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PREFACE 
After reading about the topics of this year thesis I made my decision writing about gas 

hydrates. During my bachelor thesis mu interests in gas hydrates and laboratory work were 

improved.  

 

The content presented in this thesis is inspired by two papers written by Remi-Erempagano 

Meindinyo: “Hydrate growth estimation from heat transfer – experimental result analysis” and 

“Heat transfer during hydrate formation – an investigation on the effect of hydrate content on 

the heat transfer coefficient of gas hydrate slurry”. It should be noted that Meindinyo`s paper 

are based upon a former thesis by Nordbø; “Hydrate growth kinetics: A study on the relation 

between energy release rates and gas consumption rates during methane hydrate formation 

and growth” is the former papers based on. 

 

I am so grateful for my supervisor Prof. Thor Martin Svartås, who has been very helpful, and 

advised me. I will also give a big thanks to my co-supervisor Prof. Runar Bøe, who has 

helped me with the analysis on Matlab, and understand heat transfer in a better manner. Ph.D 

student Remi Meindinyo helped and assists me at the laboratory and my thesis in general, I 

am so grateful.  

 

In the end I will give thanks to the staff at the hydrate laboratory, the library staff and my 

family.  
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ABBREVIATION 
conc. = concentration 

EO = Ethylene Oxide 

HCS = Heating and cooling sequence 

HTC = Heat transfer coefficient 

LDHI = Low dosage hydrate inhibitor 

mole % = Mole percent  

Re = Reynolds number 

sI = Structure I 

sII = Structure II 

sH = Structure H 

SHS = Stable hydrate structure 

Teq = Equilibrium melting temperature  

THF = Tetrahydrofuran 

vs = versus 

 

  

 3 



NOMENCLATURE 

Symbols: 
A = matrix A 

A = surface area [m2] 

α = thermal diffusivity [m2/s] 

Bi = Biot`s number [-] 

C = the concentration [mole/L] or [%] 

C = the cell interior [-] 

cp = specific heat capacity at constant pressure [J/kg K] 

δ = thickness [m] 

Δh = the heat formation per unit mass [J/mole] 

fi = the fugacity of component i in the bulk phase [Pa] 

Fo = Fourier`s number [-] 

h = the overall heat transfer coefficient [W/m2K] 

K = k = mass transfer coefficient through the film around the particle [m/s] 

λ = thermal conductivity [W/m K] 

m = mass [kg] 

n = number of moles [mole] 

N = number of moles of gas (air) [mole] 

Q = q = heat flow [W/m2] 

r = inner cell radius [m] 

R = outer cell radius [m] 

ρ = density [kg/m3] 

T = matrix T  

T = temperature [K] 

t = time [s] 

t = time of hydrate formation [s] 

v = the linear growth rate [1/s] 

xb = the molefraction [-] 

x= xh = the x – position at the hydrate- film front [-] 

X = temperature equivalent for heat generation [K] 

Y = matrix Y 

Sub – script: 
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conv. = convection 

d = through hydrate film around the particle 

f = hydrate film 

g = gas 

g-1 = gas – liquid interface 

h = H = hydrate 

I = inner boundary 

i = interior 

int = bulk – liquid interface 

L = liquid film 

n = outer border or wall 

n – 1 = second last node 

o = initial condition 

O = outer boundary 

p = particle 

r = rate constant 

w = water 

∞ = the bulk/fluid near the wall 

1n = first node 

2n = second node 

 

Super – script: 

b = bulk phase 

eq = equilibrium in the liquid phase 

p = current time step 

p +1 = future time step 

p -1 = previous time step 

*= hydrate growth constant 
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ABSTRACT 
It is believed that heat transfer plays a major role in hydrate formation, and is also dependent 

on the hydrate concentration. Heat transfer during hydrate growth is an important process, 

which deserves a great depth of study.  

 

The aim of this present work is to analyze the heat transfer properties of hydrate – water 

suspensions/slurries as function of hydrate concentration in the slurry. Ethylene oxide (EO) 

and tetrahydrofuran (THF) was used as hydrate formers. Both of these components are 

completely soluble in water and the amount of hydrates formed was controlled by the given 

stoichiometric concentration of EO or THF added to the water prior to hydrate formation. 

Heat transfer properties of the EO and THF hydrate suspensions were measured in the 

temperature region between 1 and 4 °C. 

 

The analytical model and program used, is based on the former studies of Meindinyo. The 

program can be used to predict and validate the heat transfer coefficient of the aqueous 

phase/solution present in the cell interior through temperature responses during controlled 

heating and cooling cycles.  

 

The stability of the hydrates during the test was dependent on the hydrate equilibrium 

properties of the system at the given concentration of EO and THF in the water phase. For 

concentrations less than 40 % of stoichiometric concentration the THF and EO hydrates 

dissociated during the test sequence between 1 and 4 °C. The heat transfer coefficient of 

hydrate suspension (hI) showed a general dependence on amount of hydrate in slurry. hI 

decreased with an increase in amount of hydrate in hydrate suspension. Analysis was also 

carried the effects of stirring rate, and cell volume on the heat transfer behavior.  
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1 INTRODUCTION 

1.1 Natural gas hydrates – historical review 

In 1778 Joseph Priestly (Priestly & Pearson, 1790) observed that  “Ice was formed at 

temperatures above 0°C by water in presence of SO2”. Without knowing the “ice” was 

hydrate, Priestly described the formation of hydrates for the first time in history.  

 

Research on gas hydrates can be divided into three different eras. (E. Dendy Sloan & Koh, 

2008) 

 

The first era: Gas hydrates formed by use of chlorine and water were discovered by 

Humphrey Davy in 1810 (Davy, 1811). Following his discovery, in the time period 1810 – 

1925 several forming gas hydrates components were identified, and gas hydrates remained of 

academic interest until 1934. (E. Dendy Sloan & Koh, 2008) 

 

In 1896 Villard was the first to use heat of formation data to obtain a gas/water ratio and to 

determine the hydration number. (Villard, 1896) 

 

The second era started when Hammeschmidt (Hammerschmidt, 1934) discovered in 1934 

that ice caused plugged natural gas pipelines. As a result of this discovery, the oil and gas 

industry recognized hydrates as a gas transportation problem. In 1946 Deaton and Frost 

(Deaton & Frost, 1946) proposed a hydrate prevention method based on experimental and 

simulated results observed from formation of hydrates of both pure and heavy mixtures of 

methane, ethane and propane.  

 

Katz and other scientists developed methods to predict hydrate formation temperature and 

pressure by use of “gas gravity” charts (Wilcox, Katz, & Carson, 1941). Along with “gas 

gravity” charts, the understanding of the science of hydrate formation advanced as Van der 

Waals and Platteeuw in 1959 described hydrate formation conditions through a model 

combining statistical and classical thermodynamics (Van der Waals & Platteeuw, 1959). 

However, it was not until 1972 that this model could be practically used due to lack of 

solution methods, for use in computer programs. Parrish & Prausnitz (Parrish & Prausnitz, 

1972) developed a numerical solution method that could be used in computer software.   
1 

 
 
 



 

The third era began in 1960 when Makogon et al. (Y. F. Makogon, 1965) reported finding 

gas hydrates formed in Siberia. This period is still highly relevant today because it has been 

discovered that natural gas hydrates exist in permafrost and sediments, below the sea floor.(E. 

Dendy Sloan & Koh, 2008) Thus, in the 21st century logging and coring tools for recording 

gas hydrates in permafrost regions and oceanic locations have been developed. (Trèhu et al., 

2006) 

  

Introduction to “cold flow” took place in 2004 when Camargo et al. and BP/SINTEF 

demonstrated prevention of hydrate plugging in pipelines, without the use of any chemical 

additives, producing dry hydrate that could be transported as small particles dissolved in the 

liquid hydrocarbon phase along the line. (Camargo & Goncalves, 2004; E. Dendy Sloan & 

Koh, 2008) 

 

There are different proposals on how to classify the chemical nature of guest molecules. One 

proposal on classifications was written by Jeffrey and McMullan in 1967. They proposed that 

the guest molecules of hydrates must lie within four groups, where the third group is “water 

soluble polar compounds” where miscible aqueous solutions of Ethylene oxide (EO) and 

Tetrahydrofuran (THF) belong. (McMullan & Jeffrey, 1965) 

 

In the 1970s it was first discovered by Kuliev how surfactants prevent hydrate formation in a 

well. It was, however, not until the 1980s further work was done on Low Dosage Hydrate 

Inhibitors (LDHIs). (Kelland, 2006) 

 

1.2 Background 

Offshore producing oil and gas fields can be connected with subsea satellite wells for first 

stage processing before further transport of separated gas and oil through pipelines and then 

tankers. Between the satellite wells and the offshore production platform (or an onshore 

processing unit) the fluids in a minimum processed (or unprocessed) state are transported 

through pipelines for further processing. The water associated with oil and gas transport may 

convert into hydrate and has the potential of creating a hydrate plug if the fluid temperature 

enters the hydrate region. If the conditions are kept inside of the hydrate stability zone, a 
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hydrate plug may form and fill the entire cross-sectional area of the pipe, and the pipeline 

becomes blocked. The design of multiphase transmission system, which would prevent 

hydrate blockage, requires knowledge of heat and mass transfer of hydrate formation. (Creek, 

Douglas, & Subramanian, 2011; Dorstewitz & Mewes, 1993; Mork & Gudmundsson, 2001)  

 

Hydrates can be formed in marine sediments when methane, either from biogenic or 

thermogenic sources, comes into contact with water (Kvenvolden & Claypool, 1985).Malone 

(Malone, 1985) suggests there are four types of hydrate consolidations; disseminated, nodular, 

layered and massive. For production of the methane and hydrocarbons from hydrate-bearing 

sediments, the use of thermal simulation techniques may be one of the options. Thermal 

properties are central for optimization of such techniques (Hovland & Gudmestad, 2001; 

Pooladi-Darvish, 2004). Enthalpy data provide correct evaluation of the recovery of hydrates 

found in natural deposits. (Lesist, Murray, Post, & Davidson, 1982)There are no 

comprehensive studies in hydrate-bearing sediments (Waite, Gilbert, Winters, & Mason, 

2005). Dissociation of hydrates by pressure reduction or by injection of antifreeze (ice 

dissolver), like methanol, may be other methods to stimulate gas production from hydrates. 

(Kelland, 2009; E. D.  Sloan, Koh, & Sum, 2011; Sloan Jr, 2000) 

 

It is believed that gas hydrate growth is controlled by three main mechanisms(E. Dendy Sloan 

& Koh, 2008): 

1. Intrinsic growth kinetics (Englezos, Kalogerakis, Dholabhai, & Bishnoi, 1987a, 

1987b) 

2. Mass transfer limited kinetics (Skovborg & Rasmussen, 1994) 

3. Heat transfer limited kinetics (Uchida, Ebinuma, Kawabata, & Narita, 1999a) 

 

The above mechanisms are probably interconnected, but during measurements one individual 

mechanism can appear as dominant dependent on equipment and process conditions. The 

growth rate, described through the two former models, is a function of reaction rate (intrinsic 

kinetic model), mass transfer (both models) and a driving force in the form of fugacity or 

concentration gradients in the system. The latter mechanism is a function of heat transfer 

coefficient and a driving force in form of a temperature gradient only.  
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In recent time it has been suggested that during hydrate growth intrinsic kinetics plays a less 

dominant role than mass and heat transfer. It is also believed that the melting process is 

dominant by heat transfer. However, the melting process can be affected by both mass 

transfer and internal kinetics and as a result it is uncertain which physical process is more 

dominant in determining hydrate growth. (E. Dendy Sloan & Koh, 2008) 

 

The formation of hydrates is an exothermic process and thus hydrate growth is followed by 

energy release. The energy release at onset of hydrate formation in the experimental setup is 

reflected through a sudden temperature increase within the cell.(Abay & Svartaas, 2010; 

Abay, Svartaas, & Ke, 2011) Presumably the driving force will be affected by temperature 

changes in the cell. Therefore, it is reasonable to assume that the measured growth rate of 

hydrates, during cell experiments, is a function of both mass and heat transfer rates, though 

the overall growth process may be limited by the mass transfer rate.  

 

In 2012 the hydrate group from the Department of petroleum engineering at the University of 

Stavanger, conducted cell experiments in an effort to investigate how hydrate growth and heat 

release are connected. The results of these experiments were used to help model the formation 

and growth process of gas hydrates through energy balance. The modelling was a part of a 

PhD study by Remi-Erempagano Meindinyo, commencing fall 2012. The first description 

established as a simple model using heat balance based on the heat fluxes occurring in the cell 

during hydrate formation. This model was tested experimentally during a MSc thesis work at 

UiS in 2013 (Nordboe, 2013). In the model the energy influx is related to the amount of 

hydrates formed and its heat of formation, while the energy outflow is related to temperature 

differences between the cell interior and the cooling water on the outside.  

 

Therese Nordbø (Nordboe, 2013) measured the gas consumption and simultaneous 

temperature fluctuations in a cell during growth of methane hydrate. She utilized the model to 

simulate the cell temperature during growth and observed an overestimation between the 

model and the measurements, where the heat transfer properties and the coefficients would 

likely be not matching. It was concluded there was a discrepancy between the simulations and 

the measurements, caused by variations in the boundary layers affected, in all probability, by 

the formed hydrates. 
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Meindinyo et al. (Meindinyo, Svartaas, & Boe, 2014a) measured heat transfer properties of 

slurries containing different amounts of methane hydrate. A relation between the amount of 

hydrate in the slurry and heat transfer was demonstrated. Another study by Meindinyo et al. 

(Meindinyo, Svartaas, Nordbø, & Boe, 2014b) based on Nordbø`s data tuned the heat transfer 

coefficients during hydrate formation and obtained a better fit between measured and 

simulated temperature response. Decay in heat transfer as a function of increasing 

concentration of hydrates in the resulting water slurry, was suggested. 

 

1.3 Definition of the thesis 

It was proposed to improve the analytical (simulated) model by examining the effects of an 

increasing hydrate mass on heat transfer properties during hydrate growth. In the 

measurements done by Meindinyo et al.(Meindinyo et al., 2014a) the amount of methane 

hydrate present was difficult to control, and repeating such measurements by use of THF 

hydrate (structure II (sII)) and EO hydrate (structure I (sI)) was proposed. Both THF and EO, 

are completely miscible with water (aqueous phase). By adding the given amount of THF or 

EO to the water, the amount of hydrates can be controlled, controlling the fraction of water 

that can be converted into hydrates. The effects of hydrate concentration on heat transfer 

properties could be measured starting at the stoichiometric concentration of THF/EO in water 

solution, where the total amount of hydrates are formed, and reducing the concentration in 

steps down to a minimum level. (Ashworth, Johnson, & Lai, 1984; Glew & Rath, 1965; 

Larsen, Knight, & Sloan, 1998; Mak & McMullan, 1965; T. Y. Makogon, Larsen, Knight, & 

Sloan Jr., 1996; McMullan & Jeffrey, 1965; Ross & Andersson, 1982) 

 

The purpose of the present MSc thesis is to measure heat transfer properties of hydrate 

slurries suspensions concentrations of gas hydrates using miscible solutions of THF and EO. 

The aim in general is to collect data required for improving the analytical model described by 

Meindinyo`s PhD study (Meindinyo et al., 2014b).  

 

1.4 Terminology 

In this present thesis different terms have been used on the parameter: “Amount of hydrates”, 

and “estimated heat transfer coefficient (HTC)”. These are explained below: 
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1.4.1 Amount of hydrate 

When using the term “% stoichiometric concentration of THF/EO” it is referred to “% amount 

of THF/EO hydrate”, “% THF/EO” and/or “% content of THF/EO”. 

 

The relationship between THF and water is: 1:17 molecules in stoichiometric mixture. 1 

molecule of THF and 17 molecules of water corresponds with one hundred percent 

conversion of water into hydrate.(T. Y. Makogon et al., 1996) 

 

The same principle is the same regarding 100% stoichiometric EO solution; where the 

relationship between EO and water is: 3:23 molecules.(Larsen et al., 1998) 

 

1.4.2 Heat transfer coefficient 

When using the term “estimated HTC” it is referred to the “inner heat transfer coefficient 

(hI)”.  
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2 Theoretical background 

2.1 Natural gas hydrate crystal – Hydrate formers and structures 

2.1.1 Hydrate structures 

Natural gas hydrates have an ice-like structure composed of water and gas molecules. In the 

gas hydrate structure guest molecules (gas) are entrapped in lattice cages/cavities formed the 

water cavities (host), and when the required fraction of cavities is filled with gas the hydrate is 

stable. Compared to ice, hydrates may form at temperature above 0°C dependent on guest 

type and pressure. (E. Dendy Sloan & Koh, 2008)  

 

The physical conditions necessary for hydrate formation to form are: a hydrate guest 

molecule, free water and correct pressure-temperature conditions. Without any of these 

mentioned conditions, hydrates will not form. (E. Dendy Sloan & Koh, 2008) 

 

Hydrate cavities are also called unit cells (i.e. the building blocks of the hydrate), formed by 

hydrogen-bonded water molecules composed of polyhedral There are different sizes of 

cavities (sI, sII, or sH). The guest molecule can be classified through physical/chemical 

properties and shape determining the hydrate structured formed.  (E. Dendy Sloan & Koh, 

2008) Occupation of all the large cages in a hydrate it is concluded that the hydrate structure 

is stable. For sI (EO) it requires minimum of 6 guest molecules.(Dyadin, Bondaryuk, & 

Zhurko, 1991)  

 

A hydrate system presenting EO or THF will have the hydrate structure I or II, respectively. 

(Larsen et al., 1998)  

 

Illustration of both shape and geometry of the different structures are illustrated in Figure 1 

and Table 1, respectively.  
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Figure 1: Figure 1: Hydrate crystal unit structure: (a) sI(McMullan & Jeffrey, 1965) , (b) sII(Mak & 

McMullan, 1965) ,  and (c) sH(E. Dendy Sloan & Koh, 2008). 

 
Table 1: The geometry of cages in sI, sII and sH hydrates (E. Dendy Sloan & Koh, 2008) 
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2.1.2 Hydrate forming liquids and gases 

Over 130 compounds are known to form of sI, sII or sH with water molecules. The hydrate 

forming ability is function of shape, size (non-stoichiometric value) and chemical nature of 

the guest molecules. (E. Dendy Sloan & Koh, 2008) 

 

THF and EO are two hydrate formers used in the present study. This is described in more 

details in Table 2.  

 

A comparison of the composition and molecular structure of THF, EO and water (ice) is 

illustrated in Figure 2.  

 

 
Figure 2: The composition and molecular structure of (A) THF (Vogel, EOSTG, & council, 2007) , (B) EO 

(Jynto, 2011) , and  (C) water (ice) (Vogel et al., 2007). 


Table 2: THF vs. EO  

a Calculated by Sloan et al.  (E. Dendy Sloan & Koh, 2008)  in a system with hydrogen at atm. pressure 
*Calculated by Svartaas, T.M. in a system with nitrogen at atm. pressure  (Svartaas, 2014). 
b Heat capacity of water (Haas, 1950) 
c Solubility of THF and EO(Larsen et al., 1998) 

Chemical THF EO Water (ice) 

Composition C4H8Oe C2H4Ok H2Oi 
Molacular weight 
(g/mol) 

72.11j 44.01k 18.015i 

Density (g/cm3) 0.8892e 0.9682f 1.0e(0.917e) 
Equilibrium melting 
point (°C) 

4.4a (4.98*) 11.0a 0.0i 

Heat capacity (J/kg °C) 1600d 2000f 2405b(2100e) 
Stoichiometry 
(water:component) 

1:17g 3:23h - 

Soluble in water Misciblec Misciblec N/Ae 
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d Measured by Tombari et al. (Tombari, Presto, Salvetti, & Johari, 2006) 
e (Lee, Yun, Santamarina, & Ruppel, 2007) 
f Calculated by Dever et al (Dever, George, Hoffman, Soo, & corp., 1994) 
g Measured by Erva (Erva, 1956) 
h Measured by Glew & Rath (Glew & Rath, 1995) 
i Properties of water (Torkildsen, 2013) 
j Molecular weight of THF (Loudon, 2002) 
k Composition and molecular weight of EO (McKetta & Cunningham, 1984) 
 

During hydrate formation Glew and Rath (Glew & Rath, 1966) observed that EO-rich 

solutions (>14%) have a higher density than EO-lean solutions (<14%). They hypothesized 

that density and system composition are dependent on each other. This is confirmed by XRD 

and Raman spectroscopy by Huo et al.(Huo, Jager, Miller, & Sloan, 2002) 

 

2.2 Hydrate formation 

Gas hydrate formation is a crystallization process which starts with nucleation followed by 

crystal growth. The nucleation process is stochastic and therefore very unpredictable. Various 

methods, including experimental, theoretical, and numerical, have been proposed for use in 

studying the nucleation process. But hydrate nucleation remains a subject of great curiosity. 

Gas hydrate growth unlike nucleation is a continuous crystallization process. It is predictable 

and thus is handled from a deterministic approach. (E. Dendy Sloan & Koh, 2008) The 

growth process starts when nucleating hydrate clusters have achieved a critical size, after 

which spontaneous growth proceeds. (Baez & Clancy, 1994; Christiansen & Sloan Jr, 1994; 

Hawtin & Rodger, 2006; Kashciev & Firoozabadi, 2002; Kvamme, 1996; Long, 1994; Moon, 

Taylor, & Rodger, 2003; Mullin, 1993; Radhakrishnan & Trout, 2002; E. Dendy Sloan & 

Koh, 2008) (This present thesis will not go into further details about nucleation.) 

 

2.2.1 Hydrate crystal growth 

2.2.1.1 Molecular concept of crystal growth 

In hydrate formation, nucleation;  surface area, agitation, water history, etc are important 

parameters controlling hydrate growth as well as mass and heat transfer. Hydrate formation is 

exothermic process and the growth is followed by heat release. Hydrate growth is function of 

the rate of gas consumption which can be controlled by heat and/or mass transfer together 
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with kinetics. (E. Dendy Sloan & Koh, 2008) which factor is dominant, and the process 

controlling the hydrate formation, is still under discussion.  

 

 
Figure 3: Hypothesis picture of hydrate growth at a crystal. (Elwell & Scheel, 1975) 

 

Figure 3 gives a hypothetical picture of hydrate crystal growth, on a molecular level. The 

figure illustrates a cluster of water molecules surrounding a single guest (i) being transported 

towards the growing surface. The cluster is adsorbed onto the crystal surface (ii) releasing one 

of the water molecules in the cluster. The cluster is not locked on the crystal surface, but 

diffuses along the surface (iii) until it is attached to a crystal layer at a step (iv) on the surface. 

At this step, the cluster releases another solvent molecule, and can only move in one 

dimension, until a kink (a surface with three or more edges) is found (v). At the kink, the 

cluster is immobile in three dimensions, and several solvent molecules are released (vi).  

(Note that this is hypothesis without evidence from hydrate growth experiments.)(Elwell & 

Scheel, 1975) 

 

The hydrocarbon hydrate formers have low mutual solubility in water; the crystal growth 

appears at the liquid-gas interface, where the gas saturation is at maximum or super saturation 

level. (Long, 1994) 

 

2.2.2 Boundary layer 

All modern crystal growth models of hydrates include mass transfer, particularly from the 

bulk phase to the hydrate. (E. Dendy Sloan & Koh, 2008) 
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“Diffusional boundary theory” model (Bird, Stewart, & Flightfoot, 1960) is well-established 

and modified several times, especially on physical evidence for the existence of the boundary 

layer (Berg, 1938; Bunn, 1949). Modification on the former model were done by Berthoud 

and Valeton (Berthoud, 1912; Valeton, 1924), where they included two steps; diffusion to the 

interface, and reaction at the interface.  
 

 
Figure 4: Conceptual model of mass transfer from bulk to liquid phase. (E. Dendy Sloan & Koh, 2008) 

 

A model based on a stagnant boundary layer is shown in Figure 4. This boundary layer exists 

on the fluid side of the crystal interface. The interfacial concentration is difficult to measure, 

therefore a concentration gradient within the fluid, is equal to the bulk fluid concentration 

minus the interfacial concentration. (The concentration differences are expressed as driving 

force.)(E. Dendy Sloan & Koh, 2008) 

 

The crystallization is mainly controlled by mass transfer when the reaction is very rapid 

related to diffusion, only. On the other hand when diffusion is more rapid than the reaction, 

the reaction coefficient controls the crystallization.(E. Dendy Sloan & Koh, 2008)  
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Hydrate growth can be limited by an increase in temperature within the bulk phase which 

causes a local drop in subcooling, e.g. when using an experimental cell setup. (Meindinyo et 

al., 2014b) 

 

2.2.3 Single crystal growth 

The hydrate crystal growth can be divided into four different groups (E. Dendy Sloan & Koh, 

2008): 

1. Single crystal growth 

2. Hydrate film/shell growth at the water-hydrocarbon interface 

3. Multiple crystal growth in an agitated system 

4. Growth of metastable phases 

 
(1)Single crystal growth of hydrates is a useful method to investigate the effect of additives on 

hydrate crystal growth and morphology. (E. Dendy Sloan & Koh, 2008) 

.  

Larsen et al. believe that the most probable mechanism in the step creation, in single crystal 

growth, is surface nucleation. (Larsen et al., 1998) 

 
Normally, it is difficult to study crystal hydrate growth of natural gas hydrates, but hydrates of 

miscible solution, such as THF and EO hydrates (see Figure 5), can easily be grown and 

isolated for structural analysis, since there is mass transfer in the bulk phase, only.(T. Y. 

Makogon et al., 1996) The observations, visually, is the slowest growing plane, only  (Mullin, 

1993). (111) and (110) is the slowest growing planes for THF and EO, respectively (Larsen et 

al., 1998; T. Y. Makogon et al., 1996). 

 

 
Figure 5: Photo of single hydrate crystals of (A) THF (sII), and (B) EO (sI). (Larsen et al., 1998) 
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Methane and EO crystals form sI and have been under same consideration when it comes to 

hydrate growth: crystallization and inhibition. This means that the growth habits are the same. 

(Larsen, Knight, Rider, & Sloan Jr., 1999) 

 

(2)Hydrate growth is typically initiated at the water–hydrocarbon interface. Realistic hydrate 

growth models can be produced by use of measurements on growth of hydrate film/shell. (E. 

Dendy Sloan & Koh, 2008) 

  

 
Figure 6: A schematic illustration of the proposed mechanism for hydrate formation from a water droplet 

to hydrate. (Taylor, 2006) 

 

Servio and Englezos suggested this formation process of hydrates: “water droplets to hydrate 

particle”. This growth process is analog to film growth occurring on a planar water-

hydrocarbon surface (see Figure 6). (Englezos & Servio, 2003) The mechanism shown in 

figure 6 can be studied by use of “Micro-imaging”. (E. Dendy Sloan & Koh, 2008) 

 

(3)Crystal growth with interfacial agitation can be formed in a stirring reactor where gas 

consumption is a function of time. Bishoni laboratory has done a lot research on interfacial 

crystal growth. (Englezos & Bishnoi, 1988; Englezos et al., 1987a, 1987b) 

 

(4)Metastable phases during hydrate growth can be detected by Raman and NMR 

spectroscopy, Neutron – and X-ray diffraction. The molecular mechanisms of hydrate growth 

and the possible origin of thermodynamic structural transitions are able to predict by the 

appearance of metastable phases during hydrate growth. (E. Dendy Sloan & Koh, 2008) 

 

2.2.4 Models and correlation of macroscopic crystal growth 

Table 3 shows a list of all the developed hydrate growth models, by different research groups.  

Three major correlations for hydrate growth exist: 

1. Intrinsic growth kinetics 
14 

 
 
 



2. Mass transfer limited 

3. Heat transfer limited 

 
Table 3 List of hydrate growth models (E. Dendy Sloan & Koh, 2008) 

 
 

2.2.4.1 Intrinsic kinetics – the Englezos - Bishnoi model 

Heat and mass transfer effects play a major role in hydrate intrinsic growth kinetics, compared 

to hydrate growth in real system which is suggested to play an insignificant role. (E. Dendy 

Sloan & Koh, 2008) 

 

A three step kinetic growth process is suggested/assumed by Englezos and Bishnoi (It is 

further modified by Malegoankar)(Englezos et al., 1987a, 1987b; Malegoankar, Dholabhai, 

Bishnoi, & Can, 1997): 

1. Transport of gas from vapor to liquid phase 

2. Diffusion of gas around hydrate particles 

3. Adsorption of gas at the hydrate interface 

 

The rate of growth per particle based on step (2) and (3) is given in eq. (1): 

 
(1) 
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Where, (dni/dt)p is the number of moles of gas consumed pr. second by the hydrate; Ap  [m2] 

is the surface area of each particles; fi
b and fi

eq  [Pa] are fugacity of component i in the bulk 

phase and in the liquid at hydrate equilibrium, respectively; K* is the hydrate formation 

growth constant; kr and kd is the reaction rate constant and mass transfer coefficients through 

the film around the particle, respectively. The overall driving force is fi
b – fi

eg. 

  

This model does not take into consideration the transport of the gas from the vapor phase into 

the liquid phase, and then trough the bulk towards the particle, and has its limitations. (E. 

Dendy Sloan & Koh, 2008) 

 

2.2.4.2 Mass transfer limited growth – the Skovborg - Rasmussen model 

Skovborg and Rasmussen noted two restrictions in addition to limitations (2), and (3) in 

Englezos and Bishnoi`s model. These restrictions are as follows (Skovborg & Rasmussen, 

1994): 

1. The secondary nucleation can be neglected since the secondary nucleation constant 

was found very low. Skovborg and Rasmussen suggested then that the crystallization 

population balance could be removed from the model.  

2. The mass transfer coefficient KL (through the liquid film) affects the K*, so that the 

value of K* may have been too high. Skovborg noted that 50 % error in KL will result 

in an error: K* in an order of two. 

 

They, Skovborg and Rasmussen, assumed that the entire hydrate formation can be modeled as 

a mass transfer restriction, gas through liquid film at the gas-liquid interface (see eq. 2) 

(Skovborg & Rasmussen, 1994) 

 
(2) 

 

Where, A(g-1) is the area of the gas-liquid interface; cwo is the initial concentration of water; 

xint and xb are the molefraction at the bulk-liquid interface and bulk phase, respectively; dn is 

the number of moles gas consumed at the time step dt.   
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Sloan (E. Dendy Sloan & Koh, 2008) suggested that there are limitations within the Skovberg 

and Rasmussen model, and that all model descriptions should be studied carefully and used 

with caution 

 

Skovborg re-analyzed the Englezos kinetic data and obtained mass transfer coefficients for 

methane and ethane. (Skovborg & Rasmussen, 1994) 

 

2.2.4.3 Heat transfer limited growth – several models 

All the heat transfer models represented here (Figure 7), assume that rate of hydrate growth is 

proportional to the rate of heat removal from the hydrate film. (E. Dendy Sloan & Koh, 2008) 

 

 
Figure 7: Physical models of hydrate film growth along the water-hydrate former fluid interface. 

(Mochizuki & Mori, 2006) 

 

The model by Uchida et al (Uchida et al., 1999a) (Figure 7a) is based on hydrate crystals 

growth at the front of the hydrate film, only, and the front is maintained at the three phase 

(water – guest – hydrate).It is assumed steady heat transfer from the front to the water and 

guest fluid. 
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In 2001 there were suggested two models on lateral hydrate film growth; Mori(Mori, 2001) 

(Figure 7b) and Freer et al. (Freer, Selim, & Sloan, 2001) (Figure 7c) which is based on lateral 

growth of the hydrate film on the interface between a stagnant water pool & a guest fluid and 

experimental data on methane hydrate film growth at the methane-water interface, 

respectively.  

 

Mochizuki and Mori suggested that the major problem with Uchida et al model was that the 

conductive heat transfer formulation. They found that Mori`s model has unrealistic 

countercurrent convections, since hydrate mass density is very small similar to water. This 

model (Figure 7d) is based on an assumption: transient two dimensional convective heat 

transfer from the film front through both water and guest fluid phases and the hydrate film 

itself. The hydrate film exists at the water side of the water-guest fluid interface (as Freer et al 

model). (Mochizuki & Mori, 2005, 2006) 

 
(3) 

 

Where, δ is hydrate thickness; ∂T/∂x∣x=xh- and ∂T/∂x∣x=xh+ are the hydrate side and water-side 

temperature gradients, respectively; x=xh is the x position at the hydrate-film front; ΔhH is the 

heat formation pr. unit mass of hydrate; λh and λw [W/m K] is the thermal conductivity of 

hydrate and water, respectively; vf is the linear growth rate of the hydrate film; ρH [m3/kg] is 

the density of hydrate. 

 

Eq. 3 show a linear growth rate of the hydrate film, calculated by Mochizuki and Mori 

(Mochizuki & Mori, 2005, 2006). 

 

Makogon (Y. Makogon, Makogan, & Holditch, 1998) and Taylor (Taylor, Dieker, Miller, 

Koh, & Sloan, 2006) compared Freer et al. and Mochizuki & Mori model, and saw that the 

calculations and the experimental data of methane was similar due to each other.  
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2.2.4.4 Driving force 

The key of hydrate nucleation correlation is the driving force, normally in term of fugacity 

(see Table 4). The isothermal driving force for a general case is said to be isobaric equivalent 

with the subcooling driving force.(E. Dendy Sloan & Koh, 2008) 

 

Christiansen and Sloan (Christiansen & Sloan Jr, 1994) shows that all the driving forces in 

nucleation, in general, follows a driving force in terms of Gibbs free energy.  

 
Table 4: A list of different driving forces for the nucleation process(E. Dendy Sloan & Koh, 2008) 

 
 

Arjmandi et al. (Arjmandi, Ren, & Tohidi, 2005) reviewed previous work and investigated 

how the pressure affected the driving force. They noted that the driving force decreased with 

increasing pressure at constant subcooling, in general, for a system having pressures above 

20MPa. The driving force was underestimated when having pressures between 5-20MPa.   

 

When having high driving force present in the system hydrates can be formed at many 

different locations, compared to a system with low driving force present, where the hydrate 

formation is more regularly located. (Some say that the supersaturation (driving force) is 

independent of the hydrate formation.)(E. Dendy Sloan & Koh, 2008) 
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2.3 Hydrate dissociation 

By depressurization, thermal stimulation, thermodynamic inhibitor injection, or a combination 

of these methods hydrate dissolves. In gas production hydrate dissociation is of key 

importance. (E. Dendy Sloan & Koh, 2008) 

 

Radial hydrate dissociation is suggested to be more rapid than the axial hydrate dissociation 

(i.e. dissociation of a hydrate plug is based on heat-transfer limited dissociation where the 

hydrate remains in the center and is surrounded by water.) (Davies, Selim, Sloan, Bollavaram, 

& Peters, 2006; E. Dendy Sloan & Koh, 2008) The comparison of radial and axial hydrate 

dissociation is shown in Figure 8. 

 

 
Figure 8: Hydrate dissociation: (a) in radial direction, (b) in axial direction. (E. Dendy Sloan & Koh, 2008) 

 

A hydrate dissociation process consist of three phenomena ((E. Dendy Sloan & Koh, 2008): 

1. Heat transfer to the hydrate-fluid phase 

2. Kinetic dissociation 

3. The fluid flow (gas and water) away from the interface 
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Table 5: A summary of hydrate dissociation models (Hong, Pooladi-Darvish, & Bishnoi, 2003). 

 
Table 5 indicated that all three phenomena are involved in the model of the last decade. It is 

also stated if the model has an analytical or a numerical solution.  

 

It is shown that heat transfer plays a major role in hydrate dissociation rather than intrinsic 

kinetics. (Davies et al., 2006; Hong et al., 2003; Moridis, 2002) 

Hong et al.(Hong et al., 2003) suggested that intrinsic kinetics controlling the very early stage 

of hydrate dissociation and the later stages is controlled by heat transfer.  

 

An analytical study (Hong & Pooladi-Darvish, 2005) suggested that convective heat transfer, 

kinetics and fluid flow are least dominant in hydrate dissociation, if kinetics are dominant the 

kinetic rate need to be reduced in an order of 2. The controllable factor in hydrate dissociation 

is conductive heat transfer.  

 

Rehder et al. (Rehder et al., 2004) measured dissociation rates of hydrates (methane and 

carbon dioxide) in seawater, and it is shown that the hydrate dissociation is caused by 

difference in concentration of the guest molecule in both the surface and the bulk of the 

hydrate. 
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2.4 Heat transfer 

All models outlined in the previous section describe hydrate formation and growth at a 

microscopic level or at the surface of individual growing particles. In the present work, the 

global system is treated regarding all the particles as part of the same mass. The gas consumed 

in the system gives rise to heat release, and the total heat balance will be between heat 

produced and the heat lost to the surroundings (i.e. cooling water).  

 

2.4.1 Heat transfer in laboratory stirred cell system 

According to Runar Bøe (assoc. professor at Dept. of Petroleum Engineering at UiS) (Boe, 

2014): 

 

The conducted cells used, in this present work, are all cylindrical with internal stirring and 

external cooling (see section 3 for outline and description). The heat transfer model used is 

based on the following assumption: The total heat transfer of the cell/system must be the same 

across all the boundaries in radial direction, thus we can simplify the system by looking at the 

effect of the heat transfer coefficient at the inner boundary layer between the wall and the 

water bulk phase only, and the temperature differences across the cell.  

 

In a stirred cell system without any hydrates present the boundary layer at inner surface will 

be a function of the fluid flow along the surface (i.e. a function of the stirring rate).  

 

With hydrates in the cell the heat transfer at the inner boundary layer will be affected by the 

continuous hydrate formation process and this will result in an altering concentration at the 

layer which will affect its heat transfer properties (i.e. suspended particles versus particles 

precipitated on the wall). 

 

The illustration in Figure 9 shows how the temperature profiles from the interior of the cell 

(left hand side of Figure 9A) across the cell wall (shaded area in the middle of figure 9A), and 

to the cooling water on the outside of the cell (right hand of Figure 9A). Figure section B 

shows a view through the cell from the top side. The total heat flow described: the heat flow 

in both coolant (out of the cell) and the cell interior (into the cell) is convectional and 

conductional heat flow through the cell wall itself. In some cases, when having a solid hydrate 
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film at the cell wall, there can be assumed conductional heat transfer through this layer at the 

interior cell wall. The analytical solution of this system is showed in section 2.6.7.2, and 

appendix B.3.  

 

 
Figure 9: Illustration of heat transfer in a cylindrical cell; (A) through the outer wall into the cell interior 

having a hydrate slurry (Meindinyo et al., 2014a) , and (B) through the cell wall (Nordboe, 2013). (The 

geometry is according to figure 14.) 

 

In general heat transfer requires knowledge of energy balance, momentum equations, fluid 

dynamics, and boundary layer analysis (Holman, 2010). Conductional heat transfer is when 

molecules are emitted from high to low temperature to produce energy, while convectional 

heat transfer is heat transfer through a flowing medium (Borgnakke & Sonntag, 2009). 

Whenever there is a fluid flow over a surface a velocity boundary layer will be developed, 

which is highly important in convectional transport. (Incropera, DeWitt, Bergman, & Lavine, 

2007) 

 

The overall convectional heat transfer (by Newton`s law of cooling) (eq. 4) in a pipe 

(Holman, 2010): 

 
(4) 
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Where, Q is the heat flux in a pipe [W/m2]; h is the heat transfer coefficient [W/m2 K]; Tw and 

T∞ is the surface temperature near the wall, the temperature in the bulk/fluid phase [K], 

respectively; A is the area [m2].  

 

The conductional energy equation (by Fourier`s law) (eq. 5) in a pipe (Kaviany, 2002): 

 
(5) 

 

Where, q is conductional heat flux in a pipe [W/m2]; A is area [m2]; λ is thermal conductivity 

[W/m K]; dT is the temperature difference between the wall and the bulk phase [T]; dx is the 

length difference of the pipe [m]. 

 

The heat transfer coefficient (HTC) is a function of media properties, the flow and the 

geometry. (Borgnakke & Sonntag, 2009), and the momentum transfer is dependent of the 

molecular movements across the fluid. (Holman, 2010) The fluid is said to store heat better 

when the value of HTC is small (Incropera et al., 2007). 

 

The model used is based on both conduction and convection and also use of cylindrical 

coordinates (see Figure 9 and 10), the equation for the system of hydrate will look like: 

 
(6) 

 

Where, qR is the heat flux of the hydrate slurry [W/m2]; mw and mH is the mass of water and 

solute (THF or EO)[kg]; Ng is the number of moles of the gas (air); Cw, CH and Cp,g [J/kg] is 

the specific heat capacity at constant pressure for water, the solute (THF or EO) and gas, 

respectively; hI is the inner heat transfer coefficient [W/m2 K];AO is the outer surface area 

[m2]; TI and TO [K] is the temperature of the inner and outer boundary, respectively. 

 

The input parameters: 

1. HTC for both water/cell and coolant water/cell interface 

2. Heat conductivity for both cell and solution (THF or EO) 

3. The number of moles of THF or EO and air 

4. Enthalpy for the whole system 
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Major assumptions: 

1. Radial system (see Figure 9B and 10, and also equation 7) 

2. Transient heat transfer 

3. No hydrate generation (assume the amount of hydrate is constant, qr = 0) 

4. Inner and outer HTCs (hI and hO, respectively) are assumed constant, and relative to 

the entire heat transfer areas.  

 
Figure 10: Cylinder Coordinates  

 

To be able to calculate the heat transfer in a system with hydrate present, it is necessary to 

start out with: heat diffusion equation with constant material properties, and no generation 

term (eq. 7): 

 
(7) 

 

 

Where, r is the inner radius; T is temperature; t is the time; α is the thermal diffusivity.  

 

Eq. 7 is only a basic equation. From here it is necessary to use the method of discretization by 

use of backward difference or forward difference on the right hand side (the term with change 

in time (t)) for implicit or explicit discretization, respectively, and central difference (Figure 

11) on left hand side (the term with change in space (r)).  

 

There will also only be needed 3 nodes, see picture below: 
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Figure 11: Discretization, in terms of central difference, by use of three nodes 

 

2.4.1.1 Explicit method on a system without hydrate generation 

When having an equation in explicit form, the time steps are in present time. (Incropera et al., 

2007) 

 

The given equation will be calculated from eq. 7: 

Heat transfer equation by explicit discretization (eq.8): 
 

(8) 

 

When using eq. 6 - 8 on a system with hydrate present, the equation 8 will be modified: 

 
(9) 

 

 The cell interior when having hydrate generation (eq. 10): 

 
(10) 

 
Where: 
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(11) 

 
 (12) 

 

 

Cell interior without hydrate generation (qr = 0 and therefore XI = 0) (eq. 13):  

 
(13) 

 

Inner border (i =0) (eq. 14): 

 
(14) 

 

Interior node (i) (eq. 15) 

 
(15) 

 

Outer border (i=n) (eq. 16): 

 
(16) 

 

Where, ρ is density; c is specific heat capacity, t is time, α is thermal diffusivity, r is the 

radius; N is number of moles; m is the mass [kg]; XI [K] is the temperature equivalent for heat 

of generation; CI is the dimensionless parameter of the cell interior; hI and hO (always 

parameterized)[W/m2K] is the inner and outer heat transfer coefficients, respectively ; Ti
p+1is 

the current nodal in wall temperature profile (always unknown); T0
p+1 is the current 

temperature of inner wall (always unknown); Tn
p+1 is the current temperature of outer wall 

(always unknown); TI
p+1 is the current temperature of the cell content (treated as unknown); 

TO
p+1 is the current cooling water temperature (measured), where temperature (T) has a unit of 

degrees Kelvin [K].  
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2.4.1.2 Implicit method on a system without hydrate generation 

The time steps are in future time. The equation has a high number of unknowns, present here. 

The implicit method is unconditionally stable; remains stable for all space and time intervals, 

and is compatible with the stability requirements).(Incropera et al., 2007) 

Note: conduction at the interior node, and convection at the border nodes. 

 

The given equation will be calculated from eq. 7: 

Heat transfer equation by implicit discretization (eq.17): 

 

 
(17) 

 

This method requires use of “Gauss-Seidel iteration” or “matrix inversion” to be able to 

calculate the unknown variables that comes when using future time steps. (Incropera et al., 

2007) It is used “matrix inversion” in this case (Runar Bøe): 

 

The entire equation (eq.18): 

 
 (18)  

 

Matrix A (eq. 19): 

 
(19) 

 

Matrix T (eq. 20): 

 

 
(20) 

 

 

 

Matrix Y (eq. 21): 
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(21)  

 

 

eq. 18 in terms of matrix T (eq. 22): 

 
(22)  

 

Calculation of matrix A (eq. 23): 
 

 

 

(23) 

 

Matrix Y in a hydrate system (eq. 24): 

 

 

 
(24)  

 

 

When calculating the heat of formation by use of implicit method the principle used in 

explicit method (see eq. 13) can also be used here: 

 

Cell interior (eq. 25): 
(25)  

 

Inner border (i =0) (eq. 26): 

 
 (26)  

 

Inte

rior node (i) (eq. 27): 
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  (27) 

 

Outer border (i=n) (eq. 28): 

 
(28)  

 

Where, ρ is density; c is specific heat capacity, t is time, α is thermal diffusivity, r is the 

radius; N is number of moles; m is the mass [kg]; XI [K] is the temperature equivalent for heat 

of generation; hI [W/m2K]and hO (always parameterized)[W/m2K] is the inner and outer heat 

transfer coefficients, respectively ; Ti
p+1is the current nodal in wall temperature profile 

(always unknown); T0
p+1 is the current temperature of inner wall (always unknown); Tn

p+1 is 

the current temperature of outer wall (always unknown); TI
p+1 is the current temperature of 

the cell content (treated as unknown); TO
p+1 is the current cooling water temperature 

(measured); Fo is the fourier number; Bi is the Biot number. Temperature (T) has a unit of 

Kelvin degrees [K].  

 

2.4.2 Methane hydrate 

Heat transfer during growth of methane hydrate was done by Remi- E. Meindinyo 

(Meindinyo et al., 2014b). This study showed that the estimated HTC decreased with 

increasing concentration of methane hydrate in slurry.  

2.4.3 Condensation process 

The overall HTC of water in a steam chamber is increasing with increase in the rotational 

speed, when have horizontal cylinders. (But at very high rotational speed the HTC decreases) 

(Singer & Presckshot, 1963). In vertical cylinders the overall HTC increases with increase in 

rotational speed (Nicol & Gacesa, 1970).  

 

A phenomenon called “Laminarization” happens when the flow regime changes from fully 

transient to laminar – like. This causes reduction in the HTC with increasing rotational speed 

(Hirai, Takagi, & Matsumoto, 1988).  

 

Increase in overall HTC means increase in convectional HTC, caused by reduction of the 

condensate film thickness (Mohamed, 2006).  
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2.4.4 Rotational speed 

Convection is affected by fluid motion, so in a fluid, the increase in stirring rate increase the 

HTC (i.e lower values of the HTC means more conduction (isolated system)) (Borgnakke & 

Sonntag, 2009; Incropera et al., 2007).  

 

The rate of the heat is dependent of the stirring rate, when having a system with miscible 

solution of THF and water (Bollavaram, Devarakonda, Selim, & Sloan Jr, 2000).  

 

An analytical solution by Rao et al.(Rao, Sloan, Koh, & Sum, 2011) showed that decrease in 

velocity of the fluid is caused by the increase in the hydrate thickness.  
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3 EQUIPMENT AND PROCEDURE/METHOD 
Experiments have been conducted in 2 titanium cells (cell #0 and cell #5), and in sapphire 

cells (cell #1, cell #2). In the sapphire cells there have only been done observations on how 

the THF -, and EO –hydrates look like (i.e. thickness and structure). The experiments 

regarding the heat transfer coefficients have been done in both cell #0 and cell #5.  

 

3.1 Equipment 

In this thesis experiments have been conducted in different cells, in both Titanium and 

Sapphire cells. The connecting system of the cell is the same in every single case. It looks like 

this: 

 

 
Figure 12: The experimental setup 

 

 

The apparatus has these components: 
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- Cooling bath: Julabo 34 (±0.01 degrees) 

- Temperature detectors: Pt-100, 1/10 DIN (± 0.03 degrees) 

- Pressure detector: Rosemount (± 0.2 bars) 

- Magnetic stirrer: IKA Reo basis C 

- PC with additional software programs  

- Titanium cell (volumes of 141 ml and 318 ml)/Sapphire cell (volume of 23 ml) 

 

The geometry of the cell: 

 
Figure 13: The geometry of the cell (titanium). The units are in cm. 

 

The cell components: 

33 
 
 
 



 
Figure 14: The components of the Titanium cells: (A) total volume of 141 ml, (B) total volume of 318 ml 

 

The apparatus above has these components: 

1. The top lid with a pressure detector 

2. Temperature detectors 

3. Inflow/outflow of the cooling bath 

4. The cell with a protecting cap 

5. O-rings 

6. Magnet with ball bearings 

7. The bottom lid  

8. Stirring blade 

9. A plastic ring (friction reducer) 

10.  Top lid with a Safire window (figure 13.A, only) 
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Figure 15: The components of the Safire cell 

 

The apparatus above has these components: 

1. Top lid with pressure and temperature detector 

2. O-rings 

3. Protecting cap 

4. Connection between the bottom lid and the Safire cell 

5. Bottom lid 

6. Safire cell 

7. Magnet with a ball bearing 

8. The stirring blade 

 

3.1.1 Software programs 

Labview – measurements and data monitoring during run of experiments in real time. 

Logitech webcam – pictures and video during run of experiments 

Excel – view data detected, and transfer the data to a program for an analysis.  

Kaleidagraph – save and compare data.  

Matlab – Analyze and calculate the heat transfer coefficient.  
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3.1.2 Chemical solutions 

In this thesis, the following have been used: 

THF: (liquid), produced by VWR international AS 28.05.2010, EC-no: 2037288 

EO: (gas), produced by Yara Praxiar, EC-no: 2008499 

(Note: To be able to make a miscible solution of EO and water, EO needs to convert from gas 

to liquid phase, by cooling (see Figure 16.)) 

 

Both of these chemicals are highly dangerous for the environments and humans, as said in the 

SOP of both THF and EO. It is required to use gloves, protection glasses, laboratory coat, and 

gas mask.  

 

In this case: there have been used 100-, 80-, 60-, 40-, 20 – and 0 % stoichiometric 

concentration (conc.) of both THF and EO in cell #5 and 80-, 40-, and 0 % stoichiometric 

conc. of both THF and EO in cell #5. 

3.1.3 The experimental parameters  

The accuracy of 1/10 DIN Pt-100 elements should be within ± 0.03 °C at 0 °C and ± 0.08 °C 

at 100 °C. Mounted in the system the temperatures were assumed measured within an 

accuracy of ± 0.1 °C. To verify the accuracy a calibration test were run in ice water at the end 

of the experimental program. The main reason for running the test was an observed 

discrepancy between the bath and the cell temperature during experiments. This discrepancy 

was assumed due to heat absorption through the top lid during the tests due to the large 

temperature difference between the cell (0 – 4 °C) and the surroundings (18 – 22 °C). 

 

The calibration test in ice water (0°C) showed: 

Cell #0, top lid with sapphire window: 

Tg, cell #0-1 = -0.05°C  

 

Cell #0, top lid with two temperature sensors: 

Tg, cell #0-2 = -0.02°C 

Tw, cell #0-2 = 0.18°C 

 

Cell #5 showed temperatures: 
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Tg = 0.03°C 

Tw = 0.17°C 

 

All tests were conducted with temp sensors mounted in the top lid. Prior to the test the top lid 

with sensor was soaked in the ice water and cooled down to 0 °C to eliminate any leak of heat 

between the lid and the sensors. The discrepancy between the actual temperature and the 

measured temperatures were within the assumed accuracy for all sensors in the gas phase, but 

the water temperature sensors showed both deviations greater than the assumed accuracy. 

This could be due to some imperfect connection in the line between the signal cables and the 

temperature transmitters.  

 

3.2 Experimental procedure 

3.2.1 Washing procedure 

Before each experiment (i.e. form hydrate at a different conc.) the cell needs to be 

reassembled and washed twice with soap and distillated water and then dried with air. When 

changing the conc. of the additive (THF or EO) there is a possibility to get impurities which is 

the reason for using soap. The memory effect on water due to melted hydrates are taking care 

of, thereby washing procedure.  

 

3.2.2 Start-up procedure 

High vacuum silicone grease and copper grease were used on the O-rings and threads, 

respectively when assembling the cell.  

 

The amount of water and chemical is dependent on the different sizes/volumes of the cells. 

In every case the cell is filled with a 66 percent of air, and the rest is a miscible water- 

THF/EO solution, or water. (Further information found in the appendix.) 

 

Example: (141 ml) 

The bottom lid is filled with 7.5 ml of water  

The cell is filled with 50 ml of water (approximately 51.40 ml of miscible solution) 
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Example: (318ml) 

The bottom lid is filled with 7.5 ml of water 

The cell is filled with 112 ml of water (approximately 113.40 ml of miscible solution) 

 

The stirring starts when the cell is connected to the cooling bath and the pressure/temperature 

detector(s). Before running the experiments the temperature in the cell needs to match the 

temperature of the coolant. In the end, a chosen program (on the cooling bath) is used so that 

hydrates are able to form. Now, run the program (e.g. cooling bath) and Labview at the same 

time. 

 

The procedure where EO is changing from gaseous phase to liquid phase is by cooling (from 

the tubing connected to the bottle), like this: 

 

 
Figure 16: The cooling system of EO (gas to liquid) 

 

Note: EO has melting equilibrium point at 11°C (see section 3.2.5), which means that the 

entire system (including the cell) needs to be below 10°C.  
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3.2.3 Programming the cooling bath 

The programming procedure is as follows: 

Click “menu”  “Int.programs”  “edit”  step 0   step 1  step 2 

 

Example: 

Step 0  Step 1  Step 2 

Temp. 6.00 C  Temp. 1.00 C  Temp. 1.00 C 

Time 00:10  Time 01:00  Time 99:00 

 

The start-up procedure is as follows: 

Click “menu”  “profile start”  “yes” 

 

3.2.4 Heat transfer procedure 

This procedure has been done in both of the titanium cells (cell #0, and cell #5). 

 

After the hydrates are formed and hydrate growth reaches 100 percent, the heating and 

cooling sequences (HCS) have been performed. Since THF has an equilibrium melting point 

at 4.98°C (see section 3.2.5), this work is performed between 1- 4°C on both THF and EO to 

get more accurate data.  

 

The HCS has been done at once, so the consistency is important. Therefore when the heating 

sequence is done and the temperature in the cell is leveled out (approximately 5 -10 minutes) 

the cooling sequence starts. The run is finished when the temperature has reached the same 

temperature as the starting point (see Figure 17). 
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Figure 17: An example on a HCS. (A) The heating sequence is leveled out (longer time used) than (B) 

where the leveled heating sequence is too short. 

 

The HCSs have been performed on different rotational speeds 0, 500 and 1000 RPM, 

respectively. It is also been performed HCSs on different stoichiometric conc. of THF/EO, 

and in two different conducted cells volumes. 

 

3.2.5 Observation procedure 

This procedure has been done in both titanium cell (cell #0 with a sapphire window at the top 

lid) and in two Sapphire cells (cell #1 and cell #2). 

 

The main purpose of this procedure is to predict how the hydrate is like (a hydrate film, plug 

or slurry) at the different stoichiometric conc. of THF/EO, and to see if the hydrate is stable 

throughout the HCS (i.e. stable hydrate structure (SHS)). (This procedure is been done the 

same way as the other experiments, with an additional camera.)  

 

When run the heating sequence, the rate of heating or cooling is very rapid (approximately 8-

9 °C/h), therefore, the dissociation of the hydrates is slower due to faster heating rate.  
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The stability of the hydrate is also observed by looking at the changing in the equilibrium 

melting temperature (Teq) at each stoichiometric conc. of both THF and EO (look at Table 

11). 

 

Literature on hydrate equilibrium properties of EO and THF as function of concentration are 

scarce. Using stoichiometric conc. of THF in water and hydrogen as inert atmosphere the 

hydrate dissociation temperature (i.e. Teq) has been determined to 4.4 °C (E. Dendy Sloan & 

Koh, 2008). According to data in Table 6 the contribution of hydrogen to the hydrate stability 

should be negligible. The conducted experiments, in this present work, have been done in 

presence of air, and according to the same Table (6), air being composed of oxygen and 

nitrogen as main components could affect the stability of both sI and sII hydrate. 

 

In the laboratory, Svartaas has measured the Teq of stoichiometric conc. of THF in water in 

presence of a pure nitrogen atmosphere and found that the hydrate dissociated at 4.98 °C 

(Svartaas, 2014).This shows that the nitrogen atmosphere result in a hydrate with increased 

stability and increased melting temperature. 

 
Figure 19 shows literature data on hydrate Teq for EO hydrate as function of the concentration 

in water (Dever et al., 1994; Siegfried & Dieter, 1987) The maximum Teq was found at a mole 

fraction of 0.1491 which corresponds to 114.1 % of the stoichiometric conc. and the Teq 

decreased at increasing or decreasing mole fractions above / below 0.1491. In figure 19 only 

the mole fractions below the maximum is included, and the figure shows that the stability of 

EO hydrate is function of concentration in water phase. 
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Table 6: Ratio of molecular diameter to cavity diameter for gas hydrates (E. Dendy Sloan & Koh, 2008). 

 
 

Table 6: Indicates that the smaller molecules as nitrogen compared due to Hydrogen occupies 

more of the smaller cavities in sII. This means that the hydrate formers, THF in particularly 

(see table 2),in all probability, will have a higher melting equilibrium temperature when using 

nitrogen, oxygen, or air rather than hydrogen during cell experiments. The presence of air 

could also have some effects on the stability and melting point of EO hydrate.  

 

Figure 18 shows the concentration of methane in the aqueous phase as function of 

temperature at a given pressure for system with and without hydrates present in the solution.  

In this figure, the reduced methane concentration as function of decreasing temperature for 

system with hydrate present, corresponds to an equilibrium condition of system at reduced 

pressure.  

 

Figures 18 and 19, both demonstrate the relation between the concentration of a hydrate 

former in the aqueous phase and the equilibrium dissociation properties of the system. As 

demonstrated by these two figures, there is expected that the Teq of the THF and EO solutions, 

used in this present work, will change as function of stoichiometric conc. At low 

stoichiometric conc. of both EO and THF, there have been seen some conflicts with the 

hydrate stability during some conducted experiments. 
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Figure 18: The equilibrium temperature (Teq) vs. concentration of methane –water solution 

(Subramanian, 2000).  
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Figure 19: Equilibrium EO hydrates dissociation temperatures (red dots, ) versus mole fraction of EO in 

the water solution (right y-axes)(Dever et al., 1994; Siegfried & Dieter, 1987). Stoichiometric EO – water 

solution is denoted 100 % (left y-axes). The indicated EO equilibrium curve (red) is only illustrative. 

 
To evaluate the stability of the EO and THF hydrates at reduced stoichiometric conc. in water, 
some tests were run in the sapphire cells and a titanium cell with a connected sapphire 
window, to observe whether the hydrates remained stable or not. (See section 4.3.3.) 
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3.3 Experimental analysis 

Matlab is used to estimate the HTC of the inner boundary, by use of a simulation model made 

by Prof. Runar Bøe (see appendix). 

 

The heat transfer model is based on some major assumptions; 

- The temperature in the reaction chamber is homogenous 

- The flow of heat is radial 

- A transient temperature profile  

- Hydrate generation is zero 

- An implicit discretization, which allows the time increment to be chosen to correspond 

with the logging rate of the temperature measurements. 

- The structure of hydrates doesn`t matter 

- The heat transfer coefficient takes care of both convection and conduction, but cannot 

distinguish between them, or which is dominant. (The border condition is the 

convective heat transfer.) 

- The outer “infinite” temperature is set equal to the heating/cooling bath temperature, 

TO = TB. The measured values from a given run are imposed as time-varying border 

temperature for the corresponding simulation. 

- The inner “infinite” temperature, TI = Tw is set equal to the fluid temperature in the 

cell. A time series of this temperature will be the result from a simulation, and may be 

compared due to the measured values from the given run.  

- The outer heat transfer coefficient (hO) is set to 1000 W/m2K (see appendix), and 

treated as a constant. 

- The simulated heat transfer coefficient (hI = HTC) is treated as a constant value.  

- The HTCs (hI and hO) are constant over the time period of interest.  

- The heat capacity data required is stated in table 2, and cp,air = 1004 J/kg (Urieli)   

 

The simulation model is based upon three curves; the inner temperature (green), the outer 

temperature (red) and the simulated temperature (blue), where the point is getting the best fit 

(i.e. the minimum variance between the outer and inner temperature) of the simulated curve 

(see Figure 20A). 

 

Two methods of the simulation model exist: 
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- Golden Search: the minimum variance of the simulated temperature between the 

outer and inner temperature. 

- Try and Fail: Changing the value of hI until you get the best fit 

(More details can be found in the appendix.) 

 

The Golden Search method gives the best fit, normally. In some cases the Golden Search 

method fails (see Figure 20 and appendix): 

- Fluctuaction of the HCS 

- “Weird phenomenas”(reminds of melting/formation sequence) in the HCS 

- Unknown reason 

 

The “Golden Search” simulation has similar trend when changing hI value of ±10 [W/m2 K], 

in general. 

 

When the Golden Search method doesn`t work, there is a need of using Try and Fail method. 

When having these “weird phenomena” the Try and Fail method doesn`t work either. 

Therefore, some comparisons have been done of the hydrates vs. the solution of THF. This is 

shown in section 4 (see Figure 21 and 22). 
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Figure 20: The simulated HTC by use of the Golden Search method; (A) Perfect match, (B) "weird 

phenomena" of inner temperature. (1) is melting sequence and (2) is formation sequence, most likely, and 

(C) Fluctuaction in inner temperature and (D) unknown reason for mismatch. 
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4 RESULT/DISCUSSION 

4.1 Refused experiments 

Some of the performed experiments, in the laboratory, were rejected due to equipment failure. 

For some concentrations of EO and THF in the region of 20-40 % stoichiometric or lower, 

hydrate formation didn`t occur or hydrates were unstable during heating-cooling test (partially 

dissociation during heating and re-formation during cooling). Formation of hydrates at 

stoichiometric conc. of 20 % or lower was almost impossible at experimental temperatures 

above 0°C.  

 

4.2  Stability of THF hydrates during heating-cooling sequences 

At 20 % stoichiometric conc. hydrate formation was not observed to occur at the "normal" 

formation temperature of 1 °C. The bath temperature was reduced to -0.5 °C in attempt to 

provoke hydrate formation, and it did. A heating-cooling test were made, and showed that 

THF hydrate with 20 % stoichiometric conc. melted before reaching 1°C. It was concluded 

that a concentration of 20 % stoichiometric THF solution is not suitable for the desired 

measurements. 

 

Some peculiar responses were observed during HCSs on 40 % stoichiometric THF solutions. 

During the cooling sequence sudden heat release was observed indicating hydrate nucleation 

and growth in fluid not containing hydrates. This could occur if hydrates were completely 

dissociated during the previous heating sequence. To investigate this phenomenon, it was 

decided to compare the responses during heating-cooling sequences for system with fresh 

THF solution not previously exposed to hydrate formation. In addition, fresh THF solution 

was added to the cell, cooled down without stirring to avoid hydrate formation and then run a 

heating sequence to observe the response of THF solution without hydrates present during 

heating. The result of these tests is shown in Figures 21 and 22.  

 

Figure 21A shows the experimental runs (denoted #1 #2 and #3 in the figure), cooling 

sequences, previously being exposed to hydrate formation; all show initial responses 

comparable with the fresh 40 % stoichiometric THF solution without hydrates. In addition all 
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3 runs show heat release during cooling indicating nucleation and growth from “hydrate free” 

system.  

 

Figure 21B shows that the fresh THF solution without hydrates reaches the upper ramp 

temperature much faster than the systems with hydrates present. For the latter systems it is 

observed that the temperature gradient shows a sudden increase at the temperature region 

between 3.5 and 4 °C and the gradient approach a slope comparable with the fresh THF 

solution. This indicated that the hydrates were completely dissociated at this temperature and 

that the continuing heating response was comparable with hydrate free system. Similar 

problems were observed repeating the tests in the larger cell (cell#5).  

 

Figures 22A and B shows situation where the fresh THF solution formed hydrate during the 

initial cooling cycle (cf. Figure 22B). During heating cycle (cf. Figure 22A) all solutions 

showed similar temperature responses and responses similar with the hydrate containing 

systems in Figure 21A. This test confirmed the instability problem during HSC runs on 40 % 

stoichiometric THF solution. 

 

These tests show that at 40 % stoichiometric solution, the THF hydrates were not sufficiently 

stable within the temperature region of the HCS to run reliable HTC measurements. 
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Figure 21: An example of a comparison of HCS between a fresh THF solution (40 % stoichiometric conc.) 

and the experimental runs (#1-3): (A) heating sequence (having phenomena (1)), and (B) a cooling 

sequence (having phenomena (2)) (see figure 20).  
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Figure 22: An example of a comparison done with experimental runs and the fresh solution of 40 % 

stoichiometric conc. of THF, when the solution has: (A) formed hydrates and (B) melted hydrates. (Here: 

cell #0 at 1000 RPM.)  
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4.3 The geometry/structure of the hydrates 

The sapphire window top lid version of the cell was used to observe the quality of the 

hydrates during a test. In addition sapphire cell experiments were run for the same purpose. In 

the titanium cell initial experiments were done on 100 % stoichiometric THF (or EO) 

concentration, reducing the concentration at steps of 20 % down to 80%, 60 %, 40 % and 20 

%. Having converted the optimal amount of water into hydrates, the cell was maintained at 

low temperature while the top lid was dismounted to obtain a better observation of the 

hydrates formed. Dependent on the concentration of THF, the hydrate consistencies could 

vary between dry hydrates pasted on the wall to wet hydrate slush / slurry. 

 
 Figure 23 illustrates the difference between a hydrate film and slurry, observed. 
 

 
Figure 23: Illustrates the hydrate structure; (A) hydrate film and (B) hydrate slurry, observed in cell #0 
with a sapphire window. 
 
In the sections below, the observations on THF and EO hydrate are summarized in Tables 7 - 
10.  

4.3.1 THF 

Table 7: An overview of THF hydrate in a Titanium cell 

141.4 ml Titanium cell 

THF 

content 

100 80 60 40 20 10 

Visible? Yes Yes Yes Yes No - 

At 1C Dry 

hydrate 

layer  

Dry 

hydrate 

layer 

Wet 

hydrate 

layer 

Slushy hydrate 

plug and a thin 

wet hydrate 

Water - like 

plug(Foam) 

- 
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(sticky) layer (sticky) 

At 4C Same 

(stable) 

Same 

(stable) 

Slush (not 

stable) 

Slushy hydrate 

plug (stable) 

Water – like 

No hydrates 

- 

Thickness 

(cm): 

1.0 1.2 1.5 - 1.7 T: 0.2 

B: plug (the 

entire  cross-

sectional area) 

Plug (the 

entire cross-

sectional 

area) 

- 

(Note: the hydrate film was the same size along the entire wall. The measurements done have 

an uncertainty of ±0.1cm, and T=Top, B=Bottom) 

 
Table 8: An overview of THF hydrates in a Sapphire cell 

23 ml Sapphire cell 

THF 

content 

100 80 60 40 20 10 

Visible? yes yes yes yes Yes  

(below 1°C) 

No 

At 1C Dry 

hydrate 

plug 

Wet hydrate 

plug 

Wet hydrate 

layer at the 

wall 

Slushy 

hydrates 

Water-like  

No hydrates 

No 

hydrates 

(water-

like) 

At 4C Same 

(stable) 

Same 

(stable) 

Slushy (Not 

stable) 

Slushy  

(Not stable) 

Water-like 

no hydrates 

No 

hydrates 

 

Increase in stoichiometric conc. of THF gives an increase in stability when performing a 

HCS. For the stoichiometric conc. ≥ 60% there is stable hydrate structure (SHS) in the 

system. When the stoichiometric conc. is ≥ 60% the THF hydrate form layer around the wall.  

Conc. of THF <40% stoichiometric gives a slurry –like hydrate structure (hydrate particles 

suspended the water phase) Conc. of THF at 40% of stoichiometric resulted in some 

consistency in between a hydrate layer and slurry. When the stoichiometric conc. is ≤ 20% the 

hydrate formation is hard to accomplish. The HCS is probably performed without any hydrate 

present.  
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The problem here is to know if the hydrate does melt or not. If it does not melt, it has been a 

mechanical damage, so that the hydrate structure will convert from being a thin hydrate layer 

to just being slurry.  

 

4.3.2 EO 

Table 9 An overview of EO hydrates in a Titanium cell 

141.4 ml Titanium cell 

EO content 100 80 60 40 20 10 

Visible? Yes Yes Yes yes yes - 

At 1C Dry 

hydrate 

layer 

Dry hydrate 

layer 

Wet 

hydrate 

layer 

Wet hydrate 

layer 

Slushy 

hydrate plug 

and a thin wet 

hydrate layer 

- 

At 4C Same 

(Stable) 

Same 

(Stable) 

Same 

(Stable) 

Same 

(Stable) 

Slushy 

hydrate plug 

 (not stable) 

- 

Thickness 

(cm) 

T: 1.0 

M: 0.8 

T: 1.0 

M: 0.6 

T: 0.5 

M: 0.3 – 

0.2 

T: 2.5 

M: 1.5 

Plug (the 

entire cross-

sectional 

area) 

- 

(Note: T = top, M = middle. The measurements done have an uncertainty of ±0.1cm) 

 
Table 10  An overview of EO hydrates in a Sapphire cell 

23 ml Sapphire cell 

EO 

content 

100 80 60 40 20 10 

Visible? Yes Yes Yes Yes yes No 

At 1C Dry hydrate 

plug 

Dry hydrate 

plug 

Wet hydrate 

plug  

Wet 

hydrate 

plug 

A hydrate 

layer 

no hydrates 

(water-like) 

At 4C Same 

(Stable) 

Same 

(Stable) 

Same 

(Stable)  

Same 

(Stable) 

Water – 

like (not 

No hydrates 
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stable) 

Note: when using the term stable it means stable hydrate structure (SHS) which is when the 

hydrate has the same structure through the whole HCS. 

 

Increase in stoichiometric conc. of EO gives an increase in stability when performing a HCS. 

For the concentrations ≥ 40% there is SHS. Stoichiometric conc.  ≥ 40% have a hydrate 

structure as a film along the wall. Stoichiometric conc. ≤ 20% have a hydrate structure as 

slurry. When the stoichiometric conc. is < 20% the hydrate formation is hard to accomplish. 

The HCS is probably performed without any hydrate present.  

 

4.3.3 Hydrate dissociation during heating sequences 

For methane hydrate – water mixtures it is a relation between the temperature and the 

concentration of methane in the water phase.  This concentration is lower than the 

concentration of methane in hydrate free water solution at the same pressure and temperature 

condition (illustrated in Figure 18). Similar relations exist for both THF and EO hydrate-water 

solution. Table 11 give observed Teq during THF and EO experiments conducted in the 

present work. These Teq do not represent equilibrium condition and could be from some tents 

to a degree above equilibrium due to the high heating gradient during experiments.  For the 

100 % stoichiometric solution, an Teq of 4. 98°C for THF was measured by Svartaas 

(mentioned in section 3.2.5).  

 
Table 11: the relation between the stoichiometric conc. [%] and Teq [°C] observed, experimentally.  

THF EO 

Stoichiometric conc. [%] Observed Teq [°C] Observed Teq [°C] 

100 4.98 – 5.10 11.1  

80 4.90 10.50 

60 4.60 10.0 

40 3.75 9.0 

20 0.5 2.0 

 

The observed Teq appear to be fair correspondence with equilibrium data from literature 

(mentioned in section 2.3.5). Figure 19, gives an illustration of the relationship between the 

concentration and Teq, for EO-water solution. 
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As seen in Figure 19, the estimated equilibrium curve indicates that Teq lies between 8-11°C 

of 40 – 100 % stoichiometric conc. of EO – water solution. The observations done, in the 

present work, with air (nitrogen and oxygen) present in the system, could thus be reasonable 

taking the high cooling rate into account.  

 

4.3.4 THF vs EO 

THF is less stable throughout the HCS than EO, since the observed Teq for the EO system at 

stoichiometric conc. above 40 % is higher than the corresponded THF system. In addition, 

THF produced a much thinner hydrate layer compared to EO, at similar concentrations. 

  

EO is stable at all concentrations except from 20 % stoichiometric conc., but THF is only 

stable between 100 – 60 % stoichiometric conc. Both EO and THF represent hydrate which 

has issues making hydrates ≤ 20 % stoichiometric conc., as observed, the Teq is very low.  

 

The dissociation temperatures for THF were observed to decrease more rapidly as function of 

decreasing concentration thus producing a steep dissociation curve over the whole 

concentration region compared to EO. Both solutes, THF and EO, the dissociation 

temperatures were observed to decrease as function of decrease concentration more rapidly 

than the trend in figure 18 and 19 shows. This means that THF has a lower equilibrium 

temperature than EO at same amounts of hydrate present. Therefore, EO represents a more 

SHS compared to THF, and would be more suitable for the type of study conducted in the 

present work.  

4.4 Concentration effects 

4.4.1 THF 

Figure 24 shows the relation between the estimated HTC as function of stoichiometric THF 

concentration during experiments at stirring rates of 0 RPM, 500 RPM and 1000 RPM, in cell 

#0. 
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Figure 24: Effect of the concentration on simulated HTC in THF hydrates (cell #0).  

 
Figure 24 shows that estimated HTC decrease with increasing stoichiometric conc. of THF, 

both with and without stirring. Without stirring the values of estimated HTC are lower 

compared to the situations with stirring. Increased stirring rate is assumed to result in 

increased estimated HTC, but between 500 and 1000 rpm, the difference between these two 

stirring rates was marginal. At concentrations of THF above 60 % of stoichiometric estimated 

HTC approach fairly constant level similar for all stirring rates.  

 

The lowest estimated HTC values are shown at 0 RPM, at all stoichiometric conc. of THF. 

The case of 0 RPM has a higher conductional heat transfer, therefore, the experiments without 

stirring with THF hydrate present, supports the theory (see section 2.4.4).  

 

In all of the cases (at all stirring rates) in Figure 24 the estimated HTC decrease with increase 

in stoichiometric conc. of THF, which is similar the methane hydrate system described in 

section 2.4.2. It is suggested that the hydrates above 60 % stoichiometric conc. had produced 

immobile hydrate layers on wall and thus stirring will no longer affect heat transfer by 

conduction in any of the systems. (Mentioned in section 2.4.4).  
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4.4.2 EO 

Figure 25 shows the relation between the estimated HTC as function of stoichiometric EO 

concentration during experiments at stirring rates of 0 RPM, 500 RPM and 1000 RPM, in cell 

#0. 

 

 
Figure 25: Effect of the concentration on simulated HTC in EO hydrates (cell #0). 

 

Without stirring, the stoichiometric conc. of EO in region between 0 – 40 %, the estimated 

HTC remains approximately constant except from 80 % stoichiometric conc. With stirring, 

the estimated HTC is decreasing with increasing stoichiometric conc., for all stoichiometric 

concentrations below 60%. Between 60 - 80 % stoichiometric conc., the estimated HTC 

increase with increasing stoichiometric conc., and between 80 - 100 % stoichiometric conc. of 

EO, the estimated HTC decreases with increasing stoichiometric conc. The effect of stirring 

rate was marginal.  

 

The lowest estimated HTC values are shown at 0 RPM, at 0% stoichiometric conc. of THF. 

When higher % stoichiometric conc. is present in the system, 1000 RPM represent the lowest 

estimated HTC values. The case of 1000 RPM has a higher conductional heat transfer, 

therefore, the experiments with EO hydrate present, do not support the theory (see section 

2.4.4).  
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In Figure 25, the systems with 500 and 1000 RPM and at stoichiometric concentrations 

between 0 and 60 % show similar pattern in estimated HTC with a decrease as function of 

increasing concentration. This response is comparable with the methane hydrate system 

discussed in section 2.4.2. With 80 % stoichiometric conc. of EO, the estimated HTC is above 

the values measured at 60 and 100 % stoichiometric concentration. This induced estimated 

HTC can be affected by increase in convectional heat transfer caused by increase in the 

thickness of the hydrate layer (see section 2.4.4). Or an increase in Reynolds number (Re) 

caused by an increase in the viscosity can be the reason for the increase in the estimated HTC 

at 80 % stoichiometric conc. of EO. Note that similar effects have been shown for a system 

without stirring as well. Therefore, the effects shown for 80 % stoichiometric conc. of EO, 

appears independent of stirring and Re.  

  

4.4.3 THF vs. EO 

Figure 26 shows the relation between the stoichiometric conc. of the solute as function of the 

estimated HTC at stirring rates of 0 RPM, 500 RPM and 1000 RPM, for both the THF and the 

EO systems in cell #0. 
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Figure 26: Concentration effects on simulated HTC of both THF and EO at: (A) 0 RPM, (B) 500 RPM 

and (C) 1000 RPM (cell #0). 

 

For both 500 RPM and 1000 RPM, the estimated HTC decrease with increasing 

stoichiometric conc. up to 60 %, for both THF and EO systems. Without stirring, in the region 

between 0 % and 20 % stoichiometric conc. of both THF and EO hydrate have comparable 

and almost identical estimated HTC values. The estimated HTCs of EO system is 

approximately constant in the region between 0 and 40 % stoichiometric conc., and then 
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increase towards a maximum at 80 % before it drops towards 100 %.  For THF on the other 

hand, decrease with increase in stoichiometric conc. towards a minimum value around 60 %.   

 

As seen in Figure 26, the hydrate with THF has slightly higher estimated HTC than hydrate 

with EO at ≤ 40 % stoichiometric conc. of hydrates. Thereby, the degree of convection into 

hydrates, for both THF and EO, at lower concentrations is almost negligible (see the theory 

mentioned by Mohamed in section 2.4.3). 

 

4.5 Volume effects 

The size effects in this present thesis are referred to the different volumes of the cells used in 

the study. The amount of water added in either of the cells is adjusted to keep the gas – liquid 

ratio (i.e. volume ratio) during experiments the same in both cells. Thus in the larger cell (cell 

#5) the mass of the cell body and water are larger than for the smaller cell (cell #0).  

4.5.1 Comparing the responses of HCS in the smaller vs. the larger cell 

When using two different cells with different dimensions, there is expected that the heat 

transfer rate (i.e. the slope of temperature vs. time) in the smallest cell is higher compared to 

the larger cell caused by the difference in the area (i.e. the estimate HTC value is higher for 

the small cell compared to the large cell). There is needed to do some comparisons of the 

HCSs between the cells (the small and large cell), of all chosen stoichiometric concentrations 

and at all chosen stirring rates. See Figure 27 and 28.  

 

Figure 27 shows a comparison of the HCS performances in cell#0 and cell#5 at similar 

experimental conditions with respect to concentration of hydrate forming agent (THF and 

EO), stirring rate, bath heating / cooling gradients and ramping temperatures. Figure 27A 

shows that the small cell has higher heat transfer rate compared to the large cell (called ideal 

case). Figure 27B shows HCS performed, where the small cell has identical heat transfer rate 

during heating as the big cell, and different heat transfer rate during cooling. Figure 27C 

shows HCSs performed, where the heat transfer rates during both cooling and heating is 

identical, caused by dissociation and re-formation effects.  
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Figure 27: An illustration of how the experimental HCS looks like in both cell #0 and cell #5, when having 

these cases: (A) ideal, (B) same steepness of the heating sequence and (C) formation and dissociation 

(phenomena 1 and 2).  
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In the system with 40 % stoichiometric conc. of EO, the small cell has steeper slope than big 

cell during heating, but not cooling (see Figure 27B). The cells have parallel slopes during 

heating and cooling, in the case of 40 % stoichiometric conc. of THF (see Figure 27C), caused 

by formation and dissociation of hydrates.  

 

The heat rate of the system is bigger for the small case, with a system with stirring at 0 and 80 

% stoichiometric conc. of THF and EO. Without stirring, all the chosen concentrations have 

identical trend, the heat transfer rate is biggest in the small cell.  

 

4.5.2 Effect of stirring rate  

4.5.2.1 Baselines (0 % stoichiometric conc. of hydrates) 

Figure 28 illustrates the relation between the estimated HTC and the stirring rate at similar 

conditions (e.g. gas –liquid ratio) in cell #0 and cell #5.  

 

 
Figure 28: Volume effects on simulated HTC of 0 % stoichiometric conc. of THF (cell #0 and cell #5). 

 

The comparison shows that the big cell produce more heat release compared to the small cell. 

In both cells, the estimated HTC increase with increase in stirring rate towards some 

optimum. It is observed that the HCSs for 0 % stoichiometric conc. of THF/EO, at all stirring 

rates, the slope of the small cell is steeper than the big cell (as seen in Figure 27A). Therefore, 

the values of the estimated HTC in the small cell compared to the big cell are expected to be 

higher. When compare the result of the estimated HTCs (appendix C.1) and the HSCs, the 
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case with no stirring have the values expected, but with stirring, the estimated HTC is highest 

in the big cell. 

 

 

4.5.2.2 THF 

Figure 29 illustrates the result from 40 % stoichiometric conc. of THF, when looking at the 

relation between the estimated HTC and the stirring rate, at different cell volumes (cell #0 and 

cell #5). 

 

 
Figure 29: Volume effects on simulated HTC of 40 % content of THF (cell #0 and cell #5). 

 

The estimated HTC in both cells increase linearly with increase in rotational speed, most 

likely. In Figure 29, the big cell has a steeper slope than the small cell. This shows that the 

estimated HTC is more affected by the stirring rate in the big cell compared to the small cell. 

The bigger the cell size thus larger effects of the rotational speed.  

 

It is observed that the HCSs for 40 % stoichiometric conc. of THF, at no stirring, the slope of 

the small cell is steeper than the big cell (as seen in Figure 27A). Therefore, the values of the 

estimated HTC in the small cell compared to the big cell are expected to be higher. When 

compare the result of the estimated HTCs (appendix C.2) and the HCSs, the case with no 

stirring have the values expected, but with stirring, the estimated HTC is highest in the big 

cell. This can be caused by the formation and dissociation effects seen in Figure 27C.   
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Figure 30 shows the relation between estimated HTC and the stirring rate of different cell 

volumes at 80 % stoichiometric conc. of THF (cell #0 and cell #5).  

 

 
Figure 30: the volumetric effects on estimated HTC of 80 % content of THF (cell #0 and cell #5). 

 

The estimated HTC is almost constant with increase in rotational speed, in the big cell. The 

estimated HTC increases with increasing rotational speed, in the small cell.  

 

The reason why the estimated HTC in the big cell is almost constant can be affected by more 

conduction in the system, since conduction is less affected by the rotational speed (see theory 

in section 2.4.4).  

 

At all stirring rate, the values of the estimated HTC in the small cell are higher than the values 

of estimated HTC in the big cell (see appendix C.2). Also the HCS relation between the two 

cells is following the ideal case; steeper slope for the small cell than the big cell, shown in 

Figure 27A.  

 

4.5.2.3 EO 

Figure 31 shows the relation between the estimated HTC and the stirring rate of different cell 

volumes at 40 % stoichiometric conc. of EO (cell #0 and cell #5).  
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Figure 31: Volumetric effects on simulated HTC of 40 % content of EO (cell #0 and cell #5). 

 

It can be seen in Figure 31, that the estimated HTC of 40 % stoichiometric conc. of EO have 

different outcomes in the cells. The small cell shows that the estimated HTC decrease with 

increasing rotational speed, but the estimated HTC in the big cell increase with increasing 

rotational speed.  

 

It is observed that the HCSs for 40 % stoichiometric conc. of EO, at no stirring, the slope of 

the small cell is steeper during cooling and identical during heating compared to the big cell 

(as seen in Figure 27B). Therefore, the values of the estimated HTC in the small cell 

compared to the big cell are not as expected. When compare the result of the estimated HTCs 

(appendix C.3) with the HCSs, the case without stirring has higher estimated HTC values for 

the small cell compared to the larger cell. With stirring, the estimated HTC is highest in the 

big cell. This can be affected by the heating sequence which has parallel slopes when 

comparing the small and the big cell (seen in Figure 27B).   

 

Figure 32 shows the relation between estimated HTC and the stirring rate of different cell 

volumes at 80 % stoichiometric conc. of EO (cell #0 and cell #5).  
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Figure 32: Volumetric effects on estimated HTC of 80 % content of EO (cell #0 and cell #5). 

 
The reason why the estimated HTC in the big cell is almost constant can be affected by more 

conduction in the system, since conduction is less affected by the rotational speed (see theory 

in section 2.4.4).  

 

At all stirring rate, the values of the estimated HTC in the small cell are higher than the values 

of estimated HTC in the big cell (see appendix C.3). Also the HCS relation between the two 

cells is following the ideal case; steeper slope for the small cell than the big cell, shown in 

Figure 27A.  

 

4.5.2.4 THF vs. EO 

Figure 33 shows the relation between the estimated HTC and rotational speed in different cell 

volumes, comparing THF and EO (cell #0 and cell #5). 
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Figure 33: Volumetric effects on different rotational speeds of both THF and EO in cell #0 and cell #5. 

 

With no stirring, the estimated HTC is following the same pattern in all of the cases (Figure 

33A-D). With stirring, the pattern of the estimated HTC increases with increasing stirring rate 

for Figure 33A, B and D. This is not the case for EO hydrate, in the small cell. This means 

that EO and THF have different response when changing the area of the cell. Therefore, the 

estimated HTC in EO hydrate is more dependent of the stirring rate in a bigger sized cell than 

a smaller sized cell.  

 

Without stirring, 80 % stoichiometric conc. of THF and 40 % stoichiometric conc. of EO in 

both of the cells have the lowest value of the estimated HTC. With stirring, 80 % 

stoichiometric conc. for both EO and THF in the big cell has the lowest estimated HTC value. 
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In the smallest cell while stirring, 80 % stoichiometric conc of THF and 40 % stoichiometric 

conc. of EO have the lowest value of estimated HTC.  

 

The THF in both cells, the estimated HTC increase with increasing stirring rate, which is the 

same as vertical cylinders in steamer (see section 2.4.3) The EO hydrate in the small cell, the 

estimated HTC is decreasing with increasing stirring rate, mainly, and the estimated HTC in 

the big cell increase with increase in stirring rate. The EO follows both horizontal and vertical 

cylinders in a steamer, respectively (see section 2.4.3). The cases with no stirring, and EO 

hydrate in the small cell, the estimated HTC follows a pattern like anticline when the stirring 

rate increases. The reason can be explained by a phenomena called; “Laminarization” (see 

section 2.4.3). The 80 % stoichiometric conc. of THF, in both of the cells, has the highest 

conductional heat transfer. For EO hydrate, 80 % stoichiometric conc has higher conductional 

heat transfer in the big cell, and 40 % stoichiometric conc has higher conductional heat 

transfer in the small cell. (See section 2.4.4.) 

 

4.5.3 Changing stoichiometric concentration of the solute 

4.5.3.1 THF 

Figure 34 shows the volumetric effects on estimated HTC and stoichiometric conc. of THF at 

different rotational speeds (0 RPM, 500 RPM and 1000 RPM) in the small cell and the big 

cell.  
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Figure 34: The volumetric effects on estimated HTC of THF at (A) 0 RPM, (B) 500 RPM, and (C) 1000 

RPM. (Cell #0 and cell #5.) 

 

At 0 RPM the estimated HTC can be explained by conduction. In both of the cells the 

estimated HTC decrease with increase in stoichiometric conc. of THF. The values of the 

estimated HTC given by the big cell are lower than the small cell. During stirring, the 

estimated HTC decrease with increase in stoichiometric conc. of THF, in both of the cells, 

just like the case without stirring. In the case of 500 RPM, the estimated HTC values are 
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almost the same for both cells. In the case of 1000 RPM, the big cell has higher values of the 

estimated HTC than the small cell. 

 

In all of the cases (Figure 34A-C), the THF hydrate and methane hydrate have the same 

pattern of the estimated HTC vs. stoichiometric conc. (see section 2.4.2). Without stirring, the 

big cell represents a higher degree of conduction than the small cell. During 500 RPM, both 

of the cells have equal domination by conduction. And during 1000 RPM, the small cell 

represents a higher degree of conduction than the big cell. (See section 2.4.4) 

 

4.5.3.2 EO 

Figure 35 shows the volumetric effects on estimated HTC and stoichiometric conc. of EO 

hydrate at different rotational speeds (0 RPM, 500 RPM and 1000 RPM) in small and the big 

cell.  
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Figure 35: Volumetric effects on simulated HTC of EO at (A) 0 RPM, (B) 500 RPM, and (C) 1000 RPM. 

 

At 0 RPM the estimated HTC can be explained by conduction, especially at lower 

stoichiometric conc. of EO. In both of the cells, the estimated HTC vs. stoichiometric conc. of 

EO follows a pattern like inclination. The big cell has lower values of the estimated HTC than 

the small cell. During stirring, the estimated HTC decrease with increase in stoichiometric 

conc. of EO for the big cell, and for the small cell at stoichiometric conc. below 80 % the 

same pattern is shown for the estimated HTC. The values of the estimated HTC are higher for 

the big cell than the small cell, except at 80 % stoichiometric conc. of EO. When comparing 
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the small cell, the values of the estimated HTC is higher at 80 – 100 % stoichiometric conc. 

compared to 60 % stoichiometric conc. of EO. The estimated HTC value at 100 % 

stoichiometric conc. is decreased compared to 80 % stoichiometric conc., when use EO as 

solute. The estimated HTC value at 80 % stoichiometric conc. of EO, the big cell has lower 

value compared to the small cell.   

 

In case of 0 RPM, the big cell is more conducted compared to the small cell. During stirring, 

the small cell is more conducted than the big cell, below 80 % stoichiometric conc. of EO. At 

stoichiometric conc. of EO, the big cell is more conducted than the small cell. (See section 

2.4.4.) Below 80 % stoichiometric conc. of EO, the estimated HTC is following the same 

pattern as methane hydrate (see section 2.4.2).  The high “jump” in the estimated HTC value 

at 80 % stoichiometric conc. of EO can be affected by a sudden increase in viscosity causing 

an increase in the Re, but since the same “jump” is shown for 0 RPM as well, the increase in 

Re is negligible. In a system with 80 % stoichiometric conc. of EO, the estimated HTC is 

much higher for the large cell than the small cell. Thereby, errors in the method used, the 

equipment, etc is hard to distinguish. The value of 80 % stoichiometric conc. of EO is 

considered neglected. 

 

4.5.3.3 THF vs. EO 

Figure 36 shows the volumetric effects on estimated HTC and stoichiometric conc. of the 

hydrate (THF and EO) at different rotational speeds (0 RPM, 500 RPM and 1000 RPM) in 

different cell volumes (cell #0 and cell #5). 
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Figure 36: Volumetric effects on simulated HTC of: (A) THF cell #0, (B) THF cell #5, (C) EO cell #0 and 

(D) EO cell #5. 

 

At 0 RPM, the estimated HTC decrease with increase in stoichiometric conc. of THF. For EO, 

there is some inconsistency of the pattern of the estimated HTC vs. stoichiometric conc. In 

general, the THF hydrate has lower estimated HTC values than the EO hydrate. With stirring, 

the estimated HTC decrease with increase in stoichiometric conc. of the solute, except in the 

small cell above 60 % stoichiometric conc. of EO. THF hydrate in general, tends to have 

lower values of the estimated HTC than EO hydrate.  

 

The differences in the cell size affects THF hydrate and EO hydrate in the same way – the 

small cell has lower values of the estimated HTC than the big cell, when look at 

stoichiometric conc. of EO below 80 % in the small cell. The concentration effects are not 

affected by the volume of THF hydrate, but of EO hydrate. You can see that the trend of 
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estimated HTC vs. stoichiometric conc. is the same for THF, but not for EO when the volume 

of the cell is changing.  

 

In Figure 35A-C, the estimated HTC vs. stoichiometric conc. of the solute have the same 

pattern as methane hydrate (see section 2.4.2). In general, THF hydrate is more conducted 

than the EO hydrate (see section 2.4.4).  

 

4.6 Rotational speed effects 

4.6.1 THF 

Figure 37 shows the relation between estimated HTC and stirring rate at different 

stoichiometric conc. of THF (cell #0).  

 

 
Figure 37: The effect of rotational speed on simulated HTC in THF-hydrates (Cell #0).  

 

Without stirring, the estimated HTC is highest for 0 % stoichiometric conc. of THF and 

lowest for 60 % stoichiometric conc. of THF. With stirring, the value of the estimated HTC is 

lowest for 100 % stoichiometric conc. of THF, and highest for 0 % stoichiometric conc. of 

THF.  

 

In the cases of 0 – 20 % - and 60 % stoichiometric conc. of THF: the estimated HTC increase 

between 0 – 500 RPM, and decrease between 500 – 100 RPM. In the cases of 40 % - and 80 
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% stoichiometric conc. of THF: the estimated HTC increase gradually with increase in 

rotational speed. In case of 100 % stoichiometric conc. of THF: the estimated HTC decrease 

gradually with increase in rotational speed.  

 

Without stirring, 60 % stoichiometric conc. of THF is most conducted. With stirring, 100 % 

stoichiometric conc. of THF is most conducted. The above statement; 100 % stoichiometric 

conc. of THF is the most conducted when stirring, is reasonable when looking at Table 8.  

 

 It is said that having a miscible solution of THF and water, the heat transfer rate is dependent 

on the stirring rate. So by looking at figure 37, this can be correct. (See section 2.4.4.) In the 

case of 40 and 80 % stoichiometric conc. of THF: the estimated HTC vs. RPM is the same as 

seen in a steam chamber of vertical cylinders. The case of 0, 20 and 60 % stoichiometric conc. 

of THF: the estimated HTC vs. RPM is the same as seen in steam chamber of horizontal 

cylinders. (See section 2.4.3 for more details.) “Laminarization” can be the case where the 

estimated HTC decrease with increase in rotational speed, as seen for 100 % stoichiometric 

conc. of THF, and between 500 – 1000 RPM in the case of 0, 20 and 60 % stoichiometric 

conc. of THF (see section 2.4.3). In case of 0 – 40 % stoichiometric conc. of THF the values 

of the estimated HTC is higher than the values of estimated HTC in higher stoichiometric 

conc. of THF. Therefore, lower stochimetric conc. of THF is more affected by convection 

than higher stoichiometric conc. of THF (see section 2.4.4).  

 

4.6.2 EO 

Figure 38 shows the relation between estimated HTC and stirring rate at different 

stoichiometric conc. of EO (cell #0) 
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Figure 38: The rotational speed effects on simulated HTC in EO hydrates (cell #0). 

 

Without stirring: 80 % stoichiometric conc. of EO has the highest value of the estimated HTC, 

and 0 – 20 % stoichiometric conc. of EO has the lowest value of the estimated HTC. With 

stirring: 0 % stoichiometric conc. has the highest value of the estimated HTC, and 40 – 60 % 

has the lowest value of the estimated HTC.  

 

In figure 38, the different stoichiometric conc. of  EO in the system, the estimated HTC 

decreases with increasing rotational speed, except from 0 % stoichiometric conc. of EO.  

 

Without stirring, 0 - 20 % stoichiometric conc. of EO is most conducted. With stirring, 40 - 60 

% stoichiometric conc. of EO is most conducted. The above statement; 40 - 60 % 

stoichiometric conc. of EO is the most conducted when stirring, is reasonable when looking at 

table 10, where the hydrate is wet and sticky.  

 

 In the case of 0 % stoichiometric conc. of EO: the estimated HTC vs. RPM is the same as 

seen in a steam chamber of horizontal cylinders. (See section 2.4.3 for more details.) 

“Laminarization” can be the case where the estimated HTC decrease with increase in 

rotational speed, as seen for 40 -100 % stoichiometric conc. of EO (see section 2.4.3). The 

decrease in the estimated HTC with increase in rotational speed can be affected by the 

Reynolds number, where the viscosity decreases.  
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4.6.3 THF vs EO 

Figure 39 shows the relation between estimated HTC and stirring rate at different 

stoichiometric conc. of hydrate, comparing THF and EO (cell #0).  

 

 
Figure 39: The effect on rotational speed on simulated HTC in different amounts of hydrates of both THF 

and EO (cell #0); (A) 0 %, (B) 20 %, (C) 40 %, (D) 60 %, (E) 80 % and (F) 100 %. 

 

Without stirring, EO hydrate, of 20 – 100 % stoichiometric conc., has higher value of the 

estimated HTC than THF hydrate. With stirring, at 60 – 100 % stoichiometric conc. of solute, 

EO hydrate has higher values of the estimated HTC than THF hydrate. With stirring, 20 % 

stoichiometric conc. of solute, THF hydrate has higher values of the estimated HTC than EO 
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hydrate. Art 40 % stoichiometric conc. of solute, the value of estimate HTC is higher for EO 

hydrate at 500 RPM, and lower at 1000 RPM compared to THF hydrate.  

 

In the cases of 40 – 100 % stoichiometric conc. of solute: The estimated HTC increase with 

increasing stirring rate for THF hydrate, and estimated HTC decrease with increasing stirring 

rate for EO hydrate. In case of 0 – 20 % stoichiometric conc. of solute: the estimated HTC vs. 

stirring rate follow a trend like inclination for both EO and THF hydrate.  

 

In case of 40 – 100 % stoichiometric conc. of the solute: the estimated HTC vs stirring rate is 

follow the same pattern as vertical cylinders in a steamer for THF hydrate, and EO hydrate is 

following the pattern as  the “laminarization” phenomena (see section 2.4.3). In the case of 0 

– 20 % stoichiometric conc. of solute: Both THF and EO hydrate is following the same trend 

of the estimated HTC vs. stirring rate as horizontal cylinders in a steamer (see section 2.4.3). 

 

When comparing the Figure 39 and the data given in appendix for a system without stirring, 

the 100 % stoichiometric THF hydrate has a lower thermal conductivity than water. EO on the 

other hand, 100 % stoichiometric, has a slightly higher thermal conductivity than water. For 

both systems, 100 % stoichiometric concentration of THF and EO, the estimated HTC is 

almost identical when change in stirring. With 60 and 80 % stoichiometric concentration of 

THF, the estimated HTC increase slightly with increase of stirring, therefore, the convective 

heat transfer is marginal. On the other hand, a system with 40 % stoichiometric conc., the 

degree of convectional heat transfer is high when increase in stirring. Without stirring, the 

hydrate slurry is on contact with the cell wall. On the other hand, with stirring, the cell wall is 

in contact with the gas. This can affect the result of the estimated HTC and the thermal 

conductivity. The change in the thickness of the hydrate layer and or hydrate slurry is another 

factor affecting the thermal conductivity.  

 

A system with 20 % stoichiometric concentration of THF, the convectional heat transfer is 

dominant, and the values of the estimated HTC are increasing toward the value of water. The 

difference between the water and 20 % stoichiometric conc. of THF can be related to the 

THF-water solution without hydrates present, in all probability.  
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4.7 Uncertainties 

4.7.1 Temperature sensors 

During a calibration test (see section 3.1.3) the temperature sensors in the water phase showed 

higher temperature than expected. The temperature sensors can have an accuracy of ± 0.03 

°C, the assumed accuracy of measurements connected in line is 0.1°C, but the test showed Tw 

of 0.17°C and o.18°C at 0°C for cell #5 and #0, respectively. The calculated temperature 

difference between the outer and inner boundary is higher than the actual temperature 

difference. 

 

The simulation method is assumed to have radial heat transfer, only. The estimated HTC is 

based on the experimental temperatures between the outer and inner boundary of the cell.  

Therefore, the simulations done can be affected by the difference in the actual temperature 

and the measured temperature of the water phase. 

 

4.7.2 Different coolant fluid 

Both water - glycol (max. 5% of glycol) and distilled water were used as coolant compound, 

in cell #5 and cell #0, respectively. This needs to be taken in consideration when looking at 

the volume effects.  

 

4.7.3 Condensation effects 

In this present work low temperatures are used during heat transfer experiments, thereby, 

condensation at the outer wall and top lid is observed. The simulation method assumed radial 

heat transfer, so the condensation effects are not considered in this study.   
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5 CONCLUSION 
When the stoichiometric concentration of the solute, THF or EO, is less than 20 % the hydrate 

formation is hard to accomplish. With use of 40 % stoichiometric concentration of THF, 

hydrates have been formed, but during heating and cooling, hydrates have been dissociated 

and re-formed, respectively, affecting the simulation results.  

 

The hydrate structure of THF between 20 – 100 % stoichiometric concentrations is observed 

to change from slurry to a dry hydrate film, respectively. For EO hydrate, the same outcome is 

observed. The stability of the hydrate throughout the heat transfer experiments is controlled 

by the stoichiometric concentration and temperature. It has been observed; EO hydrates have 

a more stable hydrate structure than THF hydrates. 

 

For both EO system and THF system, the heat transfer coefficient of the hydrate in slurry (hI) 

decreases with increasing stoichiometric concentration, independent of the cell size. 

 

A system with THF present hI decreases with increasing stirring rate, independent of the cell 

size. It is observed that hI decreases with increasing the thickness of the hydrate layer, and 

that the thermal conductivity is greater for a dry porous hydrate layer than for a wet hydrate 

layer. On the other hand, a system with EO present, hI increase with increasing stirring rate, 

independent of the cell size. It is observed that hI increases with increasing the thickness of 

the hydrate layer, and the thermal conductivity is greater for a wet hydrate layer compared to 

a dry hydrate layer.  
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6 FUTURE WORK 
The heating or cooling sequence (HCS) should be leveled out in at least 15-20 minutes before 

stop running.  

 

In this present work, several heating and cooling sequences in a row (more than 3) have a 

tendency of melt more hydrates, especially without stirring. In the future, do 3 or less heating 

and cooling sequences in a row.  

 

Now, only few CFD (Computational Fluid Dynamics) simulations have been performed on 

heat transfer effects on hydrate formation. (Note: There has been done some work on a CFD 

analysis in a propane hydrate system. (Jassim, Abdi, & Muzychka, 2010)) CFD analysis will 

be advantageous, because the geometry of the system and heat properties can be found.  

 

Instead of only using the coolant temperature as an outer boundary, the temperature at the 

wall within the cell will be of great interest, for improving the simulation model. To do so, 

detect the temperature at the wall within the cell additionally. 

 

If using EO/THF, there should be detected the hydrate generation within the temperature 

range used (to see if there is hydrate generation or not) – and/or choose a temperature range 

where you know there is no hydrate generation (by several observation while detect the 

hydrate generation) (The simulation model only take cares of the entire heating and cooling 

sequence.) In the future, the model can be able to calculate the heat transfer coefficient of the 

slurry, with use of partial heating and cooling sequences, if possible.  

 

The simulation model is based on only radial heat transfer. The model should take care of the 

axial heat transfer as well as the radial.  

 

The simulation model used does not take in consideration which type of hydrate structure, 

slurry of a hydrate layer, present. In the future, it will be advantageous using a model based 

on the different hydrate structures present.  
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APPENDIX 

Appendix A: Calculation of stoichiometric concentrations of a solute 

Appendix A.1: THF calculations  
 
THF-water solution mole percent 
 THF H2O 
MW 72,11 18,015 
density 0,8892 1 
moles 1 17 
 
 
mole% THFmass H2Omass Totalmass sum 

1,176 5,374346 114,1257 119,5 119,5 
2,353 10,28609 109,2139 119,5 119,5 
3,529 14,79249 104,7075 119,5 119,5 
4,706  18,94175 100,5583 119,5 119,5 
5,880 22,77469 96,72531 119,5 119,5 

0,00294 1,390488 118,1095 119,5 119,5 
0,00588 2,748989 116,751 119,5 119,5 

 
  number of moles Fraction  
wt % mole% THF H2O THF H2O 

0,2 1,176 0,07453 6,335035 0,044974 0,955026 
0,4 2,353 0,142644 6,062388 0,086076 0,913924 
0,6 3,529 0,205138 5,81224 0,123787 0,876213 
0,8 4,706 0,262678 5,581918 0,158508 0,841492 

1 5,880 0,315833 5,369154 0,190583 0,809417 
0,05 0,002941 0,019283 6,556176 0,011636 0,988364 
0,1 0,005882 0,038122 6,480767 0,023004 0,976996 

 
wt % 

 
volumes  

 THF H2O 
0,2 6,044023 114,1257 
0,4 11,5678 109,2139 
0,6 16,63573 104,7075 
0,8 21,30201 100,5583 

1 25,61256 96,72531 
0,05 1,563751 118,1095 
0,1 3,09153 116,751 

 

Appendix A.2: EO calculations  
 EO H2O        
MW 44,05 18,015        
density 0,8697 1        
moles 3 23        
          
          
wt % n% fraction of fraction of m EO m H2O m total V EO V H2O V total 
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EO H2O 
0,2 2,608696 0,062459382 0,937540618 3,591414 53,90859 57,5 4,129487 53,90859 57,5 
0,4 5,217391 0,122371025 0,877628975 7,036334 50,46367 57,5 8,09053 50,46367 57,5 
0,6 7,826087 0,179887698 0,820112302 10,34354 47,15646 57,5 11,89323 47,15646 57,5 
0,8 10,43478 0,235150194 0,764849806 13,52114 43,97886 57,5 15,5469 43,97886 57,5 

1 13,04348 0,288288485 0,711711515 16,57659 40,92341 57,5 19,06012 40,92341 57,5 
0,05 0,652174 0,015862537 0,984137463 0,912096 56,5879 57,5 1,048748 56,5879 57,5 
0,1 1,304348 0,031558209 0,968441791 1,814597 55,6854 57,5 2,086463 55,6854 57,5 
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Appendix B: Experimental Analysis 

Appendix B.1: Outer heat transfer coefficient (hO) calculations 
 
Outer heat transfer coefficient, titanium hydrate cell. 
 
14.05.2013; updated 25.03.2014 (By Prof. Runar Bøe) 
 
Flow rate capacity for pump unit obtained from internet 
(http://www.julabo.de/en/products/refrigeratedcirculators/ 
refrigerated-heating-circulators/f33-hl-refrigeratedheating- 
circulator)  
 
(Should be confirmed) is 22 - 26 l/min. This corresponds to 4.33e-4 m3/s for the high estimate (26 
l/min). 
 
Measurement of cooling water flow rate gives 14 l/min (should be confirmed) 
Physical data for water at 5 - 10 C is approximately [i.e. rounded to at most 2 significant figures] 
(Mörtstedt/Hellsten - Data och Diagram):  
 
Heat capacity: cw = 4200 J/kg K 
Density: ρw = 1000 kg/m3 
Thermal conductivity: kw = 0.57 W/m K 
Dynamic viscosity: μw = 1.4e-3 Ns/m2 
This gives a Prandtl number; Prw ≈ 10. 
 
The cooling water flows in a concentric annulus with the following dimensions: 
 
Outer diameter: Do = 101 mm 
Inner diameter: Di = 90 mm 
Length: L ≈ 109 mm 
Cross section: Ac = 1.65e-3 m2 
Hydraulic diameter: Dh = 0.011 m 
Diameter ratio, Di/Do: r* = 0.891 
 
(See attached calculation details for the numerical values)  
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Appendix B.2: Mass of air (kg) calculations 
pressure P 55000    
temperature T 275,65      

gas constant R 8,3144 
 
 
 

    
compressibility Z 1      
        
Volume V       
        
celle #0 V (cell #0) 0,0000915    
celle#5 V (cell #5) 0,000206    
      
      
moles n 0,00494357    
mass (g) m 0,14336363    
Molecular weight M 29    
      
m (kg)  0,00014336    

 

Appendix B.3: The numerical model by use of Matlab 

Appendix B.3.1: “Try and Fail” method 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Simulating radial heat transfer through titanium hydrate cell using the 
% implicit discretization scheme. 
% NB! In order to run, the outer border temperature vector TO must be  
% imported to the workspace first; in order to compare with measured  
% results, the representative inner border temperature TIr is also needed. 
% (and to initialize properly) 
%  THIS IS THE ORIGINAL SIMULATION FILE ASSUMING NO HYDRATE GENERATION, 
%  UPDATED AND MODIFIED TO PERFORM SIMULATIONS ON THE QUIESENT SLURRY 
%  CASES. NOTE THAT 3 PHASES ARE NOW PRESENT IN THE CELL, AND IT IS ASSUMED 
%  THAT THEIR RELATIVE AMOUNTS ARE UNCHANGING DURING A RUN. 
%  31.03.2014 
  
  
% Constants: 
% Titanuim: 
k   = 21.9;  % W/m K 
rho = 4506;  % kg/m3 
c   = 544;   % J/kg K 
% Cylinder: 
Ri      = 0.03;  % m 
Ro      = 0.045; % m 
delta   = 0.05;  % m 
% Fluids: 
% Water: 
mw      = 112*1e-3; % kg (0.05 kg corresponds to 50 ml) 
cw      = 4205; % J/kg K 
% Hydrate, pure THF/EO: 
mH      = 0;  % kg 
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cH      = 1600  % J/kg K  
% gas: air: 
Ng      = 1.4*1e-4;  % kg 
Cpg     = 1004;   % J/kg K 
% Heat transfer coefficients: 
hI      = 249.3645 % W/m2 K 
hO      = 1000  % W/m2 K 
% Grid: 
N   = 18; 
Dt  = 3;    % s 
% Calculated properties: 
alpha   = k/(rho*c); 
Dr      = (Ro - Ri)/N; 
Fo      = alpha*Dt/Dr^2; 
BiI     = hI*Dr/k; 
BiO     = hO*Dr/k; 
CI      = 2*hI*pi*delta*Ri*Dt/(mw*cw + mH*cH + Ng*Cpg); 
A_half  = 2*pi*(Ri + Dr/2)*delta; 
A_nhalf = 2*pi*(Ro - Dr/2)*delta; 
% Time steps in current border vector: 
s       = size(TO); 
s(:,2)  = []; 
M   = s 
% R-vector for plotting (R = 0 for interior of cell) 
R       = []; 
R(1,1)  = 0; 
for i   = 2:(N+2) 
    R(i,1)   = Ri + (i-2)*Dr; 
end 
  
  
%Setting up the A-matrix (This is constant throughout): 
A   = []; 
% First row; entry I - cell interior: 
A(1,1)  = 1 + CI; 
A(1,2)  = -CI; 
for j   = 3:(N+2) 
    A(1,j)  = 0; 
end 
% Second row; entry 0 - inner border/wall: 
A(2,1)  = -2*BiI*Fo; 
A(2,2)  = (1 + 2*(BiI + (Dr/(2*Ri) + 1))*Fo); 
A(2,3)  = -2*(Dr/(2*Ri) + 1)*Fo; 
for j   = 4:(N+2) 
    A(2,j)  = 0; 
end 
% Internal node rows 1 - (n-1) => i = 3 - (N+1): 
for i   = 3:(N+1) 
    for j   = 1:(i-2) 
        A(i,j)  = 0; 
    end 
    r   = Ri + (i-2)*Dr; 
    A(i,(i-1))  = (Dr/(2*r) - 1)*Fo; 
    A(i,i)      = (1 + 2*Fo); 
    A(i,(i+1))  = -(Dr/(2*r) + 1)*Fo; 
    for j   = (i+2):(N+1) 
        A(i,j)  = 0; 
    end 
end 
% Last row; entry N+2 - outer border: 
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for j   = 1:N 
    A((N+2),j)  = 0; 
end 
A((N+2),(N+1))  = 2*(Dr/(2*Ro) - 1)*Fo;   
A((N+2),(N+2))  = (1 + 2*(BiO - (Dr/(2*Ro) - 1))*Fo); 
%Inverting the A-matrix: 
AI  = inv(A); 
  
% Initializing the Y-vector: 
Y   = []; 
for i   = 1:(N+1) 
    Y(i,1)  = TIr(1,1);   % To compare the excel run 
end 
Y((N+2), 1) = TO(1,1) + 2*BiO*Fo*TO(2,1); 
%Y 
% Vectors for time series plotting: 
Time    = []; 
TI      = [];   % Interior; i.e. the temperature of the fluids (g + w) 
TOp     = [];   % Need an extra plotting vector for the bath temperature  
                %(to be of the same length as the time vector) 
TIp     = []; 
TW      = [];   % Need to plot the wall temperature too 
% Heat vectors: 
QI      = [];   % Heat to/from the interior 
QO      = [];   % Heat to/from the cooling mantle 
  
% Starting time loop (With measured values the number of repetitions is  
% given by the size of the input vector, M): 
t   = 0; 
Time    = [Time; t]; 
TI      = [TI; TIr(1,1)]; 
TIp     = [TIp; TIr(1,1)]; 
% Initializing for "artificial" conditions, i.e. when no measurements for 
% cell interior exis: 
%TIp     = [TIp; TO(1,1)]; 
TOp     = [TOp; TO(1,1)]; 
TW      = [TW; TO(1,1)]; 
% Initially, no heat when temperature is homogeneous 
QI      = [QI; 0]; 
QO      = [QO; 0]; 
% Testing part of run: %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%dTdt    = (TIr(2,1) - TIr(1,1))/Dt 
%QI      = [QI; (mw*cw + Ng*Cpg)*-dTdt]; 
%QO      = [QO; (mw*cw + Ng*Cpg)*-dTdt*2.873]; 
%pause; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for i   = 1:(M-2) 
%for i   = 1:194 
    T   = AI*Y; 
    TI  = [TI; T(1,1)]; 
    TW  = [TW; T(2,1)]; 
    TIp = [TIp; TIr((i+1),1)]; 
    TOp = [TOp; TO((i+1),1)]; 
    Tnp = T((N+2),1); 
    qI  =  -k*A_half*(T(3,1) - T(2,1))/Dr; 
    QI  = [QI; qI]; 
    qO  = -k*A_nhalf*(T(N+2) - T(N+1))/Dr; 
    QO  = [QO; qO]; 
    Y   = T; 
    %pause; 
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    Y((N+2), 1) = Tnp + 2*BiO*Fo*TO((i+2),1); 
    %Y 
    %pause; 
    t   = t + Dt; 
    Time    = [Time; t]; 
end 
t 
     
% Figure 1 = heat rate plots 
figure(1); 
plot(Time, QI);      % Blå - inner 
hold; 
plot(Time, QO, 'r');    % Rød - outer 
%plot(Time, QOm, 'g');   % Grønn - målt/estimert fra kappemålinger 
hold; 
  
% Figure 2 - temperature vs. time plots 
figure(2); 
plot(Time, TI);     % Simulert (= blå) 
hold; 
plot(Time, TOp, 'r'); % målt = rød 
plot(Time, TIp, 'g'); % målt = grønn 
%plot(Time, TW, 'y'); 
hold; 
  
% Figure 3 - wall temperature profile at end 
figure(3); 
plot(R, T);    
%axis([0, 0.045, 14, 18.5]); 
 

Appendix B.3.2: “Golden Search” method 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Golden section procedure to find the hI that minimizes variance between 
% measured and simulated temperature time series for "slurry tests". hO 
% must be set to a predefined value. 
  
  
global TIr TO 
  
hO  = 1000  %W/m2 K 1000 is obtained by correllations for thermal entry  
            % lenght [Ref. Kays and Crawford] 
  
conv    = 1e-5; 
% hI expected to fall between the values A and B 
A   = 1.0;  %W/m2K 
B   = 10000; 
  
R   = (sqrt(5) -1)/2; 
  
% Initialize: 
x   = A + R*(B - A); 
u   = heat_trans_slurry_f(x, hO); 
y   = A + R^2*(B - A); 
v   = heat_trans_slurry_f(y, hO); 
% Testing: 
while abs(x - y) >= conv 
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    if u > v 
        B   = x; 
        x   = y; 
        u   = v; 
        y   = A + R^2*(B - A); 
        v   = heat_trans_slurry_f(y, hO); 
    else 
        A   = y; 
        y   = x; 
        v   = u; 
        x   = A + R*(B - A); 
        u   = heat_trans_slurry_f(x, hO); 
    end 
end 
hI = x 
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Appendix C: Raw Data 

Appendix C.1: Baseline 
  Cell #0     
Baseline  (0 % of the stochiometric conc.) 
Rotational speed [RPM] 0 500 1000 
h #1 [W/m2 K] 86,92 233,86 222,86 
h #2 [W/m2 K] 87,12 235,97 222,31 
h #3 [W/m2 K] 88,05 233,15 209,91 
h mean[W/m2 K] 87,36 234,33 218,36 

 
 
  Cell #5     
Baseline  (0 % of the stochiometric conc.) 
Rotational speed [RPM] 0 500 1000 
h #1 [W/m2 K] 77,06 297,03 251,40 
h #2 [W/m2 K] 80,68 307,78 256,97 
h #3 [W/m2 K] 83,90 319,23 249,36 
h mean [W/m2 K] 80,54 308,02 252,58 

 

Appendix C.2: THF 
  Cell #0     
20 % THF (20 % of the stoichiometric conc.) 
Rotational speed [RPM] 0 500 1000 
h #1 [W/m2 K] 69,60 170,09 131,97 
h #2 [W/m2 K] 70,44 168,29 142,21 
h #3 [W/m2 K] 70,02 171,44 122,04 
h mean [W/m2 K] 70,02 169,94 132,07 

 
  Cell #0     
40 % THF (40 % of the stoichiometric conc.) 
Rotational speed [RPM] 0 500 1000 
h #1 [W/m2 K] 48,80 56,80 83,06 
h #2 [W/m2 K] 38,91 57,56 76,73 
h #3 [W/m2 K] 35,55 64,46 91,70 
h mean [W/m2 K] 41,09 59,61 83,83 

 
 
  Cell #0     
60 % THF (60 % of the stoichiometric conc.) 
Rotational speed [RPM] 0 500 1000 
h #1 [W/m2 K] 37,86 49,18 50,92 
h #2 [W/m2 K] 28,57 43,14 48,02 
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h #3 [W/m2 K] 23,55 47,43 43,54 
h mean [W/m2 K] 29,99 46,59 47,49 

 
  Cell #0     
80 % THF (80 % of the stoichiometric conc.) 
Rotational speed [RPM] 0 500 1000 
h #1 [W/m2 K] 35,47 35,95 49,33 
h #2 [W/m2 K] 36,66 34,08 55,88 
h #3 [W/m2 K] 35,94 61,80 59,36 
h mean [W/m2 K] 36,03 43,94 54,86 

 
  Cell #0     
100 % THF  (100 % of the stoichiometric conc.) 
Rotational speed [RPM] 0 500 1000 
h #1 [W/m2 K] 39,73 34,58 36,16 
h #2 [W/m2 K] 38,99 34,45 37,25 
h #3 [W/m2 K] 38,51 42,13 39,29 
h mean [W/m2 K] 39,08 37,05 37,57 

 
  Cell #5     
40 % THF (40% of the stoichiometric conc.) 
Rotational speed [RPM] 0 500 1000 
h #1 [W/m2 K] 17,33 65,19 105,34 
h #2 [W/m2 K] 17,78 74,79 100,97 
h #3 [W/m2 K] 16,40 76,03 184,04 
h mean [W/m2 K] 17,17 72,00 130,12 

 
  Cell #5     
80 % THF (80 % of the stoichiometric conc.) 
Rotational speed [RPM] 0 500 1000 
h #1 [W/m2 K] 19,69 21,65 21,05 
h #2 [W/m2 K] 20,27 24,56 26,25 
h #3 [W/m2 K] 20,39 19,11 26,79 
h mean [W/m2 K] 20,12 21,77 24,70 

Appendix C.3: EO 
  Cell #0     
20 % EO (20 % of the stochiometric conc.) 
Rotational speed [RPM] 0 500 1000 
h #1 [W/m2 K] 77,11 88,90 87,87 
h #2 [W/m2 K] 82,18 98,25 82,52 
h #3 [W/m2 K] 81,54 90,42 83,35 
h mean [W/m2 K] 80,28 92,52 84,58 
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  Cell #0     
40 % EO (40 % of the stochiometric conc.) 
Rotational speed [RPM] 0 500 1000 
h #1 [W/m2 K] 80,00 67,57 62,41 
h #2 [W/m2 K] 82,79 73,29 52,20 
h #3 [W/m2 K] 78,83 68,39 57,78 
h mean [W/m2 K] 80,54 69,75 57,46 

 
  Cell #0     
60 % EO (60 % of the stoichiometric conc.) 
Rotational speed [RPM] 0 500 1000 
h #1 [W/m2 K] 112,22 69,07 52,67 
h #2 [W/m2 K] 110,00 75,08 53,95 
h #3 [W/m2 K] 124,93 72,74 54,69 
h mean [W/m2 K] 115,71 72,30 53,77 

 
  Cell #0     
80 % EO (80 % of the stoichiometric conc.) 
Rotational speed [RPM] 0 500 1000 
h #1 [W/m2 K] 215,69 197,73 158,38 
h #2 [W/m2 K] 214,16 189,05 156,23 
h #3 [W/m2 K] 219,03 180,62 153,60 
h mean [W/m2 K] 216,29 189,13 156,07 

 
  Cell #0     
100 % EO (100 % of the stoichiometric conc.) 
Rotational speed [RPM] 0 500 1000 
h #1 [W/m2 K] 120,80 112,83 93,65 
h #2 [W/m2 K] 118,05 90,13 92,97 
h #3 [W/m2 K] 117,68 93,82 91,47 
h mean [W/m2 K] 118,85 98,93 92,70 

 
  Cell #5     
40 % EO (40 % of the stoichiometric conc.) 
Rotational speed [RPM] 0 500 1000 
h #1 [W/m2 K] 41,10 86,90 96,70 
h #2 [W/m2 K] 35,11 114,17 95,44 
h #3 [W/m2 K] 60,29 100,48 93,29 
h mean [W/m2 K] 45,50 100,51 95,14 

 
  Cell #5     
80 % EO (80 % of the stoichiometric conc.) 
Rotational speed [RPM] 0 500 1000 
h #1 [W/m2 K] 76,99 81,11 92,39 
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h #2 [W/m2 K] 78,97 92,20 89,57 
h #3 [W/m2 K] 73,95 99,84 85,73 
h mean [W/m2 K] 76,64 91,05 89,23 

 
Means that the value can be affected by fluctuaction in HCS. 
Means that the value isn`t 100 % certain the minimum 
variance. 
Means that it may be melting/formation phenomenon during 
HSC. 

(This is shown in figure 20.) 
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