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ABSTRACT 
 

Horizontal wells are currently very common for oil production, because they can increase its 

efficiency. An offshore platform for instance, may have several wells all aiming to produce from a 

common reservoir. In addition, each well can produce more oil being in contact with a larger part of 

the reservoir rock. However, long horizontal wells are subject to water or gas coning. These fluids 

exist naturally in the reservoir, or are injected into it to increase pressure and oil production. Due to 

their greater mobility under high pressure differences which are common in wells of this caliber, they 

end up going through the oil layer and reaching the wellbore before the oil, thereby forming these 

cones. To prevent this, there are several types of passive Inflow Control Devices (ICD’s) that can be 

placed along the horizontal part of the well which function by restricting its flow. Another important 

aspect here is that the production rates are normally higher at the heel of the well than at the toe. 

This is because the closer the fluid comes to the heel, the smaller the pressure it will face. One way 

to eliminate this issue is to simply make more perforations in the production tubing near the toe and 

decreasing the same near the heel.  

Similarly, when using ICD’s they usually provide different pressure drops, depending on their 

distances to the heel. In general they work very well and are very reliable, during the early stages of 

production. The problem is that, as the reservoir is depleted, the flow rate decreases and flow 

regimes change, which often comes to cause cones again, sometimes near other parts of the well. 

Besides that, the best possible production will no longer be reached. There are some devices in the 

market that can autonomously avoid water or gas inside the tubing, interrupting the flow when 

necessary. However, they cannot adjust the flow rates according to depletion, nor avoid the 

formation of cones. Currently, there is one type of Autonomous Inflow Control Device (AICD) called 

the BECH AICD patented by Prof. Aadnøy of the University of Stavanger who also happens to be the 

supervisor of this thesis work – that can do that. Experimentally, it would be demonstrated that 

constant flow throughout the life of an oil field, and along the well, can be achieved by incorporating 

the mentioned patent into the down hole completion equipment. This can eliminate the cones, 

thereby making the production more stable and increasing the final/cumulative oil recovery. Other 

possible uses for this device are also stated at a later stage of this report. The experimental results 

obtained points to the fact that it can be used also for injection wells or in any well operation where 

constant flow is needed. They are designed as stand-alone robust devices to withstand the adverse 

operating conditions of a well. 
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However, ICDs have mostly been used for light oils.  For fluid compositions having low viscosities, the 

flow is not dependent on viscosity but only on the density of the flowing fluid.  Therefore when fluid 

properties change from light oil to water, the flow rate reduces according to the square root of the 

density ratio between oil and water as would be demonstrated in Chapter 5 of this report. Highly 

viscous oils occasionally have a density approaching that of water, often with a negligible density 

contrast.  The transition from turbulent to laminar flow occurs earlier, and viscous pressure drops 

may become more significant (i.e. the pressure drop seen in the ICD nozzle becomes governed by 

viscosity which is highly sensitive to changes in temperature and pressure). 

In the forgoing thesis report, an experimental setup is proposed where fluids of various viscosities 

and densities are flow-tested.  Correlations would be established to enable accurate definition of the 

behavior of passive inflow control systems in relation to highly viscous oils or highly viscous oil fields. 

Seating at the center of this experimental study is the introduction of a BECH company Autonomous 

Inflow Control Device patented by Prof. Aadnøy of the University of Stavanger. This would serve to 

illustrate the unique benefits of this patent in that it is able to maintain a constant flow rate through 

its nozzle irrespective of pressure variation. A detailed presentation of flow regime investigation 

using the Bernoulli model as a reference point also forms an important aspect of this thesis. 
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ABBREVIATIONS 
 

AICD   Autonomous Inflow Control Device 

BECH  Company which owns the legal rights to Prof. Aadnøy’s AICD patent. 

BS  Barents Sea 

cP  Centi-poise (Unit for viscosity) 

ERW  Extended Reach Well 

ESP  Electrical Submersible Pump 

GOC  Gas Oil Contact 

HP  High Pressure (15+ bars). Defined for the purpose of this thesis only, does not apply 

  to practical calculations in industry. 

ICD  Inflow Control Device. The word conventional/commercial is used to describe ICD       

technology currently available in the market. 

IPTC  International Petroleum Technology Conference 

L  Denotes volume in cubic meters 

LP  Low Pressure (0 bars – 15 bars). Defined for the purpose of this thesis only, does      

  not apply to practical calculations in industry. 

mL  Mililiters 

NCS  Norwegian Continental Shelf 

NPV  Net Present Value 

OGC  Oil Gas Contact 

OHGP  Open Hole Gravel Pack 

OHHW  Open Hole Horizontal Well 

OTC  Offshore Technology Conference 

OWC  Oil Water Contact 

PDP  Positive Displacement Pump 

PPE  Personal Protective Equipment 

R-Phrase Risk Phrase  

RA  Risk Analysis 

Sec  Seconds  
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S-Phrase Safety Phrase 

SAGD  Steam Assisted Gravity Drainage 

SAS  Stand Alone Screen 

SPE  Society of Petroleum Engineers 

t   Denotes time in seconds. 

TAML  Technological Advancement for Multi-Laterals. 

Three-D 3 Dimensional View. 

UiS  University of Stavanger 
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1 INTRODUCTION  
 

Sub-sea technology has evolved into horizontal wells, as in the Goliath field (OFFSHORE-

TECHNOLOGY, 2014), in the Norwegian BS. These horizontal wells are popular for increasing 

production efficiency. In high costs areas like the BS, it is important to reduce the required number of 

wells to be drilled, but with the condition that they produce optimally. With larger exposure to the 

reservoir they also reach larger portions of complex reservoir geometries. 

Source: Aadnøy B.S, Awannegbe Edohamen. P, De Azevedo Cabral. R. Autonomous Inflow Control 

Device for Horizontal Wells in the Barents Sea. SPE work shop in Harstad Norway, 2014. 

However along with the oil, large quantities of water and gas can also reach the wellbore. These 

fluids exist naturally in the reservoir or are injected into it to increase pressure and oil production. 

The problem is that when they reach the well, they are also produced thereby reducing the 

hydrocarbon production index. Long horizontal wells are also subject to the formation of the so-

called cones of water or gas. This is because these fluids, due to their greater mobility under the high 

flow and pressure differences common in this kind of well, end up crossing the oil layer and reaching 

the wellbore before the oil. 

 

1.1 Brief account of the birthing of the ICD era in well completions 
 

The ICDs are basically flow restriction devices (chokes) that avoid water coning in wells irrespective 

of trajectory type, following the Bernoulli law for low-viscous fluids (AADNØY, 2012, 2012a). They are 

installed in regular intervals along the horizontal path of a well as an integrated part of the down 

hole completion equipment. As the pressure is not constant along the well, different setups are used 

for each inflow point. The flow is complex, ranging from laminar flow in the reservoir, through 

screens and conduit, to turbulent flow through ICDs. In long horizontal tubing, the well bottom will 

have a laminar flow, whereas at the production packer it is fully turbulent. 

The early development of ICDs was driven by the need to ameliorate early water break-through from 

the heel of an ERW. This design was originally based upon equalizing flux (i.e. hydrocarbon flow rate 

per unit length of horizontal well section). During a typical production operation, this was achieved 

through a mechanism which chokes flux in the heel region where the higher pressure drop is 

expected due to higher frictional effects.  The choking system principally functions based on the 
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proportionality relation that exists between choking level and flow rate. This therefore enables it to 

automatically produce a more uniform flow profile. 

It had always been common practice for an oil well to be drilled with a vertical trajectory profile from 

seabed to target depth. However, the natural occurrence of the following challenges associated with 

oil wells/reservoirs has necessitated the use of directional drilling technologies.  

a) Need for a sidetrack due to an irrecoverable fish and a subsequent plug and temporary 

abandonment situation. 

b) Need for control of vertical holes (i.e. compensation for bit walk by making adequate tool 

face re-orientation) 

c) Drilling to avoid geological problems. 

d) Drilling beneath obscure/inaccessible locations. 

e) Off-shore development drilling. 

Over the years, the aforementioned technology has come to be widely accepted as a more 

economically efficient drilling practice. Several well control problems are likely to occur during the 

drilling, completion and production of the complex well trajectory of an extended reach well. One of 

such problems as already mentioned is the early breakthrough of gas or water. It should be noted 

that a problem of this nature can also occur in conventional vertical wells. However, the major 

difference is that with the ERW, an ICD is needed down hole to control the well whereas the vertical 

well due to the presence of very small variation in pressure drop, is typically controlled from surface 

to prevent breakthroughs. The following undeniable benefits, which are mainly linked to project 

economics, make an ERW desirable in spite of the mentioned disadvantages. 

a) Increased penetration of the producing formation. 

b) Increased efficiency of Enhanced Oil Recovery (EOR) techniques. 

c) Improved productivity in fractured reservoirs by intersecting a number of vertical fractures. 

d) Increased drainage area of platform. 

However, the problem is that as the reservoir is depleted the flow rate decreases and the flow 

regimes change. These often cause cones again maybe near other parts of the well at a later stage of 

production, following the redistribution of fluids in the reservoir. Another problem is that the 

conventional ICD chokes too much in depleted stages of the reservoir thereby reducing production to 

an unacceptable degree. Therefore one of the core purposes of this experimental thesis work is to 

develop ways to prevent the formation of these cones over time while achieving the goal of optimal 
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production which eliminates intervention/work over downtime. 

1.2 Objectives of thesis 
 

a) To experimentally prove that the BECH AICD (Prof. Aadnøys patent) guarantees constant flow 

rate regardless of reservoir pressure. 

b) To investigate the extent to which the constant flow feature of the BECH AICD remains 

independent on the Darcy model and fluid viscosity. 

c) To experimentally prove that the BECH AICD can potentially drain a reservoir nearly 2 times 

as fast as today’s commercial/conventional ICD. This then implies quicker financial turn-

around and overall better project economics in terms of NPV of the reserves which would 

directly impact project capital expenditure (CAPEX) and operational expenditure (OPEX). 

d) To reveal the limitations of today’s conventional ICD by making a comparison to BECH AICD. 

e) To reveal the limitations of the BECH AICD. 

f) To investigate the flow regime in the nozzles of ICDs and AICDs using fluids with varying 

properties.  

g) To depict what is obtainable in the arctic reservoir environment of the Norwegian 

Continental Shelf by careful selection of fluids for experimental work. 

h) To investigate the viscosity range within which flow is governed by density both in BECH AICD 

and conventional ICD. 

i) To investigate the viscosity range where viscous effects creates laminar flow both in BECH 

AICD and conventional ICD. 

 

1.3 Overview of Inflow control problems 
 

Problems associated with the flow of hydrocarbon/reservoir fluids into the well are often 

exacerbated in down-hole conditions where there is a natural, design-induced or operation-induced 

occurrence of one or a combination of the following: 

Please note that the list below does not in any way represent an exhaustive range of possible inflow 

problems. 

a) Highly viscous fluids. 

b) Reservoir lithology which is prone to erosion. 

c) Partially open horizontal wells i.e. selective completion design. 
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d) Soft sand formation which necessitates the use of SAS, OHGP technology or perforated / 

slotted liner in horizontal wells. 

e) Scaling reservoir environment. 

f) Complex deep gas reservoir environment. 

g) Reservoir featuring thin pay zone with bottom water drive. 

Passive Inflow Control Devices (ICDs) as already stated were developed to counteract the horizontal 

well’s hell-toe effect whereas Active Interval Control Valves (ICVs) were used originally for controlled 

and commingled production from multiple reservoirs.  

Figure 1.1 and Table 1.1 which represent the outcome of comprehensive reservoir engineering 

uncertainty quantification, serve to illustrate an acceptable decision making modality on a “ICDs vs 

ICVs” compromise based design concept selection. This is largely dependent upon prevailing down-

hole conditions and project needs/economics. 

 

 

Figure 1.1: A comprehensive approach to the selection between Passive and Active inflow control in 
completion design. F.T. AL-KHELAIWI, V.M. BIRCHENKO, M.R. KONOPCZYNSKI, and D.R. DAVIES 2010. 

SPE.org. 
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Table 1.1: A comprehensive approach to the selection between Passive and Active inflow control in 
completion design. F.T. AL-KHELAIWI, V.M. BIRCHENKO, M.R. KONOPCZYNSKI, and D.R. DAVIES 2010. 

SPE.org. 

 

To reduce/eliminate inflow control problems, several suppliers of ICDs/ICVs technologies some of 

which are delineated in Chapter 3 have developed unique designs for creation of the required 

pressure drop to delay/prevent water coning. These designs currently include nozzles, orifices, tubes 

and helical and labyrinthine channels. However, the size of the restrictions is set before or at the 

time of well completion. This makes it impossible to make a later adjustment of the flow restriction 

diameter without an intervention/work over operation. 

The BECH AICD which will be experimented and discussed in the forgoing thesis work totally 

eliminates the need for a time consuming and cost-ineffective intervention work at a later stage of 

reservoir production. This is achieved by Prof. Aadnøy’s design which features a valve stem that is 

hydraulically controlled by prevailing reservoir pressure. This design allows for an increased opening 

of the valve stem at low reservoir pressures and likewise, a corresponding reduction in opening at 

high reservoir pressure. Hence the flow rate is maintained from start of production to point of 

complete reservoir drainage. 
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1.4 Quick quiz which shows advantages and limitations of conventional 

ICDs 
 

Q: If I use 10 small nozzles instead of one large nozzle what is the difference in behavior? 

A: If the sum of the nozzle areas of the small nozzles equals the one large nozzle, they will behave 

exactly similar. 

 

Q: Will the commercial ICD work well also in a depleted phase of a reservoir? 

A: No. The flow inside the long horizontal tubing is complex, and when the flow decreases, the ICDs 

may no longer be optimal. Water coning may therefore occur at a later stage of depletion. 

 

Q: Will the flow rate change after water breakthrough in the heel of the well? 

A: Yes. Again from Bernoulli relation, if the incoming water has 15% higher density than the produced 

oil, flow rate will decrease by 8%. This may not be a strong effect. 

 

Q: Although the density is often constant in a field, the viscosity may vary significantly during the life 

of the field. How important is the viscosity? 

A: The variations in viscosity are not important. The nozzle alone controls the pressure drop, and 

because this has a high turbulent flow, variations in viscosity have no effect. This is beneficial 

because we would not have appreciated the opposite. 

 
Q: Some ICD suppliers argue that they are viscosity sensitive because they are also passing the oil 

through some tubes in addition to the nozzle. This is not correct then? 

A: Actually no for the common ICD scenario. Computer simulations have shown that for viscosity to 

dominate the pressure drop, the tubes must be much longer than a 10-meter SAS section, which is 

difficult to implement in practice. 

 
Q: If suppliers advertise a combined solution, an ICD consisting of a tube and a nozzle in series, is this 

not an improvement? 

A: Technically speaking it is correct, but usually the nozzle dominates such that variations in viscosity 

are negligible. 
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Q: You mean that all usual brands of ICDs actually behave exactly similar? 

A: Yes, most ICDs are passive choke devices aimed at reducing the flow. 

 
Q: Limiting ourselves to simple mechanical devices, how can we improve the ICD function? 

A: An ICD can be considered a first generation flow control, with the limitation that it is statically 

fixed. A second generation would be an autonomous control valve that by sensing the reservoir 

pressure using hydraulic feedback could maintain constant flow even during reservoir depletion.  

Aadnøy and Hareland, 2009; Gimre, 2012. 
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2 BACKGROUND 
 

 

2.1 Objectives of Inflow Control Devices 
 

a) To prevent or at least delay gas/water coning. 

b) To create a uniform inflow profile across the sand screen. 

c) To equilibrate pressure throughout the length of the horizontal well bore (i.e. heel to toe). 

d) To obtain higher total hydrocarbon recovery. 

 

2.2 Synoptic view of ICDs 
 

1) Darcy Flow – Inflow from the reservoir is governed by the radial flow equation derived from 

Darcy’s law and it is: 

 

  
    

 
 
          

  
  
  

         

 

From equation 2.1 it is clear that the flow rate   is directly proportional to the drawdown 

           and permeability   but inversely proportional to the fluid viscosity  .    and    represent 

the radius of the reservoir and wellbore respectively. 

When entering the well the fluid changes direction and regime, passing from laminar to turbulent. 

This implies that flow is not anymore fully governed by equation 2.1; instead it is being more 

dependent on its density than viscosity. The insertion of ICD’s makes this study even more complex 

because it also results in changes of flow regime.  
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Assume a long horizontal well, the figure below shows the coning problem. The consequence of the 

wellbore pressure drop is a higher flow at the heel of the well, controlled by the following: 

a) Viscosity (All Darcy Parameters). 

b) Permeability variations. 

c) Along hole turbulence 

d) Pressure 

 
 

Figure 2.1: Illustration of drawdown profile for Darcy controlled OHHW. Aadnøy and Hareland, 2009; 
Gimre, 2012. SPE.org. 
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2) Current Commercial Inflow Control Devices – Flow here is changed by installing chokes at 

regular intervals. Since the drawdown is not constant along the well, different chokes should 

be applied. The flow is therefore not totally Darcy but a combination of Darcy and choke. 

During depletion, the pressure changes in particular inside the well that again leads to 

uneven flow controlled by: 

a) Along hole turbulence 

b) Permeability variations 

c) Density 

d) Pressure. 

The diagram below illustrates this concept. 

 

 
 

Figure 2.2: 2012 Illustration of drawdown profile in partial Darcy controlled/partially choked OHHW.  
Aadnøy and Hareland, 2009; Gimre 2012. SPE.org. 
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3) The BECH constant flow valve. 

 

For illustrative purposes, the reservoir pressure, permeability and the well pressure are 

varied. The resulting flow rate is still constant. The flow is therefore not dependent on 

reservoir or wellbore condition. This is weakly controlled by density. 

 
 

Figure 2.3: Drawdown profile for flow controlled OHHW. Aadnøy and Hareland, 2009; Gimre, 2012. 
SPE.org. 
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2.3 Conventional ICD design available in industry  
 

Figure 2.4 below is a Three-D view of an ICD and it shows the areas where pressure drop occurs as 

the hydrocarbon flows from the reservoir into the production tubing. 

 

 

 

 

 
 
 
 
 
Figure 2.4: Illustration of the flow path that the hydrocarbon follows before flowing through the ICD 

nozzle. Weatherford FloRegTM; Torbergsen, 2010. SPE.org. 
 
 

In extended reach wells, the use of very long production tubing introduces very large pressure drops 

with the highest production rates at the heel and the lowest at the toe of the production tubing. The 

potential for this to cause the occurrence of water/gas coning necessitates the implementation of 

Inflow Control Devices to realize the objectives listed in Section 2.1. 

The breakthrough of water/gas at the heel would significantly reduce the hydrocarbon Production 

Index of the well. This is true because the hydrocarbon at the toe of the wellbore exhibits 

significantly lower mobility than the breakthrough water/gas at the heel.  

The Inflow Control Device therefore achieves its objectives by reducing flow in the regions of high 

productivity as illustrated in Figure 2.5b. Figure 2.5a is an illustration of the vast disparity in heel to 

toe pressure drop which is prevalent in an extended reach well completed without an ICD. 
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Figure 2.5a: Heel to toe pressure drop profile of well completed without ICD. Gimre, 2012. 

Halliburton.com. 

                
Figure 2.5b: Heel to toe pressure drop profile of well completed with ICD. Gimre, 2012. 

Halliburton.com. 
 

The above picture illustrates the results that can be obtained from utilizing current commercial ICDs. 

However, the fact that there exists an uneven/non-linear profile throughout the productive life of a 

typical reservoir is a very important factor/consideration that must be taken into account when 

designing an ICD. The details of such non-linear profile can be obtained from reservoir 

characterization studies based on estimated reservoir depletion rates which continually alter 

pressure profile. 

At this junction it is clear that the primary function of current commercial Inflow Control Device put 

simply, is to optimize production by equalizing reservoir inflow along the length of a horizontal well 

bore. 
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2.3.1 Economic justification for ICD inclusion in completion design. 
 

Typical intelligent well business drivers are shown in Figure 2.6. The figure shows that increased total 

recovery has the highest relative business value. 

 

 

Figure 2.6: Relative business value contribution of a typical intelligent well completion technology as 
evaluated in the Norwegian oil industry. 

 

Increased ultimate recovery is shown to be the most important factor. If this goal is to be achieved, it 

would demand a very long term horizon. More often than not, the industry looks at accelerated 

production as the most important driver for ICD inclusion in completion design. This owes to the fact 

that the industry is more interested in creating best possible value now (i.e. NPV), and draining the 

reservoir in the most cost effective way. Evaluations need to be done constantly by the key players in 

the industry on how best to optimize production. 

In performing an economical evaluation for project, ICD inclusion in completion design would 

normally be less expensive than including an ICV. However, the issue of cost comes in as one of the 

several criterions when faced with the decision of which completion technology should be 

implemented. This therefore implies that an overall sensitivity and characterization study of the 

reservoir must be performed, well communicated and deeply understood before making a 

completion choice. 

Source: Jeanette Gimre, Master Thesis 2012. Efficiency of ICV/ICD systems. 
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2.4 Description and Illustration of water/gas coning phenomena 
 

Generally, in the reservoir rocks, the effect of gravity causes the water to remain below the oil, and 

the oil below the gas, based on their differences in density. However, the water and the gas usually 

have greater mobility. Therefore, when subjected to large pressure differences, caused by a 

producing well, these fluids can move more quickly than the oil, reaching the well first. 

 

Water and gas coning is formed exactly when this situation occurs. These “cones” are preferential 

paths of the fluids into the wellbore. This causes increased water/oil ratio (WOR) or gas/oil ratio 

(GOR) inside the well, with consequent loss of oil production. Both oil and gas-producing wells, 

vertical or horizontal, can potentially present the formation of cones. Although the properties of 

fluids may accentuate it, the differential pressure between the reservoir and the well is what causes 

this phenomenon. In lower permeability reservoirs, such as those observed in the Brazilian pre-salt 

layer, it is necessary to establish a large pressure differential to achieve the desired production level, 

thereby increasing the risk of cones formation. Another factor that may increase this risk is the 

existence of a large number of fractures in the reservoir, which is also often the case in a pre-salt 

lithology. The water and the gas flow more easily through these fractures, due to their high 

conductivity. 

 

In vertical production wells, the pressure gradient is much higher in the immediate vicinity of the well 

than in the rest of the reservoir. In the case of horizontal wells, this gradient is practically uniform in 

the reservoir, increasing only slightly near the well. Due to their higher productivity, the horizontal 

wells can be produced with lower pressure gradients, which generally minimize or retard the 

formation of cones.  

 

The vertical wells may be re-completed at higher portions of the reservoir, when hit by water, or 

lower portions, when affected by gas from the top of the reservoir. Horizontal wells, on the other 

hand, generally will be hopelessly lost when invaded by these cones, for not having portions above or 

below to be re-completed. Thus, these wells are designed to operate with flow rates low enough to 

prevent the coning formation. However, many times this flow reduction is not a practical alternative, 

as it reduces their productivity and, in particular, the oil recovery. Many authors have presented 

several correlations for the estimation of critical flow of oil in the presence of water and gas in 

horizontal wells. The critical flow is defined as the maximum possible flow in the well without 



 
 

 

Edohamen Patrick Awannegbe 
University of Stavanger, 2014 
 

 

Characterization of flow regime of highly viscous oils using conventional ICD and BECH AICD 

 

16 

 

producing unwanted fluids by the formation of cones. 

 

Figure 2.7a below presents a Two-D view of a water coning mechanism. This picture is based on the 

assumption that the OWC is perfectly parallel to the production tubing as shown. The effect of this 

assumption would be seen in calculations later-on in this chapter.  

Due to the much greater mobility of gas than that of the oil, at high flow rates and high pressure 

differences, the recovery of oil from a field is significantly reduced. This effect is called water or gas 

coning. To avoid it, Inflow Control Devices are installed as an integrated part of the completion 

equipment as already stated in the introduction of this report.  

 

 

Figure 2.7a: Water coning effect observed in an extended reach well. Inikori 2002. Schlumberger 
glossary. 

 

Figure 2.7b is a Three-D view showing the OWC and OGC. The change in the OWC and OGC profile is 

largely as a result of varying draw-down pressures during production. For the purpose of this thesis 

work, the term draw-down is used to infer the difference between the reservoir pressure and the 

bottom hole pressure of the well.  

 

 

Figure 2.7b: Water and gas coning effect observed in an extended reach well. Inikori 2002. 
Schlumberger glossary. 
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2.5 Flow regime investigation through constrictions of ICDs/AICDs  
 

Inflow control devices as already mentioned are developed to prevent water/gas coning in long 

horizontal wells and they have been used with great success in the last 15 years. Pressure drop is a 

major issue and this occurs in the following regions of the completion tool, before hydrocarbons 

actually flow up the production tubing. 

a) In the reservoir 

b) Through the screen 

c) Through the flow conduit 

d) Through the ICD nozzle 

e) Finally in the production tubing 

f) Pressure drop in the lower completion which consists of:  

i) Wash pipe 

ii) Screen packer 

iii) Cross-over valve 

Real-field-data-based evaluation of existing models associated with current commercial ICDs shows 

clearly that the pressure drop through the ICDs is dominated by turbulence and it is established from 

fluid mechanics that turbulent flow is principally controlled by the density of the fluid or fluid 

mixture. This can be evaluated as an advantageous feature since density does not vary nearly as 

much as viscosity during the productive life of a typical NCS reservoir.  

Once again, it becomes necessary to develop an ICD that is independent of reservoir depletion and 

variation in reservoir pressure profile. In other words, an ICD that allows constant flow rate 

regardless of reservoir pressure at a given time. This ICD should be sufficiently robust in design such 

that it also allows very minimal changes in flow rate even with vastly changing viscosity of produced 

hydrocarbon. This can be achieved through a feedback system that is controlled hydraulically, 

mechanically, electrically or otherwise. For the purpose of this thesis, the hydraulics of an 

Autonomous Inflow Control Device is investigated. This serves to optimize the coning prevention 

feature of an ICD no matter what phase of production the reservoir is placed (i.e. ability to prevent 

water/gas coning both during linear and non-linear production phase of reservoir). 
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2.5.1 Inflow control problems associated with extended reach wells. 
 

There exists very high pressure drop in production tubing used in an extended reach well. Basically, 

the toe of the well accounts for the lowest pressure drop and the heel accounts for the highest. Upon 

this premise, the reservoir section close to the heel will produce more liquid hydrocarbons since the 

flow rate is proportional to pressure drop as would be established mathematically later. This will 

then result in the coning of either the water-oil contact from below the tubing or the gas-oil contact 

from above the production tubing. It is seen once again that this coning will definitely occur first at 

the heel at a distant time period before it gets the chance to occur at the toe of the well. The 

inevitable consequences of the above explained scenario includes but are not limited to the 

following. 

a) Coning of water/gas which would subsequently accelerate leading to a drastic reduction in oil 

production from the heel. 

b) Greater challenge for the oil in the toe section of the well to overcome pressure drop in the 

heel due to its significantly less mobility in comparison to the breakthrough fluid. 

c) More problems associated with the disposal of water in terms of time and cost. 

d) Borehole cleaning in this case is generally more challenging and time consuming. 

As a consequence of the second pit fall stated above in line item b), most of the oil near the toe of 

the production tubing can only be produced by drilling new wells for its drainage thereby ramping up 

project capital and operational expenditure. 

Figure 2.8a is a Two-D representation of a coning mechanism in an extended reach well completed 

without an ICD. Figure 2.8b shows a Two-D view of the near-parallelism between the OGC above the 

production tubing and the OWC below. This near-parallelism in practice is only achievable in a well 

completed with a SAS having an integrated ICD technology, and it forms the basis for flow regime 

investigation as seen later-on in this chapter. 
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Figure 2.8a and b: OWC and OGC phenomena in extended reach wells in wells with and without ICD 
in completion design respectively. Aadnøy and Hareland, 2009; Gimre, 2012. SPE.org. 

 

In order to equilibrate drawdown pressure throughout the length of the horizontal tubing, ICDs are 

installed at every connection in the production tubing. These ICDs apply restrictions by a calculated 

percentage, thereby reducing or controlling coning. However, they are limited in that they fail to 

perform during the depletion phase of the reservoir implying that coning could still occur at a later 

phase.  

In the following analysis, we seek to establish turbulence through the ICD nozzle under the 

assumption that the water-oil and gas-oil contact is perfectly parallel to the production tubing. 

 

2.5.2 Hydraulic model for ICDs 
 

Figure 2.9 shown below is a Three-D representation of the integration of the BECH AICD nozzles into 

the body of the completion equipment. 

 

 

Figure 2.9: A typical ICD geometry showing orifices and integration of ICD into the sand screen. 
Aadnøy and Hareland, 2009; Gimre, 2012. SPE.org. 

 

 



 
 

 

Edohamen Patrick Awannegbe 
University of Stavanger, 2014 
 

 

Characterization of flow regime of highly viscous oils using conventional ICD and BECH AICD 

 

20 

 

Figure 2.9 shows how an ICD nozzle is integrated into the body of a typical pre-packed sand screen. 

Oil from the reservoir through an entry point, enters the outside of the screen assembly. It flows 

through the screens into a pathway on the base pipe from where it enters a chamber before going 

through several orifices. It then flows through a number of large holes inside the casing. It is 

important to note that the orifices are actually the ICD which control the flow. 

The hydraulic model here represents the pressure drop from the reservoir through the ICD and into 

the base pipe of the screen. The pressure losses before the hydrocarbon flows up the production 

tubing can be seen in sections as follows. 

a) The outer screen 

b) Conduit below outer screen  

c) The chamber 

d) The orifices 

e) Holes through the casing. 

Analysis of the geometry of the screen does reveal that 11% of the outside surface is the actual flow 

area. The area is therefore calculated to be 12320     for one meter length of screen. 

Inflow velocity when calculated in terms of flow rate is given as: 

a) THE OUSIDE SCREEN. 

 

 (
 

 
)  

 

 
 

 (
   

   
)

            
                

 

If we model pressure drop as laminar flow between 2 plates as defined by Bourgoyne et.al (1986) the 

following is true. 
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Assuming a typical North Sea oil viscosity of 0.5 Poise, the above equation becomes: 

  (   )      (       )          

 

b) CONDUIT BELOW THE SCREEN 

 

Hydraulic radius is given by: 

  (  )  
    

                
 

       

 (       )
                

 

The hydraulic diameter is four times the hydraulic radius of 6.69mm. Laminar pressure drop 

for a circular pipe is given by: 

 

  (   )  
    

  
                     

Assuming that          

  (   )       (
  

   
)          

 

c) THE CHAMBER 

Because the chamber is relatively large, the velocity is small and thus the pressure drop is 

negligible. 

 

d) THE NOZZLES 

We start by assuming fully turbulent flow through the nozzles and using the pressure drop 

across a nozzle from Bourgoyne et.al. 

 

  (  )  
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Nozzle radius for each nozzle is 1.59 mm. The density of the oil is assumed to be 0.75 specific 

gravity. The pressure drop is then given by: 

 

  (   )                      

 

 

e) THE PRODUCTION TUBING 

The pressure drop upstream from the nozzle is considered negligible. 

 

 

Total pressure drop 

Total pressure drop     
 

 
               

  

 
          

Typical values for the parameters in the North Sea are as follows: 

Flow rate,                  

Length of screen,        

This would yield: 

  (   )                   
    

 
          

This illustration is based on a worst case scenario where all 10 nozzles are open which yields a total 

pressure drop of 6.12bar at the nozzles. 
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Pressure drop distribution 

5  Screen → 0.16 % having a flow area of 61600     

Conduit → 0.06 % having a flow area of 2177     

10 nozzles → 99.76 % having a flow area of 20     

Source: Aadnøy and Hareland, 2009; Gimre, 2012. SPE.org. 

Analysis shows that the nozzles are the main controlling point for pressure drops. Since its flow area 

is only 0.03% of the screen area and only 0.9% of the conduit area. 

From the above results, turbulent flow is confirmed on commercial ICDs which is not sensitive to 

variations in viscosity but controlled by density. 

Flow regime evaluation 

The regime of flow is investigated further by using a laminar to turbulent transitional Reynolds 

number of 2320, where in a laminar flow the pressure drop depends on the viscosity of the fluid.  

For Reynolds number higher than 2320, the flow regime is considered turbulent and pressure drop is 

therefore dependent on the fluid density. 
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Therefore, the transitional velocity between laminar and turbulent flow regime is expressed as: 

 

  (
 

   
)  

      (      )

 ( )
 
      (    )

  (
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Assuming an average reservoir temperature between 50 and 100 degrees, water dynamic viscosity is 

           and for light oil            . 

Inserting these values into the above equation yields the following critical velocities. 

For water: 

 (
 

   
)  

         

 ( )
          

For oil: 

 (
 

   
)  

         

 ( )
          

The critical flow rates results obtained from the velocity expression given in equation 2.17 is 

summarized in Table 2.1. 

 

Path Fluid Diameter (m) Critical velocity 
(m/sec) 

Critical Flow rate 
(l/hr.) 

Screen - - - - 

Conduit Water 0.00669 0.17 26.4 

Conduit Light Oil 0.00669 1.74 2.64 

Nozzles Water 0.0032 0.36 0.3 

Nozzles Light Oil 0.0032 3.63 0.03 

Table 2.1: Summary of the critical flow rates for the different sections of the integrated sand screen 
and ICD design. Aadnøy and Hareland, 2009; Gimre, 2012. SPE.org. 
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The flow regimes in the various parts of the ICD is calculated by determining the transitional velocity 

for oil and water and then multiplying by the total flow area to obtain the critical flow rates. For a 

typical North Sea flow rate of 18.9 l/min, only the nozzles yield turbulent flow, the other parts of the 

ICD are evaluated to be at laminar flow. Hence the initial assumption of turbulence (i.e. density 

governed flow) is authentic. 

 

2.5.3 Evaluation of possibility of designing an ICD tool with viscosity controlled flow at 

nozzle 
 

This in concept is achievable with the use of a very long pipe which obviously has very large frictional 

pressure drop that ultimately brings the flow velocity within the laminar domain. 

In this case, pressure drop in a circular pipe is modelled as  

   
      

  
           

Once again, the transitional Reynolds number is give as: 

   
  

 
 
   

 
               

From equation 1 

 ( )  
   

    
          

Critical transitional speed between laminar and turbulent flow is 

  
      

  
          

Table 2.2 shows the pipe length required to achieve certain critical velocities in order to stay within 

laminar flow regime. Equation 2.20 above is used for the pipe length calculation. 
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Field Oil density 

(kg/  ) 

Oil viscosity 

(cP) 

Dynamic 

viscosity (Pas) 

Critical 

velocity 

(m/sec) 

Pipe length 

(m) 

Balder 914 3.0 300      2.38 28 

Draugen 824 0.68 68      0.60 480 

Gulfaks 838 0.40 40      0.35 1400 

Gyda 822 0.28 28      0.25 2800 

Heidrun 922 2.29 229      1.80 48 

Heidrun 882 0.75 75      0.62 422 

Oseberg 850 0.43 43      0.37 1232 

Smorbukk 832 0.14 14      0.12 11667 

Snorre 690 0.42 42      0.44 1061 

Frigg 835 4.83 483      4.19 10 

Troll 900 1.60 160      1.29 95 

Ekofisk 838 0.13 13      0.11 13706 

Eldfisk 842 0.10 10      0.09 21778 

Table 2.2: Summary of the critical flow rates in application to development fields in the NCS. Aadnøy 
and Hareland, 2009; Gimre, 2012. SPE.org. 

 

Results shown in Table 2.2 show that if 1/8” tubes are wrapped around the base pipe, they must be 

very long. More so, if 10 orifices should be replaced by long tubes, the tubes must be wrapped in 

parallel around the base pipe. This is deemed impracticable in the oil fields obtainable in the 

Norwegian Continental Shelf. 

Hence above analysis points to the fact that today’s commercial ICDs are controlled by turbulent flow 

regime and are not sensitive to viscosity. In other words, todays commercial ICDs are not sensitive to 

variations in fluid viscosity, an oil property that is experientially proven to vary a lot as the reservoir 

depletes. This is evaluated to be a desirable feature since there is comparatively insignificant 

variation in reservoir fluid density. 

 



 
 

 

Edohamen Patrick Awannegbe 
University of Stavanger, 2014 
 

 

Characterization of flow regime of highly viscous oils using conventional ICD and BECH AICD 

 

27 

 

2.6 Limitations of today’s commercial ICDs and features of BECH valve 
 

a) They cannot maintain constant flow through the depletion of the field for the following 

reasons. 

i. Flow through ICD depends on pressure drop (i.e. the higher the pressure drop, the 

higher the flow through the nozzle of the ICD) 

ii. Pressure drop is proportional to density and the squared flow rate, both of which 

changes as depletion of reservoir progresses. 

Figure 2.10 below shows the non-linear relationship between flow rate and pressure drop. 

 
Figure 2.10: Presentation of flow rate vs pressure drop relationship with the closure of 1, 5 and 10 

nozzles. Weatherford FloRegTM; Torbergsen, 2010. SPE.org. 
 

Figure 2.11 below shows the operation of a BECH AICD which utilizes a hydraulic feedback principle 

to achieve constant flow rate at all pressures. This technology presents the benefit of moving the oil-

gas and oil-water contacts parallel to the well. Accurate knowledge of the initial distance between 

the fluid contacts and the well trajectory will guarantee maximum recovery. 

 

Figure 2.11: Performance characteristics of the BECH autonomous flow control valve. The horizontal 
axis is the pressure drop from the reservoir to the production tubing. Aadnøy and Hareland, 2009; 

Gimre, 2012. SPE.org. 
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The new valve can be calibrated both for constant flow, increasing flow and decreasing flow as 

shown in the figure above. This therefore implies that for complex reservoirs an optimal design can 

always be found. The new ICD can actually be used as a designer ICD for advanced reservoir 

depletion design. 

 

In summary, the following can be said with a great degree of certainty about ICDs 

a) The outer screen is always in laminar flow. 

b) Nozzles are always in turbulent flow 

c) More than 99% of the total pressure drop occurs at the nozzle. 

d) Pressure drop through the ICD tool is therefore controlled by density of the produced fluid. 

e) Fluid viscosity has negligible effect on pressure drop. 

f) Hypothetical analysis reveals that in order to design a tool where pressure drop is controlled 

by viscosity, the tubes replacing the nozzles must be significantly longer than the screen on 

which the ICD is installed.  

g) Based on data and dimensions used in the North Sea today, it is unrealistic to build a viscosity 

controlled tool. 

h) With the Ryger valve tool, the reservoir engineer can control the flow through the depletion 

resulting in optimal recovery. 

 

2.7 Inflow control devices from a near wellbore perspective 
 

One of the challenges in long horizontal completion is the accrued formation damage and well clean 

up. Another challenge is the heel-toe effect caused by flow friction in the pipe, which leads to gas or 

water coning in the heel and limited drainage from the toe. This ultimately leads to an overall 

reduction in production index of hydrocarbon.  

Implementation of Inflow Control Devices provides a controlled pressure drop which is a function of 

flow rate. It restricts high producing zones and stimulates low producing zones which in effect yield 

the following benefits. 

a) Improved well clean-up, minimizing the effects of formation damage caused by drilling. 

b) Equalizing the flux along the well path, thereby giving reduced possibility for water/gas 

coning. 

c) Reduced annular flow which reduces the risk of sand production behind the screen and 

subsequent plugging or erosion. 
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Traditionally, completion is done by running a liner which is cemented and perforated in a cased hole 

completion strategy. In the case of long horizontal wellbores, this operation becomes complicated 

and expensive. Hence the development of pre-packed sand screen which gives the advantage of 

preventing sand production from unconsolidated sandstone reservoir. However, there still exist 

challenges with the usage of this technology. In order to limit inflow variation due to frictional 

pressure drop along the liner, a technology named variable perforation density was developed. There 

however exists some unpredictability both in the penetration and in the local reservoir conditions 

around the penetration. Inflow control devices integrated in the base pipe of the pre-packed screen 

helps overcome these uncertainties as experiments and experience shows. The implementation of 

the ICD does not only optimize performance but also helps in the efficient removal/transportation of 

drill fluids, solids and mud-cake from a long horizontal well. Hence in the foregoing literature, we 

seek to establish a relationship between completion design, hole clean-up and resulting inflow 

performance. 

 

2.7.1 Typical commercial ICD design 
 

The working principle with current Inflow Control Devices is based upon choke restriction. On the 

upstream side, the choke unit connected to a sand screen made by wrapping wire is wrapped around 

and tack welded to a set of axial rods which circumferences the base pipe as shown below in Figure 

2.12. 

 

 
 

Figure 2.12: Sample of a wire wrapped screen. A triangular shaped wire makes precise slot opening. 
By using tall axial ribs, the flow cross section area is large, thus reducing the pressure drop to a 

minimum. T. Moen, H. Asheim 2008. SPE.org. 
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The screen design is based on the fluid flow through a filtering media and into a drainage layer. The 

drainage layer allows the fluid to flow from the filter media into the perforations in the base pipe or 

into the ICD housing which is normally located at the end of the screen jacket as shown below in 

Figure 2.13. 

 

 
Figure 2.13: A nozzle based ICD screen. The fluid flows in through the wrapping of the screen section, 

along the axial ribs of the drainage layer, into the housing and through the nozzles. T. Moen, H. 
Asheim 2008. SPE.org. 

 
 

A nozzle based ICD screen is show in Figure 2.9. The fluid flows in through the wrapping of the screen 

section, along the axial ribs of the drainage layer, into the housing and through the nozzles. 

In this design, the nozzles are the only flow constrictions in the system. Analyzing the non-Newtonian 

properties of the drilling fluid, the required differential pressure to ensure backflow of the drill fluid 

through the screen is given as: 

 

   
       

 
          

Where: 
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From Equation 2.22, it is clear that geometry plays a key role in the determination of pressure drop. 

To buttress this fact, a nozzle based ICD design is compared with a tube design used as a flow 

constriction design. To obtain same pressure drop through both constriction designs, analysis show 

that the tube diameter should be approximately 50% bigger than that of the nozzle while its length 

should be 100 times longer.  

From the given equation, the required pressure to initiate flow becomes at least 67 times higher for 

the tube according to the following calculation. 

 

{
          (      )

    (      ) 
}   {

        

      
}           

 {
        

 
}   {

      

 
}           

= 67:1 

2.7.2 Heel-to-toe effect and ICD efficiency in well bore cleaning  
 

The heel to toe effect is a result of the frictional pressure drop causing a variable draw-down along 

the well. In the heel of the well, the fluid encounters less resistance when compared to the toe 

because this fraction is also exposed to friction pressure drop along the length of the completion 

interval.  

To calculate this, a well is separated into 10 zones where each zone is assumed to be at radial Darcy 

flow. Effects of relative permeability or variations between vertical and horizontal permeability are 

considered. A filter cake pressure drop is included, where flow rate from this zone is assumed to be 

zero. This then results in higher flow rates through the other zones. 

ICDs based on nozzles are also included in the model. This gives pressure drop proportional to the 

fluid density and the square velocity. The fluid flows into the base pipe and the pressure drop is 

based on the accumulated flow rate from each zone. This is done to capture the heel-toe effect. 

When the drawdown pressure is applied, it is assumed that the filter cake is lifted off in the heel end 

of the well. This leads to a flow and pressure drop across formation nozzles and through the tubing. 

This process continues gradually toward the toe until the drawdown pressure becomes too small to 

lift off the filter cake.  

When a nozzle based ICD completion is used, the tubing pressure becomes lower due to pressure 
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drop through the ICD. Since the pressure drop is a function of flow rate squared, it therefore follows 

that zones with no flow will have zero pressure drop through the nozzles. Because of this, the applied 

differential pressure across the filter cake increases. 

A set of simulation was performed based on data and performance of a North Sea well completed 

with ICD screens. The well was reported to perform much better than similar wells completed with 

screen only. It was also observed that there is an uneven flux in the wells with screen completions, 

more so the toe parts of these wells do not contribute at all to production. 

In the figure below, the violet line indicates filter cake pressure below the formation pressure. As 

long as the tubing pressure is below this line, the clean-up process continues to the next zone. Hence 

the smallest flow rate that still allows for the removal of the filter cake is calculated as     
  

 
 

before the last zone kicks in and increases the flow rate to     
  

 
. 

 

Shown in Figures 2.14 and 2.15 are detailed component pressures obtained during the process of 

hole cleaning. Figure 2.14 illustrates the more efficient hole clean-up achievable when an ICD is 

included in the completion tool as compared to Figure 2.15 where a standard sand screen 

completion is used without the inclusion of an ICD. 

 

                               

Figure 2.14a and b: Pressure profile and accumulated flow rate required for clean-up of an ICD 
completion. The tubing pressure is still below critical pressure before the last section has been 
cleaned up (left). Finally the tubing pressure exceeds the critical filter cake threshold pressure 

indicating that the clean-up process stops. T. Moen, H. Asheim 2008. SPE.org. 
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Figure 2.15a and b: Standard screen completion with pressure profile and flow rate required to clean 
up the whole interval (left). Here well is completed without ICD. T. Moen, H. Asheim 2008. SPE.org. 

 

As seen in Figures 2.15 a) and b) above, the same calculation is done with a standard screen 

completion. It should be noted that the tubing and annular pressures are equal as the screen itself 

does not provide any significant pressure drop. The critical flow rate to clean up the whole well 

before the last zone starts is     
  

 
. With the last zone included, the required flow rate is     

  

 
. 

The drawdown in this case is smaller because the screen has capacity to produce all that comes from 

the first zones. In this case, no production is expected from the toe part, implying that significant 

reserves are left unproduced.  

The facts presented above are indicative of how the added pressure drop across the flowing nozzles 

reduces the tubing pressure and consequently stimulates well clean-up. In the screen only well, a 

much higher flow rate must be used to achieve the same clean-up. In the non-stimulated case the 

flow is nearly 3 times higher than for the stimulated case. It could be a challenge to achieve this 

required high flow rate due to limitations in inflow capacity and drawdown pressure. This therefore 

implies that the risk of improper well clean-up is high when running a screen-only completion in a 

long horizontal well. It is therefore true that the integrated ICD and screen design has a significant 

impact on hole cleaning performance of the drilling fluid design. The risk associated with the 

backflow of the drill fluid is highly dependent on design details of the ICD screen.  

A simplified calculation as shown already indicates that 67 times higher differential pressure is 

required to get a Bingham fluid to start flowing through a tube type ICD than a nozzle type ICD. The 

use of ICD technology is significantly changing the clean-up performance of wells by using a proper 

nozzle setting. This allows for the stimulation of the sections which are difficult to clean up. This 

stimulation serves as an added pressure drop to these sections until they contribute to production 

with a proper flow rate. 
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3 MODELS IN CONTEMPORARY OIL INDUSTRY 
 

 

3.1 Norsk Hydro – Now Statoil 

 

This ICD patent which functions by restriction to reduce flow rate was obtained in the year 1993. It 

features a variable flow area which enables a more uniform inflow and enhanced phase filtering. The 

phase filtering is designed such that the unwanted phase is choked and the flow of oil is facilitated. 

This concept is shown in Figure 3.1a. 

 

 
Figure 3.1a: Three-D model of Inflow control device with variable flow area (Inflow Control Company, 

Tonsberg, Norway 2013). 
 

 

The ICD shown in Figure 3.1a is able to adjust to different reservoir conditions as follows. 

a) Highly viscous oil reservoir with water drive – The water is stopped. 

b) Oil reservoirs with water drive – The water gets stopped at a given draw down in order to 

avoid highway zones of water coning as seen in Figure 3.1 b). 

c) Extra highly viscous oil reservoirs such as the bitumen obtainable in oil sands shallow 

reservoirs – The steam is stopped. 

d) Oil reservoirs with gas cap – The gas is stopped. 
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Figure 3.1b below is an illustration of how coning is prevented using the ICD technology shown in 

Figure 3.1a. 

 
Figure 3.1b: Illustration of water coning in high way zones (Inflow Control Company, Tonesberg, 

Norway 2013). 
 

3.2 Halliburton  
 

Figure 3.2 below shows the mechanism by which hydrocarbon makes an entrance into the nozzle of 

an ICD patented by Halliburton. 

 

Figure 3.2: Picture of Halliburton EquiFlow Autonomous ICD. Halliburton.com. 

The EquiFlow AICD shown in Figure 3.2 works by directing fluids through different flow paths within 

the tool. Higher viscosity oil takes a short, direct path through the tool with lower pressure 

differential as shown in the figure. Water and gas spin at high velocities before flowing through the 

tungsten carbide assembly, creating a large pressure differential. 
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3.3 Schlumberger – Reslink ResFlow 

 

The ICD patent represented graphically in Figure 3.3 below, is called ResFlow which is originally a 

Reslink company patent. The acquisition of Reslink by Schlumberger took place in 2006. The ICD 

nozzles are designed to be around a collar. Flow rate is controlled by plugging a given number of 

nozzles. Like the other commercial ICDs the flow rate in this case also changes as the pressure drop 

varies. 

 

Figure 3.3: Drawing of Schlumberger/Reslink ResFlow ICD integrated into a swell-able packer. 
Schlumberger.com. 

 

3.4 Weatherford patent 

 

Figure 2.4, as shown in Chapter 2 is a Three-D cut view of the Weatherford ICD patent. Variations in 

this patent are discussed further below. 

3.4.1 FlowReg Tool 

This functions very similarly to Reslinks ResFlow tool with a little difference in design. 

3.4.2 US 6,371,210 B1 

This features a variable flow valve consisting of a spring loaded sliding sleeve which presents the 

following operational challenges. 
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3.4.2.1 Control Action. 

The control action which is based on a dynamic pressure across the sleeve is inherently unstable. The 

BECH AICD is based on a static pressure drop, which provides a much more stable solution. 

3.4.2.2 Challenges with sliding sleeve. 

Since the sliding sleeve is subject to friction and also exposed to debris, the sleeve can be locked 

easily. Frictional pressure drop can easily exceed the pressure drop of only 2-3 bars seen in the ICD 

nozzle hence the need for proper design of the sliding sleeve. 

 

3.5 Baker oil tools 

 

The patent shown in Figure 3.4a and b below is called the equalizer ICD. The biggest difference in this 

tool is seen in its flow restriction which utilizes a helical path around the pipe as opposed to a nozzle. 

This helical path provides a long narrow conduit causing pressure drop. However, like the other 

commercial ICDs, it still functions as a mere restriction where flow rate is not constant as pressure 

drop changes. 

 

Figure 3.4a: Baker Hughes equalizer ICD designed with an integrated debris filter for application in 
carbonate formations. Bakerhughes.com. 

 

 

Figure 3.4b: Cut-away view of the equalizer ICD with premium sand screen and path for hydrocarbon 
production. Bakerhughes.com. 
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3.6 Autonomous flow control valve or intelligent ICD 

 

ICDs are always installed in long horizontal wells since experience show that these types of wells are 

prone to water or gas coning which leads to production losses. It becomes necessary to utilize ICDs 

with autonomous control over flow rate as depletion sets in the reservoir yet for the prevention of 

coning at late production times. 

The autonomous ICD is able to maintain constant flow rate throughout the productive life of the 

field, thereby eliminating water or gas coning. This presents the obvious advantage of increased 

recovery. More so, the implementation of this Autonomous ICD creates a high chance for the water 

fronts to enter the tubing over the entire length which then guarantees ultimate recovery. 

Current commercial ICDs are only based upon a restriction principle and can simply be modelled as a 

nozzle. However these commercial ICDs are unable to maintain constant flow. As reservoir pressure 

declines, the flow through the nozzle also declines and due to reliability concerns, the use of pressure 

feedback systems through electronics application is avoided. This then creates a high probability for 

coning to occur at a later production stage. 

 

3.6.1 3 levels of pressure drop in an ERW as postulated by the BECH company model. 
 

a) Reservoir drawdown pressure controls the flow capacity of the well. Weighing into the flow 

capacity of the well includes parameters such as permeability, exposed rock area and fluid 

viscosity as seen in the Darcy flow equation. 

 

   
  

    
  
  
  

 

 

b) The pressure drop along the horizontal production tubing leads to coning at the heel of the 

well where the smallest pressure drops is encountered in a typical North Sea well. There 

exists a laminar flow (i.e. viscosity controlled) at the toe due to the low pressure drop. 

However, toward the heel, the flow is turbulent (i.e. controlled by density). 

It is therefore seen that the plot of flow rate vs pressure drop is non-linear and varies with 

the degree of depletion. 

c) The pressure drop characteristic of the area across the Inflow Control Device – Modelling and 

field data has demonstrated that the nozzle of current ICDs are at turbulent flow which is 
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desirable since density varies very slightly throughout the productive life of the reservoir. 

 

LAMINAR FLOW:       

TURBULENT FLOW:        

Where   = Pressure drop 

Q = Flow rate 

                  

                

In the case of a vertical well, the vertical production tubing is exposed to the following 

pressure drop. 

a) Reservoir laminar flow (viscosity controlled) 

b) Turbulent flow in the ICD nozzle (density controlled) 

c) Laminar/Turbulent flow in the production tubing (both viscosity and density controlled) 

d) Turbulent flow from heel of the well due to minimal pressure drop. 

 

From Darcy’s equation it is seen that high changes in fluid viscosity and changes in toe to heel 

pressure drop can alter the relative flow through the various ICDs. 

 

3.6.2 BECH Company Autonomous Inflow Control Valve 
 

This patent though pending was developed by Prof. Aadnøy of the University of Stavanger to 

overcome the non-linearity of flow regulated/traditional ICDs, which obviously leads to a relative 

flow change between the heel and the toe of the horizontal well. This invention would provide a 

constant flow rate from both toe and hell of the well regardless of pressure variations. The valves in 

this case are set such that the entire reservoir is depleted before water or gas gets the chance to 

breakthrough. The new valve maintains constant flow through a mechanism consisting of a 

spring/loaded membrane with a needle, keeping the simplicity whilst at the same time eliminating 

reliability issue that could arise in the use of complex electronic feedback system. 
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The reservoir pressure is choked through a nozzle which forms the principle element for setting flow 

rate before fluid flows in the production tubing. Hence when reservoir pressure is low, the 

spring/needle will open, maintaining constant flow and likewise when reservoir pressure increases 

(which is unrealistic in nature except in a gas injection operation), the pin closes to maintain a 

constant flow rate as shown in Figures 3.5a, b and c below. 

 

 
Figure 3.5a: Illustration of piston and membrane flow control. Aadnøy and Hareland, 2009; Gimre, 

2012. SPE.org. 

 

 

 

Figure 3.5b: A clearer illustration of the AICD piston/membrane. Aadnøy and Hareland, 2009; Gimre, 
2012. SPE.org. 
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Figure 3.5c: Three-D view of the BECH AICD. Aadnøy and Hareland, 2009; Gimre, 2012. SPE.org. 

 

Figures 3.6a, b and c give a more detailed view of the BECH AICD which illustrates a design of a 

prototype valve. In order to keep impurities from entering the mechanism, the entire piston is oil-

filled and enclosed within two seals. 

 

An interesting feature about the Autonomous Inflow Control Device patented by Prof. Aadnøy apart 

from its ability to shut-off flow when water/gas contacts the orifice is that it provides constant fluid 

flow regardless of variation in pressure. This is achieved by a reservoir pressure controlled piston 

which is set to a pre-determined flow rate. Its percentage stem opening is hydraulically adjusted by 

the varying reservoir pressure to satisfy the pre-set flow rate. 

The functional versatility of ICDs, justifies their inclusion in oil well completion design in terms of 

project economics. This versatility is seen in its multi-operational usage as listed below. 

a) Implemented in extended reach wells, especially in thin pay reservoirs where there exists a 

very small tolerance/window in the oil-water contact and oil-gas contact. In such reservoir 

condition, highly sophisticated drilling technology such as Managed Pressure Drilling is used 

to avoid the intersection of the oil-water contact or oil-gas contact with a rather non-

practical chance for fulfilling the required precision. The satisfaction of this requirement in 

drilling precision is deemed non-practical for the following reasons. 

i. Un-even oil-water and oil-gas contact profile along the reservoir section. 

ii. Bit walk which may not be adequately estimated. 
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iii. Poor understanding of pressure regimes. 

b) Flow control in injection wells. 

c) Hole cleaning. 

d) Matrix acidizing / fracture acidizing. 

e) Included at the various levels of TAML. 

Upper design utilizes a spring loaded membrane to compensate for pressure variation while lower 

design utilizes piston connected to a needle to achieve the same purpose. 

The upper drawing shows a design where the spring-loaded membrane is replaced by a piston with 

seals on both sides of the piston to avoid dirty oil from plugging/restricting the free movement of the 

piston.  

It should be noted that the autonomous valve can be calibrated both for constant flow, increasing 

flow and decreasing flow thereby allowing an optimal design to be reached in a complex reservoir. 

 

2 PARTS:  

1) FLOW ADJUSTMENT PART (conventional ICDs utilize shut nozzles) 

2) PART WHERE CONSTANT FLOW IS SET (compensation part) 

 

The flow first goes into a chamber which has a lower pressure thank the reservoir pressure due to 

the set point restriction. Here a spring loaded membrane or piston connected to a needle is used. 

This accounts for the compensation part. 

Where there is variation in pressure drop in the reservoir or production tubing, the piston moves 

accordingly thereby allowing a constant flow through the piston/nozzle entering the production 

tubing. 

 

FORCE BALANCE BETWEEN THE RESERVOIR AND THE NOZZLE IS GIVEN AS 

 

                                      

Where:                            
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FORCE BALANCE BETWEEN THE CHAMBER AND PRODUCTION TUBING 

                 
  

                                            

                                          

                                      

                 

                                       

                   

                  

                

                  

Combining equation 1 and 2 yields; 

             
  

 ⁄      
  

  √    
⁄  {(            )  

  

 
} 

Spring force    is calibrated to move when the differential pressure is varied. The expression on the 

right hand side of the equation is calibrated such that it is nearly constant. 

Since the pressure is influenced by the density, there is little concern about having a very large 

                which would normally create a scenario that spring cannot compensate for by 

    . This is due to the fact that the density variation in the well is very minimal throughout the 

productive life of the reservoir.  
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3.7 Schlumberger – Simulation of flow control devices with feedback 

control system as applied to oil sands 
 

Factors such as hydraulic gradients in the horizontal completion, geologic and fluid variations in the 

reservoir and placement issues can produce very poor steam performance in Steam Assisted gravity 

Drainage (SAGD). A technique popularly used in oil sand recovery in Western Canada. The use of 

Proportional-Integral-Derivative (PID) feedback coupled with Inflow Control Devices to control steam 

injection can lead to improvements in SAGD. 

The foregoing presents detailed wellbore simulation of a SAGD process in which wells are completed 

with a combination of ICD and PID feedback control. The figure below illustrates the concept in which 

2 closely positioned horizontal wells are placed such that the upper well injects steam and the lower 

well collects reservoir fluids which gets drained by gravity from a constantly evolving steam chamber. 

Interestingly, the actual pattern of SAGD well pairs show irregular steam chamber development 

along the lengths of most of the pars in the pattern as shown in Figures 3.6a, b and c below. 

 

 

Figure 3.6a: An overview of a typical SAGD process. January 2014 edition of the Journal of Petroleum 
Technology. SPE.org. 
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Figure 3.6b and c: An overview of a typical SAGD process. January 2014 edition of the Journal of 
Petroleum Technology. SPE.org. 

 
 

Figures 3.7a, b and c give an overview of a typical SAGD process. Shown are the locations of the well 

pair relative to surface facilities (left), a cross-sectional view of the evolving steam chamber (center), 

and a plan view of a pattern of well pairs demonstrating non-uniform steam-chamber development 

along the well pairs (right). 

 

It is important to prevent the risk of the steam chamber touching the local producer, which would 

then remove hot steam instead of using it more efficiently in the upper reaches of the chamber. This 

is achieved by pre-setting the injection and production rates to maintain a prescribed temperature 

difference between fluids exiting the upper injector and entering the lower producer. This 

temperature difference is also referred to as a sub-cool because it is set to be several degrees below 

a water saturation temperature. This may be controlled at both the heel and the toe of the well pair 

by use of the ability to inject and produce from 2 tubing strings landed at these points. The use of a 

feedback controller to monitor temperatures of produced and injected fluids automatically, with a 

target sub-cool at the heel and toe of the well pair became necessary to set the injection and 

production rates to reflect the current state of the reservoir and current sub-cool.  
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The benefits of targeting the same sub-cool includes but are not limited to: 

a) Prevention of steam from entering the lower producer 

b) Uniform production from both toe and heel halves is facilitated because they both target the 

same sub-cool temperature. 

Regarding the PID controller, 2 separate controllers are used for the heel and toe tubular each with 

an error term incorporated into it. 

 

ICD DESIGN TO CONTROL FLUID CONFORMANCE, SUB-COOL AND UNWANTED WATER/GAS. 

A high temperature ICD design was chosen that combines a sand control screen with a choke, which 

that is designed to give a linear production or injection profile throughout the length of the 

horizontal well bore. These devices are installed in 7 inch base pipe joints each with a length of 46 ft. 

Each joint is equipped with a flow constriction nozzle. Flow across the nozzle produces a Bernoulli 

relation (i.e. pressure drop versus flow rate). 

 

CASE STUDIES. 

4 cases were run which included combinations of dual-string injection with PID control in wells 

equipped with ICDs. The following give a brief description of the cases. 

1st Case – PID injector/ICD producer, was configured with an injector containing dual 3 inch – inner 

diameter tubing strings landed at the heel and toe in which steam –injection rates to heel/toe strings 

were PID controlled with a specified sub-cool target The producer was equipped with ICDs and hence 

contained only a single 6.3 inch -inner diameter tubular with no additional tubing string landed at the 

toe. 

2nd Case – This featured a PID injector and dual string producer. The injector and producer both 

contained dual tubing strings. The injector was PID controlled by a heel/toe sub-cool target. The 

producer produced equally from both heel and toe. 

3rd Case – ICD injector/ICD producer contained both injector and producer fitted with ICDs along their 

entire horizontal length. There was no additional tubing string landed at the toe for this case. 

4th Case – A dual string injector and a dual string producer was a base case in which the injector and 

producer both contained dual tubing strings. Steam injection rates were constant and equally split 

between the heel and toe strings and production was split also between heel and toe. 
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Figure 3.7 shows a graphical representation of the steam efficiency in SAGD 

applications in the 4 different scenarios delineated above 

 

Figure 3.7: Comparison of cumulative steam/oil ratio for 3 SAGD well-pair configurations and the 
base case. January 2014 edition of the Journal of Petroleum Technology. SPE.org. 

 

At 2 years, temperature and gas-saturation profiles are similar between the three cases—PID 

injector/ICD producer, PID injector/dual-string producer, and ICD injector/ICD producer. ICD 

injector/ICD producer displays a slightly greater coolness in the mid-region and lower gas saturations 

although with similar chamber growth near both ends, possibly because injection and production are 

both occurring only at the heel, while the first two cases have injection at both the heel and the toe. 

All are showing a good degree of uniformity along the length of the well pair. By 7 years, the two PID-

injector cases are showing equivalent steam chamber growth along the entire length while the ICD-

injector/ICD-producer case is showing slightly less growth near the toe. Temperatures in the first 

case 

(PID injector/ICD producer) are looking somewhat cooler than those for both the PID-injector/dual-

string-producer and ICD-injector/ICD-producer cases because the PID controller in the former is just 

beginning to hit its sub-cool target at this time (7 years) and the second PID case will achieve this 

shortly after. 

By 12 years, the first two PID cases are showing cooler steam chambers than the ICD-injector/ICD-

producer case because both are achieving their sub-cool targets. The two cases with dual-string 

producers, dual-string injector/dual-string By 12 years, the two PID-controlled injection cases are 

showing comparable low pressures around the well pair, while the ICD injector/ICD producer case is 

showing considerably higher pressures because steam has broken through to the producer and is 

causing higher pressure drops across the ICD nozzles. 
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In summary, the results suggest that a hybrid method of using feedback- (PID-) controlled steam 

injection from dual-tubing strings with a producer equipped with ICDs may have several benefits.  

First, there are reduced capital and operating expenditures because there is one less tubing string in 

the producer. 

Second, an ICD equipped producer provides a more-even inflow, which results in better-controlled 

sub-cool throughout the production cycle.  

Third, later in the production cycle, the ability of the PID-controlled injection to force a specified sub-

cool target appears to keep the steam chamber farther from the producer and improve the 

economics of the process. 
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4 EXPERIMENTAL METHOD 
 

4.1 Presentation of fluid samples used for experimental work 
 

Table 4.1 below is a presentation of the properties of fluids used in this experimental work. As 

indicated in the second column of the table below, all fluids were experimented at a uniform 

temperature of 20   . However, at the end of the flow experiments, the measured temperature of 

the fluids seemed to differ by 1-2   , which has an insignificant impact on the calculations presented 

in later in Chapter 5. 

Table 4.1: Fluid viscosities and densities used in experimental thesis work. 

FLUID TEMPERATURE (  ) DENSITY (      ) VISCOSITY (cP) 

Pure Supreme gear oil 
20W-50 

20 874.5 341 

Pure Mobil gear oil 
426 4W-10 

20 883.53 120 

Pure tap water 20 1000 1 

Pure White Spirit 20 796.44 0.75 – 1.65 

Supreme 20W-50 
mixed with Mobil 4W-
10, tap water and 
white spirit. 

20 879.86 198.8 

Mobil fluid mixed with 
residual tap water and 
white spirit in hose 

20 884.22 117 

Tap water mixed with 
residual dry white 
spirit and Mobil fluid 
in hose 

20 Non-Homogeneous Non-Homogeneous 

Dry white spirit mixed 
with residual tap 
water and Mobil fluid 
in flow line 

20 800.55 1.3 – 4.9 
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Criteria for fluid selection 

Let it be noted that the fluids listed in Table 4.1 were carefully selected to depict typical fluid 

viscosities obtainable in the NCS including its artic regions. 

a) Tap water – Water conditioned to temperature of about 20   was used as the reference 

fluid to perform an initial test run of the experimental rig-up shown in Figure 4.1. It was used 

to investigate the flow properties of a fluid having high density but low viscosity. Data 

obtained from water based experiments formed a basis for drawing comparison and 

correlation with respect to the other fluids that were flow-tested. 

b) White Spirit – The white spirit which features properties of low viscosity and low density was 

used to provide more information on ICD/AICD nozzle flow regime. Once again the 

experiments were done at similar temperature conditions as tap water. Since the flow 

through constriction had been determined to be turbulent so far, the white spirit which 

similarly to tap water has low viscosity was used to confirm the pre-determined flow regime 

in a density driven flow. 

This fluid equally served the purpose of cleansing the system of residues before transiting 

from one fluid to another fluid of different viscosity and density. Its function in this capacity 

was not very efficient as the new fluid upon circulation through entire system showed 

reduced viscosity and slightly higher density.  

As seen in the attached Risk Analysis in Appendix A.1, due-diligence was done by the Institute 

of Petroleum Technology at the University of Stavanger and the experimentalist to avoid 

hazards associated with this fluid. 

c) Mobil 4W-10 – Commonly referred to as Mobil 426 gear oil, it was used for its low density 

but very high viscosity (see Table 5.4). Flow-test of this fluid provided a better understanding 

of the flow regime associated with highly viscous oils such as that obtainable in the arctic 

region of the Norwegian Continental Shelf. It also provided sparse understanding of the 

viscosity limit above which viscous effects become predominantly evident in laminar fluid 

flow. Its use presented very little or no health hazard as it can be compared to the hazard 

level in a typical domestic car garage. 

d) Supreme 20W-50 – As presented in Table 4.1, this fluid which has higher viscosity than the 

Mobil 426 fluid was used in our experimental work to provide a confirmation of the laminar 

flow regime conclusion drawn earlier. Once again, the flow of this gear oil presented very 

little hazard which is comparable to that obtainable in a typical domestic car garage. It was 

observed that our 100 bars rated positive displacement pump did not have the capacity to 
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pump this fluid at its pure state having a viscosity of about 341 centi poise. In order to solve 

this problem, a combination of 70% of the Mobil 426 fluid and 30% of the Supreme gear oil 

which combined for a mix viscosity of 198.8 centi poise was used. Our pump worked 

relatively efficiently with this mixture. 

 

4.2 Description of experimental apparatus 
 

The physical simulator developed for this study can be seen in Figure 4.1. It consists of: 

 

a) A common water faucet and sink; a minimum of 20 liters of fluid was used for flow 

experiments as this allow sufficient hydrostatic head needed for the suction side of our PDP; 

b) A ventilation chamber with an integrated suction unit. This chamber/fume hood will serve 

the purpose of spill protection as well; 

c) A tank, with the following inner dimensions: 

 length of 1260 mm;  

 width of 251 mm;  

 height of 250 mm; 

 thickness of 15 mm; 

 volume of 79,065 Liter; 

d) A bucket with capacity of 1 Liter; 

e) A PDP (with capacity of 100 bars, 4 KW, 3-15 L/min, CAT PUMP model 341); This pump has a 

suction that operates without pressure feeding or gravity feeding; 

f) Hoses to connect everything, with inner diameters varying mainly from 8 (the smaller, 

transparent ones in the figure) to 12 mm (the yellow one, to drain the water to the sink); 

g) Pressure gauges; 

h) Pressure regulators; 

i) Pressure valves, including 2 ball valves, 2 choke valves, a relief valve, a hydraulic feedback 

valve and a bleed line valve; 

j) A conventional ICD; 

k) The AICD developed by Prof. Aadnøy for this study; 

 

The equipment is placed at a height of 93 cm from the floor. The total (external) height of the tank is 
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26 cm, and the nozzles are also 26 cm above the top of the tank. So, in total it is 145 cm. 

The task involves the use of a 100 bar rated pump in pumping fluids with viscosities of 0.5 centi poise 

and higher which are typical viscosities obtainable in the North Sea.  The water from the tap is first 

pumped to the 2 ICDs, through pressure regulators, to set a pre-defined pressure. When it passes 

through the nozzle of the conventional ICD, the flow rate will change with the pressure. When it 

passes through the AICD, the flow rate won’t change. However, the pump pressure has to be ramped 

up to a minimum of 10 bars in order for flow to occur through both valves. 

 
Shown in Figures 4.1a, b, c and d are pictures of the experimental rig-up used for this thesis work. It 

shows a tank enclosed in a fume hood which housing up 20 liters of fluid at a given time. To the 

extreme right of this picture in green color is the PDP used to pump the fluids.  

 

 

Figure 4.1a: Front view of experimental apparatus for fluid throw measurement. 
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Figure 4.1b: View of valve arrangement and PDP – It consists of ball valves, choke valves, bleed valve, 
relief valve and differential pressure feed-back valve. 

 

    

Figure 4.1c: Tank view with fume hood close.         Figure 4.1d: Tank view with fume hood open. 
 

Section 4.3 presents a step-wise procedure that ensures the safe operation of the experimental 

apparatus shown in Figure 4.1. 
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4.3 Experimental procedure 

In this section a comprehensive description of the technical know-how of operating our experimental 

rig-up and taking measurements is presented. 

 

4.3.1 Procedure to start the equipment for initial flow test with water 

 
a) Fully open the tap; 

b) Open the pressure feedback valve; 

c) Open the bleed line; 

d) Open the relief valve; 

e) Close the nozzles valves; 

f) Open the pressure feed-back valve; 

g) Start the pump (in this case by pressing the black button in the rear of the green PDP as 

shown in Figure 4.1b); 

h) Set the desired pump flow rate (if not previously set); 

i) Set the relief valve to the desired pressure (less than 100 bars, because this is the limit of the 

pump); 

j) Adjust the bleed line valve until the desired pump pressure is achieved (the main pressures 

used in this experiment ranged from 2 to 90 bars); 

k) Adjust the nozzles valves according to the desired flow rate; 

l) Check all the adjustments again and make corrections where necessary; 

m) Start making the measurements. 

 

N/B - When working with oil, special considerations should be made as follows: 

 

a) An oil tank, a feed pump, and a return line, should be included, to conduct the oil back to the 

oil tank. The necessary minimum pressure, and the corresponding tank dimensions, must be 

determined. With this feeding system, the pump used for the water would not be necessary.   

b) To reduce the minimum required volume of oil, tilting the tank could be considered, 

provided it maintains the original horizontal position of the nozzles. However, this was not 

necessary in these experiments. 
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Another possibility is simply to use the same pump – firstly connected to the tap – to suck the oil 

from the same tank. It is the easiest way because the return system is automatically created this way.  

But in this case it is important to be careful with some irregularities that may occur with the sucking 

system, like air entering into the hose. This was the selected arrangement for the experiments 

conducted in this study. Thus for testing with all fluids including water, it is a matter of filling the tank 

with a minimum of 20 liters of the desired fluid, and adjusting the pump to suck directly from it. This 

equipment configuration/arrangement also necessitated putting the bleed line in the tank, instead of 

in the sink. 

 

4.3.2 Method for calibration of fluid throws 

 

The filling of a 1 liter bucket shown in Figure 4.2a and b is timed using a stop-clock. This process is 

repeated again and an average value is calculated in order to account for any human error in timing 

and uncontrollable fluid loss into the tank. Calibration for the ICD nozzle is done separately from the 

AICD nozzle. 

               

Figure 4.2a: 1 liter calibration bucket.                         Figure 4.2b: Illustration of calibration process. 
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4.3.3 Method for measurement of fluid throws 
 

The pictures in Figure 4.3 show the measurement tools used for estimating the fluid throws and the 

actual act employed in taking the measurements. 

                                   

Figure 4.3a: Meter rule                                                          Figure 4.3b: Right angled meter rule 

 

                                   

Figure 4.3c and d: Measurement of fluid throws from nozzles. 

 

a) Adjust the pressure on the AICD and ICD in the highest desired level (in this case it was up to 

90 bars), taking note of this pressure in a proper table; 

b) Make adjustments until the same flow rate is achieved through both nozzles; 

c) Orient the right angled meter rule to be in a direction perpendicular to tank thickness and 

ensure it makes contact with the mid-point of the fluid throw. The mid-point is used as our 

reference point because of the spread in fluid that occurs somewhere very close to the end 

of the parabolic throw path. It is observed that the highest percentage by volume fluid 

accumulates at the middle of the fluid spread; 

d) With the use of another meter rule, take measurement of the horizontal distance x between 

the nozzles and the point where the right angle meter rule makes contact with the tank 
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thickness. This coincides with the point where the fluid crosses the top of the tank. Take note 

of this in a proper table; 

e) Repeat the steps above by reducing pump pressure as many times as necessary until final 

throw measurement at 2 bars is obtained.  

 

4.3.4 Procedure to stop experiment 
 

a) Shut the faucet (if working with tap water); 

b) Turn off the pump (in this case by pushing the red button at the right rear end of Figure 4.1b) 

c) Remove the remaining fluid in the tank (the pump can be used to suck the fluid into an 

adequate container); 

d) Leave the bleed line, relief line and pressure feed-back line open; 

e) Shut the choke and ball valves; 

f) Perform thorough clean-up of all equipment/component  

g) Check if everything was done in the most proper and safest manner and make corrections 

where necessary before introducing different fluid into system. 

A Risk Analysis Report is attached in Appendix A. This shows a detailed consideration of the main 

risks for the equipment, environment, and especially for the people using it.  

It includes the following information. 

 

a) The necessary (PPE), like safety glasses, hearing protectors (to protect from the noise of the 

pump), and aprons. 

b) The use of a fume hood to enclose the tank in order to prevent spillage on individuals, 

equipment and floor. 

c) Use of an adjustable suction system (fume hood) which must be placed over the nozzles, to 

protect individuals against possible fumes. 

 

 

 

 



 
 

 

Edohamen Patrick Awannegbe 
University of Stavanger, 2014 
 

 

Characterization of flow regime of highly viscous oils using conventional ICD and BECH AICD 

 

58 

 

4.4 Theoretical premise for calculating flow rates based on experimental 

data of pump pressure and fluid throw 
 

During testing of the Autonomous Flow Device and the comparable ICD, a particular flow 

measurement system was set up.   The fluid stream from the outlet nozzle forms a parabolic shape, 

where the length from the nozzle to the surface (i.e. the fluid throw) is proportional to the flow rate.  

Figure 4.4 below presents a simple drawing used to illustrate this measurement principle.  

 

 

Figure 4.4: Details of the fluid throw components and configuration (AADNØY, B. S. 2012.). 
www.hansenenergy.biz. 

 
 

A nozzle at the bottom of the tank shown will assume an outlet velocity of: 

 

     √            

 

Where   is the discharge coefficient varying from 0.96 to 0.99. The parabolic shape is defined by: 

     ;   
   

 
 

 

Combining these 2 equations gives the final equation for the flow as follows: 

 

    √
 

  
         

 

Hence for a given drop height, the flow velocity or the flow rate is directly proportional to the length 

from the nozzle to the point of impact (i.e. the fluid throw). 
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However, the flow is initially measured by filling jar overtime to a volume of 1 liter and then this flow 

is scaled according to the specific length of the impact given by     .  

 

The above stated linear relationship is described as follows; 
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5 EXPERIMENTAL RESULTS, ANALYSIS AND 

CORRELATIONS  
 

 

5.1 Initial analysis with tap water 
 

In order to verify the claimed theory of our BECH AICD which says constant flow rate through nozzle 

irrespective of pressure variation, tap water was first pumped using our experimental rig-up and the 

following plot was obtained. Experimental data for the plot in Figure 5.1 can be found in Appendix 

A.2 

 

Figure 5.1: Plot showing insignificant BECH AICD flow variation of Tap Water flow rates at different 
pump pressures. Laboratory data is attached in Appendix A.2. 

 

As shown in the Figure above, it was observed that the ICD shows a decrease in flow with dropping 

pressure, whereas the Autonomous Flow Valve (i.e. BECH AICD) shows a nearly constant flow 

regardless of pump pressure. However, it is later shown in figure 5.4 of section 5.2.1 that a 

malfunction of our positive displacement pump creates a non-uniform flow rate through the AICD 

nozzle which resembles the data obtained from the commercial ICD nozzle. Another reason for the 
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non-constant water flow rate through the AICD nozzle is due to the conservative boundary condition 

one of which is the extremely small valve stem opening of 0.3 mm. A small valve opening is more 

conservative than a larger valve opening as far as flow parameters as concerned because it 

represents worst case scenario. By worst case scenario we seek to paint a picture that depicts the 

predominant flow regime as precisely as possible. In other words, when pumping a fluid of known 

viscosity at a given pump rate of revolution and pressure, the flow regime obtained at a very small 

valve opening as observed experimentally would be the same when the valve opening is increased. 

Hence the small valve opening gives a more reliable determination of flow regime. 

 

5.1.1 Flow behavior of fluids with viscosities higher than 1 cP 
 

Dry White Spirit 

Figure 5.2 below shows an excel plot of data obtained during the flow test of the dry white spirit. As 

observed, the near constant flow rate by the BECH AICD irrespective of pump pressure, which forms 

one of the core objectives of this experimental thesis is obeyed. 

 

 

Figure 5.2: Plot showing insignificant BECH AICD flow variation of White Spirit flow rates at different 
pump pressures. Laboratory data is attached in Appendix A.3. 
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Mobil 426 Fluid 

Figure 5.3 below shows an excel plot of data obtained during the flow test of the Mobil 426 gear oil. 

As observed, the near constant flow rate by the BECH AICD irrespective of pump pressure, which 

forms one of the core objectives of this experimental thesis is obeyed. 

 

 

Figure 5.3a: Plots showing insignificant BECH AICD flow variation of Mobil 426 fluid flow rates at 
different pump pressures. Laboratory data is attached in Appendix A.4. 

 

 

Figure 5.3b: Second run performed to account for uncertainties associated with the pumping of 
Mobil 426 Fluid. 
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The flow rate variation for Mobil 426 fluid was investigated at high pressures which is quite different 

from pressure ranges used for the Dry White Spirit and Water. This was due to the fact that at pump 

pressures below 10 bars, there was a high degree of irregularity and uncertainty in flow data 

obtained.  The main non-conformance/irregularity associated with the BECH AICD is the sudden drop 

in flow rate for this highly viscous gear oil at pump pressures below 10 bars. This trend is shown 

clearly in Figure 5.4 below, where a plot for even more viscous gear oil is generated. 

Interestingly, the observed uncertainty can form a deductive basis, which states the following – “At 

reservoir pressures below 10 bars, the nozzles of both ICD and BECH AICD would only function 

adequately with fluids having viscosities much lower than 117 centipoise”.  

The exact critical viscosity value which would authenticate the above hypothesis has not been 

investigated further in this thesis. This is owing to a lack of resources in acquiring fluids with a wide 

range of viscosity properties more so, a minimum of 20 liters of gear oil is required in the tank in 

order to guarantee sufficient hydrostatic head pressure for the suction side of our PDP. 
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Supreme Gear Oil 

Figure 5.4 below shows an excel plot of data obtained during the flow test of the Supreme gear oil. 

As observed, the near constant flow rate by the BECH AICD irrespective of pump pressure, which 

forms one of the core objectives of this experimental thesis is obeyed until a pump pressure of about 

6 bars is attained. 

 

Figure 5.4: Plot showing insignificant AICD variation of Supreme Gear Oil flow rates at different pump 
pressures. Laboratory data is attached in Appendix A.5. 

 

As seen in Figure 5.4, there exists an unacceptable sporadic/haphazard trend in flow rate data below 

10 bars of pump pressure for this fluid which happens to have a viscosity of 198.8 centi poise in its 

mixed state – accounting for the highest fluid viscosity under investigation in this thesis. It is also 

observed that at about 6 bars of pump pressure, the decrease of flow through the AICD and ICD 

escalates (i.e. exhibits a much stepper slope) which again demonstrates the limitations in application 

of the BECH AICD and conventional ICD. 

The following example serves as an illustration of the potential reservoir drainage benefits that can 

be obtained from utilizing the BECH AICD in completion design. The exact economic benefits which 

can potentially be derived from feature have not been further investigated as it lies outside the 

scope of this thesis. 
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Example 5.1 

The following example demonstrates the positive consequences of these near constant flow rate 

characteristic of our BECH AICD. It is based on the assumption that available viscosities in the NCS 

would follow the same trend demonstrated above – i.e. infinitesimal AICD flow rate variation which 

has been experimentally proven using fluid viscosities shown in Table 5.4. 

An Extended Reach Well having length of 3600 meters, an initial inflow rate of 24000 barrels per day 

and recoverable oil volume of     barrels can be analyzed for drainage time as follows. 

The production rate ratios from Figure 5.1 are summarized in the table below. 

Production rates  ICD BECH AICD 

Initial production rate 33 mL/sec 33 mL/sec 

Final production rate 7 mL/sec 30 mL/sec 

Production ratio 7/33 = 0.21212 30/33 = 0.90909 

 
Table 5.1: Summary of production rate ratios. 

 

The obtained ratios can be applied to my Example Problem 5.1 by performing the following 

calculation. 

                                                         

                                                           

 

The above calculation is tabulated as follows: 

Flow rates AICD ICD 

   (    )⁄    (   )    (    )⁄    (   ) 

Initial rate 24000 0 24000 0 

Final rate 21818.16     5090.88     

 
Table 5.2: Presentation of initial and final production rates and corresponding cumulative 

production. 
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Time taken by BECH AICD to drain entire recoverable reserve is calculated as follows: 

   
              

   
                    

Time taken to reach drain entire reservoir OR time taken to attain 21818.16 STB/D is calculated as 

follows: 

  (             ⁄ )

  
 
            

   
          

Where                    

 

Figure 5.5: Reservoir drainage using BECH AICD 

A similar calculation would be performed for the ICD as follows: 
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Time taken to reach 2100 STB/D is calculated as follows: 

  (            ⁄ )

  
 
         

   
            

 

Figure 5.6: Reservoir drainage using conventional ICD 

 

The results obtained from above analysis are summarized in Table 5.3 below. 

Production rates ICD BECH AICD 

Initial production rate 24000 bpd 24000 bpd 

Final production rate 21818.16 bpd 5090.88 bpd 

Time to drain reservoir 22.5 years 12 years 

 
Table 5.3: Presentation of time taken to drain reservoir by conventional ICD and BECH AICD 
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The Autonomous Flow Device (AICD) drains the reservoir at nearly half the time it takes the 

conventional ICD to accomplish the same task. The AICD does this with an improved performance 

due to its constant flow rate at declining reservoir pressure. 

Hence the main drivers for inclusion of the BECH AICD in completion design are summarized as 

follows. 

 Higher production rates and reduced drainage time 

 Largely minimized or delayed water/gas coning 

 Controls flow in injection wells. 

 

5.2 Correlation that shows contrast in flow rates due to different fluid 

densities. 
 

The following analysis provides a mathematical model which relates the flow rates of the fluids 

having varying densities. This is based upon the premise that the different fluids are pumped through 

the nozzles at the same boundary conditions of nozzle exit area for ICD and AICD, pump pressure, 

choke valve percentage opening, relief valve percentage opening and feed-back valve opening. 

 

Laminar Flow 

                 

                           

            

Turbulent Flow 
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The relation in equation 5.3 shows that flow rate would be higher with less fluid density. 

If the same pump pressure of 20 bars is applied in the flow of both oil and water, then the following 

relations is true. 

             
           

          

From equation 5.4 we obtain the following. 

           √
      
    

         

This serves to give an expected contrast in flow rate as oil and water are pumped separately from our 

positive displacement pump. It suggests that oil should have a higher flow rate than water at a given 

pump pressure since both fluids are assumed to be in the turbulent flow regime (i.e. density 

controlled flow) and the oil is of less density.  

In Table 4.1 we have accounted for the mix effect in fluid properties that occur when a particular 

fluid is evacuated from pump and flow lines which is followed by pumping of new fluid. This has the 

capability of introducing an unwanted variable/error while taking measurement of desired 

parameters. Largely, the error owes to the inefficient cleaning and drying procedures implemented in 

this experimental thesis. 
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From Table 4.1, the fluid data are obtained to perform the following calculations. 

 

MOBIL FLUID 426 AND WATER 

                  √
    

      
 

                                 

 

DRY WHITE SPIRIT AND WATER 

                      √
    

      
 

                                    

This serves to give an expected contrast in flow rate as oil and water are pumped separately from our 

positive displacement pump. It suggests that oil should have a higher flow rate than water at a given 

pump pressure since it is assumed to be a turbulent flow regime for both fluids (i.e. density 

controlled flow) and the oil has less density. 

 

5.2.1 Combined plot of flow rates associated with different fluids 
  

Figure 5.7 serves to provide a visual representation of the contrast model put forward in section 5.2 

above. This will pave way for a better comparison of the data obtained from model to the actual 

experimental result. Please note that at the set boundary condition, it was not possible to pump the 

Supreme gear oil mainly due to the high viscosity. 
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Figure 5.7: Combine plot showing different fluid behavior at same flow boundary conditions. Data is 
attached in Appendix A.6. 

 

Taking a ratio of the flow rates of the fluids to that of water at 14 bars of pump pressure helps us to 

verify the accuracy of the above presented model. Through the Autonomous Inflow Control Nozzle 

the flow rate of the less dense dry white spirit exceeds that of the denser tap water by a factor 

of           ⁄      . A similar calculation performed for the Conventional Inflow Control Device 

yields a factor of                ⁄ . These values compare favorably with the model prediction of 

1.118.  However, the similarly less dense Mobil fluid 426 is observed not to conform to the presented 

model as it gives a less flow rate that the denser tap water when pumped at the same initial 

boundary conditions. The factor of comparison in this case is                ⁄ for the AICD and 

              ⁄  for the ICD; both of these factors are much less that the factor of 1.063 predicted 

by the model. We can therefore suggest that there exist a certain critical limit for viscosity, above 

which flow through an ICD or AICD nozzle is governed by viscosity and produces a laminar flow as 

observed with the Mobil fluid 426. Due to limitation in resources in terms of acquisition of multiple 

fluid specimens with varying properties, a plot of fluid viscosities versus flow rates which is 

necessary to clearly define the domain of viscous effect, has not been developed in this thesis 

project. 

 

0

5

10

15

20

25

30

35

40

02468101214

Fl
o

w
 r

at
e 

 (
m

L/
s)

  

Pressure  (bars) 

SIDE BY SIDE COMPARISON OF FLOW RATES OF DIFFERENT 
FLUIDS 

Mobil fluid AICD Mobil fluid ICD Water AICD

Water ICD WHITE SPRIT AICD WHITE SPIRIT ICD



 
 

 

Edohamen Patrick Awannegbe 
University of Stavanger, 2014 
 

 

Characterization of flow regime of highly viscous oils using conventional ICD and BECH AICD 

 

72 

 

5.3 Investigation of flow regime in fluids 
 

In the forgoing analysis we seek to establish a critical flow rate for each of the fluids based on a 

hypothetical transitional Reynolds number of 2300. Upon making comparison with data obtained 

from the laboratory, we would be able to conclusively determine the flow driving parameter of each 

fluid (i.e. either density or viscosity). This analysis is based on same boundary condition for pumping 

the three fluids. 
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         ⁄            
 

 (             ⁄         )           ⁄  

Table 5.4 summarizes the critical flow rates calculated for the different fluids using the transitional 

Reynolds number of 2320. The will be used as a basis for determining the flow regime of the AICD 

and ICD nozzles. 

SUMMARY OF CRITICAL FLOW RATES 

Fluids       
         (    ) 

                 
         123.44 

                
         72.72 

                 
         3.34 

      
         0.55 

 
Table 5.4: Summary of critical flow rates obtained for the different fluids. 
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The critical flow rate shown in Table 5.4 when compared to the plot in Figure 5.7 proves clearly that 

the white spirit and tap water are in the turbulent flow regime while the highly viscous Mobil 426 

fluid is in the laminar regime. The claim about viscous effects on the Mobil 426 fluid is further 

consolidated by comparing the Supreme Gear Oil critical flow rate of 123.44 mL/seconds to the plot 

in Figure 5.4.  

In order to conclusively authenticate the claim about laminar flow regime for Mobil 426 fluid and 

Supreme Gear Oil, we have changed the initial boundary conditions from that used in the figure 

above (i.e. valve stem opening has been changed from 0.3mm to 0.7mm) to allow a higher flow rate 

through the ball valve. The result of this is presented in Figure 5.8 below. 

 

Figure 5.8: Plots of Mobil 426 at less conservative boundary condition. Data is given in Appendix A.7. 

 

The term less conservative implies a larger valve opening of           , which is a less accurate 

representation of the valve opening used downhole during a typical production operation. Generally 

the results obtained with the valve opening of            as presented in the previous sections of 

this chapter gives a more accurate depiction of a practical production scenario. 
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     (         )                  

           ⁄            
 

 (              ⁄         )            ⁄  

Once again, when the critical flow rate of 168.7    ⁄  is compared to the plot in Figure 5.8, it 

sufficiently puts the flow rates obtained at different pressures in the laminar domain. It is therefore 

safe to conclude that the flow of highly viscous Mobil fluid 426 through the ICD/AICD nozzle is 

governed by viscosity. This finding then presents a real problem as a constant flow rate cannot be 

guaranteed by the BECH AICD, since viscosity unlike density varies very significantly throughout the 

productive life of the reservoir. 

 

5.4 Mobil fluid 426 – Bernoulli prediction VERSUS Actual flow rate from 

commercial ICD. 
 

In the following analysis, we will apply the Bernoulli model to the non-Newtonian Mobil 426 fluid to 

predict the flow rates at different pressures and then compare the results with the experimental data 

obtained from the ICD nozzle. This is to establish the extent of conformance of the Mobil 426 fluid 

flow to the turbulent prediction given by the Bernoulli model. Again this is performed on the basis of 

the same boundary conditions. 

Considering the inlet and outlet of the nozzle, the following equation is true. 
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Since the nozzle inlet and outlet are at the same elevation and the velocity in the hose can be 

considered negligible when compared to the outlet velocity in the nozzle, the above equation 

reduces to the following; 

  

 
 
  

 
 

   
 

 
    

 

 
 
  

  
 

  √
     

 
 

This then yields the following; 

       √
          
      

 

And 

     √
        
    

 

Based on the boundary conditions; 

                       

And 

                     

Above equations can be written as follows; 

       √
        

      
 

And 

     √
        

    
 

Taking a ratio of equation 1 and 2 yields the following; 
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 √

        
    

        
      

 √
      
    

 

This then implies the following for 2 data sets of pump pressures; 

    
      

 √
      
    

          

Equation 5.15 authenticates the turbulent relation shown in equation 5.16 

                  

Equation 5.16 implies the following; 

  

   
          

Taking a ratio of 2 independent pump pressures (          ) and assuming an initial pump pressure 

(        ) of 0 bars in both cases, the following is obtained. 

  

             
  

  

         
           

Equation 5.17 holds true because the same boundary condition of pump pressure is applied 

irrespective of fluid properties.  This equation can be re-arranged to make      the subject of the 

formula as follows. 

     √
            

 

       
          

 

Having established the above relationship, we can graphically illustrate the Bernoulli flow rate 

prediction for current commercial ICDs using calculated data set shown in Table 5.5. All flow rate 

calculations are based upon a reference flow rate of 23.45 mL/s obtained experimentally (See 

Appendix A.7) at a pump pressure of 90 bars. 
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SUMMARY OF FLOW RATES PREDICTED BY BERNOULLI MODEL 

Pump pressure (Bars)   (    ) 

90 23.45 

60 20.36 

40 16.62 

20 11.75 

 
Table 5.5: Presentation of flow rates predicted by the Bernoulli model using equation 5.18. 

 

Using equation 5.18, a flow rate of 11.75 mL/Seconds is predicted at 20 bars for Mobil fluid 426 

according to above equation when a reference pump pressure and flow rate of 90 bars and 23.45 

mL/Seconds respectively are used. The statement above is demonstrated as follows; 

     √
              

         
                  

 

The model-predicted flow rate compares favorably to the actual flow rate of 4.96 mL/Seconds 

obtained from experiments giving an insignificant error. Hence we can emphatically conclude that 

the ICD nozzle conforms to Bernoulli Prediction. This implies that the flow rate of the Mobil 426 fluid 

should be turbulent. However, analysis shown in section 5.3 invalidates this claim due to high viscous 

effect thereby putting the fluid in a laminar flow regime. 

Shown in Figures 5.9a and b below are graphical presentation of trend lines used to  accurately 

determine the behavioral tendency of the Bernoulli model (i.e. either linear or quadratic), and also a 

presentation of how the prediction from the Bernoulli model compares with actual experimental 

data. Figure 5.9a presents a graph of the linear trend line while Figure 5.9b shows the polynomial 

trend line which mainly denotes a turbulent trend as seen in its quadratic equation. 
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Figure 5.9a: Overlay of Bernoulli profile (linear trend line) on conventional ICD for Mobil 426 fluid. 
Data is given in Appendix A.7. 

 

The linear trend line matches the Bernoulli prediction almost perfectly at 40 bars of pump pressure 

and below. This is a strong indication that the flow of highly viscous fluid within this pressure range is 

governed by viscosity and as such it is in the laminar regime according to the relation  (    ) 

However, above 40 bars of pump pressure, the linear trend line shows significant disparity from 

Bernoulli expectations. This can potentially lead to the conclusion that the flow should be turbulent 

in this pressure range. 
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Figure 5.9b: Overlay of Bernoulli profile (polynomial trend line) on conventional ICD for Mobil 426 
fluid. Data is given in Appendix A.7. 

 

The plot above shows a strikingly close match between the polynomial trend line and the Bernoulli 

prediction above 40 bars of pump pressure. This conclusively implies that the flow of the Mobil 426 

fluid through the nozzle should be in the turbulent regime (i.e. governed by density) at pump 

pressures above 40 bars. Furthermore the displayed polynomial equation             

                confirms that the square relationship between density and flow rate (    ) is in 

operation. 

However, Laminar flow is observed in laboratory data (see Appendix A.7) when compared to the 

calculated critical flow data in Section 5.3. This non-conformance is primarily owing to the high 

viscous effect of the Mobil 426 fluid. Un-avoidable variables encountered during collection of 

experimental data may have contributed to this non-conformance as well. These variables include 

the poor functioning state of our positive displacement pump which is observed to give pressure 

spikes as opposed to a smooth transition between pressures as observed during manual adjustment 

of ball valve. Furthermore, the poor functioning of our obsolete relief valve accounts for some of the 

non-conformance observed. 

The observed decreasing trend in AICD flow rate below 8 bars of pump pressure, can be brought to 

the barest minimum by an iterative process of adjusting/fine tuning the distance between the inside 

piston and nozzle outlet in our AICD 

y = -0.0013x2 + 0.3945x - 1.5805 

0

5

10

15

20

25

30

0102030405060708090100

Fl
o

w
 r

at
e

 (
m

L/
s)

 

Pressure (bars) 

Nozzle flow at varying pressure. 

AICD ICD

Bernoulli Prediction Poly. (Bernoulli Prediction)



 
 

 

Edohamen Patrick Awannegbe 
University of Stavanger, 2014 
 

 

Characterization of flow regime of highly viscous oils using conventional ICD and BECH AICD 

 

81 

 

6 CONCLUSION 
 

 

6.1 Summary of findings 
 

The ICD was initially developed in the early 1990s when water coning caused early water 

breakthrough in long horizontal wells offshore Norway. Due to the large pressure drop in the long 

horizontal wellbore completion, the production rates were higher at the heel of the well, leading to 

early water production. In addition to cost related to cleaning and disposal of produced water, a 

more severe effect was reduced recovery from the field. The oil at the very end of the well (the toe) 

was not efficiently produced. 

A number of suppliers today offer ICDs for various applications. They present similar features, 

however some differences are seen. To avoid misunderstanding, an ICD can be seen as one or more 

nozzles installed in the production tubing. The main purpose is to restrict flow at given locations, e.g. 

near the heel of a horizontal well. The Bernoulli equation presented in earlier chapters of this thesis 

defines the relationships for nozzle parameters.  

 

AICDs are better in depleted reservoirs as they control water and gas coning and produce the 

reservoir faster. In this thesis work, the applications of both ICDs and AICDs for high-viscosity/highly 

viscous oils have been successfully investigated. Preliminary findings are that with the ICD, viscosity 

plays an important role even at higher drawdown pressures. The AICD is fairly viscosity independent 

for lower pressures. For areas where higher oil viscosities are found, the AICD has potential to reduce 

coning and to deplete the reservoir faster. This experimental study also reveals that provided 

channeling is large enough to minimize viscous pressure drop outside the valve, the AICD is not so 

much affected by viscosity for high viscous fluids. Put simply, AICD valve opens up when reservoir 

pressure decreases. 

The results obtained from the analysis presented in Chapter 5 would validate the conclusions listed 

below. 

 

a) Today’s commercial ICD is largely Darcy dependent implying that when reservoir pressure 

begins to deplete, flow through the ICD nozzle in a proportionate manner decreases as well. 

b) An ICD reduces the Darcy dependence by introducing a choke. This choke is still sensitive to 
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reservoir and wellbore pressure. 

c) Experiments have shown that the BECH AICD does guarantee a near constant flow rate in a 

manner that is Darcy independent for oil viscosities ranging from 1cP to about 198.8 cP. 

Further flow experiments for fluids with viscosities above 198.8cp were not performed due 

to limited capacity of flow equipment used in this thesis project. 

d) Example 5.1 demonstrates the fact that the BECH AICD can indeed drain a reservoir 2 times 

as fast as today’s commercial/conventional ICD. This obviously has positive economic 

implications on project. 

e) Laboratory results shows that density governs flow in ICD and AICD nozzles when fluid with 

viscosities between 1cP and 116 cP are pumped. Above 116cP, viscosity driven 

characteristics are observed in a predominantly laminar flow. The stated broad range 

between 1cP and 116cP of fluid viscosities can be further investigated by flow testing 

multiple fluids with varying viscosities. This will create a more precise understanding of the 

turbulent versus laminar domain in a plot of flow rate versus fluid viscosity. Once again this 

has fallen beyond the scope of this thesis project due to limitations in resources. 

f) Technically speaking, a well can be completed with minimum reservoir knowledge if the 

constant flow valve is used as it is independent on pressure drop variations. 

g) It can be observed that water injection can greatly diminish the problems related to 

depletion. So, in these cases, the BECH AICD may not be so advantageous.  

h) Also, when the reservoir is very thick, and the oil-water or gas-oil contacts are very far, a 

conventional ICD solution can be sufficient, or may not be required at all. Therefore, it is 

always important to analyze the reservoir to be produced before making a decision on ICV 

versus ICD inclusion in completion design. 

 

6.2 Overview of viscous effects 
 

A phenomena known as viscous fingering is usually evident in multi-phased porous media and has an 

overbearing effect on reservoir fracture conductivity, ESP performance, solvent displacement of 

heavy oil and relative permeability especially where there exists an unstable viscosity of reservoir oil 

overtime to mention a few.  

Studies show that in a multi-phased reservoir, the recovery of a much higher fraction of the original 

highly viscous oil in place is attributable to the solution-gas drive mechanism which is very commonly 
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referred to as foamy oil or bubbly oil. However, the mentioned mechanism does not give an 

exhaustive, crystal clear explanation of the reason behind the enhanced oil production in highly 

viscous reservoirs. 

During production of highly viscous oils, excessive fatigue is introduced on beams, gear boxes and 

moving parts in general by imposing unusually high bending loads and torques. This scenario most 

times necessitates the use of exotic quality of material in the robust design of subsea equipment. In 

addition to this, there is a hike in project capital expenditure accrued from the implementation of 

highly sophisticated heating techniques and procedures to make the oil flow, such as seen in the 

SAGD process.  

 

6.2.1 The fingering phenomena 
 

Viscous fingering can be described as the manifestation of a finger-shaped interface between the 

displaced and displacing fluid occurring in a porous media where there exists either miscible or 

immiscible fluids in a mobile state. This effect is traceable to the instability of the viscous fluid being 

displaced by a more mobile fluid. The obvious variable which affects the degree of occurrence of the 

mentioned phenomena includes fluid mobility ratio, displacement velocity, distance of displacement 

and degree of packing of fluid molecules among others. 

 

6.2.2 Theory of viscous coupling 
 

Taking a 2-phased flow investigative approach, the viscous coupling effect or momentum transfer 

occurring in a porous media on a first impression basis, presents itself to be the driving mechanism 

for improved oil mobility in highly viscous oil reservoirs. Further experimental studies and 

subsequent development of capillary models has provided a new insight into the effect of viscosity 

ratio on relative permeability’s and the importance of water lubrication in highly-viscous oil-water 2-

phase flow. 
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6.3 Proposition for future study. 
 

An in-depth experimental study of the aforementioned viscous fingering effect on porous media 

containing both miscible and immiscible fluids should be investigated in a future thesis work. This 

would consolidate on the results provided in this thesis work when performed with the aim of 

highlighting other governing parameters for the fingering effect, the merits and demerits thereof.  

More so, for future work it would be suitable to employ the use of computational simulators to 

validate the experimentally and theoretically (i.e. Bernoulli predictions) obtained results, claims and 

deductions presented throughout the course of this thesis work. 

A more complex experimental study which involves the configuration of a flow channel with 

undulations, to serve as a flow path from nozzle to tank would create an even more profound 

understanding of flow behavior and parameter governing properties in nozzles. This is considered 

true because an undulated flow path depicts more accurately, the way through the horizontal section 

of the well, as we know that no well is perfectly horizontal, and sometimes the geology study may 

suggest a more undulated trajectory, to find the most permeable zones of the reservoir. More so, 

this could be used to study the pressure drops encountered as the hydrocarbon makes its way into 

the production tubing.  

In addition to this, an exhaustive field-data-based analysis of the potential economic benefits/pitfalls 

would further illuminate the grey areas associated with the inclusion of ICDs in completion design.  
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8    APPENDICES 
 

 

A.1 Risk analysis report for laboratory testing 
 

Department (institute/section): Institute of Petroleum Engineering 

 

Date of risk assessment: 9/03/2014 

 

 

Definition of area that is risk assessed (with limitations, premise and simplifications): 

 a) Room: E-351 

b) Activity /lab work: E-351 

 

Risk assessment performed by:  

Edohamen Awannegbe – UiS master thesis student. 

 

 

 

Ricardo Azevedo – UiS visiting professor  

 

 

 

 

 

 

Document information: 

Version: 2 

Valid from date: 01/01/2014 

Approved by/ Signature laboratory manager /Lab engineer:  Dr. Jostein Djuve 

Purpose for RA: To investigate the flow regime and flow rates of highly viscous oils when pumped 

through the nozzles of both a Conventional ICD and Autonomous ICD. 

General description of work: The task involves the use of a 100 bar rated pump in pumping fluids 

with viscosities of 0.5 centipoise and higher (typical viscosities obtainable in the North Sea). The 

experimental set/up comprises of a 100 bar rated pump, Conventional Inflow Control Device, 

Autonomous Inflow Control Device (patented by Prof. Aadnøy), 2 choke valves, 3 ball valves, 1 

pressure feedback valve, 2 pressure gauges (1 calibrated to read 1 bar – 15 bars and the other reads 

1 bar – 150 bars with no calibration below 10 bars), a faucet to supply feed water to the pump, a tank 

to carry pumped fluid and provide housing that enables measurement of fluid throw. 
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Table A.1.1 below shows the chemical hazards connected with the flow experiments performed in 

this thesis project. Also presented are the corresponding risk and safety phrases for each chemical. 

 

LIST OF CHEMICAL CONSTITUENTS OF EXPERIMENTED FLUIDS AND ASSOCIATED 
HAZARDS 

Chemicals used 
 

R - phrases  
 

S - phrases  
 

Should be 
substituted 

MOBILFLUID 426: ZINC 
DITHIOPHOSPHATE, and 
CALCIUM SULFONATE                          

Excessive exposure 
may result in eye, 
skin or respiratory 
irritation. 

Use of safety glasses, aprons, 
gloves. Use of a suction system 
/ exhaust ventilation. Put inside 
a fume hood (laboratory 
ventilation system). Use of Basic 
Rules of Hygiene. 

No. 

WHITE SPIRIT: BENZENE, 
and NAPHTHA 
(PETROLEUM) 
HYDROESULPHURISED 

Excessive exposure 
may result in eye, 
skin or respiratory 
irritation. 

Use of all above. If ventilation is 
insufficient, suitable respiratory 
protection must be provided. 

No. 

20W-50: Mixture of hydro 
treated and hydrocracked 
base oil (petroleum) 

Eye contact, Skin 
contact, Inhalation, 
and Ingestion: like 
above 

Use all above. No. 

Table A.1.1: Identified chemical hazards associated with thesis flow experiments. 
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Table A.1.2 presents the operational risks connected with the flow experiments performed in this 

thesis project. Also presented are the mitigating actions and their completion status. 

 

LIST OF LAB OPERATIONS AND DANGER POSED TO HEALTH, EQUIPMENT AND ENVIRONMENT 

Operations / 
Task 

Risk: 
(What can go 
wrong)? 

Measure  Responsible 
(deadline: as 
soon as 
possible) 

Completion 
status. 

Running the 
operational 
sequence of 
pumping and 
measuring 
fluid throw 

Entire apparatus is 
placed at a height 
of 93 cm from the 
floor inside a fume 
hood but without 
adequate mounting 
to eliminate 
possibility of 
unwanted 
movement and 
tripping. 

Experimental apparatus is 
operated as is. 
Precautionary measure is 
taken by the use of 
adequate personal 
protective equipment to 
prevent injury in case of 
tripping. The equipment is 
maintained in the most 
stable and safe position. 
As an added protection, it 
is operated from a fume 
hood/enclosure. 

Edohamen 
Awannegbe and 
Ricardo Azevedo 

Yes 

Running the 
operational 
sequence of 
pumping and 
measuring 
fluid throw 

Tripping of the 
equipment could 
lead to physical 
injury of 
experimentalist. 

Experimental apparatus is 
operated as is. 
Precautionary measure is 
taken by the use of 
adequate personal 
protective equipment to 
prevent injury in case of 
tripping. As an added 
protection, it is operated 
from a fume 
hood/enclosure 

Edohamen 
Awannegbe and 
Ricardo Azevedo 

Yes 
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Undesired 
nearness of 
pressurized 
equipment to 
experimentali
st. 

There was the 
possibility of the 
fluid to spill to the 
floor below OR on 
the experimentalist 
while taking throw 
measurements. 
This is due to the 
fact that 
measurement of 
fluid throw requires 
that the 
experimentalist 
gets positioned 
very close to the 
throw. 

Proper use of personal 
protective equipment 
such as safety glasses, and 
coverall. Taking extra 
precaution to avoid 
walking on floor with 
spilled fluid. Placement of 
experimental apparatus in 
the fume hood mitigates 
this problem as well. 

Edohamen 
Awannegbe and 
Ricardo Azevedo 

Yes 

Operation of 
highly 
sensitive 
pump. 

There is the 
possibility of the 
relief valve to fail 
and subsequently 
give a huge 
pressure surge 
while bleed line is 
been closed. This 
can cause 
irreparable damage 
to the pump and 
equipment. 

Procurement of a new 
relief valve that functions 
precisely to desired 
pressure setting with near 
zero percentage of error. 
A different but also pre-
used relief valve was 
used, and the pressure 
regulation became better. 

UiS - Institute of 
Petroleum 
Technology. 

No 

Failure of 10 
bar rated 
relief valve. 

This could 
potentially occur as 
pump is rated at 
100 bars. The 
immediate 
consequence of a 
surge in pressure 
during low pressure 
pumping is the 
failure of the ball 
valve. 

Procurement of a relief 
valve with pressure rating 
of 100 bars or more. A 
different but pre-used 
relief valve was used and 
the pressure regulation 
became better. 

UiS - Institute of 
Petroleum 
Technology. 

No 

Over-
pressure of 
pump. 

This can lead to 
breakage of hoses 
and flow lines. 

Hose thickness design and 
material selection should 
adequately withstand 
over-pressure from pump. 
And now the relief valve is 
limiting the pressure 
under the safe limits. 

UiS - Institute of 
Petroleum 
Technology. 

Yes 
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Uncontrollabl
e spread of 
fluid at 
approximatel
y half way 
through the 
parabolic 
path of the 
throw. 

This could 
potentially form a 
basis for slip hazard 
as spillage gets 
collected on the 
floor. This is an 
issue since the 
distance from the 
flow to the floor is 
only 1.30 meters. 

Proper use of personal 
protective equipment 
such as safety glasses, and 
coverall. Taking extra 
precaution to avoid 
walking on floor with 
spilled fluid. Placement of 
experimental apparatus in 
the fume hood mitigated 
this problem as well. 

Edohamen 
Awannegbe and 
Ricardo Azevedo 

Yes 

Uncontrollabl
e spread of 
fluid at 
approximatel
y half way 
through the 
parabolic 
path of the 
throw. 

This would also 
cause reaction once 
in contact with 
human skin. 

Use of coveralls and face 
mask when taking 
measurement of fluid 
throw, if necessary. But 
placement of 
experimental apparatus in 
the fume hood mitigated 
this problem as well. 

Edohamen 
Awannegbe and 
Ricardo Azevedo 

Yes 

Fumes 
generated 
during 
pumping of 
oil. 

In a case of non-
activation of 
suction system due 
to negligence or 
outright suction 
system failure, 
inhaled fumes can 
have detrimental 
effect on 
respiratory system. 

Use of respirators and 
proper ventilation. 
Placement of 
experimental apparatus in 
the fume hood mitigated 
this problem as well. 

Edohamen 
Awannegbe and 
Ricardo 
Azevedo/ UiS - 
Institute of 
Petroleum 
Technology. 

Yes 
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Poor 
ergonomics 
in taking fluid 
throw 
measuremen
ts. 

The height where 
equipment is 
positioned 
necessitates an 
awkward posture of 
the experimentalist 
while taking 
measurements of 
fluid throw. This is 
based on the 
position/orientatio
n of the arms 
(discomforting 
raising) and neck 
(abnormal bending) 
during such 
measurements. 
Experientially, this 
causes a lot of 
strain on the 
human body and as 
such can hamper 
efficiency in long 
duration test runs. 

Taking breaks in between 
measurement. 

Edohamen 
Awannegbe and 
Ricardo Azevedo 

Yes 

Repeated 
test 
operation 

This can cause 
fatigue on human 
body and thus 
hamper accuracy of 
measurements. 

Taking breaks in between 
measurement. 

Edohamen 
Awannegbe and 
Ricardo Azevedo 

Yes 

Inadequate 
cleaning of 
equipment’s 
(i.e. pumps, 
hoses, tank, 
area 
surrounding 
experimental 
set-up) while 
transiting 
from one 
fluid to 
another 
having 
different 
properties.  

Use of table paper 
towel proves to be 
inefficient in 
cleaning oil spill. 

Placement of 
experimental apparatus in 
the fume hood mitigated 
this problem as well. 
Anyway, a red bin will be 
available, to put the 
waste, if any cleaning is 
necessary. 

UiS - Institute of 
Petroleum 
Technology. 

Yes 
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Use of 
compressed 
air to blow 
hoses before 
pumping 
another fluid. 

Non-precise fitting 
of compressed air 
unit into hoses. 

It is not being used, so 
there is no risk.  

UiS - Institute of 
Petroleum 
Technology. 

No 

Noise from 
pump 

It is observed that 
up to 20 DB of 
noise occurs while 
pumping the highly 
viscous Mobil 426 
fluid. 

Use of hearing protection, 
when necessary. But the 
pump was lubricated, 
which reduced the noise 
considerably. 

Edohamen 
Awannegbe and 
Ricardo 
Azevedo. 

Yes. 

 

Table A.1.2: Summary of operational hazards encountered during flow experiments. Listed also is a 
set of action items that can potentially prevent the occurrence of these hazards, the responsible 

parties and completion status of each line item. 
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A.2 Experimental data for Tap Water. 
 

 

 

 

Table A.2: Laboratory data obtained during the calibration and flow testing of Tap Water at room 

temperature. 
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A.3 Experimental data for Dry White Spirit 
 

 

 

 

Table A.3: Laboratory data obtained during the calibration and flow testing of Dry White Spirit at 

room temperature. 
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A.4 Experimental data for Mobil 426 Fluid 4W-10 
 

 

 

 

 

 

Table A.3: Laboratory data obtained during the calibration and flow testing of Mobil 426 Fluid at 

room temperature. 
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A.5 Experimental data for Supreme Gear Oil 20W-50 
 

 

 

 

Table A.4: Laboratory data obtained during the calibration and flow testing of Supreme Gear Oil at 

room temperature. 
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A.6 Experimental flow rate data for the fixed boundary condition 

 

Table A.6: Laboratory data obtained using fixed conservative boundary conditions for the flow 

experiment of Tap Water, Dry White Spirit and Mobil 426 Fluid. 
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A.7 Experimental data for less conservative plot of Mobil 426 flow rate 
 

 

 

 

Table A.7: Laboratory data obtained using less conservative boundary conditions for the flow 

experiment of Mobil 426 Fluid. 
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A.8 Typical NCS fluid viscosities 
 

 

Table A.8: Typical viscosities prevalent in the NCS. Recent Advances in Improved Oil Recovery 

Methods for North Sea Sandstone Reservoirs. SPOR Monograph, 1992. 


