
Front page for master thesis

Faculty of Science and Technology

Decision made by the Dean October 30
th

 2009

Faculty of Science and Technology

MASTER’S THESIS

Study program/ Specialization:

Computer Science

Spring semester, 2014

Open access

Writer:

SURYANTO ANG

…………SURYANTO ANG…………

(Writer’s signature)

Faculty supervisor: TOMASZ WIKTOR WLODARCZYK

 CHUNMING RONG

Thesis title:

Framework of Evidence Collection with Temporal Logic and First-Order Logic for Providing

Accountability in Cloud Service

Credits (ECTS): 30

Key words:

Cloud Service, Accountability, Evidence,

Temporal Logic, First-Order Logic, Policy, A-PPL

 Pages: ……98………

 + enclosure: program on CD

 Stavanger, June 2014

Framework of Evidence Collection with Temporal Logic

and First-Order Logic for Providing Accountability in

Cloud Service

Suryanto Ang

Faculty of Science and Technology

Department of Electrical and Computer Engineering

University of Stavanger

June 2014

Abstract

With the introduction of cloud computing, many types of services have been introduced

within the umbrella of this technology. With these services, some of the computations are

brought into network, cloud of service machines. Although the technology gives lots of

benefits and flexibility to its users, there are some areas that need to be taken to concern. The

lack of mechanism to verify the policies are in place in the real system is one of the main

reasons for difficulty of cloud computing adoption. There is a need of way to control the

processes within the service chain and make sure that they are complied with service level

agreement.

A framework for collecting evidence based on source of information about system’s running

is proposed. The process is based on the obligations or policies defined for services in the

system. This framework of evidence collection can be used as basis for providing

accountability in cloud.

Accountability policies are, in the context of this framework, expressed in A-PPL which is an

accountability policy representation framework. A use case is selected to demonstrate how

the approach for evidence collection works. It is about health care service in the cloud. Test

environment to represent healthcare service in cloud is set up. The purpose of this is to have

data as source of evidence to be processed using proposed method on selected use case and

related defined policies or obligations. The environment is set up using VMs (Virtual

Machine) in Linux.

Two approaches on processing source of evidence and policy are shown and compared. The

first approach processes them as MFOTL using MonPoly. The second approach processes

them as Prolog (FOL) using Pyke.

Testing on those two approaches using the implementations done on this thesis shows that

representing accountability policies in MFOTL gives more expressiveness than representing

them in pure Prolog (FOL). However processing of MFOTL used in MonPoly gives no more

flexibility in terms of practical usage and improvement than using Prolog with Pyke.

Keywords: Cloud Service, Accountability, Evidence, Temporal Logic, First-Order Logic,

Policy, A-PPL

Acknowledgements

I would like to thank my supervisors which during my work in the thesis have given me

valuable inputs, advices, and feedbacks. These really help me to not only make this work

completed but also solve the problem in the right way.

My thanks also go to all my lecturers in University of Stavanger who have given me solid

knowledge which is useful to support the work I am completing in the thesis.

I would also extend my deepest gratitude to my family, my parents, my brothers and sisters

who always give me endless supports at whatever forms while completing the work.

Last but not least, I would also like to thank my friends for their accompaniments during days

of completing my work in this thesis.

Preface

This thesis is submitted as partial fulfilment of the requirements to complete the Master of

Science (M.Sc.) degree in Computer Science at the Department of Electrical and Computer

Engineering at the University of Stavanger, Norway.

The work has been completed under supervision of Dr. Tomasz Wiktor Wlodarczyk. It

covers work from February to June 2014. This thesis has been made solely by the authors

with reference to researches of others. All researches discussed in the thesis have been

properly referred in reference section.

The work is about providing method or way to be able to collect evidence on violation to

obligations cloud service based on information that are collected from activities of every

component in the scenario. The output of the process is evidence as a proof of something has

violated the rules. This then can be basis for auditing process by a trusted pointed cloud

auditor. The method is evidence-based i.e. the proposed framework has goal to collect

evidence based on source of information about the system’s running with respect to

obligations or policies defined for services in the system. The framework of evidence

collection can be used as basis for providing accountability in cloud.

Contents

1. Introduction .. 11

1.1. Motivation .. 11

1.2. Contributions ... 12

1.3. Related Works ... 13

1.4. Organization of the Thesis ... 22

2. Background ... 24

2.1. Cloud Service ... 24

2.2. Accountability in Cloud ... 25

2.3. Service Delivery Chain .. 25

2.4. Evidence Collection / Processing .. 27

2.5. Policy / Obligation in Cloud Context .. 27

2.6. Policy Representation (PPL, AAL, A-PPL) .. 28

2.7. Policy Monitoring .. 30

2.8. Temporal Logic (& MFOTL) .. 32

2.9. Source of Evidences .. 34

2.10. MonPoly Monitoring Tool ... 35

2.11. Pyke ... 36

3. Proposed Method & Implementation ... 39

3.1. Working Steps in the Thesis .. 39

3.2. Use Case and Policies .. 41

3.3. Accountability Evidence Collection .. 43

3.4. Policy Representation in A-PPL .. 45

3.5. Source of Evidences .. 50

3.6. Test System Settings .. 52

3.7. Event Generation ... 54

3.8. Data Pre-processing ... 58

3.9. Evidence Collection with MonPoly ... 60

3.10. LTL and MFOTL ... 63

3.11. Temporal Logic Processing Tools ... 65

3.12. A-PPL Translation ... 66

3.13. MFOTL Formula ... 69

3.14. Evidence Collection with Pyke .. 70

3.15. Normalization .. 74

3.16. Verification Process ... 75

4. Result & Analysis ... 77

4.1. Source of Evidence .. 77

4.2. MFOTL Formula ... 79

4.3. Detecting Violation to Obligation with MonPoly ... 81

4.4. Detecting Violation to Obligation with Pyke .. 82

4.5. Test cases and Results ... 84

4.6. Comparison .. 89

4.7. Scalability & Limitations ... 89

5. Conclusion & Future Works ... 93

References .. 95

List of Figures

Figure 1.1. Log for Publish/Approve Example .. 14

Figure 1.2. Temporal Overview for Publish/Approve Example .. 14

Figure 1.3. Steps of Digital Forensic ... 15

Figure 1.4. Analysis Step of Digital Forensic .. 16

Figure 1.5. Digital Evidence Bag ... 18

Figure 1.6. CSM API in Cloud .. 18

Figure 1.7. PPL Accountability Analysis Framework ... 19

Figure 1.8. Data Handling Requirements-aware Cloud Stack ... 21

Figure 2.1. Cloud Service .. 24

Figure 2.2. Service Delivery Chain in Cloud ... 26

Figure 2.3. Machine Understandable Translation of AAL .. 29

Figure 2.4. Structure of PPL Policy ... 29

Figure 2.5. Example Policy Representation Structure in A-PPL ... 30

Figure 2.6. Policy Monitoring .. 31

Figure 3.1. Working Steps ... 39

Figure 3.2. Use Case: Healthcare Service in Cloud ... 42

Figure 3.3. Proposed Framework of Evidence Collection ... 43

Figure 3.4. Source of Evidence for Test System ... 52

Figure 3.5. Test System Environment.. 53

Figure 3.6. Event Generation Architecture .. 56

Figure 3.7. Event Generation Pseudocode ... 57

Figure 3.8. Event Generation Iteration .. 57

Figure 3.9. Source of Evidence Processing ... 58

Figure 3.10. Filtering on Source of Evidence Processing .. 59

Figure 3.11. Source of Evidence Normalization .. 60

Figure 3.12. Source of Evidence Collection .. 60

Figure 3.13. Evidence Collection Process with MonPoly ... 62

Figure 3.14. MonPoly Policy Monitoring Pseudocode .. 63

Figure 3.15. A-PPL Translation and MonPoly .. 67

Figure 3.16. A-PPL Translator... 68

Figure 3.17. A-PPL Translator Pseudocode .. 69

Figure 3.18. Evidence Collection with Pyke ... 71

Figure 3.19. Evidence Normalization .. 75

Figure 3.20. Verification Method .. 76

Figure 3.21. Verification Principle .. 76

Figure 4.1. Normalized Source of Evidence Example ... 78

Figure 4.2. Processable Log Example .. 79

Figure 4.3. Output of Collection with MonPoly .. 81

Figure 4.4. Output of Collection with Pyke ... 84

Figure 4.5. Evidence Collection with MonPoly - Execution Time Graph............................... 90

Figure 4.6. Evidence Collection with Pyke - Execution Time Graph 91

List of Tables

Table 3.1. LTL and MFOTL Comparison ... 64

Table 4.1. Evidence Collection with MonPoly - Execution Time Table 90

Table 4.2. Evidence Collection with Pyke - Execution Time Table .. 91

1. Introduction

Providing accountability in cloud service is important as one of the ways to tackle obstacles

for cloud computing adoption. Accountability solves problem by providing account of an

entity’s actions in the cloud with respect to obligations that have been set up for the cloud

service. This gives every entity involved in the cloud service a way to measure if all entities

are following all obligations related to them. Evidence is then necessary to show the

obligations are followed i.e. supporting the accountability to be achieved. This section

provides motivation behind solving the problem. Contributions of work in this thesis are

listed. In addition to that, several works related to digital evidence and providing

accountability in cloud with respect to obligations are discussed in short. At the last section,

organization of this thesis is given.

1.1. Motivation

With the introduction of cloud computing, many types of services have been introduced

within the umbrella of this technology. With these services, some the computations are

brought into network, cloud of service machines. One of the famous examples of cloud

services is where users can store their data in the network as if they store the data in their

local machines. In fact, this stored data can be accessed wherever they are. This technology

has somehow changed the way people use the Internet and their computers.

Although the technology gives lots of benefits and flexibility to its users, there are some areas

that need to be taken to concern. In the previous example, how users are sure that their data

are being processed according the agreements that have been set at the first place. They have

no insight and control about how the processes are going on behind the scene. It is something

called ensuring accountability of cloud service. It means that how the users are sure that the

services or processes are accountable. The lack of mechanism to verify the policies are in

place in the real system is one of the main reasons for difficulty of cloud computing adoption.

In Dropbox example, where users can store their data using Dropbox service in the cloud,

accountability is important. In this Service Delivery Chain type of scenario, there is a need of

way to control the processes within the service chain and make sure that they are complied

with service level agreement.

The aforementioned intention is the goal of this Thesis. We want to develop a method or way

to be able to detect if there is violation in this type of service, Service in Cloud, based on

information that are collected from activities of every component in the scenario. The output

of this process is evidence as a proof of something has violated the rules. This then can be

basis for auditing process by a trusted pointed cloud auditor. The method is evidence-based

i.e. the proposed framework has goal to collect evidence based on source of information

about the system’s running with respect to obligations or policies defined for services in the

system. The framework of evidence collection can be used as basis for providing

accountability in cloud. This is because that evidence can be used as a media for making all

entities in the system accountable for their actions especially on those that violating

obligations.

1.2. Contributions

This thesis proposes framework for evidence collection in purpose of providing

accountability in cloud service. The framework focuses on collecting and verifying evidence.

Following list are general items produced from this work:

- Source of evidence identification and collection

Source of evidence gives information about system activities for the purpose of

collecting evidence i.e. on violation to policy. Source of evidence needs to be

identified. Discussion on how the sources of evidence are identified and collection is

presented.

- Evidence collection method

As part of the framework for evidence collection, collection process collects evidence

on violation to the obligations with continuous phase. Method on how the evidence is

collected from system information in relation to obligations is presented. The

implementation shows how the proposed method can be implemented.

- Evidence verification method

Verification method verifies if potential evidence from the collection process can be

used as evidence as proof of violation to policies. Method on how the potential

evidence is verified is presented. Along with the proposed method, implementation

shows how it can be implemented.

- Study of policy representation

All entities in the cloud system have to comply with policies. In the effort of providing

accountability by collecting evidence i.e. on violations to policies, the framework is

executed based on the policies. To do so, policies need to be represented in machine

understandable format and be processable for evidence collection process. The work in

this thesis includes study on how to represent the policies. Methods and

implementations of the framework then take this information into account.

- Test case implementation

Use case on cloud service is selected and proposed methods and related

implementations are executed on this use case to show how the proposed method

works. In order to do so, a test system simulating the use case is also built up i.e. to

simulate the use case on healthcare service in cloud. Based on this system, source of

evidence is collected to be processed in the evidence collection step.

- Comparison of two approaches used in collection process

Two approaches on processing source of evidence and policy are shown and compared.

The first approach processes them as MFOTL using MonPoly. The second approach

processes them as Prolog (FOL) using Pyke.

1.3. Related Works

Accountability is a way for an organization to provide account for their actions in relations to

obligations or policies their systems must comply with [1]. In realizing this condition, some

actions must be taken at monitoring what the systems are doing and checking if the activities

comply with the policies or obligations that have been set up. As a result, evidences as proof

of something has happened are constructed from the monitoring and checking activities. As

explained in [1] that accountability evidences are collections of data that provide verifiable

account about fulfilment of obligations with respect to observable system, the goal of

monitoring are to get evidences if something happened in the system are to be claimed

happened. This section discusses some of the works that are trying to solve problems relating

to monitoring for the purposes of providing account of actions happened in the system with

respect to obligations or policies that have been set up.

- Policy Monitoring using MFOTL

[2] provides approach on monitoring system policies. The policies are expressed using

expressive fragment of temporal logic. A case study is used to show the effectiveness of the

specification language on compliance monitoring together with the monitoring algorithm that

is developed based on this specification language. The algorithm is based on monitoring to

verify system properties by using algorithm to check whether a system trace satisfies a

temporal property. Temporal logic used for expressing policies is called Metric First-Order

Temporal Logic (MFOTL). MFOTL is an extension of metric temporal logic [3]. Monitoring

algorithm proposed is evaluated by monitoring policies on synthetic data streams. MFOTL

formulas expressing policies are described over signature that registers all the relations in the

observable system. The monitoring takes place on temporal structure which expressing all

events happened in the system with time information. To detect violations, monitorable

formulas are written in negation form. Then, the monitoring algorithm iteratively processes

the temporal structure, evaluating the formula at each time point. Example case of monitoring

is to read log files and report policy violations.

A simple example provided in the work is about monitoring publish/approve report policy on

system log. The policy requires that before a report is published, it must be approved. System

log containing events happened is depicted in Figure 1.1.

2010-03-04 archive_report (Alice, #104)

 . .

 . .

2010-03-09 approve_report (Alice, #248)

 . .

 . .

2010-03-13 approve_report (Alice, #234)

2010-03-13 publish_report (Bob, #248)

 . .

 . .

Figure 1.1. Log for Publish/Approve Example

The temporal overview of events in the system log is shown as below in Figure 1.2.

Figure 1.2. Temporal Overview for Publish/Approve Example

The policy is expressed in MFOTL as

□ e. r.publish_report(e,r) ◆[0,11) m.approve_report(m,r)

The result of running the monitoring algorithm using defined policy on the system logs result

in no policy violation detection where the event publish_report(Bob, #248) is preceded by

event approve_report(Alice, #248) which is by meaning report #248 has been approved when

it is published.

The work also presents analysis on space requirement for their monitoring algorithm. Since

the algorithm iteratively processes the temporal structure in temporal database, the upper

bounds are given in terms of the processed prefix. The largest portion of memory usage is the

space needed to store relations of the extended structures [4].

- Forensic Standard

[5] works on providing ISO 27037 which is the first of a developing family of international

standards that try to create common baseline of the practice of digital forensic. Digital

forensic has close relationship with cloud computing domain where it becomes one of the

tools to tackle challenges of cloud computing related to privacy and security. Digital forensic

is used to find any unappropriate actions through investigations in the multi-tenant, highly

virtualized environment that cloud service exposes. Standard in ISO 27037 is intended to

facilitate usability of evidences obtained in one jurisdiction operating in another jurisdiction.

It addresses the steps of forensic as identifying, obtaining, and preserving potential digital

evidences.

Figure 1.3. Steps of Digital Forensic

Figure 1.3. shows the steps of processing evidence as part of digital forensic proposed in [5].

The process starts with identifying any data that could be potential evidences. Formally

identification is the process involving searching for, recognizing and documenting of digital

evidence [6]. Obtaining step following identification may be either collection or acquisition.

Collection is taking items containing potential evidence and removing them for further

processing and analysis. While acquisition is taking copy of items so as to minimize business

impact because of ongoing investigation. Once the potential evidences have been collected or

acquired, they must be preserved. Storage requires strict access controls to potential

evidences from any undesired modifications.

The work also defines general guideline on how the digital evidence handling should be in

cloud setting in terms of identification, obtaining, and preservation. It compares the standard

ISO 27037 and how it is implemented in cloud setting. It also identifies which items that

could potentially be the evidence in cloud setting.

Process following preservation is analysis of potential evidences. [5] defines analysis of

potential evidences as serial of several steps which are depicted in Figure 1.4.

Figure 1.4. Analysis Step of Digital Forensic

It defines analysis as identify and evaluate potential evidences whether they are valid

evidences or not. Analysis may be static (by inspection only) or live (analysis on site).

Interpretation following analysis tries to define the meaning of analysed evidences. The result

is presented in the reporting step.

- Logical Method for Policy Enforcement over Evolving Audit Logs

Work discussed in [7] proposes iterative algorithm for enforcing policies which are

represented in first-order logic. The algorithm checks over evolving logs. It means that, in

each iteration, the algorithm tries to enforce as much policies as possible over current log and

outputs residual policies for next iteration when logs are extended with additional

information.

Policies are represented using what is called PrivacyLFP [8], an expressive first-order

temporal logic. It is claimed that the language is more expressive than propositional temporal

logic [9]. The iterative enforcement algorithm works on incomplete logs which are

represented as three-valued partial structures that map each atomic formula of policies to

either true, false, or unknown.

In the logic syntax, there are propositional connectives T (true),  (false),  (conjunction), 

(disjunction),  (negation), and first-order quantifier  and with restriction formula. The

syntax also include standard connective of Linear Temporal Logic (LTL) that provides

quantification over the sequence of states. It also assumes each state has timestamp associated

with it.

Application example is presented in the work. One of them is policy about disclosure of

health information from one entity to another in that it is only allowed if the receiving entity

is patient’s doctor and the purpose is for treatment, or the patient has given consent about.

The policy is represented in the logic as

),(),2,1(.(,,,,2,11 umpurpmppsendtqumpppol

)),(_),,(phitinattrtqmtagged 

)),(_))(,2((treatmentuinpurpqdocpinrole 

))),(,2,1(,(tqppsendactionqconsents

The iterative enforcement algorithm matches the policy representation with incomplete logs

which are defined in partial structures.

- Open Architecture for Digital Evidence Integration

[10] works around digital evidence bags which become important part on storage and sharing

of digital evidence between organizations. It proposes an architecture for digital evidence

bags which is developed on top of Turner’s digital evidence bags concept [11]. This

architecture overcomes some shortcomings from the previous concept. It treats bags as

immutable objects, and facilitates the building of digital evidence corpus by composition and

referencing between them.

Digital evidence bags contain several components which are:

- Evidence Metadata Records

This record contains information about description of the evidence, the location and

time of the evidence acquisition.

- Provenance Records

This record contains chain of information related to the evidence which describes

whole story of events constructing the evidence.

- Identification Records

This is to uniquely identify the bag. It may contain other case related information such

as case number, item number, collecting organization, suspect and victim.

- Integrity Device

Integrity Device is built in form of seal that protect the evidence inside the bag so as to

provide integrity for the evidence itself.

- Evidence Container

It is the inside of the bag.

The architecture for digital evidence bag proposed in the work is called Sealed Digital

Evidence Bags as shown in Figure 1.5. Similar to Turner’s digital evidence bags, the

architecture has tag file, metadata file, and the digital evidence bags. Tag file contains

integrity information. Metadata defines digital evidence bags associated with it. The

identification for digital evidence bags uses RDF’s URI approach.

The work also developed a prototype online acquisition tool for creating digital evidence bag

containing images of the Internet Explorer cache and history index files.

Figure 1.5. Digital Evidence Bag

- Evidence of Log Integrity in Policy-based Security Monitoring

[12] tries to solve a problem when logs containing information about system activities of an

organization have potential to be modified by malicious entities to hide any malicious

activities that are not compliance with the policies defined. It proposes cloud-based

framework to ensure log integrity based on small amount of evidence data. A simple Cloud

Security Monitoring (CSM) API is made available for organizations operating in cloud to

retrieve additional information about their systems. This information is used to verify system

compliance against policies.

The approach used is to identify minimal sets of events needed to construct proofs of policy

compliance using only information gathered through CSM API.

Figure 1.6. CSM API in Cloud

Figure 1.6. shows the introduction of CSM API that enables the monitoring system to retrieve

additional information for verification of system compliance with policies to the organization

using cloud service. Policies are represented as rules and policy violations are specified as

indicating sequences of events that are not supposed to occur in the system. Events are

characterized by type, set of parameters, and two timestamps which are start and end times.

The approach discussed in the paper is tested on a case study on Payment Card Industry Data

Security Standard (PCI-DSS) policies which is intended for cloud service providers handling

credit card data of credit card companies. Source of evidences for each policy are identified

such as network traffic, firewall information, running programs, documentations, etc. Data

for the sources are collected through monitoring systems such as cloud configuration

information, network monitoring, VMI (Virtual Machine Introspection), etc.

Experiments on 4 monitored policies show that the approach is able to monitor 100% for 2 of

them and 37.5% and 33.3% for the other two.

- Log Design for Accountability

[13] addresses the problem on designing logs of system activities so that analysis on policies

or rules compliance is supported. This problem started from the fact that Personally

Identifiable Information (PII) is becoming more often be shared by Data Subjects in

exchange for services. As this type of data is sensitive, it is then become more important

legislation on how this data should be collected, distributed, and accessed. In current

approach, Data Controllers are allowed to manipulate data and are trusted to follow rules.

However, they are still accountable for their actions through analysis on information on how

the activities are performed.

The work in the paper is based on building formal definition of PrimeLife Privacy Policy

Language (PPL) which is first presented in [14] and is partly build on XACML. PPL is used

to express access and usage control rules. The work formalized and implemented log

compliance analyser against rules that are specified in PPL. Figure 1.7. shows the

components of the work.

Figure 1.7. PPL Accountability Analysis Framework

Data subjects define rules in terms of sticky policy. Data controller must log all the events

occurred in the system. The log information is used by analyser to determine if the policy

defined by data subject is followed or not. Obligations as rules are defined in terms of trigger

and actions. Several triggers have been defined in PPL such as when PII is deleted, is

updated, is accessed, is forwarded to other entities, etc. All available triggers and actions

definition are given in the paper. The definition in PPL also includes authorizations which

declare whether PII can be transmitted to other entities and for which purposes it may be

used.

Example scenario is introduced in the work to illustrate issues that might arise when

analysing log. The scenario is on data handling events for private bank account. Several

obligations are defined relating to the requirement for bank to send related notification to

customer. Issues that might arise can be insufficient event information which arises from

missing parameter in log entries for given events which result in undecidability of obligation

compliance. Other issues can be incomplete support for third party interaction which cause

events for complying with obligations are not generated or can be no support for manual

verification because there is no comprehensive information such as actual content of an

event.

At last, the paper presents guidelines for accountable log design based on the issues that

might arise. Some of them are that log architecture should reflect full policy language

semantics, that there should be links between formal specifications and policies requiring

human verification.

- Data Handling Requirements-aware Cloud Computing

Work presented in [15] identifies challenges for enabling data handling requirement

awareness in cloud service. It is due to the fact that in order for cloud service to be utilized

properly, it should have mechanisms for users or companies to define requirements on how

their data should be treated and for the providers to be exercised on how they process the data

based on requirements set up. Some examples of the requirements are restricting on how long

and where a specific piece of data might be stored. Cloud provider must meet the

requirements and are monitored on doing so. The work then presents high-level solution for

data handling aware cloud computing. The idea proposed is to enrich data with data handling

annotation using PrimeLife Privacy Policy Language before it is uploaded to cloud.

Two main challenges for cloud data handling are location of storage and duration of storage.

Location of storage challenge comes from the situation where users usually have requirement

that their data is stored in the jurisdiction of their location or where EU has different data

handling policy than US does. When this situation is applied to cloud, then the challenge

appears. On the other hand, there is usually data storage duration requirement. This condition

poses challenge on providing way for making sure that cloud providers meet this

requirement.

Figure 1.8. shows data handling requirement aware cloud proposed in the work. User creates

data handling obligations in data annotation before handing over his data to cloud service. In

receiving this annotation, cloud provider matches the obligation with the policies it has.

When matches, it signs the data annotation and sends back to user. Since then, it is

responsible for following the data handling obligations. In the cloud stack architecture, cloud

provider makes the same agreement with another provider in purpose of following the

obligations. Broker is utilized for determining the most appropriate provider in terms of QoS,

SLA, pricing and support for data handling requirements as well.

For formalize data handling obligations, PrimeLife Privacy Policy Language (PPL) [16] is

used. Obligations are defined as set of triggers and actions. When trigger occurs, defined

action must be executed.

Figure 1.8. Data Handling Requirements-aware Cloud Stack

- Obtaining and Admitting Electronic Evidence - Using Log Record Analysis to Show

Internet and Computer Activity in Criminal Cases

Paper [17] presents a log record analysis for revealing criminal activities that happened in a

system. A hypothetical scenario is presented which is an attacker exploits system

vulnerability to gain unauthorized access. The work started with explaining possible log

information associated with each type of activities that might occur in the system. Then types

of logging devices are presented which produce logs such as firewall logs, web server access

logs, FTP server logs, Proxy server logs, etc. Typical information that can be extracted from

the logs is IP address, timestamp, userid, request, HTTP information, etc.

Three steps for obtaining log record proposed in the work are identification, preservation, and

collection which correspond to identify types of records, preserve records, and use legal

process to collect records respectively.

After dealing with obtaining log records, the next step is to conducting log analysis. Log

analysis is divided into 5 substeps which are:

- Data Collection

This step involves assembling log records from several sources to be used for analysis.

By combining logs from several sources, analyst can confirm and corroborate activities

in the system

- Data Normalization

This step involves parsing, filtering, and revealing additional metadata that can help

collection process. As the data may come from different sources with different format,

normalization is trying to produce the same format with key information for all logs

coming from different sources.

- Analysis

This step includes review for log entries in relation to investigation. Normalization

results in normalized fields for the log entries which can give information for analysis

process. Normalization on time also produces time line for events which can lead for

the investigation.

- Correlation

This step involves comparison and confirmation of common records from different

logs. This activity may lead to new information by combining extracted information

from different logs.

- Report

This step includes summarization of the information extracted from data set.

Several sample cases on using log records for analysis are shown for example revealing

specific activity in email account, revealing posting and deleting content activity on the

Internet, etc.

1.4. Organization of the Thesis

This thesis is organized in following way:

- Section 1 explains about problems in current cloud service that this thesis is trying to

solve, expected results from the work in this thesis, and some works that have been

done related to policy monitoring and enforcement in cloud service in providing

accountable cloud system

- Section 2 explains background information about items proposed and discussed in the

next section – proposed method and implementation which includes accountability

cloud and policy monitoring using logic concept

- Section 3 explains proposed methods for solving problem mentioned in section 1 with

selected use case. This section also explains about implementation of the proposed

method in detail. Explanations also include data collection for applying proposed

method.

- Section 4 presents information about results from applying the method proposed in

section 3 for the selected use case together with background information leading to the

results

- Section 5 concludes the work in the thesis which includes problem, method to solve the

problem, and method and implementation result

2. Background

This section describes some background information about terms, techniques, technologies,

tools, etc. that are related to this work. Accountability in cloud service concept is explained

together with evidence collection and processing concept associated with it. Next, policy or

obligation monitoring system is explained. This explanation includes temporal logic which is

used in the existing monitoring system. At last, information related to data collection for

performing analysis is presented.

2.1. Cloud Service

A cloud service is a service made available to users from cloud provider’s premise as

opposed to being provided from company’s own premise [18]. A company providing service

may put their application or service in other provider’s premises because of efficiency

reasons. If, for example, there is another provider which provides data storage service. the

company that data storage services to store its users or clients’ data.

Figure 2.1. A Cloud Service

End Users

Software as a Service (SaaS)

Platform as a Service (PaaS)

Infrastructure as a Service
(IaaS)

Layers

Business Applications, Web
Services, Multimedia

APPLICATION

Software Framework

Storage

PLATFORM

Computation

Storage

INFRASTRUCTURE

CPU, Memory, Disk

HARDWARE

Examples

Google Apps, Facebook,
Youtube, etc.

Microsoft Azure, Google
AppEngine, Amazon DB/S3

Amazon EC2, Flexiscale

Data Centers

Figure 2.1. (adapted from [18]) shows model of cloud service. Services provided to users may

be built up from several providers. Users access service from a point of contact and the

services are enabled by combination of providers that build up the service for example

provider that responsible for hardware or infrastructure (IaaS), for platform (PaaS), or for

application (SaaS) [19].

2.2. Accountability in Cloud

Accountability is becoming main concept in the cloud service paradigm that helps increase

trust in cloud computing [20]. It is related to corporate data governance. It is mainly about

how the data in the cloud is governed. The level of governance must meet or comply with the

agreement that have been set up between communicating parties. Accountability ensures the

party which is measured is responsible for the activities it has done. In definition,

accountability is the obligation to act as a responsible steward of the personal information of

others, to take responsibility for the protection and appropriate use of that information and to

be accountable for any misuse of that information [21]. Lack of way to trust the cloud

provider is one of the reasons that the adoption of cloud service is inhibited.

Accountability for cloud arises as the consequence of the rising of cloud service. In this type

of service, users are giving their data to cloud service providers. This handover causes the

customer no way of controlling how their data are stored and processed [21]. They have at

first place defined an agreement with the service provider. But later, they don’t have way and

tool to control if the agreement is respected. Therefore, it is necessary that customers are

given way to control how the cloud service provider treats their data according to the

agreement. And we say that the cloud service provider must be accountable for its activities

so that customers have way to measure on how much the service provider respects the

agreement in respect to processing their data.

There is a need to provide accountability in the cloud by providing mechanisms and tools to

measure cloud service provider about its activities regarding customers’ data which must

comply with the agreement. There are two types of ways of providing accountability in the

cloud [21]:

- Prospective (and proactive) accountability using preventive controls

Preventive controls include risk analysis tools, trust assessment.

- Retrospective (and reactive) accountability using detective controls

Detective controls include auditing, tracking, reporting and monitoring.

2.3. Service Delivery Chain

Service delivery chain is the condition where service is provided to customer through a

service chain which involves several agents [18]. Some of the service agents are hidden from

customer. Customer does not have direct interaction or communication with those agents.

They only have direct interaction and communication with the rest service agents.

Customer’s data may be travelled along the service chain. Therefore, the customer wants to

ensure that all the agents in the chain respects all the service agreements that have been set up

between customer and the direct service agents.

The situation may happen for example when a cloud service provider offers a service to

customer. However, this service provider does not have full facilities to support this service.

Therefore, it needs some more supports from other service agents that offer different type of

service needed for providing the service to customer. Typically in cloud service, there are

several types of service models. They are Infrastructure as a Service (IaaS), Platform as a

Service (PaaS), Software as a Service (SaaS), and Network as a Service (NaaS). In this

example, the cloud service provider may need other service agents that provide one or more

service models that it does not have.

Typical service delivery chain is shown in following Figure 2.2.

Figure 2.2. Service Delivery Chain in Cloud

In the figure, Primary Service Provider (PSP) is the one going to give service to customer. In

order to give service to customer, PSP needs supports from other service providers. They are

called Cloud Service Provider (CSP). Customer in this case only interacts with PSP. It does

not have direct interaction with CSP. Customer data may travel along the service chain. And

it wants to ensure that both PSP and CSP follow the service agreements that it has set up with

PSP.

The simple and obvious real example of service delivery chain in cloud service is Dropbox

service. Dropbox is a file hosting service that offers cloud storage, file synchronization, and

client software [22]. Dropbox uses Amazon’s S3 storage system to store the files [23]. In this

case, customers using Dropbox service only interacts with Dropbox and signs agreement with

Dropbox. However, their data are actually stored in another entity which is Amazon.

As type of cloud service is diverse, we will only work on this type of scenario. The goal is to

have a way to control over the chain about customer data processing and treatment.

In relation to accountability in cloud context, PSP is accountable for respecting customer’s

preferences in terms of following obligations and accountable for what it does to customer

data [1]. CSP is accountable for data stewardship of customer personal information to PSP

and regulators.

CUSTOMER PSP CSP

request

reply

request

reply

2.4. Evidence Collection / Processing

Evidence can be one of the tools to provide accountability in the cloud. Evidences are

collected from the activities of all components in the cloud services. In relation to

accountable cloud, evidences are collected based on the policies or obligations defined that

must be followed by the cloud providers. Schema for evidence collection is derived from the

definition in the policies and obligations. This results in evidences that are highly valuable for

further investigation process for ensuring accountability in the cloud.

Evidences then become sources where all the monitoring and auditing processes to provide

accountability in the cloud are based one. It gives a way to measure if all components in the

cloud service follow rules that govern the system. Processing the evidence means collecting

information from components’ activities and giving alarms when there are activities that are

not comply with the rules.

Evidence processing is necessary [18]:

- For cloud service provider, to make sure that it complies with all rules and agreement

that have been set up.

- For cloud customer, to monitor provider compliance. This gives a way for customers to

control over their data processing by provider if the processing complies with the

agreement they have with the provider. This can overcome the problem for adoption of

cloud service where previously one of the factors is there is no way for customers to

monitor how their data being processed by provider.

- For cloud auditor, to audit all activities of all components within cloud system and

figure out if there are any violations made by each component.

2.5. Policy / Obligation in Cloud Context

A policy is set of rules related to a particular purpose [24]. Rules can be expressed as

obligation, authorization, permission or prohibition. In accountability context, policies are set

of rules to allow users to define preferences or requirements on how their data are to be

treated in the system. Process of evaluating cloud provider in treating users’ data is based on

these policies. This way cloud provider is accountable for its action in relation to processing

users’ data.

Policy is needed in the cloud service as a way to govern how the data is processed throughout

the cloud. Security and privacy issues usually arise when sensitive data is moving between

different cloud service providers within the cloud. In this case, there should be way to govern

how this thing is going on. And defining policies or obligations is the way that users, data

controller, or data processors can take to define how they govern the service in cloud. Later

on, these policies or obligations act as basis for auditing whether all entities in the cloud

commits to the policies defined or not. This way, it can be ensured that all actions in the

cloud are accountable.

Before, users hand in their data into cloud, they define obligations about how their data

should be handled. These obligations are to be guaranteed by cloud service provider. When

cloud service provider agrees with the obligations, it sends back notification to users as

confirmation that it will follow the obligations. Now the provider is responsible for following

the data handling obligations. In cloud service chain, this administration also takes place

between several cloud providers in the chain and the primary service provider.

In order to specify obligations or policies, there must be a representation that can be used to

express those obligations that are processable in purpose of auditing and making sure that all

the obligations are followed. One of the representation is discussed in next section 2.6. Policy

Representation (PPL, AAL, A-PPL).

2.6. Policy Representation (PPL, AAL, A-PPL)

In order to provide accountable cloud, there should be way to monitor activities occurred in

the system in relation to the rules or obligations that are set up as policies to be followed by

each component in the system. For monitoring purposes, representation of the policies is

required. A policy language allows concrete policies to be represented. The language enables

representation of rules for governance of users data processed in the cloud service. This

representation is in machine-readable format so that automatic monitoring and enforcement

of policies is possible. Automatic policy monitoring makes sure that every action in the

system that violates the policies is reported with information about the actor. Evidence proves

that actor is responsible for such action.

A number of policy representation languages have been introduced in recent years. [24]

reviewed existing policy languages and studied their suitability for expressing policies in

cloud accountability context. It firstly defined requirements for policy language to be used in

accountability context. The study showed that none of the existing policy languages is

suitable to express accountability policies. It then proposed new policy language called

Accountability PrimeLife Policy Language (A-PPL). A-PPL is developed based on existing

PrimeLife Policy Language [16] (PPL) which covers data handling issues and can be

extended to address accountability requirement for policy language.

Figure 2.3. (taken from [24]) shows proposed A-PPL framework which translate human

readable policy into machine understandable representation (A-PPL) through intermediate

state of AAL. The translation to machine understandable format involves usage of temporal

logic to produces policy sentence in with temporal logic properties. Policy calculus is used to

describe the semantics. With temporal properties and semantics, the policy is translated to

machine understandable

Figure 2.3. Machine Understandable Translation of AAL

PPL is XML-based policy language which combines access control and data handling

policies. A PPL policy has general structure as shown in Figure 2.4 (taken from [24]). Three

important section of a PPL policy are access control, authorizations, and obligations.

- Access control specifies credentials need to be presented by requestor to be granted

access to the system.

- Authorizations specifies actions that data controller is allowed to perform in respect to

the defined purposes of data usage.

- Obligations define how data controller treats data subject personal data.

Figure 2.4. Structure of PPL Policy

A-PPL introduces extensions to PPL to be able to represent accountability policies. The

extensions include:

- Roles

Roles contain information about entity to which the defined policy is applied. This

information is included in <Subject> element

- Actions

PPL defines obligation as Trigger-Action. When trigger occurs, associated action needs

to be executed. A-PPL has listed actions that are required for expressing accountability

policies.

- Triggers

Triggers are events that trigger an action. A-PPL has listed actions that are required for

expressing accountability policies.

Figures 2.5. (taken from [24]) shows example of format of policy representation in A-PPL.

Figure 2.5. Example Policy Representation Structure in A-PPL

2.7. Policy Monitoring

In accountable cloud, every entity is accountable for its action. Evidence is necessary to

support the account of an entity in the cloud system. Evidence shows if obligations that are

set up for the system are followed. To produce evidence, such system must have mechanism

for verifying if obligations are fulfilled. This is achieved by monitoring system activities or

events with regards to the obligations.

Policies are represented in machine readable and understandable representation. This

representation is used by monitoring engine to examine system events logs. These logs are

called source of evidences. If events in the logs are detected to not comply with obligations

defined, then violations are detected. This constructs evidence which describes that some

events are not complying with some obligations.

Several works have been put on policy monitoring. [25] and [2] proposed policy monitoring

framework. Policies are represented in temporal logic. The logic used is able to specify order

of events and time information such as past, present, and future. This properties are important

as the policies definition will be used to examine source of evidences which are typically

contains information about sequence of events occur in the system with time information.

Policy monitoring determines whether sequence of events occur in the system satisfies the

policies. If not, violations are reported and the information is used as evidence that violations

to policies are suspected to occur with information about relevant actors involved.

Figure 2.6. shows how policy monitoring is generally working. The inputs are policy

definition and system events logs. Policy definition is expressed using policy representation

language. System events logs contain information about system activities. This is the source

of information to reveal if there is action that is not complied with the policies. The policy

monitoring engine firstly interprets policy definition. It continues by examining logs with the

interpretation information and determines if each event in the log confirm with the policies or

not and reports the result.

Figure 2.6. Policy Monitoring

[25] shows work on monitoring policies which are represented using MFOTL. Monitoring

algorithm is used to monitor whether system behaviour conforms the policies. System events

are represented as sequences in temporal structures that suited the definition structure of the

policies. The algorithm check if event occurs, then it determines whether the sequence

satisfies the policies expressed. If not, then violation is reported.

System events are represented as sequence in temporal structure which is defined over a

signature. Signature S = (C,R,a) where C is set of constant symbols, R is set of relations, and

a is mapping function. Timed temporal structure D over signature S is defined as events D =

(Do, D1, …) with timestamp T = (To, T1, …).

Each policy expressed in a MFOTL formula is monitored. To detect violations, the monitor

works with negated formula and outputs for each time point the satisfying assignments of the

negated formula. Monitor works sequentially by processing timed temporal structure (D,T)

and determines for each time point those elements in (D,T) that violate the formula.

2.8. Temporal Logic (& MFOTL)

Temporal logic [26] is an extension from classical propositional logic where propositions are

evaluated to true or false. Temporal logic itself is focussing on propositions whose values

depend on time. Temporal propositions contain reference to time conditions. In temporal

logic, there are two temporal quantifiers which are “always” and “eventually”. Combination

of temporal quantifiers can be used to express more complex time conditions. Definition of

truth of a formula in temporal logic is given as follow [26]

qtM , if 1)))((qt

tM , if not tM ,

 tM , if tM , and tM ,

GtM , if sM , for all s with t < s

HtM , if sM , for all s with t > s

M is the model in which the formula is to be evaluated. tM , saying that formula

holds at time point t. G and H are temporal operators (in this case “always” and

“eventually”). In addition to G and H, temporal operators are extended to include S (“Since”)

and U (“Until”). Definition for these operators is as follow:

UtM , if sM , for some s such that t < s and uM , for

 all u with t < u < s

StM , if sM , for some s such that s < t and uM , for

 all u with s < u < t

Another temporal operator is X (“next time”). Formula X holds at time point t if  holds at

the next moment in time.

In addition to point-based temporal logic, there is also interval-based temporal logic. In this

type of temporal logic, formula is evaluated at pairs of points representing beginning and end

point of the interval. Temporal operators for interval-based temporal logic are D (“During”)

and o (“conjunction”). The definition of truth is given as follow:

  DtsM ,, if   vuM ,, for some t,u with s ≤ u ≤ t

   tsM ,, if   usM ,, and   tuM ,, for some u with

 s ≤ u ≤ t

Metric first-order temporal logic (MFOTL) extends temporal logic [27]. This logic is interval-

based. First-order fragment is for formalizing relations on system and metric temporal

operators are for specifying properties depending on times associated with past, present, and

future. Syntax for MFOTL is given as follow:

|),...,(||::)(12121 rattrtttt 

 |).(|)(|)( x

)(|)(|)(|)( IIII US

A formula  if of the form)(|)(|)(|)( IIII US where IIII US ,,, are

temporal operator “Previous”, “Next”, “Since”, “Until” respectively and I is time interval and

is bounded. These basic grammars are then extended to include more temporal operator such

as:

- “Sometime in past” : ◆Iφ:= true SIφ

- “Always in past” : ■Iφ:= ◆Iφ

- “Sometime in future” : ◊Iφ:= true UIφ

- “Always in future” : □Iφ:= ◊Iφ

Semantics of MFOTL are defined with respect to timed temporal structures. These structures

typically represent sequence of events.

Illustration the usage of MFOTL in expressing policy is given as follow. Consider there is

policy about publishing business reports within a company. The requirement is that before a

report is published, it must have been approved. To express this policy in MFOTL, two

relations are registered in the signature which are PUBLISH and APPROVE. The policy then

is expressed in MFOTL as:

□  f.publish(f)  ◆ approve(f)

Adding more information to the example such as to define policy like “whenever a report is

published, it must be published by an accountant and the report must be approved by her

manager within at most 10 time units prior to publication” gives us MFOTL formula as:

□  a.  f.publish(a,f)  acc(a) ˄ ◆[0,11) m.mgr(m,a) ˄ approve(m,f)

Additional relations “being accountant” and “being manager” is defined as:

- acc(a) is defined as)()(aSaccaacc sF where s marks the time when a becomes an

accountant and F is the finishing time

- mgr(m,a) is defined as),(),(amSmgrammgr sF stating that m is manager of a.

2.9. Source of Evidences

Evidence allows assurance of accountability in cloud services. Verification of compliance to

obligations or policies by monitoring and auditing system activities, as part of providing

accountable service, results in evidences that show activities in the system that are not

complied with the obligations. Evidence collection involves capturing, integrating and

processing of system information with respect to policies.

Evidences might be derived from many sources. As input to evidence collection is

information about system activities that can be used to reveal information if there is no

compliance to obligations or policies. Such input information to evidence collection is called

source of evidences.

In cloud service environment, [28] mentioned sources of evidence by logging. Logging can

include business relevant log or operational log. Logging is performed in several levels such

as system level, data level, service level, business level, etc. Typical information required in

the log is data creation, data access, data flow, data type, data deletion, data handling, and

data notification. This information can be used for analysing whether the policies or

obligations have been followed.

Dividing cloud system into SaaS, PaaS, and IaaS, [5] defines potential source of evidences in

each level.

Potential source of evidences in SaaS environment includes

- web server logs

- application server logs

- database logs

- guest operating system logs

- host access logs

- virtualization platform logs

- network logs

Potential source of evidences in PaaS environment includes

- web server logs

- application server logs

- guest operating system logs

- host access logs

- virtualization platform logs

- network logs

- management portal logs

Potential source of evidences in IaaS environment includes

- cloud or network provider perimeter network logs

- logs from DNS servers

- virtual machine monitor logs

- host operating system logs

- API logs

- management portal logs

- packet captures

2.10. MonPoly Monitoring Tool

MonPoly is a tool to monitor log files for policy compliance [29]. Policy defines obligation

that need to be followed by every component in the system. Log files as one of the sources

for information about activities occur in the system is used as a basis for monitoring system

activities for the policy compliance. Events information in log file is time-stamped and is

ordered based on the timestamps. MonPoly is developed based on the concept introduced in

[27]. Policies are expressed in MFOTL (Metric First-Order Temporal Logic) formula. The

monitoring is implementing algorithm proposed in [27] by taking information about policy in

form of MFOTL formula and information about system activities in form of log file. It then

reports any violations to policies based on information in log file.

MonPoly [30] takes command-line input signature file, policy file, and log file. Signature file

registers all possible events in the log file. Log file contains information about events occur in

the system that are going to be checked against policies defined whether they comply or not.

Policy file contains policies expressed as MFOTL formula. MonPoly runs the monitoring

algorithm and output violations to policies.

Following example how MonPoly is used to monitor a policy in log file. Supposed that the

policy to be monitored is “financial report must be approved at most a week before it is

published”. MFOTL formulation of this policy is

□  r.publish(r)  ◆≤7days approve(r)

In MonPoly, in policy file, this policy is written as

publish(?r) IMPLIES ONCE[0,7d] approve(?r)

All predicates used in the policy definition such as publish and approve are registered in the

signature file. MonPoly output reports that are not compliance to the policy in free variable

?r. It tries to match every instance of the variable in the log file with negation of the formula.

If such instance is found, then it is said that the instance is not following the policy. If the log

file contains information as following

@1301252862 approve (1)

@1301675201 approve (2)

 publish (3)

@1302197200 approve (4)

 publish (2) (1)

MonPoly processes the log incrementally and output for each time point all policy violations

as following

@1301675201 (time-point 1): (3)

@1302197200 (time-point 2): (1)

The output tells that publishing report 60 and 52 each violates the policy. Looking at the log,

report 60 was never approved and so was report 52.

MonPoly is written in OCaml programming language [29]. The implementation is functional

and module-based. There are module for MFOTL formula, relations and, temporal structures,

parsing formula and log file, and monitoring algorithm.

Currently, MonPoly only supports monitoring one policy at a time. To monitor several

policies at once, conjunction of the policies is suggested. However, using this way, specific

pointing to policy to which events in log file violate is not possible.

2.11. Pyke

Pyke [31] introduces form of Logic Programming, which is inspired by Prolog, to Python

language. It provides knowledge-based inference engine written in Prolog. Pyke is invoked

from Python. The usage of Pyke for logic programming in Python environment is done by

programming logic statement and rules and executing them in the inference engine. The

reason why Pyke is developed on top of Python is that Python is a good general purpose

programming language that allows programming in a compact way. Pyke can be used for

complicated decision making applications, diagnosis systems, control module, etc.

Pyke integrates Logic Programming into Python by providing knowledge engine that

supports forward-chaining and backward-chaining inferencing. It introduces concepts of fact

base, rule base and question base. Fact base represents all information about the system i.e.

information that is true about the system or false about the system, and they are all called

facts with respect to the syste. Rule base represents rules that govern the system. Rules in

Pyke can be forward chaining and backward chaining rule. Through its inference engine,

Pyke uses these rules to deduce new information about the system. Sometimes, questions

may be asked to Pyke to prove something. And these questions form question base.

A fact in Pyke is a statement with several arguments. For example a sentence:

“A data controller must log all accesses to personal data.”

is expressed in Pyke statements as:

access(ds), log(dc,ds)

These statement follows syntax proposed by Pyke which is:

statement ::= IDENTIFIER '.' IDENTIFIER '(' {argument,} ')'

In the example, family is the name of knowledge base. Son_of is the name of knowledge

base. Three values “Bruce”, “Thomas”, and “Norma” are statement arguments.

A rule in Pyke is defined as:

if

 A

 B

 C

then

 D

 E

The rule shown above has meaning “if A, B, and C are true, then D and E are also true”.

There are two types of inferencing in Pyke:

- Forward chaining

In this type, forward-chaining rules are processed. New facts are asserted based on the

defined rules. Pyke finds rules whose if clause matches facts on the fact base. Each time

of a match, it fires the rule which will add the facts in the then clause of that

corresponding rule to fact base. Newly added facts will fire other rules by matching

their if clause. The process continues until there is no more match.

Following figure shows example of forward chaining rule:

1 obligation

2 foreach

3 source.access($ds)

4 assert

5 source.log($dc, $ds, ())

In the example, every time there is fact son_of in the fact base, Pyke inference engine will

assert new fact father_son into fact base.

- Backward chaining

Backward chaining rules are processed when Pyke is asked a question i.e. to prove

something. In backward chaining, Pyke find rules by matching their then clause with

the question. In every match, it tries to prove if all statements in the if clause holds. If

all statements can be proven, then the rule succeeds. If not, then Pyke tries to find

another rule whose then clause matches the question, and so on.

Following figure shows example of backward chaining rule:

1 obligation

2 use log($dc, $ds, ())

3 when

4 source.access($ds)

In the example, asking question “is accessed logged?” is done by matching log with

statement in the fact base, and try to prove if access for the associated relationship holds in

the fact base.

Pyke has three kinds of source files:

- Knowledge Fact Base (KFB) files for fact bases

These files have .kfb suffix. All facts are put in this file

- Knowledge Rule Base (KRB) files for rule bases

These files have .krb suffix. All rules are put in this file

- Knowledge Question Base (KQB) files for question bases

These files have .kqb suffix.

All the files are put in a directory structure. Pyke knowledge engine receives the directory

information as argument and compile the source files within it.

3. Proposed Method & Implementation

In this section, methods for providing accountability in cloud service by evidence collection

and processing through policy or obligation monitoring is presented. The explanation is about

framework for evidence collection. One of the important sections in the framework is

monitoring policy by which evidence can be collected about events that are not complied

with the policy. A use case is selected to show how the proposed method works. Policy

representation is used for the use case and all processes throughout the framework with

respect to the use case. Sources of evidences are also discussed mentioning about how to

collect sources of evidences for evidence collection framework. In addition to the method

used, implementation of such method is also discussed in this section using some tools and

techniques that are discussed in background section.

3.1. Working Steps in the Thesis

This section describes overall general steps of works for competing the goal of this thesis.

Each step represents general question to be addressed in the work. The steps are depicted in

following Figure 3.1.

Figure 3.1. Working Steps

S1: Cloud
Accountability

Provision Approach

S2: Framework of
Accountability

Evidence Collection

S3: Tools &
Techniques Analysis

S4: Use Case
Selection

S5: Policy
Representation

S6: Source of
Evidence Provision

S7: Evidence
Collection

Techniques &
Implementations

S8: Evidence
Verification

Techniques &
Implementations

First step (S1) in the workflow is defining approach for providing accountability in cloud

service. This includes study of existing researches on how accountability in cloud service is

achieved. The question arises from the fact that putting service in the cloud where several

providers are taking different roles in providing the service gives challenges on how to ensure

that each provider complies with obligations that users or customers have set up with respect

to processing their personal data. There must be way to measure providers’ activities in

processing the data and provide account on what it has done on the data. This question is tried

to be answered in the first step. The result of study on this step will be the basis for next step

on designing framework for providing accountability in cloud service.

Second step (S2) in the workflow is to define framework for providing accountability in

cloud service. As the accountability is provided in the presence of evidence of policy

compliance, the framework defined is on evidence collection with respect to the policy.

Framework is defined as sequence of steps required to acquire evidence that can be used as

basis for providing accountability. This framework is concrete basis for evidence collection.

Each step is to be described in more detail accompanied with implementation to prove that it

works.

Having defined general steps that need to be completed in order to acquire evidence, the next

step (S3) is to study on existing tools and techniques on how to realize each step in the

framework. This is to review best and most suitable approach for achieving the goal for each

step and also for implementing the approach and seeing the result. Techniques studied are

around processing source of evidence, policy monitoring, policy representation, digital

evidence collection and processing, etc. Tools associated with the techniques are also studied.

With the framework for evidence collection for achieving accountability in cloud service

already defined, the basis for answering the general question on this thesis is there. Next step

is to dig more detail into each component in the framework and implement prototype of it.

However, before jump into that step, it is also beneficial to look into a use case (S4) where

this approach is typically applied to. All steps following are then developed with the use case

solving aim in mind.

As the accountability in cloud service is achieved by acquiring evidence on policy

compliance, representing policy is one of the main actions (S5). Customers or users define

obligations to cloud providers regarding processing their personal data. These obligations are

to be represented in formal format so that they are processable in purpose of detecting

violations to them. This step studies on how to express the policy. Taking examples of

policies from the use case selected and represents them in the selected policy representation is

one of the exercise also in this step. This representation will be used in the next step which it

to extract evidence in regards to policy compliance.

The next step (S6) is to study and review how to get source of evidence. Source of evidence

represents system activities with which the policies are monitored. Some implementations

may be needed in this step to prepare the source of evidence which later will be used in the

evidence collection process.

One of the main parts in the work is collecting evidence from cloud system activities in

purpose of compliance checking to policy defined by users or customers. In this step (S7),

techniques used for collecting evidence are studied. Implementation of the techniques is then

performed and also using the use case to show how the technique works.

Next step (S8) following collecting evidence is to solve problems on evidence verification.

This step is to study how verification on the collected evidence should be done. Techniques

and tools around evidence verification are studied. Based on that, implementation on the

techniques is performed to show case that it can solve the problem using selected use case.

3.2. Use Case and Policies

In this thesis, in addition to proposing approaches and methods for providing accountability

in general cloud service scenario, a use case of cloud service is also selected. This selection

has the intention to get real example of cloud service and application of accountability

provision as well. With this use case, all techniques proposed within the framework of

accountability evidence collection will be tested with the use case. This gives insight on how

the framework works in real example.

The use case is taken from [24]. It is about health care service in the cloud. This example is

selected because it demonstrates cloud service concept where there are users that uses

services provided by one or more service providers in cloud which involves processing of

user personal data. With this setup, providers must follow rules that users have given at the

first place before using the service. This introduces challenges as what have been discussed

about cloud service which is to ensure that the cloud providers follow the policies or

obligations and are accountable for what they are executing regarding users personal data.

In health care service in the cloud, user data generated by medical sensors are flowing to the

cloud for processing. Medical sensors are embedded in elderly people to capture information

about their life activities. The processing is regarding diagnosis of patients by the collection

and processing of data from wearable sensors. The medical data is then possibly exchanged

between patients, their relatives, hospital, and cloud providers. Patients in this case are data

subjects who own personal data processed in the cloud. Hospital is data controller which

holds responsibility for health care services that process patient’s data. It determines purpose

and means of processing with respect to patient’s personal data. Several cloud providers may

be involved for data collection and processing. In this case, chain of service delivery is

created with one of the cloud service providers be the primary service provider which is the

entity that provide the total service to users. The service is available for accessing in the

cloud by patients, their relatives, and hospital. The health care service in cloud explained is

depicted in following Figure 3.2 (adapted from [24]).

Figure 3.2. Use Case: Healthcare Service in Cloud

With the flow of sensitive personal data along the cloud service chain, there is a set of

obligations that cloud service providers and other entities in the system need to follow related

to generation, processing, and flow. For this thesis, set of obligations for the use case is

selected especially that supports evidence collection. Later on this work, these obligations are

to be used in the proposed framework of accountability evidence collection to show that the

application on real case. The obligations that need to be followed in the healthcare cloud

service are [24]:

1. O1: As a data controller, the hospital needs to provide a policy on what data is collected

and for what purposes

2. O2: As a data controller, the hospital must ask the data subjects (patients) explicit

consent for collecting and processing personal data

3. O3: As joint data controllers, the relatives must ask the data subjects (patients) explicit

consent for collecting and processing personal data

4. O4: As a data controller, the hospital must, upon request, provide evidence to the data

subjects on their personal data processing activities

5. O5: As a data processor, the primary service provider must log all access to personal

data

6. O6: As a data processor, the primary service provider must, upon request, provide

evidence to the data controller (hospital) on its personal data processing activities

7. O7: As a data processor, the primary service provider must, upon request, provide

evidence to the data controller (hospital) on the correct and timely deletion of personal

data

The work in [24] studied about policy representation framework in cloud environment. It

studied several existing policy languages and reviewed their suitability for accountability

representation. It later found that none of the existing languages could satisfy accountability

requirements that policies should express. Therefore, it proposes new policy representation

framework specifically developed to express policy in cloud environment. It is called A-PPL

(Accountable-PPL) which is developed based on PPL (PrimeLife Policy Language). A-PPL

expresses obligations for cloud environment in machine readable representation. For that

reason, all obligations set up in the use case will be represented using this language.

3.3. Accountability Evidence Collection

In the effort for providing accountability in cloud service, policy compliance checking is

performed on system activities and produces evidences that can act as proofs that an entity

had performed events and whether they are complied with the policies or obligations or not.

This section describes how the evidences are collected with respect to policies or obligations

defined. The processes are defined in framework for accountability evidence collection.

Figure 3.3. Proposed Framework of Evidence Collection

Figure 3.3. shows the framework for accountability evidence collection.

The framework receives defined policies and source of evidence as inputs. Policies are

defined in human readable language. This definition is then translated into A-PPL machine

readable format by A-PPL engine as proposed in [24]. As will be discussed in section 3.9.

Evidence Collection with MonPoly and 3.14. Evidence Collection with Pyke, policy

representation is needed to take the policy expressed in A-PPL format and translate them into

format that collection process can handle. In another part, source of evidence may be logs

that capture cloud system activities. This is the basis for evidence collection in terms of

policy compliance.

Identification of source of evidence includes effort on picking suitable logs for evidence

processing i.e. logs that contain information related to policy compliance checking in purpose

of producing evidence on any violating events occur in the system with regards to the policies

or obligations that have been set up. Identification process is influenced by the policies that

govern the whole cloud system.

As source of evidence has been identified with input information from policies, the next step

is to prepare the source of evidence, in this case is typically logs (as explained in section 3.5.

Source of Evidence). Output from this preparation is ready for evidence collection process.

Processing source of evidence includes activities on collecting, combining, formatting, and

normalizing log data for next collection process with input information about policies. These

steps are needed because source of evidence may come from several sources with different

format. Before it can be processed, these information need to be uniformed in terms of format

so that comparing and correlating are possible.

The output from source of evidence processing is ready for evidence collection process. With

information about source of evidence and policy representation, evidence collection is

performed to detect any violations to policies done by some activities or events recorded in

the source. The result of this collection process is the potential candidate for evidence which

serves as proof of what have been done by entity pointed out in the evidence with respect to

accountability provision in the cloud service and that the entity is accountable for its action.

Output from collection process which is candidate of evidence needs to be verified. It is

necessary to examine whether to accept the evidences, to reject them, or to revoke them.

Verification seeks information to test validity of the collected evidence. It involves clarifying

the evidence with existing information and possibly searching for additional information to

strengthen the evidence validity.

Evidence normalization is performed to take the collected evidence into format that is

processable in next further step. The format should contain enough information so that other

entities will be able to analyse further in relation to the event and the system itself.

At the last stage, after evidence is collected, storing or preservation of evidence is performed.

[5] mentioned that preservation of evidence is one of the process in digital forensic where

evidence has been collected. Integrity of the evidence must be maintained and be safeguarded

before it is actually used in legal proceeding. Study on how to store the evidence including

implementation of it is out of the scope for this thesis. It will be instead stored directly. The

introduction of this step is just for giving complete chain of process in the framework of

accountability evidence collection.

3.4. Policy Representation in A-PPL

In section 3.2. Use case and policies, several policies are introduced for selected use case i.e.

healthcare service in cloud. These policies are to be followed by all entities in the service

chain i.e. data subject (patient), data controller (hospital), and data processor (cloud service

provider). Evidence is collected from monitoring those policies on system activities which

are logged in some system logs. These accountability policies are expressed in A-PPL which

is the accountability policy representation framework proposed in [24].

A-PPL is using XML format in representing accountability policy. It is translated to machine

understandable format from AAL by involving semantics which is based on LTL. Therefore,

processing the policy in A-PPL format will involve temporal logic processing. As explained

in section 2.6. Policy Representation (PPL, AAL, A-PPL), A-PPL contains several important

sections such as role, trigger, and action. Representation of policy for the selected use case

will focus on these sections.

Following list shows A-PPL representation of each policy defined in section 3.2. Use case

and policies (adapted from [24])

1. As a data controller, the hospital needs to provide a policy on what data is collected and

for what purposes

This policy can be fulfilled by creating processing info element before hospital collects

patient data, that contain information about what data will be collected and for what

purpose.

<Obligation>

 <Identification>O1</Identification>

<TriggerSet>

<TriggerOnProcessingInfo>

 <MaxDelay>

 <Duration>5M</Duration>

 </MaxDelay>

</TriggerOnProcessingInfo>

</TriggerSet>

<ActionSet>

<ActionCollect>

 <Subject>

 <AttributeValue DataType="String">Hospital</AttributeValue>

 </Subject>

 </ActionCollect>

</ActionSet>

</Obligation>

2. As a data controller, the hospital must ask the data subjects (patients) explicit consent

for collecting and processing personal data

<Obligation>

 <Identification>O2</Identification>

 <TriggerSet>

 <TriggerOnPreferencesUpdate>

 <MaxDelay>

 <Duration>5M</Duration>

 </MaxDelay>

 <Subject>

 <AttributeValue DataType="String">Hospital</AttributeValue>

 </Subject>

 </TriggerOnPreferencesUpdate>

 </TriggerSet>

 <ActionSet>

 <ActionCollect>

 <Subject>

 <AttributeValue DataType="String">Hospital</AttributeValue>

 </Subject>

 </ActionCollect>

 <ActionProcess>

 <Subject>

 <AttributeValue DataType="String">Hospital</AttributeValue>

 </Subject>

 </ActionProcess>

 </ActionSet>

</Obligation>

TriggerOnPreferenceUpdate can be used to inform hospital that data subject has

given consent for processing his personal data. Collection and processing personal data

by hospital then can be executed based on this consent.

3. As joint data controllers, the relatives must ask the data subjects (patients) explicit

consent for collecting and processing personal data

<Obligation>

 <Identification>O3</Identification>

 <TriggerSet>

 <TriggerOnPreferencesUpdate>

 <MaxDelay>

 <Duration>5M</Duration>

 </MaxDelay>

 <Subject>

 <AttributeValue DataType="String">Hospital</AttributeValue>

 </Subject>

 </TriggerOnPreferencesUpdate>

 </TriggerSet>

 <ActionSet>

 <ActionCollect>

 <Subject>

 <AttributeValue DataType="String">Hospital</AttributeValue>

 </Subject>

 </ActionCollect>

 <ActionProcess>

 <Subject>

 <AttributeValue DataType="String">Hospital</AttributeValue>

 </Subject>

 </ActionProcess>

 </ActionSet>

</Obligation>

4. As a data controller, the hospital must, upon request, provide evidence to the data

subjects on their personal data processing activities

<Obligation>

 <Identification>04</Identification>

 <TriggerSet>

 <TriggerPersonalDataAccessedForPurpose>

 <MaxDelay>

 <Duration>5M</Duration>

 </MaxDelay>

 </TriggerPersonalDataAccessedForPurpose>

 <TriggerOnPersonalDataDeleted>

 <MaxDelay>

 <Duration>5M</Duration>

 </MaxDelay>

 </TriggerOnPersonalDataDeleted>

 <TriggerOnPersonalDataSent>

 <MaxDelay>

 <Duration>5M</Duration>

 </MaxDelay>

 </TriggerOnPersonalDataSent>

 </TriggerSet>

 <ActionSet>

 <ActionLog>

 <Action>

 <AttributeValue DataType="String">Access, Send,

 Delete</AttributeValue>

 </Action>

 <Subject>

 <AttributeValue

 DataType="String">Hospital</AttributeValue>

 </Subject>

 </ActionLog>

 </ActionSet>

 </Obligation>

Hospital needs to keep track of all actions performed in the personal data, so that audit

is possible for checking conformance of data usage. ActionLog is used to track personal

data processing activities in cloud. Therefore, whenever, for example data is accessed,

data controller logs it in the system within some defined time.

<Obligation>

 <Identification>04</Identification>

 <TriggerSet>

 <TriggerOnEvidenceRequestReceived>

 <MaxDelay>

 <Duration>5M</Duration>

 </MaxDelay>

 <Subject>

 <AttributeValue

 DataType="String">Hospital</AttributeValue>

 </Subject>

 </TriggerOnEvidenceRequestReceived>

 </TriggerSet>

 <ActionSet>

 <ActionEvidenceCollection>

 <Subject>

 <AttributeValue

 DataType="String">Hospital</AttributeValue>

 </Subject>

 </ActionEvidenceCollection>

 </ActionSet>

 </Obligation>

Logging enables hospital to keep track of all processing activities on personal data.

When there is a request to provide evidence on data processing activities, hospital can

collect this log and provide the information to the requestor.

5. As a data processor, the primary service provider must log all access to personal data

<Obligation>

 <Identification>05</Identification>

 <TriggerSet>

 <TriggerPersonalDataAccessedForPurpose>

 <MaxDelay>

 <Duration>5M</Duration>

 </MaxDelay>

 </TriggerPersonalDataAccessedForPurpose>

 </TriggerSet>

 <ActionSet>

 <ActionLog>

 <Action>

 <AttributeValue

 DataType="String">Access</AttributeValue>

 </Action>

 <Subject>

 <AttributeValue DataType="String">Data

 Processor</AttributeValue>

 </Subject>

 </ActionLog>

 </ActionSet>

 </Obligation>

ActionLog provides way for data processor to log all actions on data subject’s personal

data. It is triggered when there is access to the personal data.

6. As a data processor, the primary service provider must, upon request, provide evidence

to the data controller (hospital) on its personal data processing activities

<Obligation>

 <Identification>06</Identification>

 <TriggerSet>

 <TriggerPersonalDataAccessedForPurpose>

 <MaxDelay>

 <Duration>5M</Duration>

 </MaxDelay>

 </TriggerPersonalDataAccessedForPurpose>

 <TriggerOnPersonalDataDeleted>

 <MaxDelay>

 <Duration>5M</Duration>

 </MaxDelay>

 </TriggerOnPersonalDataDeleted>

 <TriggerOnPersonalDataSent>

 <MaxDelay>

 <Duration>5M</Duration>

 </MaxDelay>

 </TriggerOnPersonalDataSent>

 </TriggerSet>

 <ActionSet>

 <ActionLog>

 <Action>

 <AttributeValue DataType="String">Access, Send,

 Delete</AttributeValue>

 </Action>

 <Subject>

 <AttributeValue DataType="String">Data

 Processor</AttributeValue>

 </Subject>

 </ActionLog>

 </ActionSet>

 </Obligation>

The same as data controller, data processor can use ActionLog to keep track on all

processing activities of personal data. When, there is a request on providing evidence,

data processor can collect information from this log.

<Obligation>

 <Identification>06</Identification>

 <TriggerSet>

 <TriggerOnEvidenceRequestReceived>

 <MaxDelay>

 <Duration>5M</Duration>

 </MaxDelay>

 <Subject>

 <AttributeValue DataType="String">Data

 Processor</AttributeValue>

 </Subject>

 </TriggerOnEvidenceRequestReceived>

 </TriggerSet>

 <ActionSet>

 <ActionEvidenceCollection>

 <Subject>

 <AttributeValue DataType="String">Data

 Processor</AttributeValue>

 </Subject>

 </ActionEvidenceCollection>

 </ActionSet>

 </Obligation>

7. As a data processor, the primary service provider must, upon request, provide evidence

to the data controller (hospital) on the correct and timely deletion of personal data

<Obligation>

 <Identification>07</Identification>

 <TriggerSet>

 <TriggerOnPersonalDataDeleted>

 <MaxDelay>

 <Duration>5M</Duration>

 </MaxDelay>

 </TriggerOnPersonalDataDeleted>

 </TriggerSet>

 <ActionSet>

 <ActionNotify>

 </ActionNotify>

 <ActionLog>

 <Action>

 <AttributeValue

 DataType="String">Delete</AttributeValue>

 </Action>

 <Subject>

 <AttributeValue DataType="String">Data

 Processor</AttributeValue>

 </Subject>

 </ActionLog>

 </ActionSet>

 </Obligation>

When there is action on deletion of data subject’s personal data, data processor logs it. This

information can be used when there is request to provide evidence on correct deletion of

personal data. In addition to logging, data processor also notifies data controller when there is

such action.

3.5. Source of Evidences

For implementing proposed method in providing accountability in cloud service i.e. processes

defined in framework of accountability evidence collection, selected use case is used.

Explanation of the use case is in section 3.2. Use Case and Policies. In relation to that, source

of evidence for this use case need to be identified.

For providing data to be used in the implementation and testing of all processes defined in the

framework of evidence collection, a test environment needs to be created. More detail

explanation about the test environment is contained in section 3.6. Test System Settings. This

step of creating test environment is needed because there is no available data to be used as

source of evidence in relation to the use case selected i.e. healthcare service in cloud. From

this test environment, source of evidence is collected.

Based on explanation given in background about source of evidence, most of the sources are

system logs. In the test environment, which is set up using VMs (Virtual Machine) on Linux

system, the sources of evidence are Linux system logs. These logs are the logs that capture

internal system events and also external system events. Internal system events related to

events that occur within a VM host. While external system events are events that occur

between a VM host and its outside environment for example with another VM hosts.

Since the test environment for the health care service in cloud use case is set up using VMs

environment in Linux system, some of Linux system logs are used as source of evidence. The

logs as source of evidence are identified based on the information about policies or

obligations defined for the use case and also based on events that occur in the VMs system

which depicts activities within an entity or between entities in the healthcare service settings.

For example, in healthcare service in cloud case, there must be event that is triggered when

data subject registers to the cloud service or accesses his data in the cloud. Another example

is when data controller (i.e. hospital) is using the cloud service to process data subject

personal data or when data controller accesses data subject personal data. All possible typical

events or activities in such setting (i.e. healthcare service) are identified for the purpose of

identifying which Linux system logs that contain relevant information based on the

representing events in the VMs environment.

As will be explained in section 3.7. Event Generation, to represent the use case activities,

several events in VMs are generated, each of them mimics the activities in the use case. There

are generally 3 types of events which are internal system events, communication systems, and

file sharing events. Based on that, Linux system logs [32] that are identified as source of

evidence for the use case are

- /var/log/messages: contains information about global system messages, including

messages that are logged during system startup. Several other things that are logged in

this log are mail, cron, daemon, kern, auth, etc. This log is used to capture information

about events related to internal event within each entity in the healthcare service case.

- /var/log/auth.log: contains information about system authorization, including user

logins and authentication mechanism that were used. This log is used to capture

information about events like sending data between entities in the healthcare service

case for example when data subject (i.e. patient) personal data is sent to cloud.

- /var/log/secure: contains information related to authentication and authorization

privileges. This log is used by ssh to log all of its messages. It can be used to capture

information about events like sending data between entities in the healthcare service

case.

- /var/log/mail.log: contains log information from mail server that running on the system.

It records all activities about sending mail. This log is used to capture information about

events like communication activities between entities in the healthcare service case for

example when data controller (i.e. hospital) asks for data subject (i.e. patient) explicit

consent for collecting and processing his data.

- /var/log/httpd: contains web server access logs. This is used to capture information

related to events like data subjects accessing cloud service.

Figure 3.4. shows relationships between policies, system logs, VMs environment, and source

of evidence. It shows how the source of evidence is identified based on the test environment

that is set up for the purpose of representing healthcare service in cloud use case. VMs test

environment contains several system logs that capture events occur in the system. Some of

the logs are identified as source of evidence based on policies defined for the use case and

events that occur in the system which represent typical events occur in the use case.

3.6. Test System Settings

Test environment to represent healthcare service in cloud is set up. The purpose of this is to

have data as source of evidence to be processed using proposed method on selected use case

and related defined policies or obligations. The environment is set up using VMs (Virtual

Machine) in Linux. The source of evidence will be collected from system logs that are

generated by all events occurred in the environment replica. There will be simplification on

test environment compared to original healthcare service in cloud. This is just to get the

essence of important elements going on in the system and use that information to feed in as

data for proposed method for providing accountability in cloud service.

Figure 3.4. Source of Evidence for Test System

There are four VMs created, each of them is acting as Data Subject (patient), Data Controller

(hospital), Data Processing (Cloud Service Provider), and Other Entity (relative of the patient

or other parties) respectively. Communication between VMs is considered as between actors

in the healthcare service in cloud use case.

Activities between actors that are related to the use case are of interest. Typical activities are

processing, data transfer with regards to collection, and communication. For running the

system automatically, an automatic event generator is developed that takes as input the

information about selected use case and related policies. Events related to the use case will be

generated as if they occur in the real setting i.e. healthcare service in cloud. More detail about

event generation is explained in section 3.7. Event Generation. Events that are generated in

the processing activities are for example processing personal data, etc. Data transfer activities

are for example uploading data to cloud, forwarding data, etc. Communication activities are

for example asking consent, conveying processing information, accessing data, etc. All the

activities are generated as events in the VMs environment. Information about all events

occurred will be used as source of evidence for proposed processing evidence framework.

Figure 3.5. shows the VMs environment created for the purpose of collecting source of

evidence for healthcare service in cloud use case.

Figure 3.5. Test System Environment

There are communication lines between VM: Data Controller, VM: Data Subject, VM:

Relative with VM: Data Processor which show the access lines between patient, hospital,

relative with data processor in the healthcare service in cloud. Similarly, there is

communication line between hospital and patient and also between patient and relative.

All the events are logged in the system and the logs are collected as source of evidences.

Identification of Linux logs that are relevant for processing with regards to selected use case

and its defined policies is explained in section 3.5. Source of Evidence. Information about

events is taken from system event log, network communication log, data transfer log, and

access log of associated VM.

3.7. Event Generation

In healthcare service in cloud use case, patient personal data is collected by hospital by using

infrastructure of cloud service provider. Before doing so, hospital needs to ask explicit

consent from patient. In addition to that, hospital must be able to, upon request, provide

information about processing activities of patient personal data. In order to provide that, any

actions on the personal data need to be logged. Cloud service provider, on the other hand,

also must be able to, upon request, provide information about processing activities on patient

personal data. Hospital must also inform patient on the purpose of processing his personal

data. In addition to that, patient’s relative can upload patient’s data and access them based on

patient’s consent.

Based on the description of activities within the use case i.e. healthcare service, some events

are identified and are generated in the test environment i.e. VMs simulating the cloud service.

Events that are to be generated within the test environment are:

- Upload data

This event simulates event when patient personal data from wearable sensors are

uploaded into cloud.

- Access data

This event simulates event when patient personal data stored in the cloud is accessed by

an entity in scenario.

- Delete data

This event simulates event when patient personal data is deleted from the cloud.

- Process data

This event simulates processing activity regarding patient personal data.

- Ask consent

This event simulates asking consent event directed to patient as data subject.

- Give consent

This event simulates event when patient as data subject gives explicit consent to data

controller for processing their personal data.

- Give processing info

This event simulates event when data controller conveys information to data subject

about processing activities of their personal data in cloud.

- Request info

This event simulates event when patient as data subject request for information about

processing activities of their personal data.

- Give info

This event simulates event when data controller gives processing personal data

information requested by data subject.

- Log action

This events simulates logging event occur in the cloud system.

An event generator is developed to automatically simulate the activities mentioned in

healthcare service use case. It is also in order to have better scalability in generating events

for providing data for processing. Figure 3.6. shows architecture of the event generator. The

generator is built based on information that the system, in which events are to be generated, is

VMs system in Linux. Therefore, all events generated are using commands related to VM

commands in Linux. Main generation file takes as input the information about event

collection and policies. Event collection is a set of events that have been identified for the

healthcare service use case and to be chosen for creation in the system. Event collection is

configurable so that the generator can be used to generate event on other use case with

different set of events. Policies info is all information related to policies that is needed in

order to generate the event. The information includes which policies to follow and which are

not to. When the indicator indicates to follow a policy, then necessary events are to be

generated in the system. This is to give control to user on how the generator generates events

that later the data can be used for evidence processing in relation to the policy.

Looking at the definition of a policy, it generally has two parts which are trigger and action.

Generation of events takes this information into account. Trigger events are considered

predecessor which occur before another event. Action events are, on the other hand,

considered accessor which occur after another event i.e. event that trigger it to occur.

Therefore, there will be 2 types of generation i.e. generating predecessor and generating

accessor. This generation is controlled by main generation based on policies info and event

collection. Each generating predecessor and generating accessor will call associated generator

scripts in target VM by giving them necessary input parameter. In each VM, there are 3 types

of generator script i.e. generating internal process, generating sending process, and generating

communication process. These generator scripts are called by generating predecessor and

accessor based on policies info and event collection info. Main generator will have

information about available VMs by running a script to collect info about VMs. This way, the

event generator is even configurable in terms of VMs to simulate a scenario. The information

is used to call associated script in each VM.

Policy indicator gives control on how the events are generated with respect to policies

defined for the use case whether the policies are to be followed or not. With policy indicator

set to true (i.e. value = 1), all related events for that policy are generated. However, when

policy indicator is set to false (i.e. value = 0), not all related events for that policy are

generated, but pseudo-randomly generated.

Figure 3.6. Event Generation Architecture

Following Figure 3.7. shows pseudocode for the event generator.

Setup EventCollection

Setup PolicyInfo

Collect VMs Info

counter <- expected_iteration

While number_of_iteration < counter

 Randomly select an event X from EventCollection

 Generate event X on target VM

 Generate all required events for event X on target VMs

 Read policies related to X

 For each policy Y for X

 If policyIndicator = 1

Generate predecessor events for policy Y and event X

Generate all required events for each predecessor event

Generate accessor events for policy Y and event X

Generate all required events for each accessor event

 ElseIf policyIndicator = 0

Pseudo-randomly create predecessor or accessor event for

policy Y and event X

 EndIf

EndFor

EndWhile

Figure 3.7. Event Generation Pseudocode

Generally, each iteration in the event generation contains processes as shown in following

Figure 3.8.

Figure 3.8. Event Generation Iteration

Event generation is an iterative process. Inputs are set of events, VMs info, and policy

indicator. Set of events contains all events that are going to be generated on the environment

prototype. As the events are generated in related VMs, information about VMs are needed to

execute those events. Policy indicator tells which policies are to be followed and which are

not. This way, data for negative testing (where one/some policies are not followed and must

be detected by the framework and generate the evidences) can be generated. All the inputs,

set of events, VMs info, and policy indicator are configurable. In one iteration, an Event_X is

randomly picked from the set of events and is generated in VM. Then, events related to

Event_X are generated based on the information on the policy indicator on corresponding

VMs.

3.8. Data Pre-processing

Logs are one of the sources of evidences used in the selected use case in this Thesis. These

logs are collected from system logs of VM used to simulate healthcare service in cloud use

case. Pre-processing prepares the logs to be used in evidence collection tool. Figure 3.9.

shows the overall pre-processing of logs as source of evidence starting from collecting single

log in each VM to processable source of evidences.

Figure 3.9. Source of Evidence Processing

Each VM represents each entity in the healthcare service in cloud i.e. data subject (patient),

data controller (hospital), and data processor (cloud service provider). Each event of the

entity related to policy compliance checking is collected from log. Several logs are involved

in this case as explained in section 3.5. Source of Evidences. The pre-processing starts from

single log from each VM. Not all information in the log is collected, but only related log

information to the use case and policy compliance checking is collected. Therefore, filtering

is needed in place for this purpose. As log entry of different logs may have different format,

normalization is needed to have universal format within the framework of evidence

collection. Normalization is performed on each filtered log on each related VM.

Normalization essentially prepares the log entry with following information:

- Who

Information about user or identifiable entity that is associated with the event being

tracked or monitored

- What

Action within event that is being monitored. This gives information on what actually

happened and logged in the entry.

- When

Information about time of when the event occurred.

- Why

Additional information about event that may be beneficial for processing.

With this guideline, normalization produces universal format for all logs so that they are

comparable and processable. The source of evidence for accountability evidence collection

process should contain integrated information about activities happened in the cloud service.

As each VM acts as an entity in the cloud service, it means that merging logs as source of

evidence from VMs is needed. The last step in the pre-processing is to prepare the log in

MonPoly standard format of log. This step is completed in convertion substep.

Figure 3.10. shows more detail on the filtering process of logs collected from each VM.

Figure 3.10. Filtering on Source of Evidence Processing

Figure 3.11. shows the normalization and merging processes performed in each VM.

Normalization is performed on each log and then the results are combined together to

produce a combined log for each VM.

Figure 3.11. Source of Evidence Normalization

Figure 3.12. shows where the convertion process is in the overall processing steps. This

convertion produces source of evidence that is processable in evidence collection tool.

Figure 3.12. Source of Evidence Collection

3.9. Evidence Collection with MonPoly

Evidence collection process is the process following source of evidence identification and

processing in the framework of accountability evidence collection. This process is to collect

evidence from source of evidence with respect to policy compliance. With the source of

evidence containing information about system events, collection process analyses if all the

events complied with policies defined for the use case and collect evidences on any violations

to policies.

Policies are defined in human understandable format which later by A-PPL engine are

translated into machine understandable format A-PPL. Policy generally has two parts which

are trigger and action. If trigger event occurs, then all related action events must occur. If not,

then violation to particular policy is reported. The evaluation of whether system events are

complied with policies to collect evidence is done by monitoring each policy on system event

logs as source of evidences.

More specific, policy is defined with temporal logic language using temporal operators. This

definition enables monitoring to be done through temporal logic reasoning. The policy

formula is considered as rule and all system events in logs are considered as facts. As

suggested in [25], Metric First-Order Temporal Logic (MFOTL) is used to formulate the

policy as rule. Generally, events represented as timed-sequence of first-order structure are

monitored, when an event occurs, monitoring determines whether the sequence satisfies with

the policy defined. If not, violation to policy is reported. The monitor works by evaluating

negated format of the policy formula. All events satisfying the negation form of the formula

means that the events are violating the policy.

Figure 3.13. shows how the collection process is implemented. The process uses MonPoly

monitoring tool which is explained in section 2.10. MonPoly Monitoring Tool. This tool

expects log and policy formula as inputs and will output any violations to the policy based on

information in the log. As input to the collection process are source of evidence in form of

system logs and policy formula. The first step in collection process is to prepare the source of

evidence as log according to the format given for MonPoly monitoring tool. In addition,

formula which is firstly given in A-PPL format is converted to MFOTL formula expected by

MonPoly monitoring tool. As the preparation is completed, MonPoly monitoring tool is

called by giving the policy formula and log as inputs. Output from MonPoly tool is evidence

that policy is violated by some events in the log. This evidence is collected as evidence from

the overall collection process.

Pseudocode of monitoring policy on system log is given in following Figure 3.14., based on

the definition given in [4]. Generally the monitor processes the system logs as timed-

sequence sequentially. At each iteration, the monitor builds relation of the current event and

check if the built relation matches the policy definition. If not, then it reports violation.

Simple example on how the evidence collection process works is shown following. Suppose

that there is a policy stating that as data processor, primary cloud service provider must log

all access to data subject personal data. Following statement shows the simple formulation of

the policy in MFOTL

 accessDS(?r) IMPLIES EVENTUALLY[0,5M] DPLogAccess

Suppose that an access event to personal data is occured. Source of evidence contains this

information. However, following the access event, there is no log event performed by cloud

service provider. Following figure shows example of source of evidence containing only

information about access event without associated log event.

@1397835131 accessDS (person_66)

@1397835132 forwardDS (person_66)

@1397835133 DPLog (person_66)

@1397835133 DPLog (person_66)

@1397835135 RelativeCollect (person_15)

@1397835135 DCLog (person_66)

@1397835135 DCLog (person_66)

@1397835135 deleteDS (person_66)

@1397835136 DCEvidReqReceived (person_66)

@1397835138 DPLog (person_66)

@1397835138 DCEvidCollect (person_66)

@1397835139 DPLogDelete (person_66)

@1397835288 askConsentDS (person_78)

@1397835291 DCProcess (person_78)

@1397835295 askConsentDS (person_78)

@1397835295 DCCollect (person_78)

@1397835412 deleteDS (person_59)

@1397835413 Notify (person_59)

@1397835413 DPLogDelete (person_59)

@1397835413 Notify (person_59)

@1397835414 DPLog (person_59)

@1397835415 DPLogDelete (person_59)

@1397835416 DCLog (person_59)

Figure 3.13. Evidence Collection Process with MonPoly

Input policy formula Y

Sequence of events as timed-sequence

For each element X in timed-sequence

 Build relation of X

 If relation of X is complete

 Evaluate if relation of X matches policy Y

 Report violation

EndIf

EndFor

Figure 3.14. MonPoly Policy Monitoring Pseudocode

Evidence collection in this case outputs violation because there is no compliance to the policy

defined. The collected evidence is tied to the policy identification to correlate which evidence

of violation is for which policy. This enables verification of evidence as next step or event

tracing of the evidence information in relation to log information and policy.

3.10. LTL and MFOTL

MonPoly tool provides monitoring on log as source of evidence based on policy formula

expressed in MFOTL. While, the accountability policy representation framework proposed

A-PPL language to expressed accountability policy which is based on Linear Time Temporal

Logic (LTL). This section describes study performed in this thesis to compare MFOTL and

LTL. This is to have information on determining if MFOTL is suitable on expressing policy

in the selected use case so that MonPoly monitoring tool can be used to collect evidence on

policy violation. If that the case, policy for the selected use case i.e. healthcare service in

cloud, which is expressed in A-PPL will then be translated to MFOTL to be processes within

MonPoly monitoring tool. Policy in A-PPL language format already has contained

accountability properties within it and brought temporal semantics with it as explained in

[24]. Therefore, in this thesis, definition of policy will start on A-PPL and continue on

MFOTL based on the comparison study performed in this section.

Comparison of LTL and MFOTL is given in following Table 3.1.

 Comparison
Items

Linear-time Temporal Logic
(LTL)

Metric First-order Temporal
Logic (MFTOL)

1 Extension over Propositional Logic – logic that
concerns with propositions and
their relationships, proposition is a
possible condition of the world
that is in attention [33]

Metric Temporal Logic [2] – MTL is
extension of classical temporal
logic with real-time timing
constraint [34] and quantitative
temporal operators [35]

2 Type of logic Propositional [36] Quantitative temporal logic [37] –
logic that equipped with capability
to express event in time unit e.g. “X
will happen within one unit of
time” [38]

3 Time model Discrete-time [34] Real-time [34]
4 Application

area
Concurrent and reactive systems
[39]

Real time systems

5 Time
references

Discrete time [2] With timing constraints (in
interval) [34]

6 Operator Temporal operators – until, since,
eventually, always [40]

Quantitative metric temporal
operators [3]

7 Expressiveness Expresses linear sequence of states
[40]

Express metric constraint [37], can
be used to specify broad set of
complex temporal constraints with
reasonable computation
complexity [41]

8 Order Sequence of states where each
point in time has a unique
successor [42]

Event and state predicates with
complex temporal relationships [2]

9 Temporal
modalities

Next, Until Quantitative temporal operators
[2] with time interval

10 Interpreted
over

Structure (S,, L), S is set of states,
is transition relation, L is
labelling function [40]

Arbitrary structure [40], Signature
(C,R,t), C is set of constants, R is set
of predicates, t is functions from R
 N [2]

11 Satisfiability
and model
checking

Decidable [40] – satisfiability is
decidable means there is possible
way to find an interpretation of
model that makes the formula true.
Model checking checks model of
world given the specification in
logic formula.

Undecidable [2], decidable over
finite time

12 Axiomatization Sound and complete [40] Sound [2]
13 Complexity of

satisfiability
NP-Complete High computational complexity

[40]
14 Model

checking tool
SPIN Not available free

15 Drawback Inadequate for real-time system
[34], cannot express time interval
[34]

Double translation from LTL 
MFOTL  temporal logic
programming language

16 Complexity of
model
checking

Model checking problem for LTL
can be solved in time

 [43] where φ is the
formula and S is the structure

Model checking problem for MTL
over finite time has non-primitive
recursive complexity [44]

Table 3.1. LTL and MFOTL Comparison

From the comparison result shown on the table, it can be seen that MFOTL with its properties

can be used to express accountability policy used in the selected use case. MFOTL is

applicable for real time system where expressiveness in time unit with timing interval is

needed. The quantitative metric temporal operators enable expressing of event and state

predicates with complex temporal relationship. While it enables expression of temporal

relationship, MFOTL has reasonable computation complexity. With the use of MFOTL in

expressing policy formula within evidence collection process, a translation from A-PPL to

MFOTL is needed. It is because the definition of policy for the selected use case is starting

from A-PPL as suggested in [24].

3.11. Temporal Logic Processing Tools

As temporal logic is used for expressing semantic of policy in the selected use case, temporal

logic reasoning is needed for processing the policy in the purpose of collecting evidence on

policy violation based on the log information. Several existing logic language that supports

temporal logic reasoning are studied. PROLOG [45] is programming language specified for

logic processing, usually used for artificial intelligence. It is based on running query over

relations that represent facts and rules. In the selected use case, PROLOG can be used to

process policy and source of evidence to produce evidence on policy violations based on

processing on the semantic part of the information provided. This section describes study

performed in this thesis to study several existing PROLOG extension [46] that support

temporal logic.

Several existing PROLOG extension supporting temporal logic studied are:

1. Templog [47]

Templog extends classical PROLOG to include temporal operators. Templog program

is collection of temporal Horn clause and is interpreted with temporal SLD-resolution.

Temporal logic used in Templog is first-order temporal logic with temporal operators

including “next”, “always”, “eventually”, “until”, and “precedes”. The time model is

considered discrete and linear. General temporal resolution system is used to evaluate

temporal logic program. Temporal logic program contains information about facts and

rules. The evaluation is considered as evaluating query to the temporal logic program as

it is done in PROLOG. However, up to the time of this thesis, there is no publicly

available implementation of Templog.

2. Temporal Prolog [48]

Temporal Prolog is an extension of Prolog that can handle temporal constraints. It uses

temporal constraint model for reasoning about time intervals and temporal

relationships. Temporal relationships introduced in Temporal Prolog includes for

example “before”, “after”, “overlap”, and etc. with time interval constraint. The

reasoner is implemented in C language. However, the implementation can’t be found

for downloading to solve collection process for selected use case in this thesis.

3. Chronolog [49]

Chronolog is logic programmic language based on discrete linear time temporal logic

which extends PROLOG. It has temporal operators such as “first” and “next”.

Semantics of Chronolog are developed using temporal interpretation introduced by

Herbrand [49]. When compared with Templog, Chronolog seems to lack of expressive

power. Yet, the implementation of Chronolog is not available to be used for solving the

collection process for selected use case in this thesis.

4. MonPoly [29]

MonPoly is monitoring tool for checking if events on log are complied with policy

defined. It is developed based on monitor algorithm introduced in [27]. In MonPoly,

policies are expressed in MFOTL formula. The monitoring is implementing algorithm

proposed in [27] by taking information about policy in form of MFOTL formula and

information about system activities in form of log file. It then reports any violations to

policies based on information in log file.

5. Metatem [50]

Metatem can be used to evaluate temporal formula. It is imperative language for

executing temporal logic. Execution of temporal logic in Metatem is based on general

form about antecedent (about the past) and consequent (about present or future). The

form is basically interpreted as “if antecedent holds then execute consequent”. In

Metatem, behaviour of system component is described as temporal rules while

occurrence of an action is considered as proposition. In Metatem, there are temporal

connectives like “next”, “last”, “always in future”, “sometime in future”, “always in

past”, “sometime in past”, “since”, and “until”. However, based on the definition of

general form used by Metatem, the imperative execution is more on enforcement of

consequents to happen rather than monitoring if consequent is not executed. Therefore,

it is not that suitable for the selected use case.

The study of existing PROLOG extensions supporting temporal logic shows that MonPoly is

the most appropriate and can be used for evidence collection process within accountability

policy monitoring in cloud service. The usage of MonPoly then requires some preprocessing

to prepare the inputs for the tool.

3.12. A-PPL Translation

Accountability policy is expressed in A-PPL. This representation involves semantics that is

processed through an A-PPL engine which is based on Linear Time Temporal Logic (LTL).

The policy monitoring tool that is used in this Thesis i.e. MonPoly, on the other hand,

processes policy that is expressed in Metric First-Order Temporal Logic (MFOTL). Based on

the study comparison that is conducted in section 3.10. LTL & MFOTL, it can be seen that

these two types of logic differs in some areas. In processing the selected use case in this

Thesis, MFOTL is used to express the policy defined for the use case which later is

processable in MonPoly monitoring tool to collect evidence on policy violation.

As it is explained in section 3.3. Accountability Evidence Collection, the policy definition

starts from A-PPL where it already satisfies the requirements for accountability policy as

proposed in [24]. This definition is used for next processing. A translation is, therefore,

needed to have this A-PPL policy in MFOTL as used in MonPoly monitoring tool. This

section describes how the translation from A-PPL and MFOTL is performed and

implemented.

Figure 3.15. A-PPL Translation and MonPoly

Figure 3.15. shows how the definition of policy is used in evidence collection as part of

framework of accountability evidence collection. MonPoly as policy monitoring tool to

collect evidence receives, as input, policy definition in MFOTL. This representation is

translated by a A-PPL to MFOTL translator. The A-PPL format is produced by A-PPL

engine from human defined policy.

Figure 3.16. later shows how the A-PPL to MFOTL translator is implemented. The translator

receives 2 inputs i.e. policy definition in A-PPL XML format and control parameters. A-PPL

XML is a document produced by A-PPL engine proposed in [24]. The control parameters are

to define parameters needed for a specific use case. For example how to translate an action

from A-PPL term into observed-use case term. Therefore, this translator can be used for any

other use case as long as the parameters in the control parameters are correctly set up.

Translator firstly read A-PPL elements from the input XML and feeds in the generator of

MFOTL formula. Each MFOTL formula generated will be appended to policy definition

XML file.

Figure 3.16. A-PPL Translator

Figure 3.17. shows the pseudocode of A-PPL to MFOTL translator. It basically reads all

obligations in A-PPL XML document and iterates over the obligations to generate MFOTL

formulas and appends them sequentially to MFOTL XML output document. In each iteration,

trigger and action elements of an obligation are read from input XML. Within each trigger

and action, several attributes such as role, subject, and action are read and tied with the

associated trigger and action. These attributes determine how the translator translate A-PPL

policy to MFOTL formula based on the selected use case which information is put in the

control parameters. A MFOTL formula is constructed once the triggers and actions with their

attributes are extracted from A-PPL XML. This generated formula is appended to policy

definition XML file to be used by MonPoly monitoring tool.

Input <- A-PPL XML

Output <- MFOTL XML

Read obligations from Input

For each obligation X

 Read triggers for obligation X from Input

 Read actions for obligation X from Input

 For each trigger Y

 Read attributes (Role, Subject, Action)

 EndFor

 Combine triggers to collection T of triggers

 For each action Z

 Read attributes (Role, Subject, Action)

 EndFor

 Combine actions to collection A of actions

 Construct MFOTL formula F for X based on T and A

 Append formula F to Output

EndFor

Figure 3.17. A-PPL Translator Pseudocode

3.13. MFOTL Formula

MonPoly monitoring tool processes policies expressed in metric first-order temporal logic.

For the selected use case, all obligations defined are then also need to be formulated in

MFOTL. Following list shows MFOTL expression of each policy defined in section 3.2. Use

Case and Policies. Same relation or event terms are used as those used in A-PPL expression

and system event logs. The syntax for MFOTL follows as what explained in section 2.8.

Temporal Logic (& MFOTL).

1. As a data controller, the hospital needs to provide a policy on what data is collected and

for what purposes

□)(. fDCcollectf ◆  )(,0 foprocessInft

2. As a data controller, the hospital must ask the data subjects (patients) explicit consent

for collecting and processing personal data

□)(. fDCcollectf □)(. fDCprocessf ◆  )(,0 faskConsentt

3. As joint data controllers, the relatives must ask the data subjects (patients) explicit

consent for collecting and processing personal data

□)(. fcollectf □)(. fprocessf ◆  )(,0 faskConsentt

4. As a data controller, the hospital must, upon request, provide evidence to the data

subjects on their personal data processing activities

□)(. faccessf □)(. fforwardf  □)(. fdeletef ◊  )log(,0 ft

□)(. fqevidenceref ◊  )(,0 fllectevidencecot

5. As a data processor, the primary service provider must log all access to personal data

□)(. faccessf ◊  )log(,0 ft

6. As a data processor, the primary service provider must, upon request, provide evidence

to the data controller (hospital) on its personal data processing activities

□)(. faccessf □)(. fforwardf  □)(. fdeletef ◊  )log(,0 ft

□)(. fqevidenceref ◊  )(,0 fllectevidencecot

7. As a data processor, the primary service provider must, upon request, provide evidence

to the data controller (hospital) on the correct and timely deletion of personal data

□)(. fdeletef ◊  )log(,0 ft ◊  )(,0 fnotifyt

3.14. Evidence Collection with Pyke

Another approach on performing evidence collection is to use pure Prolog approach. With

this approach, processing of policies is treated as first order logic processing. This is because

that, the time information tied with every event in the system is attribute to the event.

Therefore, in processing the event in terms of collecting evidence, the thing that is interested

is the matching of event with policies. This is comparable with approach used in MonPoly

where the time information is considered as temporal information on the temporal logic used

to describe the system. In Prolog approach case, evidence collection can be performed by

using first order logic processing. Policies defined for the selected use can be expressed in

first order logic. Prolog is one of the programming languages that are based on first-order

logic. The main processing of policies with regards to evidence collection is then performed

using Prolog language.

Several implementations of Prolog reasoner exist. One of them is Pyke which is introduced in

section 2.11. Pyke. Pyke implements inference engine based upon Prolog in Python

environment. In our use case, Pyke is used to solve the problem on evidence collection. More

specifically, Pyke inference engine is used on processing policies as rules and source of

evidence as facts. The inference engine is used to derive additional information on facts

based on the rules defined.

Collection process using Pyke is done by firstly defining policies in first-order logic as rules.

In addition to that, source of evidence is prepared as facts. Following Figure 3.18. shows how

collection process is performed using Pyke.

Figure 3.18. Evidence Collection with Pyke

Pyke uses its inference engine to produce additional facts based on policy rules and source of

evidence. These results are going through verification process before is taken as evidence.

The verification is the process of deciding whether events in source of evidence are complied

with policies. Verification is based on the result produced by Pyke inference engine.

Each policy defined for the selected use case i.e. healthcare service in cloud is defined as rule

in Pyke krb file. Following list shows the rule definition for each policy mentioned in section

3.2. Use Case and Policies.

1. O1: As a data controller, the hospital needs to provide a policy on what data is collected

and for what purposes

Obligation_1

 foreach

 source.DCCollect($instance)

 assert

 source.DCDefinePurpose($instance)

2. O2: As a data controller, the hospital must ask the data subjects (patients) explicit

consent for collecting and processing personal data

Obligation_2_1

 foreach

 source.DCProcess($instance)

assert

 source.askConsentDS($instance)

Obligation_2_2

foreach

 source.DCCollect($instance)

assert

 source.askConsentDS($instance)

3. O3: As joint data controllers, the relatives must ask the data subjects (patients) explicit

consent for collecting and processing personal data

Obligation_3_1

foreach

 source.RelativeCollect($instance)

assert

 source.RelativeAskConsentDS($instance)

Obligation_3_2

foreach

 source.RelativeProcess($instance)

assert

 source.RelativeAskConsentDS($instance)

4. O4: As a data controller, the hospital must, upon request, provide evidence to the data

subjects on their personal data processing activities

Obligation_4_1

foreach

 source.accessDS($instance)

assert

 source.DCLog($instance)

Obligation_4_2

foreach

 source.deleteDS($instance)

assert

 source.DCLog($instance)

Obligation_4_3

foreach

 source.forwardDS($instance)

assert

 source.DCLog($instance)

Obligation_4_4

foreach

 source.DCevidReqReceived($instance)

assert

 source.DCevidCollect($instance)

5. O5: As a data processor, the primary service provider must log all access to personal

data

Obligation_5

foreach

 source.accessDS($instance)

assert

 source.DPLogAccess($instance)

6. O6: As a data processor, the primary service provider must, upon request, provide

evidence to the data controller (hospital) on its personal data processing activities

Obligation_6_1

foreach

 source.accessDS($instance)

assert

 source.DPLog($instance)

Obligation_6_2

foreach

 source.deleteDS($instance)

assert

 source.DPLog($instance)

Obligation_6_3

foreach

 source.forwardDS($instance)

assert

 source.DPLog($instance)

Obligation_6_4

foreach

 source.DPevidReqReceived($instance)

assert

 source.DPevidCollect($instance)

7. O7: As a data processor, the primary service provider must, upon request, provide

evidence to the data controller (hospital) on the correct and timely deletion of personal

data

Obligation_7

 foreach

 source.deleteDS($instance)

 assert

 source.notify($instance)

 source.DPLogDelete($instance)

All events used in the rules are based on the definition given in section 3.7. Event Generation.

Therefore source of evidence produced by test case system can also be used in this evidence

collection process. In addition to that, comparison between temporal logic and first order

logic used in MonPoly and Pyke consecutively is possible. The definition of rules is based on

the Pyke’s rule which is to use foreach-assert syntax as explained in section 2.11. Pyke.

3.15. Normalization

The collected evidence needs to have standard format and contains enough information to

support the evidence for description and later processing such as verification. Therefore, in

order to have that, a step in the framework of accountability evidence collection is added after

evidence collection process which is called evidence normalization. The format should be

machine-readable so that automatic processing of evidence is possible. Later in verification

process, the evidence is matched against policies. Thus the normalization must introduce

enough information supporting this process but with simple form that simplify the

verification process.

Several attributes are needed for the evidence to have it described properly and processable in

the next step of the framework of accountability evidence collection. Those suggested

attributes are (adapted from [24]):

- A1: descriptor of action or operation

This attribute contains information about action or operation that the evidence is

referring to i.e. action that is detected to not comply with obligations or policies.

- A2: actor, operator or component identifier

This attribute contains information about actor who initiates the action defined in A1.

- A3: metadata (timestamps, location)

This attribute provides details for each action defined in A1. This information is

extracted from the system itself. It may contain information that sufficiently describe

the evidence and is useful for further processing such as verification.

- A4: policy identification

This attribute provides information about policy which is the link between the evidence

and associated policy. This also gives way for further processing of the evidence such

as verification.

With those attributes defined for an evidence, the collection evidence is going through a

normalization step which collects all information related to the attributes. The normalization

process takes the attribute value from the source of evidence and policies as its input. It wraps

up all the attributes within each collected evidence.

Figure 3.19. shows how the normalization is performed. With the information about what

attributes to have in each evidence, the normalization process collects attribute’s value from

system information and policies.

Figure 3.19. Evidence Normalization

3.16. Verification Process

The evidence collection process with MonPoly produces evidence on policy violation. Based

on the framework of accountability evidence collection, this evidence is to be verified to

determine whether it is valid with respect to the policy defined for the selected use case and

associated source of evidence from where the evidence is collected from.

Figure 3.20. shows how the verification process in proposed framework of accountability

evidence collection is implemented. It uses decomposition approach to determine validity of

the evidence. It determines whether evidence is confirmed or is negated by other information.

The determination of a level is done by executing determination on level below it whether it

is confirmed or negated. Therefore, the evaluation is in bottom-up direction. In the policy

compliance checking situation, the verification of evidence, i.e. evidence provided for any

policy violation, is executed by checking confirmation whether the information provided is

really showing that the policy is violated or by checking if the negation of the checking itself

holds (which mean the evidence does not valid). Violating a policy in terms of trigger-action

pair in accountability policy representation means that trigger events are not triggering action

events to occur. It is expected that action events occur within some predefined conditions.

Figure 3.20. Verification Method

Generally the evidence is validated by processes depicted in figure 3.21. The confirmation

statement is checked whether it holds. If it holds, then the evidence being verified is accepted.

If it does not hold, the associated negation statement is checked whether it holds. If it holds,

then the evidence is rejected because it is not valid, supported by the information in the

negation statement. If it does not hold, then it is undecidable whether the evidence is valid or

not.

Figure 3.21. Verification Principle

4. Result & Analysis

This section presents results of running the implementation of framework of evidence

collection. The results presented include source of evidence collected from test system where

events are generated from implemented event generator, MFOTL formula generated from A-

PPL translator, several cases on detecting violations to policies using evidence collection

tool, and also case on evidence verification process. Comparison between two approaches

used i.e. MFOTL with MonPoly and Prolog (FOL) with Pyke is discussed. At last, scalability

analysis on the proposed approach on the framework of evidence collection is presented.

4.1. Source of Evidence

The test case system, which is set up using VMs to simulate the selected use case i.e.

healthcare service in cloud, has logs that are used as source of evidence in the framework of

accountability evidence collection. Through a running of this system, test data is collected for

the purpose of testing the proposed method for evidence collection. The event generation

explained in section 3.7. Event Generation is used to automatically run the simulated system

to generate events that will be logged in the system logs. These logs are collected as source of

evidence. As explained in the proposed method and implementation, all events or operations

performed in the system (VMs) are logged in the system log. These logs have different

format between each other. Therefore, normalization is performed on each log to produce

common format and that is processable in the next step. As MonPoly monitoring tool is used

in evidence collection process, all these normalized logs are needed to be converted to format

processable in MonPoly.

Following example shows example of system logs that are collected as the test system is

running. The logs are collected from each VM acting as each entity in healthcare service in

the cloud. The entities are data subject (patient), data controller (hospital and relative), and

data processor (cloud service provider). All the events are corresponding to operations that

are performed in healthcare service in cloud. Log shown below is the merging result from all

logs collected from all VMs to form complete view of the system run. Each event is given tag

so that it is human-readable with respect to associated defined policies. In the log, there is

information about time of event occurrence, user performed the event, and data subject

personal data identification.

Apr 18 17:32:16 user1-VirtualBox notify-send: DCEvidReqReceived 152.94.0.201 152.94.0.206

 person_66

Apr 18 17:32:27 user1-VirtualBox notify-send: accessDS 152.94.0.201 152.94.0.180 person_66

Apr 18 17:32:21 user2-VirtualBox system-logging: DCEvidCollect person_66

Apr 18 17:32:31 user2-VirtualBox system-logging: DCLog person_66

Apr 18 17:32:33 user3-VirtualBox system-logging: DPLog person_66

Apr 18 17:32:44 user3-VirtualBox system-logging: deleteDS person_66

Apr 18 17:32:53 user3-VirtualBox system-logging: DPLogDelete person_66

Apr 18 17:32:57 user3-VirtualBox system-logging: DPLog person_66

Apr 18 17:32:39 user3-VirtualBox scp-auth: user-3 PWD=/home/user-3 user=root

 COMMAND=/usr/bin/scp /home/user-3/MyData/Data user-4@152.94.0.210:/home/user-4/MyData

 forwardDS person_66

Apr 18 17:32:33 user3-VirtualBox system-logging: DPLog person_66

Apr 18 17:32:43 user3-VirtualBox system-logging: DPLog person_66

Apr 18 17:32:15 user4-VirtualBox notify-send: RelativeCollect 152.94.0.210 152.94.0.201

 person_15

Apr 18 17:34:59 user2-VirtualBox notify-send: askConsentDS 152.94.0.206 152.94.0.201 person_78

Apr 18 17:34:52 user2-VirtualBox system-logging: DCProcess person_78

Apr 18 17:34:56 user2-VirtualBox notify-send: askConsentDS 152.94.0.206 152.94.0.201 person_78

Apr 18 17:35:04 user2-VirtualBox notify-send: DCCollect 152.94.0.206 152.94.0.201 person_78

Apr 18 17:36:55 user3-VirtualBox system-logging: deleteDS person_59

Apr 18 17:36:54 user3-VirtualBox notify-send: Notify 152.94.0.180 152.94.0.201 person_59

Apr 18 17:37:00 user3-VirtualBox system-logging: DPLogDelete person_59

Apr 18 17:37:04 user3-VirtualBox notify-send: Notify 152.94.0.180 152.94.0.201 person_59

Apr 18 17:37:03 system-logging: user3-VirtualBox DPLog person_59

The collected logs which will be the basis for source of evidences are then normalized.

Following Figure 4.1. shows result of normalization of above log as explained in the section

3.15. Normalization. Based on this normalization, all events’ information is in uniform

format and is processable in next processing step.

Apr 18 17:32:16 1397835136 notify-send: user1-VirtualBox DCEvidReqReceived person_66

Apr 18 17:32:27 1397835131 notify-send: user1-VirtualBox accessDS person_66

Apr 18 17:32:21 1397835141 system-logging: user2-VirtualBox DCEvidCollect person_66

Apr 18 17:32:31 1397835135 system-logging: user2-VirtualBox DCLog person_66

Apr 18 17:32:33 1397835133 system-logging: user3-VirtualBox DPLog person_66

Apr 18 17:32:44 1397835135 system-logging: user3-VirtualBox deleteDS person_66

Apr 18 17:32:53 1397835139 system-logging: user3-VirtualBox DPLogDelete person_66

Apr 18 17:32:57 1397835138 system-logging: user3-VirtualBox DPLog person_66

Apr 18 17:32:39 1397835132 scp-auth: user3-VirtualBox forwardDS person_66

Apr 18 17:32:33 1397835133 system-logging: user3-VirtualBox DPLog person_66

Apr 18 17:32:43 1397835133 system-logging: user3-VirtualBox DPLog person_66

Apr 18 17:32:15 1397835135 notify-send: user4-VirtualBox RelativeCollect

person_15

Apr 18 17:34:59 1397835288 notify-send: user2-VirtualBox askConsentDS person_78

Apr 18 17:34:52 1397835291 system-logging: user2-VirtualBox DCProcess person_78

Apr 18 17:34:56 1397835295 notify-send: user2-VirtualBox askConsentDS person_78

Apr 18 17:35:04 1397835295 notify-send: user2-VirtualBox DCCollect person_78

Apr 18 17:36:55 1397835412 system-logging: user3-VirtualBox deleteDS person_59

Apr 18 17:36:54 1397835413 notify-send: user3-VirtualBox Notify person_59

Apr 18 17:37:00 1397835413 system-logging: user3-VirtualBox DPLogDelete person_59

Apr 18 17:37:04 1397835413 notify-send: user3-VirtualBox Notify person_59

Apr 18 17:37:03 1397835414 system-logging: user3-VirtualBox DPLog person_59

Apr 18 17:37:06 1397835415 system-logging: user3-VirtualBox DPLogDelete person_59

Apr 18 17:36:59 1397835416 system-logging: user2-VirtualBox DCLog person_59

Figure 4.1. Normalized Source of Evidence Example

For processing in MonPoly and Pyke, the log is converted into format processable in those

tools. However, reference to the original entry is kept so that detail information can be

retrieved whenever needed. As explained in 2.10. MonPoly Monitoring Tool and 2.11.

Pyke,example of the processable source of evidence is shown in following Figure 4.2.

@1397835131 accessDS (person_66)

@1397835132 forwardDS (person_66)

@1397835133 DPLog (person_66)

@1397835133 DPLog (person_66)

@1397835135 RelativeCollect (person_15)

@1397835135 DCLog (person_66)

@1397835135 DCLog (person_66)

@1397835135 deleteDS (person_66)

@1397835136 DCEvidReqReceived (person_66)

@1397835138 DPLog (person_66)

@1397835138 DCEvidCollect (person_66)

@1397835139 DPLogDelete (person_66)

@1397835288 askConsentDS (person_78)

@1397835291 DCProcess (person_78)

@1397835295 askConsentDS (person_78)

@1397835295 DCCollect (person_78)

@1397835412 deleteDS (person_59)

@1397835413 Notify (person_59)

@1397835413 DPLogDelete (person_59)

@1397835413 Notify (person_59)

@1397835414 DPLog (person_59)

@1397835415 DPLogDelete (person_59)

@1397835416 DCLog (person_59)

Figure 4.2. Processable Log Example

4.2. MFOTL Formula

This section shows the results of translation from A-PPL to MFOTL performed by the

translator explained in section 3.12. A-PPL translation on each policies expressed in A-PPL

in section 3.4. Policy Representation in A-PPL. This expression in MFOTL is processable in

MonPoly tool. The relations used in the MFOTL formula corresponds to all events generated

in the test case system to simulate the selected use case i.e. healthcare service in cloud. Each

event is the simplification of operation performed in healthcare service because only

occurrence of the event and relationship between events are interested instead of the detail on

the event. The value in <DEF> XML element shows MFOTL formula for each policy

processable in MonPoly. As explained, it is translated from trigger-action extension proposed

by A-PPL. Basically relations in the left side of temporal construct in the translated MFOTL

formula corresponds to triggers in the A-PPL representation. The triggers are translated into

relations defined for the whole system. While relations in the right side of temporal construct

corresponds to actions in the A-PPL representation.

1. O1: As a data controller, the hospital needs to provide a policy on what data is collected

and for what purposes

<POLICY>

 <ID>O1</ID>

 <DEF>DCCollect(?r) IMPLIES ONCE[0,5M]

DCDefinePurpose</DEF>

</POLICY>

2. O2: As a data controller, the hospital must ask the data subjects (patients) explicit

consent for collecting and processing personal data

<POLICY>

 <ID>O2</ID>

 <DEF>DCCollect(?r) OR DCProcess(?r) IMPLIES ONCE[0,5M]

 askConsentDS</DEF>

</POLICY>

3. O3: As joint data controllers, the relatives must ask the data subjects (patients) explicit

consent for collecting and processing personal data

<POLICY>

 <ID>O3</ID>

 <DEF>RelativeCollect(?r) OR RelativeProcess(?r) IMPLIES

 ONCE[0,5M] RelativeAskConsentDS</DEF>

</POLICY>

4. O4: As a data controller, the hospital must, upon request, provide evidence to the data

subjects on their personal data processing activities

<POLICY>

 <ID>04</ID>

 <DEF>accessDS(?r) OR deleteDS(?r) OR forwardDS(?r)

 IMPLIES EVENTUALLY[0,5M] DCLog</DEF>

 <DEF>DCevidReqReceived(?r) IMPLIES EVENTUALLY[0,5M]

 DCevidCollect</DEF>

</POLICY>

5. O5: As a data processor, the primary service provider must log all access to personal

data

<POLICY>

 <ID>05</ID>

 <DEF>accessDS(?r) IMPLIES EVENTUALLY[0,5M]

 DPLogAccess</DEF>

</POLICY>

6. O6: As a data processor, the primary service provider must, upon request, provide

evidence to the data controller (hospital) on its personal data processing activities

<POLICY>

 <ID>06</ID>

 <DEF>accessDS(?r) OR deleteDS(?r) OR forwardDS(?r)

 IMPLIES EVENTUALLY[0,5M] DPLog</DEF>

 <DEF>DPevidReqReceived(?r) IMPLIES EVENTUALLY[0,5M]

 DPevidCollect</DEF>

</POLICY>

7. O7: As a data processor, the primary service provider must, upon request, provide

evidence to the data controller (hospital) on the correct and timely deletion of personal

data

<POLICY>

 <ID>07</ID>

 <DEF>deleteDS(?r) IMPLIES EVENTUALLY[0,5M] notify</DEF>

 <DEF>deleteDS(?r) IMPLIES EVENTUALLY[0,5M]

 DPLogDelete</DEF>

</POLICY>

The results show that the translator can be used to transform A-PPL format in XML into

MFOTL format in XML. However, it is required that the A-PPL format has standard list of

triggers and actions. It is because that by knowing the lists, it is then possible to build the

translation table used in the translator. It is also that by knowing them, it is possible to link

with the events being monitored in the source of evidence. Without consistent defined format

in A-PPL, it is not possible to get this automatic translation work. Therefore, it is important

that A-PPL representation format is well defined and the information is consulted to the

translator.

4.3. Detecting Violation to Obligation with MonPoly

MonPoly monitoring tool outputs all events in the log that are not complied with the policies.

In the implementation of framework of accountability evidence collection, all those events

may be potential evidences that after verification process can be considered as evidences. In

the selected use case, the logs are source of evidences which are collected from system logs.

The policies represent obligations that need to be followed by each entity in the system.

MonPoly takes policies and source of evidence as input and outputs each event in the source

that is violating the policies.

Following Figure 4.3. shows example output of violation detection by running MonPoly

against source of evidence and policies. Suppose that in order to test the monitoring tool, we

intentionally break some of the policies defined. We expect that events that are intentionally

executed to violate the policies to be detected by the tool. To do so, policy indicator in the

event generation tool is used to control the creation of such event. Example of source of

evidence used in this run is the one shown in section 4.1. Source of evidence above.

5

@1397835131 (time-point 1): (person_66)

3

@1397835135 (time-point 5): (person_15)

Figure 4.3. Output of Collection with MonPoly

The output of MonPoly monitoring above shows that there are two events that are violating

policies defined for the case. The first one is the event occurred in time 1397835131 which is

indicated as violating policy with identification 5. Second event occurred in time

1397835135 which is indicated as violating policy with identification 3. Looking at

definition of policy with identification 5 and 3 which is shown below

- O5: As a data processor, the primary service provider must log all access to personal

data

- O3: As joint data controllers, the relatives must ask the data subjects (patients) explicit

consent for collecting and processing personal data

<POLICY>

 <ID>O5</ID>

 <DEF>accessDS(?r) IMPLIES EVENTUALLY[0,5M] DPLogAccess</DEF>

</POLICY>

<POLICY>

 <ID>O3</ID>

 <DEF>RelativeCollect(?r) OR RelativeProcess(?r) IMPLIES

 ONCE[0,5M] RelativeAskConsentDS</DEF>

</POLICY>

Every access to data subject’s personal data must be logged and before collecting or

processing the personal data, relative of data subject must ask consent to the data subject. In

the first violation, the access event is not triggering the logging event. This can be seen from

the source of evidence collected as log from the system. That’s why, the access event is

considered as potential evidence to show that policy with identification 5 is violated. Same

case in the second violation, the collect event executed by data subject’s relative is not

preceded by consent event. The related collect event is collected as evidence to proof

violation to policy with identification 3.

4.4. Detecting Violation to Obligation with Pyke

Taking the same set of data i.e. source of evidences as the one used in MonPoly testing, this

section shows the result of detecting violation to obligations with Pyke. As explained in

section 3.14. Evidence Collection with Pyke”, the obligations are formalized in first order

logic as Pyke’s rules. The source of evidence where evidence is collected from is treated as

facts in Pyke.

Following shows some of the obligations defined for the selected use case i.e. healthcare

service in cloud. These obligations are to be monitored against logs and every violation to the

obligations is stored as evidence as a violation proof.

- O5: As a data processor, the primary service provider must log all access to personal

data

In Pyke, this obligation is defined in the krb file as:

Obligation_5

foreach

 source.accessDS($instance)

assert

 source.DPLogAccess($instance)

- O3: As joint data controllers, the relatives must ask the data subjects (patients) explicit

consent for collecting and processing personal data

In Pyke, this obligation is defined in the krb file as:

Obligation_3_1

foreach

 source.RelativeCollect($instance)

assert

 source.RelativeAskConsentDS($instance)

Obligation_3_2

foreach

 source.RelativeProcess($instance)

assert

 source.RelativeAskConsentDS($instance)

Logs as source of evidence used is the one shown in section 4.1. Source of Evidence.

Running Pyke using the rules and facts, gives following output:

DCLog (person_66)

DPLogAccess (person_66)

DPLog (person_66)

DCLog (person_66)

DPLog (person_66)

RelativeAskConsentDS (person_15)

DCLog (person_66)

DPLog (person_66)

notify (person_66)

DPLogDelete (person_66)

DCEvidCollect (person_66)

askConsentDS (person_78)

DCDefinePurpose (person_78)

askConsentDS (person_78)

DCLog (person_59)

DPLog (person_59)

notify (person_59)

DPLogDelete (person_59)

Pyke matches every event term in the “if” clause of every policy with events in the logs. Each

time a match is found, it asserts all events terms in “then” clause as new facts. The result

above is asserted new facts based on running Pyke on the source of evidences and policies.

As explained in section 3.14. Evidence Collection with Pyke, this result is to be checked in

the verification process which will use this new information to check consistency of events in

the log against the policies defined for them.

Following Figure 4.4. shows the result of verification process where the output is considered

as evidence for each violation to the obligation.

Obligation_5, @1397835131 accessDS (person_66)

Obligation_3, @1397835135 RelativeCollect (person_15)

Figure 4.4. Output of Collection with Pyke

Each detected violation is tied to the respective obligation. In this way, the link between

evidence and obligation is established. In later, further processing taking the evidence as

input is possible. More information can also be explored from that basis.

4.5. Test cases and Results

This section shows several test cases and their results in addition to the results shown in

previous section about detecting violation to obligations with MonPoly and Pyke. The sample

test cases picked up for testing the approaches and tools are:

1. Detecting if Data Controller (Hospital) does not follow obligations on processing Data

Subject (Patient)’s personal data

In this test case, several obligations defined for the selected use case i.e. healthcare

service in cloud are related. Among all the obligations defined for the use case,

obligations related to this test care are:

- O1: As a data controller, the hospital needs to provide a policy on what data is

collected and for what purposes

- O2: As a data controller, the hospital must ask the data subjects (patients) explicit

consent for collecting and processing personal data

- O4: As a data controller, the hospital must, upon request, provide evidence to the

data subjects on their personal data processing activities

Source of evidence is taken from logs where some of the events are generated leading

to violation to one or some obligations. This is possible because the event generation

has policy indicator that can control how the events are generated in relation to the

policy. Explanation can be found in section 3.7. Event Generation. Example of source

of evidence used in this test case is shown below.

@1397835131 accessDS (person_66)

@1397835132 DPLogAccess (person_66)

@1397835132 forwardDS (person_66)

@1397835133 DPLog (person_66)

@1397835133 DPLog (person_66)

@1397835133 RelativeAskConsentDS (person_15)

@1397835135 RelativeCollect (person_15)

@1397835135 DCLog (person_66)

@1397835135 DCLog (person_66)

@1397835135 deleteDS (person_66)

@1397835136 DCLog (person_66)

@1397835136 DCEvidReqReceived (person_66)

@1397835138 DPLog (person_66)

@1397835139 DPLogDelete (person_66)

@1397835288 askConsentDS (person_78)

@1397835291 DCProcess (person_78)

@1397835295 DCCollect (person_78)

@1397835412 deleteDS (person_59)

@1397835413 Notify (person_59)

@1397835413 DPLogDelete (person_59)

@1397835413 Notify (person_59)

@1397835414 DPLog (person_59)

@1397835415 DPLogDelete (person_59)

@1397835416 DCLog (person_59)

Running the evidence collection with MonPoly and Pyke, i.e. monitoring policies on

source of evidence example, gives the output as following.

Obligation_4, @1397835136 DCEvidReqReceived (person_66)

Obligation_2, @1397835295 DCCollect (person_78)

Verification process on the potential evidence results in evidences showing as proof

that Data Controller has violated obligation O4 and O2. In the example, trigger event

for collecting evidence is not triggering the related action event to be executed which

results in violation to obligation O4. On the other hand, trigger event for collecting

personal data is also not triggering related action event to ask for data subject consent

which also results in violation to obligation O2.

2. Detecting if Data Processor (Cloud Provider) does not follow obligations on processing

Data Subject (Patient)’s personal data

In this test case, several obligations defined for the selected use case are related.

Among all the obligations defined for the use case, obligations related to this test case

are:

- O5: As a data processor, the primary service provider must log all access to

personal data

- O6: As a data processor, the primary service provider must, upon request, provide

evidence to the data controller (hospital) on its personal data processing activities

- O7: As a data processor, the primary service provider must, upon request, provide

evidence to the data controller (hospital) on the correct and timely deletion of

personal data

The same as previous test case, example of source of evidence is collected from system

logs where some events are generated to violate one of some obligations. These

violations are to be detected by the approach or tool used in this work. Example of

source of evidence used for this test case is shown below.

@1397835131 accessDS (person_66)

@1397835132 forwardDS (person_66)

@1397835133 DPLog (person_66)

@1397835133 DPLog (person_66)

@1397835133 RelativeAskConsentDS (person_15)

@1397835135 RelativeCollect (person_15)

@1397835135 DCLog (person_66)

@1397835135 DCLog (person_66)

@1397835135 deleteDS (person_66)

@1397835136 DCLog (person_66)

@1397835136 DCEvidReqReceived (person_66)

@1397835138 DPLog (person_66)

@1397835138 DCEvideCollect (person_66)

@1397835139 DPLogDelete (person_66)

@1397835288 askConsentDS (person_78)

@1397835291 DCProcess (person_78)

@1397835293 askConsentDS (person_78)

@1397835295 DCCollect (person_78)

@1397835412 deleteDS (person_59)

@1397835413 DPLogDelete (person_59)

@1397835414 DPLog (person_59)

@1397835415 DPLogDelete (person_59)

@1397835416 DCLog (person_59)

Running the evidence collection with MonPoly and Pyke, i.e. monitoring policies on

source of evidence example, gives the output as following.

Obligation_5, @1397835131 accessDS (person_66)

Obligation_7, @1397835413 DPLogDelete (person_59)

Obligation_7, @1397835415 DPLogDelete (person_59)

Verification process on the potential evidence results in evidences showing as proof

that Data Controller has violated obligation O5 and O7.

3. All obligations defined are followed by every entity in the cloud system which means

there is no violation detected

Several test cases have been executed using the evidence collection tool proposed in the

framework on detecting violations to policies. This test case, however, tries to catch a

scenario when there is no violation to policies i.e. all entities involved in the service

chain are complied with all obligations set up for the system. A result of no evidence

collected is expected as the output from the evidence collection tool to confirm that the

tool works for both cases i.e. when there are violations and when there is no violation.

Source of evidence is collected from system logs where previously event generator is

used to execute events on the system by following all obligations defined for the use

case. Collected source of evidence used in this test case is therefore looks like as

following (example)

@1397835131 accessDS (person_66)

@1397835132 DPLogAccess (person_66)

@1397835132 forwardDS (person_66)

@1397835133 DPLog (person_66)

@1397835133 DPLog (person_66)

@1397835133 RelativeAskConsentDS (person_15)

@1397835135 RelativeCollect (person_15)

@1397835135 DCLog (person_66)

@1397835135 DPLog (person_66)

@1397835135 deleteDS (person_66)

@1397835136 DCLog (person_66)

@1397835136 DCEvidReqReceived (person_66)

@1397835137 DCEvidCollect (person_66)

@1397835138 DPLog (person_66)

@1397835139 DPLogDelete (person_66)

@1397835288 askConsentDS (person_78)

@1397835291 DCProcess (person_78)

@1397835293 askConsentDS (person_78)

@1397835295 DCCollect (person_78)

@1397835412 deleteDS (person_59)

@1397835413 Notify (person_59)

@1397835413 DPLogDelete (person_59)

@1397835413 Notify (person_59)

@1397835414 DPLog (person_59)

@1397835415 DPLogDelete (person_59)

@1397835416 DCLog (person_59)

Running the evidence collection with MonPoly and Pyke, i.e. monitoring policies on

source of evidence example, gives null output. This means that there is no violation

detected for any policies. This result matches with the scenario used where events are

generated by taking information that all entities follow all related obligations.

4. Modifications to collected evidence will result in unsuccessful evidence verification

This test case is executed for testing verification process of evidence resulted from

collection process. As explained, the verification process is intended to verify if the

collected evidence is valid in accordance to the source of evidence taken into

processing and the policies defined for them. Modification to evidence, addition of

information or deleting of evidence should result in invalid evidence.

For testing purpose, the result from a running of collection process is collected and

modified. For example, the result of collection process is as following

Obligation_4, @1397835136 DCEvidReqReceived (person_66)

Obligation_2, @1397835295 DCCollect (person_78)

With source of evidences shown below

@1397835131 accessDS (person_66)

@1397835132 DPLogAccess (person_66)

@1397835132 forwardDS (person_66)

@1397835133 DPLog (person_66)

@1397835133 DPLog (person_66)

@1397835133 RelativeAskConsentDS (person_15)

@1397835135 RelativeCollect (person_15)

@1397835135 DCLog (person_66)

@1397835135 DCLog (person_66)

@1397835135 deleteDS (person_66)

@1397835136 DCLog (person_66)

@1397835136 DCEvidReqReceived (person_66)

@1397835138 DPLog (person_66)

@1397835139 DPLogDelete (person_66)

@1397835288 askConsentDS (person_78)

@1397835291 DCProcess (person_78)

@1397835295 DCCollect (person_78)

@1397835412 deleteDS (person_59)

@1397835413 Notify (person_59)

@1397835413 DPLogDelete (person_59)

@1397835413 Notify (person_59)

@1397835414 DPLog (person_59)

@1397835415 DPLogDelete (person_59)

@1397835416 DCLog (person_59)

If the result is modified to

Obligation_5, @1397835131 accessDS (person_66)

Obligation_4, @1397835136 DCEvidReqReceived (person_66)

Obligation_2, @1397835295 DCCollect (person_78)

The verification process run against the result will output that first entry of the collected

result is not valid according to given source of evidence and set of policies. Detail of

verification process can be found in section 3.16. Verification Process.

Not valid

Valid

Valid

4.6. Comparison

The main difference between approach taken in MonPoly and Pyke is the support for

temporal logic. In MonPoly, the logic used to express the obligations is metric first-order

temporal logic which support temporal expression. With this logic, temporal relationship can

be expressed. Accountability obligations sometimes need this to express temporal

relationship between events. On the other hand, Pyke uses Prolog which is pure logic

language that does not support temporal logic. Using Prolog in expressing obligations limits

the expressiveness of the obligations since there is no support for expressing temporal

relationship. This support gives effect to the performance and practicality in terms of

increasing data size. In metric first-order temporal logic which is used in MonPoly, the policy

monitoring to collect evidence is taking more times than processing Prolog as used in Pyke.

Temporal logic processing gives more time on the overall processing. In addition to that,

processing with Pyke which uses Prolog gives more practicality as it is built on Python

framework where additional features can be easily added.

In Pyke, the mechanism used is to assert new facts into knowledge base every time there is a

match on the checking performed on the existing fact with respect to the rules. Then, all these

new facts are being verified to check the consistency with given information about the

system. In MonPoly, the policy compliance is done on the fly on the source of evidence

which can be considered as facts. The policy compliance is controlled by the definition of

obligations as rules.

4.7. Scalability & Limitations

Methods proposed in the framework of evidence collection are tested in terms of scalability

i.e. the ability to perform with larger data set. Method in the framework that is in interest for

this test is the one used in the collection process. The data set in this case is the size of logs as

source of evidence to be processed in the policy monitoring methods used in the collection

process. As explained before, there are two approaches used in the collection process i.e.

processing as MFOTL and as FOL. MFOTL processing is using MonPoly and FOL

processing is using Pyke. The purpose of this is to see how those two approaches perform in

relation to increasing data size.

Two main aspects are tried to be related and tested. They are size of data set and execution

time in terms of collecting evidence from the data set. Size of data set is calculated as number

of distinct events contained in the processed log. The test is performed on a PC with

specification as following:

- Processor: Intel Core i7 @ 2.70GHz, 64-bit OS

- RAM: 8 GB

Test is conducted on several data set sizes. On each test, execution time for the collection

process is recorded both for the first approach (using MFOTL) and second approach (using

FOL).

Following Table 4.1. shows test result of collection process using MFOTL (with MonPoly) in

relation to increasing data size. Number shown in the execution time is the average from

execution time recorded from several runs for particular data size.

Size of logs (# events) (Average) Execution Time –

collection with MFOTL

(seconds)

25000 ~ 1

50000 ~ 1,7

75000 ~ 2,5

100000 ~ 3,5

200000 ~ 5

Table 4.1. Evidence Collection with MonPoly - Execution Time Table

The table values can be drawn in the graph as shown in following Figure 4.5.

Figure 4.5. Evidence Collection with MonPoly - Execution Time Graph

Following Table 4.2. shows test result of collection process using FOL (with Pyke) in relation

to increasing data size.

Size of logs (# events) (Average) Execution Time –

collection with FOL (seconds)

25000 ~ 0.7

50000 ~ 1,5

75000 ~ 2

100000 ~ 3,1

200000 ~ 4

Table 4.2. Evidence Collection with Pyke - Execution Time Table

The table values can be drawn in the graph as shown in following Figure 4.6.

Figure 4.6. Evidence Collection with Pyke - Execution Time Graph

With the information from the test, the performance in terms of execution time of each

approach can be concluded. Preliminary testing seems to indicate that the approach using

FOL with Pyke gives better result in terms of execution time. This is because that the FOL

processing does not involve temporal processing which gives simpler processing process.

With the increasing data size which will be the case when the policy monitoring is performed

on cloud service with several entities, FOL is more practical although not more expressive in

expressing obligations.

Apart from the size of data set, the complexity of obligations to be expressed in the policy

representation language affects the performance of the collection process in terms of time. It

is reflected in the test result shown above where execution time of approach using MFOTL is

higher than of approach using FOTL. MFOTL has more expressiveness than FOL as it

supports temporal logic expression.

The collection processes proposed i.e. using MFOTL with MonPoly and using FOL with

Pyke have limitations. MonPoly processes logs as source of evidence and obligations in its

own format. This format more or less introduces additional processes needed to pre-process

the input. In addition, some of the information contained in logs or obligations may be loss in

collection process as they are not included. The same limitation also exists when using FOL

with Pyke in the collection process.

As explained in section 3.12. A-PPL Translation, a translation from A-PPL to MFOTL (used

in MonPoly) or FOL (used in Pyke), is needed. This translation introduces complexity in

performing the whole collection process. With different set of events, obligations, and terms,

the translation becomes more complex.

5. Conclusion & Future Works

Evidence collection has been identified as one of the key element to provide accountability in

cloud service. A framework of evidence collection is proposed to collect evidence about

events in the cloud service with relation to obligations defined for it.

The implementation of the framework of evidence collection is executed on a selected use

case of cloud service. Healthcare service in the cloud is selected as the use case. In this use

case, there are several entities involved in the cloud service. Data subject whose data is

uploaded and processed in the cloud is the patient. Data controller is the entity which is

responsible for the processing of data subject’s data in the cloud, in this case the data

controller is hospital. Patient’s relatives are also considered as Data Controller. The last entity

involved is Data Processor. Data Processor includes all cloud service providers that processes

or stores Data Subject’s data.

The framework of evidence collection consists of several steps. The steps are source of

evidence identification and collection. After source of evidence is collected, they are pre-

processed in preparation for the evidence collection process following it. In the evidence

collection process, evidence is collected from the source of evidences based on the

obligations that are defined for the cloud service. Any violations to the obligations are

recorded as evidence for further audit process. Evidence collected is then verified with

available information to test its validity.

In order to test the proposed method on the framework of evidence collection and on the

selected use case, a test system is set up. The system simulates the selected use case i.e.

healthcare service in cloud. All sources of evidences for processing are collected from a

running of this system. This source of evidences is then used to be fed in as data for the

evidence collection process.

The main element in the framework of evidence collection is evidence collection. This

process collects evidence about events that break the obligations. Evidence collection is

mainly processing source of evidences against obligations. The process involves logic

processing. The obligations are represented in logical languages as rules and the source of

evidences is represented as facts. Two approaches on evidence collection are used and

compared. First approach processes obligations and source of evidences as temporal logic. It

uses MonPoly tool which is policy monitoring tool process obligations in MFOTL (Metric

First-Order Temporal Logic) formula. Second approach processes obligations and source of

evidences as first order logic (FOL) in Prolog using Pyke tool.

Based on the work carried out in the A4Cloud, to express accountability policies, A-PPL

(Accountable-PrimeLife Policy Language) language is used. This is the basis used in this

Thesis to represent the obligations. Then translator to MFOTL is implemented to translate the

A-PPL policies into processable format in the collection process.

Nomalization process on the collected evidence is discussed. Several basic and important

information that must be tied to the evidence are listed. The implementation on framework of

evidence collection’s steps also involves putting the normalization in work i.e. normalized the

collected evidence to the format specified.

Verification process is discussed. As one of the last steps in the framework, verification test

validity of collected evidence based on the information about system’s events and related

obligations. This is the basis for taking the collected evidence for further processing.

One of the potential future works for the framework of evidence collection is to propose how

the evidence is stored. The evidence also must contain chain of information that build up the

information about events executed in the system. By proposing solid chain of information in

the evidence, checking on the validity of the evidence in relation to, for example

modification, is possible.

Another possible future work is to run the processes in the framework of evidence collection

with big data processing concept. This means that the processes, for example evidence

collection process, are performed using map reduce algorithm with several nodes of machines

to achieve more scalable result. When the data size is huge, the usage of big data processing

will reduce the time and resource needed for the process to complete.

References

[1] A4Cloud, “Identification of Evidence Types,” This work was supported by EU FP7

Accountability for Cloud and Other Future Internet Services (A4Cloud) Project, Grant

No. 317550.

[2] D. Basin, F. Klaedtke and S. Muller, “Policy Monitoring in First-order Temporal Logic,”

Department of Computer Science, ETH Zurich, Switzerland.

[3] R. Koymans, “Specifying Real-Time Properties with Metric Temporal Logic,” Real-

Time Systems, vol. 2, no. Kluwer Academic Publishers, pp. 255-299, 1990.

[4] D. Basin, F. Klaedtke, S. Muller and E. Zalinescu, “Monitoring Metric First-order

Temporal Properties,” ETH Zurich.

[5] Incident Management and Forensics Working Group, “Mapping the Forensic Standard

ISO/IEC 27037 to Cloud Computing,” Cloud Security Alliance, June 2013.

[6] ISO 27037, “Guidelines for Identification, Collection, Acquisition and Preservation of

Digital Evidence,” [Online]. Available:

http://www.iso.org/iso/catalogue_detail?csnumber=44381, 2012.

[7] D. Garg, L. Jia and A. Datta, “A Logical Method for Policy Enforcement over Evolving

Audit Logs,” CMU CyLab, May 2011.

[8] H. DeYoung, D. Garg, L. Jia, D. Kaynar and A. Datta, “Experiences in the Logical

Specification of the HIPAA and GLBA Privacy Laws,” ACM, Carnigie Mellon

University, 2010.

[9] C. Giblin, A. Y. Liu, S. Muller, B. Pfitzmann and X. Zhou, “Regulations Expressed As

Logical Models,” Legal Knowledge and Information Systems, pp. 37-48, 2005.

[10] B. Schatz and A. Clark, “An Open Architecture for Digital Evidence Integration,”

AusCert Asia Pacific Information Technology Security Conference, R&D Stream, May

2006.

[11] P. Turner, “Unification of Digital Evidence from Disparate Sources (Digital Evidence

Bags),” Digital Forensic Research Workshop, 2005.

[12] M. Montanari, J. H. Huh, D. Dagit, R. B. Bobba and R. H. Campbell, “Evidence of Log

Integrity in Policy-based Security Monitoring,” IEEE, 2012.

[13] D. Butin, M. Chicote and D. L. Metayer, “Log Design for Accountability,” IEEE

Security and Privacy Workshops, 2013.

[14] S. Trabelsi, A. Njeh, L. Bussard and G. Neven, “PPL Engine: A Symmetric Architecture

for Privacy Policy Handling”.

[15] M. Henze, M. Grobfengels, M. Koprowski and K. Wehrle, “Towards Data Handling

Requirements-aware Cloud Computing,” IEEE on Cloud Computing Technology and

Science, 2013.

[16] C. A. Ardagna, L. Bussard, S. D. C. d. Vimercati, G. Neven, S. Paraboschi, E. Pedrini, F.

S. Preiss, D. Raggett, P. Samarati, S. Trabelsi and M. Verdicchio, “PrimeLife Policy

Language”.

[17] M. L. Krotoski, “Using Log Record Analysis to Show Internet and Computer Activity in

Criminal Cases,” United States Attorney's Bulletin, vol. 59, no. 6, November 2011.

[18] Webopedia, “Cloud Service,” [Online]. Available:

http://www.webopedia.com/TERM/C/cloud_services.html.

[19] Dialogic Corporation, “Introduction to Cloud Computing,” 2010.

[20] S. Pearson, “Toward Accountability in the Cloud,” IEEE Internet Computing, 2011.

[21] S. Pearson, V. Tountopoulos, D. Catteddu, M. Sudholt, R. Molva, C. Reich, S. F.

Hubner, C. Millard, V. Lotz, M. G. Jaatun, R. Leenes, C. Rong and J. Lopez,

“Accountability for Cloud and Other Future Internet Services,” IEEE Cloud Computing

Technology and Science, 2012.

[22] Wikipedia, “Dropbox (Service),” [Online]. Available:

http://en.wikipedia.org/wiki/Dropbox_(service).

[23] Dropbox, “Dropbox,” [Online]. Available: https://www.dropbox.com/.

[24] A4Cloud, “Policy Representation Framework,” This work was supported by EU FP7

Accountability for Cloud and Other Future Internet Services (A4Cloud) Project, Grant

No. 317550.

[25] D. Basin, F. Klaedtke and S. Muller, “Monitoring Security Policies with Metric First-

order Temporal Logic,” SACMAT, June 2010.

[26] Y. Venema, “Temporal Logic,” Royal Netherlands Academy of Arts and Sciences.

[27] D. Basin, F. Klaedtke, S. Muller and B. Pfitzmann, “Runtime Monitoring of Metric

First-order Temporal Properties,” Foundations of Software Technology and Theoritical

Computer Science, 2008.

[28] T. Rubsamen, C. Reich, A. Taherimonfared, T. Wlodarczyk and C. Rong, “Evidence for

Accountable Cloud Computing Services”.

[29] E. Zalinescu, “MonPoly, A Monitor for MFOTL Specifications,” [Online]. Available:

https://sourceforge.net/p/monpoly/monpoly/HEAD/tree/.

[30] D. Basin, M. Harvan, F. Klaedtke and E. Zalinescu, “MONPOLY: Monitoring Usage-

control Policies”.

[31] P. Project, 2007. [Online]. Available: http://pyke.sourceforge.net/index.html.

[32] R. Natarajan, “20 Linux Log Files that are Located under /var/log Directory,” August

2011. [Online]. Available: http://www.thegeekstuff.com/2011/08/linux-var-log-files/.

[33] Stanford University, “Propositional Logic,” 2007. [Online]. Available:

http://logic.stanford.edu/classes/cs157/2007/notes/chap02.html.

[34] J. Ouaknine and J. Worrell, “Some Recent Results in Metric Temporal Logic,” Springer,

pp. 1-13, 2008.

[35] Y. Liu, “A Survey and Analysis on Metric Temporal Logic,” The University of Texas at

Austin.

[36] F. Laroussinie, “Expressiveness of Temporal Logics,” CNRS & ENS Cachan, France.

[37] P. Hunter, J. Ouaknine and J. Worrell, “Expressive Completeness for Metric Temporal

Logic,” University of Oxford.

[38] Y. Hirshfeld and A. Rabinovich, “Quantitative Temporal Logic,” Tel Aviv University.

[39] A. Pnueli, “The Temporal Logic of Programs,” University of Pennsylvania.

[40] S. Konur, “A Survey on Temporal Logics for Specifying and Verifying Real-time

Systems,” Front Computer Science, 2012.

[41] G. Simko and J. Sztipanovits, “Active Monitoring Using Real-time Metric Linear

Temporal Logic Specifications,” Vanderbilt University.

[42] V. Rybakov, “Linear Temporal Logic with Until and Next, Logical Consecutions,”

Annals of Pure and Applied Logic, vol. 155, pp. 32-45, 2008.

[43] P. Schnoebelen, “The Complexity of Temporal Logic Model Checking,” Advances in

Modal Logic, vol. 4, pp. 1-44, 2002.

[44] J. Ouaknine and J. Worrell, “On the Decidability and Complexity of Metric Temporal

Logic over Finite Words,” Logical Methods in Computer Science, vol. 3, pp. 1-27, 2007.

[45] Wikipedia, “Prolog,” [Online]. Available: http://en.wikipedia.org/wiki/Prolog.

[46] M. A. Orgun and W. Ma, “An Overview of Temporal and Modal Logic Programming”.

[47] M. Abadi and Z. Manna, “Temporal Logic Programming,” J. Symbolic Computation,

vol. 8, pp. 277-295, 1989.

[48] T. Hrycej, “A Temporal Extension of Prolog,” J. Logic Programming , vol. 15, pp. 113-

145, 1993.

[49] M. A. Orgun, W. W. Wadge and W. Du, “Chronolog(Z): Linear-time Logic

Programming,” IEEE Computer Society, pp. 545-549, 1993.

[50] H. Barringer, M. Fisher, D. Gabbay, G. Gough and R. Owens, “METATEM: An

Introduction,” Formal Aspects of Computing, vol. 7, pp. 533-539, 1995.

