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Abstract 
 

During drilling operations it is important to keep the pressure in the well intact. The drilling fluid 

provides pressure, but its purpose is also to keep the formation fluids in place and at the same time 

lubricate the drill bit. For the fluid to perform well, there are especially five properties that needs 

monitoring; density, rheology, fluid loss, solids content and chemical properties.  

Today the evaluation of the drilling is in a large extent performed manually on a laboratory at the 

drilling facility. The workers go through special courses and training programs to be able to execute 

the tests, they are also exposed to chemical hazards and the stress of being responsible for drilling 

operation stops. 

The new way of thinking is to automate the whole drilling fluid evaluation system, for a safer and 

more reliable process. The idea is to implement a system that will test the properties of the mud, and 

then adjust it accordingly.   

By changing the drilling fluid evaluation process from manually to automatically the system will be 

more cost efficient as the error margin is smaller, the system gives an improved drilling performance 

and reduced environmental impact.  

In this thesis the differential pressure system Dual DP, originated at the University of Stavanger, is 

employed to test differential pressure of a fluid flow. From this, several properties of the fluid can be 

calculated including the density and viscosity. In addition, the Fann
®
 35 rheometer‟s diversity gets a 

review, to see if there are ways to get more accurate results. Several spring sensitivities are applied. 
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Nomenclature 
 

 

Symbol Description Unit 

  Viscometer constant 
      

   
 

   Flow area    

   Bob-rotor geometry constant 
      

       
 

  Viscometer constant 
      

                 
 

  Diameter of the pipe   

      Hortizontal differential pressure    

      Vertical differential pressure    

  

  
 Velocity gradient 

 

 
 

  Force of fluid flow 
   

  
 

     Friction factor – laminar flow  

      Friction factor – turbulent flow  

  Gravitational acceleration 
   

  
 

  Consistency index 
     

   
 

          Spring constant 
       

   
 

   Shear stress constant for effective bob surface               

   Shear rate constant 
 

   
 

  Length of the pipe   

   Length of bob/annulus         

   Correction factor         

  Flow behavior index  

  Pressure    

   Initial pressure needed for movement    

   Hydrostatic pressure    

   Dynamic fluid pressure loss    

   Pump pressure    
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Symbol Description Unit 

   Plastic viscosity    

  Volumetric flow rate     

  Radius of the pipe   

   Radius of the bob    

   Radius of the cylinder    

   Reynolds number  

  Torque         

   Torque at yield point         

   Critical torque         

   Torque intercept         

  Average velocity 
 

 
 

   Yield point 
  

   
 

  Shear stress 
  

   
 

   Initial shear stress 
  

   
 

  Shear rate 
 

 
 

  Viscosity    

   Effective viscosity    

   Plastic viscosity    

  Rotor speed     

 ̅ Angular velocity 
   

 
 

   Laminar flow of the annulus 
   

 
 

  Dial reading                

   Density of the fluid 
  

  
 

   Density of silicone oil 
  

  
 

  Kinematic velocity 
  

 
 

  Roughness for drawn tubing   

 

 

  



VI 

 

List of figures 
 

FIGURE 1 – CONSISTENCY CURVES SHOWING THREE TYPES OF FLUID FLOWS........................................................... 5 

FIGURE 2 – CONSISTENCY CURVE OF A NEWTONIAN FLUID ..................................................................................... 6 

FIGURE 3 – VELOCITY PROFILE IN A PIPE ................................................................................................................. 6 

FIGURE 4 – EFFECTIVE VISCOSITY OF A BINGHAM PLASTIC FLUID ........................................................................... 9 

FIGURE 5 – THE CONSISTENCY CURVE OF A BINGHAM PLASTIC FLOW ................................................................... 12 

FIGURE 6 – LOGARITHMIC PLOT OF AN IDEAL POWER LAW CONSISTENCY CURVE .................................................. 15 

FIGURE 7 - FANN
®

 35 VISCOMETER M35A  – MODIFIED FIGURE FROM FANN 35 INSTRUCTION MANUAL [6] ......... 22 

FIGURE 8 – THE TORSION SPRING LOCATION, EDITED FIGURE FROM FANN
®

 35 INSTRUCTION MANUAL [6] ........... 23 

FIGURE 9 – DUAL DP FLOW LOOP .......................................................................................................................... 27 

FIGURE 10 – OVERVIEW OF THE RHEOLOGIES PERFORMED AT THE LAB ................................................................. 37 

 

 

List of tables 
 

TABLE 1 – OVERVIEW OF THE SIX MIXES ............................................................................................................... 20 

TABLE 2 – TORSION SPRING CONSTANTS,  FROM “PET525 DRILLING AUTOMATION – EXERCISE 1” [9] ................ 24 

TABLE 3 – THE ROTOR AND BOB COMBINATIONS AND THEIR ASSOCIATED CONSTANTS [9] .................................... 25 

TABLE 4 – THE ROTOR AND BOB COMBINATIONS WITH THE OVERALL INSTRUMENT CONSTANT [9] ....................... 26 

TABLE 5 – OVERVIEW OF THE SIX TESTS PERFORMED AND THE COHERENT PUMP RATE IN % AND M
3
/S ................. 28 

TABLE 6 – VALUES CALCULATED THROUGH SIMULATIONS IN MATLAB
®

 ............................................................ 29 

TABLE 7 – CALIBRATION FLUIDS TESTED IN THE LAB, THREE FLUIDS ON THREE DIFFERENT RHEOMETERS ............ 29 

TABLE 8 – THE DIFFERENCE BETWEEN SIMULATION DATA AND LAB DATA ............................................................ 30 

TABLE 9 – CONSTANTS APPLIED TO THE MATLAB
®

 CODE ................................................................................... 32 

TABLE 10 – CALIBRATION CHECK RESULTS ........................................................................................................... 36 

TABLE 11 – MIX 1: 1.05 KCL BRINE WITH 1 G/L DUOTEC NS ............................................................................. 37 

TABLE 12 – MIX 1: 1.05 KCL BRINE WITH 2 G/L DUOTEC NS ............................................................................. 38 

TABLE 13 – MIX 1: 1.05 KCL BRINE WITH 4 G/L DUOTEC NS ............................................................................. 38 

TABLE 14 – MIX 1: 1.15 KCL BRINE WITH 1 G/L DUOTEC NS ............................................................................. 38 

TABLE 15 – MIX 1: 1.15 KCL BRINE WITH 2 G/L DUOTEC NS ............................................................................. 39 

TABLE 16 – MIX 1: 1.15 KCL BRINE WITH 4 G/L DUOTEC NS ............................................................................. 39 

TABLE 17 – PERCENTAGE OF DEVIATION FROM THE SIMULATED VALUE ................................................................ 41 

 

  



VII 

 

List of plots 
 

PLOT 1 – 100 CP CALIBRATION FLUID – VISCOMETER SPEED VERSUS DIAL READING ............................................ 32 

PLOT 2 –100 CP CALIBRATION FLUID – SHEAR RATE VERSUS SHEAR STRESS ......................................................... 33 

PLOT 3 – 50 CP CALIBRATION FLUID – VISCOMETER SPEED VERSUS DIAL READING .............................................. 33 

PLOT 4 – 50 CP CALIBRATION FLUID – SHEAR RATE VERSUS SHEAR STRESS .......................................................... 34 

PLOT 5 – 20 CP CALIBRATION FLUID – VISCOMETER SPEED VERSUS DIAL READING .............................................. 34 

PLOT 6 – 20 CP CALIBRATION FLUID – SHEAR RATE VERSUS SHEAR STRESS .......................................................... 35 

PLOT 7 – DIFFERENTIAL PRESSURE IN THE HORIZONTAL PIPE, MBAR VERSUS TIME IN SECONDS ............................ 43 

PLOT 8 – DIFFERENTIAL PRESSURE IN THE VERTICAL PIPE, MBAR VERSUS TIME IN SECONDS ................................. 43 

PLOT 9 – VOLTAGE READINGS IN THE HORIZONTAL PIPE, VOLT VERSUS TIME IN SECONDS .................................... 44 

PLOT 10 – VOLTAGE READINGS IN THE VERTICAL PIPE, VOLT VERSUS TIME IN SECONDS ....................................... 45 

PLOT 11 – DIFFERENTIAL PRESSURE IN THE HORIZONTAL- AND VERTICAL PIPE, MBAR VERSUS TIME IN SECONDS 45 

PLOT 12 – DENSITY IN KG/M
3
 VERSUS TIME IN SECONDS ........................................................................................ 46 

PLOT 13 – DYNAMIC VISCOSITY IN KG/M*S VERSUS TIME IN SECONDS .................................................................. 47 

PLOT 14 – FRICTION FACTOR F VERSUS TIME IN SECONDS ...................................................................................... 48 

PLOT 16 – REYNOLDS NUMBER RE VERSUS TIME IN SECONDS................................................................................ 48 

 

  



VIII 

 

List of equations 
 

EQUATION 2-1 ......................................................................................................................................................... 5 

EQUATION 2-2 ......................................................................................................................................................... 6 

EQUATION 2-3 ......................................................................................................................................................... 7 

EQUATION 2-4 ......................................................................................................................................................... 7 

EQUATION 2-5 ......................................................................................................................................................... 7 

EQUATION 2-6 ......................................................................................................................................................... 8 

EQUATION 2-7 ......................................................................................................................................................... 8 

EQUATION 2-8 ......................................................................................................................................................... 8 

EQUATION 2-9 ......................................................................................................................................................... 9 

EQUATION 2-10 ..................................................................................................................................................... 10 

EQUATION 2-11 ..................................................................................................................................................... 10 

EQUATION 2-12 ..................................................................................................................................................... 10 

EQUATION 2-13 ..................................................................................................................................................... 10 

EQUATION 2-14 ..................................................................................................................................................... 11 

EQUATION 2-15 ..................................................................................................................................................... 11 

EQUATION 2-16 ..................................................................................................................................................... 11 

EQUATION 2-17 ..................................................................................................................................................... 12 

EQUATION 2-18 ..................................................................................................................................................... 12 

EQUATION 2-19 ..................................................................................................................................................... 13 

EQUATION 2-20 ..................................................................................................................................................... 13 

EQUATION 2-21 ..................................................................................................................................................... 13 

EQUATION 2-22 ..................................................................................................................................................... 14 

EQUATION 2-23 ..................................................................................................................................................... 14 

EQUATION 2-24 ..................................................................................................................................................... 14 

EQUATION 2-25 ..................................................................................................................................................... 15 

EQUATION 2-26 ..................................................................................................................................................... 15 

EQUATION 2-27 ..................................................................................................................................................... 16 

EQUATION 2-28 ..................................................................................................................................................... 16 

EQUATION 2-29 ..................................................................................................................................................... 16 

EQUATION 2-30 ..................................................................................................................................................... 16 

EQUATION 2-31 ..................................................................................................................................................... 16 

EQUATION 2-32 ..................................................................................................................................................... 17 

EQUATION 2-33 ..................................................................................................................................................... 18 

EQUATION 2-34 ..................................................................................................................................................... 18 

EQUATION 2-35 ..................................................................................................................................................... 18 

EQUATION 2-36 ..................................................................................................................................................... 18 

EQUATION 2-37 ..................................................................................................................................................... 18 

EQUATION 2-38 ..................................................................................................................................................... 19 

EQUATION 2-39 ..................................................................................................................................................... 19 

EQUATION 2-40 ..................................................................................................................................................... 19 

  



IX 

 

 

 

 

EQUATION 3-1 ....................................................................................................................................................... 23 

EQUATION 3-2 ....................................................................................................................................................... 23 

EQUATION 3-3 ....................................................................................................................................................... 24 

EQUATION 3-4 ....................................................................................................................................................... 24 

EQUATION 3-5 ....................................................................................................................................................... 25 

EQUATION 3-6 ....................................................................................................................................................... 25 

EQUATION 3-7 ....................................................................................................................................................... 26 

EQUATION 3-8 ....................................................................................................................................................... 27 

EQUATION 4-1 ....................................................................................................................................................... 30 

EQUATION 4-2 ....................................................................................................................................................... 30 

EQUATION 4-3 ....................................................................................................................................................... 31 

EQUATION 4-4 ....................................................................................................................................................... 31 

EQUATION 4-5 ....................................................................................................................................................... 31 

EQUATION 4-6 ....................................................................................................................................................... 31 

EQUATION 4-7 ....................................................................................................................................................... 31 

 

  



X 

 

Table of contents 
 

Abstract ................................................................................................................................................... II 

Acknowledgements ............................................................................................................................... III 

Nomenclature ........................................................................................................................................ IV 

List of figures ........................................................................................................................................ VI 

List of tables .......................................................................................................................................... VI 

List of plots ........................................................................................................................................... VII 

List of equations ................................................................................................................................. VIII 

Chapter 1 INTRODUCTION ............................................................................................................... 1 

1.1 Motivation and problem description ....................................................................................... 2 

1.2 Objective and scope ................................................................................................................. 2 

Chapter 2 RHEOLOGY THEORY ...................................................................................................... 4 

2.1 Types of flow........................................................................................................................... 4 

2.2 Newtonian fluids ..................................................................................................................... 5 

2.3 Bingham Plastic ....................................................................................................................... 8 

2.3.1 The coaxial cylinder rotational viscometer ................................................................... 11 

2.3.2 The Couette type viscometer – a direct indicating viscometer ...................................... 12 

2.3.3 Viscosity at low shear rates ........................................................................................... 14 

2.4 Power law .............................................................................................................................. 15 

2.5 Herschel-Bulkley ................................................................................................................... 16 

2.6 Influence of temperature and pressure on the rheology ........................................................ 17 

2.7 Pressure calculations for Dual DP plots ................................................................................ 17 

Chapter 3 METHODOLOGY ............................................................................................................ 20 

3.0.1  Fluid calibration Check ................................................................................................. 20 

3.1 Fann
®
 35 ................................................................................................................................ 21 

3.1.1 Lab tests ......................................................................................................................... 22 

3.1.2 Simulations .................................................................................................................... 24 

3.2 Dual DP ................................................................................................................................. 26 

  



XI 

 

 

 

Chapter 4 FANN
®
 35 ......................................................................................................................... 29 

4.1 Simulations ............................................................................................................................ 29 

4.1.1 Calibration fluid – 100 centipoise ................................................................................. 32 

4.1.2 Calibration fluid – 50 centipoise ................................................................................... 33 

4.1.3 Calibration fluid – 20 centipoise ................................................................................... 34 

4.2 Lab ......................................................................................................................................... 36 

4.2.1 Calibration check ........................................................................................................... 36 

4.2.2 Lab tests ......................................................................................................................... 37 

4.3 Discussion ............................................................................................................................. 40 

Chapter 5 DUAL DP .......................................................................................................................... 42 

5.1  Differential pressure .............................................................................................................. 42 

5.2  Density .................................................................................................................................. 46 

5.3  Dynamic viscosity ................................................................................................................. 47 

5.4  Friction factor and Reynolds number .................................................................................... 48 

5.5 Discussion ............................................................................................................................. 49 

Chapter 6 A review of the economic benefits .................................................................................... 50 

Chapter 7 Summary and further study ............................................................................................... 51 

Appendix A ........................................................................................................................................... 52 

Appendix B ........................................................................................................................................... 53 

References ............................................................................................................................................. 55 

 



1 

 

Chapter 1 INTRODUCTION 
 

During drilling operations the borehole needs drilling fluid, more commonly called “mud”, to keep the 

pressure of the well stable. The mud will also lubricate the drill bit and bring the cuttings out of the 

way and up to the surface. All this needs to be done without damaging the borehole, as well as the 

environment above and around the drilling facility. To keep control of the stability of the well there 

are five basic properties that need constant monitoring during the drilling operation; density, rheology, 

fluid loss, solids content and chemical properties [1]. In this thesis, only density and rheology are 

taken into consideration. 

Today the drilling fluid evaluation procedure is generally conducted manually by mud engineers. 

These engineers need proper training and courses to execute this type of work. The time spent on 

manual work may cause operational stops, and the consequences of entering the wrong results in the 

mud report, can be great [2]. Also, as the petroleum industry is redirecting the work to new areas with 

more unstable formations, the need for a continuous update on the drilling fluids properties is highly 

necessary. An automated system will provide a more reliable monitoring system which will result in 

better well control during drilling operations [3]. The main driving force for implementing this 

automated system is that it provides a cost effective drilling operation, as well as the employee safety 

against exposure is improved and the system is more reliable in general. [1; 2]. 

When the drilling fluid is tested, the rig crew calculates the necessity of the different components and 

adjusts the fluid accordingly, to maintain the stability of the fluid. There are new ways to automate this 

process, and previous students of the University of Stavanger have been working on a new flow loop 

that can be used for such purposes. The Dual DP is a flow system with dual differential pressure 

sensors on a horizontal and a vertical profile. The system is built to measure the differential pressure 

from one sensor to the next along the profile. From these measurements, the apparent viscosity and 

density can be calculated [4]. 

The Fann
®
 35 is the most common viscometer used in the oil industry for measuring the rheology of a 

drilling fluid [5]. This type of viscometer is used both in the research process as well as during 

production due to the wide range of application; the viscometer gives rheology values for both 

Newtonian and non-Newtonian fluids. The standard Fann
®
 35 viscometer is equipped with an R1 rotor 

sleeve, a B1 bob and an F1 torsion spring, but there are several combinations of these three available 

for further testing [6]. The drilling fluid probably represents around 5% to 15% of the total costs of 

drilling a well, meaning it is a big part of the drilling costs. An automated system might lower the 

costs by providing a more accurate and an enhanced drilling performance [1]. 
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1.1 Motivation and problem description 

The drilling industry faces new challenges as the years go by and more and more of the oil in place is 

extracted from the reservoirs. Further, this means that the search field is expanding to new areas and 

the drilling operations may become more complex. When drilling through a more complex formation, 

the drilling fluid needs to fulfill certain demands to make sure the borehole stays intact. The evaluation 

of drilling fluids will be harder, and the margin of error becomes smaller. The need for an automated 

drilling fluid system is growing as the complexity of the fluids grows and continuous monitoring is 

essential to keep the fluids characteristics in order. 

The University of Stavanger has together with Statoil, IRIS and NTNU, started to look at a new 

method of automatically testing the properties of drilling fluids in motion. The method consists of a 

flow loop with four pressure sensors connected giving the horizontal and the vertical differential 

pressure. The “Dual DP” system was built by former students at the university, which makes the 

project very interesting. The system has only been tested with water so far, and the most desirable 

thing to do next is to test how the system behaves when a fluid with different characteristics than water 

is applied.  

Today, the drilling fluid evaluation is mostly performed manually with the Fann
®
 35 rheometer. When 

using the Fann
®
 35 viscometer to measure the rheology of a fluid, there is an uncertainty in the 

readings of the lower speeds. The misreading of the Fann
®
 35 dial may lead to misinformation which 

can affect what engineers choose to do next. The thesis tries to shine a light on these misreadings, and 

looking at ways to improve them. Hopefully, the results collected here may contribute to the Dual DP 

project in some way in a later study. 

 

1.2 Objective and scope  

The main objectives of this thesis are; 

- Perform a literature survey on drilling fluid evaluation 

- Look at the functionality of the viscometer Fann
®
 35 with three different springs 

- Get to know the Dual DP system and its functional application area and further give an 

explanation of how to operate the system 

- Shortly elaborate on the economic consequences of changing to an automated drilling mud 

system 
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The literature study of this thesis has mostly been provided by the thesis supervisor, but also from the 

university library and several verified sources online. 

The University of Stavanger provided two labs for the practical part of the thesis; the drilling fluids lab 

and the fluid flow lab. The mixing and testing regarding the Fann
®
 35 is executed in the drilling fluids 

lab and the Dual DP tests in the fluid flow lab.  

Three Fann
®
 35 rheometers were delivered from Phoenix Trading AS. The rheometers were delivered 

with a certain modification; the rheometers were equipped with three different springs together with an 

associated calibration fluid for two of them. 

The Dual DP system and its coherent theory was presented through the previous work of Kurt Louis 

Krogsæter, an MSc student graduated 2013 from the University of Stavanger.  
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Chapter 2 RHEOLOGY THEORY 
 

The drilling fluid systems are many and complex, and one important aspect of evaluating the drilling 

fluids properties is to look at the viscosity. This is very important because it is vital for the well 

development that the drilling fluid remains intact during operations to prevent cave-ins, collapses etc. 

The viscosity is evaluated by measuring its rheology; the study of the flow of matter. The rheology has 

developed greatly within the liquid phase flow. There are two main relationships; the laminar flow 

regime (low flow velocities) and the turbulent flow regime (high flow velocities). A laminar flow 

regime has an orderly flow, which means that it is possible to look at the relationship between pressure 

and velocity as a function of the viscous properties of a fluid. With a turbulent flow regime the flow is 

disorderly and therefore the equations become empirical as the inertial properties of the flow are used 

[7]. 

2.1 Types of flow 

There are four important flow models when looking at drilling fluid theory; the Newtonian, the 

Bingham plastic, the pseudoplastic and the dilatant. The curves of these flow models are illustrated in 

Figure 1. The dilatant is of little importance to this thesis, as no shear thickening fluid is used in 

drilling fluid technology. The three other models are fundamentally important within drilling fluid 

theory. They give the equations of the behavior relative to the characteristics of the drilling fluid itself. 

Most of the drilling fluids fall into a mix of these flow models, making it difficult to decide only one. 

The flow models give an impression of the behavior of the drilling mud, which is sufficient when 

evaluating it practically and further get a simulation coherent enough. The flow models are shown as 

curves, where shear stress is plotted against shear rate, or the flow pressure is plotted against the flow 

rate [7]. 
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The different types of flows reveal different trends on the consistency diagram; the Newtonian has a 

straight line from origin, while the two other flow models are curved; pseudoplastic is shear thinning 

and dilatant is shear thickening, see Figure 1 below. 

 

Figure 1 – Consistency curves showing three types of fluid flows 

 

2.2 Newtonian fluids 

The force of a fluid flow   divided by the flow area    gives the shear stress, and it is further 

expressed with the shear rate  
  

  
 and the frictional resistance to movement in the fluid itself viscosity 

  in Equation 2-1. 

  

  
     

  

  
                                    Equation 2-1   
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The Newtonian fluid consistency curve is, as mentioned above, a straight line through the origin. The 

slope of the line is defined as the fluid‟s viscosity; 

   
 

 
 

                                         Equation 2-2 

where shear stress   is divided by shear rate  . The special thing with the Newtonian fluid is that 

having only one parameter, the viscosity  , is sufficient to characterize the flow behavior of the fluid, 

as shown in Figure 2. 

 

Figure 2 – Consistency curve of a Newtonian fluid 

 

A Newtonian fluid passing through a pipe will automatically create a parabolic velocity profile as seen 

in Figure 3. The velocity profile takes this form because of the tension from the wall of the pipe. The 

shear rate dv/dr varies along the parabolic feature, and it is represented by the slope at that specific 

point of interest along the profile, as illustrated in Figure 3. 

 

Figure 3 – Velocity profile in a pipe 
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The maximum shear rate is along the wall, where dr = 0. In the center of the pipe the shear rate is zero, 

as the slope of the parabolic feature is only represented by the dr. 

 

When looking at the overall pressure versus the flow rate in this pipe, a shear stress equation is 

generated; 

 
  

 

  
 
    

    
 
  

  
                                          Equation 2-3 

   

where   is the force exerted by the fluid,    is the cross sectional area of the pipe,    is the pressure,   

the length and   is the radius of the pipe. When substituting for the shear stress   as expressed in 

Equation 2-1, a new relationship is made; 

  

  

  
   

  

  
 

 

                                         Equation 2-4  

This relationship further leads to the following equation; 

 
  

     

   
                                          Equation 2-5 

where   is volumetric flow rate and   is the radius of the pipe. Equation 2-5 is also known as 

Poiseulle‟s laminar flow equation, for Newtonian fluids flowing through a pipe. See Gray and Darley, 

p. 185, for further information [7]. 
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2.3 Bingham Plastic 

The Bingham plastic flow model was chosen as the best alternative for describing drilling fluid 

behavior already in the early thirties. After analyzing the drilling fluid based on this law of flow, it was 

recognized as the best way to describe the laminar flow for most of the oil based drilling fluids [8]. 

The basic difference between a Bingham plastic fluid compared to the Newtonian, is that the Bingham 

plastic fluid needs a certain amount of initial stress to start flowing, while Newtonian flows right 

away. For an ideal Bingham plastic fluid the consistency curve will start at the initial shear stress τ0 

and then it will act like a Newtonian fluid, see Figure 4Figure 4. The equation of the Bingham plastic 

fluid is as followed; 

  

        
  

  
 

 

                                         Equation 2-6 

where    is the plastic viscosity. When solving for shear stress, the equation for the consistency curve 

is defined; 

  

                                                  Equation 2-7  

The difference between Newtonian and plastic flow becomes even clearer as the equation for plastic 

viscosity is defined; 

    
    
 

 
                                         Equation 2-8 

where   is the shear rate. To explain the total resistance of the plastic fluid the effective viscosity is a 

necessity. The effective viscosity consists of two parts; the plastic viscosity as defined above, and; 

structural viscosity, which is the resistance to movement due to the buildup of structures between the 

particles in the fluid. The structural viscosity is the part of the process where the shear stress is 

increasing but the fluid is not moving until a certain stress    is reached, as illustrated in Figure 4. 
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Figure 4 – Effective viscosity of a Bingham plastic fluid 

 

The plastic viscosity together with the structural viscosity leads to the equation; 

    
    
 

 
  
 
    

  
 

 
                                         Equation 2-9 

where    is the effective viscosity at a given shear rate  . Effective viscosity will not be helpful unless 

the shear rate is known, both parameters are necessary for defining the viscous properties of a fluid. 

 

For plastic flow in a pipe, the trend is to obtain the structural viscosity at first, followed by the 

movement of the fluid, now with a plastic viscosity. When gradually applying more pressure; it will 

take the form of a plug flow with radius R surrounded by a laminar flow with a varying velocity 

profile. In other words, the plug flow is a „cylinder‟ in the middle of the pipe, between this cylinder 

and the pipe wall there is a section of laminar flow.  
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Equation 2-3 expresses the shear stress in a pipe; and in this case the initial shear stress needed for the 

first movement is; 

 
   

   
  

                                        Equation 2-10 

where    is the initial pressure sufficient for movement, and   is the radius of the pipe. When applying 

even more pressure to the flow some of the plug flow will go over to the laminar flow phase, but there 

will always be a column of plug flow in the center. This is because P will increase when R decreases, 

and to get R = 0, P will have to become infinitely large. The consistency curve of a Bingham plastic 

will always be non-linear in a pipe system, but there are ways of approximating this curve. This is 

done by looking at the values along the curve when the flow rate is much higher. By making a straight 

line through these values back to the flow pressure axis, the line will cross the axis at 4/3 of   . An 

equation has been derived where the interception at 4/3 of    and the Poiseulle‟s equation was 

combined; 

 
  

   

    
(  

 

 
  (  

  
 

   
))                       Equation 2-11 

Substituting for P0=2Lτ0/r: 

 
  

   

     
(  

 

 
(
    

  
)  

 

 
(
    

  
)
 

)                       Equation 2-12  

Where   is the average velocity and   is the diameter of the pipe. The last part of Equation 2-12; 

 

 
(
    

  
)
 
, represents the area between the extended line and the curve. When looking at very high 

rates, this part can be excluded, as the significance will be too low. At very low rates the plug flow 

needs to be included in the equation. Plug flow is defined by; 

 
  

    

   
                                        Equation 2-13 

where   is a constant. For more information see Gray and Darley 1980, p 188-189 [7]. 
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2.3.1 The coaxial cylinder rotational viscometer  

The best way to determine plastic viscosity and the yield point is to use a coaxial cylinder rotation 

viscometer. The basic viscometer has an outer cup that rotates and inside an inner bob hangs in a wire, 

and the annulus between them is approximately 1 mm. When the cup is rotating, the bob experiences a 

drag around its own axis. This drag will continue until the resistance in the fluid is as big as the torque 

of the wire. When the bob has stopped, the rheology value can easily be read off at a dial. At this point 

the following equation applies; 

 
   

  

    
   

                                        Equation 2-14 

where    is the torque at yield point,    is the radius of the bob and    is the height of the bob. Further 

in the rotation process there will be a laminar flow in the annulus, starting from the bob going 

outwards. When all the fluid in the gap is in laminar flow the equation changes; 

 
   

  

    
   

                                        Equation 2-15 

where    is the critical torque and    is the radius inside the cup. When increasing the speed of the cup 

constantly, the torque will set on an equilibrium value, dependent on the rheological values of the 

fluid. The torque and speed will then have a proportional relationship creating a linear laminar flow of 

the annulus at   , as shown in Figure 5. This is defined by the Reiner-Riwlin equation: 

 
 ̅  

 

      
(
 

  
  

 

  
 )  

  
  
  
  
  

                       Equation 2-16 

where  ̅ is the angular velocity in radians per second and   is the corresponding torque. 
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Figure 5 – The consistency curve of a Bingham plastic flow  

 

2.3.2 The Couette type viscometer – a direct indicating viscometer  

The rotational viscometer used in this study is a direct-indicating viscometer designed by Savins and 

Roper [8]. This viscometer is based on their theory that the Reiner-Riwlin equation can be simplified 

to; 

 
   

      
 

                       Equation 2-17 

where   is the rotor speed in rpm and   is the dial reading. A and B are constants that include the 

necessary conversions factors, instrument dimensions, and the spring constant. Further the plastic 

viscosity is defined by; 

 
     ̅̅ ̅̅   (

     
     

)                       Equation 2-18 
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where    and    is the dial reading registered at the velocities    and    and   ̅̅ ̅̅  is the plastic 

viscosity. For the yield point   ̅̅̅̅ ; 

 
     ̅̅̅̅  

 

 
[    (

  
     

) (     ) ]                       Equation 2-19 

Now, the constants   and  , together with the velocities    and    were carefully selected so that; 

                                         

and the relationship between the two velocities are; 

         

under the given conditions that 

  

     
            

 

 
   

  
     

    

 

 

This further leads to that the equations; Equation 2-18 and Equation 2-19, becomes less complicated; 

  

  ̅̅ ̅̅                               Equation 2-20 

  

  ̅̅̅̅       ̅̅ ̅̅                         Equation 2-21 

To make this work the values of    and    were selected so that the value of     was 300 when the 

annulus width was 1 millimeter. Accordingly, the rotor speed    had to be 300 and   = 600 rpm. To 

make it possible to keep   = 300, the spring constant had to be 387 dyne centimeters per degree. Due 

to these specifications the PV is now in centipoise and the YP in pounds per 100 square feet. The 

readings from the direct-indicating viscometer can be used to find both the effective and apparent 

viscosity.  

 

1° dial reading = 1.067 
  

      
 = 5.11 

     

    
  Shear stress 

1 rpm = 1.703 reciprocal seconds  Shear rate 
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 poise per degree per rpm = 300 cP per degree per rpm = 

     

 
  Effective 

viscosity  

  ̅̅ ̅̅  
        
   

 
    
 

 
 Apparent 

viscosity 

 

The apparent viscosity is used as an alternative to the effective viscosity. 

 

2.3.3 Viscosity at low shear rates  

As mentioned earlier, Bingham plastic fluids will have a linear curve after laminar flow is developed 

in the annulus, which matches drilling fluids behavior perfectly at high rates. But at low rates the 

drilling fluids deviate from this theory when using a direct-indicating viscometer. The flow in the 

annulus is fully laminar when 

  

    
   

   ̅̅̅̅                        Equation 2-22 

When substituting for YP in the Equation 2-16; 

 
 ̅  

  ̅̅̅̅

   ̅̅ ̅̅
(
  
 

  
       

  
  
)                       Equation 2-23 

And by using the instrumental constant the equation is 

 
        

  ̅̅̅̅

  ̅̅ ̅̅
                       Equation 2-24 

where    is the lowest possible rpm for laminar flow. Viscosity also differs with the quantity, size and 

shape of particles in a drilling mud. In addition, the electrochemical environment will determine the 

interparticle forces. But these factors are only mentioned to give a better impression of the things that 

can influence the drilling fluids behavior. As the drilling fluids properties vary the consistency curve 

changes. Looking at only the YP and PV is not always sufficient to predict the degree of deviation 

from linearity and the way of the curve itself, this is better done with a viscometer. Although, it might 

be used in a drilling mud evaluation at the well site, as an indication of what treatment is needed to 

better the fluid‟s performance. The PV and YP can also help predict the laminar flow in pipes, by 

applying these values to Equation 2-12, but only for high rates. For more information see Gray and 

Darley p. 194 [7]. For low rates the effective viscosity is better determined by the power law. 
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2.4 Power law 

The power law is an empirical equation defined by; 

 
   (

  

  
)
 

                           Equation 2-25 

where   is the consistency index and   is the type of fluid, or the „flow behavior index‟. The 

consistency index corresponds to the viscosity of a Newtonian fluid, but it is expressed in dynes/cm
2
.  

Equation 2-25 gives the consistency curve of a pseudoplastic fluid. The typical pseudoplastic fluid has 

no yield point, meaning the curves intercept at the origin. But at high rates the stress readings can be 

noted and extrapolated back to the axis, giving a “yield point” which gives a resemblance to the 

Bingham plastic. The constant   gives the viscosity of a Newtonian fluid as mentioned, and the   

contains the degree of deviation from Newtonian behavior. If   is below 1, the fluid is a pseudoplastic 

fluid. When rearranging Equation 2-25, a logarithmic relationship appears; 

  

           (    )                       Equation 2-26 

which can be applied to a logarithmic plot giving a straight line as a function of the shear stress versus 

shear rate. The   will then represent the slope of the line and   is where the line intercepts the shear 

stress. 

 

Figure 6 – Logarithmic plot of an ideal power law consistency curve 
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It is possible to find the   by using values from two known points along the line;  

 
  

           
           

                       Equation 2-27 

To find K either one of the equations below are applicable; 

  

                  
 

                      Equation 2-28                 

   
  
  
  

                      Equation 2-29 

And further the effective viscosity of the pseudoplastic fluid is defined by;  

 
   

 

 
 
   

 
                             Equation 2-30 

 

2.5 Herschel-Bulkley 

Most of the drilling fluids used today do not fall into only one of the flow models above. They are a 

mix of the ideal Bingham plastic and the ideal power law. This modified power law is constructed to 

cover the more diverse fluids. These fluids do not have a linear logarithmic line, nor constant n and K 

values, which makes it difficult to explain their flow behavior with only the Bingham plastic or the 

power law [7]. The Herschel-Bulkley flow model is a combination of these two flow models, and it is 

also known as the yield power law [9]: 

  

       
                        Equation 2-31 

This model applies more to the flow in pipes than the flow in a Couette-type viscometer, where the 

Bingham plastic is better. The Herschel-Bulkley describes measured data best.  
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2.6 Influence of temperature and pressure on the rheology 

The rheological properties of the drilling fluid may change due to temperature and pressure differences 

in the well. Both the temperature and the pressure will change along the path of the drilling mud. The 

physically, chemically and electrochemically properties of the fluid, are the properties who are most 

commonly influenced by these parameter changes. The changes of the parameters will bring changes 

to the characteristics of the fluid; the viscosity depends on both temperature and pressure, it decreases 

when the temperature increases. An increase in pressure will generate a higher viscosity due to a 

denser fluid. When mud reaches certain temperatures the chemical characteristics of the fluid will 

change. One possible reaction is that hydroxides will react with clay minerals, which usually happens 

when the mud reaches a temperature above 94°C. The electrochemical changes are based on how good 

the ionic connections between the particles are; with higher temperatures the ionic activity increases 

making the particles attract or repulse each other, which will influence how the rheological features 

are. 

 

2.7 Pressure calculations for Dual DP plots 

The pressure loss calculations will briefly be mentioned in this thesis, with focusing only on the 

equations needed to get the desired plots. For more information concerning this theory see 

Krogsæter‟s Master Thesis, 2013 [10]. 

The Dual DP system is a flow loop with four pressure sensors installed. The pressure sensors gather 

information which can be used to make several plots through MATLAB
®
. The following calculations 

are based on the assumption that the fluid is a Newtonian fluid. The pump pressure    is defined by; 

 

  

                              Equation 2-32 

where    is the density of the fluid,   is the gravitational acceleration constant and   is the length of 

the pipe.  
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In addition, the pump pressure is a sum of two pressure components; the dynamic fluid pressure loss 

   and the hydrostatic pressure   ; 

  

                               Equation 2-33 

where the dynamic fluid pressure loss is further defined by; 

  

                                     Equation 2-34 

and the hydrostatic pressure is defined by; 

  

                              Equation 2-35 

The       is the vertical differential pressure,       is the horizontal differential pressure and    is 

the density of the silicone oil found in the pressure sensors. As mentioned earlier in section 2.2 the 

fluid velocity is;  

 
  

 

 
                       Equation 2-36 

which is a less complicated version of Equation 2-5, with main focus on the velocity. Further there are 

several equations to calculate the remaining properties: 

The Reynolds number: 

 
   

  

 
 
    

 
                       Equation 2-37 

where    is the kinematic viscosity, which is the viscosity of a fluid divided by its density, as seen in 

Equation 2-37.    is still the fluid velocity and   is the diameter of the pipe. The Reynolds number is a 

dimensionless quantity, and this quantity gives the ratio of the inertial forces to viscous forces. 
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The friction factor for laminar flow: 

 
     

  

  
                       Equation 2-38 

which is the Darcy/Moody friction factor and is applicable for Re < 2300, above this the flow is 

turbulent and the friction factor is then 

 
 

√     
          [(

 
 
   
)

    

 
   

  
] 

                      Equation 2-39 

 

And friction loss through the pipe: 

 
   

     
 

  
                       Equation 2-40 
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Chapter 3 METHODOLOGY 

 

The practical part of the thesis was divided into two groups; Fann
®
 35 and Dual DP, both with 

assignments in form of lab work. The Fann
®
 35 lab assignment involved both mixing and testing of 

certain fluids. These fluids were KCl brines with different amounts of DUO-TEC NS added to the 

brine. The M-I SWACO product DUO-TEC NS is a viscosifier of xanthan gum. This viscosifier gives 

the fluid shear thinning characteristics [11], meaning the fluids mixed at the lab are non-Newtonian. 

The brine was mixed in two separate volumes; one with a specific gravity, or „SG‟, of 1.05 and 

another with 1.15. These brines were then split in three parts and different amounts of DUO-TEC NS  

were added, giving a total of six mixes, see Table 1. 

 

 

Table 1 – Overview of the six mixes 

The components of the mixes were carefully chosen for such reason that they can easily be disposed 

down the drain after the testing on the Dual DP system is performed. Although the Dual DP testing in 

this thesis was solely with water, the mixes were made as plausible fluids for next year‟s Dual DP lab. 

 

3.0.1  Fluid calibration Check  

The three different Fann
®
 35 rheometers were checked before use, to see if the calibrations were 

correct. They were performed after point 6.2 in the instructions in the “Model 35 Viscometer – 

Instruction Manual” by Fann Instrument company. The two rheometers with springs F0.2 and F0.5 

were delivered with two calibration fluids, respectively 20cP and 50cP viscosities. For the last 

rheometer with F1 spring, a calibration fluid of 100cP was used. For the rheometer to pass the check, 

the 300 and 600 rpm reading should give a value at the given temperature that is within ± 1,5cP the 

original viscosity from the calibration paper. Also the 600 rpm reading divided by 1.98 was compared 

to the chart value.  

MIX NO. SG KCl BRINE

1

2

3

4

5

6

1,05

1,15

DUOTEC NS (g/l)

1

2

4

1

2

4
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3.1 Fann
®
 35 

The Fann
®
 35 viscometer is an instrument for measuring the rheological properties of both Newtonian 

and non-Newtonian fluids. The Fann
®
 35 is driven by a motor (1) in the back, as seen in Figure 7. This 

motor can be driven by two main gears by using the gear shift on the right hand side, but in this thesis 

only one gear was available. The steel cup (2) that comes with the rheometer were used only for the 

calibration fluid checks, during the rheologies of the other mixes, thermo cups were used. The red 

knob on top (3) is a secondary gear shift; this can operate while the motor is running unlike the other 

gear shift that require full stop. When the knob is down, 600 and 300 rpm is available, at top position; 

200 and 100 rpm, and in a middle position; 6 and 3 rpm. Inside the cap (4) the torsion spring is 

located. The torsion springs react differently after how much torque they can handle. The 

measurement of this torque can be read off the reading dial (5). In the middle of the steel cup a 

cylinder (6) is located; this cylinder is a complete cylinder except from the access holes, where the 

fluid can move through freely. These access holes are the two small holes visible right next to the 

number 6 in the figure. The cylinder follows the movement of the motor, while the bob (7) is moved 

only by the fluid itself. The displacement of this bob is what will show on the reading dial, and how 

much it can endure is up to the sensitivity of the spring. 
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Figure 7 - Fann® 35 viscometer M35A  – modified figure from Fann 35 Instruction Manual [6]       

 

3.1.1 Lab tests 

The rheometer used in this study is built to measure at six different speeds, from 600 rpm at the 

highest to 3 rpm at the lowest. The most common design of a Fann
®
 35 viscometer includes a B1 bob, 

R1 rotor sleeve and F1 torsion spring. There are possibilities of changing the rotor, bob and spring in 

several combinations to measure the rheology at other ranges, either by extending the torque 

measuring ranges or to increase the sensitivity of the instrument [6]. In this study the torsion springs 

F0.2 and F0.5 is applied in addition to F1, to broaden the shear stress ranges. The rheologies are 

measured at several temperatures to give an overview of how rheological features vary with different 

temperatures. 

The Fann
®
 35 is a Couette rotational viscometer, which is explained already in section 2.3.2. A brief 

summary of the most important aspects will be given in this section: It has a bob inside the rotor 

sleeve leaving a small gap between the two, the shear gap or „annular space‟. When the rotor is 

circulating, it is giving a certain drag of the mud. The mud then creates a torque on the bob which can 
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be observed on the dial at the top of the rheometer. The results observed combined with the associated 

speed gives the consistency curve; shear rate versus shear stress [6]. 

The basic rheology is tested on a Fann
®
 35 rheometer with F1-spring at 50°C. In this thesis three 

Fann
®
 35 rheometers with different springs are applied. The springs are F0.2, F0.5 and F1, meaning 

the only differences of the viscometers are that the torsion springs are replaced in two of them. Figure 

8 gives an impression of how to change the torsion spring on a Fann
®
 35 rheometer. 

 

Figure 8 – The torsion spring location, edited figure from Fann® 35 Instruction Manual [6] 

The six mixes were tested on every rheometer at three different temperatures: 25°C, 35°C and 50°C. 

The yield point YP and plastic viscosity PV can be calculated and added to the results if required. The 

plastic viscosity gives the slope of a straight line and it is based on the readings at 600 rpm and 300 

rpm. 

  

  (  )            
                                         Equation 3-1 

While the yield point gives the theoretical point of where the straight line would intercept the vertical 

axis: 

 
  (

  

   
)                                                   Equation 3-2 

These equations are exactly the same as Equation 2-20 and Equation 2-21 in section 2.3.2, but with 

different symbols. 

  

Torsion  spring 
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3.1.2 Simulations 

The method of the simulations is taken from the paper from Savins and Roper 1954[8] combined with 

the lecture note; “PET525 Drilling Automation – Exercise 1”[9] from the class of drilling automation 

at the University of Stavanger. Simulations were generated in MATLAB
®
 to show the relationship 

between speeds in rpm ( ) versus dial readings ( ) and also shear rate ( ) versus shear stress ( ). 

The plots of the results from the viscometer are given by the simplified Reiner-Riwlin Equation 2-17, 

and when solving for the dial reading the equation looks like this: 

 
  

       

 
                         Equation 3-3 

Which gives a curve where the slope is  
  

 
  and the intercept on the vertical axis is  

   

 
. The 

expression for the constant A is as followed; 

  

                               Equation 3-4 

where    is the spring constant. This constant will vary through the several simulations as there are 

three different springs in the rheometers. The theoretical value of the F1 spring constant is 363 dyne-

cm per deg. But as the table underneath shows, the spring constant of an F1 spring is set to 386 dyne-

cm per deg, which is a correction for the bob end effects.  

 

 

Table 2 – Torsion spring constants,  from “PET525 Drilling Automation – Exercise 1” [9] 
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The true value of the constant A is determined after calibrating the rheometer with a Newtonian fluid 

to see if there are any end effects of the bob-rotor design. What may vary is the   , which is the bob-

rotor geometry constant defined by Savins 1954[8] and also by Kelessidis 2010[12], and is defined; 

 
   

(   )(  )

   (     )
(
 

  
  

 

  
 )                         Equation 3-5 

   is the length of the side of the bob,    is the radius of the bob and     is the radius of the cylinder.    

is the correction factor. The constant   is given by 

 
  

(   )(  )

(        )  
    

  
  

                         Equation 3-6 

Where 0.20886 is the factor used when converting dynes/cm
2
 to lb/100ft

2
. Calibration standards do not 

affect this constant meaning it will remain the same through the simulations.  

The standard parameters of the Fann
®
 35 rheometer are as given in the table below; where“R0” is the 

same as    , “Ri”  is the     and “L” is the   . The values of these parameters at “R1 B1” are used in 

the simulation, the whole MATLAB
®
 code is enclosed in Appendix B.  

 

 

Table 3 – The rotor and bob combinations and their associated constants [9] 
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In the simulations the viscosity is expressed; 

 
  

 

 
   

 

 
 
        

   
                         Equation 3-7 

Where    is the total instrument constant,   is the spring constant also called    or    in the 

MATLAB
®
 code. 100 is the conversion factor between poise and centipoise,   is the dial reading, N is 

the rate of revolutions of the outer cylinder and    and    is explained in Table 4. 

 

Table 4 – The rotor and bob combinations with the overall instrument constant [9] 

 

3.2 Dual DP 

Previous work of Kurt Louis Krogsæter states that the Dual DP is a flow loop generated by students at 

the University of Stavanger. In 2011, Torsvik built a small scale drilling rig operated through a PC by 

using Simulink
®
 – a modeling program. In 2012 Wang optimized the rig to a MPD rig and Hansen 

added the differential pressure transmitters. Finally, in 2013, Krogsæter expanded the application area 

of the data monitored; rheological parameters, friction factor and the density of the fluid were 

registered and plotted [10].  

The flow loop has a horizontal pipe followed by a vertical pipe as illustrated in Figure 9. The loop is 

connected to a pump which drives the fluid flow through the system. On the loop there is a tank which 

holds the fluid; in this case water. If any other fluids were to be tested on this loop, it would have to be 

easy to clean, as particles may settle, or they may react with the tank etc. The several valves of the 

system connect the flow to the desired path. Two pressure monitors are mounted on the horizontal 

pipe; H1 and H2. Likewise on the vertical pipe there are two monitors; V1 and V2.  
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Figure 9 – Dual DP flow loop 

The loop used in this thesis is the 24 mm loop, after examining the stability of Krogsæter‟s results 

[10]. By using Simulink
®
 in MATLAB

®
 the pump receives orders to either start or stop, in addition the 

pump rates can be set manually in this control window. When adjusting the pump rates they are 

chosen as a percentage of the maximum pump rate, which is 14 m
3
/h. In this thesis the pump rates 

ranges from 0.1% to 0.35% with steps of 0.5%. To adjust from m
3
/h to m

3
/s and at the same time 

calculate the actual rate from the percentage, Equation 3-8 is applicable; 

 
  

               

    
                         Equation 3-8 
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The Dual DP testing were initiated by following the steps of Krogsæters “Operating Procedures”, 

which is also found in Appendix A. In this thesis a total of six tests were performed, see Table 5. 

 

Table 5 – Overview of the six tests performed and the coherent pump rate in % and m3/s 

The data from these tests were collected and compared. The plots generated from these data sets are 

based on differential pressure measurements the horizontal pipe, and from the vertical pipe. The most 

important and interesting properties; density and dynamic viscosity are plotted, in addition to the 

differential pressure itself, the friction factor and the Reynolds number. 

  

Matlab name Test1 Test2 Test3 Test4 Test5 Test6

Pump pressure % of maximum 0,1 0,15 0,2 0,25 0,3 0,35

Pump pressure m³/s 0,000389 0,000583 0,000778 0,000972 0,001167 0,001361
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Chapter 4 FANN
®
 35 

 

This chapter contains the results of the tests regarding the rheologies tested on the Fann
®
 35 

rheometer. The results are divided into two main groups; Simulations and Lab. The simulations of the 

calibration fluids were performed in MATLAB
®
. And the lab work was done at the fluids lab at the 

University of Stavanger. 

 

4.1  Simulations  

The simulations were performed with the intention of looking at the differences of the rheology data 

the calibration fluids reveals. There were in total nine simulations whose values are shown in Table 6. 

The calibration fluids are Newtonian, so the plot will show a line decreasing with speed. 

 

Table 6 – Values calculated through simulations in MATLAB® 

In order to make these simulations, the base values for the MATLAB
®
 code was needed. The 

calibration fluids were tested at the lab and entered at the “theta_Fann-real” in the code as seen in 

Appendix B. The gathered data from the rheologies are registered in Table 7. 

 

Table 7 – Calibration fluids tested in the lab, three fluids on three different rheometers 

Calibration

Viscosity 20 cP 50 cP 100 cP 20 cP 50 cP 100 cP 20 cP 50 cP 100 cP 

600 rpm 40 100 200 80 200 400 200 500 1000

300 rpm 20 50 100 40 100 200 100 250 500

200 rpm 13,33 33,33 66,66 26,66 66,66 133,33 66,66 166,66 333

100 rpm 6,66 16,66 33,33 13,33 33,33 66,66 33,33 83,33 166,7

6 rpm 0,4 1 2 0,8 2 4 2 5 10

3 rpm 0,2 0,5 1 0,4 1 2 1 2,5 5

Rheometer with F1 Rheometer with F0.5 Rheometer with  F0.2

Values calculated through simulations in MATLAB®

Calibration

Viscosity 20 cP 50 cP 100 cP 20 cP 50 cP 100 cP 20 cP 50 cP 100 cP 

600 rpm 43,5 107 214,5 83 210 - 209 - -

300 rpm 22,5 54,5 109,5 42 106 214 105 268 -

200 rpm 15 36,5 73,5 28 70,5 142 70 178,5 -

100 rpm 7,5 18,5 37 14 35,5 71 35,5 89,5 176

6 rpm 0,5 1,5 2,5 1 2 4,5 3 6 10,75

3 rpm 0,5 0,5 1,25 0,5 1 2,5 2 3,5 5,5

Readings collected at the lab

Rheometer with F1 Rheometer with F0.5 Rheometer with  F0.2
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The differences between the simulated data and lab data were then compared in Table 8. The results in 

this table come from when values in Table 6 are subtracted from Table 7. These values of difference 

show that the experimental data does not coincide completely with the simulated data. The largest 

difference of the measurable data is with F0.2 at 300 rpm and the 50 cP fluid, but when looking at the 

lower speeds; 6 and 3 rpm the difference is not that great. 

 

 

Table 8 – The difference between simulation data and lab data 

The rheometer with F1 spring was calibrated with a 100 cP calibration fluid, where θ300 is equal to the 

viscosity = 100 cP. The F0.5 spring was calibrated with a 50 cP fluid, but the θ300 is also showing 100. 

By dividing this with 2 it will be equal to the viscosity of the fluid. And likewise for the rheometer 

with F0.2 spring; it was calibrated with a 20 cP fluid, θ300 = 100; divide it by 5 and it equals the 

viscosity. By looking at the connections between the readings gathered from the three different 

rheometers, six equations have been generated. The connections made was that; if an F1 spring 

reading is 100%, then with the same fluid and a F0.5 spring which is 50 % more sensitive, the reading 

will increase accordingly. Likewise for the F0.2 spring which is five times more sensitive than the F1 

spring, giving readings five times larger than at the standard conditions. The relationship between the 

readings collected by testing the same fluid at three different rheometers is as followed; 

 
      

       
 

 
       
 

                         Equation 4-1 

where   is the speed of the rheometer. This connection further leads to equations that can be used to 

find readings across rheometers. From the rheometer with F0.2 spring, the expected value of the 

readings at the other two rheometers can be calculated at the equivalent speed. 

 
      

       

 
                         Equation 4-2 

Calibration

Viscosity 20 cP 50 cP 100 cP 20 cP 50 cP 100 cP 20 cP 50 cP 100 cP 

600 rpm 3,5 7 14,5 3 10 - 9 - -

300 rpm 2,5 4,5 9,5 2 6 14 5 18 -

200 rpm 1,67 3,17 6,84 1,34 3,84 8,67 3,34 11,84 -

100 rpm 0,84 1,84 3,67 0,67 2,17 4,34 2,17 6,17 9,3

6 rpm 0,1 0,5 0,5 0,2 0 0,5 1 1 0,75

3 rpm 0,3 0 0,25 0,1 0 0,5 1 1 0,5

Difference

Rheometer with F1 Rheometer with F0.5 Rheometer with  F0.2
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When the standard is with the F1 spring the relationship between F0.2 and F0.5 is 2/5 in this case, and 

for the F1 spring; 

  

    
     
 

 

 

 

                        Equation 4-3 

For the rheometer with F0.5 spring the expected value at F0.2 is: 

  

      
       

 
 

                        Equation 4-4 

And to find F1 by the value of F0.5; 

  

    
     
 

 

                        Equation 4-5 

This is also possible to do the other way, if the F1 values are known and it is necessary to know what 

the expected value will be on a more sensitive spring. In example, the F0.2 and F0.5 has a maximum 

of torque they can handle, as shown in Table 7, there are some speeds left out in the rheology, this is 

due to the fact that the spring might burst if applied to such torque. The reading dial only goes up to 

300, meaning all of the readings exceeding this value in Table 6 have not been tested on. To find the 

expected value of F0.2 from the values of F1; 

             
                        Equation 4-6 

And for the expected value of F0.5 from F1 values; 

  

            
                        Equation 4-7 
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There are two plots for every calibration fluid; speeds in rpm versus dial readings and shear rate versus 

shear stress. In the plots the expected results calculated in MATLAB
®
 is presented as blue rings and 

the measured results from the lab is presented as red rings. The whole MATLAB
®
 code for these 

simulations is found in Appendix B. The constants used in these simulations are 

 

Table 9 – Constants applied to the MATLAB® code 

The Ks-values are only used one at the time relative to which one is simulated. The Herschel-Bulkley 

components are set to n = 1 and τ0 = 0 for a Newtonian fluid. The K were selected after which fluid, 

100 cP = 1, 50 cP = 0,5 and 20 cP = 0,2. The following plots are all simulated on a “regular” 

rheometer, which is with spring F1.  

 

4.1.1 Calibration fluid – 100 centipoise 

First the 100 cP calibration fluid was simulated. In Plot 1 the dial readings correlate very well at the 

beginning, at the higher speeds, but 6 and 3 rpm there are some apparent deviations. The deviation is 

0,5 and 0,25 respectively, as seen in Table 8. But when studying the deviations of 600 and 300 rpm in 

the table; 14,5 and 9,5, the gap is much bigger. This is not showing in these plots as they are 

logarithmic. The simulations were also put in a shear rate versus shear stress plot, as the conversion 

from one plot to the other is fairly easy. 

 

Plot 1 – 100 cP calibration fluid – Viscometer speed versus Dial reading 
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Plot 2 –100 cP calibration fluid – Shear rate versus Shear stress 

 

4.1.2 Calibration fluid – 50 centipoise 

The next simulation was the 50 cP calibration fluid on the rheometer with the F1 spring. The lab 

results are coinciding with the simulation, except for at 6 rpm. The deviation looks big, but it is only 

0,5 rpm. The same point comes clear here, the lower the speed the less is needed for the deviation to 

stand out.  

 

Plot 3 – 50 cP calibration fluid – Viscometer speed versus Dial reading 
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Plot 4 – 50 cP calibration fluid – Shear rate versus Shear stress 

 

4.1.3 Calibration fluid – 20 centipoise 

The last simulation was the 20 cP calibration fluid on the rheometer with F1 spring. The 6 and 3 rpm 

are showing simulated values of 0,4 and 0,2 respectively. The lab results give the same value on the 

two; 0,5.  

 

Plot 5 – 20 cP calibration fluid – Viscometer speed versus Dial reading  
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Plot 6 – 20 cP calibration fluid – Shear rate versus Shear stress 
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4.2  Lab 

The lab tests were divided into two groups, first the calibration fluids were tested and then the six 

mixes were tested. The calibration fluids are of known viscosity and come with expected values, while 

the fluids mixed at the lab are unknown, and no calculations were performed prior to testing. 

 

4.2.1 Calibration check 

The rheometers were checked to see if the calibrations were good enough.  The following values were 

read: 

 

 

Table 10 – Calibration check results 

The viscosity of the fluid is the value read at 300 rpm [6], which is checked at “Viscosity equals θ300” 

in Table 10 – Calibration check result Below this line there is a “Viscosity at given temp”-slot, the 

values found here is the values from the sheet that comes along with the calibration fluid, the viscosity 

of the fluid is this noted value at the given temperature. The deviations show that for F1, the 300 rpm 

deviation was not within the limits of ±1,5 cP, but this might be because of the 100 cP fluid, which has 

not been checked on this rheometer before as it was sent separately. The rest of the calibration checks 

were all good. The two other calibration fluids were delivered together with the rheometers. 

 

Calibration F1 F0.5 F0.2

Viscosity 100 cP 50 cP 20 cP

Temp 21,6°C 21,6°C 21,7°C

600 rpm 207,5 207 200

300 rpm 106 104,5 101

200 rpm 71 69,5 67,5

100 rpm 36 34,5 34

Viscosity equals θ300 106 52,25 20,2

Viscosity at given temp 103,1 51,8 20,2

Check at:

300 rpm 2,9 0,45 0

600 rpm 1,20 -0,05 -0,01

Deviation
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4.2.2 Lab tests 

The six fluids mixed at the lab were all tested on the three different rheometers, at three different 

temperatures, leaving it to a total of 54 rheologies as displayed in Figure 10.  

 

Figure 10 – Overview of the rheologies performed at the lab 

The first mix was KCl brine with a specific gravity of 1,05 and 1 g/l DUOTEC NS. In Table 11 – Mix 

1: 1.05 KCl brine with 1 g/L DUOTEC NSTable 11 it is clear that the viscosity is low. With rheometer 

5 the viscosity is 4,5 at 24°C. By using Equation 4-3 and Equation 4-5 the new viscosities at the same 

temperature are 3,5 and 3,7 respectively, which is a bit lower than with the F1 spring. By looking at 

the whole rheologies at rheometer 5 they have a trend of decreasing the viscosity as the temperature 

increases, which is common for all the sets below. But when looking at the 6 rpm line at rheometer 5 

the succession is 0,5 – 1 – 0,5. The viscosity acts differently as it goes from low to high and then low 

again. By looking at the same line, but at rheometer 8, the results are as expected, with a succession of 

0,5 – 0,4 – 0,3 after converting to F1 spring.  

 

 

Table 11 – Mix 1: 1.05 KCl brine with 1 g/L DUOTEC NS 

The next table is of a 1,05 KCl brine with 2 g/l DOU-TEC NS added. This table shows the same 

problem of low – high – low readings at rheometer 4 revealing that the uncertainty is still present, 

although the viscosifier amount is doubled. Again this problem is not visible with the F0.2 spring. One 

Mix 1 RHEOMETER 5 WITH F 1 RHEOMETER 4 WITH F 0.5 RHEOMETER 8 WITH F 0.2

Temperature (°C) 25 35 50 25 35 50 25 35 50

Measured temp (°C) 24 35 49,2 24,1 35,5 50,2 24,1 34,9 50,4

600 rpm 6,5 6 5 11 10 8,5 29 25,5 21

300 rpm 4,5 4 3 7 6,5 5,5 18,5 16,5 13

200 rpm 3,5 3 2,5 5,5 5 4,5 15 13 10

100 rpm 2,5 2 2 3,5 3,5 3 10 8,5 7

6 rpm 0,5 1 0,5 1 1 0,5 2,5 2 1,5

3 rpm 0,5 0,5 0,5 0,5 0,5 0,5 1,5 1,5 1
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thing is easy to spot in this table; at 3 rpm with rheometer 5 the results are 1 – 1 – 1, while there is a 

difference when tested with the F0.2 spring; 1 – 0,9 – 0,7 after the conversion.  

 

Table 12 – Mix 1: 1.05 KCl brine with 2 g/L DUOTEC NS 

Table 13 is showing the results of mix 3; 1.05 KCl brine with 4 g/l DUO-TEC NS, the added amount 

is again doubled compared to the previous mix.  

 

Table 13 – Mix 1: 1.05 KCl brine with 4 g/L DUOTEC NS 

The next three mixes are with 1.15 KCl brine. The increase in the specific gravity of the fluid is 

revealing minor changes in rheologies.  In Table 14, mix 4 is showing similar rheology trends as mix 

1, at 50°C on rheometer 5 the results are all the same except for 6 rpm. But, when looking at the rest of 

the results there seem to be a decrease in rheology.  

 

Table 14 – Mix 1: 1.15 KCl brine with 1 g/L DUOTEC NS 

Mix 2 RHEOMETER 5 WITH F 1 RHEOMETER 4 WITH F 0.5 RHEOMETER 8 WITH F 0.2

Temperature (°C) 25 35 50 25 35 50 25 35 50

Measured temp (°C) 24,4 35,3 49,4 25,4 35,4 49,3 25,3 34 49,4

600 rpm 11 10 9 20,5 18,5 16,5 53,5 45 40

300 rpm 7 7 6 14 13 11,5 36 31,5 28

200 rpm 6,5 5,5 5 11 10,5 9,5 29,5 26 24

100 rpm 4,5 4 3,5 8 7,5 7 21 18,5 17,5

6 rpm 1,5 1,5 1 2 2,5 2 7 6 5

3 rpm 1 1 1 1,5 1,5 1 5 4,5 3,5

Mix 3 RHEOMETER 5 WITH F 1 RHEOMETER 4 WITH F 0.5 RHEOMETER 8 WITH F 0.2

Temperature (°C) 25 35 50 25 35 50 25 35 50

Measured temp (°C) 24,1 35,8 49,3 25 34,3 49,1 25 34,4 49

600 rpm 23 21 19 44 40 37 108,5 98,5 89

300 rpm 17 15,5 14,5 32,5 30,5 28 81 73 67,5

200 rpm 14,5 13,5 12,5 27,5 25,5 24 68,5 61,5 57,5

100 rpm 11 10,5 9,5 20,5 20 18,5 52,5 47 44,5

6 rpm 5 4,5 4 9 8,5 8 22,5 19,5 18

3 rpm 4 3,5 3,5 7 7 6 18,5 16,5 14,5

Mix 4 RHEOMETER 5 WITH F 1 RHEOMETER 4 WITH F 0.5 RHEOMETER 8 WITH F 0.2

Temperature (°C) 25 35 50 25 35 50 25 35 50

Measured temp (°C) 24,4 35,6 49,6 25,2 35 49,7 24,7 34,8 49

600 rpm 6 5,5 5 11 9,5 8,5 28,5 23 20,5

300 rpm 4 3,5 3 7 6 5,5 17,5 15 13

200 rpm 3 3 2,5 5 4,5 4 14 11,5 10

100 rpm 2 2 2 3 3 2,5 9,5 7,5 6,5

6 rpm 0,5 0,5 1 0,5 0,5 0,5 2,5 2 1,5

3 rpm 0,5 0,5 0,5 0,5 0,5 0,5 2 1 1
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Mix 5 can be compared to mix 2, due to the same amount of DUOTEC NS added. The changes are 

very small, with rheometer 5 the results are overall similar. Again with rheometer 8 the differences are 

bigger, but the thing that stands out here is that the rheology measured is actually lower with an 

increased SG, here it is around 3 dial readings lower than before.  

 

Table 15 – Mix 1: 1.15 KCl brine with 2 g/L DUOTEC NS 

The last mix was a mix of 1.15 KCl brine combined with 4 g/l DUO-TEC NS. Here the patterns are as 

expected with an increase in SG; the viscosity of the fluid is higher. The increase is very small, about 

0.5 dial readings for rheometer 5.  

 

Table 16 – Mix 1: 1.15 KCl brine with 4 g/L DUOTEC NS 

  

Mix 5 RHEOMETER 5 WITH F 1 RHEOMETER 4 WITH F 0.5 RHEOMETER 8 WITH F 0.2

Temperature (°C) 25 35 50 25 35 50 25 35 50

Measured temp (°C) 25,6 35,6 49 24,4 36 49,1 24,7 34,8 49,3

600 rpm 10,5 10 8,5 19,5 18 17 49,5 42,5 39

300 rpm 7 7 6 13 12,5 11,5 35,5 29 27,5

200 rpm 5,5 5,5 5 11,5 10 9,5 29 23,5 22

100 rpm 4 4 3,5 7,5 7 7 20,5 16 15

6 rpm 1,5 1,5 1 2 2 2 6 5 4

3 rpm 1 1 1 1,5 1 1,5 5 3,5 3

Mix 6 RHEOMETER 5 WITH F 1 RHEOMETER 4 WITH F 0.5 RHEOMETER 8 WITH F 0.2

Temperature (°C) 25 35 50 25 35 50 25 35 50

Measured temp (°C) 24,1 35,5 49,7 25 35,3 49,5 25,5 34,1 50,6

600 rpm 23,5 21,5 19,5 44,5 41,5 38,5 112 100,5 92

300 rpm 17,5 16 15 33 31 29 83 75 70

200 rpm 14,5 13,5 12,5 28 26,5 25 70 63 59

100 rpm 11 10,5 9,5 20,5 20 19 53 48 45,5

6 rpm 5,5 5 4 9 8,5 8 23 20 19

3 rpm 4 4 3,5 7 7 6,5 20,5 17 15
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4.3  Discussion 

The interesting part about the calibration fluid simulations was to see if the rheologies tested with an 

F0.2 spring were better than the rheologies tested with an F1spring at 6 and 3 rpm. For these values to 

be comparable the values of F0.2 would have to be five times higher than the value read on the dial, as 

the spring is five times more sensitive; 0.2 to 1. This is where the equations in section 4.1 come in. 

The equations are generated to give an expected value of what a certain dial reading would be by 

applying a spring with different sensitivity. In example; in Table 7 the rheometer with F0.2 spring and 

100 cP calibration fluid has a value of          = 10.75 for the 6 rpm reading, while the reading at the 

rheometer with F1 spring is       = 2.5. By using Equation 4-3, the calculated value of the 6 rpm 

reading at F1 is:            = 10.75/5 = 2.15. This value is close to 2.5, but it is even closer to 2. This 

can suggest that the readings of the F0.2 rheometer will give a more precise number at lower speeds, 

as the simulated value was 2. 

There are three tables in section 4.1; Table 6 – Values calculated through simulations in MATLAB
®
, 

Table 7 – Calibration fluids tested in the lab, three fluids on three different rheometers and Table 8 – 

The difference between simulation data and lab data. When looking at the differences in Table 8 – The 

difference between simulation data and lab data, the values vary, but in a controlled way. The greater 

the viscosity is the more it differs, and also by increasing the speed the difference will increase. At the 

lower speeds of 6 and 3 rpm, the differences are not that big, and these are the most interesting 

numbers as they reflect what happens in the annulus. The deviations at these speeds can be very small, 

but might matter a great deal in the big picture. So the question is; can this regular Fann
®
 35 be 

improved so that these numbers are more certain? The greater torque experienced by the spring the 

greater climb the dial read will have. The F0.2 rheometer will give better results, as the dial reading 

range is widened and the readings are easier to collect in general. After experience, there is a big 

uncertainty from 0 to 5 on the dial, as the impact is so small on a scale that seems to be unsuitable for 

giving proper readings. Also, at some occasions, the pointer showing the dial number might be slightly 

below zero, making a reading go from actually being 3.5 to 3. This problem will also be smaller as the 

deviation gap from zero will be divided by 5 automatically when applying the equations.  

The data of the calibration fluids were then used to make plots of the simulated and lab data. The plots 

revealed a pattern where the deviations at the lower speeds looked larger than at the higher speeds. 

Although, Table 17 below shows it differently, this table shows the percentage of deviation from the 

simulated value. The deviations are almost constant when looking at the percentage, but it is actually 

higher at the lower speeds, which the plots also reveal. When looking at the table, there are four 

marked values at the 100 cP calibration fluid rheologies; they are at the 6 and 3 rpm with the F1- and 

F0.2 spring. It is obvious in this case that using the F0.2 for these values are better. The lower 
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deviation percentage might indicate that the uncertainty of the dial readings decreases as the range of 

impact increases. 

 

Table 17 – Percentage of deviation from the simulated value 

Several of the readings collected at the lab show the same results for 6 and 3 rpm, which is incorrect 

according to the theory. There is a difference of these readings, but the equipment is not good enough 

to separate them. The human eye can only see and evaluate to a certain degree, in addition to a reading 

dial that only has marks for every whole number. An idea would be to change the dial, and make it 

easier to use. The dial could have marks for every half number, especially from 0 to 5. Or to get the 

dial closer to the reading window, by looking with one eye first and then the other, there is a 

difference of one or two dial reading points. This would be easier than giving every rheology tester 

directions to stand in a certain position and looking with the same eye. Another idea might be to use 

the rheometer with the F0.2 spring for the low speeds, and calculate it back to the value it would give 

with an F1 spring, which would be much easier than changing the whole setup of the equipment. 

In the tables of all the rheologies performed at the lab, Table 11 to Table 16, a few characteristics of 

the most common rheology test were revealed. There were successions showing low – high – low as 

the testing temperature increased. The expected behavior is high – lower – lowest, viscosity changes 

with temperature and there will be a reduction of the resistance in the fluid as the temperature 

increases. The error regarding this matter might occur when collecting the readings, which further 

means that there is a big uncertainty in the reading results that are collected by the human eye.  

The rheologies were compared in pairs of how much DOU-TEC NS was added to the mixes. Mix 1 

and 4 had 1 g/l viscosifier added to the brine; the dial readings of mix 4 revealed a lower rheology than 

mix 1. The first thought would be that as a fluid becomes heavier it should also give more resistance to 

movement, which clearly is not the case here. The same goes for mix 2 compared to mix 5 with 2 g/l 

of viscosifier; they show the same pattern with a decrease in viscosity. For the last two mixes; mix 3 

and 6, the pattern has changed; there is an increase in the patterns of the rheologies, meaning the 

thought might be true for some combinations of weight versus viscosity.   

  

Calibration

Viscosity 20 cP 50 cP 100 cP 20 cP 50 cP 100 cP 20 cP 50 cP 100 cP 

600 rpm 0,088 0,070 0,073 0,038 0,050 - 0,045 - -

300 rpm 0,125 0,090 0,095 0,050 0,060 0,070 0,050 0,072 -

200 rpm 0,125 0,095 0,103 0,050 0,058 0,065 0,050 0,071 -

100 rpm 0,126 0,110 0,110 0,050 0,065 0,065 0,065 0,074 0,056

6 rpm 0,250 0,500 0,250 0,250 0,000 0,125 0,500 0,200 0,075

3 rpm 1,500 0,000 0,250 0,250 0,000 0,250 1,000 0,400 0,100

% deviation

Rheometer with F1 Rheometer with F0.5 Rheometer with  F0.2
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Chapter 5 DUAL DP 

 

The Dual DP tests were performed at the fluid flow lab at the University of Stavanger. There were 

some test runs prior to the actual tests to see if the system functioned as expected. When test runs were 

approved, the six main tests were performed. The data from these tests were extracted from the 

computer and plots were generated through Simulink
®
 in MATLAB

®
. The plots have been divided 

into four groups; differential pressure, density, dynamic viscosity and friction factor together with the 

Reynolds number. The recommendation from Krogsæter [10] that the pump rate should not exceed 

0.2% of maximum rate, was discovered too late. There are some rates exceeding this value, giving 

results that go above 100 mBar, which is not visible in these plots as the readings stop at this point. 

  

5.1  Differential pressure 

The differential pressure readings are the basis of the calculations of the rest of the values. It is 

therefore important that these readings are good, if not, it would affect the other plots to a certain 

degree. The differential pressure measured in the horizontal pipe is presented in Plot 7. The readings 

were good as all of the readings have smooth lines with the same trend; they show an increased value 

of differential pressure as pump rate increases, which is as expected. The time frame of the tests were 

from 0s to somewhere in between 130-160s. 
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Plot 7 – Differential pressure in the horizontal pipe, mBar versus time in seconds 

The differential pressure of the vertical pipe is displayed in Plot 11Plot 8. The results are still good, 

meaning all of the sensors work as they should. The 0.15, 0.20 and 0.25 show a different trend in the 

beginning of the measurements. The differential pressure readings here are somewhat higher than in 

the horizontal section. 

 

Plot 8 – Differential pressure in the vertical pipe, mBar versus time in seconds 
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Plot 9 and Plot 10 is showing the basis of the previous plots. The voltage readings are collected 

directly from the pressure sensors and are recalculated to the pressure unit mBar. It is clear that the 

trends of the readings in these plots are similar to the trends of the lines in the previous plots; Plot 7 

and Plot 8.  

 

Plot 9 – Voltage readings in the horizontal pipe, volt versus time in seconds 

 

The voltage readings of the vertical section are showing an initial value of 1 volt for the 0.10, 0.30 and 

0.35 rates. 
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Plot 10 – Voltage readings in the vertical pipe, volt versus time in seconds 

At last there is a plot with both horizontal and vertical readings. Here it is clear that the vertical section 

has a bigger differential pressure than the horizontal. The difference of horizontal and vertical pipes is 

marked with an H for the horizontal differential pressure readings. The best results of these tests are 

the 0.10, 0.15, 0.20 and maybe the 0.25, as the two last readings go out of the pressure window of 100 

mBar.  

 

Plot 11 – Differential pressure in the horizontal- and vertical pipe, mBar versus time in seconds 
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5.2  Density 

The density is displayed in Plot 12. Every density curve has an irregular trend at the beginning of the 

test. Some straighten out faster than the others within 30 s, while others are linear at 110 s at the 

earliest. The densities vary within the density range of 950 to 1050 kg/m
3
. The density of water is 

around 998 kg/m
3
 at 20°C, which is the approximate temperature of the lab. The first and second 

reading show results closest to this value. The following two show values that are much higher than 

the theoretical density of water, while the two with highest pump pressure rate show a density that is 

lower.  

 

Plot 12 – Density in kg/m3 versus time in seconds 
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5.3  Dynamic viscosity 

The dynamic viscosity readings vary from 0.0003 to 0.0018 kg/m*s, but the 0.30 and 0.35 pump rates 

should probably be excluded in this plot as well. The new variation is from 0.0003 to 0.0012 kg/m*s. 

 

Plot 13 – Dynamic viscosity in kg/m*s versus time in seconds 
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5.4  Friction factor and Reynolds number 

The friction factor readings vary within the range 0.015 to 0.025 with the average weight around 0.022 

as displayed in Plot 14. 

 

Plot 14 – Friction factor f versus time in seconds 

The Reynolds number readings give the opposite trends of the friction factor readings, which is as 

expected. The weighted mean here is just above 0.4. 

 

Plot 15 – Reynolds number Re versus time in seconds 
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5.5   Discussion  

The differential pressure readings in the vertical section were consistently higher than at the horizontal 

section, which is not that odd as the gravitational force has a bigger impact on the system at this point, 

causing a larger pressure loss in the vertical system. The tests readings exceeding the 0 – 100 mBar 

range should be excluded. Later testers of the Dual DP system should be aware that, before executing 

the tests, the pump rate percentage of maximum pump rate should not exceed 0.2.  

The density readings of the fluid in the system vary as the tests are carried out. Test 1 and 2 gave fairly 

good readings of the density, which is located around the theoretical value of water density. Test 3 and 

4 were too high and test 5 and 6 were too low. Krogsæter also experienced the same problem in his 

thesis and looked more into the reasons why this might be. The deviations from theoretical value 

might be because of the density of the oil in the diaphragms. The density of the oil is said to be 960 

kg/m
3
 according to the supplier of the diaphragms. Krogsæter‟s theory is that if the density of the oil is 

changed, the calculations give the theoretically correct values of the density readings [10]. This can 

also be checked according to these results as well. Test 5 and 6 might have some uncertainty 

connected to the density values as the differential pressure readings are restricted to the range 0 - 100 

mBar, and both of these tests exceeded the limits of this range.  
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Chapter 6 A review of the economic benefits 

 

This chapter will look at the economic consequences of automating the drilling fluid analysis on an 

offshore installation, and its following benefits. 

Today there are new ways of thinking relative to how it is possible to automate the drilling fluid 

evaluation in a drilling operation facility. These new ways are really worth having a look at, not just 

because it is an easier process, but because it can increase the precision of the evaluation and lower the 

overall costs. When testing drilling fluid manually there is a bigger imprecision in the work that is 

performed, compared to what an automated system would yield. There is also a big benefit of this new 

change when looking at personnel safety; the engineer would no longer be exposed to the chemicals 

and other hazards. Also, with an automated drilling mud system the mud would be of a better quality 

as the precision of added chemicals is much greater. 

Field trials of automated mud mixing systems have been performed on the Valhall installation. The 

trials show an easier technical process as well as a more efficient drilling operation. Stability was also 

a product of this change as the margin of errors were smaller when there were no humans executing 

the work, and at the same time the chemical exposure where reduced significantly. Some of the 

positive feedback from operators of Valhall is that by having an automatic circulation on mud pits, it is 

easier to get a better overview from the control room. Another positive feedback is that it reduces risk 

combined with overfilling the mud pits, as the automatic system gives a more precise implantation of 

the process.  

The ability of being able to perform all the operations associated with the drilling mud process in a 

control room, instead of actually performing the actions manually, is a system that is appreciated by 

the users. The stress of being exposed to hazardous chemicals and working in confined spaces nearly 

evaporates as the automated system does the job.  

The consequences of changing the drilling fluid testing system from manually to automatically, result 

in an overall reduced environmental impact and at the same time it is cost efficient when looking at the 

reduced manpower needed. The drilling mud system is also safer and more reliable at the same time as 

the mixing process is more efficient [2]. 
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Chapter 7 Summary and further study 

 

The Fann
®
 35 tests were successful and gave good values, which can be of use to future workers 

within the field. Equations making it possible to calculate across the spring sensitivities were 

generated and functioned as a converter between the different readings. An improvement to the basic 

rheology test on the Fann
®
 35 viscometer will surely be to use the F0.2 spring to collect the 6 and 3 

rpm readings, when the viscosity of the fluid is within F0.2‟s torque limits. The readings here were 

easier to collect when testing at the lower speeds, and the uncertainty level of the one performing the 

tests was also reduced giving a greater satisfaction with the collected results. The errors entered in the 

mud report will be smaller and the following consequences less severe. Further tests should be 

executed to confirm this. A possibility is to expand the fluid contents and make a complete mix; the 

test should verify the results. 

Another potentially important thing is the measurement accuracy of the tests with the three different 

springs. While collecting the readings the tester should look at minimum and maximum values as well 

as the values collected at standard conditions. These three values should be plotted together to see how 

the misread deviations act along the decreasing profile of the rheometer speed. This measurement 

precision can further be included in the pressure loss calculations; the original data here should also be 

plotted in with minimum and maximum pressure fall as a combination of the three.  

The Dual DP system is highly functional; the process can be executed easily by following “Operating 

Procedures” taken from Krogsæter 2013 [10], which is found in Appendix A. The next step with the 

Dual DP system is to run this loop with the non-Newtonian fluid created in the lab; a KCl brine with 

DUO-TEC NS. Before executing the tests, the tester should keep in mind that the system has a 

maximum pump rate that should not be exceeded. The new maximum pump rate should be calculated 

in accordance to the properties of the new fluid going through the system.  

There are only positive consequences of an automated drilling mud system so far from an economic 

view; it will lead to better process efficiency and reduction in manpower, meaning an overall reduction 

in the associated costs. Continuing the research of better ways to execute the whole drilling fluid 

evaluation process is recommended. There should also be a further study of the cost benefit analysis of 

this subject on a more thorough level, to see if the current prognosis is applicable for all facilities. 
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Appendix A 
 

Dual DP operating procedure 

Taken from Krogsæter 2013 [10]. 
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Appendix B 
 

MATLAB
®
 code 

Taken from “PET525 – Drilling Automation – Exercise 1 Solution”[13] 
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