applied to the over-ride cylinders as opposed to the semi-pressurized test. The tensile bolts in the 

semi-pressurized joint began yielding at 400kNm. This increased by 55% to 620kNm when the over-ride 

function was fully pressurized. As far as the weather window is concerned, there was an increase in availability 

for performing installation of the workover system when using the full capacity of the over-ride system. The 

Telescopic Safety Joint appears to be very robust. To put these numbers into perspective, hand calculations 

showed that the allowable bending moment in an OD 8 5/8”, ID 7” workover riser would be in the vicinity of 

355kNm. It is likely that the workover riser would rupture before damage would occur to the safety joint and 

thus the safety joint do not limit the weather window for installation of the workover system. In fact, the 

results from this thesis would suggest that the safety joint would be able to perform just as well with reduced 

hydraulic pressure to the over-ride cylinders, or even a reduced system all together. It should be noted that a 

large pretension for the over-ride cylinders may protect the tensile bolts from the increased axial load and may 

prevent them from taking fatigue damage during the installation face. A comparison between the strength of 

the joint for different pressurized over-ride cylinders versus the workover riser is seen in figure 4.19. A TSJ 

without an active over-ride function is not included as it would not be able to withstand 1200kN of tension. 

 

Figure 5.1 Acceptable bending moment for TSJ vs workover riser 

It should also be made clear that the over-ride function certainly would be a requirement when the safety joint 

is to be installed in the workover riser. If no over-ride function were present, the tensile bolts would rupture 

immediately after the deployment of the joint due to axial forces alone.  Section 3.8.3 showed that the joint 

could withstand an additional axial force of 550kN before the bolts began to yield. From OrcaFlex it was seen 

that the effective riser tension never dropped below 990kN for any of the simulations. 

 

0

100

200

300

400

500

600

700

B
e

n
d

in
g 

m
o

m
e

n
t 

(k
N

m
) 

Acceptable bending moment at 1200kN tension 

Fully pressurized Over-ride
cylinders

Semi-pressurized Over-ride
cylinders

Workover riser



68 
 

Whether the safety joint should be installed as the second, third, fourth, etc. -joint should be decided based 

upon each individual workover. The over-ride cylinders are not functional during operation, thus the joint is 

more vulnerable to axial and bending forces at this stage. The bending moment in the riser usually has two 

bending maxima, where one of these is located close to the bottom. The actual location and magnitude of this 

will depend upon several factors including top tension, weight of riser, water depth and vessel drift-off. The TSJ 

should be situated close to the bottom where the axial tension is lower, but not at the location of one of the 

bending maxima. It would therefore be recommended that calculations are performed for each individual 

workover case before deciding where to locate the safety joint. The strength and pretension of the bolts must 

be adjusted to suit the position where the joint is installed so that they rupture at the correct top tension. 

  

5.2 CONCLUSIONS 

The conclusions of this thesis are that the over-ride function would be a requirement when performing 

installation of an EDP, a LRP and a Xmas tree when using the workover riser as a running tool. This over-ride 

function provides sufficient increased strength of the joint so that the joint itself does not become a limiting 

factor when performing workover installation. The ANSYS simulations performed here indicated that the effect 

of the over-ride function is so great the strength of the joint exceeds that of the workover riser. 

 

5.3 RECOMMENDATIONS FOR FUTURE WORK 

Several simplifications were done in order to complete all the simulations performed in this thesis. If more 

accurate data values for the loading conditions are required, a good way to begin would be improve the model 

of the equipment stack in OrcaFlex. The true EDP, LRP and Xmas tree has a quite complex geometry and its 

volume, drag- and mass coefficients may differ from the ones used in these simulations.  

The ANSYS workbench model was based on a crude work drawing and does not contain all details of the true 

joint. Better result might be obtained if a full model of the joint was created with all external cylinders 

included, as well as all the physical bolts.  

Due to problems with the software on the computer used at the University of Stavanger, error messages 

repeatedly appeared when trying to alter the mesh of the model. These error messages did not appear when 

the same alterations were done using ANSYS workbench 14.0 at a different computer. Due to this, only the 

auto generated tetrahedral mesh setting was used for the simulations. It is acknowledged that the quality of 

the ANSYS simulations can be discussed due to this. It would be recommended to focus on different mesh 

settings for more thorough analysis at a later stage.   
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