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Abstract 

“Decision making was never quite as easy as rationalists would have us think…. Our 

brains are too limited.” 

-Amitai Etzioni (1989) 

Petroleum exploration ventures always require decision-making in the face of 

uncertainty. In order to evaluate prospect to support good decision-making, 

geoscientists must consistently assess their uncertainties for the key geological 

factors and estimate economic values.  

As voiced by Etzioni – even the brightest experts fall prey to the human 

limitations and the common errors that people tend to make when pursuing 

complex decisions in the face of uncertainty. There is no reason to believe that 

petroleum geoscientists are any less prone to common cognitive limitation in 

their assessment of the uncertain and complex factors underlying the required 

assessments in prospect evaluation. 

Cognitive biases often produce significant inconsistencies that lead to 

suboptimal exploration decisions. The central question investigated in this 

work is the impact of common biases on the oil and gas prospect evaluation 

and decision-making. We study this question by modeling and simulating the 

impact of the overconfidence bias and bias from trust heuristic. This allows us 

directly measuring the effect of the biases on the assessment of value as well as 

the impact on decision-making. We demonstrate that the tendency of being 

overconfident in our assessment of uncertainty has significant impact on the 

exploration decision and prospect evaluation. We also examined how the use of 

multiple experts can help to reduce the degree of overconfidence compared 

with only a single expert. Finally, we illustrate and discuss approaches for 

calibration and verification of uncertainty judgment. These approaches can use 

to help reduce the impact of biases by ensuring that experts become calibrated 

better in their assessments. 
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Chapter 1 - Introduction 

In E&P companies, to perform their portfolios management and exploration 

decisions, they rely mainly on geoscientists’ estimates. Those estimates can be 

classified into three main uncertainty categories: geological probability of 

success, probabilistic range of reserves and economic estimate of the prospect. 

Geoscientists assess uncertainties subjectively by their own knowledge, in 

other words, their brain process the information personally; it frequently leads 

to the deviation in probability judgment, which calls heuristics and biases. In 

order to make consistently unbiased estimates, people must to overcome the 

hidden obstacles of the human brain function.  

Many scientists in social psychology and decision sciences have studied the 

impacts of cognitive biases, even though in the O&G upstream it is modest of 

researching this problem. Capen and Rose are among the first geoscientists 

pointed out the influences of biases and heuristics on typical geological 

parameters such as the reservoir thickness, the area of prospect and the HC 

reserves (Capen, 1976; Rose, 1987). Recently, Welsh and other also studied 

about the economic impacts on O&G decisions. Follow the trend, this work 

will investigate the impact of biases on prospect evaluation and exploration 

decisions for geological factors and valuation aspects, with the intention that it 

increases the awareness of inherent errors/biases in geoscientists’ work. 

Therefore, the objectives of this thesis are to: 

 Summarize and clarify prevalent heuristics and biases in prospect 

evaluation context; 

 Model and simulate the impact of overconfidence bias and bias from 

trust heuristic on a petroleum exploration venture; 

 Present some approaches to mitigate the impact of biases and 

calibrate probability assessment. 

Following the introduction part, the remainder of this thesis organized as 
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 Chapter 2 introduces definitions, descriptions and examples about 

the prevalent cognitive biases and heuristics in the upstream O&G 

industry. 

 In chapter 3, the overconfidence bias will be investigated by 

modeling its behavior in sense of reservoir input parameters, and 

then calculate the outputs: net present values (NPV) and expected net 

present values (ENPV) – a decision criterion, to observe how 

decision is made under this bias. 

 Chapter 4 is about the trust heuristic – the tendency and danger of 

using only a single expert will be discussed. We also examine of 

employing a small, smarter group of experts might reduce its 

systematic errors effect on probability judgments. 

 Chapter 5 we summarize several ways of verifying and calibrating 

the probability assessment to improve the quality of uncertainty 

assessment in prospect evaluation context. 

 Finally, in chapter 6 we summarize, discuss and suggest a systematic 

approach that can avoid biases and calibrate uncertainty assessment 

to help geoscientists deliver accurate geological estimates, what they 

promised to their companies. 

The data and methods for illustration in Chapter 3 and 4 are built on and extend 

from the SPE 110765 paper (Welsh et al., 2007). The first step in our work will 

be to set a base-model that assuming biased. The second step will be to 

generate other models that are unbiased based on imitation bias of base-model. 

Our final step will be to compare and evaluate the unbiased model and the 

base-model (the biased one) to see how the biases behave and affect prospect 

evaluation and decisions. 
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Chapter 2 – Biases in Prospect Evaluation context 

In order to decide whether to go on an exploration project, those decisions are 

made under highly uncertainty of geological factors; the managers require clear 

alternatives set of concerning prospect. Accordingly, they will calculate the 

values of prospect, mainly based on the input data given by geoscientists. That 

is, the geological uncertainty and economic assessment about the prospect. 

To understand well, communicate and discuss effectively during evaluating a 

prospect, people require a common glossaries that usually use in the context. 

Because the prospect evaluation practice cross disciplinary interaction in the 

organization including geological and geophysical department, reservoir 

engineering, drilling and well, facility design and commercial section. Table 1 

lists the disciplines and their delivery products involve prospect evaluation. 

Table 1 Disciplines and its delivery products in a prospect evaluation 

 

Look at Table 1 we can see that the process of prospect evaluation requires 

participation of almost technical departments in oil and gas companies, that 

means the products of this section is the input for other sections. Therefore, it is 

necessary to have clearly common understandable, tractable and useful 

definition and terminologies, which are listed follow.  
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2.1 Prospect evaluation 

It is the process and practice of measuring the worth of a particular prospect. It 

clarifies the alternatives for making decisions in the upstream O&G industry. In 

which geoscientists assess geological uncertainty of prospect and they will 

assign the input parameters, such as probability of success, reserves 

distribution, calculation of NPV of success (a function of volume, development 

concept), calculation of failure (G&G cost). Consequently, they will obtain the 

output product of process, the expected net present value (ENPV) of the project 

under consideration. Figure 1 shows a simple exploration decision tree, which 

requires prospect evaluation’s products in it. The ENPV of exploration ventures 

is an important parameter for the drilling portfolio, it incorporates all POS, 

chance of failure, recoverable reserves, investment cost and production 

revenues over life span of the projects, it takes into account the time-value of 

money. 

The employment of ENPV allows geoscientists/companies ranking and 

selecting prospects/exploration ventures within a sedimentary basin or from 

different basins. Accordingly, they will only select the exploration ventures 

with positive ENPV; and they will choose the projects with highest ENPV to 

optimize their productive investment resources (capital, time, human). 

 

Figure 1 An exploration decision tree example 



5 
 

2.2 Probability of success (POS) 

The POS of a prospect sometimes calls probability of discovery or probability 

of geological success (Pg); it is a discrete event with two-alternative (Yes-Oil 

and No-Dry). It expresses in numerical form, ranging in scale from zero to one. 

Geoscientists use POS to express their degree of belief of finding oil in a 

specified prospect by an exploratory well. In other words, geoscientists employ 

POS to quantify their own lack of knowledge about the investigated prospect 

(Bratvold and Begg, 2010, p. 61-63). It depends on the way of formulating and 

expressing, the POS can break down into from three to seven sub-factors those 

come from the petroleum system elements: 

 Source relates to the probability of existing source rock, which is able to 

generate hydrocarbons and charge to prospect. This component can 

divide into smaller elements such as the presence of source and the 

maturity of source. 

 Reservoir The degree of belief of reservoir units will present in the 

prospect. It can divide into presence of reservoir and reservoir quality. 

 Seal is the chance of existing cap rock – prevent the hydrocarbon 

leaks/escapes away the prospect, which then can consider its top seal 

and the presence of lateral seal. 

 Trap The capacity of keeping hydrocarbons in prospect by structuring, 

stratigraphic trap or combination mechanism. This element can then 

estimate by its closure and quality. 

 Timing/Migration assesses the likelihood of hydrocarbon is extract from 

source rock and migrates into the prospect through a carrier bed, at a 

time after forming the trap. 

Regardless of number of sub-factors using, one assumption is essential: these 

sub-factors are independently. Thus, the POS is a joint probability of 

considering components. Further to development phase, it depends on the 

available facilities, infrastructures and applied economic criteria of each 
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company, the POS will be truncated to achieve commercial success (Pc) and 

economic success (Pe) (Figure 2). 

Figure 2 Truncating POS to achieve Pc and Pe (Rose, 2001) 

Figure 2 shows the concept and progress that geoscientists may develop from 

chance of success (POS) to chance of commercial success and chance of 

economic success. We can see that from parent reserves distribution – 

corresponds to POS, technical staffs will estimate the minimum amount of 

required reserves of prospect to complete the well for production – corresponds 

to Pc. Similarly, they will estimate Pe and corresponding reserves of prospect to 

cover exploration cost and earn some money from Pc. Therefore, the Pe is 

smaller than POS, but the economic reserves will be larger. 

Although geoscientists assign probability subjectively, to be good assessors, 

they must assure three kinds of “goodness” in probability assessments (Winkler 

and Murphy, 1968; Lichtenstein et al., 1980). First, the normative goodness 

reflects the degree to which assessments express the assessor’s true beliefs and 

conform to the laws of probability theory. For example, if the assessor assesses 



7 
 

chance of finding oil for a prospect is 0.3, then the chance of not finding oil in 

that prospect must be 0.7. Second, substantive goodness, which reflects the 

amount of knowledge of the topic area contained in the assessments. In our 

context, that reflects the knowledge of geoscientists about the prospect, the 

amount of information they possess. Finally, calibrating goodness, which 

means the objective results and predictive probabilities, must be consistent and 

unbiased. For example, if a geoscientist assigns 0.3 for probability of success, 

then the outcome should be 3 out of 10 discoveries. The post-audit HC volume 

should be within his estimate range of prospect volume. 

2.3 Prospect volumes 

Those are the amount of hydrocarbons can associate with a prospect if it 

discovers a producible HC accumulation. This is a continuous quantity, 

expresses as a range of possibilities of hydrocarbons can occur. In practice, it 

often expressed by a probability density distribution/function (PDF) or 

cumulative probability distribution (CDF) across the possible values of the 

volumes. However, people are not always asked to draw the entire function, the 

typical values are P10, P50, P90 or the mean and standard deviation of the 

distribution (Figure 3). 

 

Figure 3 An example of PDF and CDF of HC volume of a prospect 
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Generally, it requires distinction between volumes in initial-place, reserves or 

estimated ultimate recovery. However, in this thesis, these terms have similar 

meaning; any difference will be noticed. 

In the E&P industry, geoscientists employ a set of reservoir parameters, which 

are the results of interpreting prospect database to compute the reserves. There 

are some different formulas used to calculate the volume. However, due to the 

limitation of data in exploration stage, it requires several assumptions that are 

not available at the beginning of a new field wildcat prospect. Therefore, a 

typical formula used to determine reserve is (Rose, 2001, p.17-24) 

	 	 	 	      (1) 

Where,  

A is productive area of prospect, in acres, hectares or kilometers2 

h is height or thickness of reservoir in feet or meters 

RF is hydrocarbon recovery factor, barrel or 1000 cubic feet per m3/hectares-

meter, or m3 per km2 – m. 

All above described parameters taken from geological and geophysical data of 

the prospect by professional staffs’ interpretation seismic data, studying about 

lithofacies, depositional environment, tectonic evolution and analog 

field/outcrops studies. Among constituent parameters, the first two parameters 

productive area and height of reservoir are the most critical; they are key 

impacts on prospect reserve. Whenever possible, to further stage of appraisal 

and development phase, the recovery factor can be break down into four 

smaller components: porosity, hydrocarbon saturation, and percent recovery 

and formation volume factor. Again, those engineering components are not 

always available at earlier stage of exploration. Thus, formula (1) derived to 

	 	 	 	 		 	 	 	  (2) 



9 
 

These geological parameters then can combine via Monte Carlo simulation to 

express the uncertainty of reservoir to yield a range of possible reserve 

(prospect - reserve distribution). 

2.4 Cognitive Biases 

Those are unconsciously systematic errors appear while people judge outcomes 

of future events in the face of uncertainty. Bias is inherent and a part of 

forecasting or judgment under uncertainty, whether it accounts for a large or 

small portion. 

In general, because of the limited and natural human capacity to process 

information, we employ a number of principles that help to simplify the 

complex tasks of assessing probabilities and predicting values. Those principles 

called heuristics; they are routinely procedures for estimating the values, 

numerical quantities of a contingency, the likelihood of an event or the 

frequency of a class, either consciously or unconsciously.  The heuristics are 

shortcuts that avoid extra effort of thinking, but it costs reduced accuracy of 

predictions and assessments. 

 The heuristics are very useful in simple daily life situations, but in complex 

environment such as the domain of petroleum exploration in which is 

substantial uncertainty, they lead to serious and systematic problems (Tversky 

and Kahneman, 1974). These problems call biases; they might be predictably or 

type of illusion that makes them even more difficult to overcome. The 

causalities are as follows: 

 The tendency of substitute “questions” that is application of simple 

model to solve a complex matter.  

 Do not updates, ignore, and omit relevant information. Alternatively, 

use ineffectively available information. Additionally, predict based on 

redundant input information. 
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 We often incline to rely on our intuition (unconscious heuristic) to 

assess and predict probability of uncertain events. This happen 

automatically, effectively that makes people unrealized the process. 

There are some more reasons make geoscientists are vulnerable subjects of 

cognitive biases and heuristics: 

 Their tasks are rarely repetitive to learn from the past. This characteristic 

makes people hard to aware of biases. 

 The result for their forecasts or assessments takes quite long time to 

know, occasionally months or years. 

 Geoscientists routinely work under business pressure, such as time, 

budget constraints. That leads to distract. Therefore, cognitive bias 

flourishes in their work. 

 Their study objects – prospects are underground, they have to use 

indirect tools to investigate those prospect, such as seismic images, 

analog fields or models. In fact, there is no model or outcrop can 

absolutely fit the geologic nature. Therefore, there are multiple solutions 

for a single prospect perhaps e.g., for a sample dataset, there will be 

thousands of realizations in which satisfied the dataset. 

 The biases lead to severe and systematic errors in making decision in the 

upstream O&G industry because biases of each geological parameter 

will be aggregated by multiplication to compute reserves. Hence, it 

exaggerates the problems. 

The most dangerous and prevalent cognitive biases affecting judgment under 

uncertainty on geoscientists’ work are (Rose, 2001, p.8): 

1. Overconfidence – refers to the phenomenon of people state exceed 

what they know about concerning objectives, therefore, they will put 

forth very narrow confidence intervals about uncertainties, leading to 

many unexpected outcomes. Another aspect of overconfidence is 
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overestimates of chance of success. The more difficult the tasks, the 

easier people get overconfidence while making assessment. 

2. Trust heuristic refers to the phenomenon in which people rely on 

single trusted information, instead of aggregating other available 

information. The trusted information can give by a geoscientist – an 

expert that manager knows him very well, and that geoscientist might 

have good historical performance. The trusted heuristic reflects the 

tendency of “chase expertise” in searching the best information, and 

avoid using of information that aggregated by entire geoscientists in 

which including some junior geologists or novices. In geologic 

judgment environment, the expertise is not easy to identify, moreover, 

an expert also is susceptible to trap by biases as non-experts as well.  

3. Representativeness refers to a tendency that people assess the 

probability of an event based on the similarity or representativeness 

of that event with a known event. For example, geoscientists’ analog 

based on small sample size may not be statistically; or chosen analog 

may not be analogous. Another example is a geoscientist can assign 

possibilities of a reservoir thickness based on his own interpretation 

of data (a prospect); he also considers that parameter in trend of 

statistical thickness from previous drilled prospects in the basin. 

However, he presumes that his prospect is much better than the base-

rate frequency of the thickness in the basin. Thus, he decided to keep 

his own thickness judgment. That is, he already ignored the prior 

probability of reservoir thickness. In practice, if he is unbiased by his 

representative data, he should combine his interpretation and the 

base-rate frequency to obtain the correct posterior probability of 

thickness. Another consequence of the belief in representativeness is 

the well-known gambler’s fallacy. In which people misunderstand of 

chance event. For example, after many dry holes in a basin, 

geoscientists erroneously expect that they will have wet holes - 
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discoveries. In fact, the chance process is separately from the 

sequence representativeness. 

4. Availability – the salient, recent and unusual examples are more 

prone to cite and count, regardless of their real frequency in nature. 

That can be limited imagination, limits number of possible 

interpretations. An example is a geoscientist encounters oil in the 

granitic basement of a specific prospect – it is quite uncommon for 

him, because his reservoir targets are sedimentary rock normally. 

Therefore, when he evaluates new prospects in the basin, he always 

counts basement as a target without consideration of tectonic 

evolution or geological setting. 

5. Anchoring this bias refers to the phenomenon of not enough 

adjustment in estimating, the desired iterative-reiterative process is 

diluted, so a low starting point leads to a lower final estimate, and a 

high starting point leads to a higher final estimate. Conservative 

estimators find difficulty in accepting the possibility of a large 

outcome. These are due to routinely estimates of geoscientists start 

from the middle of parameters, and not adjust enough to get the 

extremes. The assessors might unconsciously estimate objectives very 

similar to their references or analogs (i.e., the anchors). That leads to 

overly narrow confidence intervals.  

6. Motivational bias refers to any systematic errors in attribution 

deriving from assessors’ efforts to satisfy their own needs, rather than 

objectively estimate uncertainty. Consider an example, geoscientists’ 

desire for prestige, or the need for achievement, for organization’s 

approval. That results in skew and distortion of geoscientists’ 

perceptions and judgments. For example, when a geoscientist really 

requires the prospect ventures go further (i.e., approve for a wildcat 

well) in order to get a promotion. Thus, he might overestimate the 

chance of success of that prospect, as well as its volume size. Another 

typical example, a geoscientist underestimates the value of a prospect 
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in order to preserve his prestige. Presumably, he thinks that the lower 

number is better than higher number exceeding the true value.   

Due to time constraint, in this thesis study, we will focus on modeling the 

impact of overconfidence and trust heuristic on making decisions while 

evaluating prospect. The demonstrations will be described more detail in 

chapter 3 and chapter 4 of this report. 

2.5 The relationship between biases  

The described above biases can work separately, even more dangerous; they 

are relevant and can work together in an exploration venture. When they 

strengthen each other, exacerbate the problem (Hammond et al., 2006). 

Consider an example; an exploration manager might impressed by a recently 

dramatic venture, a huge discovery. That might anchor his own estimate and 

geological uncertainty assessment, and then he might unconsciously seek for 

confirming expert’s opinion to justify his initial inclination. Unrealized the 

overconfidence effect, he makes a flawed decision – drill a wildcat well in that 

prospect. That well turns out hydrocarbon shows only. However, the manager 

does not want to recognize his failure, he wants to cover the sunk-cost of that 

well. Therefore, he continues to consider another well in the same geological 

trend. That is, he falls deeper into the psychological traps – the biases, he is 

now difficult to find a better course of action in his performance.  

What is about the case of mitigating or eliminating one another of the biases? 

For example, each uncertain input parameter for reserves calculation assigns by 

different experts: a seismic interpreter estimates the area input, a petrophysicist 

estimates reservoir thickness, and recovery factor given by a production 

engineer. Finally, a geoscientist assigns POS for the prospect and gathers all 

information for calculating its volume. Experts have different bias in their 

estimate. For example, the geophysicist might be overconfident – thus, he 

overestimates area parameter. On the other hand, the petrophysicist might be 

conservatism, hence, he underestimates the reservoir thickness and the like, 
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each pair of parameters locate opposite side of the truth. Therefore, the biases 

will eliminate themselves while input parameters are aggregated to calculate 

reserves and expected value of the prospect. This might happen if the 

geotechnical staffs work independently in the same database of an exploration 

venture.   

2.6 Probability Distribution 

The distribution states entirely possible outcomes and associated probabilities. 

It is again a subjective assessment or personal choice of geoscientists. It reflects 

their interpretation about geologic uncertainty in prospect evaluation context. 

This is a way that geoscientists quantify their lack of knowledge about study 

objects. For identical object, each people will assign different probability of 

occurrence thus specify different probability distribution to express uncertain in 

a model. In practice, choosing distributions to represent stochastic elements 

make geoscientists awkward or raise controversy. There are two categories of 

distribution, parametric and non-parametric distribution (Vose, 2008, p. 587-

588). Parametric distribution originates from theoretical problems, its shape 

and range described by mathematic functions. For example, a reservoir 

thickness distributes as a lognormal distribution. This based on practical 

observations and assumptions about existing of reservoir. However, this 

parametric distribution forces subjective thinking of geoscientists into a hard 

frame in which might somewhat not reflect their opinions and unchangeable 

latterly. On the other hand, non-parametric distributions are more flexible; 

geoscientists can freely draw their own distribution based on their knowledge 

about the geologic objectives. In addition, they can revise the distributions 

when more information or data becomes available or just when they change 

their concepts. Accordingly, the non-parametric distributions often used to 

model geoscientists’ opinion or their judgment of geologic probability 

parameters. The most common non-parametric distributions used to model 

parameters in prospect evaluation are uniform, relative, triangular, cumulative 

and discrete. 
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From subjective point of view, there is no “right” or “correct” probability for 

any uncertain event. The probability is purely expresses degree of belief of 

geoscientists of any uncertain event. Therefore, in this thesis, we used the 

triangular distribution to model for all technical parameters. It has some 

benefits that will discuss further on next chapter. 
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Chapter 3 - The effect of overconfidence bias 

Capen is the first person examined the effect of overconfidence bias, he 

demonstrated the bias by comparing the numerical predicted values versus the 

actual outcomes of several technical quantities, such as thickness, area and 

reserves. Because technical people overestimate the precision of their own 

knowledge, he concluded “the errors in exploration tend to be so large” and 

“bias, however, can cause economic hardship” (Capen, 1976). 

To systematically examine the performance and how the overconfidence 

behaves, we simulated the reservoir parameters influence reserves and 

probability of success of a project. Of each parameter, the base-case would 

regard as overconfidence; the other with wider range is the unbiased one, which 

generated from the base-case by adjusting equal amount on each side of the 

distribution.  

The reasons why we prefer triangular distribution to model input parameters 

that used determining the reserve instead of other distributions such as 

lognormal or normal distributions (envelop method) because it is simple, more 

important we can interpret by visualizing overconfident effects and it is widely 

used in oil and gas industry. Therefore, once we are skilled practice on it, we 

can investigate with other type of distributions. 

3.1 Data description 

In order to simulate the influence of overconfidence on upstream oil and gas 

decisions, we used a data set of an offshore development project. The values of 

input parameters used in base-case showed in Table 2. They defined by 

triangular distributions. Additionally, the probability of success (POS) for this 

prospect assigned to be 0.3 as often seeing for a low-risk project. This POS will 

vary associated with reserve size of prospects, which will present more detail 

later. 
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Table 2 Input reservoir parameters of base-case model 

 Min Mode Max 

Area (acres) 15000 17500 20000 

Thickness (ft) 115 150 215 

Porosity (%) 18 20 25 

Water Saturation (%) 30 35 45 

Net / Gross 0.6 0.7 0.8 

Formation Volume Factor 1.15 1.2 1.3 

Recovery Factor (%) 15 20 30 

Other engineering input parameters to transform reserves to economic metrics, 

such as number of wells, capacity limits, development schedule, and pressure 

depletion, decline rate and so forth were determined interplay reasonable with 

the reserve size/reservoir model. 

The economic factors oil price, facility cost and the like were also treated 

deterministically to simplify scope of works. 

3.2 Methods 

In the upstream oil and gas, the most widely confidence interval often used is 

80%, which defines by a pair of extreme P10 and P90. Therefore, in our model 

of overconfident impact has done by calculating the 10th and 90th percentiles of 

each parameter base distributions. Next, the unbiased (wider) distribution was 

generated by adding these two values by an equal amount. Thus, the new 

distribution will have identical values, served as other percentiles, for example, 

20th and 80th or 25th and 75th– Figure 4 and Figure 5 show this. Herein, the 
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wider distribution would regarded as the truth or real versus the narrower – 

overconfidence distribution. The more overconfident degree of base-case, the 

wider distributions are on the unbiased distribution. 

 

Figure 4 PDF’s transformation of 20% Overconfidence case 

 

Figure 5 PDF’s transformation of 10% overconfidence case 
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Look at Figure 4-the illustration for overconfidence impact on area parameter. 

One can clearly see that the overconfidence distribution only covered 60% 

confidence interval, but people stated that it was 80% confidence interval. 

Thus, in fact, they are overconfident by 20%. 

Similarly, Figure 5 shows at 10% overconfidence degree, the given 

distribution by a geoscientist captured only 70% of the truth distribution. 

The method applied for the rest parameters in Table 2. Next step, these 

distributions are combined to create a model of calculating prospect reserves, 

using formula (2). This model then runs for seven cases: the base-case and six 

degrees of overconfidence (from 5% to 30% with 5% increments). Here, the 

core assumption is the base-case represents for the overconfident value given 

by a geoscientist; the other six cases are the one not overconfident – represent 

for the truth values should be.  

Then, using each mean value of reserves, and capital expenses and operation 

expenses values appropriate to prospect size for each case to calculate the NPV 

of project. 

The NPV of failure of project is cost of geological and geophysics (G&G) 

study, seismic cost and well cost was also taken deterministically, with 

consideration of location on the world, onshore versus offshore. For example, 

drilling cost in offshore NCS can be range from $70 million to $200 million. 

However, if it would drill onshore Central Asia, the cost might be lower by 

ranging from $15 million to $25 million. Associated with well cost, the 

prospects in offshore Norwegian continental shelf might be much bigger in size 

to assure economic standard for drilling, compare to prospect size in Central 

Asia. 

To calculate the ENPV of project, a simple overconfident model for POS has 

made as follows: by assuming, the POS of base-case is 0.3. Because 

overconfidence makes people overestimate the chance of success, therefore, the 
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“real” value of POS should be lower (Table 3). Accordingly, the “real” POS 

are adjusting by decreasing 5% increments from 0% to 30% overconfidence 

degree. 

Table 3 Overconfidence degree on POS 

OC degree 0% 5% 10% 15% 20% 25% 30% 

POS 0.3 0.285 0.27 0.255 0.24 0.225 0.21 

3.3 Results 

Figure 6 shows the result of 10000-iteration simulation for each level of 

overconfidence impacts NPV value of the modeled project. The simulation 

performs on seven degree of overconfidence, from 0% to 30% with 5% 

increment. 

 

Figure 6 The impact of Overconfidence on NPV of success 

In every case, if we use deterministic method to calculate the expected value of 

the project, we will get a steady number remaining at approximately $340 

million. Similarly, the technical reserves will be about 360 million barrels. The 

actual reserve is a function of economics would change accordingly. 
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However, the simulation results do not reach the expected value of the project. 

Even at 0% overconfidence level – the geoscientist is not bias, the project NPV 

value is only $290 million. The different result is due to non-linearity 

relationship between parameters of the model. This gives another obvious 

evidence for the argument of “do not expected on the expected value” and the 

need to use probabilistic instead of deterministic calculations when estimating 

the expected value of important and complex projects. 

Figure 6 shows the declining trend of expected NPV values as the level of 

overconfidence increase. With 5% overconfidence, the expected NPV is almost 

equal NPV of no confidence case. It means that, if geoscientists are slightly 

overconfident (up to 5%), then there is no effect on the NPV. However, with 

10% overconfidence the real value of the project is $280 million, compared to 

the $290 million that given by geoscientists’ parameters input. The decline 

trend of NPV continues until the overconfidence level reaches 30%; the NPV 

dramatically dropped to -$350 million. This means, if geoscientists were 30% 

overconfident relative to the truth of uncertainty, they would estimate the NPV 

of the project is $290 million whereas, in fact, the real NPV is $640 million 

below that value. In addition, if a company used a deterministic approach with 

the mean – expected values of the input parameters would estimate the value at 

$280 million, $630 million higher than the true NPV. 

Figure 7 shows the effect of different degree of overconfidence made on the 

ENPV of the project. Herein, the ENPV consisted of failure cost of the project, 

if the ENPV is positive then the decision is on, otherwise it is off. Look at 

Figure 7 one can see that, the estimates given by a geoscientist with 

overconfidence bias are always yield positive ENPV, while, the truth is 

negative even with 5% degree of overconfidence only. At the 5% 

overconfidence case, the NPV of success is almost equal to NPV of non-

overconfidence. However, the ENPV is negative because the overconfidence 

also has effect on the POS – make it higher. Therefore, the true value of ENPV 

is negative versus the positive ENPV of 5% overconfidence. 
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The trending of negative ENPV value of overconfidence cases are very clearly 

in case of 15% overconfidence and more. This trend is even much more clearly, 

if the cost of failure is higher. 

 

Figure 7 The impact of overconfidence on ENPV 

3.4 Discussion 

The above results of the overconfidence model clearly point out the impact of 

overconfidence bias must be acknowledged and mitigated necessarily. The 

overconfidence model applied to the POS and reserves calculation - not to 

consider the effect might have on economic parameters and G&G costs, at all 

level, lead to overestimating the NPV of success of the project. Except the 5% 

overconfidence case, the NPV of the project is almost non-impact, 

approximately $290 million. Nevertheless, in every case resulted in the 

overestimation of ENPV of the project – a direct decision metric. 

The commonly extent of overconfidence degree expressed by people in test of 

the bias was about 30% (Capen, 1976). In the modeled project, at this level of 

overconfidence, they will overestimate the NPV an amount of $640 million. 

Additionally, they estimated a negative ENPV as a positive ENPV. Therefore, 
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a company would decide to go ahead with the project whereas it must stay 

away. It means that they would make bad decisions that damage their business; 

with a loss of $350 million, it might be irreparably.  
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Chapter 4 -The impact of Trust Heuristic 

The trust heuristic refers to the tendency to rely on the information sources in a 

particular strategy that agrees to managers’ belief or perspectives. In some 

sense, the information sources, here, can understand are the experts’ opinion, or 

different types of data about the prospects, such as seismic data, logging data, 

core data and drilling data, etc. The tendency to select and rely on the 

individual expert’s opinion, would regarded as the managers or decision 

makers overly trusted on the best expert’s opinion and/or agreed with the way 

that expert interpreted data, and his expertise professional. The reasons 

underpinning that reliance can be drawn from historical outperformance of the 

expert or just expert’s confidence in considering the current prospect. However, 

in probabilistic and unpredictable environment as the upstream O&G industry, 

there are two big problems with relying on a single source of information. The 

first is that true expert is extremely hard to identify (Capen, 1995). In fact, 

managers might be astray by ill-defined cues for expertise. Those are the 

expression of confidence, talkativeness, and the amount of information an 

expert possesses (Mannes et al., 2014). The second, and more serious, even the 

most intelligent expert has biases and blind spots in his main field (Surowiecki, 

2005, p.278). Thus, he does not know where and when he might make mistakes 

while rendering his opinion and probability judgments in an uncertainty 

environment. 

Therefore, whatever reason, this should not be the case. The decision makers or 

managers should rely on collective judgments to achieve the virtues of crowds. 

Moreover, in oil and gas exploration upstream, at the initial stage, information 

is often sparse and unconnected with each other, thus, we should combine all 

the information available after filtering poor quality one. Rather than trusted in 

particular information source or any single individual expert. Figure 8 shows 

reasons why we should incorporate experts’ opinion, better than trust on an 

expert. 
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Figure 8 Independence Expert Opinions 

Figure 8 shows the beliefs of seven experts on the uncertain of area parameter. 

The trusted expert’s opinion is the distribution in the center of the figure. In 

practice, each expert might give different type of distribution. For simplicity, in 

the model all seven experts give the same type of triangular distribution. The 

other experts’ distributions have identical range with the trusted expert, but the 

modes are different. Furthermore, Figure 8 shows the independent experts’ 

opinion, that is, the other experts’ beliefs do not depend on the trusted expert. 

Therefore, their distributions are spread out (on both sides) of trusted expert’s 

distribution.  

If the experts are dependent, their opinion will locate on a side of trusted 

expert. The reason might be the trusted expert’s opinion influences other 

experts. Alternatively, the other experts might imitate the trusted expert’s 

opinion. Figure 9 shows the dependent experts’ opinion – they all believe that 

the area parameter might have low value. On the other hand, Figure 10 shows 

the dependent experts’ opinion with estimating area might take high value. 

Even dependence, if the manager would use an aggregated opinion, he still get 

the benefit of reducing overconfidence bias of individuals. 
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Figure 9 Dependence Experts' opinions - low values 

 

Figure 10 Dependence Experts' opinions - high values 

The consensus of experts may harm the role of aggregating opinion. If the 

experts agree on each other ideas (distribution), the diversity of environment 
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will decrease. In other words, the phenomenon will not widen distribution 

sufficient to eliminate the overconfidence degree of individuals. 

When it comes to experts’ opinions aggregation, there are two ways: behavioral 

aggregation and mathematical aggregation. In behavioral aggregation, the 

experts are directly or indirectly discussed their opinions, and suggest a final 

judgment. Mathematical aggregation can be using techniques of Bayesian to 

update in succession each expert opinion by multiplicative rule; or using simple 

equally weighted for all expert members (Clemen and Winkler, 2007). In either 

ways, as long as the diversity and the independence of experts are kept good 

enough, the advantages of collective judgments will be present. That is, the 

errors due to biases made by individual members will effectively cancel out 

themselves, leaving the useful knowledge that group members occupy. 

As discussion in chapter 3, people are universally overconfident when 

rendering the range of distribution of any uncertain input parameters might 

take. We will demonstrate that aggregated distributions act to reduce the impact 

of overconfidence of a single individual expert. Herein, the reality should be 

wider than the interval given by the trusted expert. 

4.1 Methods 

The subjective probability distribution of trusted expert was modeled as a 

triangular distribution – Table 2, described in chapter 3. The modes of the 

other experts’ distributions were calculated by averaging its minima and 

maxima1. The range of other experts is identical as the trusted expert’s range. 

The other experts’ distributions are then generated by shifting the trusted 

expert’s distribution to the left or right its initial location. 

                                              

1 We examined several ways of generating the mode of other experts by taking their modes randomly 
from normal distribution in which the mean is trusted expert’s mode, and the standard deviation is the 
difference between the trusted expert and other experts. Another way of drawing the other experts’ 
mode is from a uniform distribution (minimum, maximum). Either method, we just consider the range 
of combined experts’ distribution, which should be wider than trusted expert’s distribution.  
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All seven available experts’ distributions or sources of information combined 

into aggregation triangular distributions by taking the smallest minimum value; 

the mode is average of the modes; and the largest maximum value from the set 

of triangular distributions. By combining experts’ opinion, Figure 11 shows 

that we can reduce the overconfidence of trusted expert. 

 

Figure 11 Single trusted Expert versus Combined Expert Opinions 

The way of combining experts’ opinion above is quick, simple and intuitively. 

In this situation, we only consider ranges of the distributions – it means that we 

only pay attention for extreme values. Furthermore, according to Figure 11, the 

mode and the mean of combination distribution will not vary too much. This 

might affect the NPV values, since we calculate it by sampling the whole 

distribution, but not only the extremes. 

By comparing the 10th and 90th percentiles of the trusted expert’s distribution to 

the aggregation distribution, the amount of reducing overconfidence can be 

determined (Figure 12). 
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Next, the modeled parameters of trusted expert and combined experts’ opinion 

used in calculating the reserves and the NPV for each of the trusted expert’s 

model and six levels of combination: from 2 experts to 7 experts. 

4.2 Results 

 

Figure 12 Overconfidence reduced by combination number of experts 

By incorporating three experts, the equivalent reduction in overconfidence is 

about 5% (Figure 12). Moreover, the amount of overconfidence reduction 

increases as the number of experts adding more, combined seven experts’ 

opinion will reduce overconfidence up to an approximate amount of 13%. 
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Figure 13 Trusted Expert versus Combined Experts' NPV 

Figure 13 shows the results NPV of varying number of experts’ opinion 

aggregation of the project. That is, the mean NPV from the 10000-iteration 

simulation for each case. Unlikely the trend of reducing overconfidence degree 

while combining more experts, the NPV values are fluctuated: starting with 

around $290 million of trusted expert, it increases up to around $420 million – 

combined three experts. Next, it decreases to approximately $340 million – 

NPV of combining four experts; and then it goes up again, reaches the pick of 

almost $500 million – NPV of combined six experts. Finally, it goes down to 

$400 million while combining seven experts. 

4.3 Discussion 

On the one hand, we demonstrated of combining multiple experts, which will 

reduce overconfidence degree of an individual expert. 

On the other hand, the result of NPV calculation conflicts with our 

overconfidence model described in chapter 3. Even though the trusted expert 

was modeled overconfidence, but he underestimated the NPV comparatively to 

other experts’ estimates (as we assumed the wider distribution reflects the 
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truth). The reason might be the means of aggregation experts’ opinion and 

trusted expert’s opinions are not vary too much2. In addition, it might be our 

experts’ distribution does not include characteristics of diversity/dispersion in 

expertise significantly and bracketing of the judgmental environment. Since we 

only consider reducing the overconfidence degree of the trusted expert. 

                                              

2We examined the Vosecombined function, which combines experts’ opinion by averaging each 
percentile of subjective distributions instead of only averaging the modes-as our method. However, the 
result of NPV calculation is almost identical, even though the means and the modes vary more 
intensively. 
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Chapter 5 - Calibrating probability assessment 

In order to make good decisions in the upstream oil and gas industry, 

geoscientists require providing well-calibrated probability assessments for 

using in prospect evaluation; those are probability of success, prospect reserves 

sizes and the economic estimates of the project.  

Given the fact that people are susceptible subjects to be trapped by the dangers 

of biases, it seems that no one can present a consistent probability judgment for 

making good decisions. Fortunately, there are several approaches suggested to 

overcome that difficulty. In this report, we summarize briefly the approaches of 

calibration probability assessment. 

5.1 Rose’s recommendations 

Rose (Rose, 2001, p. 13-15) recommended a series of strategies that has 

applied in the O&G Companies (Table 4). 

Table 4 Methods to improve accuracy in uncertainty judgment (Rose, 
2001) 

Number Techniques 

1 Use of geotechnical models as analogs 

2 Use of multiple working hypotheses and maps 

3 Independent multiple estimates 

4 “Nature’s envelopes” 

5 “Reality checks” 

6 Proper statistical procedures 

7 Practice and comparison of prior predictions with outcomes 
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Geotechnical analog models there are three types of analogous models used to 

forecast newly prospects by using the well-known prospect models data. The 

first common analog model is stratigraphic model, which is a model of 

depositional environment, sequence stratigraphy of an outcrop or developed 

field. From that, geoscientists can understand, interpret the concerning prospect 

about its size, reservoir characteristics, trap types, source rock quality and 

quantity, oil and gas migration pathways, and the like. Even though, there is 

very little data exist at the early stage of exploration. Other common models for 

analogy are structural model and facies modeling. These two models help 

geoscientists understand and insightful forecast about reservoir behavior. 

Additionally, geoscientists also often use analogous economic model for new 

prospect, given the fact of available technical data and market trends.   

However, the analogous models can lead to anchoring bias; it means that 

geoscientists do not adjust sufficiently for new prospects. Therefore, while 

using analog models, people require keeping an open mind, flexibility in 

analyzing, interpreting new prospects based on analog the previous models. 

Multiple working hypotheses and maps in practical exploration activities, 

geoscientists must to examine several hypotheses of geologic matters (tectonic 

evolution, basin evolution, geological setting, etc.) for a set of data (seismic 

cube, nearby wells) and construct, evaluate the alternatives interpretation 

products. For example, for the same data set but different interpreters with their 

own concepts will make several different structural maps, or various 

depositional interpretations. In addition, each interpreter also delivers several 

possible maps of prospect parameters, which shows optimistic (P90), 

intermediate (P50), and pessimistic possible cases (P10). 

Independent multiple estimates this strategy refers to “the wisdom of 

crowds”. That is when people judge under uncertainty, the estimate and 

assessment of a parameter given by considering and consensus of multiple 

sources, that are generally less biased and more realistic than the result given 
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by a single assessor. In practice, modern oil companies achieve this by 

organizing their structure, such as multidisciplinary exploration teams – 

combination of multiple disciplines within a company (geology and 

geophysics, drilling and development, commercial), peer review of new 

projects, final review a prospect by a senior risk management committee, or 

estimating procedures “Delphi Rounds”. A common practical way is to form 

exploration joint ventures, which participates by several companies. In which, 

technical ideas will be discussed through subcommittees to find optimal 

estimates. 

Nature’s envelopes it is a strategy of applying historical observations of 

geological distribution parameters for estimating new parameter input. For 

example, we observed that the bulk rock volume (BRV) of known prospects 

distributed lognormal, and then we apply this natural define for estimating 

BRV of a new prospect. Even though, the new data might not distribute 

lognormal, but many software enable “fit” the data to lognormal distribution. 

This process honors the data and constrain by expected natural parameters. 

However, using nature’s envelopes raises controversy that assigning 

distributions and estimating parameters input are subjectivity; especially, at 

very early stage of exploration, we even do not know whether existing of such 

parameters. Recently, several major oil companies report the accuracy 

improvement of using this strategy (Brown et al., 2000). Another natural 

envelope is quantified possible ranges of parameters. For instance, range of 

hydrocarbon recovery factor is approximately from 50 barrels per acre-foot to 

1200 barrels per acre-foot. Thus, based on data of new prospect, the estimator 

can assess hydrocarbon recovery factor within that interval. 

Reality checks after achieving preliminary estimates about prospect, the results 

should be repeatedly compared against known examples for obtaining 

reasonable parameters. The common objects used for reality checks are field 

size distributions (FSDs), historical drilling record, and worldwide databases. 

By comparing parameters of new prospect against the one in analogous 
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prospect in the same trend, or basin might help for practical adjustments, such 

as reserves size, chance of success, etc. 

Proper statistical procedures prospect parameters often estimated by 80% 

confidence range, from low side (P90%) to high-side (P10%) cases. Within that 

range, the values of average or median parameter should be paid more 

attention, because over long - run the expected outcome of prospect is the mean 

value of reserves case and it often used to evaluate economic factors of the 

exploration ventures.   

Practice and comparison of prior predictions with outcomes by keeping 

continuously record of the outcomes versus the estimates of prospects, this 

provides learning lessons for individual geoscientist, exploration team and oil 

company. Normally, after a drilling campaign or just a drilled well, company 

will ask for evaluating result of that well whether its success or failure. 

Accordingly, people will discuss, clarify and improve the quality of their 

probability assessment and estimate for future prospects. This strategy requires 

systematic gathering information procedure to have adequate samples. It also 

requires openly and encourages discussion among technical staffs and 

managers for assessment quality, but not for threatening career.  

In fact, it depends on the project and its policy; each company might apply and 

combine above techniques differently. 

5.2 The Stanford University/Stanford Research Institute (SRI) approach 

To assess effectively probability of uncertain events, people can decompose the 

task by two main components: the first step is definition all the possible 

outcomes of the event, the second is assignment of probabilities to those 

outcomes. This process is called elicitation. The SRI approach shapes 

structured probability elicitation, as it goes from very early to the end of the 

elicitation process. Thus, it can help geoscientists to avoid being trapped by 

biases.  
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Ideally, the process is conducted through interviewing and communicating 

between an elicitor/analyst, who is a professional in probability elicitation and 

a geoscientist, who is evaluating prospect. Otherwise, geoscientist should be 

trained and adapt to follow the process. This elicitation process includes five 

main steps. 

1. Motivating: explain the task and understand its importance, aware of 

motivational biases at this step. For example, the geoscientist desires 

the project will go further to gain a promotion; therefore, he might 

overestimate the value of prospect. Alternatively, he was success in 

the past, and now he wants to protect his prestige by underestimates 

the value of project, by means that given a lower number is better 

than higher number whatever the consequence of the prospect. The 

other common bias at this step is confirmation bias, that is 

geoscientist presents his opinion which conforms to his manager’s 

expectation instead of giving an honest opinion – reflects his 

knowledge about studying object. 

2. Structuring: this step is for making assumptions to define structural 

uncertain events, and its elements. For instance, in exploration phase, 

the uncertain event is drill a wildcat well in a considering prospect; 

and the assumption is there is a considerable amount of oil in that 

prospect.   

3. Conditioning: this step is for clarifying how the geoscientist makes 

probability assessments plausibly. Normally, the geoscientist will 

make probabilistic judgment by interpreting geological data, 

considering all relevant subsurface geological evidence, as well as 

data quality and quantity. In addition, he also considers general 

geological setting of sedimentary basin or trend, in which his prospect 

located. The common biases feature in this step is anchoring, 

availability, and representativeness. This requires effective techniques 

to counteract their impacts. For example, to avoid geoscientist’s 
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representativeness and optimism biases on his estimate about 

prospect’s volume, elicitor can remind him about field size 

distribution in the basin. 

4. Encoding: at this step, geoscientist assigns numerical values for the 

defined and structured events. First, by identifying the critical - 

lowest probability factors, then further refine that value toward the 

middle, higher values; and qualify it before determining final 

probability of the event. 

5. Verifying: this step is for reviewing the quantitative assessments in 

preceding step. This assures the geoscientist presents judgments that 

reflect his pure beliefs accurately, and check the coherence of event 

structure.  

This SRI method (Bratvold and Begg, 2010, p.176-181) of probability 

assessment is a systematic approach to comprehensive problems in geoscientist 

elicitation process. It informs possible bias that might occur in each sub-step. 

Thus, the process provides insights and transparency of geoscientist’s 

assessment and estimate for decision maker; that improve decision quality. 

5.3 General framework for probability verification (Weather forecast 
science) 

Learning from the past to improve the future work is both a part of our daily 

life and exploration life. However, geoscientists assess their quality of 

uncertain evaluation about prospects; they often concentrated on technical 

problems and used simple statistic measures to verify it. 

Murphy and Winkler (Murphy and Winkler, 1987) developed an extensively 

framework for verification of probability assessment in weather forecasting. 

That is, a joint distribution p(f,x) of forecast (f) and observation (x). In our 

language of exploration, we can address the forecast as the subjective 

probability assignment for the event of POS or value of the reservoir 

parameters; the observation is the outcome of a new field wildcat (NFW) or the 

post-value of reservoir parameters that the exploratory well penetrated. 
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Take the simplest verification case for probability of success that assesses for a 

NFW event. We can define 

 

We also can define a joint probability table for the event (Figure 14) 

 Assigned Probability 

Yes (1) No (0) 

Actual outcomes occur Yes(1) (1,1) (1,0) 

No (0) (0,1) (0,0) 

Figure 14 Probability table for 2-alternative event 

With respect to estimating prospect reserves, that is a continuous distribution – 

represent in intervals of values. The joint probability p(f,x) also can depicted in 

terms of a contingency table as above. 

Based on evaluation of   p(f,x), we can know which probability assessment is 

“good” and which one is “bad”. By looking at the Table, we can see the good 

assessments take two values of (1,1) and (0,0) – the probability assignment is 

perfectly correct. And the bad judgments take the other two values of (1,0) and 

(0,1). 

For the intervals of values, the perfect judgments implies that all the pairs of 

assignment – outcome (f-x) are on the line f = x or on the principal diagonal of 

  1, if the oil is assigned, 

  0, if the dry is assigned, 

And 

 1, if the oil is occurs, 

  0, if the dry is occurs 

f =  

x =  
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the contingency table. Alternatively, in a scatter plot as Figure 15 the perfect 

probability prediction is diagonal line, if the points are under that line – it is 

overconfidence case. If the points locate above that line – it is under confidence 

case. The overconfidence and under confidence are both bad aspects of the 

judgments. 

 

Figure 15 Estimates versus Actual outcomes 

We need to factorize joint distributions into conditional distributions and 

marginal distributions. By this factorization, we can learn more insights about 

specific characteristics of probability assessment system, and the person who 

do that task – the geoscientist. 

There are two ways of factorizations, the calibration-refinement and likelihood-

base rate factorization. 
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5.3.1 Calibration-refinement factorization 

p(f,x) = p(x|f)*p(f)      (3) 

Where, p(f,x) is joint distribution of forecasts/judgments and observation 

outcomes. p(x|f) is conditional distribution of observations given forecasts and 

p(f) is marginal distribution of forecasts. 

The conditional distribution p(x|f) – the possible outcomes occur given a 

particular assigned probability or prediction. This is the reliability or calibration 

of the assessment; we expect that this distribution is as large as possible. For 

example, p(oil| “oil”) and p(dry| “oil”) are the proportion of occasions with oil 

occurring among all of the occasions on which an assessment of oil was given. 

This can be criteria to select the expert’s opinion for combination, which 

mentioned in chapter 4. 

The marginal distribution p(f) indicates how often different assessed values are 

used. The assessments are said refined or sharp if different values of (f) are 

used most of the time. Because that assessment system is able to distinguish oil 

contained prospect and others. If a geoscientist always assigns a value of 

probability assessment for different prospects, it means that he cannot 

differentiate which prospect can hold oil and which cannot. At the perfect 

sharpness, p(f) is assigned zero and one. 

Both distributions p(x|f) and p(f) are interested for probability assessment 

verification. We would to have a geoscientist who is both well calibrated and 

quite refined.  The assessment is said “least useful” if p(x|f) = p(x), it means, 

the forecast/assessment is not effect to the occurrence of the events, they are 

independence. 

5.3.2 Likelihood-base rate factorization 

The second way of factorization a joint distribution is: 

p(f,x) = p(f|x)*p(x)      (4) 
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Where, p(f|x) is the distribution of probability prediction / assessments given 

the observation of the outcome happen; p(x) is the marginal distribution of the 

observations / actual outcomes. That is the proportions of different assessments 

are given before particular outcomes actually occurring. It provides information 

of discrimination among the actual outcomes and the assigned probability 

situation itself. 

 The p(f|x) is called the likelihood function – the assessment in concerning only 

particular outcome. For example, p(“oil”|oil) is the occasion of probability 

assessment concerns the observation of oil presence. These likelihoods indicate 

how well the assessment / prediction f discriminates between prospects with x 

= 1 (oil) and prospects with x = 0 (dry). 

The marginal distribution p(x) indicates how often different outcomes of x 

occur. For example, with POS, it indicates the relative frequency of oil and the 

relative frequency of dry prospect. The p(x) also referred to as the base rate or 

the historical discovery rate of a trend or sedimentary basin. However, in 

exploration context, the base rate is determined on the sample space of drilled 

prospects only, not entire prospects in the basin. Because companies will not 

drill small size prospects, or non-potential (dry) one that evaluated by 

geoscientists. 

5.3.3 Relevant measures of verification 

The common measure of accuracy of forecast – the mean square error (MSE) 

can be expressed by the joint distribution as: 

	 ∑ ∑ , .   (5) 

We can derive equation of MSE into several different ways to examine other 

attributes of the forecasts and observations. Additionally, other measures also 

can express by joint distribution and distribution elements to understand more 

about the verification quality, to improve assessment. 
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A quick conclusion, the joint distribution contains all of the relevant 

information that requires for verification purposes. By factorizing the joint 

distribution, the information of probability elicitation is more accessible. It is 

helpful to understand the strength and weakness in uncertainty assessment. 

Thus, it identify ways that make assessment might be improved. 
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Chapter 6 – Conclusion and Future work 

In this research, the impact of the most prevalent biases on prospect evaluation 

and petroleum exploration decisions were practically addressed with the 

emphasis on modeling, simulating overconfidence bias and bias derived from 

trust heuristic. It is clear that geoscientists cannot deliver their promises to their 

managers if their geological uncertainty assessment – the prospect evaluation, 

is frequently imposed by cognitive biases (Rose, 2004). 

The use of multiple experts can help to reduce overconfidence effect of using a 

single trusted expert, in sense of assigning input parameters.  In addition, we 

have discussed approaches that employ to calibrate, verify the uncertainty 

assessments. Those are both practical used and new approaches: Rose’s 

recommendation, SRI method and verification by weather forecast science. 

From our findings and industry’s observations, there is undoubtedly that oil 

companies realized the inevitable consequences of having biases in their works. 

They have started training their geotechnical staffs about the dangers of biases, 

how to detect the biases and calibrate their assessments. They applied 

systematically software that allows evaluating all new prospects. They formed 

a senior experts committee to review and approve prospect candidates before 

drilling. 

However, companies are still doing poor E&P portfolios management, and bad 

choices. Such as, drill expensive dry holes, find marginal economically or non-

commercial fields. Therefore, the intention of this thesis is to increase 

awareness and understanding the cognitive bias in geoscientists’ work. 

Consequently, geoscientists may deliver what they promised to their 

companies, and companies may achieve what they planned to have. 

There are a number of directions one could consider this research in the future. 

For example, one could model several biases simultaneously work in the same 

project to analyze which bias impact the most on prospect evaluation and 
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corresponding exploration decisions. One could also attempt to model the 

expertise of experts to find the best way of combining experts’ opinion to 

enhance the spreading expertise in company. Finally, one could investigate the 

use of probabilistic models of G&G cost, oil prices to have a completed 

probabilistic model. 
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