
Faculty of Science and Technology

MASTER’S THESIS

Study program/ Specialization:

Master of Science in Computer Science

Spring semester, 2014

Open access

Writer:

Roberto Martín Muñoz …………………………………………

(Writer’s signature)

Faculty supervisor:

Tomasz Wiktor Włodarczyk

External supervisor(s):

Thesis title:

Scalable and user friendly user interface for time-series analytics for OpenTSDB

Credits (ECTS):

30
Key words:

user interface, OpenTSDB, NodeJS, WebSockets,

R, JavaScript, opentsdbnode, nodetsd

 Pages: ……69……

 + enclosure: … code on CD …

 Stavanger, …23/06/2014.....

 Date/year

Scalable and user friendly
user interface for time-

series analytics for
OpenTSDB

Roberto Martín Muñoz

Faculty of Science and Technology

University of Stavanger

July 2014

Abstract

OpenTSDB is a fast and reliable database used worldwide. While it has numerous

advantages, its current web user interface is simplistic and not interactive, wasting the

time that takes to perform a specific task .

This thesis focuses on the implementation of a more reliable and interactive

architecture using a Model, View, Controller architecture while considering visual

analytics, NodeJS, websockets, Python, and R.

The nodejs server is proposed as a solution. It has four different built-in connectors

that obtain and transform data from OpenTSDB. We will show a connector from

OpenTSDB to the NodeJS server (nodetsdb), OpenTSDB directly with the client

javascript (nodetsdb-client), OpenTSDB to Python, and OpenTSDB with R.

After implementing and testing all the connectors we discovered that the connector

from OpenTSDB to NodeJS is the fastest one, retrieving one month of data points in

less than sixty ms.

i

Acknowledgements

Foremost, I would like to express my gratitude to Prof. Chunming Rong and my

supervisor, Dr. Tomasz Wiktor Wlodarczyk for their valuable comments and help.

My sincere thanks also goes to my friend Manuel Caballero Sánchez that helped with

critique and sincere feedback.

This work could not be done without the support of my fiancée Tatiana

Popovitchenko that helped enormously in editing and moral support.

Last but not least I would like to thank my family in Spain and friends that supported

me during this time.

Roberto Martín Muñoz

University of Stavanger

ii

Contents

1 Introduction ... 1

 1.1 Related work .. 2

 1.2 Organization of the thesis ... 4

2 Theoretical framework ... 5

 2.1 OpenTSDB ... 5

 2.2 Visual analytics .. 5

 2.2.1 Analytic layer .. 6

 2.2.2 Data management layer ... 6

 2.2.3 Visualization layer ... 6

 2.2.4 Workflows: Reactive and Interactive .. 6

 2.3 NodeJS ... 7

 2.4 JavaScript ... 7

 2.5 Model View Controller pattern .. 8

 2.6 Express ... 8

 2.6.1 hogan-express .. 8

 2.7 WebSockets .. 9

 2.8 Grunt .. 9

 2.9 MongoDB ... 9

 2.10 jQuery ... 9

 2.11 Bootstrap .. 10

 2.12 Highcharts .. 10

 2.13 Python .. 10

 2.14 R ... 10

 2.14.1 Opentsdbr .. 10

 2.14.2 Rserve .. 11

 2.14.3 Node-RIO .. 11

3 Design and Methodology .. 12

iii

 3.1 Actual OpenTSDB interface .. 12

 3.2 Main server structure ... 15

 3.2.1 app.js ... 16

 3.2.2 Routes .. 20

 3.2.3 Views ... 22

 3.2.3.1 Plotting view .. 24

 3.2.4 Database .. 28

 3.2.4.1 User schema ... 29

 3.2.4.2 Token schema .. 30

 3.2.4.3 Report schema ... 31

 3.2.4.4 Grunt .. 31

 3.2.5 Reporting system ... 32

 3.2.7 Other features .. 34

 3.2.7.1 Android endpoint ... 34

 3.2.8 License .. 36

 3.3 Connectors ... 37

 3.3.1 NodeJS - OpenTSDB connector (nodetsdb) 38

 3.3.1.1 nodetsdb ... 40

 3.3.2 Client - OpenTSDB connector (nodetsdb-client) 41

 3.3.2.1 nodetsdb-client .. 42

 3.3.3 Python connector ... 43

 3.3.4 R connector ... 45

 3.4 General workflow .. 47

4 Results & Discussion ... 50

 4.1 Timing of NodeJS - OpenTSDB connector (nodetsdb) 50

 4.2 Timing of Client - OpenTSDB connector (nodetsdb-client) 51

 4.3 Timing of Python connector ... 51

 4.4 Timing of R connector ... 54

 4.5 Timing comparison .. 55

5 Conclusions .. 58

iv

 5.1 Future work .. 58

6 References .. 59

v

CHAPTER 1: INTRODUCTION

1 Introduction

OpenTSDB is a scalable database built on top of HBase and specifically designed for

managing time series data. This database is used worldwide, specifically at the

University of Stavanger (UiS), to store and access time series data such as daily

weather and data from sensors around the building. This is done as a part of the

project Self learning Energy Efficient builDings and open Spaces (SEEDS) in

collaboration with the European Union. The great advantage of this database is its

efficiency in managing a large amount of data points.

The OpenTSDB database has a web interface in which one can fetch data represented

in plots. While it is adept at managing data, the interface is basic and does not allow

the analyst to manage or obtain more information of the data points. Ultimately, this

results in wasted time for the analyst, as they must change the query over and over

again.

To address the problem of the interface, we will provide a real dashboard based on the

latest web standards that will allow an analyst to navigate through the data in a more

interactive way and provide contextual information about the data. This will allow the

analyst to detect patterns more efficiently and gather more knowledge from the raw

data. We will implement an account manager with proper security for the system,

leaving the main structure so future versions will allow the analyst to have their own

personal account to store favorite plots, most used plots, favorite metrics, and custom

alerts in datasets (like range restriction).

A NodeJS server will be implemented to serve the page to the clients and fetch the

points through different connectors with different advantages and disadvantages.

The implementation will be modular and based on the Model View Controller pattern

and the three layers (analytics, data management, and visualization) that visual

1

CHAPTER 1: INTRODUCTION

analytics must relay to meet analyst requirements. In order to help the community

behind OpenTSDB, the main server and the different connectors will be published

with an open source license.

In order to test this architecture we will time the different connectors under the same

conditions. This results will give us the necessary feedback to compare them and

conclude which of them are appropriate for which situations.

To summarize, we will start with a theoretical overview of the technologies that will

be used in the system, including a brief explanation OpenTSDB, NodeJS, websockets,

JavaScript, Python, R, and several visualization frameworks. Then we will explain the

architecture of the system as well as some metrics regarding its performance. We will

finish with the current state of the system and the future implementations.

1.1 Related work

As we will see in section 3.1, the actual user interface of OpenTSDB is not popular

among users. Due to this, there are some other attempts in creating a new web

interface. Most of which are local solutions that companies released to the open

source community.

There is one solution that stands out from the rest: StatusWolf. It is a front-end made

in PHP by the company Box. It has user management and sharing plots and

dashboards as main advantages. The main disadvantage of this front-end is its early

stage of development that makes it difficult to integrate it with other programming

languages to provide the flexibility that the dashboard requires. In Figure 1.1 we can

see a screenshot of a form to create a plot in StatusWolf with the main parts

highlighted.

2

CHAPTER 1: INTRODUCTION

Figure 1.1: StatusWolf interface

Another web visualization interface is Metrilyx, made in Python by the company

Ticketmaster. In Figure 1.2 we can see a screenshot of the web interface. Its main

advantage is that its built for high availability and distribution of architecture. Yet,

similarly to StatusWolf, it only has a method to obtain and manage data. Its

development is quite early, it started at the end of February of 2014 with only two

users contributing to the code.

3

CHAPTER 1: INTRODUCTION

Figure 1.2: Metrilyx web interface

1.2 Organization of the thesis

The organization of the thesis consists of the following:

• Chapter 2 presents a basic background of the technologies that we are
going to develop later.

• Chapter 3 shows the solution provided, looking in detail the
implementation done.

• Chapter 4 presents how we measured the performance of the proposed
architecture

• Chapter 5 has the final conclusions and further work.

4

CHAPTER 2: THEORETICAL FRAMEWORK

2 Theoretical framework

2.1 OpenTSDB

OpenTSDB1 is a scalable and distributed database built on top of HBase2. This

database allows us to store high amounts of data at a very high speed, managing

insertions every second.

This database provides a user interface that allows the user to browse through all the

data. Even though in some aspects it could be useful, it lacks in flexibility and

customization.

OpenTSDB provides an HTML API 3 that will allow us to access its data in a

standard way.

2.2 Visual analytics

Visual analytics4 is the science that studies the visual interactive interfaces that

facilitate the reasoning of data to an analyst. In visual analytics we find the three-layer

architecture5 (Figure 2.1) that a dashboard system should have to fulfill an analyst’s

requirements in terms of analyzing data. The three layers (analytics, data management

and visualization) share information amongst them and integrate in two different

workflows: reactive and interactive6.

5

CHAPTER 2: THEORETICAL FRAMEWORK

Figure 2.1: Three layer architecture of visual analytics applications with their

workflows.

2.2.1 Analytic layer

The analytic layer executes transformations on the raw data such as statistical analysis

and predictive behaviour or error detection. It is then able to draw conclusions from it.

2.2.2 Data management layer

The data management layer is responsible for the data lifecycle and procedures of the

systems.

2.2.3 Visualization layer

The visualization layer is responsible for taking the requested amount of points and

plotting them in an optimal way for the analyst. In web environment, it will refer to

the final HTML web page that the analyst will see and interact with. In the web page

we will use plotting libraries in javascript that can handle the data points and the

interactions of the user.

2.2.4 Workflows: Reactive and Interactive

6

CHAPTER 2: THEORETICAL FRAMEWORK

The reactive workflow runs operations ahead of time to prepare data analysis when

the analyst requests it. We can see this workflow in action in real-time applications

that need to perform analysis of data as it arrives without interaction from an analyst.

For example, in processing images from a camera in real time, the analysis could be

performed in the background while the system gets more images.

The interactive workflow run operations when the analyst requests the data. It could

be as simple as showing the raw data or as complex as the analyst requests. This

workflow requires the interaction of the analyst.

2.3 NodeJS

NodeJS7 is a web server coded in javascript that allows us to use javascript to create

and manage web servers. It is a wrapper around the V8 JavaScript compiler of Google

Chrome.

V8 is a highly optimized javascript engine that powers Google Chrome and it is the

base of Node, adding Node bindings like sockets and the node standard library that

adds more features to V8 to make it a real server solution. The main features that

make Node very attractive to deploy web-based applications are asynchronous I/O

operations, memory and CPU efficiency, and a strong concurrency handler.

Node is not the first implementation of a server in javascript. However, this

implementation has grown exponentially in the last year and has a demonstrated

degree of success. The community surrounding Node is growing each day and this

popularity is seen in all the modules that are being released into Node, from security

modules to real time streaming features. Node has proven high reliability and

performance managing web servers. A quick comparison with an Apache web server

gives us the conclusion that using Node is faster and more scalable8. This technology

is being used now by relevant companies such as Google in Google+, Microsoft in

Windows Azure interface, or Yahoo in Yahoo Manhattan9.

7

CHAPTER 2: THEORETICAL FRAMEWORK

2.4 JavaScript

JavaScript is a scripting programming language widely used in the client-side

interpreted by web browsers. It appeared in 1995 and was developed by Brendan

Eich. JavaScript was developed to interact with the elements of a web page and to be

interpreted by the compilers in browsers. It become very popular thanks to the speed

and optimization of the web browsers, making their compilers faster and better. These

improvements made it suitable for larger and more complex web applications and for

the creation of NodeJS. It is a very dynamic programming language with an easy

learning curve.

We will use JavaScript as main programming language for the core of the system and

for two of the connectors.

2.5 Model View Controller pattern

The Model View Controller (MVC) is a software architecture pattern that focus on

modularity and readability. It has three main parts with different functions: the user

interacts with the controller, then the controller manipulates the model that updates

the view, and finally the user sees it. Is a cycle that repeats with every interaction with

the user.

We will implement our solution following this pattern and divide the code

accordingly, this will increase the comprehension and flexibility.

2.6 Express

Express10 is a very popular web framework for nodejs. It is flexible and powerful and

allows a user to develop a strong web application spending less time in common

problems and patterns.

We used this framework to develop our nodejs server.

8

CHAPTER 2: THEORETICAL FRAMEWORK

2.6.1 hogan-express

Hogan11 is an HTML template engine that uses Mustache12. hogan-express13 is the

module of express for using this template engine in express.

2.7 WebSockets

WebSockets is a technology that allows a full-duplex communication channel using a

single socket over the web14. With websockets we can create a persistent connection

between server and client that allows both to send data. To start the connection, one of

the parties must initiate the handshake protocol.

WebSockets are more efficient than HTTP request. Although both HTTP and

WebSockets have equivalently sized initial handshakes, websockets only uses that

size in the initialization, the rest of the messages have a smaller header15. Meanwhile,

HTTP messages have large headers throughout.

We will use the Websocket library for NodeJS that allows us to create and manage

websockets in a simple and transparent way. We will use the connection to send the

points from the server to the client to be drawn.

2.8 Grunt

Grunt16 is a JavaScript task runner. It automates javascript tasks so the analyst does

not have to manually run the requests. We use Grunt in the project to destroy and

create a new database, create the entities, and populate with a couple of examples. It is

a simple but powerful tool.

2.9 MongoDB

MongoDB17 is an open-source NoSQL database with document-oriented storage. Its

data is encoded in BSON, a binary codification for JSON objects. It is a popular

database in the field and has excellent support and documentation to integrate it with

NodeJS.

9

CHAPTER 2: THEORETICAL FRAMEWORK

2.10 jQuery

jQuery18 is a popular library for JavaScript. It simplifies and increases the readability

of the javascript in the client-side. We will use from common HTML manipulations to

AJAX petitions (asynchronous HTTP petitions) to the API of OpenTSDB.

2.11 Bootstrap

Bootstrap19 is a responsive and flexible front-end framework created by Twitter that

provides interactive and user friendly web interfaces. We will use it as the front-end in

our project.

2.12 Highcharts

Highcharts20 is a JavaScript library used to create interactive charts. It allows you to

interact with the data in several ways, like zooming in on a specific part of the chart,

adding more contextual information and more features. In our case we will use the

time-series plots that Highcharts has to visualize and enhance our data.

2.13 Python

Python21 is a very popular, high-level programming language developed by the Python

Software Foundation in the year 1991. Python is currently utilized in a wide range of

applications: being the core of simple scripts, content management systems (CMS)

like Drupal, bioinformatics programs, or high-reliability systems.

We decided that Python would be a ideal fit to manage data points from opentsdb

because of its demonstrated performance working with data points.

2.14 R

R22 is a programming language oriented to statistical computing and plotting. It is

being used worldwide in statistical analysis because it has many libraries which are

useful in that field. We will provide a system that will allow the user to add any

function in R to manage and analyse the data points from OpenTSDB.

10

CHAPTER 2: THEORETICAL FRAMEWORK

2.14.1 Opentsdbr

Opentsdbr23 takes advantage of the HTML API of OpenTSDB to provide a simple,

read-only R library to access OpenTSDB. The main disadvantage of this library is that

is not optimized.

2.14.2 Rserve

Rserve24 is a server that provides an API to execute R code from other programming

languages. We will use Rserve as middleware between our NodeJS server and R code,

allowing us to execute R code to fetch and manage data points from OpenTSDB.

The current version of Rserve (1.7-3) allows to send the data through websockets as

well as improved security using HTTPS when sending data.

2.14.3 Node-RIO

Node-RIO25 (R In Output) is a NodeJS module that implements the client in

JavaScript to interact with Rserve. It abstracts the HTTP request to connect with

Rserve.

11

CHAPTER 2: THEORETICAL FRAMEWORK

3 Design and Methodology

3.1 Actual OpenTSDB interface

The current web interface of OpenTSDB consists of two main parts (Figure 3.1): the

form to enter the query (Figure 3.1A) and the resulting plot (Figure 3.1B). When we

access the interface, the blank form shown in (Figure 3.1A) appears and it is ready to

accept parameters. Once the parameters are filled in, a plot, such as the one seen in

Figure 3.1B, appears. This plot presents a huge disadvantage to OpenTSDB users

because it is only an image. If there was a mistake in entering the scale (Figure 3.1C)

or size, the query would have to be executed again.

A

B

12

CHAPTER 2: THEORETICAL FRAMEWORK

C

Figure 3.1 shows the current UI of the OpenTSDB system. A) shows the query

window, B) the resulting plot, and C) the same plot in wrong scale (starting in 0)

In order to measure the general satisfaction and usage of a common user of

OpenTSDB, we created a poll to ask the community about it. We designed an online

questionnaire and shared it through the main list. We gathered some interesting

results:

Figure 3.2: OpenTSDB usage poll

13

CHAPTER 2: THEORETICAL FRAMEWORK

When asking about usage (Figure 3.2) we see that more than half (57%) use it more

than once everyday and when asking about their satisfaction we found that 36.8% rate

the interface 2 out of 5.

Figure 3.3: OpenTSDB satisfaction poll

As we see in Figure 3.3, there is a general dissatisfaction with the current user

interface, even when the most of the users use it more than once a day.

3.2 Main server structure

For the proposed system, we created openTSDBnode, an entire NodeJS server, with

user authentication, following the Model View Controller (MVC) pattern. We used

bootstrap for making a user friendly interface. For the connection with different

languages we created different libraries, like nodetsdb (nodejs - opentsdb), nodetsdb-

client (nodejs - client - opentsdb), a nodejs wrapper for a python script and another

wrapper for the R language.

14

CHAPTER 2: THEORETICAL FRAMEWORK

We decided to follow the model view controller (MVC) pattern in order to make a

more readable and maintainable code. In the Figure 3.4 we can distinguish every

component of the MVC pattern.

• app.js is the main file that creates the server and handles all the petitions of the

server. In the MVC pattern, app.js is the Controller.

• The routes folder contains all the middleware to handle a specific request, for

example in the stats.js, it will take care of query opentsdb about its stats,

organize them and then call the appropriate view to show it. The route files are

the Model in the MVC pattern.

• Finally the easiest to see, the views folder is the View in the MVC pattern. It

contains Moustache HTML templates (that are handled by the hogan-express

module) that will compose the final HTML page with the information

provided by the routes.

Figure 3.4: Main file structure of opentsdbnode

15

CHAPTER 2: THEORETICAL FRAMEWORK

3.2.1 app.js

This is the main file of the server where we load all the node modules, make the

proper configuration and start the server in the correct port. In the first part of the file

we declare all modules that we are going to use later. Here we show some of the most

important modules in the file.

/**
 * Module dependencies.
 */
var express = require('express'), //NodeJS framework, the first one
 app = express(), //Initialize the express module
 db = require('./config/dbschema'), //MongoDB schemas
 pass = require('./config/pass'), //User authentication configuration
 passport = require('passport'), //User authentication module
 config = require("./config/config"), //Main configuration of opentsdbnode
 login = require('./routes/login'), //Login model
 stats = require('./routes/stats'), //OpenTSDB stats model
 testData = require('./routes/gettingData'), //Model to obtain data from tsdb
 android = require('./routes/android'), //Model for the android API
 reports = require('./routes/reports'), //Model for handeling the reports
 http = require('http'), //Module for http requests
 nodetsdblib = require('nodetsdb'), //Module for connecting node-opentsdb
 path = require('path'), //Module to manage paths in the system
 io = require('socket.io'); //Module to use WebSockets

The next section of the file is dedicated to the configuration of the express framework:

/**
 * Setting environments for express.
 */
app.set('port', process.env.PORT || 3000); //Set the port
app.set('views', path.join(__dirname, 'views')); //Set where are the views
app.set('view engine', 'html'); //Setting HTML as filetype view
app.set('layout', 'layout'); //Setting the file "layout" in views as the layout
app.enable('view cache'); //Enabling cache in express
app.engine('html', require('hogan-express')); //hogan-express as HTML engine
app.use(express.favicon());
app.use(express.cookieParser()); //Enabling cookies
app.use(express.session({ secret: 'sweetieKittyCat' })); //Session secret
app.use(passport.initialize()); //Enabling account management security
app.use(passport.session());
app.use(passport.authenticate('remember-me'));

16

CHAPTER 2: THEORETICAL FRAMEWORK

Once we have all the environments initialized correctly we can start to configure the

behaviour with different endpoints. This is one advantage of express as a framework:

adding endpoints is a matter of adding one more line of code. For example:

app.get('/login',login.sign);

That means that every time there is a request for the page www.ourserver.com/login,

the controller (app.js) will receive this request and pass it to the function “sign” of the

login module (declared where the modules were declared). Another important security

feature is that this line also implies that there is no need of authentication from the

user to access that specific view. If we wanted to secure a view to be only accessible

for authenticated users, we just need to add another variable to the function:

app.get('/statistics',pass.ensureAuthenticated,stats.stats);

Adding “pass.ensureAuthenticated” we ensure that the page

www.ourserver.com/statistics is only going to be accessible for authenticated users.

Those are not the only ways to create an endpoint. If it is not needed to invoke a

model, it is possible to handle the request directly in the controller.

//End point to remove a report of the database
app.get('/removereport', function(request, res){
 //Retrieve the parameter id from the GET request
 var id = request.query.id;
 if(id){
 /**
 * If the id was in the query, we delete it
 * db is the object representing the db
 * reportModel is the model of a report in the db
 */
 db.reportModel.remove({ _id: id }, function (err) {
 if (err){
 /**
 * If there was an error deleting
 * the report we render the generic
 * view with the error.
 */
 res.locals.title = 'Remove report';
 res.locals.block= 'Error deleting the report';
 res.render('generic');
 }else{
 /**
 * If there were not any errors
 * we render the view directly
 * with the correct parameters

17

CHAPTER 2: THEORETICAL FRAMEWORK

 */
 res.locals.title = 'Remove report';
 res.locals.block= 'Report deleted correctly';
 res.render('generic');
 }
 });
 }else{
 /**
 * If the id is not in the request
 * we render the view with
 * the error
 */
 res.locals.title = 'Remove report';
 res.locals.block= 'Error deleting the report, no id provided';
 res.render('generic');
 }
});

The previous function will receive a GET request like

www.ourserver.com/removereport?id=11 and will handle everything in the controller,

rendering the correct view.

 “res.locals.title = 'Remove report';” and “res.locals.block= 'Error deleting the

report, no id provided';” are filling two variables of the view “generic” that all

together will merge in the template declared before in app.set('layout', 'layout');.

Nearly at the end of the file app.js we found the line of code that initializes the server.

var server = http.createServer(app).listen(app.get('port'), function(){
 console.log('Express server listening on port ' + app.get('port'));
});

We create the server listing in the port we specified before in the configuration area

and we log it in the terminal.

Lastly, we have to initiate and configure the websockets. To initiate them we simply

call:

var websocket = io.listen(server,{ log: false });

This will make the websocket module listen to any petition related to websockets that

comes to this server. Then we just need to configure them to handle those requests.

Here we have one example of the websockets configuration.

18

CHAPTER 2: THEORETICAL FRAMEWORK

websocket.sockets.on('connection', function (socket) {

 socket.on('getDataPoints', function (options) {
var data = {
 metric:test1.temperature',
 start: {timestamp:'2013-08-04 12:00:00', timezone:'CEST'},
 end: {timestamp:'2013-08-07 14:00:00', timezone:'CEST'},
 tags:[{name:'node', value:'0013A2004061646F'}],
 debug:true
 }

 executeRio(data,function(result){
 var time2 = new Date().getTime();
 socket.emit("dataServer",result); });
 });
});

Initially, we start the websockets when we have a connection, then if the request is

“getDataPoints” (in this particular case) we will execute some code that will (but not

necessarily) end emitting through the websockets with the code “dataServer” the

result, socket.emit("dataServer",result); });. The other party (the client in this case)

will have similar code to emit and handle the request.

3.2.2 Routes

The files in routes are the middleware that will handle a specific request sent by the

controller (app.js). In Figure 3.5 we can see the main routes.

Figure 3.5: Main files in routes

To explain the main structure of a route, we will take the version.js file as example.

/*
 * GET tsdb version page.

19

CHAPTER 2: THEORETICAL FRAMEWORK

 */
var config = require("../config/config");
/*The exports object allows us to add a function
*to itself so later we can call it with require like:
* var tsdbversion = require("./routes/version.js")
* tsdbversion.version(req, res);
*/
exports.version = function(req, res){
 var blocks ="";
 //We do a GET request to opentsdb to get the opentsdb version

http.get("http://"+config.opentsdbserver+":"+config.opentsdbserverport+"/version",
function(ress) {
 console.log("Got response: " + ress.statusCode);
 ress.on('data', function (chunk) {
 //We obtain the answer of the server and then we render the generic view with
the data
 res.render('generic', { title: 'OpenTSDB version', block:chunk,user: req.user });
 });

 }).on('error', function(e) {
 //If there was an error in the connection, we render the generic view with the
error
 console.log("Got error: " + e.message);
 res.render('generic', { title: 'OpenTSDB version', block:"Connection error",user:
req.user });
 });
};

In the routes the most important thing is to associate the object you want to use from

the controller with the object “exports”. We have to associate an object (or function)

as a property of this object, so later we can call it with a require statement. In this case

we associate the function that will receive the request (req) object and the response

one (res) and that will handle the request. Then in the controller (app.js) we can refer

to it in the modules declaration area:

var versionobj = require('./routes/version'), //OpenTSDB version model

And call it later to handle the request of www.ourserver.com/tsdbversion

app.get('/tsdbversion',pass.ensureAuthenticated,versionobj.version);

We call the function version from the object versionobj. In this call it does not need

any parameter because the app.get function will add the request and response.

20

CHAPTER 2: THEORETICAL FRAMEWORK

A route file could be even more simple, for example the route login.js

/*
 * GET login page.
 */

exports.sign = function(req, res){
 res.render('login',{layout: '', user: req.user, message:req.flash('error') });
};

In this case the route only has to render the login view passing the user id (for

authentication purposes) and a message that could be an error message if a user tried

to authenticate and the password was wrong.

However, a route does not always have to render a view. The route android.js is a

simple API created to help a bachelor student at the University of Stavanger. The

details of implementation are available at the section 3.2.7.

3.2.3 Views

The views in opentsdbnode are HTML files with Mustache notations that are going to

be handled by hogan-express, a node module that interprets and manages HTML files

with mustache notations. In Figure 3.6 we can see the main views of opentsdbnode.

Figure 3.6: Main views of opentsdbnode

To use the views, first we have to declare it in the app.js file

app.set('views', path.join(__dirname, 'views')); //Set where are the views
app.set('view engine', 'html'); //Setting HTML as filetype view

21

CHAPTER 2: THEORETICAL FRAMEWORK

app.set('layout', 'layout'); //Setting the file "layout" in views as the layout
app.engine('html', require('hogan-express')); //hogan-express as HTML engine

Those are the main configuration lines in order to use HTML files handled by the

hogan-express module. A special mention to the way of setting the template layout,

the file “layout”. It contains the header and the footer of the output in HTML.

The first part of the file is the “head” with all the CSS declaration.

 <head>
 <title>openTSDBnode</title>
 <!-- Bootstrap -->
 <link href="stylesheets/bootstrap.min.css" rel="stylesheet" media="screen">
 <link href="stylesheets/bootstrap-responsive.min.css" rel="stylesheet"
media="screen">
 <link href="stylesheets/styles.css" rel="stylesheet" media="screen">
 <link href="stylesheets/datepicker.css" rel="stylesheet" media="screen">

 </head>

And in another part of the code, closer to the footer we can find the main Mustache
notation.

<div class="container-fluid">
 <div class="row-fluid">
 <div class="span9" id="content">
 <div class="row-fluid">
 {{{ yield }}}
 </div>
 </div>
 </div>
 <hr>
 <footer>
 <p>Roberto Martin</p>
 </footer>
 </div>

Later we declare the javascripts that we will need in the client such as jQuery, custom

ones like nodetsdbclient.js (see section 3.4 for complete explanation) or plots.js.

<script src="javascripts/jquery-1.9.1.js"></script>
<script src="javascripts/ui/jquery-ui.js"></script>
<script src="javascripts/jquery.flip.js"></script>

 <script src="javascripts/bootstrap.min.js"></script>
 <script src="javascripts/bootstrap-datepicker.js"></script>

22

CHAPTER 2: THEORETICAL FRAMEWORK

 <script src="javascripts/highcharts.js"></script>
 <script src="/socket.io/socket.io.js"></script>
 <script src="javascripts/scripts.js"></script>

<script src="javascripts/nodetsdbclient.js"></script>
 <script src="javascripts/plots.js"></script>

The {{{ yield }}} tag will be replaced with the content of other views, creating the

final HTML output that will be sent to the client. In Figure 3.7 we can see the main

workflow concerning the creation of final HTML that will be sent to the user.

Figure 3.7: General workflow of creating a final HTML

In views there are two files that are very similar, generic.html and generichtml.html

<!-- generic.html -->

<h2> {{ title }}</h2>
{{ block }}

<!-- generichtml.html -->

<h2> {{ title }}</h2>
{{{ block }}}

In Mustache, if we use two brackets, it will put that exact string in that place. Even if

there is HTML code, it will appear as a string. If we instead use three brackets all the

HTML code will be interpreted.

23

CHAPTER 2: THEORETICAL FRAMEWORK

Figure 3.8: OpenTSDB version page

3.2.3.1 Plotting view

One of the most important views is the one that contains the form to obtain and plot

data points. It is temporarily is under /form but in future versions it is planned to be

moved to a more generic url.

When receiving the /form request, the controller (app.js) renders directly the view

form.html

app.get('/form', function(req, res){
 res.render('form');
});

That will render the HTML shown in Figure 3.9

24

CHAPTER 2: THEORETICAL FRAMEWORK

Figure 3.9: Form produced by form.html

The main logic of this form is handled by the javascript file plots.js. When the form

is complete and the button is clicked, the function handleClick is the one in charge of

managing what kind of connector is the one that is going to take care of the request:

through the server, directly from the client, through python, or through R.

function handleClick() {
 //Hide the form
 var el = document.getElementById('flipbox');
 el.style.display = 'none';

 var e = document.getElementById("selectMode");
 var strUser = e.options[e.selectedIndex].value;

 var e = document.getElementById("selectAmount");
 var amountPoints = e.options[e.selectedIndex].value;

 switch (strUser){
 case '1':

25

CHAPTER 2: THEORETICAL FRAMEWORK

 //R mode
 console.log('[handleClick] R mode');
 x="Today is Monday";
 break;
 case '2':
 //Server HTML API mode
 console.log('[handleClick] Server mode');
 handleServer(amountPoints);
 break;
 case '3':
 //Client HTML API mode
 console.log('[handleClick] Client mode');

handleClient(amountPoints);
 break;
 case '4':
 //Python mode
 console.log('[handleClick] Python mode');

handlePython(amountPoints);
 break;
 default:
 console.log('[handleClick] Default!');
 break;
 }
 event.preventDefault();
}

The different methods of connection will be explained in more detail in the section

3.3.

In order to test and compare the connectors we created a fixed amount of data points

to be fetched (method explained later in the Results section), but that will be

discarded in the next version of opentsdbnode.

Once the data points are collected, three of the four methods retrieve them through

websockets. The fourth one is the connection with the client, so the data points are

already in the client javascript after querying OpenTSDB directly. Then the data

points are processed and plotted with the plotting library Highcharts. Using this

library enables us to zoom in the data as well as adding extra information on each data

point.

On the subject of plotting libraries, they are numerous and we evaluated some

according to the requirements of the project:

26

CHAPTER 2: THEORETICAL FRAMEWORK

Interactivene
ss

Mobile
friendly

Popularity Community Time series
specialization

gRaphaël 26 Medium -- Medium Medium Low

JavaScript
InfoVis
Toolkit 27

Medium Medium Low Low Low

milkchart28 Low Medium Low Low Low

jQuery
Visualize
Plugin 29

High High Low Low Low

moochart 30 Low Medium Low Low Low

JS Charts 31 Low Medium Low Low Low

Timeline 32 Medium High Low Medium Medium

D3js 33 High High High High High

Highcharts High High High High High

Table 3.1: Comparison of visualization libraries

After reviewing the libraries in Table 3.1 , we see that only two meet the

requirements, D3js and Highcharts. We will use Highcharts as a visualization engine

for testing the architecture. In Figure 3.10 we can see an example of a zoomable time

series plot using Highcharts.

27

CHAPTER 2: THEORETICAL FRAMEWORK

Figure 3.10: Example of plotting data points

3.2.4 Database

For the database we will use MongoDB because of its great integration with node. We

will also use the node module “mongoose” that will allow us to interact with the

database in a dynamic way. All the configurations of the database are in

./config/dbschema.js

The first thing to do is to connect to the database and then create the schemas needed.

A schema is an abstract representation of the object that we want to store. It can have

specific methods, preconditions and postconditions when inserting in the DB, in

addition to more features. In our case we will create a user schema (for account

management), token schema (login management), and report schema (help with

timing the tests).

// Database connect
var uristring =

28

CHAPTER 2: THEORETICAL FRAMEWORK

 process.env.MONGOLAB_URI ||
 process.env.MONGOHQ_URL ||
 'mongodb://localhost/test';

var mongoOptions = { db: { safe: true }};

mongoose.connect(uristring, mongoOptions, function (err, res) {
 if (err) {
 console.log ('ERROR connecting to: ' + uristring + '. ' + err);
 } else {
 console.log ('Successfully connected to: ' + uristring);
 }
});

Before starting to create the specific schemas, we have to obtain the global object

“Schema”.

//Database schema
var Schema = mongoose.Schema,

ObjectId = Schema.ObjectId;

3.2.4.1 User schema

The user schema is created to represent an account of the system. It will be used for

authentication and for personalised configurations.

In order to create the schema, we have to declare it as follows.

// User schema
var userSchema = new Schema({
 username: { type: String, required: true, unique: true },
 email: { type: String, required: true, unique: true },
 password: { type: String, required: true},
 admin: { type: Boolean, required: true },
});

Our user object will have a username, email, password, and a boolean to see if it is an

admin. It is a simple schema that will be improved in following versions.

Methods for authentication are also required: one to hash the password before storing,

another method to compare, and another to generate a random token that will be used

to maintain the session in the server. We will use the node module Bcrypt that

contains the cryptographic functions needed.

29

CHAPTER 2: THEORETICAL FRAMEWORK

// Middleware for password
userSchema.pre('save', function(next) {

//Before saving the user we hash the passsword and save it
var user = this;
if(!user.isModified('password')) return next();
bcrypt.genSalt(SALT_WORK_FACTOR, function(err, salt) {

if(err) return next(err);
bcrypt.hash(user.password, salt, function(err, hash) {

if(err) return next(err);
user.password = hash;
next();

});
});

});

// Password verification
userSchema.methods.comparePassword = function(candidatePassword, cb) {

bcrypt.compare(candidatePassword, this.password, function(err, isMatch) {
if(err) return cb(err);
cb(null, isMatch);

});
};

// Session management implementation helper method
userSchema.methods.generateRandomToken = function () {
 var user = this,
 chars = "_!
abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890",
 token = new Date().getTime() + '_';
 for (var x = 0; x < 16; x++) {
 var i = Math.floor(Math.random() * 62);
 token += chars.charAt(i);
 }
 return token;
};

After defining the user schema, we need to export it so it will be available in other

scripts to add, find, or delete a user.

// Export user model
var userModel = mongoose.model('User',
userSchema);
exports.userModel = userModel;

3.2.4.2 Token schema

The token schema is just to associate the user to a unique token that will be used to

maintain the session. The token will be shared with the client and will allow to keep

the login for an amount of time.

30

CHAPTER 2: THEORETICAL FRAMEWORK

var tokenSchema = new Schema({
 accessToken: { type: String, required: true, unique: true },
 usernameid: { type: String, required: true, unique: true },
});

This schema only needs an extra function that will allow to consume the token once

the expiration time is up. And as with the user schema, we have to export it.

tokenSchema.methods.consumeRememberMeToken= function(token, fn) {
 var uid = token.usernameid;
 token.remove();
 return fn(null, uid);
};

var tokenModel = mongoose.model('Token', tokenSchema);
exports.tokenModel = tokenModel;

3.2.4.3 Report schema

In order to obtain timing results faster and in an efficient way, we created a report

system explained in detail in the section 3.2.5. For this reporting system, we needed to

create a report schema in order to store the timing of different connectors of

opentsdbnode.

This is a simple schema, that does not need any extra functions.

// ========== Report Schema ==========

var reportSchema = new Schema({
 method: { type: Number, required: true}, // 1:R, 2:Server, 3:Client, 4:Python
 testgroup: { type: Number, required: true},
 dpsize: { type: Number, required: true},
 stage: { type: Number, required: true},
 description: { type: String, required: true},
 time: { type: Number, required: true}, //ms
});

var reportModel = mongoose.model('Report', reportSchema);
exports.reportModel = reportModel;

3.2.4.4 Grunt

During the development of opentsdbnode we needed to drop the database and recreate

the schemas with some users as tests. For these tasks we used Grunt.

31

CHAPTER 2: THEORETICAL FRAMEWORK

In order to use it we just need to add a file named Gruntfile.js in the root of the project

and register the tasks that should be done.

var db = require('./config/dbschema');
module.exports = function(grunt) {

grunt.registerTask('dbdrop', 'drop the database', function() {
 // async mode
 var done = this.async();
 db.mongoose.connection.on('open', function () {
 db.mongoose.connection.db.dropDatabase(function(err) {
 if(err) {
 console.log('Error: ' + err);
 done(false);
 } else {
 console.log('Successfully dropped db');
 done();
 }
 });
 });
 });

};

With this code, we just need to execute in the terminal

grunt dbdrop

3.2.5 Reporting system

In order to centralize all the necessary timing to be able to compare the different kinds

of connections, we created a system to store it. For that, we created three endpoints in

the server: one to add a new time, another one to delete a specific one, and another

one for listing the existing timings. This will allow us to send requests to the server

from the client or from our own server and have them all listed in a specific page.

To save a report we need to send a POST request with all the parameters to the

endpoint “/saveReport” of opentsdbnode. The controller (app.js) will manage the

request and if all the parameters are there1, it will call the following function to save

the new report in the database.

function saveReport (meth, tg, dpsz, stg, desc, t){
 var report = new db.reportModel({ method: meth
 , testgroup: tg
 , dpsize: dpsz

1 If all of the parameters are not there, an error page is rendered.

32

CHAPTER 2: THEORETICAL FRAMEWORK

 , stage: stg
 , description: desc
 , time: t});

 report.save(function(err) {
 if(err) {
 return 0;
 } else {
 return 1;
 }
 });
};

If we need to remove a report, we have to send a GET request to the “/removereport”

endpoint.

//End point to remove a report of the database
app.get('/removereport', function(request, res){
 //Retrieve the parameter id from the GET request
 var id = request.query.id;
 if(id){
 /**
 * If the id was in the query, we delete it
 * db is the object representing the db
 * reportModel is the model of a report in the db
 */
 db.reportModel.remove({ _id: id }, function (err) {
 if (err){
 /**
 * If there was an error deleting
 * the report we render the generic
 * view with the error.
 */
 res.locals.title = 'Remove report';
 res.locals.block= 'Error deleting the report';
 res.render('generic');
 }else{
 /**
 * If there were not any errors
 * we render the view directly
 * with the correct parameters
 */
 res.locals.title = 'Remove report';
 res.locals.block= 'Report deleted correctly';
 res.render('generic');
 }
 });
 }else{
 /**
 * If the id is not in the request
 * we render the view with

33

CHAPTER 2: THEORETICAL FRAMEWORK

 * the error
 */
 res.locals.title = 'Remove report';
 res.locals.block= 'Error deleting the report, no id provided';
 res.render('generic');
 }
});

And finally to list all the reports, we have to access to “/reports” and if there are

reports saved in the database, it will list them as shown in Figure 3.11.

Figure 3.11: Example of a list of reports.

3.2.7 Other features

3.2.7.1 Android endpoint

opentsdbnode also contains an endpoint needed by a bachelor student of the

University of Stavanger in order to finish his bachelor thesis. For implementing the

endpoint, we create a new route android.js.

34

CHAPTER 2: THEORETICAL FRAMEWORK

/*
 * Android json model.
 */
var config = require("../config/config");
var nodetsdblib = require('nodetsdb');

exports.getData = function(req, res){
 console.log('Preparing query');
 var blocks ="",
 start = req.query.start,
 end = req.query.end,
 metric = req.query.metric,
 aggregator = req.query.aggregator;

 var nodetsdb = new nodetsdblib({host:config.opentsdbserver,
port:config.opentsdbserverport});

 var queryconf = {start:start,end:end, metric:metric, aggregator:aggregator,
tags:{}};

 nodetsdb.getDataPoints(queryconf, function(dp){
 if(dp){
 res.contentType('application/json');
 res.send(dp);
 }else{
 res.contentType('application/json');
 res.send({error:'Error or empty'});
 }
 });
};

In this case the route receives the GET request and extracts the parameters from the

request object:

start = req.query.start,

Then we use the module nodetsdb (explained in detail in the chapter 3.3) to get data

points from OpenTSDB and if everything is without errors, instead of rendering a

view, we render a JSON file, so the client (the android phone in our case) could parse

it and extract the data points. It was decided to put opentsdbnode as middleware

between OpenTSDB and the android clients in order not to expose OpenTSDB on the

web. With this configuration, opentsdbnode will act as the gateway between them.

3.2.7.2 Configuration file

35

CHAPTER 2: THEORETICAL FRAMEWORK

In order to modularize the code we created a configuration file in ./config/config.js

that contains the OpenTSDB address and port. If it is needed to change them it is only

necessary to make changes there. To access it, we first declare a module

var config = require("../config/config")

and then simply access its properties:

[...] config.opentsdbserver+":"+config.opentsdbserverport [...]

It is a simple file, that can be expanded easily:

var config = {}

config.opentsdbserver="haisen36.ux.uis.no";
config.opentsdbserverold="haisen23.ux.uis.no";
config.opentsdbserverport="4242";

module.exports = config;

3.2.8 License

We decided to use a open source license the BSD 3-Clause

License, to allow others to redistribute, improve, or use the code

without problems. In continuation, we can see the full license

explained:

Copyright (c) 2014, Roberto Martín
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

36

CHAPTER 2: THEORETICAL FRAMEWORK

* Neither the name of the copyright holder nor the names of its contributors may be
used to endorse or promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

3.3 Connectors

The most important parts of opentsdbnode are the connectors. opentsdbnode has four

different ways of connecting and obtaining data points from OpenTSDB, each of

them with their advantages and disadvantages that we will see in following sections.

37

CHAPTER 2: THEORETICAL FRAMEWORK

Figure 3.12: General overview of the connectors of opentsdbnode

We have implemented each connector having in mind visual analytics. Figure 3.12

shows the general architecture of the system proposed. During the following sections,

we will explain each connector in detail as well as how its pieces match with the

components of visual analytics.

3.3.1 NodeJS - OpenTSDB connector (nodetsdb)

This connector is the link between the node server and OpenTSDB; the client has to

send a request through websockets and then the server will fetch the data points with

the configuration that the client sends using the library nodetsdb, built specifically for

opentsdbnode.

38

CHAPTER 2: THEORETICAL FRAMEWORK

Figure 3.13: Structure of the nodetsdb connector, showing the visual analytics sections

In Figure 3.13 we can see how the sections of the code match with the theoretical

visual analytics parts. The analytics section will be the library nodetsdb used to fetch

the data and the part of the node server that executes it. Once we fetch the data points,

we have the data management section. This part could be improved later adding more

data managing in JavaScript, like filters or data transformation functions.

The following code in app.js is responsible for use of the module nodetsdb and

emittance of results through the same socket that the client used to request them. The

client is in charge of closing the socket when it receives them.

/* ServerMode */
 socket.on('getDPServerMode', function (options) {
 var nodetsdb = new nodetsdblib({host:config.opentsdbserver,
 port:config.opentsdbserverport });
 nodetsdb.getDataPoints(options, function(dp){
 if(dp){
 //There are datapoints
 socket.emit("dataServer",dp);
 }else{
 //There are not datapoints
 console.log('Sorry no datapoints');
 }
 });
 });

This connector has several advantages.

● The client does not need to be connected with OpenTSDB directly.

● The client is using opentsdbnode as proxy between them. It allows a better

control in the access of OpenTSDB.

39

CHAPTER 2: THEORETICAL FRAMEWORK

● It puts the heavy work on the server, making a lightweight client only

responsible for plotting the results.

● The possibility of caching data points, detecting patterns, or the ability to save

favourites queries.

3.3.1.1 nodetsdb

nodetsdb is the library created to wrap all the connection with OpenTSDB. It is hosted

in github34 with a BSD Clause-3 license like opentsdbnode. It is linked with npm35 ,

the repository of node modules, so anyone can add it to their node projects with a

simple command.

npm install nodetsdb --save

It consists of a javascript object that contains two properties (OpenTSDB host and

port) and a method to get data points from a specific query.

var Nodetsdb = function(configuration){
 if(!configuration.host || !configuration.port){
 throw 'Please provide a host and a port';
 }

 this.host = configuration.host;
 this.port = configuration.port;

 this.getDataPoints = function(query, callback){
[...]

The function to obtain the data points first creates the correct format of the query and

then does an HTTP request to the OpenTSDB server.

 this.getDataPoints = function(query, callback){
 if(!query.start || !query.end || !query.metric || !query.aggregator){
 throw 'Query parameters missing, min start, end, metric, aggregator';
 }
 //Query creation
 var queryURL = "http://"+this.host+":"+this.port+"/api/query?
start="+query.start+"&end="+query.end+"&m="+query.aggregator+":"+query.metric
;

 if(query.tags){
 queryURL += '{';
 var ntags = Object.keys(query.tags).length;
 var j = 1;

40

CHAPTER 2: THEORETICAL FRAMEWORK

 for(i in query.tags){
 if(j != ntags){
 queryURL += i+'='+query.tags[i]+",";
 }else{
 queryURL += i+'='+query.tags[i];
 }
 j++;
 }
 queryURL += '}';
 }else{
 queryURL +='{}';
 }
 //Query correctly created
 http.get(queryURL, function(ress) {
 //http request to opentsdb
 var responseParts="";
 ress.on('data', function (chunk) {
 responseParts+=chunk;
 });
 ress.on('end', function () {
 callback(responseParts);
 });

 }).on('error', function(e) {
 callback();
 });
 }
}

Finally as any node module we have to export it.

module.exports = Nodetsdb;

3.3.2 Client - OpenTSDB connector (nodetsdb-client)

nodetsdb-client differs the most among all of the connectors. In the others, the node

server is always in the middle of the transaction of the data points. With this

connector, all the work is on the client. In Figure 3.14 we can observe how the server

only has to create and serve the final HTML with all the javascripts. One of those

javascripts, plots.js has the code to query and retrieve the data points from

OpenTSDB directly. In the same figure we can see how the system is organised based

on visual analytics sections.

41

CHAPTER 2: THEORETICAL FRAMEWORK

Figure 3.14: Structure of the nodetsdb connector, showing the visual analytics sections

The main advantage of this method is that the server workload will be low even if

there is a large amount of clients accessing at the same time. On the other hand, all of

the processing is in the javascript of the client, depends on the client's machine

performance, and needs direct access to OpenTSDB. It also has a limitation in the

amount of data transformation you want to include- heavy transformations will not be

possible to do in the client.

The best use of this connector could be in situations where there is not a security

concern in having a direct connection with OpenTSDB and when the amount of data

points requested are not excessively big.

3.3.2.1 nodetsdb-client

nodetsdb-client is a JavaScript library that is an adaptation of the nodetsdb module

from node. Its code is similar, with the difference existing in how the final request to

OpenTSDB is executed. In the case of nodetsdb, it was done with the HTTP module

of node and in this case, it is done with an AJAX request with the jQuery library.

42

CHAPTER 2: THEORETICAL FRAMEWORK

nodetsdb-client is also hosted in GitHub36 and released under an open source BSD

Clause-3 license.

It is used in the same way as nodetsdb, but in this case we use it in the public

javascript file plots.js

function handleClient(amountPoints){
 var options = getQueryData(amountPoints);
 var nodetsdb = new Nodetsdb({host:'opentsdbserver.com', port:4242});
 nodetsdb.getDataPoints(options, function(data){

plot_data(data,true);
 });
};

The source is linked in the layout template as the file nodetsdbclient.js. Below, we

compare nodetsdb and nodetsdb-client. Wich main difference is the library used to

make the HTTP request, a node library in the nodetsdb and a function of jQuery in

nodetsdb-client.

//nodetsdb-client
$.ajax({

url: queryURL,
jsonp: "jsonp",
dataType: "jsonp",
success:

function(response) {

callback(response);
}

});

//nodetsdb
http.get(queryURL, function(ress) {
 var responseParts="";
 ress.on('data', function (chunk)
{
 responseParts+=chunk;
 });
 ress.on('end', function () {
 callback(responseParts);
 });

 }).on('error', function(e) {
 callback();
 });

3.3.3 Python connector

The Python connector is created so Python code could be used to transform and

manage data from OpenTSDB. Python is a popular and efficient programming

language. It is ideal to use it to create functions to manage data points. The motivation

of using this connector was the experience with python of some actual users of

OpenTSDB that managed to create scripts for accessing and managing data points

from OpenTSDB.

43

CHAPTER 2: THEORETICAL FRAMEWORK

Figure 3.15: Structure of the Python connector, showing the visual analytics sections

For this connector we used as main Python script the project opentsdb_pandas hosted

on GitHub37 made by the supervisor of the thesis, Tomasz Wiktor Włodarczyk. We

created a python wrapper in JavaScript that directly executes the a python script that

uses the library mentioned above. The complete structure of the connector is shown in

the Figure 3.15.

For this connector we opted for a more direct connection, executing the python script

directly from node instead of a more modular and complex connection, such as the

one explained in the next section.

To use this connector we will receive a request through websockets and then, the

controller (app.js) will proceed to execute the python script.

 /* Python Mode */
 socket.on('getDPPythonMode', function (options) {
 var python = require('child_process').spawn('python',

 // second argument is array of parameters
 ["./python_files/entryPoint.py"]
);
 var output = "";
 python.stdout.on('data', function(data){ output += data });
 python.on('close', function(code){

 if (code !== 0) {
 throw ‘Problem executing Python script’;

 }else{
socket.emit("dataServerPython",output);

44

CHAPTER 2: THEORETICAL FRAMEWORK

 }
 });

 });

The python script mentioned in the code will use the opentsd_pandas library to fetch

the data points of OpenTSDB. For testing purposes the query is fixed in the script.

The python script will print the points to the standard output in a JSON format that the

node server will emit through the websocket to the client. Then the client will finally

parse the JSON and plot it with Highcharts.

import opentsdb_pandas as opd
import datetime as dt
import urllib2
import json

ts1 = opd.ts_get('cipsi.weather.TA', dt.datetime(2014, 4, 4, 12, 00),
dt.datetime(2014, 4, 13, 12, 00), 'station=44640',
hostname='haisen36.ux.uis.no')

aux=json.dumps(ts1.T.as_matrix().tolist(),indent=4)
print aux

Besides the advantages already mentioned about fetching the data from the server, this

connector will allow Python to apply any transformation to the data. But because of

the direct implementation of the connector, any Python script needs to meet the same

requirements like printing the output in a JSON format.

3.3.4 R connector

This connector is based on the idea of using the programming language R to fetch and

manage the data before sending it to the node server. We choose R because it has very

useful built-in functions to transform data. We opted for a more complex but modular

structure that will allow for easy addition of new R functions in the future.

45

CHAPTER 2: THEORETICAL FRAMEWORK

Figure 3.16: Structure of the R connector, showing the visual analytics sections

In the current implementation, shown in Figure 3.16, we only use it to fetch data from

the OpenTSDB without applying any algorithms, but in further implementations we

will use predictions and error detection algorithms as well as statistical analysis.

To connect to OpenTSDB with R we have two libraries: opentsdbr38 and R2Time39.

Opentsdbr is a simple library that will allow us to only read values in OpenTSDB

with R code. It uses HTTP for the request, making it very inefficient, but simple to

use. Additionally, we have R2Time- a library developed by Bikash Agrawal, a PhD

student at the University of Stavanger. It is a more optimized and complex library that

goes directly to HBase to fetch the data. For the purpose of building the first version

of the solution, we will use opentsdbr.

We need to serve the data obtained in R to the node server. To do so, we will use the R

library Rserve, a library that creates a TCP/IP server in R so that the data management

layer can make queries with R code. The node server will send requests to Rserve and

it will translate those requests in R code, execute them, and give back the results.

In order to communicate Rserve with the node server, we need an Rserve client built-

in javascript and made for Node. There are three node modules that meet our

requirements: Rserve-client39, Rserve-js40, and Node-RIO. Rserve-client meets the

requirements, however it cannot retrieve plots directly from Rserve. Moreover, the

last activity in the code was from five months ago and it would be unwise to trust an

abandoned library. Another viable option is Rserve-js, a library that has more

functionality than Rserve-client, yet it does not integrate well with error handling and

46

CHAPTER 2: THEORETICAL FRAMEWORK

is not optimized for managing large amount of data. Finally, Node-RIO is a complete

library and compensates for all of Rserve-js’s issues. It can work with error handling

and is optimized for speed in data transfer. The three libraries operate on the same

principle, fetching points from Rserve and converting them in a JSON object so they

can be manipulated in javascript easily. For our solution, we have chosen Node-RIO

because of its performance and error handling. We then execute Node-RIO when

receiving a request from the client through the websockets.

//app.js
// R mode
 socket.on('getDataPoints', function (options) {
 var data = {
 metric: 'cipsi.seeds.test1.temperature',
 start: {timestamp:'2013-08-04 12:00:00', timezone:'CEST'},
 end: {timestamp:'2013-08-07 14:00:00', timezone:'CEST'},
 tags:[{name:'node', value:'0013A2004061646F'}],
 debug:true
 }

 executeRio(data,function(result){
 socket.emit("dataServer",result); });
 });

One very good advantage is the modularization, it is really easy to add new functions

in R a programming language specialised in statistical analysis. But also this is it is

great disadvantage, in order to gain modularization, we increased its complexity. This

complexity will pay off later when managing a large amount of data points.

3.4 General workflow

In the current implementation of our node server, we are not going to implement the

reactive workflow explained in visual analytics because of its complexity. In the

future, when we have added functionality like error detection and notifications, the

reactive workflow will run in the background monitoring the dataset and analysing it

to detect errors and if so, notifying the user.

47

CHAPTER 2: THEORETICAL FRAMEWORK

The interactive workflow is completely integrated and implemented in our system. It

is the interaction of an analyst with the system. When the analyst requests the main

page, the interaction activates the workflow in the server to gather the data and send it

back to the analyst. There are two different groups of interactive workflows, the

one that includes the server to request the data points (nodetsdb, python or R

connectors) or the one in which the client handles the connection with OpenTSDB

(nodetsdb-client).

Figure 3.17: Interactive workflow for nodetsdb, python, and R connectors

48

CHAPTER 2: THEORETICAL FRAMEWORK

Figure 3.18: Interactive workflow for nodetsdb-client

In point (1) of Figure 3.17, the server sends empty form and the client asks through

websockets to get the data points of a specific query. The server then queries to

OpenTSDB with the specific connector. Once the server has the data, it is sent

through the same websocket of the request. One of the advantages of using NodeJS

and websockets is that they are not blocking and we can put a progress bar per plot or

another mechanism to minimize the impact of waiting for the results.

On the other workflow, Figure 3.18 the server sends the empty form and then the

client takes care of querying OpenTSDB once the form is done. No websockets are

involved and, when the request is done, it plots the data points from the same

javascript that did the query.

49

CHAPTER 4: RESULTS

4 Results & Discussion

In order to test the different connectors, we executed the following four times: three

sets of measures with different amounts of data points to compare the connectors and

see if there is room for improvement. The dataset used is one that we have in the

OpenTSDB managed by the University of Stavanger, and this dataset will be the final

database used along the interface.

We created three sets of scenarios (set-1, set-2 and set-3), the difference between them

being the amount of data points (different time frames). The first (set-1) from

2014/04/04 12:00:00 to 2014/04/13 12:00:00, the second one (set-2) from 2014/04/04

12:00:00 to 2014/04/21 12:00:00, and the last one (set-3) from 2014/04/04 12:00:00

to 2014/05/06 12:00:00. The total number of data points in the first case is 1284 (set-

1), in the second case is 2435 (set-2), and in the third case 4567 (set-3) representing

the temperature measure by a sensor. Each test was repeated four times and an

average was calculated.

4.1 Timing of NodeJS - OpenTSDB connector (nodetsdb)

The piece of code that we are testing is from the point we create the object nodetsdb

to have the points ready to be plotted.

 //app.js
 //Start measuring the time
 var nodetsdb = new nodetsdblib({host:config.opentsdbserver,
port:config.opentsdbserverport});

 nodetsdb.getDataPoints(options, function(dp){
 //Stop measuring the time
 socket.emit("dataServer",dp);
 });

Test 1 Test 2 Test 3 Test 4 Average

 set-3 (4567) 57 ms 58 ms 55 ms 54 ms 56 ms

set-2 (2435) 41 ms 33 ms 38 ms 38 ms 37.5 ms

set-1 (1284) 25 ms 27 ms 25 ms 24 ms 25.25 ms

50

CHAPTER 4: RESULTS

Table 4.1: Time in ms of the nodetsdb module.

Knowing that nodetsdb relays on an HTTP request to obtain data, these times show

that obtaining data from a month, taken every 10 min 24/7 (set 3) is fast, even if we

wanted to show data from a year, in the same conditions, the transaction would not

even be one second (a rough approximation of 0.675 sec).

4.2 Timing of Client - OpenTSDB connector (nodetsdb-client)

We are going to measure the time spent by the library nodetsdb-client to fetch data

from OpenTSDB in the client, using Google Chrome browser Version 35.0.1916.114.

In the following piece of code, we see exactly where the measurements are taken.

//plots.js
//Stat timing
var nodetsdb = new Nodetsdb({host:'haisen36.ux.uis.no', port:4242});
 nodetsdb.getDataPoints(options, function(data){
 //End timing

plot_data(data,true);
 });

Test 1 Test 2 Test 3 Test 4 Average

set-3 (4567) 89 ms 81 ms 80 ms 82 ms 83 ms

set-2 (2435) 58 ms 60 ms 55 ms 52 ms 56.25 ms

set-1 (1284) 46 ms 42 ms 40 ms 39 ms 41.75 ms

Table 4.2: Time in ms of the nodetsdb-client library.

These times are not as good as the previous connector, but is also fast for the amount

of points requested- only 84 ms for a month's worth of data. The main reason for the

difference will be the optimization performance of nodejs versus the javascript in the

client. In any case, it is a very suitable connector for direct access to OpenTSDB.

4.3 Timing of Python connector

For the Python connector we made two different measures, one in the javascript code

from the script to be executed to when the points are available. For the second

51

CHAPTER 4: RESULTS

measurement we used the unix command “time” that counts the time that the system

takes to execute a specific script.

The code mentioned before is shown above.

//app.js
//Start timing
var python = require('child_process').spawn(

 'python',
 // second argument is array of parameters
 ["./python_files/entryPoint.py"]
);
 var output = "";
 python.stdout.on('data', function(data){ output += data });
 python.on('close', function(code){

//Timing end
 socket.emit("dataServerPython",output);
 }

 });

Test 1 Test 2 Test 3 Test 4 Average

set-3 (4567) 379 ms 371 ms 375 ms 387 ms 378 ms

set-2 (2435) 336 ms 345 ms 372 ms 330 ms 345.75 ms

set-1 (1284) 325 ms 313 ms 320 ms 324 ms 320.5 ms

Table 4.3: Time of requesting points and getting them (Node-python wrapper +

python script)

Test 1 Test 2 Test 3 Test 4 Average

set-3 (4567) 450 ms 426 ms 443 ms 438 ms 439.25

set-2 (2435) 340 ms 336 ms 349 ms 344 ms 342.25

set-1 (1284) 327 ms 323 ms 318 ms 342 ms 327.5

Table 4.4: Time of requesting points and getting them (python script alone, using

"time" command)

We can see a visual comparison of the averages of both timings in Figure 4.1.

52

CHAPTER 4: RESULTS

Figure 4.1: Comparison between the JavaScript wrapper and only the script.

At first sight it may not make sense that the script alone takes more time than the

script and the wrapper, but we have to remember that the script prints in the standard

output. When using the JavaScript wrapper, we catch the standard output into a

variable- but, when executing the unix function time, it has to print in the terminal all

of the data points in JSON format. This process is more time consuming than printing

the JSON then catching it on a variable.

Comparing these timings with the previous connector, it is around 5 times slower than

the nodetsdb connector, mainly because of data flow, that start OpenTSDB - Python

and then Python – NodeJS. The result being two steps that in nodetsdb is one. Also,

the transformation of the raw data into Python structure and then again, transforming

it to JSON to send to nodetsdb contributes to the slower time.

Even though the time is worse than the others, it is still fast enough to be usable in

many situations where Python is required or preferred to manage data.

53

CHAPTER 4: RESULTS

4.4 Timing of R connector

For the R connector we measure the total time used by the node server to obtain all

the points and get them ready to be sent to the client. Because this connector is more

complex than others we will expect higher times.

//app.js

// R mode

 socket.on('getDataPoints', function (options) {

 //Start timing

 executeRio(data,function(result){

 //End timing

 socket.emit("dataServer",result); });

 });

It seems like a short piece of code but the call executeRio will make an HTTP request

to Rserve that will execute a script containing the library opentsdbr that will query

OpenTSDB, and then the data points will do the same journey backwards.

In addition to the measures, we also time which part of the first time the R library

opentsdbr takes.

Test 1 Test 2 Test 3 Test 4 Average

set-3 (4567) 4089 ms 4095 ms 4496 ms 4400 ms 4270 ms

set-2 (2435) 2753 ms 2689 ms 2672 ms 2718 ms 2708 ms

set-1 (1284) 1884 ms 1867 ms 1901 ms 1931 ms 1895.75 ms

Table 4.5: Time of requesting points and getting them with the R connector

Test 1 Test 2 Test 3 Test 4 Average

set-3 (4567) 3239 ms 3221 ms 3587 ms 3574 ms 3405.25

set-2 (2435) 1666 ms 1599 ms 1623 ms 1646 ms 1633.5

set-1 (1284) 670 ms 675 ms 732 ms 683 ms 690

Table 4.6: Time used by opentsdbr to query OpenTSDB and get the results back

54

CHAPTER 4: RESULTS

In Figure 4.2 we can observe the relation between both.

Figure 4.2: Timing of the R connector by sections

We can observe in Figure 4.2 that most of the time taken by the R connector is used

by the library opentsdbr, showing us that there is room for future improvement.

With these results we can conclude that the library opentsdbr is the bottleneck of the

whole system and in future developments we will test the other library R2Time to see

its performance under the same circumstances.

55

CHAPTER 4: RESULTS

4.5 Timing comparison

Figure 4.3: Time comparison between connectors

As we can see in Table 4.5, the average time to obtain 4567 data points takes around

4,5 seconds, a huge amount of time compared with the other connectors that do not

get to half a second for the same amount of points. The difference can be observed in

Figure 4.3 as well.

This huge increase in time in the R connector is because of the modularized

architecture of the R connector, increasing its complexity. For future versions it will

be recommended to compare with a more direct approach like the python connector or

change the R library used. This specific architecture of the R connector is not suitable

to a real environment because of its great delay.

56

CHAPTER 4: RESULTS

Figure 4.4: Python, nodetsdb, and nodetsdb-client compared

If we take a closer look at data without the R connector, shown in Figure 4.4 we can

get a better idea of the other connector performances. It is clear that nodetsdb

performs better and is recommended to be used for a day-by-day connector. While

nodetsdb-client performs very well, it needs the client to have direct communication

with OpenTSDB and sometimes that cannot be granted. Even when the python

connector is not as fast as nodetsdb, it could be a good alternative when it is necessary

to apply transformations to large amounts of data.

57

CHAPTER 5: CONCLUSIONS

5 Conclusions

openTSDBnode is a scalable and user friendly dashboard that implements four

different connections with different programming languages that will enable data

manipulation in any of the languages mentioned above.

As the results shows there is room for improvement, the connector that needs a more

deep work is clearly the R connector. The initial idea of busing the opentsdbr library

lead us to awful result. As shown in the results only changing that library will improve

the whole connector.

openTSDBnode as well as the main libraries are released to the community with a

BSD 3-Clause License, to allow the community to modify and improve the work done

here.

5.1 Future work

As mentioned above, one of the first tasks for future work will be changing the R

library, opentsdbr, for a faster and more efficient one. There are alternatives, such as

R2Time, that are worth trying.

The next main task to improve opentsdbnode will be to optimize and modularize the

Python connector, the actual implementation is a proof of work, but needs to be

refined.

REFERENCES

6 References

[1] "OpenTSDB - A Distributed, Scalable Monitoring System." 2010. 11 Dec. 2013

<http :// opentsdb . net />

[2] "HBase - Apache HBase™ Home." 2010. 11 Dec. 2013 <http :// hbase . apache . org />

[3] "HTTP API — OpenTDSB 2.0 documentation." 2011. 21 Jun. 2014

<http :// opentsdb . net / http - api . html>

[4] Thomas, Jim, and Pak Chung Wong. "Visual analytics." IEEE Computer Graphics

and Applications 24.5 (2004): 0020-21.

[5] Thomas, James J., and Kristin A. Cook, eds. "Illuminating the path: The research

and development agenda for visual analytics." (2005).

[6] Fekete, Jean-Daniel. "Visual Analytics Infrastructures: From Data Management to

Exploration." Computer 46.7 (2013): 22-29.

[7] "node.js." 2009. 14 Dec. 2013 <http :// nodejs . org />

[8] "Benchmarking Node.js - basic performance tests against Apache + ..." 2011. 14

Dec. 2013 <http :// zgadzaj . com / benchmarking - nodejs - basic - performance - tests -

against - apache - php>

[9] "Projects, Applications, and Companies Using Node · joyent ... - GitHub." 2011.

14 Dec. 2013 <https :// github . com / joyent / node / wiki / Projects ,- Applications ,- and -

Companies - Using - Node>

[10] "Express - node.js web application framework." 2010. 21 Jun. 2014

<http :// expressjs . com />

[11] "Hogan.js." 2013. 21 Jun. 2014 <http :// twitter . github . io / hogan . js />

[12] "{{ mustache }} - GitHub Pages." 2013. 21 Jun. 2014

<http :// mustache . github . io />

[13] "vol4ok/hogan-express · GitHub." 2012. 21 Jun. 2014

<https :// github . com / vol 4 ok / hogan - express>

[14] "WebSocket.org | The Benefits of WebSocket." 2011. 21 Jun. 2014

<http :// www . websocket . org / quantum . html>

59

http://www.websocket.org/quantum.html
http://www.websocket.org/quantum.html
http://www.websocket.org/quantum.html
http://www.websocket.org/quantum.html
http://www.websocket.org/quantum.html
http://www.websocket.org/quantum.html
http://www.websocket.org/quantum.html
http://www.websocket.org/quantum.html
http://www.websocket.org/quantum.html
http://www.websocket.org/quantum.html
http://www.websocket.org/quantum.html
https://github.com/vol4ok/hogan-express
https://github.com/vol4ok/hogan-express
https://github.com/vol4ok/hogan-express
https://github.com/vol4ok/hogan-express
https://github.com/vol4ok/hogan-express
https://github.com/vol4ok/hogan-express
https://github.com/vol4ok/hogan-express
https://github.com/vol4ok/hogan-express
https://github.com/vol4ok/hogan-express
https://github.com/vol4ok/hogan-express
https://github.com/vol4ok/hogan-express
https://github.com/vol4ok/hogan-express
https://github.com/vol4ok/hogan-express
http://mustache.github.io/
http://mustache.github.io/
http://mustache.github.io/
http://mustache.github.io/
http://mustache.github.io/
http://mustache.github.io/
http://mustache.github.io/
http://mustache.github.io/
http://twitter.github.io/hogan.js/
http://twitter.github.io/hogan.js/
http://twitter.github.io/hogan.js/
http://twitter.github.io/hogan.js/
http://twitter.github.io/hogan.js/
http://twitter.github.io/hogan.js/
http://twitter.github.io/hogan.js/
http://twitter.github.io/hogan.js/
http://twitter.github.io/hogan.js/
http://twitter.github.io/hogan.js/
http://twitter.github.io/hogan.js/
http://twitter.github.io/hogan.js/
http://expressjs.com/
http://expressjs.com/
http://expressjs.com/
http://expressjs.com/
http://expressjs.com/
http://expressjs.com/
https://github.com/joyent/node/wiki/Projects,-Applications,-and-Companies-Using-Node
https://github.com/joyent/node/wiki/Projects,-Applications,-and-Companies-Using-Node
https://github.com/joyent/node/wiki/Projects,-Applications,-and-Companies-Using-Node
https://github.com/joyent/node/wiki/Projects,-Applications,-and-Companies-Using-Node
https://github.com/joyent/node/wiki/Projects,-Applications,-and-Companies-Using-Node
https://github.com/joyent/node/wiki/Projects,-Applications,-and-Companies-Using-Node
https://github.com/joyent/node/wiki/Projects,-Applications,-and-Companies-Using-Node
https://github.com/joyent/node/wiki/Projects,-Applications,-and-Companies-Using-Node
https://github.com/joyent/node/wiki/Projects,-Applications,-and-Companies-Using-Node
https://github.com/joyent/node/wiki/Projects,-Applications,-and-Companies-Using-Node
https://github.com/joyent/node/wiki/Projects,-Applications,-and-Companies-Using-Node
https://github.com/joyent/node/wiki/Projects,-Applications,-and-Companies-Using-Node
https://github.com/joyent/node/wiki/Projects,-Applications,-and-Companies-Using-Node
https://github.com/joyent/node/wiki/Projects,-Applications,-and-Companies-Using-Node
https://github.com/joyent/node/wiki/Projects,-Applications,-and-Companies-Using-Node
https://github.com/joyent/node/wiki/Projects,-Applications,-and-Companies-Using-Node
https://github.com/joyent/node/wiki/Projects,-Applications,-and-Companies-Using-Node
https://github.com/joyent/node/wiki/Projects,-Applications,-and-Companies-Using-Node
https://github.com/joyent/node/wiki/Projects,-Applications,-and-Companies-Using-Node
https://github.com/joyent/node/wiki/Projects,-Applications,-and-Companies-Using-Node
https://github.com/joyent/node/wiki/Projects,-Applications,-and-Companies-Using-Node
https://github.com/joyent/node/wiki/Projects,-Applications,-and-Companies-Using-Node
https://github.com/joyent/node/wiki/Projects,-Applications,-and-Companies-Using-Node
http://zgadzaj.com/benchmarking-nodejs-basic-performance-tests-against-apache-php
http://zgadzaj.com/benchmarking-nodejs-basic-performance-tests-against-apache-php
http://zgadzaj.com/benchmarking-nodejs-basic-performance-tests-against-apache-php
http://zgadzaj.com/benchmarking-nodejs-basic-performance-tests-against-apache-php
http://zgadzaj.com/benchmarking-nodejs-basic-performance-tests-against-apache-php
http://zgadzaj.com/benchmarking-nodejs-basic-performance-tests-against-apache-php
http://zgadzaj.com/benchmarking-nodejs-basic-performance-tests-against-apache-php
http://zgadzaj.com/benchmarking-nodejs-basic-performance-tests-against-apache-php
http://zgadzaj.com/benchmarking-nodejs-basic-performance-tests-against-apache-php
http://zgadzaj.com/benchmarking-nodejs-basic-performance-tests-against-apache-php
http://zgadzaj.com/benchmarking-nodejs-basic-performance-tests-against-apache-php
http://zgadzaj.com/benchmarking-nodejs-basic-performance-tests-against-apache-php
http://zgadzaj.com/benchmarking-nodejs-basic-performance-tests-against-apache-php
http://zgadzaj.com/benchmarking-nodejs-basic-performance-tests-against-apache-php
http://zgadzaj.com/benchmarking-nodejs-basic-performance-tests-against-apache-php
http://zgadzaj.com/benchmarking-nodejs-basic-performance-tests-against-apache-php
http://zgadzaj.com/benchmarking-nodejs-basic-performance-tests-against-apache-php
http://zgadzaj.com/benchmarking-nodejs-basic-performance-tests-against-apache-php
http://zgadzaj.com/benchmarking-nodejs-basic-performance-tests-against-apache-php
http://zgadzaj.com/benchmarking-nodejs-basic-performance-tests-against-apache-php
http://zgadzaj.com/benchmarking-nodejs-basic-performance-tests-against-apache-php
http://nodejs.org/
http://nodejs.org/
http://nodejs.org/
http://nodejs.org/
http://nodejs.org/
http://nodejs.org/
http://opentsdb.net/http-api.html
http://opentsdb.net/http-api.html
http://opentsdb.net/http-api.html
http://opentsdb.net/http-api.html
http://opentsdb.net/http-api.html
http://opentsdb.net/http-api.html
http://opentsdb.net/http-api.html
http://opentsdb.net/http-api.html
http://opentsdb.net/http-api.html
http://opentsdb.net/http-api.html
http://opentsdb.net/http-api.html
http://hbase.apache.org/
http://hbase.apache.org/
http://hbase.apache.org/
http://hbase.apache.org/
http://hbase.apache.org/
http://hbase.apache.org/
http://hbase.apache.org/
http://hbase.apache.org/
http://opentsdb.net/
http://opentsdb.net/
http://opentsdb.net/
http://opentsdb.net/
http://opentsdb.net/
http://opentsdb.net/

REFERENCES

[15] "ajax - WebSockets protocol vs HTTP - Stack Overflow." 2013. 21 Jun. 2014

<http :// stackoverflow . com / questions /14703627/ websockets - protocol - vs - http>

[16] "Grunt: The JavaScript Task Runner." 2012. 21 Jun. 2014 <http :// gruntjs . com />

[17] "MongoDB." 2008. 21 Jun. 2014 <http :// www . mongodb . org />

[18] "jQuery." 2006. 21 Jun. 2014 <http :// jquery . com />

[19] "Bootstrap." 2008. 21 Jun. 2014 <http :// getbootstrap . com />

[20] "Highcharts - Interactive JavaScript charts for your webpage." 2007. 21 Jun.

2014 <http :// www . highcharts . com />

[21] "Welcome to Python.org." 2006. 21 Jun. 2014 <https :// www . python . org />

[22] "The R Project for Statistical Computing." 21 Jun. 2014 <http :// www . r -

project . org />

[23] "holstius/opentsdbr · GitHub." 2013. 21 Jun. 2014

<https :// github . com / holstius / opentsdbr>

[24] Urbanek, Simon. "Rserve--A Fast Way to Provide R Functionality to

Applications." PROC. OF THE 3RD INTERNATIONAL WORKSHOP ON

DISTRIBUTED STATISTICAL COMPUTING (DSC 2003), ISSN 1609-395X, EDS.:

KURT HORNIK, FRIEDRICH LEISCH & ACHIM ZEILEIS, 2003

(HTTP://ROSUDA. ORG/RSERVE 2003.

[25] "albertosantini/node-rio · GitHub." 2011. 21 Jun. 2014

<https :// github . com / albertosantini / node - rio>

[26] "gRaphaël—Charting JavaScript Library." 2009. 16 Dec. 2013

<http :// g . raphaeljs . com />

[27] "JavaScript InfoVis Toolkit - Nicolas Garcia Belmonte." 2013. 16 Dec. 2013

<http :// philogb . github . io / jit />

[28] "MooTools Forge | MilkChart." 2009. 16 Dec. 2013

<http :// mootools . net / forge / p / milkchart>

[29] "Update to jQuery Visualize: Accessible Charts with HTML5 from ..." 2010. 16

Dec. 2013

<http :// filamentgroup . com / lab / update _ to _ jquery _ visualize _ accessible _ charts _ with _ ht

ml 5_ from _ designing _ with />

[30] "moochart - charts for mootools." 2008. 16 Dec. 2013

<http :// moochart . coneri . se />

60

http://moochart.coneri.se/
http://moochart.coneri.se/
http://moochart.coneri.se/
http://moochart.coneri.se/
http://moochart.coneri.se/
http://moochart.coneri.se/
http://moochart.coneri.se/
http://moochart.coneri.se/
http://filamentgroup.com/lab/update_to_jquery_visualize_accessible_charts_with_html5_from_designing_with/
http://filamentgroup.com/lab/update_to_jquery_visualize_accessible_charts_with_html5_from_designing_with/
http://filamentgroup.com/lab/update_to_jquery_visualize_accessible_charts_with_html5_from_designing_with/
http://filamentgroup.com/lab/update_to_jquery_visualize_accessible_charts_with_html5_from_designing_with/
http://filamentgroup.com/lab/update_to_jquery_visualize_accessible_charts_with_html5_from_designing_with/
http://filamentgroup.com/lab/update_to_jquery_visualize_accessible_charts_with_html5_from_designing_with/
http://filamentgroup.com/lab/update_to_jquery_visualize_accessible_charts_with_html5_from_designing_with/
http://filamentgroup.com/lab/update_to_jquery_visualize_accessible_charts_with_html5_from_designing_with/
http://filamentgroup.com/lab/update_to_jquery_visualize_accessible_charts_with_html5_from_designing_with/
http://filamentgroup.com/lab/update_to_jquery_visualize_accessible_charts_with_html5_from_designing_with/
http://filamentgroup.com/lab/update_to_jquery_visualize_accessible_charts_with_html5_from_designing_with/
http://filamentgroup.com/lab/update_to_jquery_visualize_accessible_charts_with_html5_from_designing_with/
http://filamentgroup.com/lab/update_to_jquery_visualize_accessible_charts_with_html5_from_designing_with/
http://filamentgroup.com/lab/update_to_jquery_visualize_accessible_charts_with_html5_from_designing_with/
http://filamentgroup.com/lab/update_to_jquery_visualize_accessible_charts_with_html5_from_designing_with/
http://filamentgroup.com/lab/update_to_jquery_visualize_accessible_charts_with_html5_from_designing_with/
http://filamentgroup.com/lab/update_to_jquery_visualize_accessible_charts_with_html5_from_designing_with/
http://filamentgroup.com/lab/update_to_jquery_visualize_accessible_charts_with_html5_from_designing_with/
http://filamentgroup.com/lab/update_to_jquery_visualize_accessible_charts_with_html5_from_designing_with/
http://filamentgroup.com/lab/update_to_jquery_visualize_accessible_charts_with_html5_from_designing_with/
http://filamentgroup.com/lab/update_to_jquery_visualize_accessible_charts_with_html5_from_designing_with/
http://filamentgroup.com/lab/update_to_jquery_visualize_accessible_charts_with_html5_from_designing_with/
http://filamentgroup.com/lab/update_to_jquery_visualize_accessible_charts_with_html5_from_designing_with/
http://filamentgroup.com/lab/update_to_jquery_visualize_accessible_charts_with_html5_from_designing_with/
http://filamentgroup.com/lab/update_to_jquery_visualize_accessible_charts_with_html5_from_designing_with/
http://filamentgroup.com/lab/update_to_jquery_visualize_accessible_charts_with_html5_from_designing_with/
http://filamentgroup.com/lab/update_to_jquery_visualize_accessible_charts_with_html5_from_designing_with/
http://filamentgroup.com/lab/update_to_jquery_visualize_accessible_charts_with_html5_from_designing_with/
http://filamentgroup.com/lab/update_to_jquery_visualize_accessible_charts_with_html5_from_designing_with/
http://filamentgroup.com/lab/update_to_jquery_visualize_accessible_charts_with_html5_from_designing_with/
http://filamentgroup.com/lab/update_to_jquery_visualize_accessible_charts_with_html5_from_designing_with/
http://mootools.net/forge/p/milkchart
http://mootools.net/forge/p/milkchart
http://mootools.net/forge/p/milkchart
http://mootools.net/forge/p/milkchart
http://mootools.net/forge/p/milkchart
http://mootools.net/forge/p/milkchart
http://mootools.net/forge/p/milkchart
http://mootools.net/forge/p/milkchart
http://mootools.net/forge/p/milkchart
http://mootools.net/forge/p/milkchart
http://mootools.net/forge/p/milkchart
http://philogb.github.io/jit/
http://philogb.github.io/jit/
http://philogb.github.io/jit/
http://philogb.github.io/jit/
http://philogb.github.io/jit/
http://philogb.github.io/jit/
http://philogb.github.io/jit/
http://philogb.github.io/jit/
http://philogb.github.io/jit/
http://philogb.github.io/jit/
http://g.raphaeljs.com/
http://g.raphaeljs.com/
http://g.raphaeljs.com/
http://g.raphaeljs.com/
http://g.raphaeljs.com/
http://g.raphaeljs.com/
http://g.raphaeljs.com/
http://g.raphaeljs.com/
https://github.com/albertosantini/node-rio
https://github.com/albertosantini/node-rio
https://github.com/albertosantini/node-rio
https://github.com/albertosantini/node-rio
https://github.com/albertosantini/node-rio
https://github.com/albertosantini/node-rio
https://github.com/albertosantini/node-rio
https://github.com/albertosantini/node-rio
https://github.com/albertosantini/node-rio
https://github.com/albertosantini/node-rio
https://github.com/albertosantini/node-rio
https://github.com/holstius/opentsdbr
https://github.com/holstius/opentsdbr
https://github.com/holstius/opentsdbr
https://github.com/holstius/opentsdbr
https://github.com/holstius/opentsdbr
https://github.com/holstius/opentsdbr
https://github.com/holstius/opentsdbr
https://github.com/holstius/opentsdbr
https://github.com/holstius/opentsdbr
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
http://www.highcharts.com/
http://www.highcharts.com/
http://www.highcharts.com/
http://www.highcharts.com/
http://www.highcharts.com/
http://www.highcharts.com/
http://www.highcharts.com/
http://www.highcharts.com/
http://getbootstrap.com/
http://getbootstrap.com/
http://getbootstrap.com/
http://getbootstrap.com/
http://getbootstrap.com/
http://getbootstrap.com/
http://jquery.com/
http://jquery.com/
http://jquery.com/
http://jquery.com/
http://jquery.com/
http://jquery.com/
http://www.mongodb.org/
http://www.mongodb.org/
http://www.mongodb.org/
http://www.mongodb.org/
http://www.mongodb.org/
http://www.mongodb.org/
http://www.mongodb.org/
http://www.mongodb.org/
http://gruntjs.com/
http://gruntjs.com/
http://gruntjs.com/
http://gruntjs.com/
http://gruntjs.com/
http://gruntjs.com/
http://stackoverflow.com/questions/14703627/websockets-protocol-vs-http
http://stackoverflow.com/questions/14703627/websockets-protocol-vs-http
http://stackoverflow.com/questions/14703627/websockets-protocol-vs-http
http://stackoverflow.com/questions/14703627/websockets-protocol-vs-http
http://stackoverflow.com/questions/14703627/websockets-protocol-vs-http
http://stackoverflow.com/questions/14703627/websockets-protocol-vs-http
http://stackoverflow.com/questions/14703627/websockets-protocol-vs-http
http://stackoverflow.com/questions/14703627/websockets-protocol-vs-http
http://stackoverflow.com/questions/14703627/websockets-protocol-vs-http
http://stackoverflow.com/questions/14703627/websockets-protocol-vs-http
http://stackoverflow.com/questions/14703627/websockets-protocol-vs-http
http://stackoverflow.com/questions/14703627/websockets-protocol-vs-http
http://stackoverflow.com/questions/14703627/websockets-protocol-vs-http
http://stackoverflow.com/questions/14703627/websockets-protocol-vs-http
http://stackoverflow.com/questions/14703627/websockets-protocol-vs-http

REFERENCES

[31] "JS Charts - Free JavaScript charts." 2007. 16 Dec. 2013

<http :// www . jscharts . com />

[32] "SIMILE Widgets | Timeline." 2009. 16 Dec. 2013 <http :// www . simile -

widgets . org / timeline />

[33] "D3.js - Data-Driven Documents." 2010. 16 Dec. 2013 <http :// d 3 js . org />

[34] "BobString/nodetsdb · GitHub." 2014. 22 Jun. 2014

<https :// github . com / BobString / nodetsdb>

[35] "nodetsdb - npm." 2014. 22 Jun. 2014

<https :// www . npmjs . org / package / nodetsdb>

[36] "BobString/nodetsdb-client · GitHub." 2014. 22 Jun. 2014

<https :// github . com / BobString / nodetsdb - client>

[37] "twwlodarczyk/opentsdb_pandas · GitHub." 2014. 22 Jun. 2014

<https :// github . com / twwlodarczyk / opentsdb _ pandas>

[38] "holstius/opentsdbr · GitHub." 2013. 14 Dec. 2013

<https :// github . com / holstius / opentsdbr>

[39] "rserve-client - npm." 2012. 18 Dec. 2013 <https :// npmjs . org / package / rserve -

client>

[40] "cscheid/rserve-js · GitHub." 2013. 17 Dec. 2013

<https :// github . com / cscheid / rserve - js>

61

https://github.com/cscheid/rserve-js
https://github.com/cscheid/rserve-js
https://github.com/cscheid/rserve-js
https://github.com/cscheid/rserve-js
https://github.com/cscheid/rserve-js
https://github.com/cscheid/rserve-js
https://github.com/cscheid/rserve-js
https://github.com/cscheid/rserve-js
https://github.com/cscheid/rserve-js
https://github.com/cscheid/rserve-js
https://github.com/cscheid/rserve-js
https://npmjs.org/package/rserve-client
https://npmjs.org/package/rserve-client
https://npmjs.org/package/rserve-client
https://npmjs.org/package/rserve-client
https://npmjs.org/package/rserve-client
https://npmjs.org/package/rserve-client
https://npmjs.org/package/rserve-client
https://npmjs.org/package/rserve-client
https://npmjs.org/package/rserve-client
https://npmjs.org/package/rserve-client
https://npmjs.org/package/rserve-client
https://github.com/holstius/opentsdbr
https://github.com/holstius/opentsdbr
https://github.com/holstius/opentsdbr
https://github.com/holstius/opentsdbr
https://github.com/holstius/opentsdbr
https://github.com/holstius/opentsdbr
https://github.com/holstius/opentsdbr
https://github.com/holstius/opentsdbr
https://github.com/holstius/opentsdbr
https://github.com/twwlodarczyk/opentsdb_pandas
https://github.com/twwlodarczyk/opentsdb_pandas
https://github.com/twwlodarczyk/opentsdb_pandas
https://github.com/twwlodarczyk/opentsdb_pandas
https://github.com/twwlodarczyk/opentsdb_pandas
https://github.com/twwlodarczyk/opentsdb_pandas
https://github.com/twwlodarczyk/opentsdb_pandas
https://github.com/twwlodarczyk/opentsdb_pandas
https://github.com/twwlodarczyk/opentsdb_pandas
https://github.com/twwlodarczyk/opentsdb_pandas
https://github.com/twwlodarczyk/opentsdb_pandas
https://github.com/BobString/nodetsdb-client
https://github.com/BobString/nodetsdb-client
https://github.com/BobString/nodetsdb-client
https://github.com/BobString/nodetsdb-client
https://github.com/BobString/nodetsdb-client
https://github.com/BobString/nodetsdb-client
https://github.com/BobString/nodetsdb-client
https://github.com/BobString/nodetsdb-client
https://github.com/BobString/nodetsdb-client
https://github.com/BobString/nodetsdb-client
https://github.com/BobString/nodetsdb-client
https://www.npmjs.org/package/nodetsdb
https://www.npmjs.org/package/nodetsdb
https://www.npmjs.org/package/nodetsdb
https://www.npmjs.org/package/nodetsdb
https://www.npmjs.org/package/nodetsdb
https://www.npmjs.org/package/nodetsdb
https://www.npmjs.org/package/nodetsdb
https://www.npmjs.org/package/nodetsdb
https://www.npmjs.org/package/nodetsdb
https://www.npmjs.org/package/nodetsdb
https://www.npmjs.org/package/nodetsdb
https://github.com/BobString/nodetsdb
https://github.com/BobString/nodetsdb
https://github.com/BobString/nodetsdb
https://github.com/BobString/nodetsdb
https://github.com/BobString/nodetsdb
https://github.com/BobString/nodetsdb
https://github.com/BobString/nodetsdb
https://github.com/BobString/nodetsdb
https://github.com/BobString/nodetsdb
http://d3js.org/
http://d3js.org/
http://d3js.org/
http://d3js.org/
http://d3js.org/
http://d3js.org/
http://d3js.org/
http://d3js.org/
http://www.simile-widgets.org/timeline/
http://www.simile-widgets.org/timeline/
http://www.simile-widgets.org/timeline/
http://www.simile-widgets.org/timeline/
http://www.simile-widgets.org/timeline/
http://www.simile-widgets.org/timeline/
http://www.simile-widgets.org/timeline/
http://www.simile-widgets.org/timeline/
http://www.simile-widgets.org/timeline/
http://www.simile-widgets.org/timeline/
http://www.simile-widgets.org/timeline/
http://www.simile-widgets.org/timeline/
http://www.jscharts.com/
http://www.jscharts.com/
http://www.jscharts.com/
http://www.jscharts.com/
http://www.jscharts.com/
http://www.jscharts.com/
http://www.jscharts.com/
http://www.jscharts.com/

	1 Introduction
	1.1 Related work
	1.2 Organization of the thesis

	2 Theoretical framework
	2.1 OpenTSDB
	2.2 Visual analytics
	2.2.1 Analytic layer
	2.2.2 Data management layer
	2.2.3 Visualization layer
	2.2.4 Workflows: Reactive and Interactive

	2.3 NodeJS
	2.4 JavaScript
	2.5 Model View Controller pattern
	2.6 Express
	2.6.1 hogan-express

	2.7 WebSockets
	2.8 Grunt
	2.9 MongoDB
	2.10 jQuery
	2.11 Bootstrap
	2.12 Highcharts
	2.13 Python
	2.14 R
	2.14.1 Opentsdbr
	2.14.2 Rserve
	2.14.3 Node-RIO

	3 Design and Methodology
	3.1 Actual OpenTSDB interface
	3.2 Main server structure
	3.2.1 app.js
	3.2.2 Routes
	3.2.3 Views
	3.2.3.1 Plotting view

	3.2.4 Database
	3.2.4.1 User schema
	3.2.4.2 Token schema
	3.2.4.3 Report schema
	3.2.4.4 Grunt

	3.2.5 Reporting system
	3.2.7 Other features
	3.2.7.1 Android endpoint

	3.2.8 License

	3.3 Connectors
	3.3.1 NodeJS - OpenTSDB connector (nodetsdb)
	3.3.1.1 nodetsdb

	3.3.2 Client - OpenTSDB connector (nodetsdb-client)
	3.3.2.1 nodetsdb-client

	3.3.3 Python connector
	3.3.4 R connector

	3.4 General workflow

	4 Results & Discussion
	4.1 Timing of NodeJS - OpenTSDB connector (nodetsdb)
	4.2 Timing of Client - OpenTSDB connector (nodetsdb-client)
	4.3 Timing of Python connector
	4.4 Timing of R connector
	4.5 Timing comparison

	5 Conclusions
	5.1 Future work

	6 References

