| Universitetet<br>i Stavanger<br>DET TEKNISK-NATURVITSKAPLEGE FAKULTET<br>MASTEROPPGAVE                                                                                                            |                              |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|--|
| Studieprogram/spesialisering:                                                                                                                                                                     |                              |  |  |
| Konstruksjoner og materialer, Bygg                                                                                                                                                                | Vårsemester, 2014            |  |  |
|                                                                                                                                                                                                   | Åpen                         |  |  |
| Forfatter: Kristoffer Ekornrud                                                                                                                                                                    |                              |  |  |
|                                                                                                                                                                                                   |                              |  |  |
| Fagansvarlig: Jasna B. Jakobsen                                                                                                                                                                   |                              |  |  |
| Veileder(e): Jasna B. Jakobsen                                                                                                                                                                    |                              |  |  |
| Tittel på masteroppgave: Sammenligning av måledata fra Lysefjordbrua med en eksisterende<br>FE-modell<br>Engelsk tittel: Measured data from the Lysefjord Bridge compared to an existing FE-model |                              |  |  |
| Studiepoeng: 30                                                                                                                                                                                   |                              |  |  |
| Emneord:<br>Hengebru<br>Vindanalyse<br>Vindsimulering                                                                                                                                             | Sidetall:<br>+ vedlegg/anna: |  |  |
| Elementanalyse                                                                                                                                                                                    | Stavanger,<br>dato/år        |  |  |

## Forord

Denne oppgaven markerer slutten på min 5 årig master i konstruksjoner og materialer med fordypning i bygg- og offshorekonstruksjoner ved Universitetet i Stavanger. Oppgaven omhandler analyse av vindmålinger foretatt ved Lysefjordbrua, samt sammenligninger med en FE-modell i Abaqus.

Jeg vil benytte anledningen til å takke min veileder Jasna B. Jakobsen ved Universitetet i Stavanger for god hjelp gjennom hele oppgaven. Jeg vil også yte en stor takk til doktorgradsstudent Etienne ved UiS. Jeg vil også takke Håvard Lunder og Kine Thoresen for innspill og hjelp underveis.

Til slutt vil jeg takke mine medstudenter, og da spesielt gutta på brakka for 5 spennende år, og ønske dem lykke til videre i studier og jobb.

Stavanger, 16. juni 2014

Kristoffer Ekornrud

### Sammendrag

Denne oppgaven omhandler en analyse av vindrespons av Lysefjordbrua. Brua har et hovedspenn på 446 m som krysser Lysefjorden i Forsand kommune. Universitetet i Stavanger (UiS) har i samarbeid med blant annet Statens Vegvesen plassert ut måleinstrumenter. Disse fanger opp komplekse vindforhold langs spennet samt respons av brudekket, og er med på å gi grunnlag til å utvikle ekspertise innen overvåking av brukonstruksjoner. I forbindelse med ferjefri E39 vil måledata gi relevante erfaringer ved bygging av lignende brukonstruksjoner.

Basert på målinger har denne oppgaven hatt som hensikt å tilnærme en eksisterende FEmodell med den reelle brua. Gjennom grundige analyser av responsmålinger har det vist at bruas reelle stivhet ligger noe høyere enn den simulerte modellen. Treghetsmoment er avgjørende for at modellen skal kunne simulere egenfrekvenser fra torsjon. Ved å greie ut om FE-modellens oppbygning er modellen blitt modifisert til å gi tilnærmede resultater. Treghetsmomentet har vist seg å være i mindre grad knyttet til bidrag fra hovedkabler.

Behandling av måledata er en krevende prosess, som krever et godt teorigrunnlag for å kunne analysere målinger. Hensikten med denne oppgaven er å danne et grunnlag for videre arbeid. Det foretas en grundig gjennomgang av behandling av vinddata og akselerasjoner fra respons, og hvordan analyser kan foretas ved hjelp av Matlab.

Det greies også ut om beregningsmetode av vindindusert dynamisk respons ved kvasi-statisk teori, og tilslutt en forenklet dynamisk vindanalyse basert på simulerte vinddata. Analyser av bruas respons viser at vindindusert respons kan baseres på kvasi-statisk teori.

### Innholdsfortegnelse

| Sa | Sammendragi  |       |                         |   |  |
|----|--------------|-------|-------------------------|---|--|
| Fo | orord        |       |                         | i |  |
| Fi | Figurlisteix |       |                         |   |  |
| Τā | Tabellistexi |       |                         |   |  |
| 1  | Inn          | edni  | ing1                    | 1 |  |
|    | 1.1          | Bak   | grunn1                  | 1 |  |
|    | 1.2          | Орр   | pgaven1                 | 1 |  |
| 2  | Lys          | efjor | dbrua                   | 3 |  |
|    | 2.1          | Hen   | gebruer                 | 3 |  |
|    | 2.2          | Geo   | metri                   | 3 |  |
|    | 2.3          | Brul  | bjelke                  | 4 |  |
|    | 2.4          | Орр   | plagring av brukassen   | 4 |  |
|    | 2.5          | Hov   | edkabler                | 4 |  |
|    | 2.6          | Hen   | gestag                  | 5 |  |
|    | 2.7          | Tårr  | ٦5                      | 5 |  |
|    | 2.8          | Ank   | erpunkter               | 7 |  |
|    | 2.9          | Dyn   | amiske egenskaper       | 7 |  |
| 3  | Må           | leuts | tyr                     | Э |  |
|    | 3.1          | Орр   | bygning                 | Э |  |
|    | 3.2          | Aks   | elerometer              | Э |  |
|    | 3.3          | Ane   | mometer                 | Э |  |
|    | 3.4          | Vær   | rstasjon 10             | ) |  |
|    | 3.5          | Log   | gemodul10               | ) |  |
|    | 3.6          | Орр   | osummering              | 1 |  |
| 4  | Vin          | dlast | er 13                   | 3 |  |
|    | 4.1          | Gen   | erelt                   | 3 |  |
|    | 4.1          | 1     | Fluktuerende vindlast   | 3 |  |
|    | 4.1          | 2     | Statisk vindlast        | 5 |  |
|    | 4.2          | Tur   | oulens                  | 7 |  |
|    | 4.2          | 1     | Turbulensintensitet     | 7 |  |
|    | 4.2          | 2     | Ett punkts spektra 18   | 3 |  |
|    | 4.2          | 3     | Integrale lengdeskalaer | Э |  |
|    | 4.2          | 4     | Koherens                | Э |  |
|    | 4.3          | Aer   | odynamiske effekter 20  | C |  |

|   | 4.   | 3.1    | Galoppering                 | 20 |
|---|------|--------|-----------------------------|----|
|   | 4.   | 3.2    | Virvelinduserte svingninger | 21 |
|   | 4.   | 3.3    | Flutter                     | 21 |
|   | 4.   | 3.4    | Buffeting respons           | 21 |
|   | 4.4  | Mo     | dal buffeting krefter       | 22 |
|   | 4.5  | Mo     | dal analyse                 | 23 |
| 5 | Ar   | nalyse | av måledata                 | 25 |
|   | 5.1  | MA     | TLAB                        | 25 |
|   | 5.2  | Mat    | hcad                        | 25 |
|   | 5.3  | Fou    | riertransform               | 25 |
|   | 5.4  | Spe    | kteranalyse                 | 26 |
|   | 5.5  | Wel    | ch's metode                 | 27 |
|   | 5.6  | Beh    | andling av vinddata         | 28 |
|   | 5.7  | Tids   | dominert                    | 28 |
|   | 5.   | 7.1    | Interessante tidsserier     | 28 |
|   | 5.   | 7.2    | Analysedata                 | 31 |
|   | 5.8  | Aut    | o-regressive simuleringer   | 34 |
|   | 5.9  | Kori   | relasjon                    | 35 |
|   | 5.10 | B      | ehandling av akselerasjoner | 37 |
|   | 5.11 | A      | kselerasjonsspektre         | 39 |
|   | 5.   | 11.1   | 05.50 5.desember            | 39 |
|   | 5.   | 11.2   | 05.40 10.april              | 40 |
|   | 5.   | 11.3   | 08.40 10.april              | 42 |
|   | 5.   | 11.4   | 05.10 13.april              | 43 |
| 6 | FE   | -mod   | ell                         | 45 |
|   | 6.1  | Aba    | qus programmet              | 45 |
|   | 6.2  | Aba    | qus modellen                | 45 |
|   | 6.   | 2.1    | Definisjon av retning       | 45 |
|   | 6.   | 2.2    | Elementer                   | 46 |
|   | 6.   | 2.3    | Geometri                    | 49 |
|   | 6.   | 2.4    | Frihetsgrader               | 50 |
|   | 6.   | 2.5    | Stivhetsegneskaper          | 50 |
|   | 6.   | 2.6    | Andre Parametere            | 51 |
|   | 6.   | 2.7    | Dempning                    | 51 |
|   | 6.   | 2.8    | Masse                       | 51 |

|    | 6.3        | Egenmoder og egenfrekvenser53        |           |  |  |  |
|----|------------|--------------------------------------|-----------|--|--|--|
|    | 6.4        | Modifikasjon av modellen             | 55        |  |  |  |
| 7  | Ana        | alyse i ABAQUS                       | 59        |  |  |  |
|    | 7.1        | Karakteristisk egenlast              | 59        |  |  |  |
|    | 7.2        | Egenfrekvenser og svingeformer       | 59        |  |  |  |
|    | 7.3        | Trafikklast                          | 59        |  |  |  |
|    | 7.4        | Vindlast                             | 60        |  |  |  |
| 8  | Res        | sultater                             | 61        |  |  |  |
|    | 8.1        | Verifikasjon av svingemoder          | 61        |  |  |  |
|    | 8.1        | .1 Vertikale egenfrekvenser og moder | 61        |  |  |  |
|    | 8.1        | .2 Torsjon egenfrekvens moder        | 64        |  |  |  |
|    | 8.2        | Verifikasjon av svingemoder          | 65        |  |  |  |
|    | 8.3        | Simulert vindanalyse                 | 67        |  |  |  |
| 9  | Kor        | nklusjon                             | 69        |  |  |  |
| Re | Referanser |                                      |           |  |  |  |
| Ve | edlegg     |                                      | Vedlegg73 |  |  |  |

# Figurliste

| Figur 2-1 - Hovedkomponeter på lysefjordbrua[5]                                    | 4    |
|------------------------------------------------------------------------------------|------|
| Figur 2-2 - Typisk tverrsnitt av brukassen                                         | 4    |
| Figur 2-3 - Typiske opplagerbetingelser for en hengebru[5]                         | 4    |
| Figur 2-4 - Opplagerbetingelser for Lysefjordbrua                                  | 4    |
| Figur 2-5 - Detalj av kobling mellom hengerkabler og hovedkabler                   | 5    |
| Figur 2-6 - Lysefjordbrua brutårn nord                                             | 6    |
| Figur 3-1 - Plassering av måleinstrumenter                                         | 9    |
| Figur 4-1 - Relativ momentan vindhastighet ved vinkel α[6]                         | 14   |
| Figur 4-2 - Linearisering av statisk lastkoeffisient[6]                            | 14   |
| Figur 4-3 - Angrepskrefter, skisse av Ove Mikkelsen[7]                             | 16   |
| Figur 4-4 - Eksempel fra Windtunnel                                                | 17   |
| Figur 4-5 - Turbulens i forhold til høyde                                          | 18   |
| Figur 4-6 - Normalisert spektre for langsgående vind (Von Karman-Harris) [8]       | 19   |
| Figur 4-7 - Normalisert ko-spektra                                                 | 20   |
| Figur 4-8 - Typisk respons med varierende middelvindhastighet[9]                   | 21   |
| Figur 5-1 - Amplitudespekteret[9]                                                  | 26   |
| Figur 5-2 - 10 min middelvindhastighet H18 5. desember                             | 29   |
| Figur 5-3 - 10 min middelvind H18 22.desember                                      | 29   |
| Figur 5-4 - 10 min middelvind H18 28. desember                                     | 30   |
| Figur 5-5 - 10 min middelvind H18 17. januar                                       | 30   |
| Figur 5-6 - Fluktuerende vind H18 05.50 5.des - Umiddel = 21,40 m/s                | 31   |
| Figur 5-7 – Fluktuerende vind H18 05.40 10. apr.14 - Um = 1.44 m/s                 | 32   |
| Figur 5-8 – Fluktuerende vind H18 08.40 10.apr.14 - Umiddel = 3,73 m/s             | 32   |
| Figur 5-9 - Fluktuerende vind H18 05.10 13.apr.14 – Um = 6.64 m/s                  | 33   |
| Figur 5-10 - Korrelasjon mellom målinger i forhold til horisontal avstand          | 36   |
| Figur 5-11 – Korrelasjon mellom simulerte vinddata fra NatHaz i forhold til horiso | ntal |
| avstand                                                                            | 36   |
| Figur 5-12 - Variasjon i middelvind langs bruspennet                               | 37   |
| Figur 5-13 - Plassering av akselerometre                                           | 38   |
| Figur 6-1 – Definisjon av retninger på Lysefjordbrua                               | 46   |
| Figur 6-2 - FE-modellen i ABAQUS                                                   | 46   |
| Figur 6-3 - Oppbygging av noder, skisse J.Tveiten[2]                               | 47   |
| Figur 6-4 - Nummerering av brukasse, skisse av Jan Tveiten[2]                      | 47   |
| Figur 6-5 - Vertikal geometri for brukasse og kabler                               | 50   |
| Figur 6-6 - Fordeling av masse, skisse av J.Tveiten[2]                             | 52   |
| Figur 6-7 - Modellering av masser i brukasse                                       | 53   |
| Figur 7-1 - Skjevstilling av brutårn, eksempel fra Hardangerbrua                   | 59   |
| Figur 7-2 - Påførte laster i FE-modell                                             | 60   |
| Figur 8-1 - Vertikale asymmetriske svingemoder                                     | 62   |
| Figur 8-2 - Vertikale symmetriske egenmoder                                        | 63   |
| Figur 8-3 - Torsjonale symmetriske egenmoder                                       | 64   |
| Figur 8-4 - Torsjonale asymmetriske egenmoder                                      | 65   |

| Figur 8-5 - Sammenligning av målinger og HS1 fra Abaqus             | 66 |
|---------------------------------------------------------------------|----|
| Figur 8-6 - Figur 8 8 - Sammenligning av VS1 fra Abaqus og målinger | 66 |
| Figur 8-7 - Figur 8 8 - Sammenligning av målinger og TS1 fra Abaqus | 67 |
| Figur 8-8 - Maksimal vertikal forskyvning                           | 68 |
| Figur 8-9 - Maksimal horisontal forskyvning                         | 68 |

## Tabelliste

| Tabell 3-1 - Oversikt måleinstrumenter                                  | . 11 |
|-------------------------------------------------------------------------|------|
| Tabell 4-1 - Formfaktorer for Lysefjordbrua[2]                          | . 17 |
| Tabell 5-1 - Oppsummering vinddata 5 des 2013                           | . 29 |
| Tabell 5-2 – Oppsummering H18 22. desember                              | . 29 |
| Tabell 5-3 – oppsummering vinddata H18 28.desember                      | . 30 |
| Tabell 5-4 - Oppsummering vinddata H18 17. januar                       | . 30 |
| Tabell 5-5 - Vinddata for tidsserie H18 05.50 5.des.13                  | . 31 |
| Tabell 5-6 - Vinddata for tidsserie H18 05.40 10.apr.14                 | . 32 |
| Tabell 5-7 - Vinddata for tidsserie H18 08.40 10.apr.14                 | . 33 |
| Tabell 5-8 - Vinddata for tidsserie H18 05.10 13.april.14               | . 33 |
| Tabell 5-9 - Forhold mellom vertikal og horisontal vind                 | . 35 |
| Tabell 5-10 - Data fra simulert vind                                    | . 35 |
| Tabell 0-1 – Horisontale egenfrekvenser fra tidsserie 05.50 5.des. 13   | . 39 |
| Tabell 0-2 – Vertikale egenfrekvenser fra tidsserie 05.50 5.des. 13     | . 40 |
| Tabell 0-3 – Torsjonale egenfrekvenser fra tidsserie 05.50 5.des. 13    | . 40 |
| Tabell 0-4 – Horisontale egenfrekvenser fra tidsserie 05.40 10.april 14 | . 41 |
| Tabell 0-5 – Vertikale egenfrekvenser fra tidsserie 05.40 10.april 14   | . 41 |
| Tabell 0-6 – Torsjonale egenfrekvenser fra tidsserie 05.40 10.april 14  | . 41 |
| Tabell 0-7 – Horisontale egenfrekvenser fra tidsserie 08.40 10.april 14 | . 42 |
| Tabell 0-8 – Vertikale egenfrekvenser fra tidsserie 08.40 10.april 14   | . 42 |
| Tabell 0-9 – Torsjonale egenfrekvenser fra tidsserie 08.40 10.april 14  | . 43 |
| Tabell 0-10 - Ufiltrerte egenfrekvenser                                 | . 43 |
| Tabell 0-11 - Oppsummering egenfrekvenser tidsserie 05.10 13.april 14   | . 43 |
| Tabell 6-1 – Tverrsnittsdata for brukasse                               | . 51 |
| Tabell 6-2 - Dempningsfaktor ved HS1                                    | . 51 |
| Tabell 6-3 - Fordeling av masse i brukasse, fra J.Tveiten[2]            | . 52 |
| Tabell 6-4 - Sammenligning av tidligere modeller                        | . 54 |
| Tabell 6-5 – Sammenligning av egenfrekvenser                            | . 57 |
| Tabell 8-1 - Vertikale asymmetriske egenfrekvenser                      | . 62 |
| Tabell 8-2 - Vertikale symmetriske egenfrekvenser                       | . 63 |
| Tabell 8-3 - Torsjonale symmetriske egenfrekvenser                      | . 64 |
| Tabell 8-4 - Torsjonale asymmetriske egenfrekvenser                     | . 65 |

## 1 Innledning

#### 1.1 Bakgrunn

Denne oppgaven omhandler dynamisk respons fra vindkrefter av Lysefjordbrua som krysser Lysefjorden i Forsand kommune, mellom Oanes i nord og Forsand i sør. Universitetet i Stavanger (UiS) har i samarbeid med blant annet Statens Vegvesen plassert ut måleinstrumenter på Lysefjordbrua. Hensikten er å kunne bruke disse måledataene for å få et mer helhetlig bilde av brukonstruksjonens respons, og å observere komplekse vindforhold ved fjordinnløp. Det vil også være interessant å studere bruas respons og hvordan dette eventuelt påvirker problemer med brudd i kabeltrådene. Siden brua åpnet i 1997 har det hyppig blitt påvist tråbrudd i hovedkablene, noe som er mye omtalt i tidligere oppgaver.

Med måledata er det mulig å kalibrere numeriske modeller utsatt for vindindusert respons og sammenligne den med tidligere oppgaver fra R. Steigen[1] og J. Tveiten[2]. Instrumentene vil dessuten gi grunnlag til å utvikle ekspertise innen overvåking av brukonstruksjoner, og data fra instrumentene og erfaringer vil være relevant ved bygging av lignende brukonstruksjoner. Prosjektet vil spesielt være relevant for Stortingets mål om ferjefri E39 mellom Kristiansand og Trondheim, der det vil kreves flere lange fjordkryssinger, noe som økt kunnskap om hengebruer vil bidra til å løse.

### 1.2 Oppgaven

Registrering og analyse av data er en krevende prosess, og alle registrerte data er langt fra ferdig analysert. Formålet med oppgaven er å danne et grunnlag for senere oppgaver, som forhåpentligvis vil bidra til å lage oversiktlig bilde av modellen, og hvordan data blir registrert, behandlet og analysert.

Ved å analysere registrerte måledata skal oppgaven omhandle vindindusert respons av Lysefjordbrua, og studere hvordan målte verdier stemmer overens med en eksisterende FEmodell laget i ABAQUS. Oppgaven skal i størst mulig grad undersøke de dynamiske egenskapene til denne modellen, og modifisere den for å tilnærme svingemoder og egenfrekvenser.

Følgende punkter skal gjennomgås i oppgaven:

- 1. Analyse av et utvalg registrerte måledata.
- 2. Sammenligning og tilnærming av eksiterende FE-modell.
- 3. Analyse av vindindusert respons.

For å best mulig kunne løse oppgaven skal følgende temaer omtales:

- 1. Lysefjordbruas dynamiske egenskaper.
- 2. Generell teori om vindlaster.
- 3. FEM brumodellen egenfrekvenser og svingemoder.

## 2 Lysefjordbrua

#### 2.1 Hengebruer

En hengebro består av en brubjelke som holdes oppe av kabler. Bjelken eller brukassen er den lastbærende delen, og laster overføres som strekk til hovedkabler via hengekabler. Kablene er trukket mellom to tårn og forankret på hver side av brua. Dette gjør at hovedkreftene fordeles ved strekk i kablene og trykk i tårnene.

Midtspennet mellom de to tårnene regnes som lengden av en hengebru og blir kalt hovedspennet. Sidespennene er ofte konstruert som en vanlig opplagret betongbru med et eller flere spenn, disse kalles for viadukter. Lysefjordbrua har sidespenn på henholdsvis 34,5 m og 156,5 m og et hovedspenn på 446 meter og har med det per i dag Norges tolvte lengste hovedspenn[3].

Grunnet denne fordeling av strekk og trykk, og en lav egenvekt per lengde meter, er dette den dominerende måten å lage bruer med lange spenn. Den lengste hengebrua i verden er i dag er Akashi-Kaikyo-broen i Japan med et hovedspenn på 1991 meter og brutårn på 282,8 meter. Norges lengste hengebru er Hardangerbrua som åpnet i fjor sommer (2013). Den har et hovedspenn på 1310 meter og brutårn på 202,5 m. Utfordringer med hengebruer i Norge er at trafikkmengden medfører at hengebruer sjelden har mer en et felt i hver retning. Mens Akashi-Kaikyo-broen har tre kjørefelt i hver retning. Dette gir hengebruene en stor slankhet, noe som i stor grad påvirker bruas aerodynamiske egenskaper. Utformingen av hengebruer har endret seg over tid, spesielt er det utført bedringer i de aerodynamiske egenskapene. I 1923 åpnet Tacoma Narrow Bridge. Denne brua var kun dimensjonert for statiske krefter, og kollapset som et resultat av torsjonssvingninger fra dynamisk respons. Hovedgrunnen var utformingen av brukassen som fanget opp vinden som et seil[4]. Kollapsen som førte til at det i større grad tas hensyn utforming av brukassen, og dens torsjonstivhet. Et eksempel på dette er bruken av lukkede brukasser med avstivende profiler.

#### 2.2 Geometri

Lysefjordbrua er sammensatt av følgende komponenter:

- Brubjelke bestående av en brukasse med dekke.
- Hengekabler som kobler brukassen til hovedkablene.
- Hovedkabler som støtter brukassen.
- Tårn som støtter hovedkablene.
- Ankerfester som støtter kablene vertikal og horisontalt ved forankringene.



#### 2.3 Brubjelke

Brukassen har som hovedfunksjon å avstive kjørebanen og å bære påkjente trafikklaster. På denne måten unngår man store deformasjoner fra konsentrerte laster som f.eks. store lastebiler. Arealet til brukassene er dominerende og er den delen som påkjennes i størst grad av eksterne laster, som trafikk, snø og vind. Brukassen på Lysefjordbrua har en lukket profil med avstivende u-profiler innvendig. I tillegg har den ekstra tverravstivere per 4 lengdemeter, dette gir en god torsjonsstivhet.



Figur 2-2 - Typisk tverrsnitt av brukassen

#### 2.4 Opplagring av brukassen

Opplagringen i en hengebru er som oftest utført som fritt opplagt mellom hvert spenn, illustrert i Figur 2-3. På denne måten blir aksiale laster tatt opp i kablene. Dette er særlig gunstig for lange spenn som utsettes for termisk forskyvning.



Figur 2-3 - Typiske opplagerbetingelser for en hengebru[5]

Lysefjordbrua har sidespenn av betongbjelke opplagret på betongsøyler. Hovedspennet er fritt opplagt mellom brutårnene. Nordsiden er fasthold mot forskyvning langs 3 akser. På sørsiden er brua fastholdt for sideveis forskyving og har en pendel i x-aksen. I tillegg er brubjelken fastholdt for torsjon i begge ender. Opplagrene av hengebrua illustreres i Figur 2-4.



Figur 2-4 - Opplagerbetingelser for Lysefjordbrua

#### 2.5 Hovedkabler

Hovedkablene er den viktigeste komponenten for bæring av vertikale laster i en hengebru. De vertikale lastene blir som tidligere omtalt overført fra brukassen gjennom hengekablene til kablene som strekk, og overføres som trykk i tårnene. Kablene er så forankret ved ankerpunkt i hver ende.

Kablene må kunne motstå deformasjoner fra varierende laster og temperasjonssvingninger, samt kunne motstå vibrasjoner fra dynamisk respons. Derfor har kablene et høyere karboninnhold enn vanlig konstruksjonsstål, opptil 2-4 ganger så mye. Dette gir følgelig en bedret styrke på opptil 2-4 ganger, men reduserer duktiliteten til en femtedel av konstruksjonsstål. Lysefjordbrua har totalt 12 hovedkabler, 6 stykker på hver av side av brukassen, illustrert i Figur 2-5.

#### 2.6 Hengestag

Hengestag er koblingene mellom brukassen og kablene. Lengden på hengestagene varierer med den relative avstanden, som styres av bruparabelen. Avstanden mellom hvert hengestag er 12 meter, og 19 meter ved brutårnet. Koblingen avhenger av utformingen av hovedkablene. Koblingen er illustrert i Figur 2-5.



Figur 2-5 - Detalj av kobling mellom hengerkabler og hovedkabler

#### 2.7 Tårn

De fleste hengebruer er bygd opp av to tårn. Hvert tårn består vanligvis av to søyler med to avstivede bjelker, en for å opplagre brukassen og en i toppen. Hovedkablene overfører en trykkraft på tårnene via en tårnsadel. Lysefjordbrua har tårn av betong noe som er vanlig for norske hengebruer grunnet betongens gode egenskaper i trykk.

Tårnene er da ofte direktefundamentert og stabilisert av tårnets egenvekt. Utformingen er slik at arealet varierer med høyden. Utformingen er illustrert i Figur 2-6. Tårnene i Lysefjordbrua er forankret til fjellet, som gjør tårnet fastholdt mot forskyvning og rotasjon.





### 2.8 Ankerpunkter

Hovedkablene er forankret i en ankerkonstruksjon på hver side av brua. Ankeret består av et eller flere spredekammer før et forankringskammer. Kablene føres inn i et spredekammer fordeles ut over et større areal før det forankres direkte i berget. Ankerpunktene er ofte i form av en fjellhall som tillater tilsyn og vedlikehold av forankringen.

### 2.9 Dynamiske egenskaper

En hengebru er en kompleks ikke-lineær tredimensjonal konstruksjon. Som konsekvens av dette benyttes det en rekke forenklinger, særlig ved beregning av dynamisk respons. Den generelle ligningen for et dynamisk system er gitt av følgende likning.

$$M \ddot{q}(t) + C \dot{q}(t) + K q(t) = F(t)$$
(2-1)

Der q(t) henholdsvis er akselerasjon, hastighet og forskyvning, M er masse, C er dempning, K er stivheten og F er den påførte lasten. En hver konstruksjon kan beskrives ved hjelp av dette uttrykket. Hengebruer har en kompleks stivhet grunnet bidraget fra kablene, og beregnes derfor i stor ved en forenklet numeriskmodellering.

## 3 Måleutstyr

### 3.1 Oppbygning

Måleinstrumenter er plassert som illustrert i figuren under:



Figur 3-1 - Plassering av måleinstrumenter

- 4 stykk akselerometer ved to posisjoner
- 4 stykk anemometer ved fire posisjoner
- 1 stykk værstasjon ved en posisjon
- 3 loggemoduler med backup og livefeed via 3G

Totalt er det 5 posisjoner for måling av vind.

#### 3.2 Akselerometer

Akselerometeret er koblet opp mot loggemodulen, og er av typen CUSP3.

Instrumentet logger med en hastighet på 200 Hz. Det vil si 200 målinger i sekundet noe som sikrer en høy nøyaktighet. Etter analyser av måledata er det imidlertid funnet ut at instrumentet har noen feilmålinger, som omtales som støy. Denne støyen kan være hopp i akselerasjonen på flere 100 ganger middelverdien for tidsserien. For å kunne analysere rene måledata må denne type målinger kunne filtreres bort. En kan imidlertid ikke være helt sikker på at registrerte målinger rundt middelverdiene er helt rene for støy.

Det er totalt 4 akselerometre, hvor 2 stykker er plasser midt på hovedspennet ved henger 18 og 2 stykker er plassert cirka ved 1/3 av hovedspennet ved henger 24. Hvert apparat er plassert i hver sin side av brukassen, på henholdsvis østsiden og vestsiden, med en avstand på 7,15 meter. På denne måten kan vridningen av brukassen måles.

#### 3.3 Anemometer

Anemometrene er av typen Windmaster Pro 3-Axis. Instrumentet måler vindhastighet i 3 dimensjoner, x-, y- og z-retning. Der x er langs spennet, y er vinkelrett på spennet og z er forskyvningen vertikalt. I tillegg til å måle hastighet måler det også vindretningen. I denne

oppgaven gjennomføres kun analyser med utgangspunkt i målinger med retningsverdi for y og z. Vindretning antas å virke vinkelrett på hovedspennet.

Instrumentet logger med en hastighet på 200 Hz, som for akselerometeret.

#### 3.4 Værstasjon

Værstasjonen er av typen Vaisala WXT520. Den gir som anemometeret informasjon om vindhastighet og vindretning, i tillegg gir den informasjon om lufttrykk og temperatur. Instrumentet måler vindhastigheter i to retninger, x og y, og ikke i vertikal retning som anemometrene. I motsetning til anemometrene og akselerometrene logger værstasjonen med en hastighet på 100 Hz. For å best kunne sammenligne målingene av vind versus akselerasjon, er hastighetsloggingen den samme. Dette kompenseres med at dataene blir oppskalert til 200 Hz. Det vil si at halvparten av dataene er identiske. Værstasjonen er plassert ulikt i forhold til anemometeret, siden begge gir samme informasjon, på hengerkabel 10.

### 3.5 Loggemodul

Loggemodulen er av typen CUSP-3x3 og er direkte knyttet til akselerometeret. Loggemodulen er knyttet til en strømforsyning og en harddisk. Registrerte data lagres på harddisken, for så å bli lastet opp til UNIX-servere som finnes på UiS. Oppkoblingen mot UNIX går via mobilt nettverk. Oppsettet gir direkte kontakt og sanntidsavlesninger via en egen nettside.

I startfasen lagret denne alle data lokalt uten å overskrive. Dette førte til problemer med at nye data ikke ble lastet til UNIX. Harddisken måtte da tømmes manuelt og det ble et opphold i registrerte data. I januar ble modulen satt til å laste opp data til serveren. I april ble apparatet satt til kontinuerlig å laste opp data til UIS sin server. Måledata fra perioden før april inneholder derfor noen mangler og til tider usammenhengende data.

Mappestrukturen for dataene er delt inn i tre mapper, for de tre dataloggere (tre CUSP enheter). CUSP1 dekker to 3-D soniske anemometre, henholdsvis på henger 16 og 18, og et 2-D sonisk anemometer på henger 10. CUSP2 dekker 3-D sonisk anemometer på henger 24, og akselerasjoner henger 24 vest og 24 øst. CUSP3 akselerasjoner på henger 18, øst side og vest side og 3-D sonisk anemometer henger 20.

### 3.6 Oppsummering

Måleinstrumentene kan oppsummeres i tabellen under. Hvert måleinstrument er gitt et navn som oppsummerer dens informasjon, og vil heretter bli omtalt deretter.

| Туре          | Plassering     | Navn | Loggemodul |
|---------------|----------------|------|------------|
| Akselerometer | Henger 24 Øst  | H24E | CUSP2-UiS2 |
| Akselerometer | Henger 24 Vest | H24W | CUSP2-UiS2 |
| Akselerometer | Henger 18 Øst  | H18E | CUSP3-UiS3 |
| Akselerometer | Henger 18 Vest | H18W | CUSP3-UiS3 |
| Anenometer 3D | Henger 16      | H16  | CUSP1-UiS1 |
| Anenometer 3D | Henger 18      | H18  | CUSP1-UiS1 |
| Værstasjon 2D | Henger 10      | H10  | CUSP1-UiS1 |
| Anenometer 3D | Henger 24      | H24  | CUSP2-UiS2 |
| Anenometer 3D | Henger 20      | H20  | CUSP3-UiS3 |
|               |                |      |            |

Tabell 3-1 - Oversikt måleinstrumenter

### **4** Vindlaster

#### 4.1 Generelt

Vindlasten som virker på brua deles inn i en statisk og en dynamisk del. Den statiske vindkraften beregnes ut i fra middelvindhastigheten. Den dynamiske er avhengig av den fluktuerende delen av vinden. Som avhenger av aerodynamiske effekter fra hengebrua. Kreftene kommer fra buffeting vind, vortex induced turbulence og galoppering.

Den totale vindlasten kan beskrives på følgende måte:

$$q_{tot} = \bar{q} + q(t) \tag{4-1}$$

Der det tidsavhengige hastighetstrykket er den fluktuerende delen. De statiske komponentene av vindlasten med middelhastighetstrykket, for henholdsvis drag, løft og torsjon, beskrives med følgende uttrykk:

$$Q_D = qC_D H \tag{4-2}$$

Der  $C_D$  er dimensjonsløse formfaktorer, også kalt lastkoeffisient, for henholdsvis Drag, løft og torsjon,  $\rho$  er lufttettheten, H er høyde og B er bredde av brukassen. U er middelvindhastighet.

Hastighetstrykket beskrives på følgende måte:

$$q = \frac{1}{2}\rho U^2 \tag{4-3}$$

#### 4.1.1 Fluktuerende vindlast

Den fluktuerende delen er i tillegg til å være avhengig av tidsvarierende vindhastighet, også avhengig av den relative angrepsvinkelen. Figur 4-1 illustrerer hvordan den fluktuerende vindhastigheten varierer med vinkelen angrepsvinkel  $\alpha$ .



Fra figuren over er uttrykket for den relative vindhastigheten følgende:

$$U_{re} = \sqrt{(U + u - \dot{r}_x)^2 + (w - \dot{r}_z)^2} \approx \sqrt{U^2 + 2Uu - 2U\dot{r}_x}$$
(4-4)

Som virker ved den relative innfallsvinkelen  $\alpha$ . Middelinnfallsvinkel  $\overline{\alpha}$  er lik brukassens middelinnfallsvinkel  $\overline{\theta}$ . Den fluktuerende innfallsvinkelen er gitt av følgende uttrykk:

$$\alpha_f = \theta + \tan^{-1} \frac{(w - \dot{r}_z)}{U + u - \dot{r}_x} \approx \theta + \frac{w - \dot{r}_z}{U}$$
(4-5)

I begge uttrykkene er det foretatt noen forenklinger på høyre side. Dette er fordi middelvindhastigheten U er dominerende for relativt små vinkler, og mye større enn u og w. Fluctuating wind load and response[6] viser at dette en forenkling som er plausibel for småvinkler. I kvasi-steady teorien antar man at tidsvarierende laster kan beregnes fra tilsvarende forhold. Som vil si at de statiske lastkoeffisientene gjelder til enhver tid.



Figur 4-2 - Linearisering av statisk lastkoeffisient[6]

Lastkoeffisientene varierer også med varierende relativ angrepsvinkel. Vinkelen kan forenkles ved hjelp av linearisering av den aktuelle kurven vist på figuren over,  $\bar{\alpha} = \alpha_f + \bar{\theta}$ . Det er vanlig å foreta linearisering ved  $\bar{a} = \bar{\theta}$ . Dermed inkluderes bidrag fra u, w, r<sub>x</sub> og r<sub>z</sub>. Følgende uttrykk for formfaktorene kan da benyttes.

$$C'_{D} = \frac{\partial C_{D}}{\partial \alpha}$$
  $C'_{L} = \frac{\partial C_{L}}{\partial \alpha}$   $C'_{M} = \frac{\partial C_{M}}{\partial \alpha}$  (4-6)

Turbulens av den fluktuerende delen av vindlasten er da gitt for henholdsvis drag, lift og moment, som følgende uttrykk per lengde enhet:

$$\begin{bmatrix} q_D(t) \\ q_L(t) \\ q_M(t) \end{bmatrix} = \frac{1}{2} \rho U^2 \begin{bmatrix} 2\bar{C}_D H & (C_D'H - \bar{C}_L B) \\ 2\bar{C}_L B & (C_L'B + \bar{C}_D H) \\ \bar{C}_M B^2 & C'_M B^2 \end{bmatrix} \begin{bmatrix} \frac{u}{U} \\ \frac{w}{U} \end{bmatrix}$$
(4-7)

I tillegg til turbulens er det også en del knyttet bevegelsesavhengige krefter. Som er gitt av uttrykket:

$$\begin{bmatrix} q_{D}(t)' \\ q_{L}(t)' \\ q_{M}(t)' \end{bmatrix} = \frac{1}{2} \rho U^{2} \begin{bmatrix} -2\bar{C}_{D}H & (C'H - \bar{C}_{L}B) & C'_{D}H \\ -2\bar{C}_{L}B & (\bar{C}'_{D}H + C'_{L}B) & C'_{L}B \\ -2\bar{C}_{M}B^{2} & C'_{M}B^{2} & C'_{M}B^{2} \end{bmatrix} \begin{bmatrix} \frac{\dot{r}_{x}}{U} \\ \frac{\dot{r}_{z}}{U} \\ \frac{\dot{r}_{z}}{\theta} \end{bmatrix}$$
(4-8)

Den totale fluktuerende vindlasten per lengdeenhet blir da følgende uttrykk:

$$q(t) = \begin{bmatrix} q_D(t) \\ q_L(t) \\ q_M(t) \end{bmatrix} + \begin{bmatrix} q_D(t)' \\ q_L(t)' \\ q_M(t)' \end{bmatrix}$$
(4-9)

#### 4.1.2 Statisk vindlast

Den statiske delen av vindlasten har tre kraftkomponenter

Drag:

$$F_D = \frac{1}{2}\rho C_D U^2 A \tag{4-10}$$

Løft:

$$F_L = \frac{1}{2}\rho C_L U^2 A \tag{4-11}$$

Moment:

$$M = \frac{1}{2}\rho C_M U^2 A L \tag{4-12}$$

Der U er middelvind, A er det eksponerte arealet,  $\rho$  er tettheten til luft og C er den dimensjonsløse formfaktoren for henholdsvis drag, løft og moment. Skrevet om kan de dimensjonsløse formfaktorene skrives på følgende måte:



Figur 4-3 - Angrepskrefter, skisse av Ove Mikkelsen[7]

C<sub>D</sub> uttrykkes ved den statiske kraftkomponenten for langsgående vind, normalisert med hastighetstrykket og høyden H, som er det vindeksponerte arealet per meter (Hx1m).

$$C_D = \frac{F_D}{\frac{1}{2}\rho U^2 H}$$
(4-13)

C<sub>L</sub> uttrykkes som for drag med kraftkomponenten for tversgående vind, normalisert med hastighetstrykket og arealet som vil løfte brukassen, B, per meter (Bx1m).

$$C_L = \frac{F_L}{\frac{1}{2}\rho U^2 B}$$
(4-14)

Brukassens aerodynamiske egenskaper gjør at kraftkomponenetene ikke nødvendigvis angriper i bruas skjærsenter. Det resulterer i at kraftkomponentene lager et moment.

 $C_M$  uttrykkes ved en momentkraft om skjærsenteret i brukassen, normalisert med hastighetstrykket og arealet som vil lage momentet per meter,  $B^2$  ( $B^2x1m$ ).

$$C_M = \frac{M}{\frac{1}{2}\rho U^2 B^2}$$
(4-15)

Formfaktorene er avhengige av brukassens geometriske egenskaper. Tekniske detaljer som brukassens form, rekkverk og skovler, samt vindens innfallsvinkel spiller en viktig rolle. Faktorene er ofte bestemt med vindtunnelforsøk, og kan sammenlignes med tidligere forsøk på lignende tverrsnitt, enten ved å direkte lese av kraftmålinger eller ved integrering av overflatetrykket. I tillegg finnes det også enkle simuleringsprogrammer som kan brukes til å finne formfaktorer. Figuren under viser et eksempel fra iPad appen Windtunnel, som baserer seg på Nove-Stokes teorem.



Figur 4-4 - Eksempel fra Windtunnel

Formfaktorer vil endre seg med bruas rotasjon. For å forenkle arbeidet benyttes faktorer faktorer fra tidligere oppgaver[2].

| Koeffisient        | Faktor |
|--------------------|--------|
| CD                 | 1.0    |
| C' <sub>D</sub>    | 0.0    |
| CL                 | 0.1    |
| C'L                | 3.0    |
| C <sub>M</sub>     | 0.1    |
| C' <sub>M</sub>    | 1.12   |
| C <sub>Cable</sub> | 1.5    |

Tabell 4-1 - Formfaktorer for Lysefjordbrua[2]

#### 4.2 Turbulens

Turbulens er den fluktuerende delen av vindhastigheten. Den kan beskrives av turbulensintensitet, integrale lengdeskalaer, ko-koherens og ettpunkts spektra.

#### 4.2.1 Turbulensintensitet

Turbulensintensitet i langs vind-, tverr vind- og vertikal vindretning er definert som standardavviket  $\sigma$  delt på middelvindhastigheten U, med notasjon for henholdsvis langs-, tverr- og vertikalretning (u, v og w). Gitt et homogent terreng vil de statistiske egenskapene til turbulensintensiteten bare variere med høyden. De kan da uttrykkes på følgende måte:

$$I_u(z) = \frac{\sigma_u(z)}{U(z)}$$
  $I_w(z) = \frac{\sigma_w(z)}{U(z)}$   $I_v(z) = \frac{\sigma_v(z)}{U(z)}$  (4-16)

Storskalamålinger av turbulensintensiteten har vist at standardavviket for langsgående vindhastighet kan  $\sigma_u$  tilnærmes 2.5u, der u er friksjonsvindhastigheten[8]. Turbulensen avtar ved økende høyde. For flatt terreng kan turbulensen forenkles til uttrykket:

$$I_u(z) = \frac{2.5u_*}{(\frac{u_*}{0.4})\log(\frac{z}{z_0})} = \frac{1}{\ln(z/z_0)}$$
(4-17)

Der z<sub>0</sub> er ruhetslengden.

For høyder opptil 100-200 meter over homogent terreng kan forholdet mellom standardavvikene forenkles:  $\sigma_v \approx 0.75 \sigma_u \text{ og } \sigma_w \approx 0.50 \sigma_u$ 

Det er vanlig å anta at turbulenskomponentene har en tilnærmet normalfordeling. Slik at forholdet ved økende høyde kan beskrives av figuren under. Turbulens har også en tendens til å øke ved lav vindhastighet[7], som i stor grad skyldes påvirkning fra terrenget.



Figur 4-5 - Turbulens i forhold til høyde

#### 4.2.2 Ett punkts spektra

En sannsynlighetsfordeling basert på weibull illustrerer magnituden på vinden, men ikke hvordan vinden varierer med tid. For å illustrere turbulens over tid benyttes tidsserier med fluktuerendevind. Spektraltetthet av turbulenskomponentene viser fordelingen som et bilde av frekvens, og viser hvilke frekvensområder som er dominerende. Det defineres av variansen  $\sigma_u^2$  i frekvensområdet fra *n* til *n*+*dn*, og er gitt som  $S_u(n)^*dn$ , der  $S_u(n)$  er spektral densitet funksjon for *u*(t). Integreres dette over alle frekvenser får man følgende uttrykk.

$$\sigma_u^2 = \int_0^\infty S_u(n) dn \tag{4-18}$$

Det finnes flere matematiske modeller som beskriver spektre av vind. Den mest brukte er den såkalte Von Karman ligning:

$$\frac{n \cdot S_u(n)}{\sigma_u^2} = \frac{4\left(\frac{nl_u}{\overline{\upsilon}}\right)}{\left[1+70.8\left(\frac{nl_u}{\overline{\upsilon}}\right)^2\right]^{5/6}}$$
(4-19)

Der  $I_u$  er turbulens lengdeskala.



Figur 4-6 - Normalisert spektre for langsgående vind (Von Karman-Harris) [8]

Turbulens lengdeskala avhenger av både terrengkoeffisienter og høyden over terrenget. For von Karman-Harris spektre illustrert i figuren over, er den maksimale verdien eller maksimale bølgelengde gitt som  $6.85I_u$ . I de tilfeller der terrengkoeffisienten er en ubetydelig variabel, som for glatte overflater eller høyt over terrenget, varierer lengdeskalaen kun med høyden over terrenget. Uttrykket over kan da skrives om på følgende form[8].

$$\frac{n \cdot S_u(n)}{\sigma_u^2} = \frac{2.15 \left(\frac{nz}{\overline{U}}\right)}{\left[1+11.16 \left(\frac{nz}{\overline{U}}\right)^{5/3}\right]}$$
(4-20)

#### 4.2.3 Integrale lengdeskalaer

Korrelasjonsegenskaper for de langsgående hastighetskomponentene ved punkter med vertikal eller horisontal seperasjon er viktige for å illustrere variasjon i den fluktuerende vinden på tårn, lange bygninger eller for eksempel et langt bruspenn.

Synkronisering av turbulens reduseres med økende avstand. Og kan beskrives som en eksponential avtagende funksjon:

$$\rho \approx exp[-C|y_1 - y_2|] \tag{4-21}$$

Det såkalte integrale lengdeskala beskriver kompakt omfanget av turbulenskorrelasjonen:

$$L_{u}^{y} = \int_{0}^{\infty} \rho_{u}(s_{y}) d(s_{y}), \qquad s_{y} \equiv \Delta y$$
(4-22)

#### 4.2.4 Koherens

Frekvensdistribusjonen av den sporadiske turbulensen er interessant for fleksible konstruksjoner. Korrelasjonen av vindturbulens blir da uttrykt ved et såkalt kryss-spektre, som er en Fouriertransform av kryss-kovarians funksjonen.

$$S_{\chi}(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} R_{\chi}(\tau) e^{-i\omega\tau} d\tau$$
(4-23)

Som også kan uttrykkes som:

$$S_{xy} = X^*(\omega)Y(\omega) \tag{4-24}$$

Siden kryss-kovariansen ikke er symmetrisk ved  $\tau = 0$ , er denne en kompleks funksjon. Den normaliserte reelle delen av funksjonen er den som er av interesse for å finne turbulensfasen til en konstruksjon. Denne kalles kvadrat ko-koherens funksjonen og uttrykkes følgende:

$$R.C.Coh(\omega) = \frac{|s_{xy}(\omega)|}{\sqrt{s_x(\omega)}\sqrt{s_y(\omega)}} \cos \phi_{\omega}$$
(4-25)

Ko-spektra Si og Si på normalisert form for seperasjon normalt på vindens hovedretning, horisontalt, y, eller vertikalt, z, kan beskrives slik som Figur 4-7.



Ett punkts spektra forteller om fordelingen til vinden i et frekvensområde og kospektra forteller noe om hvor sannsynlig det er at turbulens ved to punkter med gitt avstand har innvirkning på hverandre.

#### 4.3 Aerodynamiske effekter

#### 4.3.1 Galoppering

Galoppering er et aerodynamisk fenomen som oppstår når angrepsvinkelen fra vinden endres. Noe som inntreffer når brukassen settes i bevegelse. Når brukassen beveger seg for eksempel i negativ vertikal retning vil luften lage en tilsvarende motreaksjon. En får en negativ vertikal hastighet i brukassen, så en positiv vertikal luftstrømhastighet. Dette gir da et tilskudd til den opprinnelige luftstrømmen. Den relative luftstrømmen vil danne en vinkel med det horisontale planet. Galoppering avhenger i stor grad av de aerodynamiske egenskapene som konstruksjonen har. Dersom brukassen er designet slik at vindhastigheten forsetter å skyve den ned, og ikke trekke den tilbake til sin naturlige posisjon, vil konstruksjonen være ustabil og være utsatt for galoppering. Et eksempel på dette er kollapsen av Tacoma Narrow Bridge[4].

#### 4.3.2 Virvelinduserte svingninger

Virvelinduserte svingninger i konstruksjon er et resultat av en påført last med samme frekvens som egenfrekvensen til konstruksjonen. Denne resonansen gir en kraftig økning i forskyvning. Ved en dynamisk vindlast inntreffer virvelinduserte svingninger ved en kritisk vindhastighet. Responsen opptrer i et område med lavere vindhastigheter enn for buffeting vind og flutter, se Figur 4-8. Den kritiske vindhastigheten kan skrives med følgende uttrykk:

$$U_{cr} = \frac{f_s D}{S_t} \tag{4-26}$$

Der  $f_s$  er bruas egenfrekvens, D er høyden av brukassen og  $S_t$  er Strouhalsnummeret som avhenger av brukassens utforming. For å redusere effekten av svingningene benyttes det tiltak ved utforming av brukassen for å øke dens egenfrekvens, for eksempel ved å ta i bruk vindskovler[7]

#### 4.3.3 Flutter

Flutter er et aerodynamisk fenomen som spesielt rammer fleksible og relativt flate konstruksjoner. Flutter er svingninger med en stigende amplitude som kan føre til konstruksjonssvikt. Den består enten av torsjonssvingninger eller en kombinasjon av torsjon og vertikale svingninger, og vil øke når vindhastigheten er over en kritisk verdi. Så lenge vindhastigheten holder seg under den kritiske verdien vil svingningene avta, og broen bli nøytralt stabil. Svingningene danner som ved galoppering negative aerodynamiske dempinger. Ved bare torsjon dannes det virvler som lager ugunstig trykkvariasjon. Flutter opptrer ved høye vindhastigheter, og konvergerer mot en kritiskvindhastighet, se Figur 4-8.



Figur 4-8 - Typisk respons med varierende middelvindhastighet[9]

#### 4.3.4 Buffeting respons

Buffeting respons kan beskrives som kvasi-statisk, siden den oppfører gir en respons tilnærmet lik en statiskrespons. Fra teori beskrevet i JBJ[6] er buffeting responsspektre gitt av følgende uttrykk:

$$\begin{bmatrix} S_{p_x} \{f\} \\ S_{p_z} \{f\} \\ S_{p_\theta} \{f\} \end{bmatrix} \approx \left(\frac{1}{2} \rho U\right)^2 \begin{bmatrix} (2\bar{C}_D H)^2 |A_{xu}\{f\}|^2 & 0 \\ 0 & (\bar{C'}_D H + C'_L B)^2 |A_{zw}\{f\}|^2 \\ 0 & (C'_M B^2)^2 |A_{\theta w}\{f\}|^2 \end{bmatrix} \begin{bmatrix} S_u\{f\} \\ S_w\{f\} \end{bmatrix} (4-27)$$

Her introduseres såkalte tverrsnitts «admittance» funksjoner  $A_{xu}$ . Funksjonene er et sammendrag av flere faktorer som alle styres av finitte størrelse av tverrsnittet.

#### 4.4 Modal buffeting krefter

En lineær beregningsmodell for konstruksjonens respons kan effektivt kalkuleres som en sum av forskyvningsbidrag fra forskjellige moder, det vil si forskyvningsmønstret avhengig av massen, stivheten og demping.

$$\begin{bmatrix} r_X\{y,t\}\\ r_Z\{y,t\}\\ \Theta\{y,t\} \end{bmatrix} = \begin{bmatrix} \varphi_x\{y\} & 0 & 0\\ 0 & \varphi_z\{y\} & 0\\ 0 & 0 & \varphi_\theta\{y\} \end{bmatrix} \begin{bmatrix} r_x\{t\}\\ r_z\{t\}\\ \theta\{t\} \end{bmatrix}$$
(4-28)

Hvor  $\phi$  er modeformene og r er de modale forskyvningene. De korresponderende modalkreftene beregnes ved integrasjon over den eksponerte lengden. De modale vindkreftene fordeles da med modeformen.

Et uttrykk for spekter av en modalkraft må inneholde korreksjon for inhomogenitet av turbulens langs spennet av brukassen. Fluktuerende vind virker ikke uniformt langs bruas spenn. Den varierer systematisk ved at korrelasjonen øker ved økende avstand mellom punktene og minker med minkende avstand. Den varierer også av frekvensen til turbulensen. Denne funksjonen kalles kvadratrot ko-korrelasjon, i JBJ[6] beskrives relasjonen på følgende måte:

$$\sqrt{coh_u\{\Delta y, f\}}cos\emptyset = \frac{\Re\{S_{u_1u_2}\{\Delta y, f\}\}}{\sqrt{S_{u_1}\{f\}S_{u_2}\{f\}}} = \frac{\Re\{S_{u_1u_2}\{\Delta y, f\}\}}{S_u\{f\}}$$
(4-29)

Faktoren  $cos \emptyset$  tar hensyn til den samtidige spennvise effekten av fluktuerende vind, mens R tar hensyn til kryss spektraltettheten. For å kunne estimere PSD av den modale lasten kombineres ko-korrelasjonen med mode form for å lage en admittance funksjon. For to uavhengige punkter, y1 og y2, kan funksjonen ved horisontal along vind turbulens eksempelvis skrives:

$$F_{xu}{f} = \int_0^{l_e} \int_0^{l_e} \sqrt{\cosh_u{\{\Delta y, f\}}} \cos\phi \varphi_x \{y_1\} \varphi_x y_2 \, dy_1 \, dy_2 \tag{4-30}$$

Den resulterende Spekter for modalkrefter med et konstant tverrsnitt langs spennet skrives da på følgende måte:

$$\begin{bmatrix} S_{p_x}\{f\}\\S_{p_z}\{f\}\\S_{p_\theta}\{f\}\end{bmatrix} \approx \left(\frac{1}{2}\rho U\right)^2 \begin{bmatrix} (2\bar{C}_D H)^2 |A_{xu}\{f\}|^2 F_{xu}\{f\} & 0\\ 0 & (\bar{C}'_D H + C'_L B)^2 |A_{zw}\{f\}|^2 F_{zw}\{f\}\\0 & (C'_M B^2)^2 |A_{\theta w}\{f\}|^2 F_{\theta w}\{f\} \end{bmatrix} \begin{bmatrix} S_u\{f\}\\S_w\{f\}\end{bmatrix}$$
(4-31)
Teorien er hentet fra JBJ[6] og viser teorien for modalkrefter av buffeting vindrespons på linjeformede konstruksjoner.

### 4.5 Modal analyse

Modal analyse er en metode for å analysere dynamisk respons av en eller flere masser m med en gitt stivhet k. For å kunne beskrive de dynamiske egenskapene til et system, benyttes ofte en transfer funksjon. Funksjonen beskriver forholdet mellom input og output, omtales ofte som en mekanisk overføringsfunksjon. For et dynamisk system er uttrykket gitt av forholdet gitt som:

$$S_R = S_F \cdot |H(\omega)|^2 \tag{4-32}$$

Der  $S_R$  er spekter av responsen i systemet,  $S_F$  er spekter av påført last og  $|H(\omega)|$  er transferfunksjonen. For et dempet system er uttrykket gitt som:

$$|H(\omega)| = \frac{1}{\kappa} DFF \tag{4-33}$$

K er konstruksjonens stivhet og DFF er dynamisk forsterkningsfaktor gitt som:

$$DFF = \frac{1}{\sqrt{(1 - (\omega/\omega_e)^2)^2 + (2\zeta(\omega/\omega_e))^2}}$$
(4-34)

Der  $\omega_e$  er konstruksjonens egenfrekvens og  $\zeta$  er konstruksjonens dempningsforhold[7]. Modal analyse kan gjennomføres med manuelle beregninger i for eksempel Matlab. Videre analyser av det dynamiske systemet vil gjennomføres ved hjelp av Abaqus.

# 5 Analyse av måledata

# 5.1 MATLAB

I oppgaven er det benyttet Matlab[10] for behandling av data. Matlab klarer å behandle store datamengder på en oversiktlig måte. Formålet med programmet er å lese måledata og lage relevante plot. Programmet beregner ved hjelp av matriser og alle funksjoner oppgis som skalarer eller vektorer.

Matlab leser data med hjelp fra ulike skript. De fleste skriptene er laget med hjelp fra doktorgradsstudent Etienne Cheynet og veileder Jasna B. Jakobsen, med noen omskrivinger. Skriptene som er brukt dekomponerer og behandler måledataene til funksjoner for vind- og akselerasjonskomponenter. Ved beregning av PSD benyttes egenkomponerte skripter som filtrerer for støy. Et utvalg av benyttede skript er vedlagt i Vedlegg E.

# 5.2 Mathcad

Mathcad er et beregningsprogram som i beregner på en oversiktlig metode. Der avanserte uttrykk og enkle kombinasjoner av tekst og formler kan skrives om hverandre. Den er ikke like god til å behandle store datamengder, men er imidlertid oversiktlig. Mathcad benyttes til å beregne karakteristiske svingemoder etter teori fra Bleich[11] og Steinman[12], da denne har innebygde funksjoner for å løse ligninger av ulik grad. Det vil også bli brukt til beregne enkle data som skjærsenter og andre geometriske egenskaper der det er nødvendig. Utførte beregninger er vedlagt Vedlegg D.

## 5.3 Fouriertransform

Fourier-analyse går ut på å dekomponere datasignal til å passe kjente fourierrekker, beskrevet av enkle trigonometriske funksjoner. En gitt periodisk funksjon kan beskrives ved en fourierrekke som går mot uendelig[9].

$$x(t) = a_0 + \sum_{n=1}^{\infty} (a_n \cos\omega_n t + b_n \sin\omega_n t)$$
(5-1)

Der  $a_0$ ,  $a_n$  og  $b_n$  er gitt som:

$$a_0 = \frac{1}{T} \int_{-T/2}^{T/2} x(t) dt$$
 (5-2)

$$a_n = \frac{2}{T} \int_{T/2}^{T/2} x(t) \cos(\omega_n t) dt$$
 (5-3)

$$b_n = \frac{2}{T} \int_{T/2}^{T/2} x(t) \sin(\omega_n t) dt$$
 (5-4)

En grafisk fremstilling av størrelse mot frekvens vil gi et amplitudespekter. På denne måten kan et hvilken som helst tidsavhengig signal beskrives som frekvensavhengig. Noe som er

nyttig for å bestemme egenfrekvenser til et system. Figuren under beskriver et amplitudespekter for periodiske utslag av et signal.



Figur 5-1 - Amplitudespekteret[9].

Ved å la T gå mot uendelig vil funksjonen ikke lenger være diskret, men kontinuerlig. Fouriertransform er den matematiske operatoren som transformerer signal mellom tidsdomene og frekvensdomene ved hjelp av integrasjon. Formålet med transformasjonen er å kunne avbilde en funksjon som er frekvensavhenging basert på måledata som er tidsavhengig, uten å miste informasjonen fra det opprinnelige signalet.

Den komplekse:

$$X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-i\omega t} dt$$
(5-5)

Den inverse:

$$x(t) = \int_{-\infty}^{\infty} X(\omega) e^{i\omega t} dt$$
(5-6)

Dicrete Fourier Transform (DFT) er en numerisk tilnærming til fouriertransformen. DFT forenkler uttrykket ved å gi integralet en endelig sum.

Den komplekse:

$$X(\omega)_{k} \triangleq \sum_{n=0}^{N-1} x(t_{n}) e^{-i\omega_{k}t_{n}}, k = 0, 1, 2 \dots, N-1$$
 (5-7)

Den inverse:

$$x(t)_n = \sum_{n=0}^{N-1} X(\omega_k) e^{i\omega_k t_n}$$
,  $k = 0, 1, 2..., N-1$  (5-8)

I digital spekteranalyse brukes en algoritme kalt Fast Fourier Transform (FFT) til å anslå spekter. Metoden beregner DFT fra et signal direkte uten bruk korrelasjonsfunksjoner. Dette gjør FFT til en effektiv teknikk som sparer dermed tid[9].

## 5.4 Spekteranalyse

I statistisk signal prosessering er det relevant å finne frekvensen av input. En spekteranalyse tolker signal om til forståelige verdier, eksempelvis målte akselerasjoner i en konstruksjon som følge av vind. Fra de registrerte dataene kan det direkte avleses informasjon om maksimum, minimum og gjennomsnittlig akselerasjon. Med en spekteranalyse vil det i tillegg være mulig å fremstille både egenfrekvenser og egensvingeformer til konstruksjonen. På den måten vil en få bedre oversikt over konstruksjonens dynamiske egenskaper.

Vindkomponenter regnes å være en stasjonær prosess som inneholder tilfeldige periodiske signaler. Power Spectral Density (PSD) av vindkomponenter viser spektre som magnitude i

forhold til frekvens. I digital spekteranalyse vil PSD bli estimert direkte fra målte data basert på Fast Fourier Transform. Teoretisk vil derimot de registrerte tilfeldige dataene overføres fra tids-dominert til frekvens-dominert ved hjelp en autokorrelasjon. Et tilfeldig signal x(t) er en stokastisk prosess som ikke vil være periodisk, og kan dermed ikke beskrives med Fourieranalyse. Autokorrelasjon er et matematisk verktøy som finner gjentakende mønstre, som et periodisk signal som er gjemt under støy.

Autokorrelasjon funksjonen av et signal x(t) er:

$$R(t_1, t_2) = E[x(t_1)x(t_2)]$$
(5-9)

For en svak stasjonær prosess:

1. 
$$E[x(t_1)] = E[x(t_2)]$$
  
2.  $R_x(t_1, t_2) = R_x(\tau)$   
 $R_x(\tau) = E[x(t)x(t+\tau)] = \lim_{T \to \infty} \frac{1}{T} \int_0^T x(t)x(t+\tau)dt$  (5-10)

Autokorrelasjonen varierer ikke med tid, men avhenger av tidsintervallet,  $\tau = t_2 - t_1$ . Det fanger dermed opp forsinkede perioder, og relaterer dem med hverandre. På denne måten fanges det dominerende frekvensmønsteret gjennom hele tidsserien.

PSD  $S_x(\omega)$  er Fouriertransformen av autokorrelasjonens funksjon  $R_x(\tau)$ :

$$S_{x}(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} R_{x}(\tau) e^{-i\omega\tau} d\tau \qquad (5-11)$$

$$R_{x}(\tau) = \int_{-\infty}^{\infty} S_{x}(\omega) e^{i\omega\tau} d\omega \qquad (5-12)$$

Når  $\tau$  = 0 fås uttrykket:

$$R_x(\tau) = E[x(t)^2] = \sigma_x^2 = \int_{-\infty}^{\infty} S_x(\omega) \, d\omega \qquad (5-13)$$

Ved å utføre en Fouriertransform av tidsserie x(t) om til  $X(\omega)$  kan PSD beskrives ved følgende uttrykk:

$$S_x = X^*(\omega) X(\omega) = |X(\omega)|^2$$
 (5-14)

### 5.5 Welch's metode

Welch's metode estimerer kraften av et signal ved ulike frekvenser, basert på å benytte spektre av periodogram. Metoden deler opp sekvensen i overlappende segmenter, for så å sette dem sammen igjen. Og på denne måten beregne de gjennomsnittlige inputfrekvensene. Welch benytter en «windowfunksjon» for å sette sammen de overlappende segmentene. Funksjonene sikrer at alle verdier utenfor et gitt intervall er lik null. Dermed vil kun den overlappende delen sitte igjen. Spektrene er gitt ved en frekvens langs x og en kraft per frekvens. I Matlab benyttes funksjonen pwelch for å finne PSD, denne funksjonen benytter FFT. Det benyttes innebygde variabler for «windowfunksjone».

# 5.6 Behandling av vinddata

Måledata er samplet med en Nyquist Frekvens på 100 Hz. Det vil si at instrumentene registrerer 200 data per sekund. Data blir lagret i komprimerte csv-filer i form av 47999 rader. Det tilsvarer altså en tidsserie på 240 sekunder, altså 4 minutter. Det er ønskelig å lage en tidsserie på 10 minutter, da det er en vanlig måte å presentere vinddata. Slik er det også lettere å hente data som 10 minutter middelvindhastighet. Analysen steg for steg går ut på å benytte et Matlab-program laget for å hente ut en ønsket tidsserie. Dataene organiseres etter dato og klokkeslett. Siden samplingsraten er 200 Hz fører det til at data inneholder noe støy. For å filtrere bort denne støyen i dataene er det tatt i bruk desimering slik at frekvensen reduseres. I tillegg benyttes det høy-pass filter som bevarer måledata innehor et vindu, i denne oppgaven er vinduet begrenset til 10 Hz.

# 5.7 Tidsdominert

Tidsdominert vindanalyse tar for seg en vindlast med en fluktuerende del. Denne spennes ofte over korte perioder for å se hvordan brua oppfører seg. I denne oppgaven benyttes det tidsserier på 600 sekund eller 10 minutter. Analyser av vindlaster er forenklet til å kun gjelde langsgående vindhastigheter.

## 5.7.1 Interessante tidsserier

For å finne noen interessante tidsperioder er det tatt utgangspunkt i det stormfulle årsskiftet 2013/2014. Over hele landet og spesielt i Sør-Norge var det generelt 40 prosent høyere middelvindhastigheter enn normalen, og da spesielt i desember måned[13]. Under er det laget oversikt over vindmålinger fra noen interessante datoer. Datoene er basert på henvisninger og tips fra veileder Jasna B. Jakobsen og doktorgradsstudent Etienne Cheynet. De har jobbet med avleste vindmålinger, og har godt grunnlag til å si noe om hvilke datoer som vil være av interesse.

## 5. desember 2013

Vinddata fra midterste henger 18 er brukt som referanse. Det antas vindlaster midt på spennet representerer vindhastigheter for de aktuelle tidsserier størrelsen, siden det er det høyeste målepunktet og at det er her topografien skaper minst hindringer. Nattdata anses som renere da sjansen for forstyrrelser fra trafikklaster er liten. Tidsrommet som da er aktuelt er 02.00 til 06.00. Sammen med middelvindhastigheten ligger den totale vindhastigheten i område mellom full og sterk storm. Noen karakteristiske egenskaper fra stormen 5. desember er oppsummert i tabellen under.



Figur 5-2 - 10 min middelvindhastighet H18 5. desember

Tabell 5-1 - Oppsummering vinddata 5 des 2013

|                           | Vindhastighet |
|---------------------------|---------------|
| Største 10 min middelvind | 20,44 m/s     |
| Max vind                  | 37.04 m/s     |

# 22. desember 2013

Natt til 22. desember var vinden oppe i storm styrke med orkan i kastene. Under vises måledata tatt mellom 02.00 til 06.00



Figur 5-3 - 10 min middelvind H18 22.desember

Tabell 5-2 – Oppsummering H18 22. desember

|                           | Vindhastighet |
|---------------------------|---------------|
| Største 10 min middelvind | 20,44 m/s     |
| Max vind                  | 37.04 m/s     |



Figur 5-4 - 10 min middelvind H18 28. desember

Tabell 5-3 – oppsummering vinddata H18 28.desember

|                           | Vindhastighet |
|---------------------------|---------------|
| Største 10 min middelvind | 20,44 m/s     |
| Max vind                  | 28.99 m/s     |

# 17. januar 2014



Figur 5-5 - 10 min middelvind H18 17. januar

Tabell 5-4 - Oppsummering vinddata H18 17. januar

|                           | Vindhastighet |
|---------------------------|---------------|
| Største 10 min middelvind | 16,05 m/s     |
| Max vind                  | 30,34 m/s     |

## 5.7.2 Analysedata

Problemet med noen av de foregående seriene er at mye data er tapt som resultat av feilmålinger i instrumentene. Det kan være i form av hopp i data på opptil 100 ganger høyere målinger, eller at loggemoduler ikke har lagret tidsserier. Som følge av dette har det gått med mye tid til å finne samsvarende data fra de tre loggemodulene. Dette ble utbedret i målinger etter april, og målinger blir i tillegg lagret direkte som serier på 10 minutts. Noe som forenkler analyse av måledata. Selv om det forekommer noen feil er data fra april betydelig mer pålitelige. Dermed analyseres følgende data:

- i) Rene måledata fra 05.50 05.12.2013. Denne tidsserien antas å være måledata rene for trafikk. Siden det er i et tidlig tidsrom og opp mot full storm er sannsynligheten liten for at de er tilfeller av kryssende trafikk.
- ii) Rene måledata fra 05.40 10.04.2014. Denne datoen er valgt siden det er relativt liten vindhastighet. Tidsrommet tilsier at det er rene vinddata.
- iii) Måledata fra 08.40 10.04.2014. Dette tidsrommet er utsatt for trafikkdata. Av akselerasjoner er det utslag som tilsier at trafikklaster er til stede. Dette tidsrommet har i tillegg en lav vindhastighet.
- iv) Rene måledata fra 05.10 13.04.2014. Denne tidsserien har uforstyrrede vinddata fra alle måleinstrumenter, og kan dermed benyttes for korrelasjonsanalyse.

På denne måten sikres et godt mulig grunnlag for sammenligning av dynamiske vinddata. Under følger vinddata fra de aktuelle tidsseriene, for plot av akselerasjoner vises det til vedlegg A.



Figur 5-6 - Fluktuerende vind H18 05.50 5.des - Umiddel = 21,40 m/s

Tabell 5-5 - Vinddata for tidsserie H18 05.50 5.des.13

| Karakteristiske verdier             | Vindhastighet |
|-------------------------------------|---------------|
| Middelvind, U <sub>m</sub>          | 21.40 m/s     |
| Max vind, U <sub>maks</sub>         | 31.66 m/s     |
| Standard avvik, σ <sub>u</sub>      | 2.23 m/s      |
| Turbulensintensitet, I <sub>u</sub> | 0.10          |
| Peak faktor, k <sub>p</sub>         | 4.59          |



Figur 5-7 – Fluktuerende vind H18 05.40 10. apr.14 - Um = 1.44 m/s

| Tabell 5-6 - Vinddata | a for tidsserie | H18 05.40 10.a | apr.14 |
|-----------------------|-----------------|----------------|--------|
|-----------------------|-----------------|----------------|--------|

| Karakteristiske verdier             | Vindhastighet |
|-------------------------------------|---------------|
| Middelvind, U <sub>m</sub>          | 1,44 m/s      |
| Max vind, U <sub>maks</sub>         | 3,39 m/s      |
| Standard avvik, σ <sub>u</sub>      | 0,804 m/s     |
| Turbulensintensitet, I <sub>u</sub> | 0,56          |
| Peak faktor, k <sub>p</sub>         | 2,42          |



Figur 5-8 – Fluktuerende vind H18 08.40 10.apr.14 - Umiddel = 3,73 m/s

Tabell 5-7 - Vinddata for tidsserie H18 08.40 10.apr.14

| Karakteristiske verdier             |          |
|-------------------------------------|----------|
| Middelvind, U <sub>m</sub>          | 3,73 m/s |
| Max vind, U <sub>maks</sub>         | 7,32 m/s |
| Standard avvik, σ <sub>u</sub>      | 1,04 m/s |
| Turbulensintensitet, I <sub>u</sub> | 0,278    |
| Peak faktor, k <sub>p</sub>         | 3,46     |



Figur 5-9 - Fluktuerende vind H18 05.10 13.apr.14 – Um = 6.64 m/s

Tabell 5-8 - Vinddata for tidsserie H18 05.10 13.april.14

| Karakteristiske verdier             |           |
|-------------------------------------|-----------|
| Middelvind, U <sub>m</sub>          | 6,64 m/s  |
| Max vind, U <sub>maks</sub>         | 13,18 m/s |
| Standard avvik, σ <sub>u</sub>      | 2,06 m/s  |
| Turbulensintensitet, I <sub>u</sub> | 0,31      |
| Peak faktor, k <sub>p</sub>         | 3,18      |

## 5.8 Auto-regressive simuleringer

For å lage et sammenliknings grunnlag for de målte dataene vil det utføres en auto-regressiv simulering av vindlast, som en tidsvarierende parameter. Dette er en tilnærming av tidsavhengige vindlaster basert på Monte-Carlo-simuleringer. Simuleringene definerer mulige inndata for ulike probabilistiske egenskaper i et system, og lager deretter inndata basert på sannsynlighetsfordeling. Inndataene blir så beregnet ved en deterministisk analyse for så å gi et resultat for et tidsrom. Metoden som er mest brukt til vindanalyse kalles for autoregressive-moving-average-modell (ARMA), og kan best beskrives ved at den har en ukorrelert hvitstøy.

En enkel måte å få en slik vindlast er å benytte seg av siden NatHaz. Ved å definere vindprofil kan man få tidsavhengig vindhastighet simulert etter følgende ulike metoder:

- Diskret frekvens funksjoner med cholesky dekomponering og FFT
- Schur dekomponering av AR-modell og polynomial tilnærming
- Ergodic spectral representasjon med cholesky dekomponering og FFT
- Ordinær spektral representasjons metode

NatHaz[14] krever opplysninger om vertikalt og horisontalt angrepspunkt, total frekvens og avskjæringsfrekvens, samt terrengkategori og tre sekunders gust vindhastighet, også kalt gustvind. Gustvind er standard som referansevind i USA, dette skyldes metoden å samle måledata. Vinden er den høyeste målingen per tre sekunder, og kan da sammenlignes med maksimalvind for et intervall[15]. Forholdet mellom middelvind og 3-sek er gitt av forholdet:

$$U_{3sekgust} = \overline{U} + k_p \cdot \sigma_u \tag{5-15}$$

Der U er middelvind,  $k_p$  er peakfaktor og  $\sigma_u$  er standardavviket.

For å forenkle arbeidet er input gustvinden satt slik at det gir middelvind tilnærmet lik det ønskelige. På denne måten vil den fluktuerende delen være representativ for ønskede verdier. Simulerte verdier lastes ned som Matlab-filer. Filene består av en fluktuerende vindhastighet, tid og middelvindhastighet. Middelvindhastigheten kan dermed endres til ønskede verdier.

Hensikten med simulerte vindlaster er å undersøke hvordan denne oppfører seg i forhold til reelle målinger, og å sammenlikne de med spektre av vindmålinger. De benyttes også til å finne måledata som skal benyttes for å beregne buffeting vind til å belaste FE-modellen i Abaqus. Resultater fra simulert vind i henger H18 oppsummeres i 8.3.

NatHaz simulerer ikke en vertikal vindkomponent. For høyhus og f.eks. vindturbiner er den langsgående vindkomponenten u den viktigste delen av vindlasten. For lange konstruksjoner som en hengebru er den vertikale vindkomponenten også viktig. Komponentene er ulike i oppbygning og korrelasjonen mellom dem kan f.eks. være negativ. For å inkludere w simuleres denne derfor ved hjelp av et forhold mellom standardavvikene. Som omtalt i kapittel 4.2.1, kan forholdet beskrives som  $\sigma_w \approx 0.50\sigma_u$ . Dette er gyldig for høyder på 100-200 m. For å finne et forhold som kan antas som gyldig for en høyde på 54 meter, beregnes forholdet fra måledata i H18.

| Tidsserie    | $\sigma_{u}$ | $\sigma_{w}$ | Forhold | Middelvind |
|--------------|--------------|--------------|---------|------------|
|              | [m/s]        | [m/s]        |         | [m/s]      |
| 05.50 5.des  | 2.294        | 1.372        | 0.60    | 21.40      |
| 05.40 10.apr | 0.814        | 0.386        | 0.47    | 1.44       |
| 08.40 10.apr | 1.037        | 0.391        | 0.38    | 3.73       |
| 05.10 13.apr | 2.082        | 1.228        | 0.59    | 6.64       |

Tabell 5-9 - Forhold mellom vertikal og horisontal vind

Fra beregninger viser det at forholdet øker med økende middelvindhastighet. For lave vindhastigheter er fluktuerende mer turbulent, og standardavvikene er ikke helt sammenhengende. For høyere vindhastigheter ser det ut til at forholdet konverterer mot 0.6. Den vertikale komponenten består av mindre lavfrekvente komponenter enn den langsgående. En direkte sammenheng mellom de to vil derfor være vanskelig å beskrive. For å inkludere w i beregninger benyttes det, som en sterk forenkling, forholdet mellom standardavviket. De simulerte vindhastighetene oppsummeres da i tabellen under:

| Middelvind | σ <sub>u</sub> | l <sub>u</sub> | k <sub>p</sub> | w     |
|------------|----------------|----------------|----------------|-------|
| [m/s]      | [m/s]          |                |                | [m/s] |
| 5          | 0.526          | 0.105          | 3.09           | 0.5u  |
| 10         | 1.24           | 0.124          | 3.01           | 0.6u  |
| 15         | 1.36           | 0.090          | 3.48           | 0.6u  |
| 20         | 2.32           | 0.116          | 3.04           | 0.6u  |
| 25         | 2.64           | 0.106          | 4.02           | 0.6u  |
| 30         | 3.14           | 0.105          | 3.08           | 0.6u  |
| 38         | 4.55           | 0.120          | 3.63           | 0.6u  |

Tabell 5-10 - Data fra simulert vind

# 5.9 Korrelasjon

For å se hvordan måledata oppfører seg langs brua er det beregnet korrelasjon mellom de forskjellige måleinstrumentene. Korrelasjonen kan som tidligere omtalt beskrives som en tilnærmet eksponential funksjon. Måledata fra 5 måleinstrumenter tidsserie 05.40 og 08.40 10.april, og 05.10 13.april. Det er også foretatt en korrelasjon mellom simulerte vinddata fra NatHaz er korrelert for å illustrere korrelasjonen langs brukassen. Figur 5-10 illustrerer korrelasjon mellom simulerte vinddata.



Figur 5-10 - Korrelasjon mellom målinger i forhold til horisontal avstand



Figur 5-11 – Korrelasjon mellom simulerte vinddata fra NatHaz i forhold til horisontal avstand

Det vil i tillegg være interessant å se på hvordan vindhastighet varierer langs spennet. For å undersøke dette benyttes samme målte tidsserier som for korrelasjon. Middelvindhastigheter fra fem måleinstrument sammenlignes i forhold til plassering langs bruspennet. Figur 5-12 under viser at ved lave middelvindhastigheter, fra 10.april, er vinden

sterkest midt på spennet. Når middelvindhastigheten øker, i måling fra 13. april, ser det ut til at fordelingen langs spennet er mer uniform. Selv om dette imidlertid er et begrenset utvalg målinger, antas det at fordeling av vindhastigheter for  $U_{middel} > 5$  m/s er tilnærmet uniform.



Figur 5-12 - Variasjon i middelvind langs bruspennet

## 5.10 Behandling av akselerasjoner

Måledata fra akselerometeret viser bruas respons kontinuerlig. Dermed er det en god del av måledataene som inneholder trafikkmålinger. Trafikkmålingene er ikke interessante for sammenligning med analyser av vind. Da det kan dannes kombinasjonslaster av vind og trafikklaster som kan være forstyrrende for analyser. Det er derfor viktig å kunne identifisere om akselerasjoner kommer fra vind eller trafikk. I analyser av akselerasjon benyttes det tidsserier som er omtalt tidligere. På denne måten er det mulig å kartlegge hvilke egenfrekvenser som er dominerende for påførte laster. Karakteristisk for trafikkmålinger er et synkront akselerasjonsbilde med en topp i midten. Vind gir et mer tilfeldig bilde, som ligner den fluktuerende delen. Trafikkmålinger har en tendens til å aktivere høyere egenfrekvenser, mens vindmålinger gir lavere. Som for vinddata anses målinger foretatt på nattestid som rene vindmålinger, siden det er liten sjanse for trafikk på denne tiden av døgnet.

Som omtalt i kapittel 0 er to og to akselerometre paret sammen, og målinger er hentet fra H18W og H18E, H24W og H24W. Ved å se på den relative differansen i akselerasjonene mellom de to finner man den totale akselerasjonen. Akselerasjoner for horisontale, vertikale og torsjon blir gitt av følgende sammenheng:

$$H = \frac{h_1 + h_2}{2} \quad V = \frac{v_1 + v_2}{2} \quad T = \frac{v_2 - v_1}{7,15}g \tag{5-16}$$

Der H, V og T er den totale akselerasjonen og  $h_1$ ,  $v_1$  og  $h_2$ ,  $v_2$  er akselerasjonen for de to instrumentene, g er tyngdekraftkonstanten. For torsjon er 7,15 m avstanden mellom apparatene, se Figur 5-13. Horisontale og vertikale akselerasjoner er oppgitt som et forhold av tyngdekraftkonstanten, g. Torsjonale er oppgitt som rad/s<sup>2</sup>.



Figur 5-13 - Plassering av akselerometre

Akselerometrene H18W og H18E er plassert med noe ulik høyde vertikalt. H18W er plassert 0.24 m fra toppen og ned mens H18E er plassert 0.14 m. Dermed gir horisontale akselerasjoner også et bidrag til de torsjonale akselerasjonene. Dette vil ikke påvirke de torsjonale akselerasjonene i stor grad. Skjevstillingen fører også til at horisontale påvirkes ved vertikale akselerasjoner. Det er imidlertid ikke tatt hensyn til dette, og uttrykkene beskrevet over anses for å være tilstrekkelige.

For bare å få utslag fra vibrasjoner, er akselerasjoner korrigert og består kun av den varierende delen. På denne måten kommer svingende variasjoner i brudekket tydeligere frem.

For å se på forskyvninger i brukassen kan det tas det utgangspunkt i akselerasjoner. I Teori om mekaniske svingninger er sammenhengen mellom forskyvning og akselerasjon gitt av uttrykkene[16]:

$$X(t) = A \cdot e^{\omega_k t} \tag{5-17}$$

$$\dot{X}(t) = A \cdot \omega_k e^{\omega_k t} \tag{5-18}$$

$$\ddot{X}(t) = A \cdot \omega_k^2 e^{\omega_k t} \tag{5-19}$$

Der X(t),  $\dot{X}(t)$  og  $\ddot{X}(t)$  er respons, for henholdsvis forskyvning, hastighet og akselerasjon, og  $\omega_k$  er egenfrekvens.

Forholdet mellom akselerasjon og forskyvning kan da skrives som:

$$X(t) = \frac{\ddot{X}(t)}{\omega_k^2} \tag{5-20}$$

Følgende uttrykk fra Strømmen[9] viser sammenhengen mellom spektre.

$$S_{\dot{x}}(\mp \omega_k) = \omega_k^2 S_x(\mp \omega_k) \tag{5-21}$$

$$S_{\dot{x}}(\mp\omega_k) = \omega_k^2 S_{\dot{x}}(\mp\omega_k) \tag{5-22}$$

Der  $S_x$ ,  $S_{\dot{x}}$  og  $S_{\ddot{x}}$  er spektraltetthetsfunksjonen, for henholdsvis forskyvning, hastighet og akselerasjon, og  $\omega_k$  er frekvens.

Forholdet mellom akselerasjons- og forskyvningsspektre kan da beskrives som:

$$S_{\chi}(\mp\omega_k) = \frac{S_{\chi}(\mp\omega_k)}{\omega_k^4}$$
(5-23)

#### 5.11 Akselerasjonsspektre

Ved å ta utgangspunkt i aktuelle tidsserier som omtalt tidligere, fremstilles målinger av akselerasjon Matlab metode beskrevet i forrige kapittel. PSD beregnes etter Welch metode. Nyquist-frekvensen er redusert til 25 Hz ved hjelp av desimeringsfunksjon, og det er benyttet filter for å ekskludere høyere frekvenser enn 10 Hz. Hensikten med dette er å finne de første egenfrekvensene. Måledata blir presentert med overlappende akselerasjoner fra H18 og H24. Figurer for akselerasjon fra tidsserier samt PSD av akselerasjoner fra henholdsvis horisontal, vertikal og rotasjon er vedlagt i vedlegg A.

#### 5.11.1 05.50 5.desember

Figur A - 1 viser at akselerasjoner gir større utslag vertikalt enn horisontalt. PSD av de horisontale akselerasjoner viser hvilke frekvenser som er dominerende. Siden måledataene for denne tidsserien antas å være rene, kun utsatt for vindlast, kan frekvenser antas å være et resultat av vindlaster. Magnituden ved de ulike akselerometrene viser hvilke frekvenser som aktiveres. Frekvenser hvor magnituden fra begge akselerometerpar gir utslag, kan antas å være symmetriske moder. Mens magnituder der bare et akselerometerpar gir utslag antas å være asymmetriske. Dette kan forsvares med formene på svingemoder, som er nærmere omtalt i kapittel 8.2. Fra figur A - 2 PSD av horisontale akselerasjoner, er det funnet følgende egenfrekvenser:

| Frekvens | Magnitude H18 | Magnitude H24 | Svingemode  |
|----------|---------------|---------------|-------------|
| [Hz]     | [dB/Hz]       | [dB/Hz]       |             |
| 0.1318   | 10.16e-4      | 7.802e-4      | symmetrisk  |
| 0.4528   | 1.03e-7       | 1.372e-4      | asymmetrisk |
| 0.5914   | 9.095e-6      | 3.152e-6      | symmetrisk  |
| 0.642    | 2.429e-6      | 1.78e-6       | symmetrisk  |
| 0.7553   | 2.103e-5      | 4.31e-6       | symmetrisk  |
| 0.887    | 5.675e-5      | 5.071e-6      | symmetrisk  |
| 1.046    | 7.883e-5      | 1.68e-6       | symmetrisk  |
| 1.664    | 1.152e-6      | 2.157e-5      | asymmetrisk |

Tabell 5-11 – Horisontale egenfrekvenser fra tidsserie 05.50 5.des. 13

PSD av de vertikale akselerasjoner viser større utslag enn for den horisontale. De tre første magnitudene er også større enn for den første horisontale. Forholdene mellom magnitudene

viser at den første vertikale svingemoden ser ut til å være asymmetrisk, mens den andre er symmetrisk. Fra figur A - 3 PSD av vertikale akselerasjoner er det funnet følgende egenfrekvenser:

| Frekvens [Hz] | Magnitude H18 | Magnitude H24 | Svingemode  |
|---------------|---------------|---------------|-------------|
|               | [dB/Hz]       | [dB/Hz]       |             |
| 0.2298        | 7.648e-5      | 2.933e-3      | Asymmetrisk |
| 0.3007        | 8.218e-3      | 2.995e-3      | Symmetrisk  |
| 0.3430        | 3.752e-4      | 1.353e-4      | Symmetrisk  |
| 0.4156        | 1.736e-3      | 6.574e-4      | Symmetrisk  |
| 0.6015        | 6.847e-6      | 1.06e-3       | Asymmetrisk |
| 0.8752        | 1.516e-3      | 8.886e-4      | Symmetrisk  |
| 1.551         | 1.995e-4      | 1.605e-4      | Symmetrisk  |

Tabell 5-12 – Vertikale egenfrekvenser fra tidsserie 05.50 5.des. 13

PSD av torsjonale akselerasjoner viser lave magnituder i forhold til horisontale og vertikale. Forholdene mellom magnitudene viser at den første torsjonale svingemoden ser ut til å være symmetrisk, mens den andre er asymmetrisk. Fra figur A - 4 PSD av vertikale akselerasjoner, er det funnet følgende egenfrekvenser:

Tabell 5-13 – Torsjonale egenfrekvenser fra tidsserie 05.50 5.des. 13

| Frekvens [Hz] | Magnitude H18 Magnitude H24 |          | Svingemode  |
|---------------|-----------------------------|----------|-------------|
|               | [dB/Hz]                     | [dB/Hz]  |             |
| 1.266         | 1.68e-3                     | 1.29e-3  | Symmetrisk  |
| 2.225         | 1.615e-4                    | 7.802e-7 | Asymmetrisk |
| 3.281         | 3.398e-5                    | 9.045e-7 | Symmetrisk  |

Som det kommer frem av PSD av akselerasjoner kommer ikke de 3 første symmetriske og asymmetriske tydelig fram. Tidligere oppgaver har valgt å fremstille de tre første svingningene av hver type. I stedet vil det være mer hensiktsmessig å illustrere de målte svingemodene fra målinger. Ved hjelp av Abaqus vil svingemodene diskuteres mer i kapittel 7.2.

## 5.11.2 05.40 10.april

Målinger fra 10. april er for relativt lave vindhastigheter. Akselerasjon fra tidsperioder samt PSD av henholdsvis horisontal, vertikal og torsjonal akselerasjon finnes i vedlegg A. Horisontale egenfrekvenser er preget av lave amplituder grunnet lave vindhastigheter. Det gjør at høyere egenfrekvenser som ellers har en lav magnitude viser bedre igjen. Egenfrekvenser fra figur A - 6 PSD av horisontale akselerasjonene oppsummeres i Tabell 5-14

| Frekvens | Magnitude H18 | Magnitude H24 | Svingemode  |
|----------|---------------|---------------|-------------|
| [Hz]     | [dB/Hz]       | [dB/Hz]       |             |
| 0.1402   | 2.343e-9      | 1.747e-9      | symmetrisk  |
| 0.4579   | 2.937e-12     | 1.2313e-10    | asymmetrisk |
| 0.5846   | 3.487e-9      | 1.193e-9      | symmetrisk  |
| 0.637    | 9.543e-11     | 6.426e-11     | asymmetrisk |
| 0.8887   | 3.394e-11     | 3e-12         | symmetrisk  |
| 1.044    | 7.444e-11     | 2.8e-12       | symmetrisk  |
| 1.325    | 1.29e-10      | 3.5e-11       | symmetrisk  |
| 1.585    | 3.5e-11       | 2e-10         | asymmetrisk |
| 2.695    | 2.8e-10       | 1.145e-10     | symmetrisk  |

Tabell 5-14 – Horisontale egenfrekvenser fra tidsserie 05.40 10.april 14

PSD av vertikale akselerasjoner viser svake magnituder. Lav påført vindlast ser ut til å gi svake utslag for den første symmetriske vertikale, mens de to første asymmetriske viser liten, men tydelig amplitude. Egenfrekvenser fra figur A - 8 PSD av vertikale akselerasjoner presenteres i Tabell 5-15.

Tabell 5-15 – Vertikale egenfrekvenser fra tidsserie 05.40 10.april 14

| Frekvens | Magnitude H18 | Magnitude H24 | Svingemode  |
|----------|---------------|---------------|-------------|
| [Hz]     | [dB/Hz]       | [dB/Hz]       |             |
| 0.2332   | 2.821e-10     | 3.67e-8       | Asymmetrisk |
| 0.2991   | 3.547e-7      | 1.221e-7      | Symmetrisk  |
| 0.6049   | 9.777e-10     | 3e-12         | Asymmetrisk |

Figur A - 8 PSD av torsjonale akselerasjoner viser utslag for flere frekvenser. Spektret gir utslag ved to og to relativt like frekvenser, noe som kan skyldes at torsjon avhenger direkte av vertikale egenfrekvenser, men ser ut til å bli påvirket av mange svake utslag fra den horisontale. Egenfrekvenser PSD av torsjonale akselerasjoner presenteres i Tabell 5-16.

| Tabell 5-16 – Torsjonale egenfrekvenser fra | a tidsserie 05.40 10.april 14 |
|---------------------------------------------|-------------------------------|
|---------------------------------------------|-------------------------------|

| Frekvens [Hz] | Magnitude H18 | Magnitude H24 | Svingemode  |
|---------------|---------------|---------------|-------------|
|               | [dB/Hz]       | [dB/Hz]       |             |
| 1.264         | 1.054e-9      | 9.117e-10     | Symmetrisk  |
| 1.325         | 6.16e-10      | 3.8e-10       | Symmetrisk  |
| 2.102         | 1.355e-10     | 7.35e-12      | Asymmetrisk |
| 2.229         | 1.615e-4      | 7.802e-7      | Asymmetrisk |
| 3.273         | 3.596e-10     | 1.3e-11       | Symmetrisk  |
| 3.47          | 9.2e-10       | 1e-11         | Symmetrisk  |
| 4.023         | 4.245e-11     | 1.088e-9      | Asymmetrisk |
| 4.246         | 9.87e-11      | 5.542e-10     | Asymmetrisk |

### 5.11.3 08.40 10.april

Fra figur A - 9 fra tidsserie 08.40 er det registrert akselerasjoner som ser ut til å være trafikk. Vibrasjonen er synkron og tydelig med en amplitude ved midten av vibrasjon. Dette i tillegg til at vindlaster er lave og tidsrommet ligger innenfor rushtid styrker opp om at det skyldes en trafikklast. PSD av de horisontale akselerasjonene viser utslag for de tre første horisontale egenfrekvensene. Egenfrekvenser fra figur A - 10 PSD av horisontale akselerasjoner, oppsummeres i Tabell 5-17.

| Frekvens | Magnitude H18 | Magnitude H24 | Svingemode  |
|----------|---------------|---------------|-------------|
| [Hz]     | [dB/Hz]       | [dB/Hz]       |             |
| 0.1385   | 4.991e-7      | 3.849e-7      | Symmetrisk  |
| 0.4545   | 1.708e-10     | 9.023e-8      | Asymmetrisk |
| 0.5863   | 1.05e-8       | 3.02e-8       | Symmetrisk  |
| 1.042    | 2.176e-8      | 8.11e-10      | Symmetrisk  |
| 1.642    | 2.662e-8      | 3.373e-9      | Asymmetrisk |

| Tabell 5-17 – Horisontale egenfrekvenser fra tie | idsserie 08.40 10.april 14 |
|--------------------------------------------------|----------------------------|
|--------------------------------------------------|----------------------------|

Figur A - 11 PSD av vertikale akselerasjoner viser at trafikklaster gir utslag på flere høye vertikale egenfrekvenser. Egenfrekvenser fra PSD av vertikale akselerasjoner, oppsummeres i Tabell 5-18.

| Frekvens | Magnitude H18 | Magnitude H24 | Svingemode  |
|----------|---------------|---------------|-------------|
| [Hz]     | [dB/Hz]       | [dB/Hz]       |             |
| 0.2298   | 7.47e-9       | 1.277e-5      | Asymmetrisk |
| 0.2991   | 2.382e-6      | 7.886e-7      | Symmetrisk  |
| 0.4156   | 3.636e-7      | 1.896e-7      | Symmetrisk  |
| 0.5964   | 1.056e-9      | 1.115e-6      | Asymmetrisk |
| 0.8685   | 2.858e-7      | 1.657e-7      | Symmetrisk  |
| 1.548    | 8.833e-7      | 7.204e-7      | Symmetrisk  |
| 1.984    | 1.843e-8      | 4.567e-7      | Asymmetrisk |
| 2.416    | 1.154e-6      | 4.916e-8      | Symmetrisk  |
| 2.879    | 2.631e-9      | 8.59e-7       | Asymmetrisk |
| 3.393    | 1.037e-6      | 6.296e-7      | Symmetrisk  |
| 4.40     | 3.135e-6      | 2.986e-6      | Symmetrisk  |

Tabell 5-18 – Vertikale egenfrekvenser fra tidsserie 08.40 10.april 14

Figur A - 12 PSD av torsjonale akselerasjoner viser utslag for flere frekvenser. Spektret gir utslag ved to og to relativt like frekvenser. Det kan da antas at egenfrekvens ligger i det målte intervallet. Egenfrekvenser fra PSD av torsjonale akselerasjoner, er oppsummert i Tabell 5-19.

| Frekvens [Hz] | Magnitude H18 | Magnitude H24 | Svingemode  |
|---------------|---------------|---------------|-------------|
|               | [dB/Hz]       | [dB/Hz]       |             |
| 1.264         | 8.705e-7      | 6.628e-7      | Symmetrisk  |
| 2.227         | 3.04e-9       | 9.571e-7      | Asymmetrisk |
| 3.28          | 1.031e-7      | 2.849e-9      | Symmetrisk  |
| 4.042         | 4e-8          | 9.52e-10      | Asymmetrisk |
| 4.379         | 7.27e-9       | 8.185e-8      | Asymmetrisk |
| 4.915         | 9.856e-8      | 1.233e-8      | Symmetrisk  |
| 5.157         | 8.961e-9      | 2.635e-8      | Asymmetrisk |
| 5.456         | 8.27e-9       | 2.3e-9        | Symmetrisk  |

Tabell 5-19 – Torsjonale egenfrekvenser fra tidsserie 08.40 10.april 14

For å vise frekvenser utenfor det filtrerte vinduet benyttes det logaritmisk plot, av en serie som har nyquist-frekvens på 25 Hz. Vedlegg A. Fra PSD av ufiltrerte akselerasjoner er det tre verdier som er verdt å merke seg. Disse er oppsummert i tabellen under.

| Frekvens [Hz] | Туре       | Figur  |
|---------------|------------|--------|
| 8.519         | Horisontal | A - 13 |
| 6.008         | Vertikal   | A - 14 |
| 6.172         | Torsjonal  | A - 15 |

Tabell 5-20 - Ufiltrerte egenfrekvenser

### 5.11.4 05.10 13.april

Fra figur A - 16 av tidsserien 05.10 13.april, viser akselerasjoner en vibrasjon som ligner på den fluktuerende delen til vindlasten. PSD av akselerasjoner viser at bare den første egenfrekvensen aktiveres. PSD av den vertikale akselerasjonen utslag i de 5 første egenfrekvensene. PSD av de torsjonale akselerasjonene viser utslag de tre første. Akselerasjoner samt PSD for tidsserien er vedlagt Vedlegg A. Avleste resultater oppsummeres i Tabell 5-21.

| Tabell 5-21 - | Oppsummering | egenfrekvenser | tidsserie ( | )5.10 13.april 14 |
|---------------|--------------|----------------|-------------|-------------------|
|               |              |                |             |                   |

| Frekvens | Magnitude H18 | Magnitude H24 | Svingemode  | Туре       |
|----------|---------------|---------------|-------------|------------|
| [Hz]     | [dB/Hz]       | [dB/Hz]       |             |            |
| 0.1352   | 1.84e-4       | 1.424e-4      | Symmetrisk  | Horisontal |
| 0.2264   | 2.72e-6       | 2.705e-4      | asymmetrisk | Vertikal   |
| 0.2974   | 5.174e-4      | 2.014e-4      | Symmetrisk  | Vertikal   |
| 0.419    | 3.92e-5       | 1.5e-5        | Symmetrisk  | Vertikal   |
| 0.5947   | 8e-8          | 6.5e-5        | Asymmetrisk | Vertikal   |
| 0.8701   | 2.5e-5        | 1.55e-5       | Symmetrisk  | Vertikal   |
| 1.262    | 1.54e-5       | 1.9e-5        | Symmetrisk  | Torsjonal  |
| 2.232    | 4.1e-9        | 5.6e-7        | asymmetrisk | Torsjonal  |
| 3.285    | 2.689e-7      | 8e-9          | Symmetrisk  | Torsjonal  |

# 6 FE-modell

Lysefjordbrua ble dimensjonert etter beregninger i FEM-programmet Alvsat[17]. I en tidligere oppgave av R. Steigen[1] ble det laget en modell i ABAQUS basert på input fra Alvsat. Grunnlaget for min FE-modell baseres på input fra denne og modifikasjoner utført i en påfølgende oppgave av J. Tveiten[2]. Denne oppgaven har som hensikt å foreta modifiseringer for å tilnærme modellen opp mot reelle målinger. Derfor vil modellen beskrives i sin helhet gjennom dette kapittelet.

# 6.1 Abaqus programmet

Abaqus/cae[18] er et program som baserer seg på elementmetoden (FEM). Programmet blir i stor grad brukt til beregning av ikke-lineære problemer. Det kan beskrive flere typer konstruksjoner, flere elementtyper, fra Euler-Bernoulli bjelker til skallkonstruksjoner, og beregne både statiske og dynamiske ikke-lineære problemer. Den største ikke-lineære problemstillingen med en hengebru er den geometriske stivhetsmatrisen knyttet til kablene. Abaqus oppdaterer kontinuerlig stivhetsmatrisen, noe som gir et reelt lastbilde av oppførselen til konstruksjonen. Den tillater også enkelt å fjerne elementer for å se på redistribusjon av krefter. Abaqus kan kjøres med såkalte sub-rutiner gjennom for eksempel fortran eller python. Dette krever en del forkunnskap til programmering og tilgang til kompatible programmer. Siden forfatteren ikke har slik forkunnskap benyttes i stedet brukergrensesnittet i Abaqus/cae.

I programmet benyttes det ikke enheter. Brukeren må derfor være konsekvent med dimensjoner og enheter, og behandle disse utenfor programmet. Alle enheter som brukes i oppgaven er oppgitt i SI-enheter. I oppgaven benyttes en student versjon av programmet. Denne er begrenset til 1000 elementer, noe som er godt nok til å kjøre stavmodellen.

## 6.2 Abaqus modellen

Finite Element (FE) modellen er basert på numerisk modellering. Der stavelementer er knyttet sammen med noder, og der nodene er tilegnet masse og plassert for å best mulig representere de geometriske egenskapene. Modellen antar at deformasjon av brukassen er svært liten i forhold til den globale forskyvningen. Denne måten å modellere på er i stor grad benyttet til beregninger av hengebruer, blant annet i beregning av Hardangerfjordbrua.

Utgangsmodellen er hentet fra en input-fil, dermed må geometriske endringer av modellen redigeres i input-filen. Ulempen med dette er at modifikasjoner dermed er tidkrevende og krever grundighet. Fordelen er imidlertid at modellen ikke trenger å bygges opp fra bunn og analyser kan settes i gang tidlig. Dessuten har oppgaven som hensikt å modifisere en eksisterende modell.

## 6.2.1 Definisjon av retning

Stavelementene i modellen er nummerert fra en og opp. Nummereringen starter på nordsiden av brua og går mot sørsiden. Med nordsiden menes det den lokale nord, Figur 2-1 under viser hvordan den lokale nordsida orienteres om brua. Koordinatene er orientert med x-aksen langs bruspennet med positiv retning mot sør. Y-aksen er på tvers av brukassen og

positiv i lokal øst og negativ i lokal vest. Følgelig er z-retning i orientert med positiv retning opp og negativ retning ned, illustert i Figur 6-1.



Figur 6-1 – Definisjon av retninger på Lysefjordbrua

# 6.2.2 Elementer

I Figur 6-2 illustreres oppbygningen av FE-modellen. For å kunne kjøre modellen må den modifiseres. Utførte endringer av elementer i den eksiterende modellen er kommentert i hvert avsnitt nedenfor.



Figur 6-2 - FE-modellen i ABAQUS

## Brukassen

Brukassen er bygd opp ved hjelp av fire noder. Sidenoder er plassert i koblingspunktet mellom brukassen og hengekablene. Den midterste noden er plassert i nøytralaksen og i midten av bredden til brukassen. Den nederste noden har som brukes for å tilegne plassering av masse. Stavelementer med høy stivhet knytter sammen sidenoder med de midterste nodene, se Figur 6-3.



Figur 6-3 - Oppbygging av noder, skisse J.Tveiten[2]

Brukassen er modellert med totalt 37 noder i x-retning i hovedspennet. Hver av nodene har en avstand på 12 meter, utenom den første og siste som er på 19 meter. Hovedspennet er da på totalt 446 meter. Avstanden mellom hver node er den samme som avstanden mellom hver hengekabel. For å binde nodene sammen langs spennet benyttes stavelementer med tverrsnittsdata fra brukassen. Nummereringen av brukassen er den samme i Steigen og Tveiten, og kan oppsummeres av figuren under:



Figur 6-4 - Nummerering av brukasse, skisse av Jan Tveiten[2]

Stivhetsmatrisen er avhengig av plassereringen av skjæraksen, noe som er særlig viktig for torsjonsvridninger. Skjæraksen defineres ved en kommando, som orienterer aksen i forhold til nøytralaksen. Beregninger viser at plasseringen av nøytralaksen er noe ulik den i Steigen[1]. Det er derfor foretatt modifikasjoner av plasseringen av midtnoden. Ytterlige justeringer av noder utføres for å tilnærme modellen med målte egenfrekvenser, endringene omtales mer i kapittel 6.3.

Elementene som er brukt i modellen er av typen B31. Dette er et 2 node lineært bjelkesegment med skjærdeformasjon. Fordelen med denne er dens enkle geometriske form som har få frihetsgrader. Forenklingen kan forsvares med at brukassens materielle egenskaper antas å være neglisjerbare, sammenlignet med målte verdier. Forskyvninger i nodene alene vil være nok til å sammenligne relevante resultater.

### Hovedkabler

Hovedkablene er knyttet til hengekablene med en node for hver hengerkobling. Dette gir totalt 37 noder fordelt langs kabelkurven. I original-input får den første og siste noden en unormal helning mot brutårnene, dette skyldes at brutårnene smalner litt inn ved toppen. Dermed er den siste og første noden i hver av hovedkablene justert med 0,11 m i x-retning.

Hovedkablene er modellert med et segment mellom hver node. I forhold til originalen er det foretatt en vesentlig endring. For å best mulig modellere kablene er de laget som sirkulærebjelker med r = 0.118 m, som ikke kan ta opp trykk. Dette oppnås med å definere en materialtype for kablene. Arealet av kabelen blir da 0.044 m<sup>2</sup>, det samme som er benyttet i original-input. Kablene beholder dermed samme densitet som er benyttet tidligere. I original-input er de bakre hovedkablene modellert som et element. For å oppnå en mer reel fleksibilitet er disse delt opp i flere segmenter. Hovedkablene er modellert med elementer av type B31.

### Hengekabler

Hengekablene er modellert med et element mellom hver node i hovedkablene og sidenodene i brukassen. Hver kabel har en ulik lengde tilsvarende avstanden mellom kurven av brubjelken og hovedkabelbanen. På samme måte som for hovedkablene er også hengekablene modellert som sirkulærebjelker med en diameter på 58 mm, som ikke kan ta opp trykk. For å sikre at modellen kjører riktig tilegnes de også en densitet på 7850 kg/m<sup>3</sup>. Segmentene er på samme måte som hovedkablene modellert med typen B31.

### Brutårn

Brutårnene er modellert med 29 bjelkesegmenter i hvert bein, med to kryssende bjelker mellom hvert bein, rett under brukassen og i toppen. Kryssene er modellert med 7 noder, med 6 elementer hver. Brutårnene er noe ulike i størrelse, tårnet på sørsiden er høyere enn nordsiden og den kryssende bjelken under brukassen ligger 7 meter lavere enn for tårnet på nordsiden. Antall noder er det samme, men avstanden mellom er justert i forhold til dette.

I originalmodellen er elementtypen FRAME3D brukt til å modellere tårnene. Dette er et element som er ment til å beskrive rammer, som for eksempel store betongkonstruksjoner. Ved kjøring i nåværende Abaqus/cae støttes ikke denne typen element. Det ble derfor foretatt en modifikasjon av denne. Elementtypen ble forsøkt endret til B31H for å få analysert modellen. FRAME3D er et 4.ordens element, mens B31H er basert på 1.ordens

integrasjon. Ved å bruke tilleggskommando TAPER så modelleres elementet som et varierende tverrsnitt mellom to referanse tverrsnitt. For å modellere interaksjonen mellom brukasse og brutårn benyttes kommandoen RELEASE. Denne har som hensikt å illustrere hvordan opplagrene til brukassen hviler på brutårnet. Denne kommandoen er heller ikke støttet i Abaqus/cae, og forsøk med å bruke en bjelke med en stivhet tilnærmet et slikt opplager har vist seg å ikke gi tilfredsstillende resultater. Dermed er ikke brutårnene modellert i modellen. Resultater fra Steigen har vist at FE-modellen ikke avviker i stor grad fra modellen med brutårn. Det ser heller ikke ut som originalberegninger fra Alvsat tar særlig hensyn til disse. For enkelhetsskyld velges det derfor å benytte en FE-modell uten brutårn. Dette forenkler beregningstiden og siden det heller ikke er foretatt målinger ved brutårnene, så vil ikke respons av brutårnene bli omtalt i denne oppgaven.

# 6.2.3 Geometri

Geometrien til FE-modellen kan oppsummeres med følgende punkter:

- Hovedspenn: 446 m
- Avstand fra topp kabel til bunn av kabel: 45 m
- Avstand mellom hovedkabler: 10,25 m
- Lengde på bruspennet på nordsiden: 73,906 m
- Lengde på bruspennet på sørsiden: 166.046 m
- Korteste hengekabel: 3,0 m
- Lengste hengekabel: 47,2 m
- Avstand mellom hengekabelkoblingen og brukassens nøytralakse: 1,004 m
- Høyde brukasse ved brutårn nord: 54. 465 m
- Høyde brukasse ved midtspenn: 54.472 m
- Høyde brukasse ved brutårn sør: 46.001 m

På hengebruer er det vanlig å ha kurve på spennet fordi dette er gunstig for fordeling av krefter. Den eksisterende brua har en kurvet senterlinje langs hovedspennet. Geometrien av denne kan beskrives som en sirkel med utgangspunkt i tre kjente punkter, et punkt ved midten av hovedspennet og to ved brutårnene. Hovedkablene har en kurvet geometri som kan beskrives som en parabel. Uttrykkene er beregnet i Mathcad og excel, og resulterende kurver er illustrert i Figur 6-5 på neste side.

Generelt uttrykk for sirkel med to kjente punkter:

$$x^2 + y^2 + Dx + Ey + F = 0$$
 (6-1)

Generelt uttrykk for parabel:

$$Y = ax^2 + b \tag{6-2}$$



Figur 6-5 - Vertikal geometri for brukasse og kabler

Dette er den eksisterende geometrien som inkluderer deformasjon av egenlaster. Dermed må det i input-filen lages det en kurvatur som modifisert for å oppnå geometrien etter påført egenlast. Dette er nærmere omtalt i kapittel 7.1.

# 6.2.4 Frihetsgrader

Modellen uten brutårn laget av Steigen[1] er ikke fasthold for forskyvning i x-aksen. Dette medfører at modellen gir flere vertikale svingemoder i tillegg til de Steigen har presentert. I henhold til beskrivelse av opplageret velges denne ekstra fastholdingen. Resultater viser også at egenfrekvenser blir på denne måten mer tilnærmet reelle målinger.

- Bakre hovedkabler er innspent der kablene treffer fjellet. •
- Hovedkabler er fritt opplagt i toppen av tårnene. •
- Brukassen er frittopplagt, med fastholdning av x-aksen på nordsiden. Den fastholdes i • tillegg mot vridning om x-aksen i begge ender.

## 6.2.5 Stivhetsegneskaper

Tverrsnittsdata er i hovedsak basert på originalinput fra Alvsat og beregninger fra tidligere oppgaver. Både Tveiten[2] og Steigen[1] har beregnet nøytralakse, arealmoment, areal og skjærsenter, med tilnærmet like resultater. En forenklet kontrollberegning er utført i vedlegg D. Beregning av skjærsenter er utført i tverrsnittsprogrammet CrossX. Programmet kan i prinsippet brukes til å beregne hele tverrsnittet, men studentversjonen som har blitt benyttet i dette tilfellet har begrensninger når det gjelder dette. Derfor er det foretatt beregning av brukassen uten avstivende trapesprofilene og en individuell analyse av de ulike trapesprofilene i programmet. Resultatene kombineres i Mathcad, og resultater er listet opp, beregninger er vedlagt i vedlegg D.

|                                        |       | Tveiten[2] | Steigen[1] |
|----------------------------------------|-------|------------|------------|
| Nøytralakse Y(m)                       | 1.720 | 1.704      | 1.776      |
| Annet arealmoment ly (m <sup>4</sup> ) | 0.436 | 0.457      | 0.429      |
| Areal A (m <sup>2</sup> )              | 0.389 | 0.387      | 0.343      |
| Skjærsenter Ys (m)                     | 1.529 | 1.433      | 1.776      |

Tabell 6-1 – Tverrsnittsdata for brukasse

Skjærsenter er en avgjørende dynamisk egenskap fordi rotasjon ikke nødvendigvis finner sted i massesenterets akse, men i skjærsenter. Spesielt er dette avgjørende for torsjonssvingninger, og tidligere oppgaver har vist at egenfrekvensene for torsjon er vanskelige til å stemme med originalberegninger fra Alvsat. Sammenligninger av torsjonssvingninger viser store avvik, opptil 25 %. Justering av skjærsenter er en viktig faktor for å tilnærme seg resultater enklere. Det vil derfor foretas modifikasjoner av tverrsnittsdata for å tilstrebe en mest mulig reell FE-modell.

# 6.2.6 Andre Parametere

Tyngde akselerasjonen er 9,81 m/s<sup>2</sup>

# 6.2.7 Dempning

Dempning av en konstruksjon satt i bevegelse beskrives med følgende bevegelsesligning:

$$M \ddot{q}(t) + C \dot{q}(t) + K q(t) = F(t)$$
(6-3)

Hvor C er dempningen av systemet. Dempningen uttrykkes best med et dempningsforhold, ζ. ABAQUS tilbyr Rayleigh dempning til å beskrive den dynamiske dempningen. Denne metoden kalles også for viskøs dempning, og forutsetter at dempningsmatrisen er proporsjonal med masse- og stivhetsmatrisen. Dempningen og dempningsforholdet kan da uttrykkes på følgende måte:

 $C = \alpha M + \beta K$ 

Høyfrekvente moder vil i stor grad dempes med  $\alpha$ , mens lavfrekvente moder vil dempes med  $\beta$ . For et frihetsgradssystem gjelder følgende.

$$\zeta_n = \frac{\alpha}{2\omega_n} + \frac{\beta}{2}\omega_n \tag{6-4}$$

Ved å benytte den første egensvingefrekvensen HS1 beregnes dempingsfaktorer i forhold til dempningsforhold. I FE-modellen benyttes den dempingsfaktorene for  $\zeta$  = 0.005.

| Tabell 6-2 - Dempningsfaktor ved HS |
|-------------------------------------|
|-------------------------------------|

| $\zeta_n$ | α      | β      |
|-----------|--------|--------|
| 0.005     | 0.0109 | 0.0024 |

## 6.2.8 Masse

Vekten av brukassen, hengestagene og hovedkablene er hentet fra Alvsat. Verdiene og resultatene er gjengitt i eget Mathcad vedlegg, og er basert på beregninger for modellen til

Steigen. Lengden på hovedspennet er 446 meter. Vekten av brukassen er 5350 kg/m som gir en totalvekt på 2386 tonn. Lengden på kablene i hovedspennet er beregnet i excel, med utgangspunkt i den gitte parabel, til å være 458.6 meter. Vekten av kablene er fra Alvsat er 816 kg/m som gir en total masse på 375 tonn. De bakre kablene har en masse på 181 tonn. Den totale vekten av modellen blir da 2942 tonn. Beregning av massesenter er utført etter metode beskrevet i Tveiten[2]. Der massen 5350 kg/m er fordelt i forhold til montert utstyr på bjelken. Figur 6-6 med tilhørende Tabell 6-3 beskriver fordelingen på en god måte og vil derfor benyttes videre i oppgaven.



Figur 6-6 - Fordeling av masse, skisse av J.Tveiten[2]

Der massene er som følger:

| Mass tag      | Mass type                                    | Mass[kg/m] |
|---------------|----------------------------------------------|------------|
| m1            | Mass of girder                               | 3466       |
| m2            | Mass of asphalt                              | 1286       |
| m3            | Mass of hangers (symmetric about centerline) | 95         |
| m4            | Railing type 1                               | 150        |
| m5            | Railing type 2                               | 100        |
| Mass of cable | All main cables                              | 816        |

Basert på plassering av massesenter beregnes fordeling av masse i den modellerte brukassen. Beregninger foretas med hensyn til likevekt av treghetsmomentet. Som tidligere omtalt er brukassen modellert ved hjelp av tre masser. Fra beregninger i Mathcad er avstandene og masse 1 og 2 beregnet til å være følgende, se vedlegg D:



Figur 6-7 - Modellering av masser i brukasse

| Z <sub>m1</sub> = 2760 mm | Z <sub>m</sub> = 1720 mm (Nøytralakse) | Z <sub>m2</sub> = 1040 mm |
|---------------------------|----------------------------------------|---------------------------|
| r <sub>2</sub> = 460 mm   | M <sub>1</sub> = 1498 kg/m             | M₂ = 2354 kg/m            |

# 6.3 Egenmoder og egenfrekvenser

Svingemoder og svingefrekvenser spiller en stor rolle på dynamisk respons. Det er disse som avgjør hvilken form for bevegelse som brua vil ta. Abaqus utfører en vibrasjonsanalyse av modellen for å finne disse. Basert på foregående beskrivelse av FE-modellen kan svingeformene oppsummeres i oversikten under. Framgangsmåten ved å identifisere svingemoder er å observere frekvenser i resultatvindu i Abaqus. Modellen viser egenfrekvens samt en svingeform. Steigen har utført ulike forsøk i forbindelse med oppbyggingen av modellen. Basert på dette viser resultater at det er liten forskjell på svingeformer og egenfrekvenser i hovedspennet med og uten brutårn, noe som viser at det er forsvarlig å fjerne tårnene, som tidligere omtalt.

Egenfrekvenser er beskrevet med de 3 første modene av hver type. Modene er som følger:

- Type 1
  - o HS-1: Horisontal symmetrisk 1. mode
  - HS-2: Horisontal symmetrisk 2. mode
  - HS-3: Horisontal symmetrisk 3. mode
- Type 2
  - HA-1: Horisontal asymmetrisk 1. mode
  - HA-2: Horisontal asymmetrisk 2. mode
  - HA-3: Horisontal asymmetrisk 3. mode
- Type 3
  - VS-1: Vertikal symmetrisk 1. mode
  - VS-2: Vertikal symmetrisk 2. mode
  - o VS-3: Vertikal symmetrisk 3. mode
- Type 4
  - o VA-1: Vertikal asymmetrisk 1. mode
  - VA-2: Vertikal asymmetrisk 2. mode
  - VA-3: Vertikal asymmetrisk 3. mode
- Type 5
  - o TS-1: Torsjon symmetrisk 1. mode
  - o TS-2: Torsjon symmetrisk 2. mode

- TS-3: Torsjon symmetrisk 3. mode
- Type 6
  - o TA-1: Torsjon asymmetrisk 1. mode
  - TA-2: Torsjon asymmetrisk 2. mode
  - o TA-3: Torsjon asymmetrisk 3. mode

Svingemoder fra tidligere oppgaver er sammenlignet med originalanalysen i Alvsat. Tidligere har det vært hensiktsmessig å lage en modell som gir resultater nærmest resultatene fra Alvsat. Det vil imidlertid være interessant å se hvilke som ligger nærmest den målte responsen. Analyser av modellen viser at de fleste svingeformene inneholder variasjoner i hovedkablene. Det vil si at det finnes flere svingemoder der kablene har ulike svingeformer enn der selve brudekket svinger. Noe som gir en indikasjon på at hovedkablene er mer sensitive for svingninger enn selve brudekket.

|      | Alvsat   | Uten brutårn  | Tveiten  | Målinger | Målinger |
|------|----------|---------------|----------|----------|----------|
|      |          | Steigen       |          | 5.des    | 10.apr   |
|      | frekvens | Frekvens (Hz) | Frekvens | Frekvens | Frekvens |
|      | (Hz)     |               | (Hz)     | (Hz)     | (Hz)     |
| HS-1 | 0.1297   | 0.1287        | 0.1276   | 0.1318   | 0.1402   |
| HS-2 | 0.5556   | 0.5376        | 0.5334   | 0.5914   | 0.5846   |
| HS-3 | 0.8333   | 0.8130        | 0.8333   | 0.887    | 0.8887   |
| HA-1 | 0.4425   | 0.4386        | 0.4311   | 0.4528   | 0.4579   |
| HA-2 | 0.5988   | 0.5882        | 0,5834   | -        | 0.637    |
| HA-3 | 1.0000   | 0.9709        | 0.9737   | 1.042    | 1.047    |
| VS-1 | 0.2865   | 0.3049        | 0,3020   | 0.3007   | 0.2991   |
| VS-2 | 0.4000   | 0.4115        | 0.4070   | 0.4156   | 0.4156   |
| VS-3 | 0.8696   | 0.8621        | 0.8559   | 0.8752   | 0.8685   |
| VA-1 | 0.2132   | 0.2212        | 0.2143   | 0.2298   | 0.2332   |
| VA-2 | 0.5882   | 0.5848        | 0.5830   | 0.6015   | 0.6049   |
| VA-3 | 1.2048   | 1.1905        | 1.1905   | 1.551    | 1.548    |
| TS-1 | 1.1494   | 1.0309        | 1.0862   | 1.266    | 1.264    |
| TS-2 | 3.2258   | 2.7027        | 2.8482   | 3.281    | 3.273    |
| TS-3 | 5.5556   | 5.0000        | 4.5167   | -        | -        |
| TA-1 | 2.1277   | 1.8182        | 1.8577   | 2.225    | 2.227    |
| TA-2 | 4.3478   | 3.5714        | 3.6846   | -        | 4.379    |
| TA-3 | 6.6667   | 5.8824        | 5.0839   |          | 6.172    |

Tabell 6-4 - Sammenligning av tidligere modeller

Målte egenfrekvenser viser at den eksisterende FE-modellen har god tilnærming til reelle egenfrekvenser. Særlig de første vertikale og horisontale stemmer bra med Abaqus. Resultater fra Alvsat viser seg å være bedre på tilnærming av torsjon. Som tidligere omtalt er tilnærming av torsjonsfrekvenser utfordrende å modellere. For å tilnærme resultatene må egenskaper som påvirker følgende frekvenser modifiseres.

• Litt høyere symmetrisk og asymmetrisk horisontalfrekvens

- Litt høyere asymmetrisk vertikalfrekvens
- Høyere symmetrisk og asymmetrisk torsjonsfrekvens

Som man ser fra målinger er det særlig egenfrekvenser av torsjon som avviker i størst grad. Målingene tilsier at den eksisterende FE-modellen er litt stivere en den reelle hengebrua. Ved å utføre valideringsanalyser i Mathcad ved hjelp av teori fra Bleich/Steinmann, omtalt i kapittel 8.1, kan det undersøkes hvilke parametere som kan gi en bedre tilnærming.

# 6.4 Modifikasjon av modellen

Frekvenser for symmetriske torsjonssvingninger knyttes direkte til treghetsmoment  $I_m$ . Dersom det reduseres økes egenfrekvensen. Tveiten[2] har med utgangspunkt i Figur 6-6 beregnet et treghetsmoment uten vekten av hovedkablene. Beregninger gir en ny  $I_m = 58$ 420 kgm<sup>2</sup>/m. Fordelingen av M<sub>1</sub> og M<sub>2</sub> med nytt treghetsmoment er beregnet i Mathcad, og fordelingen er som følger:

 $Z_{m1} = 2760 \text{ mm}$   $Z_m = 1720 \text{ mm} (Nøytralakse)$   $Z_{m2} = 1040 \text{ mm}$   $r_2 = 62 \text{ mm}$   $M_1 = 1074 \text{ kg/m}$  $M_2 = 3203 \text{ kg/m}$ 

Denne konfigurasjonen legger den fiktive massen tilnærmet plassert i den nøytrale aksen.

Endringer i treghetsmoment påvirker ikke de vertikale frekvensene. Da den totale vertikale massen forblir den samme. Frekvensene avhenger direkte av bøyestivheten om den svake aksen. Med å øke annet arealmoment  $I_y$  vil også konstruksjonenes vertikale egenfrekvenser øke. At brukassen er stivere enn først antatt kan skyldes innvirkningen av tverravstivere som er lagt inn per fjerde lengdemeter. Disse ser ut til å gi et større bidrag til stivhet enn tidligere antatt. stivheter økes med 10 % for å ta hensyn til bidraget.

Bleich og Steinman har ikke definert en metode for å finne horisontale egenfrekvenser. Dermed er det vanskelig å se hvilke variabler som kan øke frekvensen. Men det vil være hensiktsmessig å anta at variablene er de samme som for vertikale svingninger. Hovedparameteren ser ut til å være horisontal masse, og stivhet fra kabler og stavelementer. Som for vertikale egenfrekvenser avhenger horisontale egenfrekvenser av bøyestivhet, om den sterke aksen  $I_z$ . For å være konsekvent økes også denne med 15 % for å ta hensyn til bidraget av tverravstivere.

Modellen modifiseres som omtalt i foregående kapitler. Det modelleres to modeller etter følgende beskrivelser:

## Test 1

Uten brutårn, alle kabler kan bare ta opp strekk. Skjærsenter lik 1529 mm. Bøyestivhet økes med 15 %. Treghetsmoment lik 82 340 kg m<sup>2</sup>/m.

# Test 2

Uten brutårn, alle kabler kan bare ta opp strekk. Skjærsenter satt til 1529 mm. Bøyestivhet økes med 15 %. Masser er fordelt med treghetsmoment lik 58 420 kg m<sup>2</sup>/m.

Resultater av modeller og sammenligning med egenfrekvenser oppsummeres i Tabell 6-5 på neste side.

|     | Steigen | Test 1 | Test 2 (Hz) | Måling     | Målinger   | Målinger |
|-----|---------|--------|-------------|------------|------------|----------|
|     | (Hz)    | (Hz)   |             | 05.12      | 10.04      | 10.04    |
|     |         |        |             | (ren vind) | (ren vind) | (med     |
|     |         |        |             |            |            | trafikk) |
| HS1 | 0,129   | 0,132  | 0,133       | 0,132      | 0,140      | 0,139    |
| HS2 | 0,538   | 0,537  | 0,544       | 0,591      | 0,585      | 0,586    |
| HS3 | 0,813   | 0,832  | 0,845       | 0,887      | 0,889      | -        |
| HS4 | -       | 1,047  | 1,051       | 1,046      | 1,044      | 1,042    |
| HA1 | 0,439   | 0,455  | 0,456       | 0,453      | 0,458      | 0,455    |
| HA2 | 0,588   | 0,584  | 0,594       | 0,642      | 0,637      | -        |
| HA3 | 0,971   | 0,957  | 0,980       | -          | -          | -        |
| HA4 | -       | 1,347  | 1,385       | 1,664      | 1,585      | 1,642    |
| VS1 | 0,305   | 0,307  | 0,297       | 0,301      | 0,299      | 0,299    |
| VS2 | 0,412   | 0,416  | 0,413       | 0,416      | -          | 0,416    |
| VS3 | 0,862   | 0,905  | 0,845       | 0,852      | -          | 0,869    |
| VS4 | -       | 1,685  | 1,691       | 1,551      | -          | 1,548    |
| VS5 | -       | 2,451  | 2,452       | -          | -          | 2,416    |
| VA1 | 0,221   | 0,219  | 0,223       | 0,230      | 0,233      | 0,230    |
| VA2 | 0,585   | 0,609  | 0,614       | 0,602      | 0,605      | 0,596    |
| VA3 | 1,190   | 1,261  | 1,266       | -          | -          | -        |
| VA4 | -       | 2,172  | 2,178       | -          | -          | 2,416    |
| VA5 | -       | 3,345  | 3,343       | -          | -          | 3,393    |
| TS1 | 1,031   | 1,106  | 1,269       | 1,266      | 1,264      | 1,264    |
| TS2 | 2,703   | 2,989  | 3,411       | 3,281      | 3,470      | 3,280    |
| TS3 | 5,000   | 4,793  | 5,218       | -          | _          | 4,915    |
| TA1 | 1,818   | 1,965  | 2,221       | 2,225      | 2,229      | 2,227    |
| TA2 | 3,571   | 3,961  | 4,491       | -          | 4,246      | 4,042    |
| TA3 | 5,882   | 5,558  | 5,985       | -          | -          | 5,157    |

Tabell 6-5 – Sammenligning av egenfrekvenser

De første egenfrekvenser av hver type ser ikke ut til å gi utslag i alle målingene. Som det kommer frem av Tabell 6-5 samsvarer de første egenfrekvenser bra med med målte verdier. Ser man på flere enn de 3 første av hver svingeform, avviker resulter i større grad. Det skyldes i hovedgrad av begrensningene med 37 noder til å måle forskyvning langs spennet. Svingeformer av høyere grad krever dermed større nøyaktighet for å simulere fult ut. Tar en utgangspunkt i de første målingene av hver egenfrekvens samsvarer test 2 best med målt torsjon. Senket treghetsmoment samt en økning i bøyestivhet ser ut til å gi et mer tilnærmet resultat. Det er også foretatt forsøk med justering av skjærsenter i begge modellen, men det ser ikke ut til påvirke resultater. FE-modellen test 2 vil derfor benyttes for videre analyser. Egensvingemoder som gir utslag på målinger presenteres er vedlagt i Vedlegg B.
## 7 Analyse i ABAQUS

FEM-analysen deles inn i tre forskjellige steg. Det første er å påføre konstruksjonen en egenlast, andre steg er en vibrasjonsanalyse konstruksjonens naturlige egenfrekvenser og tilslutt å påføre konstruksjonen vindlaster.

### 7.1 Karakteristisk egenlast

Hengebruer får sin endelige kurvatur ved å påføre en skjevstilling i brutårnene. Etter egenvekten fra hovedspennet er påført slakkes tilbaketrekkingskabelen hengebrua får sin ønskelige kurvatur. Figur 7-1 illustrerer fremgangsmåten.



Figur 7-1 - Skjevstilling av brutårn, eksempel fra Hardangerbrua

Parabler beregnet i kapittel 6.2.2 er medregnet egenlast. Det vil si at parabelen er medregnet forskyvningen egenlasten gir konstruksjonen. For å oppnå den ønskede parabelen med belastning fra egenlast. Metoden går ut på å henge deformasjonen for så å bergene en korrigert parabel. Input modellen til FE-modellen er modifisert flere ganger ved hjelp av beregninger i excel.

## 7.2 Egenfrekvenser og svingeformer

ABAQUS gjennomfører en bevegelsesanalyse for å fastslå egenfrekvenser og egensvingemoder. Som tidligere omtalt gjennomføres analysen for FE-modellen test 1 og test 2. sammenlegninger med måledata viser at den sistnevnte har best tilnærming. I for å se på de høye egenfrekvensene forårsaket av trafikklast, gjennomføres analysen med 128 moder, noe egenfrekvenser til og med 8.8587 Hz. Identifisering av svingemoder og grafisk fremstilling de første 10 horisontale, 10 vertikale og 10 torsjonale, samt noen høyefrekvente som gir utslag på målinger, er vedlagt i Vedlegg B. De høyfrekvente er vanskelige å identifisere siden egenfrekvensene avviker i større grad enn for de lavfrekvente. Det er derfor ikke foretatt noen nummerering av disse, men er navngitt etter type svingemode.

## 7.3 Trafikklast

Lysefjordbrua forbinder Oanes i sør med Forsand i nord. Veien er en riksvei med en del tungtrafikk, hovedsakelig på grunn av sanddrift i Forsand. Det vil være interessant å

sammenlikne egenfrekvensspekter fra perioden med kun vindlast og egenfrekvenser på dagtid der trafikklast kan forekomme. I denne oppgaven begrenses det til å påføre modellen vindlaster, og trafikklaster er ikke beregnet videre.

## 7.4 Vindlast

Vindhastigheter beregnet fra NatHaz benyttes til å beregne buffeting vindlaster. For å forenkle arbeidet er kun simulert last fra H18, den gis ved en middelsvindhastighet og den fluktuerende turbulensen. Simuleringsperioden er 10 min, t=600 s, med frekvens på 5 Hz. For å illustrere bruas oppførsel simuleres det 7 ulike tidsserier med middelvindhastighet på henholdsvis 5 m/s, 10 m/s, 15 m/s, 20 m/s, 25 m/s, 30 m/s og den dimensjonerte middelvindhastigheten på 38 m/s.

Beregning av de resulterende vindlastene gjennomføres ved hjelp av buffeting vind teori. Som omtalt tidligere avhenger denne av to ledd, vindlast fra fluktuerende del og de bevegelsesavhengige kreftene. Sistnevnte krever at lastene oppdateres for hvert steg, siden lastbidraget fra den relative angrepsvinkelen er med på å endre de påførte vindlastene. For å simulere dette i Abaqus kreves det en subrutine, som tidligere omtalt innehar ikke forfatter disse programmeringskunnskapene. Selv om dette ikke gir et helt riktig bilde beregnes den påførte dynamiske vindlasten kun med bidrag fra de førstnevnte leddet, etter uttrykk (4-7). Den relative vinkelen vil da bare variere med bidrag fra den vertikale vindkomponenten. Det gjennomføre derfor to sett analyser, en uten vertikalkomponenten og en med.

Vindlast i kablene vil få en annen turbulensintensitet på grunn av høydeforskjellen. I tillegg vil denne endre langs seg langs spennet med den varierende høyden. Dette er ikke tatt hensyn til i beregninger, og for å forenkle arbeidet benyttes den samme simulerte vindlasten ved høyde 54 m som for brudekket. Siden lastarealet er veldig lite i forhold til brukassen, antas denne metoden å være tilstrekkelig.

Vindlasten beregnes i Matlab og legges inn i Abaqus med som AMPLITUDE, og belastes som tidligere omtalt som en uniform linjelast, noe som forsvares med analyser foretatt i kapittel 5.9. Den påførte lasten deles inn i tre deler der M er en last for å gi moment i brukassen, L gir vertikalkraft og D er den horisontale lasten, illustrert av Figur 6-2. Kablene blir kun belastet en horisontallast. For beregninger i Matlab vises det til vedlegg E.



Figur 7-2 - Påførte laster i FE-modell

## 8 Resultater

### 8.1 Verifikasjon av svingemoder

For å få en pekepinn på om svingenodene som er funnet i ABAQUS er korrekte, gjennomføres en verifikasjon ved hjelp av manuelle beregninger basert på teori fra Bleich[11] og Steinman[12]. Teorien er basert på bruken av lineære differensialligninger med grensebetingelser for hengebruer til å finne ligninger for sirkulære frekvenser. Tidligere oppgaver har også beregnet disse som en verifikasjon, men svingemoder beregnes allikevel. Dette gjøres for å få et mer helhetlig bilde over de dynamiske egenskapene til konstruksjonen, og det vil være hensiktsmessig å se på forskjellige metoder for å beregne den. Teorien til Bleich er en forenklet tilnærming, og vil avvike noe fra ABAQUS. Form og faser på modene vil imidlertid gi en verifikasjon av svingemoder.

### 8.1.1 Vertikale egenfrekvenser og moder

Svingenodene er beregnet i Mathcad utfra uttrykk fra[12]&[11]. Formlene baseres seg på at følgende forenklinger kan gjøres:

- Amplitudene er små, og at kreftene forårsaket av arealmomentet er relativt lite i forhold til den totale egenvekten. Denne forenklingen er nødvendig for at uttrykket skal baseres på teori om lineær differensialligninger.
- Egenvekten og arealmomentene er konstante innenfor ett spenn, men endres mellom spennene.
- Den totale massen av brua er konsentrert langs senterlinjen til brukassen, som er fastspent i en retning.
- Hengerne antas å være uendelig stive, slik at vertikal deformasjonen i brukassen er lik deformasjonen i hengerne.

## Vertikale asymmetriske moder

Følgende uttrykk brukes til å beregne de asymmetriske modene[11]:

$$m\frac{\partial^2\eta}{\partial t^2} + EI\frac{\partial^4\eta}{\partial x^4} - H_w\frac{\partial^2\eta}{\partial x^2} + \frac{w}{H_w}h = 0$$
(8-1)

- m: massen i hovedspennet
- w: vekten til hovedspennet per meter
- g: gravitasjonskonstanten
- E: elastitets modulen til brukassen
- I: arealmomentet om den svake aksen
- n: amplituden ved x ved tiden t
- H<sub>w</sub>: horisontalkraften i hovedkablene fra egenvekten.
- h: tilleggskraft i kablene

Fra uttrykket over finner man ligningen for vertikale vibrasjonsmoder:

$$\omega(n) = \frac{n\pi}{l} \sqrt{\frac{g}{w} (H_w + n^2 \lambda)}$$
(8-2)

- n: antall halve sinusbølger
- I: Lengden på hovedspennet
- $\lambda = \frac{\pi^2 E I}{l^2}$

Uttrykkene fra Steinman[12] er basert på samme fundamentale likevektsegenskaper som i Bleich, men presentert på en annen måte. Beregningene i Mathcad av begge uttrykkene viser imidlertid at resultatene er like, og derfor vil ikke Steinman bli omtalt videre.

| Svingemode ω(n) | eω(n) Bleich/Steinman |       | Målteverdier |
|-----------------|-----------------------|-------|--------------|
| VA1 ω(2)        | 1.285                 | 1,398 | 1,445        |
| VA2 ω(4)        | 3.676                 | 3,857 | 3,789        |
| VA3 ω(6)        | 7.503                 | 7,954 | -            |



Figur 8-1 - Vertikale asymmetriske svingemoder

#### Vertikale symmetrisk moder

Uttrykkene for å finne symmetriske moder baseres på energiligninger som er gyldig for ett spenn hengebruer[11]:

$$T - V = \frac{1}{2} \left( \frac{w}{g} \omega^2 \int_0^1 \eta^2 \, dx - EI \int_0^1 \eta''^2 \, dx + H_w \int_0^1 \eta'' \eta \, dx - \frac{8f}{l^2} h \int_0^1 \eta \, dx \right)$$
(8-3)

Og

$$\frac{8f}{l^2} \int_0^1 \eta \, dx - \frac{L_E h}{E_c A_c} = 0 \tag{8-4}$$

- T: er maksimal kinetisk energi i konstruksjonen som en funksjon av η
- V: er maksimal potensial energi som en funksjon av η. Delvis i bruspennet og delvis i kablene.
- L<sub>E</sub>: lengden av hovedkablene fra forankring til forankring
- E<sub>c</sub>: Elastitetsmodulen for hovedkablene
- A<sub>c</sub>: Tverrsnittsarealet av hovedkablene

Ved å løse energiuttrykkene over, kommer en fram til følgende uttrykk andregradsuttrykk:

$$Ak + 9B(k - Ap) = 0 (8-5)$$

Der:

$$A = s\omega^2 - H_w - \lambda \tag{8-6}$$

$$B = s\omega^2 - 9H_w - 91\lambda \tag{8-7}$$

Der parameterne s, k og p er:

$$s = \frac{wl^2}{\pi^2 g} \qquad k = \frac{32f}{\pi^2} \qquad p = \frac{pil}{16f} \frac{L_E}{E_c A_c}$$

De to første frekvensene kan finnes fra uttrykkene over, for n>3 brukes følgende uttrykk:

$$\omega(n) = \sqrt{\frac{1}{s} \left( n^2 H_w + n^4 \lambda + \frac{k}{n^2 p} \right)}$$
(8-8)

Tabell 8-2 - Vertikale symmetriske egenfrekvenser

| Svingemode ω(n) | Bleich/Steinman | Abaqus | Målteverdier |  |
|-----------------|-----------------|--------|--------------|--|
| VS1 ω(1)        | 1.581           | 1,867  | 1,884        |  |
| VS2 ω(3)        | 2.411           | 2,594  | 2,613        |  |
| VS3 ω(5)        | 5.413           | 5,350  | 5,353        |  |



Figur 8-2 - Vertikale symmetriske egenmoder

#### 8.1.2 Torsjon egenfrekvens moder

#### Torsjon symmetriske moder

Uttrykket er kalkulert basert på teori fra Bleich. Ligningene antar et rektangulært tverrsnitt, derfor er det foretatt noen forenklinger i forhold til tverrsnittet.

Første og andre symmetriske mode finnes med følgende uttrykket:

$$B(A-K) - \frac{AK}{9} = 0$$
 (8-9)

Der:

$$A = s\omega^2 - \Lambda - R \tag{8-10}$$

$$B = s\omega^2 - 81\Lambda - 9R \tag{8-11}$$

$$K = \frac{E_c A_c}{L_E} \frac{64f^2 \omega_h^2}{\pi^2} l^2$$
 (8-12)

Tabell 8-3 - Torsjonale symmetriske egenfrekvenser

| Svingemode ω(n) | Bleich/Steinman | Abaqus | Målteverdier |
|-----------------|-----------------|--------|--------------|
| TS1 ω(1)        | 7.732           | 7,977  | 7,954        |
| TS2 ω(3)        | 20.442          | 21,432 | 21,469       |



Figur 8-3 - Torsjonale symmetriske egenmoder

### Torsjon asymmetriske moder

De asymmetriske modene beregnes fra følgende uttrykk:

$$\omega(n) = \sqrt{\frac{n^2}{s}(n^2\Lambda + R)}$$
(8-13)

Tabell 8-4 - Torsjonale asymmetriske egenfrekvenser



Figur 8-4 - Torsjonale asymmetriske egenmoder

#### 8.2 Verifikasjon av svingemoder

For å verifisere målte verdier, for uten å sammenlikne egenfrekvenser, sammenlignes svingemoder. Ved å se på energiforholdet mellom spektrene i H18 og H24, er det mulig å fastslå det normaliserte forholdet. Dette er imidlertid bare mulig når maksimal utslaget på svingemoden ligger i enten H18W/E eller H24W/E, noe som teoretisk utelukker de asymmetriske nodene. Siden svingemoder er normaliserte kan de sammenlignes direkte. Det brukes svingemoder beregnet i Abaqus for å sammenligne målte energispektre. Basert på teori om spektre fra kapittel 5.3 og formel kan forholdet mellom H18 og H24 beskrives på følgende måte:

$$\frac{s_j}{s_i} = \frac{|X(f_j)^2|}{|X(f_i)^2|} \tag{8-14}$$

Det normaliserte forholdet i en svingemode er oppgitt som et førstegradsuttrykk, dermed må også spekteret beskrives på samme måte. Forholdet *n* blir da:

$$n_{ji} = \sqrt{\frac{|X(f_j)^2|}{|X(f_i)^2|}}$$
(8-15)

Beregninger er gjennomført i Matlab. Under følger sammenligninger av HS1, VS1 og TS1.







Figur 8-6 - Figur 8 8 - Sammenligning av VS1 fra Abaqus og målinger



Figur 8-7 - Figur 8 8 - Sammenligning av målinger og TS1 fra Abaqus

Som det kommer frem figurene over så stemmer svingemoder i Abaqus bra med målte egenfrekvenser. En oversikt over alle frekvenser fra Abaqus er vedlagt vedlegg B.

#### 8.3 Simulert vindanalyse

Resultater i Abaqus oppsummeres med en sammenligning av den maksimale forskyvningen i forhold til middelvindhastighet. Den sammenlignes også med målte forskyvninger fra 5.des og 13.april. Forskyvningene er beregnet ved forholdet mellom akselerasjon og forskyvning beskrevet i kapittel 5.10. Den simulerte vindlasten beskrevet i kapittel 7.4 gav følgende resultater:



#### Figur 8-8 - Maksimal vertikal forskyvning



Figur 8-9 - Maksimal horisontal forskyvning

Som det kommer frem av Figur 8-8 er den vertikale forskyvningen sterkt påvirket av den vertikale vindkomponenten. Sammenlignet med de målte forskyvningene virker tilnærmingen av den vertikalkomponenten plausibel. Referanselinjen er basert på å finne en tilnærmet eksponentialfunksjon, der stigningen antas å ha en form lik buffeting vindteori.

Den maksimale horisontale forskyvningen blir negativt påvirket av bidrag fra vertikalkomponenten. Sammenlignet med målte forskyvninger ser det ut som de bevegelsesavhengige kreftene gir stort bidrag til horisontallasten. For å beregne et mer reelt bilde av horisontal vindrespons bør disse tas med i tillegg.

## 9 Konklusjon

Denne oppgaven har hatt som siktemål å sammenlikne en eksisterende FE-modell med reelle måledata. Analyse av vinddata er gjennomført ved hjelp av Matlab, og spektre av frekvens er laget basert på flere tidsserier. Responsmålinger viser at brukassen har en noe høyere egenfrekvens enn tidligere antatt. Dette vil si at FE-modellen laget av Steigen[1] har en lavere stivhet enn den reelle modellen. Modifikasjoner med beregninger og bruk av en høyere stivhet har gitt en bedre tilnærming. Justering av skjærakse ser ikke ut til å påvirke FE-modellen i stor grad. Den har vist seg å være sensitiv for plassering av masser. Treghetsmoment uten bidrag fra hovedkabler ser ut til å gi en bedre tilnærming av resultater.

De målte egenfrekvensene på brua viser at vindlaster gir en egenfrekvens i området 0 – 3 Hz, mens trafikklaster aktiverer høyere egenfrekvenser i området 3 - 8 Hz. FE-modellen har redusert nøyaktighet når det gjelder identifisering av høye egenfrekvenser. Abaqus modellen er en forenklet modell, som kanskje ikke klarer å beskrive den reelle responsen til brua. Små endringer av masse og geometri gir store utslag på frekvenser. For å best mulig illustrere høye egenfrekvenser kreves det en modell bygget av flere enn en node per hengekabel.

Simuleringer med vinddata fra NatHaz viser at en forenklet buffeting respons ser ut til å gi en god tilnærming i forhold til målt vertikalforskyvning. Den horisontale ser ut til å i større grad avhenge bevegelsesavhengige kreftene. Formfaktorer som er benyttet er forenklet, og tilnærmet de av statisklast. Det vil være hensiktsmessig å variere disse med bruas relative innfallsvinkel for å bedre illustrere den dynamiske vindinduserte respons.

En stor del av oppgaven har gått med på opplæring i programmer, spesielt Matlab og Abaqus. Sistnevnte har vist seg å være et krevende program som bør kjøres med subrutiner, med fortran, python eller lignende. På denne måten godtar programmet flere kommandoer som ellers ikke er tilgjengelige gjennom Abaqus/cae. Forslag til videre arbeid blir først og fremst å sette seg inn i kjøring av subrutiner for å kunne modellere brutårn. Avvik mellom reelle målinger og den modifiserte FE-modellen kan skyldes manglende tårn. Det vil være hensiktsmessig å få FE-modellen så nær reelle resultater som mulig. På denne måten kan simuleringer avdekke kompleks respons, blant annet fra aerodynamiske effekter. Det kan også være interessant å se på kjøring av trafikklaster.

Et annet punkt vil være å modellere en brukasse med noder som representer den reelle posisjonen av måleinstrumentene. På denne måten kan data fra Abaqus direkte sammenliknes med de reelle måledata. Utplassering av flere måleinstrumenter vil også kunne gi mer innsikt i bruas oppførsel. Med flere akselerometre kan man lese av svingeformer direkte. Flere vindmålere vil også gi et bedre bilde av hvordan vindhastighet varierer langs spennet.

## Referanser

- 1. Steigen, R.O., Modeling and analysis a suspension bridge in light of deterioration of the main cable wires, in Faculty of science and technology. 2011, University of Stavanger.
- 2. Tveiten, J., Dynamic analysis of a suspension bridge, in Faculty of science and technology. 2012, University of Stavanger.
- 3. *Wikipedia Hengebro*. Available from: <u>http://no.wikipedia.org/wiki/Hengebro</u>.
- 4. *Tacoma Narrow Bridge Wikipedia*. Available from: <u>http://en.wikipedia.org/wiki/Tacoma Narrows Bridges</u>.
- 5. Gran, B., *Konstruksjonsanalyse av en hengebro*, in *TN*. 2012, Universitetet i Stavanger.
- 6. Jakobsen, J.B., Fluctuating Wind Load and Response of a Line-Like Engineering Structure With Emphasis On Motion-Induced Wind Forces, in Department of Structual Engineering. 1995, University of Trondheim: The Norwegian Institue of Technology.
- 7. Jakobsen, J.B., Undervisningsnotater MKO110 Naturlaster VÅR 2013.
- 8. Holmes, J.D., *Wind Loading of Structures*. 2007: Taylor & Francis.
- 9. Strømmen, E., *Theory of Bridge Aerodynamics*. 2 ed. 2010: Springer.
- 10. The MathWorks, i. *MATLAB Manual*. Available from: <u>http://www.mathworks.se/help/matlab/index.html</u>.
- 11. Bleich, F. and A.B.o.t.I.o.S. Bridges, *The Mathematical Theory of Vibration in Suspension Bridges: A Contribution to the Work of the Advisory Board on the Investigation of Suspension Bridges*. 1950: Department of Commerce, Bureau of Public Roads.
- 12. Steinman, D.B., *MODES AND NATURAL FREQUENCIES OF SUSPENSION-BRIDGE OSCILLATIONS*. Annals of the New York Academy of Sciences, 1959. **79**(4): p. 111-142.
- 13. *StormGeo*. Available from: <u>http://www.storm.no/nyheter/det-har-ikke-blaast-mer-paa-minst-15-aar-4171012.html</u>.
- 14. Kwon, D., and Kareem, A. *NatHaz on-line wind simulator (NOWS) : simulation of Gaussian multivariate wind fields*. 2006; Available from: <u>http://windsim.ce.nd.edu/</u>.
- 15. *Wikipedia Wind Speed*. Available from: <u>http://en.wikipedia.org/wiki/Wind\_speed</u>.
- 16. Undervisningsnotater MOM140 Mekaniske svingninger HØST 2012
- 17. AAJ, Beregninger av egenfrekvenser for lysefjordbrua. 1999, Statens Vegvesen.
- 18. Abaqus 6.13 Manual. Available from: <u>http://50.16.176.52/v6.13/</u>.

## Vedlegg

Vedlegg A: Figurer av PSD av akselerasjoner Vedlegg B: Egenfrekvenser og svingemoder Vedlegg C: Input i NatHaz Vedlegg D: Beregninger i Mathcad Vedlegg E: Matlab









A - 2 - PSD av horisontale akselerasjoner fra 05.50 5.des 13 - Umiddel = 21,40 m/s



A - 4 - PSD av torsjonale akselerasjoner fra 05.50 5.des 13 - Umiddel = 21,40 m/s







A - 6 - PSD av horisontale akselerasjoner fra 05.40 10.april 14 - Um = 1.44 m/s







A - 8 - PSD av torsjonale akselerasjoner fra 05.40 10.april 14 - Um = 1.44 m/s







A - 10 - PSD av horisontale akselerasjoner fra 08.40 10.april 14 - Um = 3,73 m/s



A - 12 - PSD av torsjonale akselerasjoner for 08.40 10.april 14 - Um = 3,73 m/s  $\,$ 



A - 14 - PSD av vertikale akselerasjoner fra 08.40 10.april - Um = 3,73 m/s



A - 16 - Akselerasjoner for tidsserie 05.10 13.april 14 - Um = 6.64 m/s



A - 18 - PSD av vertikale akselerasjoner fra 05.10 13.april - Um = 6.64 m/s



A - 19 -PSD av torsjonale akselerasojner fra 05.10 13.april - Um = 6.64 m/s

# Vedlegg B: Egenfrekvenser og svingemoder

| MODE | EGENVERDI | Frekvens[rad/s] | FREKVENS | TYPE       | Beskrivelse              |
|------|-----------|-----------------|----------|------------|--------------------------|
|      |           |                 | [Hz]     |            |                          |
| 1    | 0.69849   | 0.83576         | 0.13302  | HS1        |                          |
| 2    | 1.9547    | 1.3981          | 0.22251  | VA1        |                          |
| 3    | 3.4865    | 1.8672          | 0.29718  | VS1        |                          |
| 4    | 6.7277    | 2.5938          | 0.41281  | VS2        |                          |
| 5    | 8.2199    | 2.8670          | 0.45630  | HA1        |                          |
| 6    | 10.839    | 3.2922          | 0.52397  |            | KABEL                    |
| 7    | 11.704    | 3.4210          | 0.54448  | HS2        | KABEL DOMINERENDE        |
| 8    | 13.004    | 3.6061          | 0.57393  |            | KABEL                    |
| 9    | 13.945    | 3.7343          | 0.59434  | HA2        |                          |
| 10   | 14.877    | 3.8571          | 0.61388  | VA2        |                          |
| 11   | 28.200    | 5.3104          | 0.84517  | HS3        |                          |
| 12   | 28.627    | 5.3504          | 0.85155  | SVAK VS(3) | KABLER dominerer         |
| 13   | 32.705    | 5.7189          | 0.91019  | VS4        |                          |
| 14   | 37.927    | 6.1585          | 0.98016  | SVAK HA3   | KABLER                   |
| 15   | 38.039    | 6.1676          | 0.98160  |            | KABLER                   |
| 16   | 43.601    | 6.6031          | 1.0509   | HS4        | KOMBINASJON MED KABLER   |
| 17   | 56.999    | 7.5498          | 1.2016   |            | Kabler krysser           |
| 18   | 57.896    | 7.6089          | 1.2110   | HS5        | kabler svinger i fase    |
| 19   | 63.273    | 7.9544          | 1.2660   | VA3        |                          |
| 20   | 63.635    | 7.9772          | 1.2696   | TS1        | KABLER SVINGER I FASE    |
| 21   | 75.727    | 8.7021          | 1.3850   | Svak HA4   | KABLER SVINGER I FASE    |
| 22   | 75.810    | 8.7069          | 1.3857   |            | KABLER SVINGER MOTFASE   |
| 23   | 99.881    | 9.9940          | 1.5906   |            | KABLER SVINGER MOTFASE   |
| 24   | 99.918    | 9.9959          | 1.5909   | Svak HS    | KABLER SVINGER I FASE    |
| 25   | 112.82    | 10.622          | 1.6905   | VS         |                          |
| 26   | 125.79    | 11.216          | 1.7850   | Svak HA5   | KABLER SVINGER I FASE    |
| 27   | 126.23    | 11.235          | 1.7882   |            | KABLER SVINGER MOTFASE   |
| 28   | 132.21    | 11.498          | 1.8300   | HA6        |                          |
| 29   | 156.16    | 12.497          | 1.9889   | Svak H     | KABLER SVINGER I FASE    |
| 30   | 156.18    | 12.497          | 1.9890   |            | KABLER SVINGER MOTFASE   |
| 31   | 187.23    | 13.683          | 2.1777   | VA4        |                          |
| 32   | 188.93    | 13.745          | 2.1876   |            |                          |
| 33   | 188.93    | 13.745          | 2.1876   |            | KABLER SVINGER MOTFASE   |
| 34   | 194.68    | 13.953          | 2.2207   | TA1        | Kombinasjon av flere     |
| 35   | 224.62    | 14.987          | 2.3853   |            | KABLER SVINGER I FASE    |
| 36   | 224.64    | 14.988          | 2.3854   |            | KABLER SVINGER MOTFASE   |
| 37   | 237.36    | 15.406          | 2.4520   | SVAK VS5   | KABLER SVINGER VERTIKALT |
| 38   | 263.10    | 16.220          | 2.5815   |            | KABLER SVINGER I FASE    |
| 39   | 263.11    | 16.221          | 2.5816   |            | KABLER SVINGER MOTFASE   |
| 40   | 294.93    | 17.174          | 2.7333   | VS6        |                          |
| 41   | 304.13    | 17.439          | 2.7756   |            | KABLER SVINGER I FASE    |
| 42   | 304.18    | 17.441          | 2.7758   |            | KABLER SVINGER MOTFASE   |
| 43   | 309.04    | 17.579          | 2.7979   | SVAK VS7   | KABLER SVINGER VERTIKALT |
| 44   | 314.23    | 17.727          | 2.8213   | HS6        | kabler svinger i fase    |

#### D 1 – Egensfrekvenser fra test 2 i abaqus

| 45 | 330.67 | 18.184 | 2.8941 |         | KOMBINASJON T og H       |
|----|--------|--------|--------|---------|--------------------------|
| 46 | 347.63 | 18.645 | 2.9674 |         | KABLER SVINGER MOTFASE   |
| 47 | 347.64 | 18.645 | 2.9674 |         | KABLER SVINGER I FASE    |
| 48 | 392.82 | 19.820 | 3.1544 |         |                          |
| 49 | 392.83 | 19.820 | 3.1544 |         | KABLER SVINGER MOTFASE   |
| 50 | 406.54 | 20.163 | 3.2090 |         | KABLER SVINGER MOTFASE   |
| 51 | 406.55 | 20.163 | 3.2091 |         | KABLER SVINGER I FASE    |
| 52 | 441.27 | 21.006 | 3.3433 |         | KABLER SVINGER MOTFASE   |
| 53 | 441.27 | 21.007 | 3.3433 | VA5     |                          |
| 54 | 443.79 | 21.066 | 3.3528 |         | KABLER SVINGER I FASE    |
| 55 | 459.35 | 21.432 | 3.4111 | TS2     |                          |
| 56 | 490.42 | 22.145 | 3.5245 |         | KABLER SVINGER I FASE    |
| 57 | 490.42 | 22.145 | 3.5246 |         | KABLER SVINGER MOTFASE   |
| 58 | 541.05 | 23.260 | 3.7020 |         | KABLER SVINGER I FASE    |
| 59 | 541.05 | 23.260 | 3.7020 |         | KABLER SVINGER MOTFASE   |
| 60 | 592.77 | 24.347 | 3.8749 | VS      |                          |
| 61 | 592.77 | 24.347 | 3.8749 |         | KABLER SVINGER I FASE    |
| 62 | 634.46 | 25.189 | 4.0089 | HA5     |                          |
| 63 | 640.08 | 25.300 | 4.0266 | VS      |                          |
| 64 | 645.27 | 25.402 | 4.0429 |         | KABLER SVINGER MOTFASE   |
| 65 | 645.27 | 25.402 | 4.0429 |         | Kabler svinger i motfase |
| 66 | 698.24 | 26.424 | 4.2056 |         | KABLER SVINGER I FASE    |
| 67 | 698.24 | 26.424 | 4.2056 |         | KABLER SVINGER I FASE    |
| 68 | 751.38 | 27.411 | 4.3626 |         | KABLER SVINGER MOTFASE   |
| 69 | 751.38 | 27.411 | 4.3626 |         | KABLER SVINGER I FASE    |
| 70 | 796.10 | 28.215 | 4.4906 | TA2     |                          |
| 71 | 804.34 | 28.361 | 4.5138 |         | KABLER SVINGER I FASE    |
| 72 | 804.34 | 28.361 | 4.5138 |         | KABLER SVINGER MOTFASE   |
| 73 | 856.84 | 29.272 | 4.6588 |         | KABLER SVINGER MOTFASE   |
| 74 | 856.84 | 29.272 | 4.6588 |         | KABLER SVINGER I FASE    |
| 75 | 892.77 | 29.879 | 4.7554 | VA      |                          |
| 76 | 908.50 | 30.141 | 4.7971 |         | KABLER SVINGER I FASE    |
| 77 | 908.50 | 30.141 | 4.7971 |         | KABLER SVINGER MOTFASE   |
| 78 | 958.94 | 30.967 | 4.9285 |         | KABLER SVINGER I FASE    |
| 79 | 958.94 | 30.967 | 4.9285 | VS      | KABLER SVINGER MOTFASE   |
| 80 | 1007.8 | 31.745 | 5.0524 |         |                          |
| 81 | 1007.8 | 31.745 | 5.0524 |         | KABLER SVINGER I FASE    |
| 82 | 1054.4 | 32.472 | 5.1681 | SVAK TS | KABLER SVINGER MOTFASE   |
| 83 | 1054.4 | 32.472 | 5.1681 |         | KABLER SVINGER I FASE    |
| 84 | 1075.1 | 32.788 | 5.2184 | TS3     | Kombinasjon med H        |
| 85 | 1098.6 | 33.146 | 5.2753 |         | KABLER SVINGER I FASE    |
| 86 | 1098.6 | 33.146 | 5.2753 |         | KABLER SVINGER MOTFASE   |
| 87 | 1139.8 | 33.761 | 5.3732 |         | Kabler Svinger i fase    |
| 88 | 1139.8 | 33.761 | 5.3732 |         | KABLER SVINGER I FASE    |
| 89 | 1144.1 | 33.825 | 5.3834 | TA3     | Kombinasion med H        |
| 90 | 1167.6 | 34.171 | 5.4384 | VS      |                          |
| 91 | 1178.8 | 34.333 | 5.4643 |         | KABLER SVINGER MOTFASE   |
| 92 | 1178.8 | 34.333 | 5.4643 |         |                          |
| 93 | 1215.7 | 34.867 | 5.5493 |         | KABLER SVINGER I FASE    |
| 94 | 1215.7 | 34.867 | 5.5493 |         |                          |
| 95 | 1239.4 | 35.206 | 5.6031 |         | KABLER SVINGER I FASE    |
| 96 | 1239.5 | 35.206 | 5.6033 |         |                          |
| L  | 1      |        |        |         |                          |

| 97  | 1241.4 | 35.234 | 5.6076 | HS  |                       |
|-----|--------|--------|--------|-----|-----------------------|
| 98  | 1254.1 | 35.414 | 5.6363 |     |                       |
| 99  | 1254.1 | 35.414 | 5.6363 |     | KABLER SVINGER I FASE |
| 100 | 1292.4 | 35.950 | 5.7217 |     |                       |
| 101 | 1292.4 | 35.950 | 5.7217 |     |                       |
| 102 | 1315.6 | 36.271 | 5.7727 | TS4 |                       |
| 103 | 1346.3 | 36.692 | 5.8397 |     |                       |
| 104 | 1346.3 | 36.692 | 5.8397 |     | KABLER SVINGER I FASE |
| 105 | 1414.3 | 37.607 | 5.9853 | TA4 |                       |
| 106 | 1519.3 | 38.978 | 6.2035 | VA  |                       |
| 107 | 1595.9 | 39.948 | 6.3580 |     |                       |
| 108 | 1595.9 | 39.949 | 6.3580 | TS5 | Kombinasjon med H     |
| 109 | 1638.0 | 40.473 | 6.4414 | TA4 |                       |
| 110 | 1798.4 | 42.408 | 6.7494 | VA  |                       |
| 111 | -      | -      | 6.8576 | TA6 | Kombinajon med H      |
| 112 | -      | -      | 6.8876 | HA  |                       |
| 113 | -      | -      | 7.1401 | VA  |                       |
| 114 | -      | -      | 7.3275 | VS  |                       |
| 115 | -      | -      | 7.4354 | TS  |                       |
| 116 | -      | -      | 7.6882 | VS  |                       |
| 117 | -      | -      | 7.833  | TS  |                       |
| 118 | -      | -      | 7.8391 |     |                       |
| 119 | -      | -      | 7-8393 |     |                       |
| 120 | -      | -      | 7.9104 | VA  |                       |
| 121 | -      | -      | 8.2277 | TA  |                       |
| 122 | -      | -      | 8.2655 | VS  |                       |
| 123 | -      | -      | 8.3773 | TS  | KOMBINASJON ME H      |
| 124 | -      | -      | 8.4485 | V   |                       |
| 125 | -      | -      | 8.7176 | HS  | KONBINASJON MED T     |
| 126 | -      | -      | 8.7983 | HS  | KOMBINASJON MED T     |
| 127 | -      | -      | 8.8154 | VA  |                       |
| 128 | -      | -      | 8.8587 | TA  |                       |
|     |        |        |        |     |                       |



VEDLEGG B: EGENFREKVENSER OG SVINGEFORMER



VEDLEGG B: EGENFREKVENSER OG SVINGEFORMER




































# Input i NatHaz

Punkt 1 Henger 10 Høyde 55 m

Punkt 2 Henger 16 Avstand 72 m fra H10 Høyde 55

Punkt 3 Henger 18 Avstand 24 m fra H16 Høyde 54

Punkt 4 Henger 20 Avstand 24 m fra H18 Høyde 54

Punkt 5 Henger 24 Avstand 48 m fra H20 Høyde 52

x 0,72,96,120,168

z 55,55,54,54,52

Terrengkategori C http://www.civilengineeringx.com/structural-analysis/structural-steel/wind-loads/

| N = 3000 | (for t =600s) |
|----------|---------------|
|----------|---------------|

f[Hz] = 5

| U_m = 5  | 3gust = 6  |
|----------|------------|
| U_m = 10 | 3gust = 12 |
| U_m = 15 | 3gust = 18 |
| U_m = 20 | 3gust = 24 |
| U_m = 25 | 3gust = 29 |
| U_m = 30 | 3gust = 35 |
| U_m = 38 | 3gust = 46 |

Type:

Discrete frequency function with Cholesky decomposition and FFT (max 200 locations)





$$\begin{aligned} z_{1.type2} &:= 2635 \text{ mm} - \frac{h_{21}}{3} = 2.56 \text{ m} \qquad m_{1.type2} := a_2 \cdot \rho = 33.427 \frac{kg}{m} \\ z_{2.type2} := \frac{2 h_{21}}{3} = 0.15 \text{ m} \\ z_{3.type2} := 1835 \text{ mm} - \frac{h_{21}}{3} = 1.76 \text{ m} \\ z_{4.type2} := \frac{1835 \text{ mm}}{2} + \frac{2 h_{21}}{3} = 1.068 \text{ m} \\ z_{5.type2} := \frac{1835 \text{ mm}}{2} - \frac{h_{21}}{3} = 0.843 \text{ m} \\ z_{6.type2} := h_{21} = 0.225 \text{ m} \qquad \text{...avstander fra senter av trapes til bunn} \\ z_{type2} := z_{1.type2} + 6 z_{2.type2} + 2 z_{3.type2} + 2 z_{5.type2} + 2 z_{6.type2} = 11.25 \text{ m} \\ \text{Stiff} := z_{1.type1} \cdot m_{1.type1} \cdot 15 + z_{type2} + 2 z_{1.type2} + 2 z_{6.type2} = 11.25 \text{ m} \\ \text{Stiff} := z_{1.type1} \cdot m_{1.type1} \cdot 15 + z_{type2} \cdot m_{1.type2} = (1.65 \cdot 10^3) \text{ kg} \\ \text{Massestivhet i brukasse} \\ m_{typ} := a_{ty} \cdot \rho = (10.08 \cdot 10^3) \frac{kg}{m} \quad z_{ty} := 2635 \text{ mm} = 2.635 \text{ m} \\ m_{txp} := a_{ty} \cdot \rho = 106.54 \frac{kg}{m} \quad z_{typ} := 2635 \text{ mm} - 400 \text{ mm} = 2.235 \text{ m} \\ m_{txp} := a_{ty} \cdot \rho = 320.28 \frac{kg}{m} \quad z_{typ} := 1835 \text{ mm} \\ m_{typ} := a_{typ} \cdot \rho = 320.28 \frac{kg}{m} \quad z_{typ} := 4 \text{ mm} \\ m_{typ} := a_{typ} \cdot \rho = 320.28 \frac{kg}{m} \quad z_{typ} := 4 \text{ mm} \\ m_{typ} := a_{typ} \cdot \rho = 320.28 \frac{kg}{m} \quad z_{typ} := 4 \text{ mm} \\ m_{typ} := a_{typ} \cdot \rho = 320.28 \frac{kg}{m} \quad z_{typ} := 4 \text{ mm} \\ m_{typ} := a_{typ} \cdot \rho = 320.28 \frac{kg}{m} \quad z_{typ} := 4 \text{ mm} \\ m_{typ} := a_{typ} \cdot \rho = 320.28 \frac{kg}{m} \quad z_{typ} := 4 \text{ mm} \\ m_{tytat brukasse} \\ \text{verifikasjon med hver del} \\ Z_{m} := \frac{z_{ty} \cdot a_{trukmase} \cdot \rho + Stiff}{w_{stat brukasse}} = (1.72 \cdot 10^3) \text{ mm}$$

| Nytt treghetsmoment:                                                                                                 |                                                     |                                                                                              |
|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------|
| $I_{ny} \coloneqq I_y + a_{brukasse} \cdot \left(y_c - Z\right)^2 =$                                                 | $0.297 \ m^4$                                       |                                                                                              |
| Bidrag fra type 1(fra crossX):                                                                                       |                                                     |                                                                                              |
| $I_{1.type1} := 3.4115 \cdot 10^7 \ mm^4$                                                                            |                                                     |                                                                                              |
| $a_1 {=} 0.004   {m m}^2$                                                                                            |                                                     |                                                                                              |
| $I_{type1} \coloneqq 15 \boldsymbol{\cdot} I_{1.type1} + 15 \boldsymbol{\cdot} a_1 \boldsymbol{\cdot} \big\langle z$ | $\left( \frac{1}{1.type1} - Z \right)^2 = 0.044 $ n | n <sup>4</sup>                                                                               |
| Bidrag fra type 2: $a_2 = 0.004 \ m$                                                                                 | <b>n</b> <sup>2</sup>                               |                                                                                              |
| $I_{1.type2} := 2.3726 \cdot 10^7 \ mm^4$                                                                            | $z_{1.type2} {=} 2.56$ $m{m}$                       | $y_{1.t2}\!\coloneqq\! \left(\! Z\!-\!z_{1.type2}\!\right)$                                  |
| $I_{2.type2} \! \coloneqq \! I_{1.type2}$                                                                            | $z_{2.type2} {=} 0.15$ $m{m}$                       | $y_{2.t2} \! \coloneqq \! \left( \! Z \! - \! z_{2.type2} \!  ight)$                         |
| $I_{3.type2} := 4.5813 \cdot 10^7 mm^4$                                                                              | $z_{3.type2} {=} 1.76 \ m$                          | $y_{3.t2} \! \coloneqq \! \left( \! Z \! - \! z_{3.type2} \! \right)$                        |
| $I_{4.type2} \! \coloneqq \! I_{3.type2}$                                                                            | $z_{4.type2} \!=\! 1.068 \; m$                      | $y_{4.t2}\! := \! \left(\! Z \!-\! z_{4.type2} \!  ight)$                                    |
| $I_{5.type2} \! \coloneqq \! I_{3.type2}$                                                                            | $z_{5.type2} = 0.843 \ m$                           | $y_{5.t2}\! := \! \left(\! Z \!-\! z_{5.type2}\!  ight)$                                     |
| $I_{6.type2} \! \coloneqq \! I_{3.type2}$                                                                            | $z_{6.type2} \!=\! 0.225 \; m$                      | $\boldsymbol{y}_{6.t2}\!\coloneqq\!\left(\boldsymbol{Z}\!-\!\boldsymbol{z}_{6.type2}\right)$ |
| $V_I \coloneqq I_{1.type2} \cdot 2 + 4 \cdot I_{3.type2}$                                                            |                                                     |                                                                                              |
| $V_y := y_{1.t2}^{2} + 6 y_{2.t2}^{2} + 2 y_{3.t2}^{2}$                                                              | $x^2 + 2  y_{4.t2}^2 + 2  y_{5.t2}^2 + $            | $-2 y_{6.t2}^2$                                                                              |
| $I_{type2} \coloneqq V_I + a_2 \cdot V_y = 0.095 \ m^2$                                                              | 4                                                   |                                                                                              |
| Totale treghetsmoment:                                                                                               |                                                     |                                                                                              |
| $I_y\!\coloneqq\!I_{ny}\!+\!I_{type1}\!+\!I_{type2}\!=\!0.436$                                                       | 3 <b>m</b> <sup>4</sup>                             |                                                                                              |
| Skjærsenter:                                                                                                         |                                                     |                                                                                              |
| $S_{type1} \coloneqq z_{1.type1} - 200.5 \ mm = 2.3$                                                                 | 343 <b>m</b>                                        |                                                                                              |
| $S_{1.type2} := z_{1.type2} - 151.4 \ mm = 2$                                                                        | .409 <b>m</b>                                       |                                                                                              |
| $S_{2.type2} \coloneqq z_{2.type2} + 151.4 \ \textit{mm} = 0$                                                        | .301 <b>m</b>                                       |                                                                                              |
| $S_{3.type2} := z_{3.type2} + \cos(36 ) \cdot 151$                                                                   | 1.4 <i>mm</i> =1.882 <i>m</i>                       |                                                                                              |
| $S_{4.type2} := z_{4.type2} + \cos(36 ) \cdot 151$                                                                   | .4 <i>mm</i> =1.19 <i>m</i>                         |                                                                                              |
|                                                                                                                      |                                                     |                                                                                              |



#### Masse og massesenter

Masse brukasse:
$$m_{brukasse} \coloneqq 3025 \frac{kg}{m}$$
...vekten av stålet i brukasse $m_{brukasse} \coloneqq m_{brukasse} \div 1.15$ ...legger til med hensyn til  
ekstra stivere  
...avstanden lik nøytralakse

Masse fra asfalt: NS-EN 1991-1-1[tab.A.6]

$$t_{dekke} \coloneqq 50 \ \textbf{mm} \qquad \rho_{asfalt} \coloneqq 25 \ \frac{\textbf{kN}}{\textbf{m}^3} \qquad b_{dekke} \coloneqq 10.25 \ \textbf{m}$$

$$m_{asfalt} := t_{dekke} \cdot b_{dekke} \cdot \frac{\rho_{asfalt}}{9.81 \frac{m}{c^2}} = 1306 \frac{kg}{m} \qquad \dots \text{ vekten av typisk asfaltdekke}$$

 $z_{asfalt} \coloneqq \frac{t_{dekke}}{2} + 2635 \ mm = 2.66 \ m \qquad \dots \text{avstand senter asfalt til bunn}$ 

Masse fra rekkverk:

$$m_{rv1} \coloneqq 100 \; rac{kg}{m} \qquad z_{rv1} \coloneqq 3235 \; mm \qquad \dots$$
typiske rekkverk

$$m_{rv2} \coloneqq 150 \ \frac{kg}{m} \qquad \qquad z_{rv2} \coloneqq 3025 \ mm$$

Masse fra hengere

$$m_h \coloneqq 95 \frac{kg}{m}$$
  $z_h \coloneqq 2.76 m = 2.76 m$  ...middelvekt per hengerpar

all main cables:

$$m_{cab} := 816 \frac{\kappa g}{m}$$
  $z_{cab} := 2.635 \ m + 325 \ mm + 17.35 \ m$ 

total masse:

$$m_{tot} \coloneqq m_{brukasse} + m_{asfalt} + m_{rv1} \cdot 2 + m_{rv2} + m_h$$

$$m_{alvsat} \coloneqq 5350 \ \frac{kg}{m}$$
  $m_{tot} \equiv 5230 \ \frac{kg}{m}$ 

#### massesenter:

$$z_{ms} \coloneqq \frac{m_{brukasse} \cdot z_{brukasse} + m_{asfalt} \cdot z_{asfalt} + 2 \cdot m_{rv2} \cdot z_{rv2} + m_{rv1} \cdot z_{rv1} + m_h \cdot z_h}{m_{tot}} = 2.094 \ m$$

#### Modellering av masse i brukassen



# General Input data:

| -                                            |                                                                                                                                                                                                    |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Length of span                               | <i>l</i> :=446 <i>m</i>                                                                                                                                                                            |
| Cable sag                                    | f := 45  m                                                                                                                                                                                         |
| Width of bridge girder                       | $b_{bg} = 12.3 \ m$                                                                                                                                                                                |
| Height of brigde girder                      | $h_{bg} := 2.76 \ m$                                                                                                                                                                               |
| Distance between hangers                     | $w_h \coloneqq 10.25 \ m$                                                                                                                                                                          |
| thickness of plates in girder                | $t_{bg} := \frac{8 \ mm + 12 \ mm}{2} = 0.01 \ m$                                                                                                                                                  |
| Modulus of elasticity, girder                | $E \coloneqq 210000 \ \mathbf{MPa}$                                                                                                                                                                |
| Modulus of elasticity, cable                 | $E_c \coloneqq 180000 \ MPa$                                                                                                                                                                       |
| Area of a single main cable                  | $A_c \coloneqq 0.05  \boldsymbol{m}^2$                                                                                                                                                             |
| Moment of intertia, girder                   | $I := 0.429 \ m^4$                                                                                                                                                                                 |
| Mass of main span                            | $m_{ms}$ :=2750000 $kg$                                                                                                                                                                            |
| Weight of bridge girder                      | $w_{bg} = 5350 \frac{kg}{m} \cdot g = (52.466 \cdot 10^3) \frac{kg}{2}$                                                                                                                            |
| Weight of cable                              | $\frac{m}{w_c \coloneqq 408} \frac{kg}{kg} \cdot g = (4.001 \cdot 10^3) \frac{kg}{2}$                                                                                                              |
| Mass moment of inertia                       | $\frac{m}{I_m \coloneqq 82430} \frac{kg \cdot m^2}{m}$                                                                                                                                             |
| Weight of main span per meter                | $w \coloneqq \frac{m_{ms} \cdot \boldsymbol{g}}{\boldsymbol{k}} = (6.047 \cdot 10^4) \frac{\boldsymbol{k}\boldsymbol{g}}{2}$                                                                       |
| Cable force                                  | $H_w \coloneqq \frac{\boldsymbol{w} \cdot \boldsymbol{l}^2}{\boldsymbol{w} \cdot \boldsymbol{c}} = (3.341 \cdot 10^7) \frac{\boldsymbol{s}^2}{\boldsymbol{k} \boldsymbol{g} \cdot \boldsymbol{m}}$ |
| Alvsat force                                 | $\frac{8 \cdot f}{H \coloneqq 2 \cdot 16.8 \ 10^7} \cdot N = (3.36 \cdot 10^8) \frac{kg \cdot m}{2}$                                                                                               |
| Length of cable, from hold down to hold down | $L_e \coloneqq 720 \ m$                                                                                                                                                                            |
| Modulus of shear                             | $G := 0.8 \ 10^{11} \ Pa$                                                                                                                                                                          |
| Moment of Torsional area                     | $J := 0.929 \ m^4$                                                                                                                                                                                 |
|                                              |                                                                                                                                                                                                    |
|                                              |                                                                                                                                                                                                    |
|                                              |                                                                                                                                                                                                    |

# Vertical asymmetric frequencies (Bleich)

$$m_{ms} \frac{d^{2}}{dt^{2}} \eta + E \cdot I \frac{d^{4}}{dx^{4}} \eta - H_{w} \frac{d^{2}}{dx^{2}} \eta + \frac{w}{H_{w}} h = 0 \qquad [B.1]$$

$$\lambda \coloneqq \frac{\pi^2 \cdot E \cdot I}{l^2} \qquad \omega_{VA}(n) \coloneqq \frac{n \pi}{l} \cdot \sqrt{\frac{g}{w} \left(H_w + n^2 \lambda\right)} \qquad [B.2]$$

#### Vertical asymmetric frequencies (Steinman)

$$\omega = \frac{\mathrm{d}^2}{\mathrm{d}x^2} \left( H \cdot \eta + y \cdot \Delta H - E \cdot I \frac{\mathrm{d}^2}{\mathrm{d}x^2} \eta \right)$$
 [S.1]

$$K(n) \coloneqq \frac{n^2 \pi^2}{l^2} H_w + \frac{n^4 \pi^4}{l^4} E \cdot I$$
 [S.2]

$$\omega_{VAs}(n) \coloneqq \sqrt{\frac{K(n)}{\frac{w}{g}}}$$
[S.3]

Circular frequencies:

$$\omega_{VA}(2) = 1.285 \frac{rad}{s} \qquad \qquad \omega_{VAs}(2) = 1.285 \frac{rad}{s}$$

$$\omega_{VA}(4) = 3.676 \frac{rad}{s}$$
  $\omega_{VAs}(4) = 3.676 \frac{rad}{s}$ 

$$\omega_{VA}(6) = 7.503 \frac{rad}{s}$$
  $\omega_{VAs}(6) = 7.503 \frac{rad}{s}$ 

#### Steinmann og Bleich gir samme resultat.



$$\begin{aligned} & \text{Vertical symmetric modes (Bleich):} \\ & T-V = \frac{1}{2} \left( \frac{w}{g} \cdot \omega^2 \int_0^l \eta^2 \, dx - E \cdot I \int_0^l \eta''^2 \, dx + H_w \int_0^l \eta'' \eta \, dx - \frac{8 f}{l^2} h \int_0^l \eta \, dx \right) \\ & \frac{8 f}{l^2} h \int_0^l \eta \, dx - \frac{L_e \cdot h}{E_e \cdot A_e} = 0 \\ & \eta = a_1 \cdot \sin\left(\frac{\pi \cdot x}{l}\right) + a_3 \cdot \sin\left(\frac{3 \pi \cdot x}{l}\right) \\ & \text{Solved by Ritz method, from Bleich. Written more simplistic;} \\ & A \cdot k + 9 B \cdot (k - Ap) = 0 \\ & \text{where;} \quad A = s \cdot \omega^2 - H_w - \lambda \quad B = s \cdot \omega^2 - 9 H_w - 81 \lambda \\ & s := \frac{w \cdot l^2}{\pi^2 g} \quad p := \frac{\pi \cdot l}{16 \cdot f} \frac{L_e}{E_e \cdot A_e} \quad k := \frac{32 f}{\pi^3} \\ & W = \left(s \cdot \omega^2 - H_w - \lambda\right) \cdot k + 9 \cdot \left(s \cdot \omega^2 - 9 H_w - 81 \lambda\right) \cdot \left(k - \left(s \cdot \omega^2 - H_w - \lambda\right) \cdot p\right) \\ & W \frac{solve, \omega}{M} \begin{bmatrix} -2.4096557220851112488 \\ 2.4096557220851112488 \\ -1.5807802498310328355 \\ 1.5807802498310328355 \end{bmatrix} \\ & \text{Which solves n < 3} \end{aligned}$$

For solutions n>3 the following expression is used;

$$\omega(n) \coloneqq \sqrt{\frac{1}{s}} \left( n^2 H_w + n^4 \lambda + \frac{k}{n^2 \cdot p} \right)$$

$$\omega(4) = 3.696 \frac{rad}{s}$$
  $\omega(5) = 5.413 \frac{rad}{s}$   $\omega(6) = 7.507 \frac{rad}{s}$ 

circular frequencies are then as follows;

$$\omega_{VS1} = 1.581 \frac{rad}{s} \qquad \omega_{VS2} = 2.411 \frac{rad}{s} \qquad \omega_{VS3} := \omega(5) = 5.413 \frac{rad}{s}$$

Steinman gives roughly the same answer, so i will not abreviate more on that.





**Torsional eigenfrequencies and modes**  
Symmetric Torsion frequencies  

$$V_T = \int \frac{T^2}{2 \ G \cdot J} dx$$

$$T = G \cdot J \frac{d}{dx} \eta = G \cdot J \cdot \eta'$$

$$V_T = \frac{G \cdot J}{2} \int \eta^2 dx$$

$$T - V = \frac{1}{2} \left( m_T \cdot \omega^2 \int_0^t \phi^2 dx - \left( G \cdot J + \frac{H_w \cdot b^2}{2} \right) \int_0^t \phi'^2 dx - \frac{8 \ f \cdot b}{l^2} h \int_0^t \phi dx \right)$$

$$\frac{L_e \cdot h}{E_e \cdot A_e} - \frac{4 \ f \cdot b}{l^2} \int_0^t \eta dx = 0$$

$$h = \frac{E_e \cdot A_e \cdot 4 \cdot f \cdot b}{L_e \cdot l^2} \int_0^1 \eta dx$$

$$T - V = \frac{m_t \cdot \omega^2}{2} \int_0^t \phi^2 dx - \left( \frac{G \cdot J}{2} + \frac{H_w \cdot b^2}{4} \right) \int_0^t \phi'^2 dx - \frac{E_e \cdot A_e}{L_e} \left( \frac{4 \ f \cdot b}{l^2} \right)^2 \left( \int_0^l \phi dx \right)^2$$
Simplifications have been made, and the solution of the eq is as follows;  

$$B \cdot (A - K) - \frac{A \cdot K}{9} = 0 \qquad b_{bg} = 12.3 \ m$$

$$A = s \cdot \omega^2 - R$$

$$B = s \cdot \omega^2 - R$$

$$B = s \cdot \omega^2 - 9 \ R$$

$$R := \left( \frac{G \cdot J}{2} + \frac{H_w \cdot b_y^2}{4} \right) \frac{\pi^2}{2 \ l} = (4.251 \cdot 10^8) \ \frac{kg \cdot m^2}{s^2}$$

$$K := \frac{E_e \cdot A_e}{L_e} \cdot \frac{64 \ f^2 \ b_{w}^2}{\pi^2 \ l^2} = (1.248 \cdot 10^8) \ \frac{kg \cdot m^2}{s^2}$$

$$s := \frac{I_m \cdot l}{4} = (9.191 \cdot 10^6) \ kg \cdot m^2 \qquad J = \frac{4 \ A^2}{4}$$

$$W = (s \cdot \omega^2 - 9 \ R) \cdot ((s \cdot \omega^2 - R) - K) - \frac{(s \cdot \omega^2 - R) \cdot K}{9}$$

$$\omega_{TS1} \coloneqq w_1 \equiv 7.732 \frac{rad}{s} \qquad \omega_{TS3} \coloneqq w_2 \equiv 20.442 \frac{rad}{s}$$
Asymmetric torsion modes
$$T - V = \frac{1}{2} \left( m_I \cdot \omega^2 \int_0^l \phi^2 \, dx - \left( G \cdot J + \frac{H_w \cdot b^2}{2} \right) \int_0^l \phi'^2 \, dx \right)$$

$$\phi \equiv a_2 sin \left( \frac{2 \pi \cdot x}{l} \right) + a_4 sin \left( \frac{4 \pi \cdot x}{l} \right) + \dots$$

$$\omega_1^2 \equiv \frac{2^2 R}{s} \qquad \omega_3^2 \equiv \frac{4^2 R}{s}$$

$$\omega_k^2 \equiv \frac{n^2 R}{s} \qquad k \equiv n - 1$$

$$\omega_1 \coloneqq \sqrt{\frac{2^2 \cdot R}{s}} \equiv 13.602 \frac{1}{s}$$

$$\omega_3 \coloneqq \sqrt{\frac{4^2 \cdot R}{s}} \equiv 27.205 \frac{1}{s}$$

$$\omega_5 \coloneqq \sqrt{\frac{6^2 \cdot R}{s}} \equiv 40.807 \frac{1}{s}$$

MODE SHAPES

First vertical symmetric mode

$$a_{t1} \coloneqq 1 \qquad a_{t3} \coloneqq \frac{A(\omega_{TS1})}{3 B(\omega_{TS1})} \cdot a_{t1} = -0.013$$

$$y_{1t1}(x) \coloneqq a_{t1} \cdot \sin\left(\frac{\pi \cdot x}{l} m\right) \qquad y_{3t1}(x) \coloneqq a_{t3} \cdot \sin\left(\frac{3 \pi \cdot x}{l} m\right)$$

$$y_{t1}(x) \coloneqq y_{1t1}(x) + y_{3t1}(x)$$







## Vedlegg E: Matlab

#### **PSD AKSELERASJON.m**

```
%%---PSD---%%
% akselerasjon
clear all;
close all;
load('Vinddata_2013_12_05_05_50.mat')
% For tidsserie 05.50 5.des
nn = 1:
%Input the 'rådata' akselerasjoner
Ey1 = H24E y(nn,:):Ey2 = H18E y(nn,:);
Ez1 = H24E z(nn,:):Ez2 = H18E z(nn,:);
Wy1 = H24W y(nn,:):Wy2 = H18W y(nn,:);
Wz1 = H24W z(nn,:):Wz2 = H18W z(nn,:);
q = 9.81;
%Relativ forskyvning
H1 = (Ey1+Wy1)/2;H2 = (Ey2+Wy2)/2;
V1 = (Ez1+Wz1)/2; V2 = (Ez2+Wz2)/2;
T1 = ((Ez1-Wz1)/7.15)*g:T2 = ((Ez2-Wz2)/7.15)*g:
%Decimate vectors - nyquist 200 Hz
DEC = 8:
tDEC = decimate(t(1,:),DEC):
H1DEC = decimate(H1,DEC,'fir'):H2DEC = decimate(H2,DEC,'fir'):
V1DEC = decimate(V1,DEC,'fir'):V2DEC = decimate(V2,DEC,'fir'):
T1DEC = decimate(T1,DEC,'fir'):T2DEC = decimate(T2,DEC,'fir'):
%Filter vektors med høypass filter - nyquist 25Hz
[b,a] = butter(8,0.8):
tFILT = tDEC:
H1FILT = filtfilt(b,a,H1DEC):H2FILT = filtfilt(b,a,H2DEC):
V1FILT = filtfilt(b,a,V1DEC):V2FILT = filtfilt(b,a,V2DEC):
T1FILT = filtfilt(b,a,T1DEC):T2FILT = filtfilt(b,a,T2DEC):
% Plot figurer
h = figure('name','Akselerasjon vs. Tid'):
subplot(311): plot(tDEC,H1FILT,tDEC,H2FILT):legend('H24','H18')
xlabel('Tid [s]'):ylabel('Horisontal [g]'):
subplot(312): plot(tDEC,V1FILT,tDEC,V2FILT):
xlabel('Tid [s]'):ylabel('Vertikal [g]'):
subplot(313): plot(tDEC,T1FILT,tDEC,T2FILT):
xlabel('Tid [s]'):ylabel('Torsjonal [rad/s<sup>2</sup>]'):
%Define frekvens inkrement
fs = 1/(t(2)-t(1)):
ws = 2*pi*fs:
fsFILT = 1/(tFILT(2)-tFILT(1)):
wsFILT = 2*pi*fsFILT:
% PSD - pWelch
[SH1FILT,freqFILT] = pwelch(H1FILT,[],[],length(H1FILT),fsFILT):
[SV1FILT,freqFILT] = pwelch(V1FILT,[],[],length(V1FILT),fsFILT):
[ST1FILT,freqFILT] = pwelch(T1FILT,[],[],length(T1FILT),fsFILT):
[SH2FILT,freqFILT] = pwelch(H2FILT,[],[],length(H2FILT),fsFILT):
[SV2FILT,freqFILT] = pwelch(V2FILT,[],[],length(V2FILT),fsFILT):
[ST2FILT,freqFILT] = pwelch(T2FILT,[],[],length(T2FILT),fsFILT):
%plot induvidual PSD figures
h = figure('name', 'PSD Horisontal Akselerasjon'):
plot(freqFILT,SH1FILT,freqFILT,SH2FILT): legend('H24','H18'):
xlabel('Frekvens [Hz]'):ylabel('Magnitude [dB/Hz]'):
xlim([0.01 1]):
h = figure('name', 'PSD Horisontal Akselerasjon'):
```

```
loglog(freqFILT,SH1FILT,freqFILT,SH2FILT): legend('H24','H18'):
xlabel('Frekvens [Hz]'):ylabel('Magnitude [dB/Hz]'):
h = figure('name', 'PSD Vertikal Akseleration'):
plot(freqFILT,SV1FILT,freqFILT,SV2FILT): legend('H24','H18'):
xlabel('Frekvens [Hz]'):ylabel('Magnitude [dB/Hz]'):
xlim([0.01 2]):
h = figure('name','PSD Vertikal Akseleration'):
loglog(freqFILT,SV2FILT,freqFILT,SV1FILT): legend('H18','H24'):
xlabel('Frekvens [Hz]'):ylabel('Magnitude [dB/Hz]'):
h = figure('name','PSD Torsjonal Akselerajon'):
plot(freqFILT,ST1FILT,freqFILT,ST2FILT): legend('H24','H18'):
xlabel('Frekvens [Hz]'):ylabel('Magnitude [dB/Hz]'):
xlim([0.1 6]):
h = figure('name','PSD Torsjonal Akselerajon'):
loglog(freqFILT,ST1FILT,freqFILT,ST2FILT): legend('H24','H18'):
xlabel('Frekvens [Hz]'):ylabel('Magnitude [dB/Hz]'):
```

```
VINDLAST.m
```

```
%---Buffeting vind---%
clear all:
close all:
load('NatHazSimulertvind.mat'):%Finner de 5 tidsserier laget i NatHaz
Cd = 1.0:Cl = 0.1:Cm = 0.1:Cdm = 0.0: % Formfaktorer
Clm = 3.0:Cmm = 1.12:Cc = 1.5:
% Geometri
B = 10.25:
H = 2.76:
Cb = 0.118*2:%DIAMETER KABEL
n=7:
for ii=1:n
    %vinddata
    p=1.25:
    U = [5, 10, 15, 20, 25, 30, 38]:
    U = U(:,ii):
    u = NatHaz(:,ii):%langsgående fluktuerende
    % forhold mellom langsgående og vertikal vindkomponenter
    w = 0.*u:
    v = [u./U, w./U]':
    % Buffetingvind uten bevegelsesavhengig del:
    qDt = (0.5*p*U.^2)*[2*Cd*H, (Cdm*H)-(Cl*B)]*v:
    qLt = (0.5*p*U.^2)*[2*Cl*B, (Clm*B)+(Cd*H)]*v:
    qMt = (0.5*p*U.^2)*[Cm*B^2, Cmm*B^2]*v:
    qCt = (0.5*p*U.^2)*2*Cc*Cb*(u):
    %Statisk vindlast
    qD = (0.5*p*U.^2)*Cd*H*ones(1,length(qDt)):
    qL = (0.5*p*U.^2)*Cl*B*ones(1,length(qLt)):
    qM = (0.5*p*U.^2)*Cm*(B^2)*ones(1,length(qMt)):
    qC = (0.5*p*U.^2)*Cc*Cb*ones(1,length(qCt)):
    %Total vindlast
    QD = qDt + qD:
    QL = qLt + qL:
    QM = qMt + qM:
    QC = qCt' + qC:
    % Vindlaster for input abaqus
    t = (0:0.2:600-0.2)':
    D = [t, QD']:
    L = [t, QL']:
    M = [t, QM'/B]:
    C = [t, QC']:
    filename1=['D',num2str(U),'.txt']:
```

```
filename2=['L',num2str(U),'.txt']:
    filename3=['M',num2str(U),'.txt']:
    filename4=['C',num2str(U),'.txt']:
    dlmwrite(filename1',D,'\t'):
    dlmwrite(filename2,L,'\t'):
    dlmwrite(filename3,M,'\t'):
    dlmwrite(filename4,C,'\t'):
    movefile(filename1, 'C:\Users\Kristoffer\Desktop\ABAQUS MODEL\ENDELIG
MODELLER\NATHAZ UTEN W')
    movefile(filename2,'C:\Users\Kristoffer\Desktop\ABAQUS MODEL\ENDELIG
MODELLER\NATHAZ UTEN W')
    movefile(filename3, 'C:\Users\Kristoffer\Desktop\ABAQUS MODEL\ENDELIG
MODELLER\NATHAZ UTEN W')
    movefile(filename4, 'C:\Users\Kristoffer\Desktop\ABAQUS MODEL\ENDELIG
MODELLER\NATHAZ UTEN W')
end
```

| *HEADING                                |                     |                   |                    |         |                |                    |          |  |
|-----------------------------------------|---------------------|-------------------|--------------------|---------|----------------|--------------------|----------|--|
| ANALYSE AV LYSEFJORDBRUA                |                     |                   |                    |         |                |                    |          |  |
| **DENN<br>******                        | \E FILEN<br>******* | INNEHO<br>******* | LDEK FE<br>******* | 2-MODEL | LEN<br>******* | *******            | ****     |  |
| **** NO                                 | DFR                 |                   |                    |         |                |                    | ****     |  |
| ******                                  | *****               | *****             | ******             | ******  | ******         | *******            | ****     |  |
| *NODE                                   |                     |                   |                    |         |                |                    |          |  |
| **BRUKASSE (MODELLERT FRA NORD TIL SØR) |                     |                   |                    |         |                |                    |          |  |
| 1                                       | ,                   | -223              | ,                  | 0       | ,              | 52.5500            |          |  |
| 2                                       | ,                   | -204              | ,                  | 0       | ,              | 53.4644            |          |  |
| 3                                       | ,                   | -192              | ,                  | 0       | ,              | 53.9982            |          |  |
| 4                                       | ,                   | -180              | ,                  | 0       | ,              | 54.4943            |          |  |
| 5                                       | ,                   | -168              | ,                  | 0       | ,              | 54.9523            |          |  |
| 6<br>7                                  | ,                   | -156              | ,                  | 0       | ,              | 55 7496            |          |  |
| /<br>Q                                  | ,                   | -144              | ,                  | 0       | ,              | 56 0851            |          |  |
| 0                                       | ,                   | -132              | ,                  | 0       | ,              | 56 3788            |          |  |
| 10                                      | ,                   | -108              | ,                  | 0       | ,              | 56 6300            |          |  |
| 11                                      | ,                   | -96               | ,                  | 0       | ,              | 56.8371            |          |  |
| 12                                      | ,                   | -84               | ,                  | 0       | ,              | 57.0017            |          |  |
| 13                                      | ,                   | -72               | ,                  | 0       | ,              | 57.1201            |          |  |
| 14                                      | ,                   | -60               | ,                  | 0       | ,              | 57.1938            |          |  |
| 15                                      | ,                   | -48               | ,                  | 0       | ,              | 57.2222            |          |  |
| 16                                      | ,                   | -36               | ,                  | 0       | ,              | 57.2039            |          |  |
| 17                                      | ,                   | -24               | ,                  | 0       | ,              | 57.1393            |          |  |
| 18                                      | ,                   | -12               | ,                  | 0       | ,              | 57.0279            |          |  |
| 19                                      | ,                   | 0                 | ,                  | 0       | ,              | 56.8682            |          |  |
| 20                                      | ,                   | 12                | ,                  | 0       | ,              | 56 4042            |          |  |
| 21                                      | ,                   | 36                | ,                  | 0       | ,              | 56,0990            |          |  |
| 22                                      | ,                   | 48                | ,                  | 0       | ,              | 55 7441            |          |  |
| 24                                      | ,                   | 60                | ,                  | 0       | ,              | 55 3401            |          |  |
| 25                                      | ,                   | 72                | ,                  | ů       | ,              | 54.8859            |          |  |
| 26                                      | ,                   | 84                | ,                  | 0       | ,              | 54.3826            |          |  |
| 27                                      | ,                   | 96                | ,                  | 0       | ,              | 53.8302            |          |  |
| 28                                      | ,                   | 108               | ,                  | 0       | ,              | 53.2279            |          |  |
| 29                                      | ,                   | 120               | ,                  | 0       | ,              | 52.5760            |          |  |
| 30                                      | ,                   | 132               | ,                  | 0       | ,              | 51.8758            |          |  |
| 31                                      | ,                   | 144               | ,                  | 0       | ,              | 51.1281            |          |  |
| 32                                      | ,                   | 156               | ,                  | 0       | ,              | 50.3326            |          |  |
| 33<br>24                                | ,                   | 108               | ,                  | 0       | ,              | 49.4902            |          |  |
| 34                                      | ,                   | 100               | ,                  | 0       | ,              | 48.0052            |          |  |
| 36                                      | ,                   | 204               | ,                  | 0       | ,              | 46 7010            |          |  |
| 37                                      | ,                   | 223               | ,                  | 0       | ,              | 45.0860            |          |  |
| **ANKE                                  | RPUNKT              | NORD-V            | ,<br>VEST          |         | ,              |                    |          |  |
| 981                                     | ,                   | -296.906          | ,                  | 5.1250  | ,              | 53.4647            |          |  |
| **HOVE                                  | EDKABLI             | ER VEST           |                    |         |                |                    |          |  |
| 1001                                    | ,                   | -223.226          | 3                  | ,       | 5.125          | ,                  | 102.2600 |  |
| 1002                                    | ,                   | -204              | ,                  | 5.125   | ,              | 95.3523            |          |  |
| 1003                                    | ,                   | -192              | ,                  | 5.125   | ,              | 91.3371            |          |  |
| 1004                                    | ,                   | -180              | ,                  | 5.125   | ,              | 87.5729            |          |  |
| 1005                                    | ,                   | -108              | ,                  | 5.125   | ,              | 84.05/4            |          |  |
| 1000                                    | ,                   | -130              | ,                  | 5.125   | ,              | 80.7907<br>77 7705 |          |  |
| 1007                                    | ,                   | -132              | ,                  | 5.125   | ,              | 74 9973            |          |  |
| 1009                                    | ,                   | -120              | ,                  | 5 125   | ,              | 72.4702            |          |  |
| 1010                                    | ,                   | -108              | ,                  | 5.125   | ,              | 70.1875            |          |  |
| 1011                                    | ,                   | -96               | ,                  | 5.125   | ,              | 68.1497            |          |  |
| 1012                                    | ,                   | -84               | ,                  | 5.125   | ,              | 66.3550            |          |  |
| 1013                                    | ,                   | -72               | ,                  | 5.125   | ,              | 64.8040            |          |  |
| 1014                                    | ,                   | -60               | ,                  | 5.125   | ,              | 63.4960            |          |  |
| 1015                                    | ,                   | -48               | ,                  | 5.125   | ,              | 62.4294            |          |  |
| 1016                                    | ,                   | -36               | ,                  | 5.125   | ,              | 61.6045            |          |  |
| 1017                                    | ,                   | -24               | ,                  | 5.125   | ,              | 61.0197            |          |  |
| 1018                                    | ,                   | -12               | ,                  | 5.125   | ,              | 60.6754            |          |  |
| 1019                                    | ,                   | U                 | ,                  | 3.125   | ,              | 00.5/14            |          |  |
| 1020        |                | 12                 |        | 5.125   |        | 60.7068  |                         |
|-------------|----------------|--------------------|--------|---------|--------|----------|-------------------------|
| 1021        | ,              | 24                 | ,      | 5.125   | ,      | 61.0822  |                         |
| 1022        | ,              | 36                 | ,      | 5 125   | ,      | 61 6973  |                         |
| 1022        | ,              | 18                 | ,      | 5 1 2 5 | ,      | 62 5505  |                         |
| 1025        | ,              | 40                 | ,      | 5 1 2 5 | ,      | 62 6426  |                         |
| 1024        | ,              | 70                 | ,      | 5.125   | ,      | (4.0724  |                         |
| 1025        | ,              | 12                 | ,      | 5.125   | ,      | 04.9/24  |                         |
| 1026        | ,              | 84                 | ,      | 5.125   | ,      | 66.5408  |                         |
| 1027        | ,              | 96                 | ,      | 5.125   | ,      | 68.3480  |                         |
| 1028        | ,              | 108                | ,      | 5.125   | ,      | 70.3931  |                         |
| 1029        | ,              | 120                | ,      | 5.125   | ,      | 72.6774  |                         |
| 1030        | ,              | 132                | ,      | 5.125   | ,      | 75.2003  |                         |
| 1031        | ,              | 144                | ,      | 5.125   | ,      | 77.9635  |                         |
| 1032        |                | 156                |        | 5.125   |        | 80.9679  |                         |
| 1033        | ,              | 168                | ,      | 5 1 2 5 | ,      | 84 2133  |                         |
| 1034        | ,              | 180                | ,      | 5 125   | ,      | 87 7022  |                         |
| 1035        | ,              | 100                | ,      | 5 1 2 5 | ,      | 01 / 3/8 |                         |
| 1035        | ,              | 204                | ,      | 5.125   | ,      | 05 4170  |                         |
| 1030        | ,              | 204                | ,      | 5.125   | ,      | 95.4172  |                         |
| 1037        | ,              | 223.3363           | ,      | 5.125   | ,      | 102.2600 |                         |
| **ANKE      | RPUNK'I        | SØR-VE             | ST     |         |        |          |                         |
| 1087        | ,              | 389.0460           | ,      | 5.1250  | ,      | 46.0009  |                         |
| **ANKE      | RPUNKT         | NORD-@             | ØST    |         |        |          |                         |
| 1981        | ,              | -296.906           | ,      | -5.125  | ,      | 53.4647  |                         |
| **HOVE      | DKABEL         | ØST                |        |         |        |          |                         |
| 2001        |                | -223.2263          | 3      |         | -5.125 |          | 102.2600                |
| 2002        | ,              | -204               |        | -5 125  |        | 95 3523  |                         |
| 2003        | ,              | _192               | ,      | -5 125  | ,      | 91 3371  |                         |
| 2003        | ,              | -192               | ,      | -5.125  | ,      | 87 5720  |                         |
| 2004        | ,              | 160                | ,      | 5 1 25  | ,      | 01.3129  |                         |
| 2003        | ,              | -108               | ,      | -3.123  | ,      | 84.0374  |                         |
| 2006        | ,              | -156               | ,      | -5.125  | ,      | 80./90/  |                         |
| 2007        | ,              | -144               | ,      | -5.125  | ,      | //.//05  |                         |
| 2008        | ,              | -132               | ,      | -5.125  | ,      | 74.9973  |                         |
| 2009        | ,              | -120               | ,      | -5.125  | ,      | 72.4702  |                         |
| 2010        | ,              | -108               | ,      | -5.125  | ,      | 70.1875  |                         |
| 2011        |                | -96                |        | -5.125  |        | 68.1497  |                         |
| 2012        |                | -84                |        | -5.125  |        | 66.3550  |                         |
| 2013        | ,              | -72                | ,      | -5 125  | ,      | 64 8040  |                         |
| 2013        | ,              | -60                | ,      | -5 125  | ,      | 63 4960  |                         |
| 2014        | ,              | -00                | ,      | 5 125   | ,      | 62 4204  |                         |
| 2015        | ,              | -40                | ,      | -5.125  | ,      | 02.4294  |                         |
| 2010        | ,              | -30                | ,      | -5.125  | ,      | 01.0045  |                         |
| 2017        | ,              | -24                | ,      | -5.125  | ,      | 61.019/  |                         |
| 2018        | ,              | -12                | ,      | -5.125  | ,      | 60.6754  |                         |
| 2019        | ,              | 0                  | ,      | -5.125  | ,      | 60.5714  |                         |
| 2020        | ,              | 12                 | ,      | -5.125  | ,      | 60.7068  |                         |
| 2021        | ,              | 24                 | ,      | -5.125  | ,      | 61.0822  |                         |
| 2022        | ,              | 36                 |        | -5.125  |        | 61.6973  |                         |
| 2023        |                | 48                 |        | -5.125  |        | 62.5505  |                         |
| 2024        | ,              | 60                 | ,      | -5 125  | ,      | 63 6426  |                         |
| 2025        | ,              | 72                 | ,      | -5 125  | ,      | 64 9724  |                         |
| 2025        | ,              | 91<br>81           | ,      | 5 125   | ,      | 66 5/08  |                         |
| 2020        | ,              | 04                 | ,      | -5.125  | ,      | (0.2400  |                         |
| 2027        | ,              | 90                 | ,      | -5.125  | ,      | 08.3480  |                         |
| 2028        | ,              | 108                | ,      | -5.125  | ,      | /0.3931  |                         |
| 2029        | ,              | 120                | ,      | -5.125  | ,      | 72.6774  |                         |
| 2030        | ,              | 132                | ,      | -5.125  | ,      | 75.2003  |                         |
| 2031        | ,              | 144                | ,      | -5.125  | ,      | 77.9635  |                         |
| 2032        | ,              | 156                | ,      | -5.125  | ,      | 80.9679  |                         |
| 2033        | ,              | 168                |        | -5.125  |        | 84.2133  |                         |
| 2034        |                | 180                |        | -5.125  |        | 87.7022  |                         |
| 2035        | ,              | 192                | ,      | -5 125  | ,      | 91 4348  |                         |
| 2036        | ,              | 204                | ,      | -5 125  | ,      | 95 /172  |                         |
| 2030        | ,              | 207                | ,      | 5 125   | ,      | 102 2600 |                         |
| 203/<br>*** | ,<br>DDI INTZT | 223.3303<br>COD OC | ,<br>т | -3.123  | ,      | 102.2000 |                         |
| ***ANKE     | KPUNKI         | 50K-05             | 1      | e 10 -  |        | 100000   |                         |
| 2087        | ,              | 389.0460           | ,      | -5.125  | ,      | 46.0009  |                         |
| **LINK      | MELLON         | 1 BRUKA            | SSE OG | KOBLIN  | JPUNKT | TIL HEN  | GER VEST(1.04 above NA) |
| 3001        | ,              | -223               | ,      | 5.125   | ,      | 53.5900  |                         |
| 3002        | ,              | -204               | ,      | 5.125   | ,      | 54.5044  |                         |
| 3003        | ,              | -192               | ,      | 5.125   | ,      | 55.0382  |                         |
| 3004        | ,              | -180               | ,      | 5.125   | ,      | 55.5343  |                         |
|             |                |                    |        |         |        | -        |                         |

| 3005                                                                                                                                                                                                                                                                   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -168 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.125 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 55.9923                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3006                                                                                                                                                                                                                                                                   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.125 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 56.4111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3007                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 56.7886                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3008                                                                                                                                                                                                                                                                   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 57 1251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3000                                                                                                                                                                                                                                                                   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 57 / 188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2010                                                                                                                                                                                                                                                                   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -120 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.125 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 57.(700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3010                                                                                                                                                                                                                                                                   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -108 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | , 5.125 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 57.6700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3011                                                                                                                                                                                                                                                                   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -96 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.125 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 57.8771                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3012                                                                                                                                                                                                                                                                   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -84 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.125 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 58.0417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3013                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 58.1601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3014                                                                                                                                                                                                                                                                   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 58 2338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3015                                                                                                                                                                                                                                                                   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 125 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 58 2622                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2015                                                                                                                                                                                                                                                                   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -40 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 125 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 59 2420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3010                                                                                                                                                                                                                                                                   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -30 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.125 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 58.2459                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3017                                                                                                                                                                                                                                                                   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -24 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | , 5.125 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 58.1793                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3018                                                                                                                                                                                                                                                                   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -12 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.125 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 58.0679                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3019                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 57.9082                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3020                                                                                                                                                                                                                                                                   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 57 7007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3021                                                                                                                                                                                                                                                                   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 125 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 57 1110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2022                                                                                                                                                                                                                                                                   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 125 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 57.1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3022                                                                                                                                                                                                                                                                   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , 5.125 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 57.1390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3023                                                                                                                                                                                                                                                                   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 48 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.125 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 56.7841                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3024                                                                                                                                                                                                                                                                   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 60 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , 5.125 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 56.3801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3025                                                                                                                                                                                                                                                                   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 72 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 55.9259                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3026                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 55.4226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3027                                                                                                                                                                                                                                                                   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 54 8702                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2020                                                                                                                                                                                                                                                                   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5 125 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 54 2670                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2020                                                                                                                                                                                                                                                                   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 108 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.125 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 52.(1(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3029                                                                                                                                                                                                                                                                   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.125 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 53.6160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3030                                                                                                                                                                                                                                                                   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 132 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | , 5.125 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 52.9158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3031                                                                                                                                                                                                                                                                   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 144 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.125 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 52.1681                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3032                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 156 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 51.3726                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3033                                                                                                                                                                                                                                                                   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50 5302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3034                                                                                                                                                                                                                                                                   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19 6/32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2025                                                                                                                                                                                                                                                                   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 125 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 49 7122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3033                                                                                                                                                                                                                                                                   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 192 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.125 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 46./152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3036                                                                                                                                                                                                                                                                   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 204 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.125 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 47.7410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3037                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5 1 2 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 46 1260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                        | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.125 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40.1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| **LINK                                                                                                                                                                                                                                                                 | MELLO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M BRUKAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SSE OG KOBLINGPUNKT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TIL HENGER ØST(1.04 above NA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| **LINK<br>4001                                                                                                                                                                                                                                                         | ,<br>MELLO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -223<br>M BRUKAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SSE OG KOBLINGPUNKT<br>-5.125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TIL HENGER ØST(1.04 above NA)<br>53.5900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| **LINK<br>4001<br>4002                                                                                                                                                                                                                                                 | ,<br>MELLO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -223<br>-223<br>-204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SSE OG KOBLINGPUNKT<br>-5.125<br>-5.125<br>-5.125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TIL HENGER ØST(1.04 above NA)<br>53.5900<br>54 5044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| **LINK<br>4001<br>4002<br>4003                                                                                                                                                                                                                                         | ,<br>MELLO<br>,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -223<br>-223<br>-204<br>-192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SSE OG KOBLINGPUNKT<br>-5.125 ,<br>-5.125 ,<br>-5.125 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TIL HENGER ØST(1.04 above NA)<br>53.5900<br>54.5044<br>55.0382                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| **LINK<br>4001<br>4002<br>4003<br>4004                                                                                                                                                                                                                                 | ,<br>MELLO<br>,<br>,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -223<br>-223<br>-204<br>-192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SSE OG KOBLINGPUNKT<br>-5.125 ,<br>-5.125 ,<br>-5.125 ,<br>-5.125 ,<br>-5.125 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 40.1200<br>TIL HENGER ØST(1.04 above NA)<br>53.5900<br>54.5044<br>55.0382                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| **LINK<br>4001<br>4002<br>4003<br>4004                                                                                                                                                                                                                                 | ,<br>MELLO<br>,<br>,<br>,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -223<br>-223<br>-204<br>-192<br>-180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SSE OG KOBLINGPUNKT<br>-5.125 ,<br>-5.125 ,<br>-5.125 ,<br>-5.125 ,<br>-5.125 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TIL HENGER ØST(1.04 above NA)<br>53.5900<br>54.5044<br>55.0382<br>55.5343                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| **LINK<br>4001<br>4002<br>4003<br>4004<br>4005                                                                                                                                                                                                                         | ,<br>MELLO<br>,<br>,<br>,<br>,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -223<br>-204<br>-192<br>-180<br>-168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SSE OG KOBLINGPUNKT<br>-5.125 ,<br>-5.125 ,<br>-5.125 ,<br>-5.125 ,<br>-5.125 ,<br>-5.125 ,<br>-5.125 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TIL HENGER ØST(1.04 above NA)<br>53.5900<br>54.5044<br>55.0382<br>55.5343<br>55.9923                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| **LINK<br>4001<br>4002<br>4003<br>4004<br>4005<br>4006                                                                                                                                                                                                                 | ,<br>MELLO<br>,<br>,<br>,<br>,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M BRUKAS<br>-223<br>-204<br>-192<br>-180<br>-168<br>-156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SSE OG KOBLINGPUNKT<br>-5.125 ,<br>-5.125 ,<br>-5.125 ,<br>-5.125 ,<br>-5.125 ,<br>-5.125 ,<br>-5.125 ,<br>-5.125 ,<br>-5.125 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TIL HENGER ØST(1.04 above NA)<br>53.5900<br>54.5044<br>55.0382<br>55.5343<br>55.9923<br>56.4111                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| **LINK<br>4001<br>4002<br>4003<br>4004<br>4005<br>4006<br>4007                                                                                                                                                                                                         | , MELLO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -223<br>-204<br>-192<br>-180<br>-168<br>-156<br>-144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SSE OG KOBLINGPUNKT<br>-5.125 ,<br>-5.125 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TIL HENGER ØST(1.04 above NA)<br>53.5900<br>54.5044<br>55.0382<br>55.5343<br>55.9923<br>56.4111<br>56.7886                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| **LINK<br>4001<br>4002<br>4003<br>4004<br>4005<br>4006<br>4007<br>4008                                                                                                                                                                                                 | ,<br>MELLO<br>,<br>,<br>,<br>,<br>,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -223<br>-204<br>-192<br>-180<br>-168<br>-156<br>-144<br>-132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SSE OG KOBLINGPUNKT<br>-5.125 ,<br>-5.125 ,<br>-5.12 | TIL HENGER ØST(1.04 above NA)<br>53.5900<br>54.5044<br>55.0382<br>55.5343<br>55.9923<br>56.4111<br>56.7886<br>57.1251                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| **LINK<br>4001<br>4002<br>4003<br>4004<br>4005<br>4006<br>4007<br>4008<br>4009                                                                                                                                                                                         | ,<br>MELLO<br>,<br>,<br>,<br>,<br>,<br>,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M BRUKAS<br>-223<br>-204<br>-192<br>-180<br>-168<br>-156<br>-144<br>-132<br>-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SSE OG KOBLINGPUNKT<br>-5.125 ,<br>-5.125 ,<br>-5.12 | TIL HENGER ØST(1.04 above NA)<br>53.5900<br>54.5044<br>55.0382<br>55.5343<br>55.9923<br>56.4111<br>56.7886<br>57.1251<br>57.4188                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| **LINK<br>4001<br>4002<br>4003<br>4004<br>4005<br>4006<br>4007<br>4008<br>4009<br>4010                                                                                                                                                                                 | ,<br>MELLO<br>,<br>,<br>,<br>,<br>,<br>,<br>,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M BRUKAS<br>-223<br>-204<br>-192<br>-180<br>-168<br>-156<br>-144<br>-132<br>-120<br>-108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SSE OG KOBLINGPUNKT<br>-5.125 ,<br>-5.125 ,<br>-5.12 | 40.1200         TIL HENGER ØST(1.04 above NA)         53.5900         54.5044         55.0382         55.5343         55.9923         56.4111         56.7886         57.1251         57.4188         57.6700                                                                                                                                                                                                                                                                                                                                                                 |
| **LINK<br>4001<br>4002<br>4003<br>4004<br>4005<br>4006<br>4007<br>4008<br>4009<br>4010                                                                                                                                                                                 | ,<br>MELLO<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MBRUKAS<br>-223<br>-204<br>-192<br>-180<br>-168<br>-156<br>-144<br>-132<br>-120<br>-108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SE OG KOBLINGPUNKT<br>-5.125 ,<br>-5.125 | TIL HENGER ØST(1.04 above NA)<br>53.5900<br>54.5044<br>55.0382<br>55.5343<br>55.9923<br>56.4111<br>56.7886<br>57.1251<br>57.4188<br>57.6700<br>57.9721                                                                                                                                                                                                                                                                                                                                                                                                                        |
| **LINK<br>4001<br>4002<br>4003<br>4004<br>4005<br>4006<br>4007<br>4008<br>4009<br>4010<br>4011                                                                                                                                                                         | ,<br>MELLO<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M BRUKAS<br>-223<br>-204<br>-192<br>-180<br>-168<br>-156<br>-144<br>-132<br>-120<br>-108<br>-96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SSE OG KOBLINGPUNKT<br>-5.125 ,<br>-5.125 ,<br>-5.12 | TIL HENGER ØST(1.04 above NA)<br>53.5900<br>54.5044<br>55.0382<br>55.5343<br>55.9923<br>56.4111<br>56.7886<br>57.1251<br>57.4188<br>57.6700<br>57.8771                                                                                                                                                                                                                                                                                                                                                                                                                        |
| **LINK<br>4001<br>4002<br>4003<br>4004<br>4005<br>4006<br>4007<br>4008<br>4009<br>4010<br>4011<br>4012                                                                                                                                                                 | ,<br>MELLO<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MBRUKAS<br>-223<br>-204<br>-192<br>-180<br>-168<br>-156<br>-144<br>-132<br>-120<br>-108<br>-96<br>-84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SE OG KOBLINGPUNKT<br>-5.125 ,<br>-5.125 | TIL HENGER ØST(1.04 above NA)<br>53.5900<br>54.5044<br>55.0382<br>55.5343<br>55.9923<br>56.4111<br>56.7886<br>57.1251<br>57.4188<br>57.6700<br>57.8771<br>58.0417                                                                                                                                                                                                                                                                                                                                                                                                             |
| **LINK<br>4001<br>4002<br>4003<br>4004<br>4005<br>4006<br>4007<br>4008<br>4009<br>4010<br>4011<br>4012<br>4013                                                                                                                                                         | , MELLO<br>, , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MBRUKAS<br>-223<br>-204<br>-192<br>-180<br>-168<br>-156<br>-144<br>-132<br>-120<br>-108<br>-96<br>-84<br>-72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SSE OG KOBLINGPUNKT<br>-5.125 ,<br>-5.125 ,<br>-5.12 | TIL HENGER ØST(1.04 above NA)<br>53.5900<br>54.5044<br>55.0382<br>55.5343<br>55.9923<br>56.4111<br>56.7886<br>57.1251<br>57.4188<br>57.6700<br>57.8771<br>58.0417<br>58.1601                                                                                                                                                                                                                                                                                                                                                                                                  |
| **LINK<br>4001<br>4002<br>4003<br>4004<br>4005<br>4006<br>4007<br>4008<br>4009<br>4010<br>4011<br>4012<br>4013<br>4014                                                                                                                                                 | , MELLO.<br>, , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MBRUKAS         -223         -204         -192         -180         -168         -156         -144         -132         -108         -108         -108         -96         -84         -72         -60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SE OG KOBLINGPUNKT<br>-5.125 ,<br>-5.125 | TIL HENGER ØST(1.04 above NA)<br>53.5900<br>54.5044<br>55.0382<br>55.5343<br>55.9923<br>56.4111<br>56.7886<br>57.1251<br>57.4188<br>57.6700<br>57.8771<br>58.0417<br>58.1601<br>58.2338                                                                                                                                                                                                                                                                                                                                                                                       |
| **LINK<br>4001<br>4002<br>4003<br>4004<br>4005<br>4006<br>4007<br>4008<br>4009<br>4010<br>4011<br>4012<br>4013<br>4014<br>4015                                                                                                                                         | , MELLO.<br>, , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M BRUKAS<br>-223<br>-204<br>-192<br>-180<br>-168<br>-156<br>-144<br>-132<br>-120<br>-108<br>-96<br>-84<br>-72<br>-60<br>-48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SSE OG KOBLINGPUNKT<br>-5.125 ,<br>-5.125 ,<br>-5.12 | TIL HENGER ØST(1.04 above NA)<br>53.5900<br>54.5044<br>55.0382<br>55.5343<br>55.9923<br>56.4111<br>56.7886<br>57.1251<br>57.4188<br>57.6700<br>57.8771<br>58.0417<br>58.1601<br>58.2338<br>58.2622                                                                                                                                                                                                                                                                                                                                                                            |
| **LINK<br>4001<br>4002<br>4003<br>4004<br>4005<br>4006<br>4007<br>4008<br>4009<br>4010<br>4011<br>4012<br>4013<br>4014<br>4015<br>4016                                                                                                                                 | ,<br>MELLO<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M BRUKAS<br>-223<br>-204<br>-192<br>-180<br>-168<br>-156<br>-144<br>-132<br>-120<br>-108<br>-96<br>-84<br>-72<br>-60<br>-48<br>-36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SE OG KOBLINGPUNKT<br>-5.125 ,<br>-5.125 | 40.1200         TIL HENGER ØST(1.04 above NA)         53.5900         54.5044         55.0382         55.5343         55.9923         56.4111         56.7886         57.1251         57.4188         57.6700         57.8771         58.0417         58.1601         58.2338         58.2622         58.2439                                                                                                                                                                                                                                                                 |
| **LINK<br>4001<br>4002<br>4003<br>4004<br>4005<br>4006<br>4007<br>4008<br>4009<br>4010<br>4010<br>4011<br>4012<br>4013<br>4014<br>4015<br>4016                                                                                                                         | ,<br>MELLO<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M BRUKAS<br>-223<br>-204<br>-192<br>-180<br>-168<br>-156<br>-144<br>-132<br>-120<br>-108<br>-96<br>-84<br>-72<br>-60<br>-48<br>-36<br>-24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SSE OG KOBLINGPUNKT<br>-5.125 ,<br>-5.125 ,<br>-5.12 | TIL HENGER ØST(1.04 above NA)<br>53.5900<br>54.5044<br>55.0382<br>55.5343<br>55.9923<br>56.4111<br>56.7886<br>57.1251<br>57.4188<br>57.6700<br>57.8771<br>58.0417<br>58.1601<br>58.2338<br>58.2622<br>58.2439<br>59.1702                                                                                                                                                                                                                                                                                                                                                      |
| **LINK<br>4001<br>4002<br>4003<br>4004<br>4005<br>4006<br>4007<br>4008<br>4009<br>4010<br>4011<br>4012<br>4013<br>4014<br>4015<br>4016<br>4017                                                                                                                         | , MELLO<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M BRUKAS<br>-223<br>-204<br>-192<br>-180<br>-168<br>-156<br>-144<br>-132<br>-120<br>-108<br>-96<br>-84<br>-72<br>-60<br>-48<br>-36<br>-24<br>-24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SE OG KOBLINGPUNKT<br>-5.125 ,<br>-5.125 | TIL HENGER ØST(1.04 above NA)<br>53.5900<br>54.5044<br>55.0382<br>55.5343<br>55.9923<br>56.4111<br>56.7886<br>57.1251<br>57.4188<br>57.6700<br>57.8771<br>58.0417<br>58.1601<br>58.2338<br>58.2622<br>58.2439<br>58.1793<br>58.1793                                                                                                                                                                                                                                                                                                                                           |
| **LINK<br>4001<br>4002<br>4003<br>4004<br>4005<br>4006<br>4007<br>4008<br>4009<br>4010<br>4011<br>4012<br>4013<br>4014<br>4015<br>4016<br>4017<br>4018                                                                                                                 | ,<br>MELLO<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MBRUKAS<br>-223<br>-204<br>-192<br>-180<br>-168<br>-156<br>-144<br>-132<br>-120<br>-108<br>-96<br>-84<br>-72<br>-60<br>-48<br>-36<br>-24<br>-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SE OG KOBLINGPUNKT<br>-5.125 ,<br>-5.125 | TIL HENGER ØST(1.04 above NA)<br>53.5900<br>54.5044<br>55.0382<br>55.5343<br>55.9923<br>56.4111<br>56.7886<br>57.1251<br>57.4188<br>57.6700<br>57.8771<br>58.0417<br>58.1601<br>58.2338<br>58.2622<br>58.2439<br>58.1793<br>58.0679                                                                                                                                                                                                                                                                                                                                           |
| **LINK<br>4001<br>4002<br>4003<br>4004<br>4005<br>4006<br>4007<br>4008<br>4009<br>4010<br>4011<br>4012<br>4013<br>4014<br>4015<br>4016<br>4017<br>4018<br>4019                                                                                                         | ,<br>MELLO<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M BRUKAS<br>-223<br>-204<br>-192<br>-180<br>-168<br>-156<br>-144<br>-132<br>-108<br>-96<br>-84<br>-72<br>-60<br>-48<br>-36<br>-24<br>-12<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SE OG KOBLINGPUNKT<br>-5.125 ,<br>-5.125 | TIL HENGER ØST(1.04 above NA)<br>53.5900<br>54.5044<br>55.0382<br>55.5343<br>55.9923<br>56.4111<br>56.7886<br>57.1251<br>57.4188<br>57.6700<br>57.8771<br>58.0417<br>58.1601<br>58.2338<br>58.2622<br>58.2439<br>58.1793<br>58.0679<br>57.9082                                                                                                                                                                                                                                                                                                                                |
| **LINK<br>4001<br>4002<br>4003<br>4004<br>4005<br>4006<br>4007<br>4008<br>4009<br>4010<br>4011<br>4012<br>4013<br>4014<br>4015<br>4016<br>4017<br>4018<br>4019<br>4020                                                                                                 | , MELLO.<br>, , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M BRUKAS<br>-223<br>-204<br>-192<br>-180<br>-168<br>-168<br>-156<br>-144<br>-132<br>-120<br>-108<br>-96<br>-84<br>-72<br>-60<br>-48<br>-36<br>-24<br>-12<br>0<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SE OG KOBLINGPUNKT<br>-5.125 ,<br>-5.125 | TIL HENGER ØST(1.04 above NA)<br>53.5900<br>54.5044<br>55.0382<br>55.5343<br>55.9923<br>56.4111<br>56.7886<br>57.1251<br>57.4188<br>57.6700<br>57.8771<br>58.0417<br>58.1601<br>58.2338<br>58.2622<br>58.2439<br>58.1793<br>58.0679<br>57.9082<br>57.7007                                                                                                                                                                                                                                                                                                                     |
| **LINK<br>4001<br>4002<br>4003<br>4004<br>4005<br>4006<br>4007<br>4008<br>4009<br>4010<br>4011<br>4012<br>4013<br>4014<br>4015<br>4016<br>4017<br>4018<br>4019<br>4020<br>4021                                                                                         | , MELLO.<br>, , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M BRUKAS<br>-223<br>-204<br>-192<br>-180<br>-168<br>-156<br>-144<br>-132<br>-120<br>-08<br>-96<br>-84<br>-72<br>-60<br>-48<br>-36<br>-24<br>-12<br>0<br>12<br>24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SSE OG KOBLINGPUNKT<br>-5.125 ,<br>-5.125 ,<br>-5.12 | TIL HENGER ØST(1.04 above NA)<br>53.5900<br>54.5044<br>55.0382<br>55.5343<br>55.9923<br>56.4111<br>56.7886<br>57.1251<br>57.4188<br>57.6700<br>57.8771<br>58.0417<br>58.1601<br>58.2338<br>58.2622<br>58.2439<br>58.1793<br>58.0679<br>57.9082<br>57.7007<br>57.4442                                                                                                                                                                                                                                                                                                          |
| **LINK<br>4001<br>4002<br>4003<br>4004<br>4005<br>4006<br>4007<br>4008<br>4009<br>4010<br>4011<br>4012<br>4013<br>4014<br>4015<br>4016<br>4017<br>4018<br>4019<br>4020<br>4021<br>4022                                                                                 | , MELLO<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M BRUKAS<br>-223<br>-204<br>-192<br>-180<br>-168<br>-156<br>-144<br>-132<br>-120<br>-108<br>-96<br>-84<br>-72<br>-60<br>-48<br>-36<br>-24<br>-12<br>0<br>12<br>24<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SSE OG KOBLINGPUNKT<br>-5.125 ,<br>-5.125 ,<br>-5.12 | 40.1200         TIL HENGER ØST(1.04 above NA)         53.5900         54.5044         55.0382         55.5343         55.9923         56.4111         56.7886         57.1251         57.4188         57.6700         57.8771         58.0417         58.1601         58.2338         58.2622         58.2439         58.1793         58.0679         57.7007         57.7007         57.4442         57.1390                                                                                                                                                                 |
| **LINK<br>4001<br>4002<br>4003<br>4004<br>4005<br>4006<br>4007<br>4008<br>4009<br>4010<br>4011<br>4012<br>4013<br>4014<br>4015<br>4016<br>4017<br>4018<br>4019<br>4020<br>4021<br>4022<br>4023                                                                         | <ul> <li>,</li> <li>MELLO</li> <li>,</li> <l< td=""><td>M BRUKAS<br/>-223<br/>-204<br/>-192<br/>-180<br/>-168<br/>-156<br/>-144<br/>-132<br/>-120<br/>-108<br/>-96<br/>-84<br/>-72<br/>-60<br/>-48<br/>-36<br/>-24<br/>-12<br/>0<br/>12<br/>24<br/>36<br/>48</td><td>SSE OG KOBLINGPUNKT<br/>-5.125 ,<br/>-5.125 ,<br/>-5.12</td><td>40.1200         TIL HENGER ØST(1.04 above NA)         53.5900         54.5044         55.0382         55.5343         55.9923         56.4111         56.7886         57.1251         57.4188         57.6700         57.8771         58.0417         58.1601         58.2338         58.2622         58.2439         58.1793         58.0679         57.7007         57.4442         57.1390         56.7841</td></l<></ul>                                                                                                                                                                              | M BRUKAS<br>-223<br>-204<br>-192<br>-180<br>-168<br>-156<br>-144<br>-132<br>-120<br>-108<br>-96<br>-84<br>-72<br>-60<br>-48<br>-36<br>-24<br>-12<br>0<br>12<br>24<br>36<br>48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SSE OG KOBLINGPUNKT<br>-5.125 ,<br>-5.125 ,<br>-5.12 | 40.1200         TIL HENGER ØST(1.04 above NA)         53.5900         54.5044         55.0382         55.5343         55.9923         56.4111         56.7886         57.1251         57.4188         57.6700         57.8771         58.0417         58.1601         58.2338         58.2622         58.2439         58.1793         58.0679         57.7007         57.4442         57.1390         56.7841                                                                                                                                                                 |
| **LINK<br>4001<br>4002<br>4003<br>4004<br>4005<br>4006<br>4007<br>4008<br>4009<br>4010<br>4011<br>4012<br>4013<br>4014<br>4015<br>4016<br>4017<br>4018<br>4019<br>4020<br>4021<br>4022<br>4023                                                                         | ,<br>MELLO<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M BRUKAS<br>-223<br>-204<br>-192<br>-180<br>-168<br>-156<br>-144<br>-132<br>-120<br>-108<br>-96<br>-84<br>-72<br>-60<br>-48<br>-24<br>-12<br>0<br>12<br>24<br>36<br>48<br>-60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SSE OG KOBLINGPUNKT<br>-5.125 ,<br>-5.125 ,<br>-5.12 | 40.1200         TIL HENGER ØST(1.04 above NA)         53.5900         54.5044         55.0382         55.5343         55.9923         56.4111         56.7886         57.1251         57.4188         57.6700         57.8771         58.0417         58.1601         58.2338         58.2622         58.2439         58.1793         58.0679         57.7007         57.4442         57.1390         56.7841         56.2901                                                                                                                                                 |
| **LINK<br>4001<br>4002<br>4003<br>4004<br>4005<br>4006<br>4007<br>4008<br>4009<br>4010<br>4010<br>4011<br>4012<br>4013<br>4014<br>4015<br>4016<br>4017<br>4018<br>4019<br>4020<br>4021<br>4022<br>4023<br>4024                                                         | ,<br>MELLO<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M BRUKAS<br>-223<br>-204<br>-192<br>-180<br>-168<br>-156<br>-144<br>-132<br>-120<br>-108<br>-96<br>-84<br>-72<br>-60<br>-48<br>-48<br>-24<br>-12<br>0<br>12<br>24<br>36<br>48<br>-72<br>-72<br>-72<br>-72<br>-72<br>-72<br>-72<br>-72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SE OG KOBLINGPUNKT<br>-5.125 ,<br>-5.125 | 40.1200         TIL HENGER ØST(1.04 above NA)         53.5900         54.5044         55.0382         55.5343         55.9923         56.4111         56.7886         57.1251         57.4188         57.6700         57.8771         58.0417         58.1601         58.2338         58.2622         58.2439         58.1793         58.0679         57.7007         57.4442         57.1390         56.7841         56.3801                                                                                                                                                 |
| **LINK<br>4001<br>4002<br>4003<br>4004<br>4005<br>4006<br>4007<br>4008<br>4009<br>4010<br>4011<br>4012<br>4013<br>4014<br>4015<br>4016<br>4017<br>4018<br>4019<br>4020<br>4021<br>4022<br>4023<br>4024<br>4025                                                         | ,<br>MELLO<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MBRUKAS         -223         -204         -192         -180         -168         -156         -144         -132         -108         -96         -84         -72         -60         -24         -12         0         12         24         36         48         60         72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SE OG KOBLINGPUNKT<br>-5.125 ,<br>-5.125 | 40.1200         TIL HENGER ØST(1.04 above NA)         53.5900         54.5044         55.0382         55.5343         55.9923         56.4111         56.7886         57.1251         57.4188         57.6700         57.8771         58.0417         58.1601         58.2338         58.2622         58.2439         58.1793         58.0679         57.9082         57.7007         57.4442         57.1390         56.7841         56.3801         55.9259                                                                                                                 |
| **LINK<br>4001<br>4002<br>4003<br>4004<br>4005<br>4006<br>4007<br>4008<br>4009<br>4010<br>4011<br>4012<br>4013<br>4014<br>4015<br>4016<br>4017<br>4018<br>4019<br>4020<br>4021<br>4022<br>4023<br>4024<br>4025<br>4026                                                 | , MELLO.<br>, , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MBRUKAS         -223         -204         -192         -180         -168         -156         -144         -132         -108         -96         -84         -72         -60         -48         -36         -24         -12         0         12         24         36         48         60         72         84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SE OG KOBLINGPUNKT<br>-5.125 ,<br>-5.125 | TIL HENGER ØST(1.04 above NA)<br>53.5900<br>54.5044<br>55.0382<br>55.5343<br>55.9923<br>56.4111<br>56.7886<br>57.1251<br>57.4188<br>57.6700<br>57.8771<br>58.0417<br>58.1601<br>58.2338<br>58.2622<br>58.2439<br>58.1793<br>58.0679<br>57.9082<br>57.7007<br>57.4442<br>57.1390<br>56.7841<br>56.3801<br>55.9259<br>55.4226                                                                                                                                                                                                                                                   |
| **LINK<br>4001<br>4002<br>4003<br>4004<br>4005<br>4006<br>4007<br>4008<br>4009<br>4010<br>4011<br>4012<br>4013<br>4014<br>4015<br>4016<br>4017<br>4018<br>4019<br>4020<br>4021<br>4022<br>4023<br>4024<br>4025<br>4026<br>4027                                         | , MELLO.<br>, , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MBRUKAS         -223         -204         -192         -180         -168         -156         -144         -132         -108         -96         -84         -72         -60         -48         -36         -24         36         48         60         72         84         96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SE OG KOBLINGPUNKT<br>-5.125 ,<br>-5.125 | TIL HENGER ØST(1.04 above NA)<br>53.5900<br>54.5044<br>55.0382<br>55.5343<br>55.9923<br>56.4111<br>56.7886<br>57.1251<br>57.4188<br>57.6700<br>57.8771<br>58.0417<br>58.1601<br>58.2338<br>58.2622<br>58.2439<br>58.1793<br>58.0679<br>57.9082<br>57.7007<br>57.4442<br>57.1390<br>56.7841<br>56.3801<br>55.9259<br>55.4226<br>54.8702                                                                                                                                                                                                                                        |
| **LINK<br>4001<br>4002<br>4003<br>4004<br>4005<br>4006<br>4007<br>4008<br>4009<br>4010<br>4011<br>4012<br>4013<br>4014<br>4015<br>4016<br>4017<br>4018<br>4019<br>4020<br>4021<br>4022<br>4023<br>4024<br>4025<br>4026<br>4027<br>4028                                 | , MELLO.<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M BRUKAS<br>-223<br>-204<br>-192<br>-180<br>-168<br>-156<br>-144<br>-132<br>-108<br>-96<br>-84<br>-72<br>-60<br>-48<br>-36<br>-24<br>-12<br>0<br>12<br>24<br>36<br>48<br>60<br>72<br>84<br>96<br>108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SE OG KOBLINGPUNKT<br>-5.125 ,<br>-5.125 | 40.1200         TIL HENGER ØST(1.04 above NA)         53.5900         54.5044         55.0382         55.5343         55.9923         56.4111         56.7886         57.1251         57.4188         57.6700         57.8771         58.0417         58.1601         58.2338         58.2622         58.2439         58.1793         58.0679         57.7007         57.4442         57.1390         56.7841         56.3801         55.9259         55.4226         54.8702         54.2679                                                                                 |
| **LINK<br>4001<br>4002<br>4003<br>4004<br>4005<br>4006<br>4007<br>4008<br>4009<br>4010<br>4011<br>4012<br>4013<br>4014<br>4015<br>4016<br>4017<br>4018<br>4019<br>4020<br>4021<br>4022<br>4023<br>4024<br>4025<br>4026<br>4027<br>4028<br>4029                         | <pre>, MELLO. , , , , , , , , , , , , , , , , , , ,</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M BRUKAS<br>-223<br>-204<br>-192<br>-180<br>-168<br>-156<br>-144<br>-132<br>-120<br>-108<br>-96<br>-84<br>-72<br>-60<br>-48<br>-36<br>-24<br>-12<br>0<br>12<br>24<br>36<br>48<br>60<br>72<br>84<br>96<br>108<br>-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SSE OG KOBLINGPUNKT<br>-5.125 ,<br>-5.125 ,<br>-5.12 | 40.1200         TIL HENGER ØST(1.04 above NA)         53.5900         54.5044         55.0382         55.5343         55.9923         56.4111         56.7886         57.1251         57.4188         57.6700         57.8771         58.0417         58.1601         58.2338         58.2622         58.2439         58.1793         58.0679         57.7007         57.4442         57.1390         56.7841         56.3801         55.9259         55.4226         54.2679         53.6160                                                                                 |
| **LINK<br>4001<br>4002<br>4003<br>4004<br>4005<br>4006<br>4007<br>4008<br>4009<br>4010<br>4011<br>4012<br>4013<br>4014<br>4015<br>4016<br>4017<br>4018<br>4019<br>4020<br>4021<br>4022<br>4023<br>4024<br>4025<br>4026<br>4027<br>4028<br>4029<br>4030                 | <ul> <li>,</li> <li>MELLO</li> <li>,</li> <l< td=""><td>M BRUKAS<br/>-223<br/>-204<br/>-192<br/>-180<br/>-168<br/>-156<br/>-144<br/>-132<br/>-108<br/>-96<br/>-84<br/>-72<br/>-60<br/>-48<br/>-36<br/>-24<br/>-12<br/>0<br/>12<br/>24<br/>36<br/>48<br/>60<br/>72<br/>84<br/>-96<br/>-108<br/>-12<br/>-12<br/>-12<br/>-12<br/>-12<br/>-12<br/>-12<br/>-12</td><td>SSE OG KOBLINGPUNKT<br/>-5.125 ,<br/>-5.125 ,<br/>-5.12</td><td>40.1200         TIL HENGER ØST(1.04 above NA)         53.5900         54.5044         55.0382         55.5343         55.9923         56.4111         56.7886         57.1251         57.4188         57.6700         57.8771         58.0417         58.1601         58.2338         58.2622         58.2439         58.1793         58.0679         57.7007         57.4442         57.1390         56.3801         55.9259         55.4226         54.2679         53.6160         52.9158</td></l<></ul> | M BRUKAS<br>-223<br>-204<br>-192<br>-180<br>-168<br>-156<br>-144<br>-132<br>-108<br>-96<br>-84<br>-72<br>-60<br>-48<br>-36<br>-24<br>-12<br>0<br>12<br>24<br>36<br>48<br>60<br>72<br>84<br>-96<br>-108<br>-12<br>-12<br>-12<br>-12<br>-12<br>-12<br>-12<br>-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SSE OG KOBLINGPUNKT<br>-5.125 ,<br>-5.125 ,<br>-5.12 | 40.1200         TIL HENGER ØST(1.04 above NA)         53.5900         54.5044         55.0382         55.5343         55.9923         56.4111         56.7886         57.1251         57.4188         57.6700         57.8771         58.0417         58.1601         58.2338         58.2622         58.2439         58.1793         58.0679         57.7007         57.4442         57.1390         56.3801         55.9259         55.4226         54.2679         53.6160         52.9158                                                                                 |
| **LINK<br>4001<br>4002<br>4003<br>4004<br>4005<br>4006<br>4007<br>4008<br>4009<br>4010<br>4011<br>4012<br>4013<br>4014<br>4015<br>4016<br>4017<br>4018<br>4019<br>4020<br>4021<br>4022<br>4023<br>4024<br>4025<br>4026<br>4027<br>4028<br>4029<br>4030                 | <ul> <li>MELLO</li> &lt;</ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M BRUKAS<br>-223<br>-204<br>-192<br>-180<br>-168<br>-156<br>-144<br>-132<br>-108<br>-96<br>-84<br>-72<br>-60<br>-48<br>-36<br>-24<br>-12<br>0<br>12<br>24<br>36<br>48<br>60<br>72<br>84<br>-96<br>-12<br>-12<br>-12<br>-12<br>-12<br>-12<br>-12<br>-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SSE OG KOBLINGPUNKT<br>-5.125 ,<br>-5.125 ,<br>-5.12 | 40,1200         TIL HENGER ØST(1.04 above NA)         53,5900         54,5044         55,0382         55,5343         55,9923         56,4111         56,7886         57,1251         57,4188         57,6700         57,8771         58,0417         58,1601         58,2338         58,2622         58,2439         58,1793         58,0679         57,0082         57,7007         57,4442         57,1390         56,7841         56,3801         55,9259         55,4226         54,8702         54,2679         53,6160         52,9158                                 |
| **LINK<br>4001<br>4002<br>4003<br>4004<br>4005<br>4006<br>4007<br>4008<br>4009<br>4010<br>4011<br>4012<br>4013<br>4014<br>4015<br>4016<br>4017<br>4018<br>4019<br>4020<br>4021<br>4022<br>4023<br>4024<br>4025<br>4026<br>4027<br>4028<br>4029<br>4030<br>4031<br>1025 | <pre>, MELLO. , , , , , , , , , , , , , , , , , , ,</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M BRUKAS<br>-223<br>-204<br>-192<br>-180<br>-168<br>-156<br>-144<br>-132<br>-108<br>-96<br>-84<br>-72<br>-60<br>-48<br>-36<br>-24<br>-12<br>0<br>12<br>24<br>36<br>48<br>60<br>72<br>84<br>96<br>108<br>-120<br>-12<br>-12<br>-120<br>-12<br>-120<br>-12<br>-12<br>-120<br>-12<br>-120<br>-120<br>-122<br>-120<br>-122<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-12<br>-120<br>-120<br>-12<br>-120<br>-120<br>-12<br>-24<br>-24<br>-36<br>-24<br>-12<br>-120<br>-12<br>-12<br>-12<br>-120<br>-12<br>-12<br>-12<br>-120<br>-12<br>-12<br>-120<br>-12<br>-120<br>-12<br>-12<br>-120<br>-12<br>-12<br>-120<br>-12<br>-12<br>-12<br>-12<br>-12<br>-12<br>-12<br>-12 | SE OG KOBLINGPUNKT<br>-5.125 ,<br>-5.125 | 40.1200         TIL HENGER ØST(1.04 above NA)         53.5900         54.5044         55.0382         55.5343         55.9923         56.4111         56.7886         57.1251         57.4188         57.6700         57.8771         58.0417         58.1601         58.2338         58.2622         58.2439         58.1793         58.0679         57.9082         57.7007         57.4442         57.1390         56.7841         56.3801         55.9259         55.4226         54.8702         54.2679         53.6160         52.9158         52.1681                 |
| **LINK<br>4001<br>4002<br>4003<br>4004<br>4005<br>4006<br>4007<br>4008<br>4009<br>4010<br>4011<br>4012<br>4013<br>4014<br>4015<br>4016<br>4017<br>4018<br>4019<br>4020<br>4021<br>4022<br>4023<br>4024<br>4025<br>4026<br>4027<br>4028<br>4029<br>4030<br>4031<br>4032 | <pre>, MELLO. , , , , , , , , , , , , , , , , , , ,</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MBRUKAS         -223         -204         -192         -180         -168         -156         -144         -132         -108         -96         -84         -72         -60         -48         -36         -24         -12         0         12         24         36         48         60         72         84         96         108         12         24         36         48         60         72         84         96         108         120         32         144         156                                                                                                                                                                                                                                                                                                                                                                                                     | SE OG KOBLINGPUNKT<br>-5.125 ,<br>-5.125 | 40.1200         TIL HENGER ØST(1.04 above NA)         53.5900         54.5044         55.0382         55.5343         55.9923         56.4111         56.7886         57.1251         57.4188         57.6700         57.8771         58.0417         58.1601         58.2338         58.2622         58.2439         58.1793         58.0679         57.9082         57.7007         57.4442         57.1390         56.7841         56.3801         55.9259         55.4226         54.8702         54.2679         53.6160         52.9158         52.1681         51.3726 |

| 4034                                                                                             | ,                                                 | 180                                     | ,         | -5.125                        | ,      | 49.6432                                  |
|--------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------|-----------|-------------------------------|--------|------------------------------------------|
| 4035                                                                                             | ,                                                 | 192                                     | ,         | -5.125                        | ,      | 48.7132                                  |
| 4036                                                                                             |                                                   | 204                                     |           | -5.125                        |        | 47.7410                                  |
| 4037                                                                                             |                                                   | 223                                     |           | -5.125                        |        | 46.1260                                  |
| **FIK                                                                                            | TIV MAS                                           | SEPUNK                                  | Γ ÚNDI    | ER BRUKA                      | SSE (r | noment of inertia, 0.064 UNDER BRUKASSE) |
| 5002                                                                                             |                                                   | -204                                    |           | 0                             | ~~~ (- | 52 4830                                  |
| 5002                                                                                             | ,                                                 | 102                                     | ,         | 0                             | ,      | 52.4050                                  |
| 5005                                                                                             | ,                                                 | -192                                    | ,         | 0                             | ,      | 52.0212                                  |
| 5004                                                                                             | ,                                                 | -180                                    | ,         | 0                             | ,      | 53.9312                                  |
| 5005                                                                                             | ,                                                 | -168                                    | ,         | 0                             | ,      | 54.4273                                  |
| 5006                                                                                             | ,                                                 | -156                                    | ,         | 0                             | ,      | 54.8853                                  |
| 5007                                                                                             |                                                   | -144                                    |           | 0                             |        | 55.3041                                  |
| 5008                                                                                             | ,                                                 | -132                                    | ,         | Ő                             | ,      | 55.6816                                  |
| 5000                                                                                             | ,                                                 | 120                                     | ,         | 0                             | ,      | 56 0191                                  |
| 5009                                                                                             | ,                                                 | -120                                    | ,         | 0                             | ,      | 56.0110                                  |
| 5010                                                                                             | ,                                                 | -108                                    | ,         | 0                             | ,      | 56.3118                                  |
| 5011                                                                                             | ,                                                 | -96                                     | ,         | 0                             | ,      | 56.5630                                  |
| 5012                                                                                             | ,                                                 | -84                                     | ,         | 0                             | ,      | 56.7701                                  |
| 5013                                                                                             | ·                                                 | -72                                     | ,         | 0                             | -      | 56 9347                                  |
| 5014                                                                                             | ,                                                 | -60                                     | ,         | Ő                             | ,      | 57 0531                                  |
| 5015                                                                                             | ,                                                 | -00                                     | ,         | 0                             | ,      | 57.10(9                                  |
| 5015                                                                                             | ,                                                 | -48                                     | ,         | 0                             | ,      | 57.1208                                  |
| 5016                                                                                             | ,                                                 | -36                                     | ,         | 0                             | ,      | 57.1552                                  |
| 5017                                                                                             | ,                                                 | -24                                     | ,         | 0                             | ,      | 57.1369                                  |
| 5018                                                                                             |                                                   | -12                                     |           | 0                             |        | 57.0723                                  |
| 5019                                                                                             | ,                                                 | 0                                       | ,         | 0                             | ,      | 56 9609                                  |
| 5020                                                                                             | ,                                                 | 12                                      | ,         | 0                             | ,      | 56 2012                                  |
| 5020                                                                                             | ,                                                 | 12                                      | ,         | 0                             | ,      | 56,5027                                  |
| 5021                                                                                             | ,                                                 | 24                                      | ,         | 0                             | ,      | 56.5937                                  |
| 5022                                                                                             | ,                                                 | 36                                      | ,         | 0                             | ,      | 56.3372                                  |
| 5023                                                                                             | ,                                                 | 48                                      | ,         | 0                             | ,      | 56.0320                                  |
| 5024                                                                                             |                                                   | 60                                      |           | 0                             |        | 55.6771                                  |
| 5025                                                                                             | ,                                                 | 72                                      | ,         | 0                             | ,      | 55 2731                                  |
| 5025                                                                                             | ,                                                 | 81                                      | ,         | 0                             | ,      | 5/ 8180                                  |
| 5020                                                                                             | ,                                                 | 04                                      | ,         | 0                             | ,      | 54.8189                                  |
| 5027                                                                                             | ,                                                 | 96                                      | ,         | 0                             | ,      | 54.3156                                  |
| 5028                                                                                             | ,                                                 | 108                                     | ,         | 0                             | ,      | 53.7632                                  |
| 5029                                                                                             | ,                                                 | 120                                     | ,         | 0                             | ,      | 53.1609                                  |
| 5030                                                                                             |                                                   | 132                                     |           | 0                             |        | 52,5090                                  |
| 5031                                                                                             | ,                                                 | 144                                     | ,         | Ő                             | ,      | 51.8088                                  |
| 5022                                                                                             | ,                                                 | 156                                     | ,         | 0                             | ,      | 51.0611                                  |
| 5052                                                                                             | ,                                                 | 130                                     | ,         | 0                             | ,      | 51.0011                                  |
| 5033                                                                                             | ,                                                 | 168                                     | ,         | 0                             | ,      | 50.2656                                  |
| 5034                                                                                             | ,                                                 | 180                                     | ,         | 0                             | ,      | 49.4232                                  |
| 5035                                                                                             |                                                   | 192                                     |           | 0                             |        | 48.5362                                  |
| 5036                                                                                             |                                                   | 204                                     |           | 0                             | ĺ.     | 47.6062                                  |
| **EKS                                                                                            | TRA NO                                            |                                         | ,<br>KREK |                               | ,      |                                          |
| *NOD                                                                                             | I NOTT                                            |                                         |           | ADLER                         |        |                                          |
| *NGEI                                                                                            | N, NSE F                                          | =BACKS1                                 | ΑY        |                               |        |                                          |
| 981, IC                                                                                          | 001, 2                                            |                                         |           |                               |        |                                          |
| 1981,2                                                                                           | 001, 2                                            |                                         |           |                               |        |                                          |
| 1037.1                                                                                           | 087.2                                             |                                         |           |                               |        |                                          |
| 2037 2                                                                                           | 087 2                                             |                                         |           |                               |        |                                          |
| **                                                                                               | 007,2                                             |                                         |           |                               |        |                                          |
| *****                                                                                            |                                                   | · • • • • • • • • • • • • • • • • • • • |           |                               | *****  | * * * * * * * * * * * * * * * * * * *    |
| *****                                                                                            |                                                   |                                         |           | · · · · · · · · · · · · · · · | *****  | · · · · · · · · · · · · · · · · · · ·    |
| **** K                                                                                           | ONSTR                                             | UKSJONS                                 | ELEME     | ENTER                         |        | ****                                     |
| *****                                                                                            | ******                                            | *******                                 | ******    | *******                       | *****  | *******                                  |
| **BRU                                                                                            | JKASSE                                            |                                         |           |                               |        |                                          |
| *FLEN                                                                                            | IENT T                                            | YPE=B31                                 | FL SE     | T=GIRDER                      |        |                                          |
| 1 1 2                                                                                            | )                                                 | IIL DJI                                 | , LLGL    | I ONDER                       |        |                                          |
| 1,1,2                                                                                            | <u>_</u>                                          |                                         |           |                               |        |                                          |
| 2,2,3                                                                                            | 3                                                 |                                         |           |                               |        |                                          |
| 3,3,4                                                                                            | 1                                                 |                                         |           |                               |        |                                          |
|                                                                                                  | t                                                 |                                         |           |                               |        |                                          |
| 4,4,5                                                                                            | 5                                                 |                                         |           |                               |        |                                          |
| 4,4,5                                                                                            | 5                                                 |                                         |           |                               |        |                                          |
| 4,4,5                                                                                            | 5                                                 |                                         |           |                               |        |                                          |
| 4,4,5<br>5,5,6<br>6,6,7                                                                          | *<br>5<br>7                                       |                                         |           |                               |        |                                          |
| 4,4,5<br>5,5,6<br>6,6,7<br>7,7,8                                                                 | +<br>5<br>7<br>3                                  |                                         |           |                               |        |                                          |
| 4,4,5<br>5,5,6<br>6,6,7<br>7,7,8<br>8,8,9                                                        | +<br>5<br>7<br>3                                  |                                         |           |                               |        |                                          |
| 4,4,5<br>5,5,6<br>6,6,7<br>7,7,8<br>8,8,9<br>9,9,1                                               | *<br>5<br>7<br>8<br>9                             |                                         |           |                               |        |                                          |
| 4,4,5<br>5,5,6<br>6,6,7<br>7,7,8<br>8,8,9<br>9,9,1<br>10,10                                      | +<br>5<br>7<br>8<br>9<br>10<br>, 11               |                                         |           |                               |        |                                          |
| 4,4,5<br>5,5,6<br>6,6,7<br>7,7,8<br>8,8,9<br>9,9,1<br>10,10                                      | *<br>5<br>7<br>8<br>9<br>10<br>, 11<br>, 12       |                                         |           |                               |        |                                          |
| 4,4,5<br>5,5,6<br>6,6,7<br>7,7,8<br>8,8,9<br>9,9,1<br>10,10<br>11,11<br>12,12                    | +<br>5<br>7<br>8<br>9<br>10<br>, 11<br>, 12<br>13 |                                         |           |                               |        |                                          |
| 4,4,5<br>5,5,6<br>6,6,7<br>7,7,8<br>8,8,9<br>9,9,1<br>10,10<br>11,11<br>12,12                    | , 11<br>, 12<br>, 13                              |                                         |           |                               |        |                                          |
| 4,4,5<br>5,5,6<br>6,6,7<br>7,7,8<br>8,8,9<br>9,9,1<br>10,10<br>11,11<br>12,12<br>13,13           | , 11<br>, 12<br>, 13<br>, 14                      |                                         |           |                               |        |                                          |
| 4,4,5<br>5,5,6<br>6,6,7<br>7,7,8<br>8,8,9<br>9,9,1<br>10,10,<br>11,11<br>12,12<br>13,13<br>14,14 | , 11<br>, 12<br>, 13<br>, 14<br>, 15              |                                         |           |                               |        |                                          |

| 16.16.17                                 |
|------------------------------------------|
| 17 17 19                                 |
| 17, 17, 18                               |
| 18, 18, 19                               |
| 19 19 20                                 |
| 0, 0, 01                                 |
| 20, 20, 21                               |
| 21, 21, 22                               |
| 22, 22, 22                               |
| 22,22,23                                 |
| 23, 23, 24                               |
| 24 24 25                                 |
| 24, 24, 25                               |
| 25, 25, 26                               |
| 26 26 27                                 |
| 20,20,27                                 |
| 27,27,28                                 |
| 28, 28, 29                               |
| 20, 20, 20                               |
| 29, 29, 30                               |
| 30, 30, 31                               |
| 31 31 32                                 |
| 31, 31, 32                               |
| 32, 32, 33                               |
| 33.33.34                                 |
| 21 21 25                                 |
| 54, 54, 55                               |
| 35, 35, 36                               |
| 36 36 37                                 |
| **************************************   |
| an a |
| ** HOVEDKABLER I HOVEDSPENN              |
| *ELEMENT TVDE-D21 ELCET-MAINCADLE        |
| ELEWIENI, IIFE-DJI, ELSEI=WAINCABLE      |
| 1001, 1001, 1002                         |
| 1002 1002 1003                           |
| 1002,1002,1003                           |
| 1003, 1003, 1004                         |
| 1004 . 1004 . 1005                       |
| 1005 1005 1006                           |
| 1003, 1003, 1000                         |
| 1006, 1006, 1007                         |
| 1007 1007 1008                           |
| 1007,1007,1008                           |
| 1008, 1008, 1009                         |
| 1009 . 1009 . 1010                       |
| 1010 1010 1011                           |
| 1010, 1010, 1011                         |
| 1011, 1011, 1012                         |
| 1012 1012 1013                           |
| 1012, 1012, 1013                         |
| 1013, 1013, 1014                         |
| 1014 1014 1015                           |
|                                          |
| 1015, 1015, 1016                         |
| 1016, 1016, 1017                         |
| 1017 1017 1018                           |
| 1017, 1017, 1018                         |
| 1018, 1018, 1019                         |
| 1019 1019 1020                           |
| 1019, 1019, 1020                         |
| 1020, 1020, 1021                         |
| 1021,1021,1022                           |
| 1022 1022 1023                           |
| 1022, 1022, 1023                         |
| 1023 , 1023 , 1024                       |
| 1024 . 1024 . 1025                       |
| 1025, 1025, 1026                         |
| 1025, 1025, 1026                         |
| 1026, 1026, 1027                         |
| 1027 1027 1028                           |
| 1027,1027,1020                           |
| 1028, 1028, 1029                         |
| 1029 1029 1030                           |
| 1020 1020 1021                           |
| 1030, 1030, 1031                         |
| 1031, 1031, 1032                         |
| 1032 1032 1033                           |
| 1032, 1032, 1033                         |
| 1033, 1033, 1034                         |
| 1034 . 1034 . 1035                       |
| 1025 1025 1026                           |
| 1055, 1055, 1056                         |
| 1036 , 1036 , 1037                       |
| ****                                     |
| 2001 2001 2002                           |
| 2001, 2001, 2002                         |
| 2002, 2002, 2003                         |
| 2003 2003 2004                           |
| 2005,2005,2007                           |
| 2004, 2004, 2005                         |
| 2005, 2005, 2006                         |
| 2006_2006_2007                           |
|                                          |

| 2007 2007 2008                                                                                         |
|--------------------------------------------------------------------------------------------------------|
| 2007,2007,2008                                                                                         |
| 2008, 2008, 2009                                                                                       |
| 2009, 2009, 2010                                                                                       |
| 2010, 2010, 2011                                                                                       |
| 2011, 2011, 2012                                                                                       |
| 2012 , 2012 , 2013                                                                                     |
| 2013 , 2013 , 2014                                                                                     |
| 2014 , 2014 , 2015                                                                                     |
| 2015, 2015, 2016                                                                                       |
| 2016, 2016, 2017                                                                                       |
| 2017, 2017, 2018                                                                                       |
| 2018, 2018, 2019                                                                                       |
| 2019, 2019, 2020                                                                                       |
| 2020 2020 2021                                                                                         |
| 2021 2021 2022                                                                                         |
| 2022 2022 2023                                                                                         |
| 2022,2022,2023                                                                                         |
| 2023, 2023, 2024<br>2024, 2024, 2025                                                                   |
| 2024, 2024, 2025                                                                                       |
| 2025, 2025, 2020                                                                                       |
| 2026, 2026, 2027                                                                                       |
| 2027, 2027, 2028                                                                                       |
| 2028 , 2028 , 2029                                                                                     |
| 2029 , 2029 , 2030                                                                                     |
| 2030 , 2030 , 2031                                                                                     |
| 2031 , 2031 , 2032                                                                                     |
| 2032 , 2032 , 2033                                                                                     |
| 2033 , 2033 , 2034                                                                                     |
| 2034, 2034, 2035                                                                                       |
| 2035, 2035, 2036                                                                                       |
| 2036, 2036, 2037                                                                                       |
| ****                                                                                                   |
| ** KABLER BAK TÅRN                                                                                     |
| *ELEMENT TYPE=B31 ELSET=BACKSTAYCABLE                                                                  |
| 1000 091 1001                                                                                          |
| 1000, 981, 1001                                                                                        |
| 1027 1027 1087                                                                                         |
| 1037, 1037, 1087                                                                                       |
| 1037, 1037, 1087<br>2000, 1981, 2001                                                                   |
| 1037, 1037, 1087<br>2000, 1981, 2001<br>2037, 2037, 2087                                               |
| 1037, 1037, 1087<br>2000, 1981, 2001<br>2037, 2037, 2087<br>***********                                |
| 1037 , 1037 , 1087<br>2000 , 1981 , 2001<br>2037 , 2037 , 2087<br>************************************ |
| 1037 , 1037 , 1087<br>2000 , 1981 , 2001<br>2037 , 2037 , 2087<br>************************************ |
| 1037 , 1037 , 1087<br>2000 , 1981 , 2001<br>2037 , 2037 , 2087<br>************************************ |
| 1037 , 1037 , 1087<br>2000 , 1981 , 2001<br>2037 , 2037 , 2087<br>************************************ |
| 1037 , 1037 , 1087<br>2000 , 1981 , 2001<br>2037 , 2037 , 2087<br>************************************ |
| 1037 , 1037 , 1087<br>2000 , 1981 , 2001<br>2037 , 2037 , 2087<br>************************************ |
| 1037 , 1037 , 1087<br>2000 , 1981 , 2001<br>2037 , 2037 , 2087<br>************************************ |
| 1037, 1037, 1087<br>2000, 1981, 2001<br>2037, 2037, 2087<br>************************************       |
| 1037, 1037, 1087<br>2000, 1981, 2001<br>2037, 2037, 2087<br>************************************       |
| 1037, 1037, 1087<br>2000, 1981, 2001<br>2037, 2037, 2087<br>************************************       |
| 1037, 1037, 1087<br>2000, 1981, 2001<br>2037, 2037, 2087<br>************************************       |
| 1037, 1037, 1087<br>2000, 1981, 2001<br>2037, 2037, 2087<br>************************************       |
| 1037, 1037, 1087<br>2000, 1981, 2001<br>2037, 2037, 2087<br>************************************       |
| 1037, 1037, 1087<br>2000, 1981, 2001<br>2037, 2037, 2087<br>************************************       |
| 1037, 1037, 1087<br>2000, 1981, 2001<br>2037, 2037, 2087<br>************************************       |
| 1037, 1037, 1087<br>2000, 1981, 2001<br>2037, 2037, 2087<br>************************************       |
| 1037, 1037, 1087<br>2000, 1981, 2001<br>2037, 2037, 2087<br>************************************       |
| 1037, 1037, 1087<br>2000, 1981, 2001<br>2037, 2037, 2087<br>************************************       |
| 1037, 1037, 1087<br>2000, 1981, 2001<br>2037, 2037, 2087<br>************************************       |
| 1037, 1037, 1087<br>2000, 1981, 2001<br>2037, 2037, 2087<br>************************************       |
| 1037, 1037, 1087<br>2000, 1981, 2001<br>2037, 2037, 2087<br>************************************       |
| 1037, 1037, 1087<br>2000, 1981, 2001<br>2037, 2037, 2087<br>************************************       |
| 1037, 1037, 1087<br>2000, 1981, 2001<br>2037, 2037, 2087<br>************************************       |
| 1037, 1037, 1087<br>2000, 1981, 2001<br>2037, 2037, 2087<br>************************************       |
| 1037, 1037, 1087<br>2000, 1981, 2001<br>2037, 2037, 2087<br>************************************       |
| 1037, 1037, 1087<br>2000, 1981, 2001<br>2037, 2037, 2087<br>************************************       |
| 1037, 1037, 1087<br>2000, 1981, 2001<br>2037, 2037, 2087<br>************************************       |
| 1037, 1037, 1087<br>2000, 1981, 2001<br>2037, 2037, 2087<br>************************************       |
| 1037, 1037, 1087<br>2000, 1981, 2001<br>2037, 2037, 2087<br>************************************       |
| 1037, 1037, 1087<br>2000, 1981, 2001<br>2037, 2037, 2087<br>************************************       |

| 3028 , 28 , 3028                   |
|------------------------------------|
| 3029 , 29 , 3029                   |
| 3030 , 30 , 3030                   |
| 3031, 31, 3031                     |
| 3032 , 32 , 3032                   |
| 3033 , 33 , 3033                   |
| 3034, 34, 3034                     |
| 3035, 35, 3035                     |
| 3036 36 3036                       |
| 3037 37 3037                       |
| *****                              |
| *FLEMENT TYPE=B31 FLSET=DUMMY2     |
| 4001 1 4001                        |
| 4002 2 4002                        |
| 4002, 2, 4002                      |
| 4003, 5, 4003                      |
| 4004,4,4004                        |
| 4005, 5, 4005                      |
| 4006, 6, 4006                      |
| 4007, 7, 4007                      |
| 4008,8,4008                        |
| 4009 , 9 , 4009                    |
| 4010 , 10 , 4010                   |
| 4011 , 11 , 4011                   |
| 4012 , 12 , 4012                   |
| 4013 , 13 , 4013                   |
| 4014, 14, 4014                     |
| 4015, 15, 4015                     |
| 4016, 16, 4016                     |
| 4017.17.4017                       |
| 4018, 18, 4018                     |
| 4019 19 4019                       |
| 4020 20 4020                       |
| 4021 21 4021                       |
| 4022 22 4022                       |
| 4022,22,4022                       |
| 4023, 23, 4023                     |
| 4024,24,4024                       |
| 4025, 25, 4025                     |
| 4026, 26, 4026                     |
| 4027, 27, 4027                     |
| 4028, 28, 4028                     |
| 4029, 29, 4029                     |
| 4030 , 30 , 4030                   |
| 4031 , 31 , 4031                   |
| 4032 , 32 , 4032                   |
| 4033 , 33 , 4033                   |
| 4034 , 34 , 4034                   |
| 4035 , 35 , 4035                   |
| 4036, 36, 4036                     |
| 4037, 37, 4037                     |
| *****                              |
| **HENGERE                          |
| *ELEMENT, TYPE=B31, ELSET=HANGERS  |
| 5002.3002.1002                     |
| 5003 3003 1003                     |
| 5004 3004 1004                     |
| 5005 3005 1005                     |
| 5006 3006 1006                     |
| 5007 3007 1007                     |
| 5008 3008 1008                     |
| 5000, 5000, 1000                   |
| 5010 2010 1010                     |
| JUIU, JUIU, IUIU<br>5011 2011 1011 |
| 5012 2012 1012                     |
| 5012, 5012, 1012                   |
| 5013, 3013, 1013                   |
| 5014 , 3014 , 1014                 |
| 5015 , 3015 , 1015                 |
| 5016, 3016, 1016                   |
|                                    |

| 5017, 3017, 1017                                              |
|---------------------------------------------------------------|
| 5018, 3018, 1018                                              |
| 5019, 3019, 1019                                              |
| 5020, 3020, 1020                                              |
| 5021 . 3021 . 1021                                            |
| 5022 3022 1022                                                |
| 5022,5022,1022                                                |
| 5023, 5023, 1023                                              |
| 5025 2025 1025                                                |
| 5025, 5025, 1025                                              |
| 5020, 5020, 1020                                              |
| 5027, 3027, 1027                                              |
| 5028, 3028, 1028                                              |
| 5029, 3029, 1029                                              |
| 5030 , 3030 , 1030                                            |
| 5031 , 3031 , 1031                                            |
| 5032 , 3032 , 1032                                            |
| 5033 , 3033 , 1033                                            |
| 5034 , 3034 , 1034                                            |
| 5035, 3035, 1035                                              |
| 5036 . 3036 . 1036                                            |
| ****                                                          |
| 6002 4002 2002                                                |
| 6003 4003 2003                                                |
| 6004 4004 2004                                                |
| 6005 4005 2005                                                |
| 6005,4005,2005                                                |
| 6000 , 4000 , 2000<br>(007 , 4007 , 2007                      |
| 6007,4007,2007                                                |
| 6008, 4008, 2008                                              |
| 6009, 4009, 2009                                              |
| 6010, 4010, 2010                                              |
| 6011 , 4011 , 2011                                            |
| 6012,4012,2012                                                |
| 6013 , 4013 , 2013                                            |
| 6014 , 4014 , 2014                                            |
| 6015, 4015, 2015                                              |
| 6016, 4016, 2016                                              |
| 6017.4017.2017                                                |
| 6018 4018 2018                                                |
| 6019 4019 2019                                                |
| 6020 4020 2020                                                |
| 6021 4021 2021                                                |
| 6022 , 4022 , 2021                                            |
| 6022,4022,2022                                                |
| 0025,4025,2025                                                |
| 6024, 4024, 2024<br>(025 - 4025 - 2025                        |
| 6025,4025,2025                                                |
| 6026, 4026, 2026                                              |
| 6027, 4027, 2027                                              |
| 6028,4028,2028                                                |
| 6029 , 4029 , 2029                                            |
| 6030 , 4030 , 2030                                            |
| 6031 , 4031 , 2031                                            |
| 6032 , 4032 , 2032                                            |
| 6033 , 4033 , 2033                                            |
| 6034 , 4034 , 2034                                            |
| 6035, 4035, 2035                                              |
| 6036, 4036, 2036                                              |
| ****                                                          |
| **FIKTIV ELEMENT FOR MASSE UNDER BRUKASSE (MOMENT OF INERTIA) |
| *ELEMENT TYPE=B31 ELSET=DUMMY3                                |
| 7002 2 5002                                                   |
| 7003 3 5003                                                   |
| 7004 4 5004                                                   |
| 7005 5 5005                                                   |
| 7006 6 5006                                                   |
|                                                               |
| 1007,7,5007                                                   |
| /008 , 8 , 2008                                               |
| /009 , 9 , 5009                                               |

| 7010 , 10 , 5010                                  |
|---------------------------------------------------|
| 7011,11,5011                                      |
| 7012, 12, 5012                                    |
| 7013 , 13 , 5013                                  |
| 7014 , 14 , 5014                                  |
| 7015 , 15 , 5015                                  |
| 7016 , 16 , 5016                                  |
| 7017 , 17 , 5017                                  |
| 7018, 18, 5018                                    |
| 7019 , 19 , 5019                                  |
| 7020 , 20 , 5020                                  |
| 7021,21,5021                                      |
| 7022 , 22 , 5022                                  |
| 7023 , 23 , 5023                                  |
| 7024 , 24 , 5024                                  |
| 7025 , 25 , 5025                                  |
| 7026 , 26 , 5026                                  |
| 7027 , 27 , 5027                                  |
| 7028 , 28 , 5028                                  |
| 7029 , 29 , 5029                                  |
| 7030 , 30 , 5030                                  |
| 7031 , 31 , 5031                                  |
| 7032 , 32 , 5032                                  |
| 7033 , 33 , 5033                                  |
| 7034 , 34 , 5034                                  |
| 7035 , 35 , 5035                                  |
| 7036 , 36 , 5036                                  |
| ******                                            |
| <b>**FIKTIVE ELEMENT MASSE FOR TREGHETSMOMENT</b> |
| *ELEMENT, TYPE=B31, ELSET=DUMMY4                  |
| 12001 , 3001 , 3002                               |
| 12002 , 3002 , 3003                               |
| 12003 , 3003 , 3004                               |
| 12004 , 3004 , 3005                               |
| 12005 , 3005 , 3006                               |
| 12006 , 3006 , 3007                               |
| 12007 , 3007 , 3008                               |
| 12008 , 3008 , 3009                               |
| 12009 , 3009 , 3010                               |
| 12010 , 3010 , 3011                               |
| 12011 , 3011 , 3012                               |
| 12012 , 3012 , 3013                               |
| 12013 , 3013 , 3014                               |
| 12014 , 3014 , 3015                               |
| 12015 , 3015 , 3016                               |
| 12016 , 3016 , 3017                               |
| 12017 , 3017 , 3018                               |
| 12018 , 3018 , 3019                               |
| 12019 , 3019 , 3020                               |
| 12020 , 3020 , 3021                               |
| 12021 , 3021 , 3022                               |
| 12022 , 3022 , 3023                               |
| 12023 , 3023 , 3024                               |
| 12024 , 3024 , 3025                               |
| 12025 , 3025 , 3026                               |
| 12026 , 3026 , 3027                               |
| 12027 , 3027 , 3028                               |
| 12028 , 3028 , 3029                               |
| 12029 , 3029 , 3030                               |
| 12030 , 3030 , 3031                               |
| 12031 , 3031 , 3032                               |
| 12032 , 3032 , 3033                               |
| 12033 , 3033 , 3034                               |
| 12034 , 3034 , 3035                               |
| 12035 , 3035 , 3036                               |
| 12036 , 3036 , 3037                               |
| ****                                              |

| 13001,4001,4002                                                                                                           |                                             |
|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| 13002,4002,4003                                                                                                           |                                             |
| 13003 , 4003 , 4004                                                                                                       |                                             |
| 13004 , 4004 , 4005                                                                                                       |                                             |
| 13005 , 4005 , 4006                                                                                                       |                                             |
| 13006 , 4006 , 4007                                                                                                       |                                             |
| 13007 , 4007 , 4008                                                                                                       |                                             |
| 13008 , 4008 , 4009                                                                                                       |                                             |
| 13009 , 4009 , 4010                                                                                                       |                                             |
| 13010 , 4010 , 4011                                                                                                       |                                             |
| 13011 , 4011 , 4012                                                                                                       |                                             |
| 13012 , 4012 , 4013                                                                                                       |                                             |
| 13013 , 4013 , 4014                                                                                                       |                                             |
| 13014 , 4014 , 4015                                                                                                       |                                             |
| 13015 , 4015 , 4016                                                                                                       |                                             |
| 13016 , 4016 , 4017                                                                                                       |                                             |
| 13017 , 4017 , 4018                                                                                                       |                                             |
| 13018 , 4018 , 4019                                                                                                       |                                             |
| 13019 , 4019 , 4020                                                                                                       |                                             |
| 13020 , 4020 , 4021                                                                                                       |                                             |
| 13021,4021,4022                                                                                                           |                                             |
| 13022 , 4022 , 4023                                                                                                       |                                             |
| 13023 , 4023 , 4024                                                                                                       |                                             |
| 13024, 4024, 4025                                                                                                         |                                             |
| 13025, 4025, 4026                                                                                                         |                                             |
| 13026, 4026, 4027                                                                                                         |                                             |
| 13027, 4027, 4028                                                                                                         |                                             |
| 13028, 4028, 4029                                                                                                         |                                             |
| 13029 4029 4030                                                                                                           |                                             |
| 13030 4030 4031                                                                                                           |                                             |
| 13031 4031 4032                                                                                                           |                                             |
| 13032 4032 4033                                                                                                           |                                             |
| 13033 4033 4034                                                                                                           |                                             |
| 12024 4024 4025                                                                                                           |                                             |
| 13034 4034 4035                                                                                                           |                                             |
| 13034,4034,4035                                                                                                           |                                             |
| 13034,4034,4035<br>13035,4035,4036<br>13036,4036,4037                                                                     |                                             |
| 13034,4034,4035<br>13035,4035,4036<br>13036,4036,4037<br>************                                                     |                                             |
| 13034,4034,4035<br>13035,4035,4036<br>13036,4036,4037<br>************************************                             | *****                                       |
| 13034,4034,4035<br>13035,4035,4036<br>13036,4036,4037<br>************************************                             | ****                                        |
| 13034,4034,4035<br>13035,4035,4036<br>13036,4036,4037<br>***** ELEMENTER FOR MASSE<br>*********************************** | ****                                        |
| 13034,4034,4035<br>13035,4035,4036<br>13036,4036,4037<br>***** ELEMENTER FOR MASSE<br>*********************************** | **************************************      |
| 13034 , 4034 , 4035<br>13035 , 4035 , 4036<br>13036 , 4036 , 4037<br>************************************                 | **************************************      |
| 13034,4034,4035<br>13035,4036,4036<br>13036,4036,4037<br>************************************                             | *****<br>****<br>*****<br>KET PÅ HVER SIDE, |
| 13034,4034,4035<br>13035,4035,4036<br>13036,4036,4037<br>************************************                             | **************************************      |
| 13034,4034,4035<br>13035,4035,4036<br>13036,4036,4037<br>************************************                             | *****<br>****<br>*****<br>KET PÅ HVER SIDE, |
| 13034,4034,4035<br>13035,4036,4036<br>13036,4036,4037<br>************************************                             | *****<br>****<br>*****<br>KET PÅ HVER SIDE, |
| 13034,4034,4035<br>13035,4036,4036<br>13036,4036,4037<br>************************************                             | *****<br>****<br>*****<br>KET PÅ HVER SIDE, |
| 13034,4034,4035<br>13035,4036,4036<br>13036,4036,4037<br>************************************                             | *****<br>****<br>*****<br>KET PÅ HVER SIDE, |
| 13034,4034,4035<br>13035,4035,4036<br>13036,4036,4037<br>************************************                             | *****<br>****<br>*****<br>KET PÅ HVER SIDE, |
| 13034,4034,4035<br>13035,4035,4036<br>13036,4036,4037<br>************************************                             | *****<br>****<br>KET PÅ HVER SIDE,          |
| 13034,4034,4035<br>13035,4036,4036<br>13036,4036,4037<br>************************************                             | *****<br>****<br>KET PÅ HVER SIDE,          |
| 13034,4034,4035<br>13035,4036,4036<br>13036,4036,4037<br>************************************                             | *****<br>****<br>KET PÅ HVER SIDE,          |
| 13034,4034,4035<br>13035,4036,4036<br>13036,4036,4037<br>************************************                             | *****<br>****<br>KET PÅ HVER SIDE,          |
| 13034,4034,4035<br>13035,4035,4036<br>13036,4036,4037<br>************************************                             | *****<br>****<br>KET PÅ HVER SIDE,          |

| 18026, 3026                                          |
|------------------------------------------------------|
| 18027 3027                                           |
| 18029, 3027                                          |
| 18028, 3028                                          |
| 18029, 3029                                          |
| 18030 , 3030                                         |
| 18031, 3031                                          |
| 18032 3032                                           |
| 18032 3032                                           |
| 10033, 3033                                          |
| 18034, 3034                                          |
| 18035 , 3035                                         |
| 18036 , 3036                                         |
| *****                                                |
| *ELEMENT TYPE = MASS ELSET=EASTm                     |
| $\frac{10002}{1002}$                                 |
| 19002,4002                                           |
| 19003, 4003                                          |
| 19004 , 4004                                         |
| 19005 . 4005                                         |
| 19006 4006                                           |
| 10007 4007                                           |
| 19007,4007                                           |
| 19008,4008                                           |
| 19009 , 4009                                         |
| 19010,4010                                           |
| 19011 4011                                           |
| 10012 4012                                           |
| 19012,4012                                           |
| 19013,4013                                           |
| 19014, 4014                                          |
| 19015,4015                                           |
| 19016 . 4016                                         |
| 19017 4017                                           |
| 10019 4019                                           |
| 19018,4018                                           |
| 19019, 4019                                          |
| 19020 , 4020                                         |
| 19021.4021                                           |
| 19022 4022                                           |
| 10022 , 1022                                         |
| 19023,4023                                           |
| 19024 , 4024                                         |
| 19025 , 4025                                         |
| 19026,4026                                           |
| 19027 4027                                           |
| 19028 4028                                           |
| 10020,4020                                           |
| 19029,4029                                           |
| 19030, 4030                                          |
| 19031 , 4031                                         |
| 19032,4032                                           |
| 19033 4033                                           |
| 10034 4034                                           |
| 10025 4025                                           |
| 19035,4035                                           |
|                                                      |
| 19036 , 4036                                         |
| 19036 , 4036<br>********                             |
| 19036 , 4036<br>************************************ |
| 19036, 4036<br>************************************  |
| 19036 , 4036<br>************************************ |
| 19036 , 4036<br>************************************ |
| 19036 , 4036<br>************************************ |
| 19036 , 4036<br>************************************ |
| 19036 , 4036<br>************************************ |
| 19036 , 4036<br>************************************ |
| 19036 , 4036<br>************************************ |
| 19036, 4036<br>************************************  |
| 19036, 4036<br>************************************  |
| 19036 , 4036<br>************************************ |
| 19036 , 4036<br>************************************ |
| 19036, 4036<br>************************************  |
| 19036, 4036<br>************************************  |
| 19036, 4036<br>************************************  |
| 19036, 4036<br>************************************  |
| 19036, 4036<br>************************************  |
| 19036, 4036<br>************************************  |
| 19036, 4036<br>************************************  |

10018, 5018 10019, 5019 10020, 5020 10021 , 5021 10022 , 5022 10023, 5023 10024, 5024 10025, 5025 10026 , 5026 10027, 502710028,5028 10029, 5029 10030, 5030 10031, 5031 10032, 5032 10033 , 5033 10034 , 5034 10035, 5035 10036, 5036 \*\*\*\*\* \*\*PUNKTER FOR MASSE VED ENDER AV BRUKASSE \*ELEMENT, TYPE=MASS, ELSET=END 11001,1 11037, 37 \*\*\*\*\* \*\*\*\*\*\*\*\*\*\*\* \*\*\*\* STIVHET \*\*\*\* \*\*\*\*\*\*\* **\*\*INPUT BEAM GENERAL SECTION** \*\*A , I\_11 , I\_12 , I\_22 , J , , Warping constant(15.3.7-2) \*\*0, 1, 0 - RETNINGSVEKTOR \*\*E , G , TERMISKFAKTOR \*\*\*\*\* \*\*BRUKASSE \*\*øker tverrsnittsdata for å tilpasse verider \*BEAM GENERAL SECTION, ELSET=GIRDER, SECTION=GENERAL, DENSITY=1E-12 0.48, 0.5, 0.0, 5.5, 1.08, ,4.762 0,1,0 210000E6, 80700E6, 0.00001 \*DAMPING, ALPHA=0.0011, BETA=0.0024 \*SHEAR CENTER 0.-0.191 \*\*\*\*\* \*BEAM GENERAL SECTION, ELSET=DUMMY1, SECTION=GENERAL, DENSITY=1E-12 1000,1000,0.0,1000,1000, , 0,1,0 210000E6, 80700E6, 0.00001 \*BEAM GENERAL SECTION, ELSET=DUMMY2, SECTION=GENERAL, DENSITY=1E-12 1000,1000,0.0,1000,1000, , 0,1,0 210000E6, 80700E6, 0.00001 \*BEAM GENERAL SECTION, ELSET=DUMMY3, SECTION=GENERAL, DENSITY=1E-12 1000,1000,0.0,1000,1000, , 0,1,0 210000E6, 80700E6, 0.00001 \*\*\*\*\*\* \*BEAM GENERAL SECTION, ELSET=WEST, SECTION=GENERAL, DENSITY=1E-12 1, 1, 0.0, 1, 1, 1 0,1,0 210000E1, 80700E1, 0.00001 \*DAMPING, ALPHA=0.0109, BETA=0.0024 \*\* \*BEAM GENERAL SECTION, ELSET=EAST, SECTION=GENERAL, DENSITY=1E-12 1, 1, 0.0, 1, 1, 1 0,1,0 210000E1, 80700E1, 0.00001 \*DAMPING, ALPHA=0.0109, BETA=0.0024

```
*****
**HENGERE
*BEAM SECTION, SECTION=CIRC, MATERIAL=STEEL, ELSET=HANGERS
0.03
1.1.0
*****
**HOVEDKABEL I HOVEDSPENN VEKT
** 1/4 henger vekt 15 kg/m som ligger i hengere
** RHO = 393 kg/m / 0.044 m2 = 9273 kg/m3
**
*BEAM SECTION, SECTION=CIRC, MATERIAL=STEEL1,ELSET=MAINCABLE
0.118
1,0,0
****
**BAKRE HOVEDKABLER
** weight = 356 kg/m
**uten hengerlink
** RHO = 356 kg/m / 0.044 m2 = 8091 kg/m3
**
*BEAM SECTION, SECTION=CIRC, MATERIAL=STEEL2, ELSET=BACKSTAYCABLE
0.118
1.0.0
*****
*********
                                 ****
**** MATERIAL
*****
**
*MATERIAL, NAME=STEEL
*ELASTIC
180000E6, 0.3
*NO COMPRESSION
*DENSITY
7850
*MATERIAL, NAME=STEEL1
*ELASTIC
180000E6, 0.3
*NO COMPRESSION
*DENSITY
9273
*MATERIAL, NAME=STEEL2
*ELASTIC
180000E6, 0.3
*NO COMPRESSION
*DENSITY
8091
**
******
**** TILEGNE LUMPED MASSE
                                 ****
******
**MASSE LANGS BRUKASSE
**FRA MATHCAD, IM = 82430:
** "SIDE" = 1074 x 12 meter between hangers
** "UNDER" = 3203 x 12
**
*MASS, ELSET=WESTm
12883
*MASS, ELSET=EASTm
12883
*MASS, ELSET=UNDER
38435
** Weight of the last 9,5 meters have to be added as a lumped mass
** at the end of the bridge girder.
** 9,5x5350=50825
*MASS, ELSET=END
50825
****
*******
```

```
**** OPPGLAGERBETINGELSER
                                       ****
*******
**NODER FOR OPPGLAGERBETINGELSER
**
*NSET,NSET=ROCK
981,1087,1981,2087
*NSET,NSET=TOWER
1001,1037,2001,2037
*NSET,NSET=BOUNDNORTH
1
*NSET,NSET=BOUNDSOUTH
37
*NSET,NSET=ALL,GENERATE
1,50000,1
**
** Boundary conditions
**
*BOUNDARY
ROCK,1,3,0
TOWER,2,3,0
BOUNDNORTH,1,4,0
BOUNDSOUTH,2,4,0
**
******
**** NODER TIL PÅFØRE LASTER
                                 ****
***********
*NSET,NSET=WINDLOAD,GENERATE
2,36,1
*NSET,NSET=WINDCAB,GENERATE
1002,1036,1
2002,2036,1
**
*NSET,NSET=H18
19
**
*NSET,NSET=H24
25
**
*NSET,NSET=GIRDER,GENERATE
1,37,1
*NSET,NSET=CABEL,GENERATE
1001,1037,1
2001,2037,1
*NSET,NSET=HLINK,GENERATE
3001,3037,1
4001,4037,1
*****
*******
**** LASTER OG ANALYSE
                                    ****
***********
**STEP1: EGENVEKT
**EGENVEKT ER GITT SOM EN STATISK LAST, MED ULINEÆR GEOMETRI
*****
*STEP,AMPLITUDE=RAMP,NAME=EGENVEKT,NLGEOM,INC=5000
*STATIC,STABILIZE=1E-10
1E-6,1E-6,1E-9,1E-6
****
** Cable
** Cable with half the hanger and hangerlink
** RHO-MED H.STENGER = 8524.2
** RHO-WITH HANGERS = 408kg/m / 0.0443 m2 = 9210
** RHO-WITHOUT HANGERS = 356kg/m / 0.0443m2 = 8036
** g = 9,81 x (8036/9210) = 8,5595
******
          *****
*DLOAD
HOVEDKABLER, GRAV, 8.5595, 0, 0, -1
```

```
*****
** EGENVEKT BRUKASSE
** EGENVEKT BRUKASSE INKLUDERT HALVPARTEN AV HENGERKOBLING
** HOVEDSPENN = 5350 kg/m
** 5350 x 9,81 = 52483.5
****
*DLOAD
GIRDER, PZ, -52484
****
** EGENVEKT I TÅRN
*****
*DLOAD
MAINCABLE, GRAV, 9.810, 0 , 0 , -1
BACKSTAYCABLE, GRAV, 9.810, 0, 0, -1
HANGERS, GRAV, 9.810, 0, 0, -1
*****
*END STEP
*****
**STEADY STATE ANALYSE
*STEP,NLGEOM
*FREQUENCY
150
**
*END STEP
```