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Abstract 

Thermomechanical Cuttings Cleaner – Qualification for Offshore 

Treatment of Oil Contaminated Cuttings on the Norwegian Continental 

Shelf and Martin Linge Case Study 

 

Jan Ormeloh, MSc. Well Engineering  

University of Stavanger, 2014 

 

The aim of this thesis is to introduce and qualify the Thermomechanical Cuttings 

Cleaner (TCC) technology for treatment of oil contaminated cuttings on the Norwegian 

Continental Shelf (NCS) with particular reference to the Martin Linge field development. 

In the first part, a summary of drilling waste, related regulation and waste 

management techniques is given to present the possible treatment and disposal options of 

oil contaminated cuttings. 

The thesis then informs about the TCC technology in detail. In the next section 

the TCC’s treatment capacity and efficiency is verified by means of field data analysis. 

Both environmental considerations and TCC field experience are taken into account to 

qualify the TCC technology for use. In the last section the TCC cuttings treatment is 

compared to cuttings re-injection and skip & ship solution with the aim to find and 

implement the best cuttings treatment solution at the Martin Linge field. 

In Conclusion, the thesis argues that the TCC technology qualifies for use on NCS 

and outlines it to be the best cuttings handling solution for the Martin Linge field 

development with regards to HSE-, cost and operation reliability considerations. The 

author recommends the implementation of the TCC technology as presented in the thesis. 
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Chapter 1:  Introduction  

The aim of this thesis is to introduce and qualify the Thermomechanical Cuttings 

Cleaner (TCC) technology for treatment of oil contaminated cuttings on the Norwegian 

Continental Shelf (NCS) with particular reference to the Martin Linge field development. 

 

1.1 Background of the Thesis and Problem Formulation 

Oil and gas wells are drilled with rotating drill bits (Skaugen, 1997). The drill bit 

is situated at the bottom of the drill stem which consists of several hollow pipes. The 

main functions of the drill stem are a) to provide weight to press the bit against the 

formation and b) to enable mud circulation. If weight and rotation is applied on the drill 

bit it crushes or cuts the formation. The crushed formation is called drill cuttings and 

needs to be transported to surface to enable further drilling progress. For this and other 

purposes as for example bit cleaning, bit cooling and cuttings suspension during pump 

stops, drilling mud is circulated down the drill stem. It enters the well through bit nozzles 

and transports the cuttings up the annulus, the space around the drill stem. At surface the 

drill cuttings are as far as possible separated from the drilling mud by means of shakers, 

hydrocyclones and/or centrifuges. Some mud will always adhere to the drill cuttings 

which are not used in the further drilling process and considered as drilling waste.  

Until 1992, all cuttings were directly discharged to sea (Kaland, 2011). Cuttings 

contamination due to the use of oil based mud and the following discharge to sea resulted 

in environmental harm and large cutting piles around the platforms of the Norwegian 

Continental Shelf. Increasing environmental concerns led to the prohibition of this 

practice through implementation of new regulatory requirements for the discharge of 

cuttings. The regulation states that cuttings should not be discharged when the content of 
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reservoir oil or base oil from the drilling fluid is higher than 10gr per kg of dry mass 

(Aktivitetsforskriften, 2013). Therefore the cuttings are either slurrified and re-injected 

into a suitable formation for storage or shipped to land for treatment and final disposal at 

approved sites (Kaland, 2011). Even though these cutting handling solutions are field 

proven, the oil and gas industry is meeting challenges.  

During the last years, cuttings re-injection was decreased or has stopped 

completely at several fields due to slurry leakages to surface which lead to environmental 

harm (NPD, 2011). The cost and emissions due to the drilling of dedicated cuttings re-

injection wells are high and the waste volume to be disposed is increased due to 

slurrification of cuttings. The alternative shipment of cuttings is logistical demanding and 

can stop the drilling operation when weather conditions prevent the cuttings to be loaded 

onto supply vessels (Svensen, 2011). Furthermore, several crane lifts are necessary to 

transport the cuttings. Each lift implies the risk of falling objects and should be avoided.  

Thus, operators have been seeking for alternative cutting handling options for oil 

contaminated cuttings and identified the Thermomechanical Cuttings Cleaner (TCC) as 

the most promising one. The TCC is a thermal desorption unit which separates the 

incoming waste into water, oil and solids (Thermtech,2014). The solid part of the cuttings 

is transformed into a dry powder which fulfils the requirements for offshore cuttings 

discharge while the in the process recovered oil can be re-used as base oil for new drilling 

mud. The TCC technology was authorized and taken in use both on-, and off-shore by the 

United Kingdom where it is considered as field proven technology (OIC, 2007). To date 

the TCC is solely used for onshore treatment of oil contaminated cuttings in Norway, but 

Total E&P is willing to implement the TCC technology offshore at the Martin Linge 

field. Various papers have been written on this subject. Kleppe described the TCC’s 

treatment principle, separation process, energy demand and recovered oil quality 
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(Kleppe, 2009), while Kirkness et al. presented the drivers for offshore cuttings treatment 

and revealed the development process of the TCC for offshore use (Kirkness, 2008). 

However, detailed information about the TCC’s efficiency, real treatment capacity and 

environmental considerations is missing in these papers and requires further 

investigation. Therefore, this thesis addresses and answers following issues: 

 Is the TCC cuttings treatment in compliance with the regulations at the NCS? 

 Does the theoretical treatment capacity of TCC match the observed values? 

 Is the environmental impact due to TCC cuttings treatment acceptable? 

Issues to be answered with regards to Total E&P’s Martin Linge field development: 

 Is offshore TCC cuttings treatment the best option for the Martin Linge field? 

 Can the TCC technology be implemented on the Mærsk Intrepid jack-up? 

 

1.2 Objective of the Thesis 

The aim of this thesis is to introduce and qualify the Thermomechanical Cuttings 

Cleaner technology for offshore treatment of oil contaminated cuttings on the Norwegian 

Continental Shelf with particular reference to the Martin Linge field development. 

This will be achieved through:  

(1) reviewing information about drilling waste,  

(2) obtaining overview over regulations for offshore discharge of cuttings & mud,  

(3) procuring an overview of the TCC technology,  

(4) verifying the TCC technology through field data analysis,  

(5) presenting environmental studies,  

(6) screening field experience reports,  

(7) evaluating the different cuttings treatment solutions for the Martin Linge field 

and planning the implementation of the TCC system on the Mærsk Intrepid rig. 
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Chapter 2:  Drilling Waste 

 In this chapter the types of drilling waste and its quantity are presented to show 

the need for adequate waste handling solutions. 

 

2.1 Types of Drilling Waste 

“Drilling waste” is defined as the by-product of drilling activities which can be 

harmful for the environment (Svensen, 2011) and comprises Drilling Cuttings, Used 

Drilling Fluid, Slop and Oil Contaminated Mass (DNV, 2013). 

Drilling Cuttings are drilled out formation material which is contaminated by 

adherent drilling fluid. 

Drilling Fluid or drilling mud is defined as any fluid or mixture of fluids and 

solids that is used to drill wellbores into the earth (Schlumberger, 2014). Its composition 

may change during the drilling operation due to for example the accumulation of solids, 

salt contamination, and influx of acid gases (Baker Hughes, 2010). The adverse effects 

caused by fluid contamination might lead to the point where the drilling fluid cannot 

perform its task and will be characterized as drilling waste.  

Slop denotes oil and water emulsions. Examples are drilling-, or displacement-

fluids, water from the cleaning process of equipment/tanks and drilling fluid 

contaminated rain water entering the drain system on the rig floor or mud pit area. 

(Massam et.al, 2013).     

Oil contaminated mass from drilling activities is mainly produced through slot 

recovery performed in platform drilling and plug and abandonment operations. These 

operations generate swarf, which describes milled steel chips. Other waste reported as oil 

contaminated mass comes mainly from production and maintenance activities and 
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comprises oil filters, cleaning fabrics, used gloves, tank deposits and further stable 

material (DNV, 2013). This type of waste has to be sent to land where it is treated and 

disposed in accordance to the Pollution Law. 

 

2.2 Quantity of Oily Drilling Waste on NCS 

The quantity of oily drilling waste depends strongly on the used drilling mud 

which will be chosen taking technical, environmental and economical parameters into 

consideration (Svensen, 2011).  

 

2.2.1 Historical Development of Oily Drilling Waste 

Even though the operators made an effort to reduce the amount of oily drilling 

waste by for example pledging the mud suppliers to purchase the drilling fluids after use, 

(Svensen, 2011) the amount of generated oily drilling waste (cuttings and mud) has been 

relatively stable as presented in Table 1 and Figure 1 (DNV, 2013). In the time period 

from 2006 to 2009 it averaged out at 223.050 tons per year whereof around 46% was 

injected and 54% taken to shore for treatment.  

The turning point came in the year 2010 which introduced a rapid growth 

resulting in 284.179 tons of cuttings and mud from which only 8.8% were injected in the 

year 2011. In consequence 91.2% have been treated onshore. The growth in onshore 

treatment can be traced to problems with injection wells and the extended use of oil based 

mud (OBM) for drilling. Technical problems forced several operators to decrease the 

waste injection rate. Instead of injecting the waste, it was slurrified and sent to shore for 

treatment. To counteract this development, a couple of new injection wells have been 

drilled and the slurryfication has been decreased through alternative cutting handling 

solutions during the years 2012 and 2013. 
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In Table 1 an overview of the reported waste volumes is given:   

 

 2006 2007 2008 2009 2010 2011 

Drilling waste Onshore 100920 119396 129984 131348 231741 259010 

Drilling waste Injected 112638 103622 100927 93368 54376 25169 

Slop treated Onshore 7875 6783 8642 12695 19451 34338 

Oil contaminated mass 1436 2399 2526 2479 2260 3266 

Totalt  222869 232200 242079 239890 307828 321783 

Table 1: Development in amount of drilling waste, slop and oil contaminated 
mass given in tons (DNV, 2013)   

 

 

 

The following figure illustrates the increasing trend of the drilling waste generation: 

 

 

Figure 1: Amount of drilling waste, slop and oil contaminated mass (DNV, 2013) 

 

0 

50000 

100000 

150000 

200000 

250000 

300000 

350000 

2006 2007 2008 2009 2010 2011 

Drilling Waste Overview 

DrillingWasteOnshore 

DrillingWasteInjected 

SlopTreatedOnshore 

OilCont.Mass Onshore 

TotalWaste 

Year 

Tons 



 

 

Chapter 2  Drilling Waste 

 7 

Regarding slop that was treated onshore, the amount has increased by 436% in the 

years between 2006 and 2011. This increase needs to be interpreted with caution since 

slops often are mixed with and registered as drilling fluid waste due to tank capacity 

problems on the rig. The amount of oil contaminated mass is relative stable since it is 

mostly dependent on field production.  

The increase of oil contaminated mass seen in 2011 is due to an increase of casing 

milling where the swarf, fine milled steel, is reported as oil contaminated mass. 

 

2.2.2 Prognosis for Onshore Oily Waste Treatment and Disposal 

The general trend is to drill longer and more demanding wells which necessitate a 

drilling fluid offering both optimum wellbore stability and drilling efficiency (Svensen, 

2011). Since OBM delivers better results than water based mud (WBM) regarding 

technical parameters, the generation of oily drilling waste is likely to increase.  

Det Norske Veritas (DNV) has performed a study in 2013 on behalf of the 

Norwegian Oil and Gas Association (NOROG) to predict the development of the 

generation of oily waste on the NCS in the coming years (DNV, 2013). Based on 

historical data and Norwegian Petroleum Directorate’s (NPD) prognosis for future 

drilling activity, a prognosis regarding the oily waste generation has been elaborated 

which was focusing on the waste to be treated onshore to see if the treatment capacity 

was sufficient in the time period from 2012-2017.   

Further, three cases were established: 

 Maximum case with more waste than expected and little re-injection: 

 Minimum case with less waste than expected, high re-injection and 

offshore treatment of cuttings from 2013 with TCC: 
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 Most reliable case based on average waste volume of the years 2009 and 

2010, expected reinjection level and introduction of TCC offshore in 2013.  

Note that the offshore cuttings treatment with the TCC has not started yet. 

Therefore the real amount of cuttings will most likely be between the most reliable case 

and the maximum case. To access if there is sufficient treatment capacity, it is advisable 

to assume a worst case scenario which is the maximum possible amount of oily waste to 

be treated in the time period considered. This would be ca. 145.000 ton drill cuttings and 

260.000 ton mud/slop in the year 2017. These need to be treated and disposed according 

to the governing regulations presented in chapter 3. 

 

 

 

 

 

 

 

 

 

 

 



 

 

Chapter 3                        Regulations for Discharge of Mud & Cuttings and Chemical Use 

 9 

Chapter 3:  Regulations for Discharge of Mud & Cuttings  

and Chemical Use  

The offshore environmental legislation in the western European states rest upon 

the Convention for the Protection of the Marine Environment of the North-East Atlantic 

(called OSPAR) (Wills, 2000). OSPAR is the platform where 15 European governments 

meet with the European Union to work for the protection of the marine environment of 

the North-East Atlantic (OSPAR1, 2014). OSPAR’s Offshore Industry Committee (OIC) 

is responsible for the implementation of work with regards to the oil and gas industry 

(OSPAR2, 2014). 

 

3.1 OSPAR  

The most important principles of OSPAR are the precautionary-, and polluter 

pays-principle (OSPAR3, 2014). Moreover the best available techniques (BAT) and best 

environmental practices (BEP) need to be applied to eliminate or at least limit pollution  

The precautionary principle implies that preventive measures need to be taken as 

soon as negative consequences for the environment are likely. Therefore a scientific 

proof is not necessary. The polluter pays principle states that the polluter needs to pay for 

pollution prevention, control and introduce reduction measures.  

On this basis the OSPAR convention and commission have worked out the 

decisions and recommendations presented in Table 2 which Norway, the United 

Kingdom and the other contracting parties have to follow up (OSPAR, 2010). 

Decision 2000/3 (OSPAR4, 2014) counteracts pollution through organic-phase 

drilling fluid (OPF).  It requires the operator to obtain permission to use OPF while the 

use of diesel in drilling fluids in general and the discharge of OPF to sea are banned.  
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Table 2: OSPAR measures to manage pressures from offshore oil and gas 
industry (OSPAR, 2010)  

 

Regarding offshore discharge of cuttings the maximum concentration of oil based fluid 

on dry cuttings is set to one percent by weight. The disposal of cuttings contaminated 

with synthetic fluids shall not be granted if it is not absolutely required with regards to 

BAT and BET. 

Decision 2000/2 shall ensure that hazardous substances are substituted and reduce 

the impact of chemicals used offshore. This shall be achieved through the application of a 

designated management system which introduces permits for use and discharge of 

chemicals. The authorities shall encourage the operators to use non-hazardous substances, 

avoid discharges, develop better alternatives and reduce the use of chemicals in general. 

Recommendation 2005/2 steers the phase out of chemicals which are standing on 

the OSPAR2004 list of chemicals for priority action. These are phased out due to their 

properties including toxicity, degradability and/or their potential for bio-accumulation. 

No permission for use of these chemicals should have been given since the 1. January 

2010.    
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Recommendation 2006/3 sets the target for the phase-out of chemicals identified 

for substitution to 1. January 2017. Until then the industry shall have found substitutes.  

The OIC has been discussing whereas the TCC technology presented in this thesis 

is to be considered as BAT for handling of oil contaminated cuttings offshore or not 

(OIC, 2007). While the UK wanted to characterize the TCC technology as BAT, 

Denmark required more information about the technology and to the author’s knowledge 

no decision has been made yet. 

 

3.2 Norwegian Continental Shelf  

Norway’s legislation is strongly influenced by OSPAR since Norway is a 

contracting party. The use and discharge of drilling fluids and cuttings is governed by the 

Norwegian Environment Agency through discharge permits, (Wills, 2000) which are 

given in accordance to the Pollution Law (Forurensingsloven, 2013). 

The evaluation of discharge applications is based among others on the Activity 

Regulations which describe how activities in the Oil and Gas Industry shall be performed  

(Aktivitetsforskriften, 2013). Paragraphs concerned with discharges to the environment 

are found in chapter eleven and a short version of selected paragraphs is given below: 

§60 – Discharge of oil containing water, states that the oil content in discharged 

water shall be as low as possible and not overcome 30mg oil per liter in monthly average. 

The treatment process shall give the best environmental effect regarding both cleanliness 

of water and chemical use in the process. A discharge Permit is necessary in compliance 

with the Pollution Law. 

§62 - §65 deal with the testing, categorization, environmental considerations and 

final choice of chemicals. Chemicals which pose lowest possible environmental risk shall 

be chosen as long as it is possible with respect to safety and technical reasons. 
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§66 – Use and discharge of chemicals, require a permit in accordance to the 

Pollution law and shall be reduced as much as possible. The discharge of unused 

chemicals is prohibited. The chemicals used shall have least possible contaminants.  

§68 – Discharge of cuttings, sand and solid particles, states that these should not 

be discharged when the content of reservoir oil, other oil or base oil of the drilling fluid is 

higher than 10gr per kg of dry mass.  

Recommended guidelines for waste management in the offshore industry are 

provided by the Norwegian Oil and Gas Association (Norwegian Oil and Gas, 2013). 

Since the TCC technology has not been used for treatment of oil contaminated 

cuttings on the NCS yet and experience with this offshore handling solution is missing, a 

dedicated paragraph for the offshore discharge of TCC treated cuttings is missing and   

§68 should apply. 

 

3.3 United Kingdom Continental Shelf 

The legislation of the United Kingdom is based on the decisions and regulations 

of the OSPAR commission since the UK is a contracting party (OSPAR1, 2014).  

The UK key regulations that ensure compliance with OSPAR are the Offshore 

Chemical Regulations 2002 and the Offshore Petroleum Activities Regulations 2005 (Oil 

& Gas UK, 2013). The later regulations introduce a permit system for discharges, 

amongst others for drilling mud and cuttings which is called Oil Pollution, Prevention 

and Control (OPPC) (DECC, 2013).  An overview of drilling discharges which require an 

OPPC Permit is given in Table 3. The application for Permits is to be send to the 

department of energy & climate change (DECC). It needs to contain a BAT/BEP 

assessment, information about expected environmental impact and quantities of oil, water 

and solids which are planned to be discharged. 
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Discharges Comments 

Hazardous drainage system - 

Non Hazardous drainage system - 

Drill cuttings and associated drilling 

fluids 

Covers reservoir hydrocarbons. Drill mud regulated 

through Offshore Chemical Regulations only. 

Drill cuttings and associated drilling 

fluids - injection 

As above 

Minor discharges General permit is required 

Table 3:  Drilling discharges which require OPPC permit (Oil & Gas UK, 2010) 

The Offshore Chemical Regulations 2002 deal with the use and discharge of 

chemicals including drilling fluids. To obtain a chemical discharge permit, a Petroleum 

Operation Notice 15 (PON15) which ensures that environmental considerations are taken 

and all other requirements are fulfilled, needs to be submitted to DECC (DECC, 2011). 

The Environmental legislation shall involve the general public and representative 

organizations (Wills, 2000).  Therefore a non-technical summary shall follow every 

technical report and a public notice needs to raise awareness of the planned activity. 

During a time period of four weeks, the public is invited to comment on the planned 

activities. All comments will be accounted for in the evaluation process. 

It is important to note that cuttings contaminated with a low toxic oil and which 

have been treated so that the oil content is less than one percent per weight are falling 

under the Offshore Chemical Regulations 2002 and do not require an OPPC Permit. This 

is the case for TCC treated cuttings. The TCC technology is considered as BAT for oil 

contaminated cuttings treatment offshore (OIC, 2007) and is one of the waste 

management option which will be presented in chapter 4. 
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Chapter 4:  Waste Management    

 

Due to increasing focus of politics and society on the environmental impact of the 

oil and gas industry, Waste Management is necessary for gaining future access to markets 

where changes in the regulations described in chapter 3 are expected to sharpen the 

access requirements (Brantley, 2013). The best way to avoid waste is to reduce its 

production at source or reuse it (EPA, 2013). This approach both reduces pollution and 

saves money. If this is not a valid option it should be recycled, e.g. the waste should be 

decomposed into its primary components which can be remanufactured into new 

products. Non-recyclable waste can be converted into usable heat, fuel or electricity. First 

when these possibilities are exhausted a treatment and disposal of the waste shall take 

place.  

Report 093 Recommended guidelines for waste management in the offshore 

industry, provided by the Norwegian Oil and Gas Association, is a general guide that 

interprets the Norwegian legislation and offers information about waste prevention and 

effective waste management as seen in Figure 2 (Norwegian Oil and Gas, 2013).  

       

Figure 2: Waste Management Hierarchy (Norwegian Oil and Gas, 2013) 
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Waste Prevention should start in the design phase of operations. A general 

awareness for how waste is created, implementation of BAT/BEP and waste reducing 

processes are necessary to avoid waste generation. The two major options for waste 

management in the drilling process are (1) used Drilling Techniques and (2) treatment 

and disposal techniques for drill cuttings and drill mud. 

 

4.1 Drilling Techniques to Prevent Waste 

Regarding drilling waste, the biggest contributors are drilling cuttings and 

mud/slops. Reduction strategies include the use of chemicals with least possible 

environmental impact, application of “slimhole” design and avoidance of slurrification. 

 Since a part of Drilling mud will always adhere to drilling cuttings, the used 

chemicals have an impact on the handling and treatment of the drill cuttings (Speirs, 

2009). In order to reduce the environmental impact of drilling waste it is therefore a good 

strategy to use chemicals with the lowest possible toxicity, high biodegradability and 

which do not tend to bioaccumulate.  In general, WBM is less polluting and generates 

less drilling waste than OBM (Attia, 2010). Regarding the recent development of high 

performance water based mud (HPWBM) which approaches the expected drilling 

performance of OBM, the replacement should be considered for all sections OBM was 

the preferred solution in the past 

Slim hole design describes the drilling of wells with smaller diameter in 

comparison to conventional wells (NPD, 2011). Downsizing of the well diameter has a 

high potential for reducing cuttings volume, chemical-, and cement- usage.  Since the 

reduced diameter leads to a higher pressure drop in the well, this technique is rather used 

for exploration wells than production wells. The development and use of expandable 

casings might enable an increased use of slim hole drilling in the future. 
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Monobore well design is a slim hole design which keeps the well diameter 

constant during the whole drilling process.  The casing used has a smaller diameter and is 

of a special steel quality that allows it to be expanded as soon as it is in place. This 

method reduces the drilling waste by up to 50% and is especially useful when there is a 

need for many casing strings to reach the reservoir.  

Another strategy to reduce drilling waste lies in the reduction of the number of 

well sections. A Large well diameter section will be replaced with a longer small 

diameter well section, e.g. replacement of 26” section with a longer 17 ½” section. This 

might reduce the generated drilling waste by up to 50% in this section and will save steel 

used for the casing. The application of this waste reduction strategy is depending on 

formation properties and the mud-weight window. 

Multilateral well design comprises several lateral wells which are starting from 

one main wellbore close above the reservoir instead of the surface. This results in less 

number of wells, cuttings, chemical-, and cement-usage but requires more complex 

completion solutions if the production of different zones shall be steered. 

Slurrification of cuttings should be avoided since the volume of waste becomes 

five to six times as large due to the addition of water (Svensen, 2011). 

Re-use of drilling mud can be encouraged by obligating the fluid supplier to take 

the drilling fluids back after the operation. Therefore the maximization of profit comes 

along with a drilling fluid that is designed for re-use and that implies waste reduction.  

Another possibility to increase the re-use of drilling mud is the use of MudCubes instead 

of the conventional shale shakers (NPD, 2011). MudCubes recover the drilling mud with 

help of a vacuum that sucks the drilling fluid through a finely woven steel mesh while the 

cuttings and particles will stay on top of it and will be transported further. This technique 
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has operational benefits since it is vibration free resulting in less noise and the MudCubes 

are closed avoiding health damaging vapors in the working area. 

Slops should be collected in dedicated storage tanks. The mixing of old drilling 

mud and slops should be avoided to enable the recovery of the most valuable content of 

the mixture, the base oil (DNV, 2013).  

 

4.2 Treatment and Disposal Techniques for Drilling Waste 

Primary solid control has the aim to maximize the recovery of Drilling Fluid 

while removing the drilled solids efficiently (MI Swaco, 2010). Thereby it reduces the 

overall cost of the well. In a first step, shale shakers are used to separate as much of the 

drill cuttings as possible from the drilling fluid. Fines that are not discarded by the shale 

shaker can be eliminated by hydro cyclones and centrifuges.  There are several different 

techniques available to separate organic components from drill cuttings. These techniques 

need to be tailored and combined to achieve the best possible result. This is necessary in 

order to meet the tightening environmental rules which are the driving force behind the 

recent developments of treatment and disposal techniques (Pierce, 2006). Other factors 

that govern the choice of cuttings treatment are the operators’ environmental standards, 

cost, safety and logistics (Kirkness, 2008). Oil companies became in recent years more 

concerned about the environmental impact of their activities and started to establish own 

environmental standards which regulate among others the disposal of OBM contaminated 

solids. The high cost of OBM makes it generally economical to take measures to recover 

the oil from the cuttings. If the drilling waste is treated with a thermal desorption unit the 

oil and water can be recovered and under circumstances be used in new drilling mud 

(Stephenson, 2004). Safety regarding the treatment and disposal technique is increased 

when the transfer of large quantities of drill cuttings can be avoided, especially when 
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cranes are involved in the operation (Kirkness, 2008). The same transfer of cuttings to 

land processing facilities implies logistical problems when it comes to weather 

limitations. These can in turn stop the drilling operation. As stated in section 3.4, the 

recovery of drilling mud or at least its energy is to be preferred in comparison to disposal.  

An overview of the available treatment and disposal techniques including possible 

offshore usage, cleaning/disposal mechanism and usable end product is given in Table 4. 

 

Method Offshore usage 
Cleaning/Disposal 

Mechanism 
Usable End 

Product 

Incineration No 
Oxidation or combustion of 

organic components 
- 

Indirect Thermal 

Desorption 
No 

Evaporation and 

Condensation of oil and 

water 
Oil as fuel 

Thermomechanical  

Cuttings Cleaner 
Yes 

Evaporation and 

Condensation of oil and 

water 

Oil as new base 

oil/ oil as fuel 

Bioremediation/ 

No Biodegradation - 
Landfarming 

Dispersion by 

chemical reaction 
No 

Solidification, oil/metals 

stabilized in cuttings matrix 
Construction 

material 

Cuttings Dryer Yes 
Centrifuge forces 

mud/solids separation  
- 

Cutting Re-

Injection 
Yes 

Injection of slurrified 

cuttings into formation 
- 

Microwave 

Treatment 
Yes 

Magnetic field transfers 

energy to water.  
Oil as new base oil 

Liquefied Gas 

Extraction 
No 

Liquefied HC gases solve 

and remove oil 
Oil as new base oil 

Table 4: Overview of Cuttings Treatment and Disposal Techniques  
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4.2.1 Land 

Treatment at land might make use of high temperature, natural occurring bacteria 

& fungi or chemicals to recover, disintegrate or capture organic matter. 

 

4.2.1.1 Incineration 

Incineration describes the oxidation or combustion of organic components of 

waste. One example is the use of rotary kilns where the drilling waste is treated at 

temperatures between 1200 and 1500 degree Celsius resulting in a material which is less 

harmful (Ifeadi, 2004). On the contrary, incineration is not suitable for the treatment of 

inorganic components of waste like metals which will only oxidize and leave the process 

as ash or vapor. The ash needs to be disposed in a prudent manner while the metals can 

be removed from the vapors by air pollution control equipment prior to discharge. 

It is considered to be a robust treatment for drilling cuttings (DNV, 2013). 

However, slurrified cuttings that shall be incinerated will require additional energy 

supply.  On top of that it is a very energy intensive treatment option where only a part of 

the heat energy can be recovered for other purposes and a high amount of CO2 and NOx 

is generated (Thermtech, 2010). 

 

4.2.1.2 Thermal Desorption 

In thermal desorption a distillation process is used to achieve oil-free solids which 

can be disposed (Stephenson, 2004). In this process free oil & oil-water emulsions are 

evaporated before additional energy is applied to remove the interstitial oil which is 

bound in the interstices by molecular forces and surface tension. Water will evaporate 

first. The formed steam will lower the boiling point of oil. Therefore the process can be 

run at lower temperatures than the boiling point in question.  
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The evaporated fluids are condensed in a two-stage condenser to separate water 

and oil. There are different desorption units on the market: 

 Drum type units use a rotating drum that is warmed up by burners 

 Screw type units circulate hot fluid through the hollow screw and jacket 

 Thermomechanical Cuttings Cleaner is using friction to heat the cuttings 

 Chemical desorption units mix cuttings with acid to generate heat 

The Drum-,and Screw-type units use indirect heat. This requires the temperature of the 

indirect heat source to be higher than the process temperature necessary for evaporation 

of the water and oil contained in the cuttings (Kleppe, 2009). Therefore these types 

require more energy to treat the cuttings than the Thermomechanical Cuttings Cleaner. 

In order to guarantee a good treatment, the feeding of the thermal desorption unit needs to 

be consistent (Pierce, 2006). If the feeding rate is reduced, the temperature might increase 

leading to cracking of the oil. On the other hand, if the feed rate is increased, the 

temperature might drop too much so that the treatment is not able to remove the oil. 

In every thermal desorption unit the oxygen level needs to be kept below eight percent to 

avoid combustion because of the high temperature developed.  

The advantage of these units is that the recovered oil might be reused as base fluid 

for drilling mud (Stephenson, 2004).  If it is not suitable for re-use since high temperature 

and contamination changed its chemical composition or cracking occurred, the recovered 

oil will be used as fuel in the burners of the indirect desorption units. 

 

4.2.1.3 Bioremediation and Land Farming 

Since hydrocarbons are known to be biodegradable, several deposit methods are 

used to enhance the biodegradation of oily waste (Chaîneau, 2002).  
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When bioremediation is applied to oily waste, nutrients are added and an aerobic 

condition is maintained to establish a perfect environment for microbial degrading 

through natural occurring bacteria and fungi. The application of the micro-organisms is 

performed through tilling or spraying (Baker Hughes, 2006) while nutrients are added to 

make up for the insufficient nutrients in oil and enable proper growth of microorganisms 

(Chaîneau, 2002). 

Landfarming describes the process of extensive spreading of drill cuttings on land 

close to the source of cuttings (Ladousse, 1996). The spreading is important to prevent 

negative consequences on the fertility of the soil. A part of the bacteria contained in the 

ground is able to process hydrocarbons and tests have shown that these bacteria 

populations increase in number when hydrocarbons are available. Therefore they are 

capable to clean the soil in a reasonable amount of time.  

Both methods are sensitive to external factors as for example the temperature of 

the environment and are therefore less robust than the other methods (DNV, 2013). 

Furthermore, these methods require a huge land area and do not recover the energy 

contained in the drilling waste (Thermtech, 2010). 

 

4.2.1.4 Dispersion by Chemical Reaction  

Dispersion by Chemical Reaction (DCR) describes a solidification and 

stabilization method which treats the cuttings with dispersant, e.g. hydrophobized 

Calcium Oxide, resulting in a dry solid which can be used as construction material 

(Ifeadi, 2004). This method protects the environment through immobilization of organic 

content and heavy metals in the matrix of the cuttings. All interaction between living 

organisms and these components is therefore successfully suppressed.  
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The DCR treatment consists of two steps. First the cuttings need to get into a 

finely dispersed state to ensure that all contaminants will be treated in the second step 

where the dispersed form is transformed into a dry powder. This method works for oily-, 

-non-aqueous and aqueous solutions. The necessary items are relatively cheap comprising 

mixers, materials and chemicals. It is important to note that the end-product is non-

polluting and can improve the economics of the treatment method. 

The disadvantage implied in the demobilization of the organic content is the 

disuse of its energy. 

 

 

4.2.2 Offshore 

Cuttings treatment and disposal offshore is the most favorable option if 

economical and technical practicable with regards to governing environmental legislation 

(Pereira, 2013). The instant processing of cuttings will reduce the space necessary for 

storage offshore and make the drilling operation less weather depending (Stephenson, 

2004). Separation of drilling fluids and cuttings takes place in centrifuges and 

Thermomechanical Cuttings Cleaners or the drilling waste is simply injected into a 

suitable formation for storage. 

 

4.2.2.1 Cuttings Dryer 

Cuttings Dryers are based on centrifuges which are spinning at high speed to 

remove drilling fluids from the cuttings (Seaton, 2005). Under the best circumstances, the 

dried cuttings contain between two and three percent of oil per weight. This oil level is 

too high regarding to direct discharge of the cuttings with respect to OSPAR Decision 
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2000/3 and further treatment is necessary. The recovered fluid is contaminated by fines. 

Therefore it is unsuitable for re-use as drilling fluid but is well suited to be used as fuel. 

 

4.2.2.2 Cutting Re-Injection  

Cutting Re-Injection (CRI) describes the process of collecting cuttings and waste 

fluids to prepare stable slurry which can be pumped into a formation for permanent 

storage (Alba, 2007). The formation needs to be able to receive large amounts of slurry 

and be isolated by a non-permeable rock to avoid leakage to surface. In general, the 

injection can take place in dedicated injection wells or into the annulus of a producing 

well. Before the cuttings can be injected they need to be transported to the Slurryfication 

System which consists of a coarse tank, classification shaker and fines tank and enables 

the production of slurry with acceptable properties regarding injection. In the coarse tank 

the cuttings are mixed with water by circulation with centrifugal degradation pumps. The 

solids are partly degraded due to impact forces prior to transferring the slurry to the 

classification shaker and grinder for further size reduction. When the particles reach the 

wished particle size, they will move through the screen of the classification shaker and 

enter the fines tank where the slurry is conditioned. After transferring the slurry into the 

holding tank it is ready to be injected using the injection pump. Monitoring of the process 

and injection parameters as injection rate, injection pressure, injection time and shut-inn 

time are required to minimize the operational risk. 

The main advantage is that the waste is stored at the subsurface.  

Nevertheless, problems might occur due to plugging of casing or piping because of 

settling solids and erosion by reason of pumping of solids at high pressure  

(Ifeadi, 2004).  Cuttings/slurry leakages to surface have stopped re-injection at several 

fields and show the need for good planning and risk evaluation before CRI is chosen as 
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disposal technique (NPD, 2011). Moreover, the energy contained in the cuttings is not 

recovered but lost (Thermtech, 2010). 

 

4.2.2.3 Thermomechanical Cuttings Cleaner  

The Thermomechanical Cuttings Cleaner (TCC) is a thermal desorption technique 

which uses friction to heat cuttings. Experience has shown that this treatment can reduce 

the adhered oil on treated cuttings to less than one percent per weight (Amundsen, 2011). 

Therefore the recovered solids are suitable for offshore discharge regarding OSPAR 

decision 2000/3. The mode of operation will be explained in detail in chapter 5: 

Thermomechanical Cuttings Cleaner. 

 

 

 

4.2.3 Other Experimental Techniques 

In this Paragraph two experimental techniques will be presented which are still in 

the development phase and not ready for field use yet. 

 

 

4.2.3.1 Microwave Treatment 

Microwave treatment is a technology under development where a magnetic field 

is developed which interacts with the molecules of the material and transfers energy 

directly to substances with a high dielectric loss factor (Pereira, 2013). The interaction 

with the molecule’s dipole results in a higher rotational momentum and increased 

temperature. The influence of the radiation on materials with low dielectric loss factor or 

conducting materials is limited since it respectively simply passes or gets reflected. This 

selective heating of material results in a lower energy consumption of the microwave 

treatment in comparison to thermal desorption treatments since not the whole matrix 
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needs to be heated up. Applied on drill cuttings it is the water phase which is heated, 

vaporized and drags the hydrocarbons along as it escapes the matrix. A pilot scale 

continuous treatment system has been build using a variable power (5-30 kW) microwave 

generator which enabled the treatment of 400-450kg/h to one percent OBM by weight on 

dry cuttings (Robinson, 2009). When the throughput was reduced, an average of 0.1 

percent OBM by weight on dry cuttings could be achieved. The pilot is scalable and 

therefore the development of a modular offshore treatment system with low space 

requirements and flexible processing rates seems possible. 

 

4.2.3.2 Liquefied Gas Extraction 

Liquefied hydrocarbon gases as propane and butane can be utilized to solve and 

remove oil from cuttings (Seaton, 2005). The first test was performed at ambient 

temperature with butane as solvent at 500psi pressure. An ester/olefin blend on cuttings 

was treated with butane and the oil on the cuttings decreased from 21 to 0.24 percent. 

Analysis of the recovered base fluid showed that its quality was unchanged and could be 

reused in drilling operations. In further testing, propane flowed through a bed of cuttings 

in order to solve the soluble parts. These tests resulted in 0.5 to 4 percent by weight oil on 

cuttings. One identified problem was possible channeling of propane through the cutting 

bed and the test set-up was modified to include mixing through a jar rolling mill. This 

new set-up resulted in less than 1 percent of residual oil on cuttings which qualifies the 

treated cuttings to be discharged to sea in most regions. These tests showed the feasibility 

of liquefied gas extraction, but a system capable of treating cuttings in the field is yet to 

be designed. 
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4.3 Transportation Systems for Drill Cuttings 

A need for transportation of solids and fluids exists both rig internal and as a 

means for transfer to land. For the transportation of drilling cuttings to land, two main 

techniques are available (Svensen, 2011). 

Skip and ship describes the technique where cuttings are moved by blowers or 

conveyors to skips which will be replaced when filled up. For the handling of skips a 

crane is necessary. This solution is easy to implement but has limitations because of the 

needed storage place for skips. The weather limits the loading and back loading of skips 

by use of cranes and boats and therefore can stop the drilling operation or reduce the rate 

of penetration (ROP). Another disadvantage is that several crane lifts per skip are 

necessary. Crane lifts should be avoided in order to decrease the likelihood of falling 

objects and injuries of involved personal (Kirkness, 2008).  

Bulk transfer uses holding tanks for interim storage and pneumatic pumps for 

transfers between tanks or to boats which can be connected to the system by a hose 

(Svensen, 2011). The advantage lies in the avoidance of crane lifts during operation while 

the operation still is limited by bulk space of the tanks and weather conditions which do 

not allow for connection of the hose to the boat for cuttings transfer.   

 Other systems which are used mostly for internal transportation on the rig site are 

gravity collection systems, where the force of gravity alone enables the transfer of 

cuttings and fluids to a lower elevation, and vacuum transportation systems, where a 

vacuum blower unit establishes a vacuum to draw the cuttings and fluids through lines 

(Alba, 2007). 
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4.4 Treatment Capacity Onshore 

The actual treatment capacity for cuttings and mud/slops onshore is estimated to 

be 387000 tons/year and 537000 tons/year respectively in 2014 (DNV, 2013). These 

values are of theoretical nature. In reality, the given treatment capacity might be less than 

stated since it is a function of the chemical composition of the waste, steady delivery to 

the treatment facilities, maintenance-, and operation stops. Especially the slurrification of 

cuttings could roughly reduce the treatment capacity by up to 30% according to the 

service companies. This would result in a new treatment capacity for cuttings of 270900 

tons/year. Since the worst case prognosis for the year 2014 in section 2.2.2 estimated the 

need for onshore treatment to be ca. 130000ton for cuttings and 285000ton for mud/slops, 

it can be seen that there is adequate capacity to treat oily waste in the marked as 

illustrated in Figure 3. However, the offshore treatment and disposal is still desirable due 

to the reasons stated in 4.2. To the author’s knowledge, the TCC treatment is currently 

the only offshore treatment & disposal option besides of CRI that fulfills the governing 

regulation on the NCS and will therefore be presented in chapter 5. 

 

Figure 3: Prognosis for Market’s treatment capacity and waste generation. (DNV, 2013)  
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Chapter 5:  Thermomechanical Cuttings Cleaner 

 

 

In this chapter the TCC, its control system and planned improvements are presented. 

 

5.1 General Information  

The TCC is a thermal desorption unit which separates the incoming waste into 

water, oil and solids (Thermtech, 2014). It has been developed by Thermtech AS who is 

giving out manufacturing licenses to several service companies as Baker Hughes, 

Halliburton, MI Swaco and TWMA. During the 1990’s the qualification process of the 

TCC technology started on the United Kingdom Continental Shelf (UKCS) with the aim 

of offshore cuttings treatment (Kirkness, 2008). Emphasize was put to meet or exceed 

regulatory requirements regarding the treatment results, modularization of the unit, 

weight-, & footprint- reductions, and securing an adequate processing capacity. Each 

module’s weight was not allowed to exceed the lift capacity of typical offshore cranes. 

For safety reasons the unit was computer steered and connected to the rigs emergency 

shutdown system. This development process led to the installation of the first 945kW 

process plant on the Ocean Guardian Rig in 2003. To date, TCC units are used both on-, 

and offshore to treat oil contaminated drill cuttings in several countries. 

 

5.1.1 Working Principle 

The TCC changes kinetic energy supplied by a drive unit into thermal energy 

through the development of friction in the mill (Thermtech, 2014). The drive unit is 

rotating the shaft on which hammer arms are mounted. The shaft is situated in a process 

chamber in which the waste is pumped. Through fast rotation of the hammer arms the 

waste fed into the mill will be pressed towards the inner wall and heat is generated due to 
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the friction between the waste particles. The implied intense agitation in the process has 

two advantages (Murray, 2008). Firstly, the retention time is decreased since the solids 

are crushed and diffusion distances for oil reduced, helping it to vanquish the capillary 

forces which keep the oil bound to the solids. Secondly, the oil can be vaporized at lower 

temperatures compared to its atmospheric boiling point since the laminar oil vapor layer 

around the oily solids is reduced and the surrounding vapor is dominated by super-heated 

water vapor.  Therefore the temperature in the process can be kept between 240 degree 

Celsius and 260 degree Celsius which is sufficient to evaporate both oil and water 

(Kirkness, 2008).  The vapor will leave the mill and be freed from fines by a cyclone 

before the oil and water are condensed separately in connected condensers (Thermtech, 

2014). Light oil fractions might be condensed together with the water and will be 

separated in an oil-water separator. The recovered oil and water can be recycled and be 

re-used in new drilling fluid. The fines from the cyclone are comingled with the dry 

solids which are leaving the process chamber through a rotary valve. This valve is 

controlled by a PLC controller which steers the process by keeping process variables in 

the programmed range. If the temperature is exceeding a certain level, the controller will 

automatically start the feed pump and the entering of colder waste will decrease the 

temperature of the process chamber. This feed implies an increasing load in the mill. The 

measured load is given as an input to the controller which in due time will steer the rotary 

valve to decrease the load. The treatment process requires that the drill cuttings are 

retorted prior to treatment in order to get an overview regarding the percentage of oil, 

water and solids content (Reid, 2013). After treatment the recovered solid powder and the 

process water have to be analyzed for determining their hydrocarbon (HC) content to 

document the effective waste treatment process.  
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 Figure 4: The principles of thermal treatment (Thermtech , 2014) 

Experience showed that the content of HC in the solids is smaller than one weight 

percent while the HC content in the water phase is lower than 20ppm. The recovered oil 

needs to be tested for contaminations before it can be safely used as base oil for the 

production of a new drilling mud. In Figure 4 the working principle of the TCC is 

illustrated. 

 

5.1.2 Footprint and Mobility 

In comparison with other thermal desorption units the footprint of the TCC is 

smaller given that the process chamber does not need a large surface area to transfer the 

heat to the cuttings (Thermtech, 2014). Instead the heat is generated in the process 

chamber itself and transmitted to the fluids by the surface area of the small solid particles. 

The mill itself has an internal areal of around one square meter (Murray, 2008). One TCC 

variant is called TWMA Rotomill. The TWMA Rotomill is currently 12.8m long, 3.5m 

wide and 4.35m high. It is divided into three containerized modules (Reid, 2013): 
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 Mill module with 18 tons tare weight (19 tons operational weight) 

 Process module with 16 tons tare weight (17 tons operational weight) 

 Engine module with 25 tons tare weight (27.5 tons operational weight) 

All modules are constructed to be easily transported and installed. Their weight can be 

handled by common offshore cranes. In consequence the TCC is to the knowledge of the 

author the only thermal desorption technology in use offshore (Murray, 2008). 

 

5.1.3 Energy Consumption 

The drive of the 1400kW TCC has a maximum diesel consumption of 450 liters 

per hour while the electrical driven unit needs at most 1400kW to treat 7-9 tons of 

cuttings per hour (Reid, 2013). Additional electrical power is needed for the control 

systems and process equipment as for example fans and pumps. This energy consumption 

is however negligible small in comparison to the energy needed by the drive system.  

  

5.1.4 Recovered Oil Quality 

The recovered oil quality is depending on temperatures developed in the mill and 

processing time before the oil is leaving the system (Thermtech, 2014). If one of them is 

too high, the oil can be degraded. In the TCC the oil is subjected to high temperatures 

only for a couple of seconds before it is evaporated and leaves the system. In comparison 

to other thermal desorption technologies the TCC process temperature is moderate and 

the evaporation more gentle resulting in a high quality of the recovered oil. This is shown 

in Figure 5 by a gas chromatography / mass spectrometry (GC/MS) profile of used base 

oil before and after treatment. This particular base oil’s most abundant hydrocarbons are 

C11, C12, C13 and C14. These are as well present after TCC treatment.  
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Although the abundance of C11-C14 decreases slightly, the recovered oil can be instantly 

re-used as base oil for new muds (MI Swaco, 2013). 

Another advantage of the TCC treatment is that contaminants as benzene, toluene, 

ethyl-benzene and xylenes (BTEX) (Eugris, 2013) and other light fractions will be found 

in the oil which is separated from the water stream after the water was condensed 

(Thermtech, 2014). This fraction is relatively small and can be discarded to get rid of 

BTEX which is highly volatile and can affect the workers’ health (Eugris, 2013). 

 

  

Figure 5: GM/MC profile of base oil and by TCC recovered oil (MI Swaco, 2013) 

 



 

 

Chapter 5  Thermomechanical Cuttings Cleaner  

 33 

It is important to mention that the Flash Point of the oil is not altered by the 

treatment and will be the same in the recovered oil (Thermtech, 2014). This is important 

since oil with a lower flash point is more easily ignited. Operators as Total E&P have set 

a lower Flash Point limit for the use of oil due to security reasons. Therefore a decrease in 

the Flash point might have prevented the re-use of the recovered oil.  

To sum up, the recovered oil is suitable for reuse as base oil in new drilling mud. 

 

5.1.5 Theoretical Treatment Capacity of TCC   

The theoretical treatment capacity can be derived by setting up the energy balance 

for the TCC (Kleppe, 2009). A natural control volume to be chosen is the process mill.  

Figure 6 shows the transfer of material across the border of the control volume. Cuttings 

enter the mill from the side and an electric-, or diesel-motor supplies energy to the system 

by rotating the shaft which is equipped with hammers. The resulting friction heats up the 

cuttings and the contained fluid is evaporated and will leave the system as oil and water 

damp while dry solids are ejected (Thermtech, 2014). 

 

  

Figure 6: Process mill: Transfer of material. (Thermtech, 2014) 

 



 

 

Chapter 5  Thermomechanical Cuttings Cleaner  

 34 

The required evaporation temperature is in general dictated by the heaviest oil 

fractions and varies with different base oils (Kleppe, 2009). Since the heat transfer is non-

selective, oil, water and solids will be heated to operation temperature of the unit.  

 

Therefore the energy supply to the process needs to be sufficient to:  

1. Heat oil from feed temperature to process temperature (Qoil_1),  

evaporate it (Qoil_evap) and heat oil vapor to process temp. (Qoil_3) 

2. Heat water (w) from feed temperature to its boiling point (Qw_1),  

evaporate it (Qw_evap)  

and heat the water steam to process temperature (Qw_3) 

3. Heat the solids (s) from feed temperature to process temperature (Qs) 

4. Overcome heat losses  

 

It is known that the raise in temperature of a substance with a given mass is proportional 

to the heat energy Q supplied.   

 

                 
 

where C is the heat capacity which describes the amount of energy that needs to be 

supplied to raise the temperature by one degree (Tipler, 2003). The heat capacity divided 

by the mass defines the specific heat c. 

  
 

 
 

 

Formula (1) can be used to calculate the needed heat to raise the temperature of oil and 

solids to process temperature. It is as well useful to calculate the heat to raise the water 

temperature to its boiling point and the water vapor to process temperature, but it does 
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not apply to phase changes where the energy supplied leads to fusion, melting, 

vaporization, condensation or sublimation. In the TCC process the phase change occurs 

from liquid oil and water to gas and the heat required can be calculated as:  

 

            

Where Lv is defined as the latent heat of vaporization. 

 

Using formula (1) and (2), the heat necessary to treat the cuttings can be 

calculated as the sum    of 

1. Qoil_1 = moil coil (Tboilingpoint_oil – Tfeed)   

Qoil_evap = moil Lvapour_oil 

Qoil_3 = moil coil (Tprocess-Tboilingpoint_oil) 

2. Qw_1 = mwater cwater (Tboilingpoint_water – Tfeed) 

Qw_evap = mwater Lvapour_water 

Qw_3 = mwater cwater (Tprocess-Tboilingpoint_water) 

3. Qs = msolids csolids (Ttreatment – Tfeed) 

 

In reality, a part of the heat generated in the process will leave the TCC as heat loss 

(Qhl). Assuming no other losses and that all the energy supplied by the engine will be 

converted to heat by friction (Qinput): 

 

                  

 

http://en.wikipedia.org/wiki/Sigma
http://en.wikipedia.org/wiki/Sigma
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To find the treatment capacity  of the system in kilogram per hour we need to subtract 

the heat loss per hour from the energy input per hour and divide the obtained value by the 

sum of the heat necessary to treat one kilogram of cuttings. 

 

                                                      
  

 
    

            
  

 
  

    
  

  
  

      

 

As seen above the treatment capacity  of the TCC depends on the energy 

supplied and the waste composition (Thermtech, 2014). Thermodynamics define the 

amount of energy necessary for heating and evaporation of the waste. Especially, the 

water content of the waste has a huge impact on the treatment capacity. As lower the 

water content as higher is the treatment capacity due to the higher energy demand to heat 

water in comparison to oil and solids. Figure 7 illustrates the treatment capacity using 

formula (4) and the parameters stated in Table 5 in chapter 6. The amount of solids 

present is assumed to be constant at 60 % while the water content is varying. 1400kW 

energy is supplied and heat loss is neglected.  

 

 
Figure 7: Treatment capacity of TCC vs. water content of cuttings. 
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Another important influence has the temperature of the feedstock. The treatment capacity 

increases in accordance with increasing feedstock temperature since less energy is 

required for the cuttings treatment. Figure 8 illustrates the influence of feed temperature 

on the capacity of the TCC using formula (4) and parameters from Table 5. The 

oil/water/solids ratio is assumed to be constant at 20/20/60, the heat loss is neglected and 

the energy supply is 1400kW. Experience shows that the 945kW unit and the 1400kW 

TCC can respectively process between 4-6 and 7-9 metric tons of oily drilling waste per 

hour (Reid, 2013). This processing capacity might not keep up with the generation of drill 

cuttings in the 17 ¾” well sections. Therefore additional storage should be installed to 

avoid restrictions of the ROP. One example of cutting storage is the cutting storage tank 

(CST) unit from TWMA. It comprises temporary storage and transfer capabilities. Each 

CST has its own recirculation line used to agitate the drilling waste and avoid settling, 

dewetting and compaction of the waste. As soon as less waste is generated than the TCC 

can process, additional drilling waste is fed from the CST’s so that the TCC can process 

at maximum rate and the excess waste is gradually decreased. 

 

  

Figure 8: Treatment capacity of TCC vs. feed temperature of cuttings. 
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5.2 TCC Control System  

The TCC cuttings treatment process presented in section 5.1 is steered by a 

Programmable Logic Controller (PLC) which ensures that the oil is successfully 

separated from the cuttings. The PLC monitors the inputs to the system, runs the user 

defined program logic and adjusts the outputs accordingly (AMCI, 2013). This 

automation of the process is preferred to manual process control since it increases 

efficiency, it is more consistent and it avoids human errors (Nygaard, 2013). Because of 

its importance to the TCC treatment, the PLC control system is an industrial secret.  

Variance of the following properties affect the treatment capacity and need to be 

included in the TCC control system.  

First, there is the mechanical energy supply. It supplies the energy which is 

converted to heat in order to vaporize the liquids contained in the cuttings. A higher 

mechanical energy input enables a higher treatment capacity. 

 Secondly, the properties of the cuttings fed into the mill are important. Changes 

in the oil, water and solids ratio lead to different energy demands due to the different 

specific heat capacities of oil, water and solids respectively. This is a function of the 

setup of solid control equipment, usage of drill mud and further variables.  

Thirdly, temperature changes of the feed stock will as well lead to a different 

energy demand which is proportional to the difference in temperature.  

A minor factor is the mineral’s susceptibility to abrasion. The heat generated due 

to friction is depending on the solids composition of the cuttings since the mineral’s 

susceptibility to abrasion varies.  

More information on this subject is provided in Appendix A, where a simplified 

TCC control system is developed and presented.  



 

 

Chapter 5  Thermomechanical Cuttings Cleaner  

 39 

5.3 Planned Improvements of TCC 

The TCC system is under continuous development and both the license owner and 

the licensees are working to improve the system.  

According to Thermtech’s Marketing and Sales Director, Rocco V. Valentinetti, 

new PLC software shall improve the treatment process of the TCC. The aim of this and 

future design changes of the TCC unit itself is to provide a system which eliminates the 

small amount of oil which still adheres to the treated solids.  

Another improvement lies in the customization of the TCC unit for different 

offshore vessels which have different cuttings treatment needs.  

Footprint reduction of the TCC unit is desirable in order to enable offshore 

treatment on vessels with little deck space available. 

Treatment capacity of the TCC shall be improved to reduce the needed storage for 

bigger well sections. The additional treatment capacity would as well allow for cuttings 

treatment at a central offshore facility which receives oil contaminated cuttings from 

several rigs (OIC, 2007). Sharing of a TCC unit would decrease the cost for cuttings 

treatment offshore and improve the overall economy of projects.  

On top of that adjustments for different regions could be made and the design of 

the equipment could be improved in order to cope with extreme conditions which can be 

found behind the polar circle or in desserts.  
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Chapter 6: Qualification of TCC Technology for Use on NCS 

Since the information presented in chapter 5 is missing details regarding the real 

treatment capacity, the TCC’s efficiency and its environmental impact, these subjects 

require further investigation. Chapter 6 compares the theoretical treatment capacity of the 

TCC to observed treatment capacities, analyses the treatment efficiency, considers the 

environmental impact and presents available field experience in order to qualify the TCC 

for use on the NCS.  

 

6.1 Verification of TCC Technology 

 

6.1.1 Match between Theoretical Capacity and Observed Values    

In order to verify formula (4) derived in chapter 5, real data from the TCC 

cuttings treatment on the Elgin field is entered and the result compared to the observed 

capacity. Several cuttings samples have been retorted to gain values for solid-, water and 

oil- average volume percent. The average volume percent is used to calculate the 

respective mass percent of the sample. For example the mass percent for solids is 

calculated in Table 6 according to: 

 

Mass percent solids = 
                    

                                                   
 

 

(%solids = volume percent solids, %water= volume percent water, %oil = volume 

percent oil, ρ solids = density of solids, ρ water = density of water, ρ oil = density of oil) 

 

In the next step, the heat to treat 1kg of cuttings ∑Q (kJ/kg) is found as described 

in chapter 6.1.  Finally the energy input by the drive system of the TCC Qinput (kJ/h) is 

divided by ∑Q to find the treatment capacity  (kg/h) in Table 6.  
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Table 5: Parameters assumed in calculations (Kleppe, 2009) 

The energy input by the drive system was assumed to be 945kW. Since 1W is 

defined as 1J/s, 945kW is equal to 3402000kJ/h. Other assumptions made can be found in 

Table 5. In Table 6 it can be seen that the theoretical and observed value do not match 

perfectly. It was expected that the observed treatment capacity would be less than the 

theoretical as seen in the 12 ¼” and 5 5/8” well sections. The arguments for this 

expectation were the neglected heat loss of the TCC system and eventual mud additions. 

Heat losses will in reality decrease the treatment capacity since less energy is available to 

vaporize the fluids. Mud additions possibly required to transport sticky cuttings to the 

TCC and enable a smooth feed of the mill will as well lower the capacity because of the 

higher energy which is required to heat oil and water in comparison to solids. 

In the 17 ½” and 8 ½” sections however, a higher treatment capacity was 

observed than in theory possible. This fact suggests that there are favorable treatment 

conditions which were not considered in the calculation of the theoretical value. 

For instance the feed temperature was set to 15 degree C. The data available did 

not include the actual feed temperature. However the EIB 22-30c-G12 well was a High 

Pressure High Temperature (HPHT) well and it is reasonable to assume that the cuttings 

have been treated with the TCC before they could cool down to the ambient 15 degree C. 

Therefore less energy would be required to vaporize the oil and water present. 
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Table 6: Theoretical treatment capacity of TCC vs. observed capacity 
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As it can be seen in Figure 9 the theoretical treatment capacity increases with 

increasing feed temperature. As a result the offshore cuttings treatment directly after 

drilling is to be recommended. The higher treatment capacity of the 8 ½”-, in comparison 

with the 17 ½”-well section can be explained with the lower water content of the cuttings. 

Positive effect on the treatment capacity emanates from the steam stripping effect 

(Kleppe, 2009). This effect implies that the removal of the oil can be performed at lower 

temperatures than the maximum evaporation temperature of the contained oil. The 

superheated water steam acts as the stripping medium (Eschenbach, 2001). Liquids in the 

mill spontaneously evaporate and thereby split up the solids which are dried in the 

process. The supplier stated that the 945kw TCC has a capacity of 4000 – 6000 kg/h 

while the observed values were in the range of 5220 – 7120 kg/h. It seems that the 

supplier is using a conservative approach of capacity estimation in order to ensure its 

contractual commitments. In reality higher treatment rates can be obtained which is 

favorable for the TCC treatment solution. 

 

 

Figure 9: TCC’s treatment capacity as a function of temperature 
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6.1.2 Treatment Efficiency of TCC 

Ideally, the TCC treatment would separate the cuttings into dry powder, oil and 

water. However the treatment is not perfect and some oil will be found both in the 

powder and water. In the following section the amount of oil which could not be 

recovered will be analyzed based on data provided by TWMA. In the time period of 

2009-2013 they treated over 37.000 tons of oil contaminated cuttings with their TWMA 

Rotomill both off-, and onshore. Samples have been taken according to TWMA 

procedures every third hour of cuttings treatment. The samples were analyzed and the 

results were presented as an average over the drilled section. To analyze the efficiency of 

the TCC technology, the data for the well sections was combined in Table 7 using a 

weighted average. The Oil on powder showed a min/max value of 0.009/0.175% with a 

mean value of 0.033%. Since there is some variation in the data, the median gives a better 

description of the central tendency of oil on powder (Lund Research, 2013). The median 

was calculated to be 0,026%. It can be seen that the weighted average of oil on powder is 

well below the one percent by weight limit.  

Regarding the oil in water, the min/max value is 5.5/21.4 ppm respectively with a 

mean value of 14.1 ppm. According to the Norwegian pollution law, the average of oil in 

water is not allowed to overcome 30mg per liter if it is going to be discharged 

(Forurensingsloven, 2013). The unit ppm is defined as mg/kg. To convert ppm to mg/l 

the density of the fluid needs to be known. Since the fluids are vaporized and condensed, 

it is reasonable to assume that the contained salts will follow the dry powder and that the 

condensed water has a density of around 1kg/l.  It follows that 1ppm equals 1mg/l. The 

comparison between the allowed 30mg of oil per liter of water and the weighted averages 

for the TCC shows that the water is suitable for offshore discharge. In Figure 10 the data 

is plotted onto a stem weight to give a quick overview over Table 7.  
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Figure 10: % oil on powder/ ppm oil in water after TCC treatment plotted on stem weight  

 

Well 
Cuttings 

processed 
(tons) 

Oil in 
water 
(ppm) 

  Oil on 
powder % 

  

Well 
Cuttings 

processed 
(tons) 

 Oil in 
water 
(ppm) 

Oil on 
powder % 

#1 1058,41 20,953887 0,0480848 #26 1811,73 9,723765 0,1750829 

#2 748,31 13,911898 0,027954 #27 625,63 14,24711 0,0170936 

#3 982,16 13,96 0,04 #28 739,71 15,60387 0,0301826 

#4 640,14 16,460413 0,0249323 #29 221,13 15,778 0,049 

#5 536,04 11,815584 0,0188365 #30 739,71 15,60387 0,0301826 

#6 516,15 12,02 0,017 #31 774,94 14,16957 0,0178556 

#7 147,3 11,415 0,018 #32 527,41 18,51771 0,024412 

#8 1503,26 16,16734 0,0507794 #33 428,15 15,91764 0,0188342 

#9 315,91 12,039556 0,0268293 #34 559,36 14,82832 0,0412941 

#10 416,41 18,302088 0,0205273 #35 455,99 21,35275 0,0379847 

#11 511,07 17,933482 0,0472578 #36 475,48 16,07245 0,021 

#12 1476,53 19,699905 0,0454694 #37 204,84 15,8 0,02 

#13 982,05 16,479369 0,0432914 #38 283,21 17,36171 0,0266857 

#14 532,17 12,434369 0,0230082 #39 1553,6 5,970116 0,0091667 

#15 643,47 15,837845 0,0271062 #40 1323,05 12,36155 0,0483755 

#16 539,54 14,718373 0,0223706 #41 631,2 9,403634 0,0258663 

#17 362,3 11,52 0,02 #42 819,02 12,77 0,023 

#18 305,08 12,58 0,029 #43 888 13,76 0,022 

#19 566,49 11,282587 0,0258684 #44 354 14,9 0,0269 

#20 367,26 13,14788 0,0234691 #45 446,63 5,5 0,018 

#21 656,49 11,49107 0,0152689 #46 676,84 10,31 0,029 

#22 832,01 13,043725 0,015 #47 1533,7 12,9769 0,0373725 

#23 1921,36 12,790569 0,0737513 #48 1590,92 18,61334 0,1289405 

#24 877,55 12,925939 0,0168812 #49 1244,92 16,05584 0,0297823 
#25 1374,87 12,543185 0,0187724         

Table 7: Weighted average of Oil in Water (ppm) and Oil on powder (%) 
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6.2 Environmental Considerations regarding Use of TCC 

Results of environmental studies regarding on- and off-shore deposition of TCC 

treated cuttings and treatment related emissions are presented in the next section. 

 

6.2.1 Onshore Deposition of Processed Cuttings 

Bioforsk analyzed the processed drill cuttings on behalf of TWMA to demonstrate 

that they meet the Norwegian legislation regarding the heavy metal content, organic 

components and other parameters (Amundsen, 2011). To reach this goal, the processed 

drill cuttings have been compared to and classified regarding Norwegian Soil Quality 

Classes which are concerned with Norwegian legislation and possible applications of the 

solids with regards to their composition. Soil quality 1 is defined as non-polluted while 

soil quality 2 describes weak polluted soils. Solids with both qualities can be deposited in 

private gardens/play grounds and pose little to no risk to the environment. This study was 

made with regards to the disposal of processed drill cuttings on land. Nevertheless, the 

results are important as well for the disposal at sea.  

The particle size distribution of the solids evaluated was established. It showed 

that the relative amount of silt (particle size 2-63um), clay (particle size < 2um) and sand 

(particle size 63-2000um) was between 50-70%, 5-15% and 20-40% respectively.  

The heavy metals content has been analyzed and for most metals it was within the 

mean concentration of natural soils and overbank sediments. This is shown in Table 8. 

The concentration of copper/barium was measured to be 2-3/20-25 times higher than the 

mean value of overbank sediments respectively. However, the copper content is still 

within the limits of natural soils and barium can be found as barium sulfate which is 

insoluble in water. The metal content of the cuttings is within Soil Quality Class 2. 
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Table 8: Concentration of heavy metals in overbank sediments, soil quality 
classes and monthly samples of TCC process (Amundsen, 2011)  

  The organic component (C10- C40) concentration presented in Table 9 was 

higher than in soils found in Norway and can be described with Soil Quality Class 4.  

However, the majority of the remaining hydrocarbons (HC) were long chained (>C16) 

which are in general less solvable and assumed to be less toxic than short chained HC.  

Table 9: Concentration of hydrocarbons in monthly random samples 
(Amundsen, 2011)  

 

Parameter 

 

Unit Overbank 

Sediments  

Soil Quality 

Class 1 

Soil Quality 

Class 2 

Mean/Max TCC 

Monthly samples 

Arsenic mg/kg 4 8 8 - 20 8 / 12 

Barium mg/kg - - - 5980 / 17000 

Cadmium mg/kg - 1,5 1,5 - 10 1 / 3 

Chromium mg/kg 32 50 50 - 200 35 / 81 

Copper mg/kg 22 100 100 - 200 54 / 73 

Mercury mg/kg - 1 0 - 1 0,1 / 0,21 

Molybdenum mg/kg 2,2 - - 3 / 14 

Nickel mg/kg 22 60 60 - 135 33 / 48 

Lead mg/kg 22 60 60 - 100 29 / 89 

Tin mg/kg - - - 0,5 / 1 

Vanadium mg/kg 41 - - 35 / 52 

Zinc mg/kg 54 200 200 - 500 115 / 470 

Parameter Unit Minimum Mean Median Maximum 

Oil in sand % by weight 0.01 0.12 0.11 0.26 
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The mean value of Policyclic Aromatic Hydrocarbons (PAH) is low enough 

(1mg/kg) to be considered as Soil Quality Class 1.  

Several leaching tests have been executed to determine the amount of water 

soluble compounds present and to show that the solids are suited for landfill disposal. 

The batch leaching test illustrated the disposal suitability of the processed solids for all 

other parameters than the dissolved organic carbon which transcends the set limit. The 

column leaching test resulted in acceptable leaching potential for all parameters besides 

of chloride and fluorine.  

This means that negative effects on the environment are possible, though they are 

likely to be decreased by dilution of seepage from treated cuttings. The high 

concentrations of calcium & dissolved organic carbon might as well reduce the toxicity 

of the solids. 

The solids analyzed showed high silt content. As a consequence, the solids have a 

high water holding capability. To determine the liming and nutrient potential of the 

solids, more experiments should be performed. However the information available does 

not indicate great potential. Therefore the prior use of solids will be as filler material or 

as add on to soil mixtures or growth media to increase the water holding capacity. 

To sum up, the treated solids may be disposed onshore, but since some eluate 

concentrations are higher than the given limits for land disposal, a risk analysis for the 

disposal environment should be performed in advance.  
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6.2.2 Offshore Discharge of Processed Cuttings   

The TCC technology is field proven, but not qualified for use on the NCS yet. 

Since the use of this technology for cuttings cleaning is desirable, a working group was 

established by the Norwegian Oil and Gas Association. The working group consisted of 

Total Norge, Conoco Phillips, Det Norske, Eni, Lundin, and Statoil. The objective was to 

finance a project with the objective of qualification of the TCC technology (Blytt et al., 

2013). The project was carried out by Aquateam COWI, who was 1) organizing the 

sampling and analysis of untreated and treated cuttings, 2) reviewing available 

information regarding the TCC technology and environmental data, and 3) performing an 

evaluation of both the TCC technology and the environmental risks associated with 

discharge of treated oil based cuttings offshore.  

Environmental harm caused by discharge of treated oil based drill cuttings, can be 

caused by increased particle content in the water column, sedimentation on the seafloor 

or by leaching oil, PAH and heavy metals to the water (column or sediment pore water) 

and exposing organisms living in the water column or in the sediment. To determine the 

environmental risk, the spreading of cuttings has been modeled for an exploration well by 

Ditlevsen and Daae with the DREAM model (Ditlevsen, 2012). The model assumed 

discharge of 1118 tons of processed cuttings 1m below the sea level. The result of the 

modeling showed that the maximum expected concentration of treated cuttings in the 

water column was 1-5mg/l while the maximum thickness of the cuttings on the sea floor 

was estimated to be 1.8mm in a distance of 250-300m from the rig. 

Studies have been performed to determine the effects of particles arising from 

water based drill cuttings.  

The studies illustrated that a continuous particle concentration of over 0,5mg/l in 

the water column is expected to harm organisms as mussels and codfish since they can 
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take up the particles (Bechmann, 2007). The harm will increase with increasing particle 

concentration, but according to the PROOFNY project the harmful concentration will be 

limited to 1-2 km distance from the discharge point (Brooks, 2011). 

Regarding the sedimentation on the seafloor, the negative effects are expected up 

to a distance of 250m. Organisms as corals will get silted up, though the effect on corals 

will be limited as long as the silt layer isn’t thicker than 6mm according to the results of 

Bakke et al. (Bakke, 2012). 

In the evaluation of the influence of oil, PAH and heavy metals on organisms, 

leaching tests have been performed and PEC and PNEC values have been calculated 

(Blytt et al., 2013). Because of the dilution of oil, PAH and heavy metals which are 

discharged to the sea water, there are no harmful environmental effects expected. This is 

valid both for the water column and the sediments.   

Based on these results and more detailed information presented in the Aquateam 

COWI report, Blytt et al., (2013) concluded that the environmental risk of the discharge 

of TCC treated oily cuttings is comparable to the risk implied in the discharge of water 

based cuttings. Due to dilution no accumulating effect on the water column is expected 

and the effects of siltation will be limited to the area with highest sedimentation of 

processed cuttings. Since the particles of the processed cuttings are smaller than the water 

based cuttings, the resulting siltation might be less due to wider spreading  

 

6.2.3 CO2  and NOx Emissions 

The environmental impact of cuttings handling is not only a consequence of the 

deposition or discharge of treated cuttings, but also CO2 and NOx emissions during 

handling (Saasen, 2014). Emissions resulting from TCC cuttings treatment are estimated 

to be lower than the emissions arising from CRI into a dedicated injection well.  



 

 

Chapter 6                                               Qualification of TCC Technology for Use on NCS 

 51 

The majority of emissions are created during the drilling, completion and later 

plug & abandonment of the dedicated CRI well because of the drilling’s rig fuel use, 

needed supply boats and helicopter traffic. Furthermore, the cuttings are preferred to be 

injected in batches since several smaller fractures are developed and interference with 

other wells and leakage risk is minimized (Turner, 2009). This method requires injection 

breaks where the cuttings need to be stored on the rig (Saasen, 2014).  When the cutting 

storage is exhausted, a part of the cuttings needs to be transferred to land for treatment. 

This implies additional emissions for fuel of the supply boat and later cuttings handling 

onshore. Therefore the TCC cuttings handling is to be preferred, both on-, and offshore. 

There is no obvious answer whether the TCC treatment on-, or offshore should be 

chosen when aiming for the minimization of CO2 and NOx emissions. This needs to be 

analyzed for each drilling project and depends among others on the distance to shore, the 

energy supply of the TCC unit, the amount of cuttings and weather conditions. Regarding 

the distance to shore, an increase in distance implies an increase in fuel needed to 

transport the cuttings and therefore a large distance favors offshore treatment. The TCC 

unit can be either driven by an electrical-, or diesel-engine. Electrical energy is available 

onshore and connected emissions are smaller than those from rig power or diesel which 

drive the offshore TCC. The use of electrical power for treatment favors onshore TCC 

treatment. If the amount of generated cuttings is large as in the case of the 17 ½“ and 

12¼” sections, a dedicated vessel is needed for the transportation and storage of cuttings. 

This implies higher emissions in comparison to the case where the usual supply boats 

could be used for this purpose and is in aid of the offshore TCC treatment where these 

emissions are avoided. On top of that, the offshore TCC might save rig emissions by 

avoiding waiting time when the weather conditions prevent the cuttings transfer to the 

storage and transportation vessel. 
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6.3 TCC Field Experience 

To the author’s knowledge, 55 TCC units are running scattered over the following 

countries: Algeria, Angola, Azerbaijan, Cameroon, Canada, Colombia, Congo, Jordan, 

Kazakhstan, Netherlands, Nigeria, Norway, Russia, Turkmenistan, United Arab Emirates, 

United Kingdom. 

These units are run by several competing service companies and as a result, there 

is no central database with field experience established.  In the following section, the 

field experience collected during the TCC cuttings treatment of selected wells which 

were drilled by Total E&P is summarized. 

 

6.3.1 Land 

In Bolivia, Total E&P is in charge of fields located at depth in the Andean 

foothills. Several wells have been drilled in a challenging environment where the cuttings 

had to be transported by trucks to central treatment facilities (MI Swaco, 2012). 

A cost comparison was performed for the treatment of 1389 tons oil contaminated 

cuttings with a TCC-, and an indirect Thermal Desorption Unit (TDU) which has been 

used before. While the processing charges were the same, the TCC unit used 66 days less 

to treat the same amount of cuttings. This implied lower cost with regards to the rent of 

an excavator to fill the unit, accommodation and food for the workers which added up to 

55941 US $. Due to the remote location, base oil was very costly and the recovery of as 

much base oil as possible desirable. The TCC unit managed to recover two times more oil 

from the cuttings than the TDU. This reduced the cost for new base oil by 205281 US $. 

As a result of the higher oil recovery and less time use with the TCC unit, the 

savings were higher than the actual cuttings treatment cost.  
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6.3.2 Offshore 

On the UKCS, Total E&P has been using a 945kW TCC unit for the cuttings 

treatment onboard of the Rowan Gorilla 5 rig (Gregoire, 2013).  OBM was used from the 

start of the 17 ½” well sections. Since the expected cuttings generation in the fast drilled 

17 ½” well sections was higher than the treatment capacity of the TCC, a buffer storage 

system was installed which consisted of up to three 70MT tanks and a skip station. The 

storage tanks were installed in a flexible manner so that they could be demobilized when 

not required. Cuttings were transferred by augers. As a contingency, cuttings transfer 

pumps or vacuum equipment could be used to transfer cuttings and a skip and ship station 

was installed. In Figure 11, the buffer storage system is shown on the left while the 

installed TCC unit is on the right picture. 

 The TCC has been operated permanently during the drilling process. Excess 

cuttings have been stored in the tanks for later TCC treatment or placed in skips for 

transportation to land. At no point of the operation the drilling had to be stopped because 

of the cuttings handling, though the ROP had to be adjusted during the fast drilled 17 ½” 

well sections. Cuttings from the other sections have been treated in batches of 50MT. The 

TCC proved to be reliable, but since it is a mechanical unit the risk of a breakdown is 

present. This risk needs to be met by a backup solution as temporary cutting storage or 

skip and ship. To decrease the probability of TCC downtime, focus was directed at 

preventive maintenance. 

The recovered base oil was stored in one of the rigs pits. It contained between 1 to 

2% fine solid particles which settled out in the pit and did not have a negative impact on 

the produced mud. The Flash point observed a small decrease from 103.5 degree C to 

101.5 degree C. There was as well a slight increase in aromatics, PAH and BTEX 

observed.  
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Figure 11: Rowan Gorilla 5: Skip station, buffer tanks and TCC unit installed (Gregoire, 2013) 

It was analyzed and concluded that it did not come from the TCC treatment process. The 

recovered oil has been continuously used for the mixing of new mud and negative effects 

regarding the mud quality have not been observed. 

The oil on powder was measured to be between 0.04 and 0.10 % by weight of dry 

cuttings and the discharged water’s oil content was between 7 and 23 mg per liter. These 

values were well within the permitted limits.  

For the initial installation of the TCC unit offshore, 7-10 days were calculated. In 

order to avoid hot work, the equipment was designed to be bolted in place. Several 

service connections as water, diesel etc. had to be made. Therefore the installation should 

be for long term usage and the process should be preferably performed in a dry dock.  

Due to the good results, the TCC unit has become a part of standard cuttings 

treatment equipment on the UKCS and is planned to be used at the Martin Linge field on 

the NCS. The reasons for the TCC implementation and the implementation process are 

presented in chapter 7. 
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Chapter 7:  Martin Linge Case Study 

In this case study, the question of the ideal cuttings handling solution for the 

Martin Linge field shall be answered. It will be shown that offshore TCC treatment is the 

best option with regards to Health, Safety & Environment (HSE)-, cost-, and operation 

reliability-considerations. Recommendations for the data and sampling program during 

operation will be given. The establishment of an environmental monitoring program and 

risk evaluation will be outlined and the currently ongoing implementation process of the 

TCC will be described in detail. 

 

7.1 Field Information 

 Martin Linge field, former known as Hild, is situated around 180km west of 

Bergen. It comprises a high permeable oil reservoir and several high pressure gas 

condensate reservoirs at 1750 and 3500-4000m depth respectively with estimated 

reserves of 190 million barrels of oil equivalents (Total, 2013).  

 

 

Figure 12: Updated Martin Linge Poster (Total, 2013) 
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The field development is based on an integrated wellhead, production and living 

quarters platform and a connected floating storage and offloading unit (FSO) which is 

able to separate oil and water. The oil will be offloaded to tankers and the water re-

injected into the reservoir via a dedicated well. The gas from the field will be transported 

to the St Fergus Gas Terminal via a tie in to the existing 32” FUKA pipeline (Total_1, 

2014). This can be seen in Figure 12. 

In total, eleven wells are planned to be drilled by the Mærsk Intrepid jack-up rig: 

four oil producers, six gas producers and one water injection well. For eventual future 

development, ten additional wellhead slots are available on the platform. The field will be 

connected to the Norwegian electrical grid. 

 

7.2 Amount of Drilling Waste Expected 

Eleven wells are planned to be drilled to develop the Martin Linge field. The 36” 

sections will be drilled with seawater and bentonite pills with no return to the rig. The 

26”-sections will have return to the rig. WBM will be used and the cuttings will be 

discharged to sea. In the 17 ½”-, 12 ¼” and 8 ½” sections OBM will be used. The 

estimation of generated oil contaminated drill cuttings is performed in Table 10. 

Length values for drilled well sections are taken from the well path reports for the eleven 

wells. The composition of the formations present at the Martin Ling field lead to an 

assumed value of 1.8 s.g. for cuttings density. The washout is estimated to be maximum 

10 percent in the 17 ½” section and 5 percent in the 12 ¼”-, and 8 ½”-section. This 

estimate is rather conservative since the formation is expected to be well compacted and 

stable. The amount of generated drilling waste is higher than the estimated 7339tons of 

cuttings since OBM and water will adhere to the cuttings and require adequate treatment 

or disposal.  
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 Drilled open hole section with OBM (meter)     

 Oil Water Gas Total 

Sectio O-A O-B O-C O-D PWRI C-A E-A E-B E-C E-D W-A  

17 ½ 959 996 1030 1137 986 1497 1640 1713 1735 1871 1948 15512 

12 ¼ 933 1095 1002 1170 1052 1208 1351 1408 1433 1527 1508 13687 

8 ½ 1496 1488 1494 1139 1439 416 162 165 169 159 623 8750 

Oil based cuttings estimation 

 Cuttings generated Drilled meter Volume cuttings Washout Cuttings 

 (m^3/m) (m) (m^3) (%) (MT) 

17 ½ 0.1552 15512 2407.46 10 4766.77 

12 ¼ 0.07604 13687 1040.76 5 1967.04 

8 ½ 0.03661 8750 320.34 5 605.44 

Total generated Cuttings contaminated with OBM:                                      7339.25MT 

Table 10: Expected amount of oil contaminated cuttings at Martin Linge 
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7.3 Presentation of Cuttings Handling Solutions 

For the handling of cuttings at the Martin Linge field four methods have been 

considered. They had to cope with the expected cuttings generation assuming an average 

rate of penetration (ROP) of minimum 20 meters per hour. 

 

7.3.1 Skip & Ship and Bulk Transfer 

“Skip & Ship” and “Bulk Transfer” are well known methods were the cuttings are 

transported for treatment and deposition to shore (Turner, 2009). These approaches are 

logistical demanding because of the large amount of cuttings generated during the drill 

process of the eleven wells, but feasible. A skip’s capacity is 3.6-, or 4m
3
 while a bulk 

tank’s capacity is around 15 m
3
 (Svensen, 2011). Using this numbers as basis for the 

transport of the expected 7339 tons of cuttings (ca. 4077 m
3
), a minimum of 1020 skips 

or 272 bulk tank loads would need to be shipped to shore. Experience has shown that the 

number of skips/tanks calculated to hold the drilled out formation has to be roughly 

multiplied by 1.7 due to mud and water which follow the cuttings and the tendency of 

cuttings to pack unevenly. In offshore operations, the available deck space limits the 

number of skips/tanks stored on board. Relating to the Martin Linge development the 

cuttings generation of the 17 ½” gas well sections are most critical. Storage place for at 

least 270m
3
 cuttings are needed which stands for 68 skips or 18 tanks. Knowing that not 

more than 25 skips are stored on the rig at a time, the operational risk regarding harsh 

weather becomes obvious. Harsh weather can prevent crane lifts necessary to transport 

skips and it can preclude the crew from transferring cuttings from bulk tanks to the 

supply vessels due to the need of hose connection. Therefore the ROP might need to be 

decreased or in worst case the drilling operation would need to be stopped because of 

exhausted storage capacity (Svensen, 2011). Drilling stops are costly due to deferred 



 

 

Chapter 7                                                                                        Martin Linge Case Study 

 59 

production and running costs. Other risks which go along with “skip and ship” are 

connected to the crane lifts necessary for transportation: 

1. Lift on supply vessel 

2. Hoist on rig 

3. Transport to skip station for filling 

4. Transport to temporary storage 

5. Backload on supply vessel 

6. Lift from supply vessel to shore 

Further lifts might be performed due to operational needs offshore or for 

treatment/disposal needs onshore. In each of the lifts there is a risk for falling objects and 

injured workers.    

 

7.3.2 CRI 

Cuttings Re-Injection is a feasible option at the Martin Linge field (Turner, 2009).  

In general, injection of cuttings using the annulus of production wells is cheaper than 

drilling and completing a designated CRI well. Regarding the Martin Linge field 

however, annular injection is not recommendable since there is the risk of surface 

breakouts in shallow injection zones. Therefore the cuttings re-injection must take place 

into a dedicated CRI well which is designed to dispose the cuttings in an area that 

minimizes risk for other wells. 

Geological analysis showed that suitable zones are available for CRI. To reduce 

the cost it would have been favorable if the CRI well could have been combined with the 

Produced Water Re-Injection (PWRI) well. In this case the injection slurry and produced 

water could have been injected into the same zone. However, this option had to be 

discarded due to the unconsolidated Frigg formation which requires screens to be run for 
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the PWRI completion. If cuttings would be injected, these screens would get plugged and 

prevent further injection of both water and cuttings.  

There are two common injection procedures for CRI:  

Continuous-Injection describes an operation where a large fracture is 

continuously propagating and is kept open between injections.  This operation is simpler 

and has a higher waste disposal capacity than Batch-Injection. 

Batch injection describes an operation where the injection is temporary stopped to 

enable the fluid to leak off. The fluid leak-off traps the waste in the formation when the 

fractures close. The advantage of batch injection is that several smaller fractures are 

developed which are less likely to interfere with other wells, reservoirs, faults and reduce 

the risk of leakages. Hence, the Batch injection is the preferred injection procedure.  

The advantage of CRI is that it is not weather depending and can continue even 

when skip and ship or bulk transfer is prevented due to crane limitations. 

The challenge to the application of CRI is the high amount of cuttings which 

needs disposal during the drilling the 17 ½” well sections with OBM. Before injecting the 

cuttings, they need to be treated and converted into injection slurry. Thereby the volume 

of waste is more than doubled. The required buffer storage for both unprocessed cuttings 

and injection slurry would take a lot of deck space. High injection rates would be 

necessary to cope with the planned ROP of minimum 20 meters per hour. Batch injection 

is the preferred option since it disposes the cuttings closer to the injection well. However, 

the rate of cuttings generation and limited buffer storage would not allow for the required 

injection stops which are necessary for the fractures to close. Therefore part of the 

cuttings would need to be shipped to shore for treatment and final deposition.  
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7.3.3 TCC  

The offshore use of TCC was field proven on the UKCS, but it has not been used 

on the NCS yet. Encouraged by the Norwegian authorities, operators have been searching 

for alternative treatment methods for oil contaminated cuttings and the TCC has proven 

to meet the requirements for offshore disposal of the treated cuttings as stated by the 

OSPAR convention (Blytt, 2013). The TCC system comprises three containerized 

modules constructed to be easily transported and installed on 48m
2
 of deck space (Reid, 

2013). Additional deck space will be necessary for buffer storage: The 1400 kW TCC has 

an approximate treatment capacity of 7-9 tons per hour (TWMA, 2013). Assuming an 

average ROP of 20 meters per hour in the 17 ½” section and that 0.307 tons of cuttings 

are produced per meter drilled (derived from Table 10), 6.14 tons of cuttings are 

generated which can be multiplied by 1.7 to take account for the adhered mud. The 

resulting 10.44 tons of cuttings to be treated per hour exceed the treatment capacity of the 

TCC. According to Table 10 the highest amount of cuttings will be developed in the gas 

well W-A. This is the design base for the required buffer storage calculated in Table 11. 

Cuttings to be treated 

Meter drilled ROP Time to drill 17 ½ section Cuttings/hour Cuttings to be treated 

(m) (m/h) (h) (tons/h) (MT) 

1948 20 97.4 10.44 1016.86 

Required Buffer Storage 

TCC capacity Tank footprint Tank Volume Storage required Deck space 

(tons/h) (MT) (m
2
) (MT) (MT) Tanks (m

2
) 

8 779.2 17 65 237.66 4 68 

Table 11: Required Buffer Storage regarding use of TCC at Martin Linge 
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The required buffer storage for the 17 ½” section is 237.66 tons and takes up 68 

m
2
 of deck space. The total space requirement of the TCC handling system is therefore 

116m
2
 which is reasonable regarding deck limitations. As a contingency, Bulk transfer of 

cuttings to supply vessels is chosen. The advantages of this solution are the elimination of 

lifts to transport cuttings and a planned re-use of the recovered oil in the process 

(Kirkness, 2008).  Another benefit is that the dried cuttings can be deposited at sea. Therefore 

the environmental impact due to the transportation of cuttings to shore is avoided. On the 

other hand there are possible risks related to the offshore discharge of dried cuttings. 

 

7.4 Cost Comparison of Available Solutions 

For the cost comparison of available solutions, several assumptions were taken: 

 Drilling of the 11 wells is scheduled to take 1460 days 

 Handling solution shall cope with cutting generation in 17 ½” section 

 Total cuttings volume to be treated was assumed to be 9083 tons  

 Slops generated are set to 15 tons per day 

Different service companies have been contacted regarding the delivery and cost 

of cutting handling and treatment. The submitted offers have been screened and sorted 

into required handling packages so that an average cost could be presented for the 

different posts in Table 12. Posts that are common for all are mobilization fees, personnel 

costs and eventual needed engineering work. These have not been considered in this 

analysis. Mobilization fees which will be incurred for the different packages are in 

general small in comparison to the overall handling cost and are not included in the total 

cost. The cost for personnel involved in the handling of cuttings is comparable for the 

different solutions and does not influence the outcome. Note that the need for engineering 

work can first be determined after having performed a site survey of the rig to be used. 
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          Average  Average  

Skip and ship      quantity days unit cost total cost 

          (NOK) (NOK) 

Cutting handling equipment  Daily Rental operation  1 500 5678,75 2839375 

  Daily Rental stand - by 1 960 3480,25 3341040 

Buffer storage  Daily Rental operation  2 100 2687,5 537500 

  Daily Rental stand - by 2 1360 1794,25 4880360 

Cutting blower  Daily Rental operation  1 500 2372,5 1186250 

  Daily Rental stand - by 1 960 1667,25 1600560 

Cutting skips rental     120 500 121,75 7305000 

Supply boat cost   1 50 221000 11050000 

Onshore drill cutting treatment   9083   1884 17112372 

Onshore slops treatment     21900   1868,75 40925625 

Total Skip & Ship cost :           90778082 

          Average  Average  

Cuttings Re-injection      quantity days unit cost total cost 

          (NOK) (NOK) 

Slurrification skid Daily Rental operation  1 500 8904,75 4452375 

  Daily Rental stand - by 1 200 6128,695 1225739 

Holding tank Daily Rental operation  1 500 3540 1770000 

  Daily Rental stand - by 1 200 2592 518400 

Data monitoring package Daily Rental operation  1 500 5649,5 2824750 

  Daily Rental stand - by 1 200 4700 940000 

High pressure pump skid  Daily Rental operation  1 500 14364 7182000 

  Daily Rental stand - by 1 200 11345 2269000 

Injection well     1     41250000 

Total Cuttings Re-injection cost :         433682264 

          Average  Average  

TCC     quantity days unit cost total cost 

          (NOK) (NOK) 

Rental TCC Daily Rental operation  1 200 41375 8275000 

  Daily Rental stand - by 1 1260 33475 42178500 

Buffer storage  Daily Rental operation  4 200 2687,5 2150000 

  Daily Rental stand - by 4 1260 1919,25 9673020 

Cutting blower Daily Rental operation  1 200 2372,5 474500 

  Daily Rental stand - by 1 1260 1667,25 2100735 

Offshore drill cutting treatment   9083   0 0 

Onshore slops treatment     21900   1868,75 40925625 

Total TCC offshore treatment cost:     105777123 

Table 12: Cost comparison of different waste handling solutions for Martin Linge 
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Table 12 shows that CRI is by far the most expensive option for cuttings treatment of the 

11 planned wells. This is due to the high initial cost implied with the drilling of the 

injection well. The renting of the injection equipment itself is less costly than the renting 

cost of the respective TCC-equipment and skip and ship solution. Therefore CRI is only 

cost effective when many more wells were to be drilled. The Martin Linge platform has 

10 slots available for future needs (Total, 2013). Figure 13 illustrates the cost 

development including the optional 10 wells. The cost for Skip and Ship regarding 

required equipment, transport and renting of skips is lower than the other two solutions 

and would be the preferred option if there weren’t hidden costs involved as fuel for the 

offshore crane during handling, offloading at the base, temporary storage cost at the 

harbor and land transportation of the skips to treatment facility/ultimate disposal place. 

These are difficult to estimate and are not included in Figure 13. 

 

  

Figure 13: Cost in million NOK vs. number of wells for different solutions 
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If the cuttings were to be treated with the TCC, the base oil which follows the 

cuttings could be recovered for direct re-use. The resulting savings in the purchase of 

base oil should be included in the cost comparison. Assuming that twenty percent 

recoverable oil follows the 9083 tons of cuttings, 1816.6 tons of oil could be recovered. 

The used base oil has a density of 0.81 s.g. so that 2242.7 m
3
 of base oil could be gained 

in the treatment of cuttings from the planned Martin Linge wells. Each m
3 

of the used 

EDC 99 DW base oil costs approximately 6500kr. Therefore there is a realistic saving of 

14577550kr during the drilling campaign of the first 11 wells or 1325232kr per well. 

Correcting Figure 13 for these numbers it can be seen in Figure 14 that the 

treatment cost using the TCC unit are comparable to the cost of the Skip and Ship 

solution. The difference in estimated cost for the treatment of 11 wells is less than 0.5%. 

In fact, if an operational stop due to weather can be avoided due to the TCC offshore 

treatment, the TCC is the cheapest option. Both TCC and Skip & Ship solutions are 

cheaper than CRI even if all 20 available slots of the Martin Linge Platform were used. 

  

Figure 14: Cost corrected for oil savings vs. number of wells for different solutions 
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7.5 Assessment of Environmental Impact of Cuttings Treatment 

The general assessment of the TCC’s environmental impact is performed in 

section 6.2. In section 7.5 the focus will be on expected CO2 emissions and oil discharge 

to sea due to the TCC cuttings treatment at the Martin Linge field. 

 

7.5.1 Carbon Footprint of Cuttings Handling Solutions 

As stated earlier it needs to be analyzed for each drilling project whether the TCC 

treatment on-, or offshore should be chosen when aiming for the minimization of CO2 

emissions. The emissions of a dedicated CRI well are estimated to be of greater 

magnitude (Saasen, 2014). A rough calculation is performed on the drilling campaign of 

the Martin Linge field. For this purpose, diverse contractors have been contacted to get 

estimates about the energy consumption of various operations.  

The following assumptions are used as the basis of the calculation in Table 13: 

 TCC treatment capacity: 2MT/h onshore at Mongstad ; 8MT/h offshore 

 Energy consumption TCC onshore: 450KW/h  

 Energy consumption TCC offshore: 450l diesel/h  or 1400kw/h for 7MT 

 Crane lifts performed: minimum 6 crane lifts per skip  

 Energy consumption crane: 0,05 m
3
 diesel/h 

 Crane: 5min handling time per skip ; 12 skips per hour 

 Deck space Supply boat: 400m
2
 or 100 skips  

 Supply boat: 20km/h transit speed ,  LNG use transit 10,9MT/24h                        

 Distance to base in Dusavik: ca. 250km 

 Transportation to Mongstad: 5 skips/truck ; 330l diesel for way and return 

 Electricity Emissions: 0,42kg CO2/KWh;  

 Fuel Emissions: 2,68kg CO2/l diesel; 2,56kg CO2/kg LNG 
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CO2 Emissions 

Treatment method 

offshore TCC onshore TCC 

Well 1-7 Well 8-11 Well 1-7 Well 8-11 

Amount of cuttings to 
treat (MT) 

5080,31 2258,94 5080,31 2258,94 

Skip to land (MT) 0 0 5080,31 2258,94 

Diesel use TCC (m3) 285,77 0 0 0 

Electricity use TCC 
(kWh) 

0 395314,5 1143070 508261,5 

Skips required 
assuming 5MT/skip 

0 0 1016 452 

Crane lifts required 0 0 6096 2712 

Diesel use crane (m3) 0 0 25,4 11,3 

Supply boat trips for 
skip transport only 

0 0 3 2 

LNG use Supply Boat 
(MT) 

0 0 817,5 545 

Truck trips to 
Mongstad required 

0 0 204 91 

Diesel use trucs (m3) 0 0 67,32 30,03 

CO2 emissions in kg 
due to electricity use 

0 166033 480090 213470 

CO2 emissions in kg 
due to diesel use 

765863,6 0 248489,6 110764,4 

CO2 emissions in kg 
due to LNG use 

0 0 2092800 1395200 

Total emissions in ton 
CO2 per group 

765863,6 166033 2821380 1719434 

Total emissions in ton 
CO2 

offshore TCC onshore TCC 
931,9 4540,8 

Table 13: CO2 footprint of TCC onshore and offshore treatment  

 

After the first 7 wells are drilled, the drilling rig is planned to be connected to the onshore 

electricity grid. The offshore TCC will have an electrical drive which will be able to run 

both on energy provided from shore or an offshore diesel generator. Note that emissions 
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due to the production and shipping of diesel and LNG are not considered. The emissions 

because of forklift handling of skips at the base are neglected in the calculations as well.  

It can be seen that the offshore / onshore treatment generates ca. 932 / 4541 ton of C02 

respectively. The onshore treatment generates over 4 times as much C02 due to a less 

effective TCC unit and the transportation of the cuttings. The major contributor is the 

LNG use of the supply vessel. 

Even though the estimation is rough, it illustrates that the total C02 emissions will 

be lower if the treatment is carried out offshore.  

 

7.5.2 Oil Discharge to Sea 

Both the CRI and “Skip & Ship” solution avoid the discharge of oil to sea. On the 

contrary, offshore cuttings discharge after TCC treatment will include oil due to the oil 

which adheres to the solids after treatment. Assuming that the median value for oil on 

powder (0.026%) calculated in section 6.1.2 is valid; 1.9 tons of oil will be discharged as 

a part of the 7339 tons of cuttings. 

The base oil used on the Martin Linge field is Total’s EDC 99 DW oil. Its 

environmental soundness can be summarized as non toxic for aquatic organisms, highly 

biodegradable and it does not contain benzene or PAH (Total_2, 2014). In fact, it is 

completely degradable during 28 days after discharge. Therefore no effects of oil 

discharge are expected. 

 

7.6 Evaluation of Cuttings Handling Solutions  

The best cuttings handling solution needs to be chosen based on Health, Safety & 

Environment- (HSE), cost-, and operation reliability-considerations. 
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CRI has the advantage that it can be carried out regardless of the weather 

condition and does not require crane lifts. Thus, it is a safe cuttings handling option. The 

cost difference between CRI and the other solutions shrinks with increasing well 

numbers. Nevertheless, the cost is expected to be unreasonable high in comparison with 

the TCC-, and Skip and Ship- solution. Problems with leakages and plugging of the 

injection well might require remedial work and result in increased cost of CRI. In case of 

the Martin Linge field, the expected amount of cuttings is larger than the injection 

capability and part of the cuttings would need to be shipped to shore for treatment and 

final deposition. The environmental impact comes mainly from the waste generation and 

emissions during the drilling/plug & abandonment of the dedicated CRI well. The 

emissions due to this process alone are expected to be of greater magnitude than the Skip 

and Ship or TCC solution which are to be preferred. 

Skip and Ship solution is logistical demanding and weather depending. This might 

lead to operation stops when all skips on board are filled and can’t be replaced due to a) 

poor logistical planning , b) offshore crane limitations as a result of wind or c) the supply 

boat’s heave. Delays of each kind are undesirable since the daily costs continue to run 

while incomes from the field are postponed due to later production start. Therefore this 

solution might turn out more costly than the offshore treatment of cuttings with the TCC. 

Another disadvantage is the high number of crane lifts which imply an HSE risk 

regarding falling objects and workers getting caught between skips. In the case of the 

Martin Linge field, the emissions of the skip and ship solution are higher than those 

implied in the TCC offshore treatment due to a less effective onshore TCC unit and the 

transportation of the cuttings. 

The TCC offshore treatment avoids the problems faced in the Skip and Ship 

solution since the cuttings are transported by blowers and the treatment capability is 
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unaffected by harsh weather conditions. Taking the value of recovered oil into account, 

the treatment cost is nearly the same for the TCC and Skip and Ship solution. If the TCC 

offshore cuttings treatment prevents weather related drilling stops during the drilling 

campaign, it might turn out as the cheapest cuttings treatment option. No negative 

environmental impact is expected due to the discharge of oil adhered to cuttings since the 

base oil is non toxic for aquatic organisms, highly biodegradable and does not contain 

benzene or PAH. The discharge of the cuttings particles itself is not expected to have an 

accumulating effect on the water column due to dilution and the effects of siltation will 

be limited to the area with highest sedimentation of processed cuttings. The 

environmental risk of the discharge of TCC treated oily cuttings is comparable to the risk 

implied in the discharge of water based cuttings and is thus acceptable. 

 

7.7 Best Cuttings Handling Solution for Martin Linge  

The TCC is the best cuttings handling solution for the Martin Linge field 

development regarding HSE-, cost and operation reliability considerations. Hence, Total 

E&P is willing to implement the TCC technology and taking the necessary steps.  

 

7.8 Recommendations regarding Implementation of TCC  

It is recommended to gather data from the TCC treatment and samples of both 

treated cuttings and recovered water should be taken. This information is to be used 

together with the data from a dedicated monitoring program to verify that the 

environmental risk of oil contaminated cuttings treated with the TCC is comparable to the 

environmental risk of cuttings that are contaminated with WBM. On top of that, the data 

is to be used to improve the treatment process.  
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7.8.1 Data and Sampling Requirements during Operation on NCS 

The TCC technology is field proven and the analysis of the presented data in 

section 6.1.2 showed that both average values for oil in water and oil on powder are well 

below the limit set for direct discharge to sea.  

The oil in water level after treatment is closer to the allowed maximum than the 

level of oil on dry powder and requires special attention. For guaranteeing that no water 

containing more than 30mg of oil per liter is discharged, a continuous measuring system 

could be implemented. In case a higher value of oil in water would be measured against 

all expectations, the discharge could be prevented and further cleaning measures taken. 

For the oil on powder sampling, two samples taken per every third hour of 

treatment are deemed to be sufficient. One sample will be directly analyzed offshore with 

help of a transportable InfraCal TOG/TPH analyzer which is using an infrared analysis 

method to determine the amount of oil on powder (Wilks Enterprise, 2009). The 

detection limit is 2ppm and the measured value has an uncertainty of +/- 1ppm. The 

second sample will be stored for eventual third party analysis at a later stage. It is 

important to document the results of each single analyzed sample to enable proper data 

analysis. These measurements are to be monitored and the results analyzed to verify the 

TCC’s treatment efficiency. Other data related to the cuttings to be processed is to be 

collected to allow better understanding of the treatment process. The solid/water/oil ratio 

and feed temperature are of interest for later analysis. During the treatment process, data 

as the treatment rate and average energy input is to be logged. The data of the cuttings to 

be processed, treatment process and data from the analysis of the processed material can 

be used to optimize the treatment efficiency and update the PLC controller.  
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7.8.2 Monitoring Program and Environmental Risk Evaluation 

To verify that the environmental risk of oil contaminated cuttings which have 

been treated with the TCC is comparable to cuttings that are contaminated with WBM, it 

is desirable to establish a monitoring program at the Martin Linge field.  

Since the production drilling permit including offshore discharge of TCC treated 

cuttings has not been granted yet, Total E&P has not started with the development of a 

tailored monitoring program that shall gain information about the environmental effects 

of TCC treated cuttings discharge to sea. Given that this operation will be performed for 

the first time in Norway, it is recommendable to establish the monitoring program in 

cooperation with NOROG and other interested operators so that quality assured 

information about the TCC offshore treatment is available for future use on the NCS. 

During operation, the particle size, volume of oil and amount of cuttings 

discharged should be recorded for later evaluation.  

After obtaining treated cuttings from the first well, ecotoxicological tests are 

considered to be performed on Corophium, Skeletonema and Acartia and the results 

could be compared to the findings of Aquateam COWI’s report: Karakterisering av 

varmebehandlet oljebasert borekaks.  

Taking the result of the ecotoxicological tests into account, a new environmental 

risk evaluation should be made. Further mesocosm studies are advisable to be performed 

during the drilling campaign.  

Samples taken of the sediments and fauna should be compared to those taken 

during the law imposed environmental background analysis performed by Unifob in 

2008. In this study, the sediments and fauna of the Martin Linge field, former Hild, have 

been analyzed among others (Unifob, 2008). 
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7.9 Implementation of TCC 

The feasibility of the TCC’s implementation at the Martin Linge field is 

investigated. Before the TCC can be installed, the production drilling permit for the 

Martin Linge field needs to be acquired. The performed site survey at the rig illustrated 

that the TCC can be installed and necessary preparations were identified.  

 

7.9.1 Application for Production Drilling Permit 

Total E&P is intending to clean oil contaminated drill cuttings with the TCC. The 

planned offshore discharge of treated cuttings was included in the application for a 

production drilling permit and is currently evaluated by the Norwegian Environment 

Agency (Miljødirektoratet, 2013). A production drilling permit might be issued with 

reference to the Pollution Act and environmental evaluations. This permit is necessary 

before any drilling operation can be started at the Martin Linge field.  

After the application was handed inn, a public notice raised awareness of the 

planned activity. The public was invited to comment on the planned activities and the 

received responses are considered in the evaluation of the production drilling permit. 

Summarized responses from e.g. the Institute of Marine Research, Norwegian Fishing 

Vessel Owners Association and WWF are presented below:  

 Claimed lack of knowledge about impact on environment 

 Concerns about influence of discharged material on marine organisms 

 Desire to ban any discharge of treated oil contaminated cuttings to sea 

 Skepticism regarding TCC as best treatment option   

To date (27.05.14) the application’s approval is still pending.  

However, preparations for both approval and denial have to be made due to long 

lead items, necessary customization and certification of equipment.    
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7.9.2 Installation of TCC on Mærsk XLE Jack-Up 

After a call for tender, Total E&P awarded the waste management and associated 

services contract to TWMA Norge. 

 

7.9.2.1 Site Survey 

To clarify if the TCC system and related equipment could be installed on the 

Mærsk Intrepid rig which is under contract to drill the wells on the Martin Linge field, 

Total requested TWMA to perform a site survey in September 2013 (Reid, 2013). This 

was necessary since the exact position of this cuttings treatment equipment was not 

considered in the original plans for the rig build.  

The Mærsk Intrepid is a jack-up rig developed for ultra-harsh environment which 

is being built at the Keppel Fels Shipyard in Singapore. The planned delivery is in June 

2014 and according to plan, the installation of the TCC system shall take place at the 

Westcon Ølensvåg yard.  

During the survey TWMA focused on the location and type of existing drill 

cuttings equipment, contingency equipment and utilities to determine the ideal location of 

the TCC-, and CST-unit keeping the limited space, structural loading limits and generated 

engine fumes in mind.  

The existing drill cuttings equipment is located inside of the cantilever. Currently, 

there are six shale shakers installed which move the cuttings to two screw conveyors. 

These go along three shale shakers each and transport the cuttings to a third screw 

conveyor which dumps the cuttings in two transition chutes leading to two air conveyors. 

Those have their distinct five inch line connected running along the low side of the 

cantilever for further transportation.  

The needed utilities for the operation of the TCC can be found on port aft deck: 
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 Fresh Water supply for initial fill/periodic top ups of the cooling system  

 Sea Water supply for cooling of process equipment and engine during 

operation 

 Rig Air supply for pneumatically controlled valves, fire dampers, engine 

starters and air diaphragm pumps 

 Diesel supply to engine (in case diesel driven TCC is used) 

Furthermore, two five inch lines exist, mud return-, and slurry return-line, which 

can be connected to the TCC system to transport the recovered oil to a designated pit. 

The recovered powder and water can be mixed together with the sea water used for 

cooling the TCC system and be dispersed into the sea using an existing five inch line that 

ends close to the bottom of one of the jack-ups legs or the rigs main dump line which 

discharges 20-24 m below sea level and can be extended to a greater depth if needed. 

On completion of the rig, there will be connections to the emergency shut-down 

system available which enables the direct shut-down of the TCC and its engine. Internet-, 

telecom-, and public address lines necessary for transfer of data, communication under 

operation and important announcements will be in place as well.  

The structural loading on the main deck is limited to 4 tons/m
2 

on plating and 

local stiffening and 2 tons/m
2 
on girders. 

The height of the equipment on deck is partly limited by the height of the 

cantilever since it cannot be restricted in its mobility.   

In 2016 the field might be fully electrified and an electrically driven TCC is to be 

used. At the start of the drilling campaign rig power or an interim power generator has to 

be used for TCC power supply. An alternative is the diesel driven TCC. 

Two options have been developed by TWMA which include the TCC, four 

CST’s, a vacuum hopper, a vacuum unit and a generator. The difference is in the drive 
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mechanism of the TCC which can be driven by electrical power or diesel. Although the 

electrical unit needs rig power or an interim diesel power generator, the conversation to 

shore power would be easier. Engineering work to exchange the drive system of the TCC 

could be avoided and an electric driven TCC is therefore the preferred option. The 

vacuum unit offers an alternative method of waste transfer in case when the primary rig 

equipment fails. The vacuum hopper will be installed on one of the CST’s and allows 

collecting and dropping vacuumed material to the CST.  

 So that the TCC can process all the generated drilling waste implying drill 

cuttings and vacuum rig clean up, Mærsk is checking the feasibility to connect the 

existing rig vacuum system with TWMA lines. 

Based on this information, TWMA proposed to transfer oil contaminated cuttings 

from the existing five inch lines under the cantilever via flexible hoses to a primary 

cutting storage and transport tank (CST) with help of a diffuser box. The flexible hoses 

will be tailored for different positions of the cantilever with regards to the fixed primary 

CST. In total, there will be four CST’s installed to avoid limitations of the ROP during 

drilling of 17 ¾” well sections. Two of them will be placed permanently under the 

cantilever together with the TCC. The deck space under the cantilever has limited crane 

access and is therefore well suited for the installation of long term equipment. The other 

two CST’s will be situated on the starboard area when needed and can be dismounted to 

free additional deck space. In the case of insufficient storage capacity, a flexible hose can 

be connected to one of the CST’s and transfer waste via the Bulk transfer station to 

supply vessels. If the treatment lacks mud additions, the simultaneous position of the 

TCC and flow line under the cantilever enables the input of mud into the process. 

To conclude, the installation and use of the TCC on the Mærsk Intrepid rig is 

possible.  The final proposed drill cuttings handling is visualized in Figure 15: 
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Figure 15: Block diagram of Cuttings Handling at Martin Linge   
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7.9.2.2 Preparations 

Before the TCC unit can be installed on the Mærsk Intrepid rig in accordance to 

the plan proposed in the site survey, several preparations have to be made. These 

comprise the customization of the TCC unit, its electrical drive, CST’s and their 

compliance with governing law. 

The power supply of the TCC during the start of the drilling operation could be 

covered by rig power or a designated power generator. The possibility of rig power 

supply was investigated and it was concluded that only minor modifications on the 

existing rig electrical system would be required. Therefore the rig power was chosen for 

the initial power supply. At a later stage of the drilling campaign, shore power might be 

available. Therefore the design of the electrical drive system needs to be compatible with 

both the rig-. and onshore- power supply. Thereby modifications for switching between 

the different power supplies are avoided.  

The maximization of deck space utilization required the TCC and two CSTs to be 

placed under the cantilever. The standard TCC unit with its height of 4.35m and CST are 

too tall for being placed as planned. The maximum allowable height which avoids 

restrictions of cantilever movement is 3.8 m.  Engineering work needs to be performed to 

reduce the height of CSTs and to place the mill and related equipment in modules which 

fit in place. These adjustments are not allowed to complicate the maintenance and 

operation of the equipment.  

All offshore service modules need to satisfy the governing law. DNV has been 

engaged to guarantee the compliance of the planned TCC unit and CSTs with valid 

standards and to certify them for use on the NCS. To enable the certification, both the 

TCC and CSTs need to be designed following the requirements stated in DNV’s standard 

for certification No. 2-7.2. (DNV1, 2013).  
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These include: 

 Structural technical requirements  

 Safety related technical requirements 

 Ignition prevention 

 Fire and Gas detection, Passive fire protection and Fire Fighting 

 Communications 

 Escape routes 

 Heating, ventilation and air conditioning 

DNV will perform design assessment, production inspection, testing, plating and 

marking of the units. At the end of the certification process DNV will issue an “Offshore 

service module certificate” which documents that the units are certified for offshore use. 

 

7.9.2.3 Installation and Testing 

As soon as the discharge permit is granted, the TCC system shall ideally be 

installed at the Westcon Ølensvåg yard. Experience has shown that the rig up of the TCC 

system is easier performed in a dock than offshore. In case of later installation the system 

is designed to be bolted in place in order to avoid hot work on installations which are in 

operation. The testing and commissioning of the TCC unit will be prior performed at 

TWMA’s base in Peterhead, UK.  
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Chapter 8: Discussion 

  

In this chapter the issues addressed in the introduction are discussed in view of the 

information presented in chapter 6 and 7.  

Regarding the qualification of the TCC there were 3 issues addressed. The first 

issue is the question whether or not the TCC treatment is in compliance with regulations 

on the NCS. The Activity Regulations for the oil and gas industry states that (1) cuttings, 

sand and solid particles should not be discharged when the content of reservoir oil, other 

oil or base oil of the drilling fluid is higher than 10gr per kg of dry mass and (2) the oil 

content in discharged water shall be as low as possible and not overcome 30mg oil per 

liter in average during a month. The analysis of samples taken after the TCC treatment of 

37000tons of cuttings showed that the maximum value of oil on solids was 1.75g per kg 

and the mean value was 0.33g per kg. This result is consistent with the result presented 

by Kirkness et al. who specified the typical value of oil on solids to be less than 1g per 

kg. Regarding the oil in water the measured maximum value was 21.4mg oil per liter and 

the mean value was 14.1g. Thus, the TCC treated cuttings and in the process separated 

water are in compliance with the governing regulation.  

The second issue covers the real treatment capacity of the TCC. The supplier 

states that the 945kw TCC has a capacity of 4000 – 6000 kg/h while the observed values 

in a field case were in the range of 5220 – 7120 kg/h. This indicates that the TCC might 

have a higher treatment capacity than expected. The detailed discussion of this case is 

performed in section 6.1.1. One explanation for the deviation is that the cuttings have 

been treated with the TCC directly after generation and did not cool to ambient 

temperature before. Thus, less heat was required to evaporate the contained oil and water. 

Furthermore, the steam stripping effect contributes to the high treatment capacity.  
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It implies that the removal of the oil can be performed at lower temperatures than the 

maximum evaporation temperature of the contained oil. As stated earlier the supplier 

might be using a conservative approach of capacity estimation in order to ensure its 

contractual commitments. In reality higher treatment rates could be obtained, especially 

when the cuttings were treated offshore. This is favorable for the TCC offshore treatment 

solution. However, this conclusion should be quality checked when more operational data 

is available since the analysis of one field case has limited explanatory power.  

The third issue deals with the environmental impact of the TCC treatment. The 

treated solids can contain oil, PAH and heavy metals which might have a negative impact 

on the environment. To evaluate the impact of onshore disposal of TCC treated cuttings, 

several leaching tests have been performed. Measured values of chloride, fluorine and 

dissolved organic carbon exceeded set values for land deposition. Therefore a risk 

evaluation regarding the disposal environment should be performed when choosing a 

suitable disposal place. Offshore the environmental harm might arise from increased 

particle content in the water column, sedimentation on the seafloor or by leaching oil, 

PAH and heavy metals to the water column or sediment pore water. Due to dilution the 

environmental harm resulting from the offshore discharge of treated cuttings is expected 

to be limited. The environmental risk is comparable to the risk implied in the discharge of 

cuttings contaminated with water based mud. If the used base oil is non toxic for aquatic 

organisms, highly biodegradable and does not contain benzene or PAH, no effects due to 

oil discharge are expected. Regarding CO2 and NOx emissions, the TCC treatment 

generates fewer emissions than CRI due to emissions connected to the drilling process of 

a dedicated well. Whether the TCC treatment on-, or offshore should be chosen to 

minimize CO2 and NOx emissions depends among others on the distance to shore, the 

energy supply of the TCC unit, the amount of cuttings and weather conditions. In the case 
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of the planned cuttings handling at the Martin Linge field, a rough calculation of the CO2 

emissions showed that the offshore TCC treatment is to be preferred compared to onshore 

TCC treatment. To sum up, the environmental impact of the disposal of TCC treated 

cuttings is acceptable and might be less significant than the impact of particle discharges 

from other industries. To set the planned discharge of 7339 tons treated cuttings at the 

Martin Linge field into perspective, it might be appropriate to mention the planned yearly 

discharge of up to 2 million tons of crushed rock into the Repparfjord by the Nussir 

mining company (Rushfeldt, 2013).  

There were two central issues with regards to the Martin Linge field development. 

The first issue to be examined is the cuttings treatment at the Martin Linge field. In the 

discussion performed in section 7.6 it was shown that the TCC is the best treatment 

option due to following reasons:  

 Avoids crane lifts during cuttings movement, thus no risk of falling objects 

 Cost similar to skip and ship or cheaper 

 Environmental harm is expected to be limited due to dilution of discharges 

 High operation reliability 

 Recovered oil can be re-used as base oil 

 Unaffected by harsh weather conditions 

Even though experience gathered with the TCC system justifies the expectation of high 

TCC operation reliability, a preventive maintenance program has to be implemented. 

Furthermore, a contingency plan has to be in place since the cuttings treatment is critical 

for the drilling process and the TCC needs to be operative especially during the fast 

drilled 17 ½” sections. Bulk Transfer, interim storage of cuttings in the CST’s and 

transfers to supply vessels via hose for shipment to land, is the preferred contingency 

option. 
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The second issue is concerned with the implementation of the TCC technology on 

the Mærsk Intrepid rig which is in charge of drilling the wells at the Martin Linge field.  

The performed site survey confirmed that the implementation is possible. The installation 

is planned under the cantilever of the jack-up in order to optimize space utilization. This 

requires customization of the system due to height limitations. Both utility supplies and 

connecting points for cuttings/mud transfer are available. The TCC engine will be 

designed to run both on generator and shore power. The change to shore power will make 

the TCC treatment more environmental friendly since it implies a cut in emissions from 

the treatment. Further the unit will need to be certified before it can be installed. Since it 

is custom build and the requirements for certification are known, this process does not 

prevent the TCC implementation.  

The only remaining obstacle for the implementation is the pending approval of the 

production drilling application by the Norwegian Environment Agency.  
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Chapter 9: Conclusion and Recommendations 

The aim of this thesis was to introduce and qualify the Thermomechanical 

Cuttings Cleaner technology for offshore treatment of oil contaminated cuttings on the 

Norwegian Continental Shelf with particular reference to the Martin Linge field 

development. Even though several papers described the TCC technology and its 

development for offshore use, detailed information about the TCC’s efficiency, real 

treatment capacity and environmental considerations was missing and required further 

investigation because of the planned implementation of the TCC cuttings treatment at the 

Martin Linge field. The addressed issues and answers are presented below: 

1. Is the TCC cuttings treatment in compliance with the regulations at the NCS? 

The field data analysis in section 6.1.2 showed that the TCC treatment meets the 

requirements set in the regulations. The maximum values for oil on solids and oil 

in water after treatment were measured to be 1.75g per kg or 21.4mg per liter 

respectively while the regulation sets a max value of 10g per kg or 30mg per liter. 

2. Does the theoretical treatment capacity of TCC match the observed values? 

The observed treatment capacity surpasses the supplier stated treatment capacity. 

While the supplier states that the 945kW TCC can treat 4 – 6 tons/hour the 

observed treatment capacity was between 5.2 and 7.1 tons/hour. This result is in 

favor of the TCC technology and is sufficient for offshore cuttings handling. 

3. Is the environmental impact due to TCC cuttings treatment acceptable? 

Studies performed on the environmental impact with focus on (a) onshore 

deposition of treated cuttings, (b) offshore discharge to sea of TCC treated 

cuttings and (c) treatment related emissions concluded that the environmental 

impact of the TCC treatment is acceptable. 
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Issues addressed with particular reference to the Martin Linge field development: 

4. Is offshore TCC cuttings treatment the best option for the Martin Linge field? 

The comparison between TCC, CRI and Skip & Ship cuttings handling solutions 

performed in section 7.6 illustrated that offshore TCC treatment is the best option 

for the Martin Linge field development with regards to HSE-, cost and operation 

reliability considerations. 

5. Can the TCC technology be implemented on the Mærsk Intrepid jack-up? 

The performed site survey at the Mærsk Intrepid jack-up and ongoing 

preparations presented in section 7.9 showed that the implementation of the TCC 

technology is feasible. 

In view of the information presented in this thesis, the author advises to grant the 

production drilling permit for the Martin Linge field. It has been shown that the TCC 

qualifies for offshore cuttings treatment on the NCS and the feasibility of TCC 

implementation was illustrated. A pilot TCC treatment could prove that the TCC is to be 

considered as best available technology for offshore oil contaminated cuttings treatment 

and enable the implementation of this cuttings treatment technology for further projects 

in the future.  

The author recommends (1) the establishment of a suitable monitoring program in 

cooperation with NOROG and other operators to guarantee quality assured information 

about the TCC offshore treatment and (2) to continue research about alternative use of 

TCC treated solids to improve the waste management. One potential use for the solids is 

as substitution for bentonite in spud mud. This option is currently (spring 2014) being 

researched by Farid Taghiyev in his Master thesis: Application of Thermo-Mechanically 

Treated Drill Cuttings as an Alternative to Bentonite in Spud Muds. 
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Appendix A 

 

Simplified TCC Control system 

In this Appendix a linear control system as illustrated in Figure 16 will be used as 

basis for the development of a possible TCC control system. This is done for 

comprehension purpose only. Control engineering deals with establishing a reference 

value for a system and keeping a process value as close as possible to it (Nygaard, 2013). 

For this purpose a programmable logic controller PLC is used which is an industrial 

computer system. 

In the illustrated control system, both feedback-, and feed forward-control is applied. The 

feedback consists of the measured value y which is reported to the error detector. It 

calculates the error e through subtracting the measured value y from the reference value r 

and sends an actuating signal to the feedback control element (Sivanagaraju, 2012). This 

signal is then manipulated to generate a control signal which will steer the control value 

u. Feed forward control is improving the control of the system through compensating the 

actuator u for known disturbances d, and changes in reference level r (Nygaard, 2013). 

 

Figure 16: The control system terminology (Nygaard, 2013) 
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The development of the simplified TCC control system is based on personal 

communication and information gathered during a field trip. The TCC control system has 

several inputs which vary and affect the treatment capacity. 

 Mechanical energy supply. The energy is converted to heat in order to vaporize 

the liquids contained in the cuttings. 

 Oil, Water and Solids Ratio of Cuttings. Changes in the cuttings composition lead 

to different energy demands due to the different specific heat capacities of oil, 

water and solids respectively. This is a function of the setup of solid control 

equipment, origin of the cuttings, usage of drill mud and further variables.  

 Temperature of cuttings feedstock. Temperature changes will lead to a different 

energy demand. 

All these factors can disturb the process and will be displayed in Figure 17 as 

disturbances d. Information gathered is fed into the TCC control system for process 

optimization purposes with regards to a given reference level r of process temperature 

and load on the drive system which steer the cutting cleaning process. 

If the temperature in the mill is increasing and will soon reach the reference level, 

the PLC will activate the feed pump so that the injected cuttings decelerate the rise in 

temperature. Too high temperatures can degenerate the oil and must be avoided. When 

the temperature rises to a level higher than the set point, the feed progressively increases 

in order to achieve a drop in temperature. While the temperature is decreasing and 

approaches the set point, the pump reduces the supply of cuttings in a progressive 

manner.  
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Figure 17: Block diagram of simplified TCC control system 

 

Where the control value u comprises the feed pump and rotary valve, the disturbance d 

comprises the power input,oil/water/solids ratio, temp feed stock and power input, and 

the reference value r comprises the set temperature and set load. 

 

The load on the drive system automatically increases when material is supplied to 

the mill. When the load approaches a certain level r, a rotary valve installed on the mill is 

activated by the PLC to eject a part of the material and decrease the load. A rotary valve 

is a device which can discharge bulk powders through rotation of a multi-vane rotor 

(Blackmore, 2014). It maintains an airlock and thereby acts as a barrier against 

explosions. 

As the load increases towards the reference level, the PLC activates the rotary valve 

which will progressively eject more material through an increase of rotation velocity. 

When the load has passed the reference level and starts dropping, the rotation speed of 

the valve will decrease in a progressive manner. If no disturbances are present, the PLC 
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will enable a stable temperature through a stable feed rate. The rotary valve will as well 

settle at a stable rotation speed and maintain a stable load. 

 The PLC system ensures proper treatment through taking the mass balance 

approach into account. Both the feed into the mill and the mass contained should be 

monitored at each time of the process. Together with information about the 

water/oil/solids ratio this information could be used to prevent oil containing solids to be 

ejected.    
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