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1 Introduction

From the theoretical point of view the baryogenesis via leptogenesis scenario [1] is a very

attractive explanation for the observed baryon asymmetry of the Universe. One of its key

ingredients are heavy Majorana neutrinos, which may cause a lepton asymmetry to emerge.

The generation of the asymmetry can proceed via CP -violating decays and inverse decays of

the heavy neutrinos [1], their CP -violating oscillations [2], or via a combination of the two.

The first case is typically realized for Majorana neutrinos with masses considerably larger

than the sphaleron freeze-out temperature. This possibility has been explored extensively

using the usual Boltzmann-like equations with decay and scattering amplitudes computed

using methods of zero temperature [3–14] or thermal [15–18] quantum field theory. The

second case is typically realized for Majorana neutrinos with masses below the sphaleron

freeze-out temperature. It has been studied using the ‘density matrix formalism’ [19–27]

which was originally developed in [28] and cross-checked in an alternative approach [29].

Recently, various aspects of leptogenesis have been re-analysed using the first-principle

Kadanoff-Baym formalism [30–33] as well as self-consistent Boltzmann-like [34–39] and

quantum-kinetic [40–43] equations systematically derived from the former. A lot of effort

has been put into the analysis of the phenomenologically particularly interesting scenario of

resonant leptogenesis [44–52]. Resonant leptogenesis is realized for a quasi-degenerate mass

spectrum of the heavy neutrinos, when the difference of the masses is comparable to the sum

of the decay widths. In this domain of the parameter space the CP -violating parameters

are resonantly enhanced. In the case of leptogenesis via CP -violating decays and inverse

decays this allows one to lower the Majorana masses down to the TeV scale [50, 51] which

is in principle accessible at the LHC [53–58]. In case of leptogenesis via CP -violating
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oscillations of the Majorana neutrinos their masses can be as low as a few GeV [19–26],

such that they can be searched for in dedicated high-intensity experiments [59].

The regime of resonant asymmetry generation is not only of particularly high interest

but presumably also the most difficult one to study. Early works using the Boltzmann

equation and relying on the zero temperature quantum field theory concentrated on the

derivation of CP -violating parameters εi. In case of two generations of Majorana neutrinos

it has been found in [52], using the on-shell renormalization scheme, that in the basis where

the mass matrix is diagonal:

εi ∝
M2
j −M2

i(
M2
j −M2

i −
1
π ln

(
M2
j /M

2
i

))2
+ (MjΓj −MiΓi)

2
. (1.1)

In the limit of vanishing mass difference, M2 = M1, the numerator of (1.1) becomes zero

whereas the denominator does not if Γ2 6= Γ1. The vanishing of the CP -violating parame-

ters is required in this limit, because the corresponding Lagrangian is CP -invariant [60, 61].

On the other hand, if M2 →M1 and Γ2 → Γ1 simultaneously then, according to the above

expression, the CP -violating parameters do not vanish even though the Lagrangian is

CP -invariant as well in this case. The origin of this problem lies in the use of the quasipar-

ticle picture built-in in the Boltzmann approximation. The very fact that the peaks of the

spectral functions that correspond to the quasiparticle excitations strongly overlap in the

resonant regime renders the use of Boltzmann equations problematic. The question which

behaviour the CP -violating parameter exhibits in this ‘doubly degenerate’ limit has recently

been answered in [62], using the formalism of non-equilibrium quantum field theory and

without invoking the quasiparticle approximation. It has been found that, for M2 → M1

and Γ2 → Γ1, the regulator MjΓj−MiΓi in the denominator of (1.1) is effectively replaced

by MjΓj +MiΓi due to additional contributions that describe coherent transitions between

the Majorana neutrino species. This implies that in the resonant regime both CP -violating

(inverse) decays and oscillations play an important role and must be taken into account in

a self-consistent analysis.

According to the conventional analysis the CP -violating parameters take their max-

ima if the mass difference is of the order of the sum of the decay widths. However the

early Universe expands and cools rapidly. During the time interval in which most of the

asymmetry is generated, the temperature (measured in units of the heavy neutrino mass)

can drop substantially. In the favoured regime, thermal corrections to the effective masses

can be comparable to the mass difference itself. Depending on the values of the couplings

there are two possibilities, see figure 1 (left). In the runaway regime the mass difference

grows with increasing temperature, whereas in the crossing regime the difference of the

masses initially decreases such that the two masses become equal at some temperature,

and then increases again with increasing temperature. In this work we study the influence

of thermal corrections to the masses in these two regimes, which have not been considered

before, on resonant leptogenesis. To this end we consider a simple toy-model which proved

to be useful in the past for the analysis of leptogenesis [18, 34, 35, 61, 63]. Throughout this

work we emphasize the strict requirement that the obtained source terms for the lepton
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Figure 1. Sketch of the dependence of the effective masses (left) and effective measure of

CP -violation (right) in the runaway (solid lines) and crossing (dotted lines) regimes for a quasi-

degenerate mass spectrum of the heavy particles. R denotes the resonance parameter which quan-

tifies the mass splitting in vacuum (see below).

asymmetry need to respect the CP -properties of the underlying theory represented by the

Lagrangian as the parameters of corresponding quasiparticles (insofar they can be defined)

evolve due to medium effects.

In order to be able to study the interplay of coherent oscillations and resonant en-

hancement rigorously we also adopt a simplified physical picture [31–33, 62]. We neglect

the expansion of the Universe and assume instead that the toy-Majorana neutrinos are cou-

pled through their decays to a thermal bath composed of the decay products (toy-leptons).

The deviation from thermal equilibrium needed to produce an asymmetry is induced by an

instantaneous perturbation. This setting may differ from the conventional physical picture

connected to standard cosmology but allows us to obtain analytic solutions and study the

source of the asymmetry generation rigorously from first principles, in terms of statistical

propagators and spectral functions.

Before we present the qualitatively interesting results obtained in this approach let us

discuss what one would naively expect from the vacuum expression (1.1) in both regimes.

Because in the runaway regime the difference of the effective masses grows with temper-

ature, one could expect that the overlap of the peaks of the spectral function decreases

simultaneously. Therefore, the quality of the quasiparticle approximation can be expected

to improve. The growing mass difference is also expected to result in a smaller CP -violation.

On the other hand, because in the crossing regime the difference of the effective masses

vanishes at some temperature, the peaks of the spectral function are expected to overlap

at this point. This suggests a complete breakdown of the quasiparticle approximation and

large relative size of off-shell contributions. Furthermore, from (1.1) one could also expect
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that the CP -violating parameters vanish, or are at least suppressed at the crossing point.

At even higher temperatures the mass difference grows again and the applicability of the

quasiparticle approximation may be expected to be restored. The same logic would imply

that in the Mj = Mi case εi vanishes at zero temperature but would in general evolve into

a finite one as the temperature is increased.

The results of the first-principles analysis, see figure 1 (right), show that this naive pic-

ture is only partially correct. In the runaway regime we observe that the result obtained

in the Boltzmann approximation slowly approaches the exact one at high temperatures.

This signals that the quality of the quasiparticle approximation indeed improves at high

temperatures. In agreement with the expectations the effective measure of CP -violation

decreases monotonously with increasing temperature. In the crossing regime the quasipar-

ticle approximation breaks down at the crossing point. As can be inferred from figure 1

(right), at the crossing temperature the CP -violating source computed in an improved

Boltzmann approximation develops a spurious peak which is absent in the exact result.

On the other hand, the expected vanishing (or at least suppression) of the source at the

crossing point does not take place.

The outline of the paper is as follows. In section 2 we present the toy-model and derive

an equation for the asymmetry in the framework of non-equilibrium quantum field theory.

In section 3 we analytically demonstrate that the asymmetry automatically vanishes if

both the Lagrangian and initial conditions are CP -symmetric. The analysis of the effective

masses and widths as well as of the behaviour of the spectral function is carried out in

section 4. In section 5 we present analytical estimates of the leading contributions to

the effective measure of CP -violation. Numerical estimates of the size of the sub-leading

contributions are given in section 6. We summarize the main results in the beginning of

each section. Finally, in section 7 we conclude and give a qualitative explanation for the

difference between the naively expected behaviour and the exact results.

2 Setup

In this section we derive an equation for the asymmetry in the framework of non-equilibrium

quantum field theory. The derivation closely follows the analysis which was performed

in [62] and recently generalized to the case of expanding universe in [64, 65]. We also estab-

lish a connection between this first-principle approach and the commonly used Boltzmann

approximation. In addition we demonstrate that in the Boltzmann approximation the test

solution that we use corresponds to the weak washout regime and describes free decay of

the heavy particles.

Model. To reduce the technical complications to a minimum and yet to include all qual-

itatively important effects for the generation of the asymmetry we use a simple toy model

studied previously in [18, 34, 35, 61, 63]. The model contains one complex and two real

scalar fields:

L =
1

2
∂µψi∂µψi −

1

2
ψiM

2
ijψj + ∂µb̄∂µb−m2 b̄b− λ

2!2!

(
b̄b
)2 − hi

2!
ψibb−

h∗i
2!
ψib̄b̄ , (2.1)
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where b̄ denotes the complex conjugate of b. Here and in the following we assume sum-

mation over repeated indices, unless otherwise specified. Despite its simplicity, the model

incorporates all features relevant for leptogenesis. The real scalar fields imitate the (two

lightest) heavy right-handed neutrinos, whereas the complex scalar field models the lep-

tons. The U(1) symmetry, which we use to define “lepton” number, is explicitly broken

by the presence of the last two terms, just as the B − L symmetry is explicitly broken

by Majorana mass terms in phenomenological models. Thus the first Sakharov condition

is fulfilled. The couplings hi model the complex Yukawa couplings of the right-handed

neutrinos to leptons and the Higgs. By rephasing the complex scalar field at least one of

the couplings hi can be made real. If arg(h1) 6= arg(h2) the other one remains complex

and there is C -violation, as is required by the second Sakharov condition. Note that, in

the scalar toy model, CP -transformations on the fields are identical to C -transformations

up to the sign change of the spatial coordinates.

Non-equilibrium quantum field theory approach. As can be inferred from (2.1)

the Noether current of the complex field is given by

jµ = 2i
[
b̄(x)∂µxb(x)− b(x)∂µx b̄(x)

]
= 2i lim

y→x
[
∂µx b̄(y)b(x)− ∂µyb(x)b̄(y)

]
, (2.2)

where b and b̄ are field operators in the Heisenberg representation. The expectation value

of the current with respect to the initial state is

Jµ(x) = 〈 jµ(x)〉 = 2i lim
y→x

[
∂µxD<(x, y)− ∂µyD>(x, y)

]
, (2.3)

where

D>(x, y)≡〈b(x)b̄(y)〉=Tr
[
P b(x)b̄(y)

]
, D<(x, y)≡〈b̄(y)b(x)〉=Tr

[
P b̄(y)b(x)

]
, (2.4)

are so-called Wightmann two-point functions. In general, D≷ are complex-valued. Using

the hermiticity of the density matrix P and cyclic invariance of the trace we find that they

satisfy [34]

D∗>(x, y) = D>(y, x) , D∗<(x, y) = D<(y, x) . (2.5)

Instead of the Wightmann two-point functions one frequently uses the spectral function

and statistical propagator:

D≷(x, y) = DF (x, y)∓ i

2
Dρ(x, y) . (2.6)

As can be inferred from (2.4) and (2.6), they are defined as

DF (x, y) ≡ 1

2
〈
{
b(x), b̄(y)

}
〉 , Dρ(x, y) ≡ i〈

[
b(x), b̄(y)

]
〉 , (2.7)

where the square brackets denote the commutator and the curly ones denote the anti-

commutator of the fields. Using (2.5) we find that under complex conjugation they trans-

form as

D∗F (x, y) = DF (y, x), D∗ρ(x, y) = −Dρ(y, x) . (2.8)
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Substituting (2.6) into (2.3) we obtain

Jµ(x) = 2i lim
y→x

(∂µx − ∂µy)DF (x, y)− lim
y→x

(∂µx + ∂µy)Dρ(x, y) . (2.9)

The definition of the spectral function, eq. (2.7), combined with the canonical equal-time

commutation relations,[
b(t,x), ˙̄b(t,y)

]
=
[
b̄(t,x), ḃ(t,y)

]
= iδ(x− y) , (2.10)

then implies that the spectral function does not contribute to the current. The divergence

of the current,

∂µJµ(x) = i lim
y→x

(∂µx + ∂µy)(∂µx − ∂µy)DF (x, y) = i lim
y→x

(�x −�y)DF (x, y) , (2.11)

can be rewritten using the Kadanoff-Baym equations (KBE) for the complex field. For

Gaussian initial conditions the latter take the form [34]

[
�x +m2

]
DF (x, y) =

y0∫
t0

d4zΣF (x, z)Dρ(z, y)−
x0∫
t0

d4zΣρ(x, z)DF (z, y) , (2.12a)

[
�x +m2

]
Dρ(x, y) =

y0∫
x0

d4zΣρ(x, z)Dρ(z, y) , (2.12b)

where t0 is the initial time surface and ΣF (ρ) are the statistical (spectral) components of

the self-energy. Substituting (2.12a) into (2.11) we obtain

∂µJµ(x) = −i
x0∫
t0

dz0

∫
d3z
[
Σρ(x, z)DF (z, x)− ΣF (x, z)Dρ(z, x)

+DF (x, z)Σρ(z, x)−Dρ(x, z)ΣF (z, x)
]
. (2.13)

For a spatially homogeneous system ∂µJµ = ∂0J0 = q̇(t), where q is the charge density.

Using furthermore (2.8) and similar relations for the self-energies we can simplify (2.13) to

q̇(t) ≡ S(x)−W (x)

= 2

t∫
t0

dz0

∫
d3z Im

[
Σρ(x, z)DF (z, x)− ΣF (x, z)Dρ(z, x)

]
. (2.14)

This expression gives an exact result for the time derivative of the asymmetry (assuming

Gaussian initial conditions) and provides the basis for various approximation schemes,

e.g. the Boltzmann approximation.

The source and washout terms in (2.14) are defined by

S(x) ≡ 2

x0∫
t0

dz0

∫
d3z
[
Im Σρ(x, z)ReDF (z, x)− Im ΣF (x, z)ReDρ(z, x)

]
, (2.15)
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and by

W (x) ≡ −2

x0∫
t0

dz0

∫
d3z
[
Re Σρ(x, z)ImDF (z, x)− Re ΣF (x, z)ImDρ(z, x)

]
, (2.16)

respectively. The definition of the washout term, which should describe the washout of a

present asymmetry, is motivated by the following considerations. The operation of charge

conjugation replaces the fields in (2.4) by their complex conjugates, see section 3 for more

details, and the density matrix by the charge conjugate one:

D>(x, y)→ CD>(x, y)C−1 = Tr
[
Pc b̄(x)b(y)

]
= Dc

<(y, x) = Dc ∗
< (x, y) , (2.17a)

D<(x, y)→ CD<(x, y)C−1 = Tr
[
Pc b(y)b̄(x)

]
= Dc

>(y, x) = Dc ∗
> (x, y) , (2.17b)

where we have used relations (2.5) in the last equalities of (2.17a) and (2.17b). Com-

bining (2.6) and (2.17) we find that the C -conjugated statistical propagator and spectral

function are given by

DF (ρ)(x, y)→ CDF (ρ)(x, y)C−1 = Dc ∗
F (ρ)(x, y) . (2.18)

In a C -symmetric configuration Pc = P and therefore the statistical propagator as well

as the spectral function are real-valued in this case. This implies that, in agreement with

physical considerations, the washout term, which is proportional to the imaginary part of

the propagators, vanishes in a C -symmetric configuration. Let us now consider the source

term. To this end we need to specify the form of the self-energies. At one-loop level they

read [35]

ΣF (x, y) = −H∗ij
[
GijF (x, y)DF (y, x) +

1

4
Gijρ (x, y)Dρ(y, x)

]
, (2.19a)

Σρ(x, y) = +H∗ij
[
GijF (x, y)Dρ(y, x)− Gijρ (x, y)DF (y, x)

]
, (2.19b)

where we have introduced Hij ≡ hih
∗
j . The statistical and spectral propagators of the

mixing fields are defined analogously to (2.7):

GijF (x, y) =
1

2
〈{ψi(x), ψj(y)}〉 , Gijρ (x, y) = i〈[ψi(x), ψj(y)]〉 . (2.20)

From the definitions (2.20) it follows that

GijF (x, y) = GjiF (y, x) , Gijρ (x, y) = −Gjiρ (y, x) . (2.21)

Furthermore, using the hermiticity of the density matrix P and the cyclic invariance of

the trace, one can show that these matrices are real-valued. Therefore, in a C -symmetric

configuration:

S(x) ≡ −2 ImHij

x0∫
t0

dz0

∫
d3z

[
GijF (x, z)Πρ(z, x)−Gijρ (x, z)ΠF (z, x)

]
, (2.22)

– 7 –
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where we introduced

ΠF (z, x) ≡ Ds
F (z, x)Ds

F (z, x)− 1

4
Ds
ρ(z, x)Ds

ρ(z, x) , (2.23a)

Πρ(z, x) ≡ 2Ds
F (z, x)Ds

ρ(z, x) , (2.23b)

for notational convenience and the superscript ‘s’ refers to a C -symmetric configuration.

For spatially homogeneous systems the two-point functions depend only on the differ-

ence of the spatial coordinates, s ≡ x − y, and it is convenient to introduce their partial

Wigner-transforms,

DF, ρ

(
x0, y0,p

)
≡
∫
d3s e−ipsDF, ρ

(
x0, y0, s

)
. (2.24)

The definitions for the self-energies are similar. Substituting (2.24) into (2.22) we obtain

S(t) = −2 ImHij

t∫
t0

dt′
∫

d3q

(2π)3

[
GijF (t, t′,q)Πρ(t

′, t,q)−Gijρ (t, t′,q)ΠF (t′, t,q)
]
. (2.25)

Integrating the source term (2.25) over t and using the identity

t∫
t0

dt′
t′∫

t0

dt′′
[
f(t′, t′′) + f(t′′, t′)

]
=

t∫
t0

dt′
t∫

t0

dt′′f(t′, t′′) , (2.26)

we obtain a ‘symmetrized’ expression for the charge density which would be generated in

the absence of the washout processes:

qS(t) = −ImHij

t∫
t0

dt′
t∫

t0

dt′′
∫

d3q

(2π)3

×
[
GijF (t′, t′′,q)Πρ(t

′′, t′,q)−Gijρ (t′, t′′,q)ΠF (t′′, t′,q)
]
. (2.27)

Taking furthermore into account that ImHii=0 and using ΠF (ρ)(t
′′, t′,q)=±ΠF (ρ)(t

′, t′′,q)

as well as the properties (2.21) we finally arrive at

qS(t) = −2 ImH12

t∫
t0

dt′
t∫

t0

dt′′
∫

d3q

(2π)3

×
[
G12
F (t′, t′′,q)Πρ(t

′′, t′,q)−G12
ρ (t′, t′′,q)ΠF (t′′, t′,q)

]
. (2.28)

Equation (2.28) provides an exact result for the asymmetry in the limit in which washout

processes can be neglected. Importantly, it does not rely on the quasiparticle approximation

and can be used to study the off-shell and oscillation effects possibly relevant in the resonant

regime.
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Equilibrium solution. To evaluate (2.28) we need explicit expressions for the off-

diagonal components of the two-point functions of the mixing fields. These are solutions

of the corresponding Kadanoff-Baym equations. For Gaussian initial conditions the latter

take the form [35]

[
�x +M2

ik

]
GkjF (x, y) =

y0∫
t0

d4zΠik
F (x, z)Gkjρ (z, y)−

x0∫
t0

d4zΠik
ρ (x, z)GkjF (z, y) , (2.29a)

[
�x +M2

ik

]
Gkjρ (x, y) =

y0∫
x0

d4zΠik
ρ (x, z)Gkjρ (z, y) , (2.29b)

where Mij are mass parameters of the renormalized Lagrangian and Πij
F,ρ are renormalized

self-energies. At one-loop level the self-energies are given by [34, 35]

Πij
F (x, y) = −1

2
Hij

[
D2
F (x, y)− 1

4
D2
ρ(x, y)

]
− 1

2
H∗ij

[
D2
F (y, x)− 1

4
D2
ρ(y, x)

]
, (2.30a)

Πij
ρ (x, y) = −1

2
Hij [2DF (x, y)Dρ(x, y)] +

1

2
H∗ij [2DF (y, x)Dρ(y, x)] . (2.30b)

Comparing (2.30) to (2.23) we conclude that in a C -symmetric configuration

Πij
F (ρ)(x, y) = −ReHij ΠF (ρ)(x, y) . (2.31)

In addition to the statistical and spectral propagators it is also convenient to introduce the

retarded and advanced ones,

GijR(x, y) ≡ θ
(
x0 − y0

)
Gijρ (x, y) , (2.32a)

GijA(x, y) ≡ −θ
(
y0 − x0

)
Gijρ (x, y) . (2.32b)

The Kadanoff-Baym equations for the retarded and advanced propagators can be derived

from (2.29b):[
�x +M2

ik

]
GkjR(A)(x, y) = δ(x− y)δij −

∫
d4zΠik

R(A)(x, z)G
kj
R(A)(z, y) . (2.33)

Explicit expressions for the retarded and advanced self-energies can be obtained

from (2.30b):

Πij
R(A)(x, y) = −1

2
Hij

[
2DF (x, y)DR(A)(x, y)

]
− 1

2
H∗ij

[
2DF (y, x)DA(R)(y, x)

]
. (2.34)

Since Ds
F (x, y) = Ds

F (y, x) and Ds
R(x, y) = Ds

A(y, x) in a C -symmetric configuration we

conclude that, similarly to (2.31):

Πij
R(A)(x, y) = −ReHij ΠR(A)(x, y) , (2.35)

where we have introduced

ΠR(A)(x, y) ≡ 2Ds
F (x, y)Ds

R(A)(x, y) . (2.36)
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Using the definitions of the retarded and advanced propagators (2.32), we can rewrite the

Kadanoff-Baym equations (2.29) in the form[
�x +M2

ik

]
GkjF (ρ)(x, y) = −

∫
d4z θ(z0 − t0)

×
[
Πik
F (ρ)(x, z)G

kj
A (z, y) + Πik

R (x, z)GkjF (ρ)(z, y)
]
. (2.37)

In thermal equilibrium all two-point functions must be translationally invariant. Wigner-

transforming the left- and right hand side of (2.33) we obtain,

Ωik
R(A)(q)G

kj
R(A)(q) = −δij , (2.38)

where we have introduced

Ωik
R(A)(q) ≡ q

2δik −M2
ik −Πik

R(A)(q) . (2.39)

To reach exact thermal equilibrium the system needs an infinite amount of time. There-

fore, in order to obtain an equilibrium solution for the statistical propagator and spec-

tral function we should send the initial time t0 in (2.37) to minus infinity. Wigner-

transforming (2.37) and using the explicit form of the equilibrium solution for the retarded

propagator, eq. (2.38), we obtain

GijF (ρ)(q) = −GikR (q)Πkl
F (ρ)(q)G

lj
A(q) . (2.40)

Using the Kubo-Martin-Schwinger (KMS) relation one can show that in thermal equilib-

rium the statistical propagator is proportional to the spectral function,

GijF (q) =

[
1

2
+ f(qu)

]
Gijρ (q) , (2.41)

where u is the four-velocity of the medium and f is the Bose-Einstein distribution function.

Note that the four-vector q in (2.41) is not constrained to be on-shell. This implies that in

equilibrium the spectral shape of the statistical propagator is determined by the shape of

the spectral function. Let us also note that at one-loop level (2.41) also follows from (2.31)

and (2.40), which serves as a cross-check of the calculation.

A non-equilibrium solution. Using (2.33) one can show that

GijF (ρ)(x, y) = −
∫ ∞
t0

d4u

∫ ∞
t0

d4v GikR (x, u)Πkl
F (ρ)(u, v)GljA(v, y) , (2.42)

is a solution of the Kadanoff-Baym equations (2.29) for any value of t0. For t0 → −∞ its

Wigner-transform reverts to (2.40).

The assumption that the complex field forms a thermal bath makes the one-loop self-

energies ΠF (ρ) translationally invariant. The translational invariance of the self-energies

essentially renders the Kadanoff-Baym equations (2.29) linear. Therefore a sum of two

solutions is also a solution. Motivated by the form of (2.42) we consider [31–33, 62]

∆Gijρ (x, y) = 0 , (2.43a)

∆GijF (x, y) = −
∫
d3u

∫
d3v GikR

(
x0,x− u

)
∆kl
F (u− v)GljA

(
−y0,v − y

)
. (2.43b)
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Substituting (2.43) into (2.29) and using (2.33) we see that it solves the Kadanoff-Baym

equations, except for Dirac-deltas located on the initial time surface. In other words, (2.43)

is a weak solution of (2.29). The delta-functions can be associated with external sources

that (instantly) bring the system out of equilibrium at t = 0. As can be inferred from the

form of (2.43), it is not time-translationally invariant, but is space-translationally invariant.

Therefore, it is convenient to perform the partial Wigner transformation,

∆Gijρ
(
x0, y0,q

)
= 0 , (2.44a)

∆GijF
(
x0, y0,q

)
= −GikR

(
x0,q

)
∆kl
F (q)GljA

(
−y0,q

)
. (2.44b)

Physically, the sum of the solutions (2.42) and (2.43) can be interpreted as follows. The

system of mixing real fields coupled to a thermal bath of the complex field begins its

evolution at t0 = −∞ in a thermal state. At t = 0 an external source instantly brings it

out of equilibrium. After that it slowly thermalises producing some asymmetry. Because

the thermal bath remains in equilibrium this asymmetry would eventually be completely

erased by the washout processes. However, since we neglect the latter here the asymmetry

asymptotically reaches a constant value.

Of course, the washout processes are physically very important and must be taken into

account in a phenomenological analysis. We would also like to stress that (2.43) is only

applicable for the very peculiar instant external perturbation of the system. Nevertheless,

even considering this particularly simple solution and neglecting the washout effects one

can study interesting and qualitatively important features of the process of asymmetry

generation in the regimes which are in principle not accessible in the other methods.

Density matrix and Boltzmann approximations. To conclude this section we will

demonstrate how one can recover the Boltzmann and density matrix approximations for

the source term from (2.28) and provide an interpretation for the solution (2.44) in terms

of one-particle distribution functions and the density matrix respectively.

First of all we send the initial time t0 to minus infinity and express the statistical and

spectral propagators in terms of the Wightmann two-point functions. Then (2.28) takes

the form

qS(t) = −i ImHij

t∫
−∞

dt′
t∫

−∞

dt′′
∫

d3q

(2π)3

d3p

(2π)3

d3k

(2π)3
(2π)3 δ(q− p− k) (2.45)

×
[
Gij<(t′, t′′,q)Ds

>(t′′, t′,p)Ds
>(t′′, t′,k)−Gij>(t′, t′′,q)Ds

<(t′′, t′,p)Ds
<(t′′, t′,k)

]
.

Next we introduce centre and relative time coordinates, τ ≡ (t′ + t′′)/2 and s ≡ t′ − t′′.
The Jacobian determinant of this transformation is unity. Expressed in terms of the centre

and relative coordinates the integral becomes

qS(t) = −i ImHij

t∫
−∞

dτ

+∞∫
−∞

ds

∫
d3q

(2π)3

d3p

(2π)3

d3k

(2π)3
(2π)3 δ(q− p− k) (2.46)

×
[
Gij<(τ, s,q)Ds

>(τ,−s,p)Ds
>(τ,−s,k)−Gij>(τ, s,q)Ds

<(τ,−s,p)Ds
<(τ,−s,k)

]
.
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Introducing a Wigner-transformation with respect to the relative time,

Gij≷(τ, s,q) =

∫ ∞
−∞

dq0

2π
e−iq0sGij≷(τ, q0,q) , (2.47)

(and a similar definition for D≷) we can rewrite (2.46) as

qS(t) = −i ImHij

t∫
−∞

dτ

∫
d4q

(2π)4

d4p

(2π)4

d4k

(2π)4
(2π)4 δ(q − p− k) (2.48)

×
[
Gij<(τ, q0,q)Ds

>(τ, p0,p)Ds
>(τ, k0,k)−Gij>(τ, q0,q)Ds

<(τ, p0,p)Ds
<(τ, k0,k)

]
.

From (2.21) and (2.47) it follows that for the mixing real fields:

Gij≷(τ,−q0,−q) = Gji≶(τ, q0,q) . (2.49)

Similarly, for the complex field in a C -symmetric configuration:

Ds
≷(τ,−p0,−p) = Ds

≶(τ, p0,p) . (2.50)

Using these properties, we can reduce the integrations over positive and negative frequencies

to integrations over the positive frequencies only:

qS(t)= ImHij

t∫
−∞

dτ

∫
θ(q0)d4q

(2π)4

θ(p0)d4p

(2π)4

θ(k0)d4k

(2π)4
(2π)4 δ(q − p− k) (2.51)

×
[
ImGij<(τ, q0,q)2Ds

>(t, p0,p)Ds
>(t, k0,k)−ImGij>(τ, q0,q)2Ds

<(t, p0,p)Ds
<(t, k0,k)

]
.

The factors of two in the squared brackets correspond to a sum of the decays into particles

and antiparticles.

First we consider the Boltzmann approximation. To introduce a quasiparticle approx-

imation for the mixing fields we note that for a hierarchical mass spectrum the diagonal

(in the basis where the mass matrix is diagonal) components of the two-point functions

strongly peak on the corresponding mass shells [35]. The off-diagonal components of the

two-point functions are induced by the off-diagonals of the self-energy, peak at both mass

shells and are small, of the order of Γ/∆M . Motivated by this observation, we introduce

diagonal two-point functions, which are solutions of (2.38) and (2.40) with the off-diagonal

components of the self-energy set to zero [35]:

Ωii
R(A)(q)G

ii
R(A)(q) = −1 , (2.52a)

GiiF (ρ)(q) = −GiiR(q)Πii
F (ρ)(q)G

ii
A(q) . (2.52b)

The diagonal spectral function strongly peaks on the corresponding mass shell and in the

limit of vanishing decay width it can be approximated by a delta-function:

Giiρ (q) = (2π) sign(q0) δ
(
q2 −M2

i

)
. (2.53)
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Similarly to (2.41), in equilibrium:

GiiF (q0,q) =

[
1

2
+ fi(qu)

]
Giiρ (q0,q) . (2.54)

Motivated by (2.54) we use the Kadanoff-Baym ansatz for the diagonal two-point functions,

i.e. assume that for small deviations from equilibrium:

GiiF (t, q0,q) =

[
1

2
+ fi(t, qu)

]
Giiρ (q0,q) . (2.55)

Using the definitions (2.52) we can express the full statistical and spectral propagators in

terms of the diagonal ones. The exact expressions can be found in [35]. Here we will need

only the leading-order approximation

GijF (ρ)(q) ≈ δij G
ij
F (ρ)(q)− (1− δij)

[
GiiR(q)Πij

R(q)GjjF (ρ)(q) + GiiF (ρ)(q)Π
ij
A(q)GjjA (q)

]
, (2.56)

where no summation over the indices is implied. Substituting (2.56) into (2.51), using for

the diagonal propagators the Kadanoff-Baym ansatz (2.55) together with the quasiparticle

approximation (2.53), as well as similar approximations for the complex field we obtain

qS(t) =
∑
i

t∫
−∞

dτ

∫
dΠ3

qdΠ3
pdΠ3

k (2π)4 δ(q − p− k)Hiiεi

×
{
fi(t,q) 2 [1 + fsb (t,p)] [1 + f sb (t,k)]− [1 + fi(t,q)] 2f sb (t,p)fsb (t,k)

}
, (2.57)

where dΠ3
q = d3q/

[
(2π)32ωq

]
is the Lorentz-invariant phase-space integration measure.

The CP -violating parameters read [35]:

εi = Im

(
Hij

H∗ij

) (
M2
i −M2

j

) (
MjΓjLρ

)
(
M2
i −M2

j

)2
+
(
MjΓjLρ

)2 ≈ εvac
i Lρ , (2.58)

where Γj = Hjj/(16πMj) is the tree-level decay width and we have neglected the

momentum-dependence of the denominator to obtain the second approximate equality.

Note that εi vanish if either ImH12 = 0, ReH12 = 0 or M2
2 = M2

1 . This reflects basic

CP -properties of the Lagrangian which we will discuss in more details in section 3. The

function Lρ introduced in (4.7b) takes into account medium corrections and approaches

unity at zero temperature.

Because we assume that the complex field forms a thermal bath with a constant tem-

perature the one-particle distribution functions fsb are time-independent. The one-particle

distribution functions of the real fields can be represented as a sum of the equilibrium one

and a deviation from equilibrium, fi = f eq
i + ∆fi. In agreement with the third Sakharov

condition the contribution of the equilibrium part to the right-hand side of (2.57) is iden-

tically zero. The contribution induced by the deviation from equilibrium reads

qS(t) =
∑
i

t∫
−∞

dτ

∫
dΠ3

q 2 εiHii ∆fi(t,q)

×
∫
dΠ3

pdΠ3
k (2π)4 δ(q − p− k)

[
1 + fsb (p) + fsb (k)

]
. (2.59)
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The second line of (2.59) is nothing but a full Wigner transform of (2.23b) in the quasi-

particle approximation.

To interpret (2.44) in terms of one-particle distribution functions ∆fi we Wigner-

transform it with respect to the relative time,

∆GijF (τ, q0,q) = −2∆kl
F (q)

∫ ∞
−∞

dp0

2π
GikR (q0 + p0,q)GljA(q0 − p0,q) θ(τ)e−2ip0τ . (2.60)

Because (2.44) vanishes for x0 < 0 and y0 < 0, the Wigner transform vanishes for central

times τ < 0, as is reflected by the θ(τ). For j = i in the Boltzmann approximation

we can furthermore neglecting the off-diagonal components of the propagators as well as

off-diagonal components of the matrix ∆kl
F . In this case we find

∆GiiF (τ, q0,q) ≈ sin[2(q0 − ωi)τ ]

q0(q0 − ωi)
·∆fi(τ,q) , (2.61a)

∆fi(τ,q) ≡ −
∆ii
F (q)

2ωi
θ(τ)e−Γiτ ≡ ∆fi(0,q)θ(τ)e−Γiτ . (2.61b)

For ωiτ � 1 the first factor in (2.61a) strongly peaks in the vicinity of the mass shell,

q0 ∼ ωi, and rapidly oscillates away from the mass shell. The integration in the proximity

of q0 = ωi yields a result which oscillates around 1
2 with amplitude which decreases for

increasing τ . In other words, effectively,

∆GiiF (τ, q0,q) ≈ ∆fi(τ,q)Giiρ (q0,q) (2.62)

for ωiτ � 1. Comparing (2.62) to (2.55) we conclude that ∆fi(τ,q) is a one-particle

distribution function. This implies that in the used approximation ∆ii
F (q) parametrizes

the initial deviation of the one-particle distribution function of ψi from the equilibrium

one (which is determined by the temperature of the thermal bath). Substituting (2.61b)

into (2.59), integrating over time and reordering the terms we obtain:

qS(t) = 2
∑
i

(
1− e−Γit

) ∫ dq3

(2π)3

Mi

ωi
∆fi(0,q)εi(ωi,q)Lρ(ωi,q) . (2.63)

Note that in the small width limit, even though ωiτ � 1 is crucial for the applicability of

the approximation, we can still assume Γτ � 1 at the lower limit of the time integration.

Expression (2.63) has a simple physical interpretation. In the absence of washout processes

the final asymmetry is expected to be proportional to a product of the initial deviation from

equilibrium, ∆fi(0,q), and the in-medium CP -violating parameter, εi. The overall factor

of two in (2.63) reflects the fact that in the toy model considered here ‘lepton’ number

is violated by two units in each decay. The factor Lρ comes from the difference of the

gain and loss terms.It is sometimes interpreted as a medium correction to the decay width,

Γmed
i = Γi Lρ. However, we would like to stress that the so defined effective width does

not coincide with the effective width inferred from the analysis of the spectral function.

Finally, the Lorentz-invariant integration measure coincides with the one that arises in
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the calculation of the decay reaction density. For comparison with the results of the first-

principles approach a well as those obtained in the density matrix approximation discussed

below it is also useful to rewrite (2.63) in the form

qS(t) ≈
∫

d3q

(2π)3
∆F (q)

−J
detM

1(
M2

1 −M2
2

)2 ∑
i=1,2

Π2
ρ(ωi,q)

(2ωi)2

1− e−Γit

Γi
, (2.64)

where J is the basis-invariant measure of C -violation, see equation (3.5), and we have

assumed that ∆kl
F (q) = δkl∆F (q), see section 3 for more details.

Let us now consider the density matrix approximation. The density matrix [28] is

related to the Wightmann function by [66]

ρij(t,q) =

∫ ∞
0

dq0

2π
2q0G

ij
<(t, q0,q) . (2.65)

As can be inferred from (2.65) the mass shells of the Wightmann function (see section 4

for more details) are ‘summed over’ in (2.65), which is well motivated for a quasidegenerate

mass spectrum. Using a normalization condition for the spectral function [35] and taking

furthermore into account that in the setup considered here the exact spectral function is

real-valued we find ∫ ∞
0

dq0

2π
2q0G

ij
>(t, q0,q) = ρij(t,q) + δij . (2.66)

Using (2.65) and (2.66) we find, approximately, from (2.51)

qS(t) = ImHij

t∫
−∞

dτ

∫
dΠ3

qdΠ3
pdΠ3

k (2π)4 δ(q − p− k) (2.67)

× Im
{
ρij(t,q) 2 [1 + fsb (t,p)] [1 + fsb (t,k)]−

[
δij + ρij(t,q)

]
2fsb (t,p)fsb (t,k)

}
.

Similarly to the Boltzman case, because the equilibrium component of ρij does not con-

tribute to the asymmetry, we can simplify the above expression to

qS(t) = ImHij

t∫
−∞

dτ

∫
dΠ3

q 2 Im ∆ρij(t,q)

×
∫
dΠ3

pdΠ3
k (2π)4 δ(q − p− k) [1 + fsb (p) + fsb (k)] . (2.68)

In the small width limit the off-diagonal elements of (2.60) are well approximated (for not

too small q0) by

∆GijF (τ, q0,q) ≈ i∆F (q)
1

M2
i −M2

j

Πij
ρ (ω̄,q)

(2ω̄)2
(2.69)

×

[∑
k

sin[2(q0−ωk)τ ]

q0 − ωk
e−Γkτ − 2i

sin[2(q0−ω̄)τ ]

q0 − ω̄
e−i(ωi−ωj)τe−

1
2

(Γi+Γj)τ

]
,

– 15 –



J
H
E
P
0
7
(
2
0
1
4
)
1
3
0

where ω̄ = 1
2(ω1 + ω2) and we have again assumed that ∆kl

F (q) = δkl∆F (q). The q0

integration of the first term in the square brackets of (2.69) has been discussed above.

Similarly, the integration of the last term in the square brackets in the vicinity of q0 ∼
ω̄ gives a term that oscillates around e−i(ωi−ωj)τe−

1
2

(Γi+Γj)τ with decreasing amplitude.

Taking this into account, we obtain for the off-diagonals of the density matrix:

∆ρij(τ,q) ≈ i∆F (q)
ω̄

M2
i −M2

j

Πij
ρ (ω̄,q)

(2ω̄)2

×
[
e−Γiτ + e−Γjτ − 2i e−i(ωi−ωj)τe−

1
2

(Γi+Γj)τ
]
. (2.70)

Substituting (2.70) into (2.67), using the relation (2.31) and definition (3.5) we obtain for

the asymmetry

qS(t) ≈
∫

d3q

(2π)3
∆F (q) (2.71)

× −J
detM

1(
M2

1−M2
2

)2 Π2
ρ(ω̄,q)

(2ω̄)2

∑
i=1,2

1− e−Γit

Γi
− 2Re

1−e−i(ω1−ω2)te−
1
2

(Γ1+Γ2)t

i(ω1 − ω2) + 1
2(Γ1 + Γ2)

 .
Comparing with (2.64), we conclude that the first term in the square brackets of (2.71)

describes C -violating decays of the heavy particles, whereas the second term describes

coherent C -violating oscillations between them which are in principle absent in the Boltz-

mann approximation.

3 Fundamental symmetries and dynamics

If the system is initially in a C -symmetric state then a non-zero asymmetry can be gener-

ated only dynamically. In this section we show that whether the dynamics is C -conserving

or C -violating is determined by symmetries of the Lagrangian under C -transformation. For

the system under consideration the measure of dynamical C -violation can be parametrized

by a single flavour-basis invariant combination of the couplings and mass parameters [61].

On the other hand, even if the dynamics is C -conserving and the initial asymmetry is

zero, a non-zero asymmetry can be generated provided that the initial conditions for the

mixing fields are not C -symmetric. Below we discuss the conditions which ensure that the

Lagrangian and the initial conditions are simultaneously invariant under C -transformation

and show that the obtained results consistently predict zero asymmetry in this case.

Charge conjugation properties. If both, the dynamics and the initial conditions, are

C -conserving then the final asymmetry must be zero. Let us check if (2.27) is consistent

with this requirement.

The information about the dynamics is encoded in the Lagrangian. Here we work in

the MS-scheme and therefore it is sufficient to analyse only its finite part, see [61] for more

details. Under C -transformation the fields transform as,

Cb(x)C−1 = βb̄(x) , (3.1a)

Cb̄(x)C−1 = β∗b(x) , (3.1b)

Cψi(x)C−1 = Uijψj(x) . (3.1c)
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where β is a phase factor, |β| = 1, and Uij is an orthogonal transformation. The latter can

be a flavour rotation or reflection:

U =

(
c −s
s c

)
or U =

(
c s

s −c

)
, (3.2)

where we have introduced c≡cos(α) and s≡sin(α) to shorten the notation. C -transforming

the Lagrangian (2.1) and using (3.1), we find that it is C -invariant provided that

UTimM
2
mnUnj = M2

ij , (3.3a)

β2UTik hk = h∗i . (3.3b)

If for a given set of couplings and mass parameters, we can find β and Uij such that the

conditions (3.3) are fulfilled then the Lagrangian is C -invariant. In general, the mass matrix

has non-zero off-diagonal elements. To simplify the analysis we rotate to the basis where

they vanish, i.e. where M2
ij = δijM

2
i . If M2

1 6= M2
2 the first condition is fulfilled only for

α = 0, π rotations and α = 0, π reflections. That is, we have to consider only four choices

of Uij . The condition (3.3b) is equivalent to the requirement that UTimHmnUnj = H∗ij .
For α = 0, π rotations this implies H12 = H∗12 which holds if ImH12 = 0. For α = 0, π

reflections (3.3b) implies H12 = −H∗12, which is fulfilled if ReH12 = 0. Under a flavour

rotation ImH12 and ReH12 transform as [61],

ImH12 → ImH12 , (3.4a)

ReH12 →
(
c2 − s2

)
ReH12 + cs(H22 −H11) . (3.4b)

Therefore, in the special case M2
1 = M2

2 we can always rotate to a basis where ReH12 = 0.

This implies that the Lagrangian (2.1) is also C -symmetric in this case. Summarizing the

above, the dynamics is C -conserving if either ImH12 = 0, ReH12 = 0 in the basis where

the mass matrix is diagonal, or the mass matrix is proportional to unity. A quantity that

vanishes if any of these conditions is fulfilled is

J = 2 ImH12ReH12M1M2

(
M2

2 −M2
1

)
. (3.5)

As can readily be checked, this is a special case of the form of J in a general flavour basis:

J = Im tr
(
HM3HTM

)
. (3.6)

In other words, J is a basis-invariant measure of C - and CP -violation in the theory. As

we showed in [61] this property is preserved under renormalization.

Let us now analyse in which case the two-point functions are also C -symmetric. As

follows from (3.1), they transform under C as

GijF (ρ)(x, y)→ CGijF (ρ)(x, y)C−1 = UikG
c,kl
F (ρ)(x, y)UTlj . (3.7)

This is trivially equal to GijF (ρ)(x, y) for α = 0, π flavour rotations. Thus, if ImH12 = 0,

then the source term must vanish irrespective of the form of the two-point functions. On
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the other hand, for α = 0, π reflections (3.7) is invariant only if the two-point functions

are diagonal in the basis in which the mass matrix is diagonal. Similarly, for the special

case of a mass matrix proportional to unity the two-point functions must be diagonal in

the basis in which ReH12 = 0 to ensure that no asymmetry is generated. This implies that

vanishing of the invariant (3.5) is in general insufficient to ensure zero final asymmetry.

Even though the dynamics is C -conserving in this case, the asymmetry can be ‘hidden’ in

the initial conditions for the two-point functions of the mixing fields.

Let us examine if, given J = 0, the equilibrium solution (2.42) is C -symmetric. If

ReH12 = 0 in the basis where the mass matrix is diagonal then the self-energies are di-

agonal. Therefore the retarded and advanced propagators are flavour-diagonal as well,

see (2.38). This in turn implies that the equilibrium spectral and statistical propagators

are also flavour-diagonal, see (2.40), and are therefore C -symmetric. If the mass matrix is

proportional to unity then, for the same reasons, in the basis where ReH12 = 0 the spectral

and statistical propagators are diagonal and are again C -symmetric.

On the other hand, the non-equilibrium part of the solution, eq. (2.44), is not neces-

sarily C -symmetric for J = 0. Even though the retarded and advanced propagators are

automatically diagonal if ReH12 = 0 in the basis where the mass matrix is diagonal, the re-

sulting matrix ∆GijF is diagonal only if ∆kl
F (q) is also diagonal in this basis. If this condition

is not fulfilled then the source term differs from zero even if the dynamics is C -conserving.

Similarly, if the mass matrix is proportional to unity then the non-equilibrium part of

the solution is C -symmetric only provided that ∆kl
F (q) is diagonal in the basis where

ReH12 = 0.

Contribution of the equilibrium solution. Since (2.42) is the equilibrium solution

of (2.29), its contribution to the source term is expected to vanish even for J 6= 0. Let us

check that this is indeed the case. First of all, sending, as discussed above, the initial time

to minus infinity and using the definitions (2.32) to extend the upper integration limit to

plus infinity we can rewrite (2.25) in the form

S(t) = 2 ImHij

∞∫
−∞

dt′
∫

d3q

(2π)3

×
[
GijF (t− t′,q)ΠA(t′ − t,q) +GijR(t− t′,q)ΠF (t′ − t,q)

]
, (3.8)

where we have taken into account the translational invariance of the equilibrium solution.

Performing a Wigner-transformation with respect to the relative time,

GijF,R,A(τ, s,q) =

∫ ∞
−∞

dq0

2π
e−iq0sGijF,R,A(τ, q0,q) , (3.9a)

Gijρ (τ, s,q) = i

∫ ∞
−∞

dq0

2π
e−iq0sGijρ (τ, q0,q) , (3.9b)

we can rewrite it in the form

S(t) = 2 ImHij

∫
d4q

(2π)4

[
GijF (q0,q)ΠA(q0,q) +GijR(q0,q)ΠF (q0,q)

]
. (3.10)
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Substituting (2.40) into (3.10) and using (2.31) together with (2.35) we can write the

contribution of the equilibrium solution to the source term as

S(t) = 2 ImHij

∫
d4q

(2π)4
ΠF (q0,q)GikR (q0,q)

[
−Πkl

A (q0,q)GljA(q0,q) + δkj

]
. (3.11)

Using the solution for the advanced propagator (2.38) we obtain:

S(t) = −2 ImHij

∫
d4q

(2π)4
ΠF (q0,q)GikR (q0,q)

(
q2δkl −M2

kl

)
GljA(q0,q) . (3.12)

In a C -symmetric medium ΠF (−q0,q) = ΠF (q0,q). Furthermore, GijR(−q0,q) = GjiA(q0,q).

Taking this into account we can rewrite (3.12) in the form

S(t) = −2 ImHij

∫
θ(q0)d4q

(2π)4
ΠF (q0,q) (3.13)

×
[
GikR (q0,q)

(
q2δkl −M2

kl

)
GljA(q0,q) +GjkR (q0,q)

(
q2δkl −M2

kl

)
GliA(q0,q)

]
= 0 .

Because ImHij is antisymmetric with respect to i↔ j, whereas the integrand is symmetric,

the contribution of the equilibrium solution vanishes, as expected, even for J 6= 0.

Contribution of the non-equilibrium solution. Next we analyse the contribution of

the non-equilibrium solution (2.44). Substituting it into (2.28) we obtain

qS(t) = ImHij

t∫
−∞

dt′
t∫

−∞

dt′′
∫

d3q

(2π)3
GikR (t′,q)∆kl

F (q)GljA(−t′′,q)Πρ(t
′′, t′,q)

≡
∫

d3q

(2π)3
tr ∆F (q)η(q) , (3.14)

where we have factored out the dependence on the initial conditions, which are encoded in

∆kl
F (q), by introducing

ηlk(t,q) ≡ ImHij

t∫
0

dt′
t∫

0

dt′′GljA(−t′′,q)Πρ(t
′′, t′,q)GikR (t′,q) , (3.15)

which contains information on the strength of C -violation and describes how efficiently

this initial deviation from equilibrium is converted into an asymmetry. Note that because

of the step functions in the definition of the retarded and advanced propagators the lower

integration limits in (3.15) reduce to t′min = t′′min = 0.

Let us now verify that (3.14) disappears if the dynamics is C -conserving (i.e. if J = 0)

and simultaneously the initial conditions are C -symmetric. As has been discussed above, if

J = 0 because ImH12 = 0, then the source term must identically vanish. A quick inspection

of (3.15) shows that this is indeed the case. If J = 0 because ReH12 = 0 in the basis where

the mass matrix is diagonal, then the self-energy is diagonal. As follows from (2.38) the

retarded and advanced propagators are also diagonal in this case. Since ImHii = 0 this in

turn implies that the diagonal components of ηlk(t,q) become zero. If the non-equilibrium

solution (2.44) is C -symmetric, i.e. if ∆kl
F (t,q) is diagonal in the same basis, then (3.14)

automatically vanishes, as expected. The case of equal masses is treated analogously.
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For a particularly simple choice, ∆kl
F (q) = δkl∆F (q), the solution (2.44) is automati-

cally C -symmetric if J = 0. Therefore, the final asymmetry is expected to be proportional

to J and to vanish for J = 0. On the other hand, one should keep in mind that for this

choice both the dynamics and the initial conditions are C -violating if J 6= 0. Substituting

the chosen form of ∆kl
F (q) into (3.14) we obtain:

qS(t) =

∫
d3q

(2π)3
∆F (q) tr η(q) . (3.16)

Exchanging the integration variables, t′↔ t′′, using the property Πρ(t
′′, t′,q)=−Πρ(t

′, t′′,q)

and summing over the flavour indices we find:

tr η(t,q) = 2 ImH12

t∫
0

dt′
t∫

0

dt′′Πρ(t
′′, t′,q)G1n

R (t′,q)Gn2
A (−t′′,q) . (3.17)

Replacing the retarded and advanced propagators by their full Wigner-transforms and

using furthermore that GijR(A)(q0,q) = GjiR(A)(q0,q) in a C -symmetric medium we can

rewrite (3.17) in the form

tr η(t,q) = 8 ImH12

t∫
0

dt′
t∫

0

dt′′Πρ(t
′′, t′,q)

∫ ∞
0

dp0

2π

∫ ∞
0

dk0

2π

× Re
([
G11
R (p0,q)−G22

R (p0,q)
]
e−ip0t

′
)

Re
(
G12
A (k0,q)eik0t

′′
)
. (3.18)

Being a trace this expression is flavour-basis invariant and we are free to rotate to any

other basis.

Proportionality to the basis-invariant measure of CP-violation. We will denote

the couplings and masses in the new basis by H and M respectively. As has been argued

in the previous section, ImH12 is invariant under flavour transformations and therefore

such a rotation affects only the components of the retarded and advanced propagators. To

evaluate (3.18) we rotate from the basis where the mass matrix is diagonal to the basis

where ReH12 = 0. The rotation angle α is given by

2α = arctan

(
2 ReH12

H11 −H22

)
. (3.19)

In the new basis the self-energies are diagonal. Note that a flavor transformation does not

‘exchange’ terms between the basic Lagrangian and the counterterms and therefore, in this

sense, does not alter the renormalisation prescription for the self-energies. Their diagonal

components are proportional to Hii which are related to the couplings in the initial basis by

H11/22 =
1

2
trH ± 1

2

H11 −H22

cos 2α
. (3.20)

Using (3.19) and (3.20) we can express cos 2α and sin 2α in terms of the couplings in the

new and original basis:

cos 2α =
H11 −H22

H11 −H22
, (3.21a)

sin 2α =
2ReH12

H11 −H22
. (3.21b)
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In the new basis the matrix of mass parameters of the Lagrangian is no longer diagonal.

Its components read

M2
11/22 =

1

2
trM2 ∓ 1

2

(
M2

2 −M2
1

)
cos 2α , (3.22a)

M2
12 =M2

21 =
1

2

(
M2

2 −M2
1

)
sin 2α . (3.22b)

Using (2.38), we obtain for the components of the retarded (advanced) propagator in the

new basis:

GR(A) =
−1

det ΩR(A)

(
Ω22
R(A) M2

12

M2
21 Ω11

R(A)

)
. (3.23)

As follows from (3.22b) and (3.21b), the product of ImH12 andM2
12 is proportional to the

basis-invariant measure of C -violation:

2 ImH12M2
12 =

J

(H11 −H22) detM
. (3.24)

Using (3.24) and the explicit form of the diagonal components of the retarded propagator,

eq. (3.23), we can rewrite (3.18) in the form

tr η(t,q) =
4J

detM

t∫
0

dt′
t∫

0

dt′′Πρ(t
′′, t′,q)

∫ ∞
0

dp0

2π

∫ ∞
0

dk0

2π

× Re

(
∆R(p0,q) e−ip0t

′

det ΩR(p0,q)

)
Re

(
eik0t

′′

det ΩA(k0,q)

)
, (3.25)

where we have introduced

∆R(p0,q) ≡
(
M2

2 −M2
1

)
(H11 −H22)

(H11 −H22)2 + (2ReH12)2
+ ΠR(p0,q) , (3.26)

and ΠR(p0,q) is the Wigner-transform of (2.36). We have absorbed the differenceH11−H22

in the denominator of (3.24) into the definition of ∆R and used (3.21a) and (3.22a) to

express (M22 −M11)/(H11 −H22) in terms of the couplings and mass parameters in the

basis where the mass matrix is diagonal. The constant part of ∆R is real-valued and, as

far as its contribution is concerned, can be factored out. The integrand is then symmetric

under a simultaneous transformation p0 ↔ k0 and t′ ↔ t′′. Therefore, after the integration

over p0 and k0 the result is symmetric under t′ ↔ t′′. On the other hand, Πρ(t
′′, t′,q) is

antisymmetric under t′ ↔ t′′. Thus, the contribution of the constant part of ∆R identically

vanishes as an integral over the product of a symmetric and an antisymmetric function and

we are left with

tr η(t,q) =
4J

detM

t∫
0

dt′
t∫

0

dt′′Πρ(t
′′, t′,q)

∫ ∞
0

dp0

2π

∫ ∞
0

dk0

2π

× Re

(
ΠR(p0,q) e−ip0t

′

det ΩR(p0,q)

)
Re

(
eik0t

′′

det ΩA(k0,q)

)
, (3.27)
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As expected, for C -symmetric initial conditions the source term is proportional to J and

vanishes in the absence of dynamical C -violation. This is an important cross check of the

self-consistency of the used formalism.

4 Runaway and crossing regimes

Whereas thermal effects, by definition, do not affect the couplings and mass parameters

of the Lagrangian they do influence the effective masses and widths of the in-medium

quasiparticle excitations. Usually, to minimize the difference between the mass parameters

and the effective masses and to ensure in this way the applicability of the quasiparti-

cle approximation one makes use of the renormalization group equations and adjusts the

renormalization scale for each value of the temperature. Effectively, this approach has also

been used in our previous work [62]. However, this approach has the disadvantage that the

relation between the in principle measurable zero-temperature masses and widths and the

generated asymmetry is not transparent. For this reason here we adopt a different approach

and fix the renormalization scale at zero temperature. Even though the resulting effective

masses and widths may substantially deviate from the vacuum ones, this poses no technical

problems because the Kadanoff-Baym equations do not rely on the quasiparticle picture.

Because the analysis for scalars is technically considerably easier than for fermions, here

we go beyond the non-relativistic regime analysed in [62] and consider also temperatures

comparable to the masses. We find that, depending on the values of the couplings and

mass parameters of the Lagrangian, the effective masses may either run away from each

other, or cross at some point as the temperature is increased. The identification of these

two regimes is one of the novel aspects of the present work.

We also demonstrate that for very small mass differences the spectral function does not

generally peak at the positions corresponding to the effective masses. This means that the

approximation schemes relying on the quasiparticle picture (e.g. the Boltzmann equation)

are inapplicable in this case.

Effective masses and widths. The right-hand side of (3.27) depends on the mass

parameters and couplings of the Lagrangian (2.1). We will consider two benchmark points:

Set 1 : h1 = 0.5µ , h2 = 0.8µ exp(2i/3) , M1 = µ , (4.1a)

Set 2 : h1 = 0.8µ , h2 = 0.5µ exp(2i/3) , M1 = µ , (4.1b)

where µ is the MS renormalization scale. The second mass parameter, M2, can be expressed

in terms of the degeneracy parameter:

R ≡ M2
2 −M2

1

M1Γ1 +M2Γ2
, (4.2)

where MiΓi = Hii/(16π) [35]. This definition is motivated by the observation made in [62]

that the maximal enhancement of the asymmetry occurs for M2
2 −M2

1 = M1Γ1 + M2Γ2,

i.e. for R ∼ 1. Large R correspond to a hierarchical mass spectrum and small R to a

quasi-degenerate mass spectrum.
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Typically, effective masses and widths are defined as real and imaginary parts of the

zeros of det ΩR (or det ΩA, they differ by complex conjugation) in the complex plane,

q0,I = ±ωI −
i

2
ΓI , ωI =

(
q2 + M2

I

) 1
2 . (4.3)

Note that the effective masses and widths, MI and ΓI , are not only temperature but also

momentum-dependent because the thermal medium explicitly breaks Lorentz-invariance.

The definition of the effective masses and widths as zeros of det ΩR is not completely

self-consistent because the retarded self-energy in

det ΩR = det
[
q2 −M2 −ΠR

]
= q4 − q2 tr

(
M2 + ΠR

)
+ det

(
M2 + ΠR

)
, (4.4)

either has to be evaluated for a complex q0,I , or the imaginary part of q0,I has to be

neglected when evaluating ΠR. In one-loop approximation the explicit expression for the

latter reads

ΠR,A, ρ(q) =

∫
d4k

(2π)4

d4p

(2π)4
(2π)4δ(q − p− k) 2Ds

F (p)Ds
R,A, ρ(k) . (4.5)

It can be represented [34, 35] as ΠR,A = Πh ± i
2Πρ. In the quasiparticle approximation

the Wigner-transforms of the statistical and spectral propagators of the complex field are

given by [34, 35]

Ds
ρ(p) = (2π) sign(p0)δ

(
p2 −m2

)
, (4.6a)

Ds
F (p) = [1 + f(pu)]Ds

ρ(p) . (4.6b)

Using (4.6) and assuming m = 0 we obtain from (4.5):

Πρ(q0,q) =
1

8π
Lρ

(
q0

T
,
|q|
T

)
, (4.7a)

Lρ(y0, y) = 1 +
2

y
ln

(
1− e−(y0+y)/2

1− e−(y0−y)/2

)
. (4.7b)

The retarded and advanced propagators can also be represented in the form DR(A) =

Dh ± i
2Dρ . In the quasiparticle approximation:

Ds
h(p) = −P 1

p2
, (4.8)

where P denotes principal value. The resulting dispersive self-energy Πh is divergent and

must be renormalized. Using (4.8) we find in a C -symmetric configuration:

Πh(q0,q) =
1

8π
Lh

(
q0

T
,
|q|
T

)
− 1

16π2
ln
|q2|
µ2

, (4.9a)

Lh(y0, y) =
1

πy

∞∫
0

dz fBE(z) ln

∣∣∣∣(2z + y)2 − y2
0

(2z − y)2 − y2
0

∣∣∣∣ , (4.9b)
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where fBE denotes the Bose-Einstein distribution with zero chemical potential. The quasi-

particle approximations (4.6) and (4.8) are valid only for the real values of their arguments

and therefore (4.5) is not well defined on the complex plain.

To avoid this ambiguity here we use an alternative self-consistent definition relying on

the fact that to an excellent approximation

det Ω−1
R (q0,q) ≈ Z(

q2
0 − q2

0,1

)(
q2

0 − q2
0,2

) . (4.10)

Instead of searching for zeros of det ΩR in the complex plane we perform a three-point fit

which uniquely determines q0,1 and q0,2 as well as Z. Therefore, even though the three

fit parameters are complex numbers we do not need to evaluate ΠR in the complex plane.

Numerically, the conventional and the alternative definition proposed here give very similar

results. It is important to note that, because the determinant is invariant under flavour

transformations, the fit parameters as well as the resulting effective masses and widths do

not depend on the choice of the flavour basis.

The temperature dependence of the effective masses and widths for the two sets of

parameters is presented in figure 2. For the first parameter set the difference of the effective

masses grows monotonously with the temperature. We will refer to this case as to runaway

regime. It is important to keep in mind, that q0,1 and q0,2 enter (4.10) symmetrically.

Therefore, a transformation q0,1 ↔ q0,2 would ‘swap’ the effective masses, M1 ↔ M2 ,

(as well as the widths) but leave (4.10) invariant. In figure 2 we have chosen the naming

convention for M1 and M2 such, that in the limit T → 0 these basis-invariant quantities

approach the eigenvalues of the mass matrix, M1 and M2. This choice is intuitive and

convenient, but is not forced by any physical principle. For the second parameter set we

have also ordered the effective masses such that in the limit T → 0 they approach M1 and

M2 respectively. As the temperature grows, the difference of the effective masses decreases

and at some temperature they become equal. At even higher temperatures the difference of

the masses starts growing again. In principle, we are free to choose the naming convention

for the masses at any temperature. In other words, we can either assume that one of the

effective masses continuously grows whereas the other one continuously decreases (level

crossing), or assume that the effective mass that grew below the crossing temperature,

begins to decrease, whereas the mass that was increasing before the crossing temperature

begins to decrease (usually referred to as avoided level crossing) as the temperature grows

further. As is evident from figure 2 we have chosen the former possibility which leads to

exactly the same results as the other choice. Note, that due to the momentum dependence

of the masses the point in which M1 = M2 is momentum dependent as well. Therefore

there is no crossing ‘point’ in the strict sense but an interval in which the M1(q) = M2(q)

for typical momenta q.

At this point we would like to stress once again that (4.10) is very accurate even at

the point of (avoided) crossing. In other words the effective masses are well defined for any

temperature and value of the degeneracy parameter.

We would also like to emphasize that the definition of effective masses and widths used

here is not unique and that other definitions are possible. To give an example, one could
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Figure 2. Temperature dependence of the effective masses and widths for R = 5 and R = 1.

The solid lines correspond to the first parameter set, and the dotted lines to the second parameter

set. For q we use the average thermal momentum of a boson with mass µ at each T . Effective

masses, widths and temperature are given in units of µ. The first vertical dotted line indicates the

temperature for which the difference between the effective widths takes its minimal value, while the

second one indicates the crossing point for which the effective masses are equal.

e.g. use Πh in (4.4) to define the effective masses. This definition would lead to a picture

of avoided crossing i.e. the mass eigenvalues (for a given momentum) would never meet

in a point but keep a finite minimum distance which would be reminiscent of an avoided

crossing with level repulsion. The choice of the definition used in this work is motivated

mainly by the fact that it leads to particularly simple and intuitive expressions for the

asymmetry and other quantities.
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Equilibrium spectral function. In the setup considered here the exact spectral func-

tion coincides with the equilibrium one. The assumption that the spectral function is either

diagonal in the basis where the mass matrix is diagonal or that its off-diagonal components

peak at the same positions as the diagonal ones in this basis provides a starting point

for various approximation schemes including the Boltzmann approximation. Components

of the spectral function for two values of the degeneracy parameter and various values of

temperature in the runaway and crossing regimes are presented in figure 3. To make the

comparison with figure 2 easier we have replaced the dependence of the spectral function

on q0 by a dependence on a mass parameter M defined by q0 ≡ (q2 +M2)
1
2 .

Given the introduced rescaling one would expect that the diagonal components of the

spectral function peak at the values of M equal to the values of the two effective masses, M1

and M2. Whereas this is the case for a hierarchical (R & 5) and mildly quasi-degenerate

(1 . R . 5) mass spectrum, we observe a rather different behaviour for a quasi-degenerate

(R . 1) mass spectrum, especially at high temperatures. In particular, in the runway

regime at T ∼ µ both diagonal components of the spectral function peak in the vicinity of

M1 and do not display any non-trivial features in the vicinity of M2, see figure 3. In the

crossing regime we observe a similar behaviour.

Furthermore, the off-diagonal components differ from zero at any temperature and

value of the degeneracy parameter. Note that even for a mildly hierarchical mass spectrum

the peaks of the off-diagonals are not very pronounced and their positions do not exactly

coincide with those of the diagonal components. For a quasi-degenerate mass spectrum the

clear peak structure typical for a hierarchical mass spectrum disappears completely. In this

case one of the diagonals does not have a pronounced peak and the off-diagonal components

peak at only one of the mass shells. This makes the quasiparticle approximation and the

use of the Boltzmann equation in this regime rather questionable.

5 Analytical treatment of leading effects

The dominant contribution to the asymmetry is generated by the ‘difference of frequen-

cies’ terms close to the mass shell. In this section we evaluate this term analytically in

the Breit-Wigner approximation. For a hierarchical mass spectrum our first-principle ap-

proach reproduces the Boltzmann approximation. We would like to stress that, in contrast

to what has been contemplated in other works, in order to obtain the Boltzmann result

there is no need to introduce non-zero widths of the particles forming the thermal bath.

For a quasi-degenerate mass spectrum the contributions describing destructive interference

between the two mass shells become important. This renders the Boltzmann approxima-

tion invalid. In particular, in the crossing regime the asymmetry computed neglecting

these contributions develops a spurious peak at temperatures close to the crossing point.

The negative interference terms ‘remove’ this peak and smoothen the dependence of the

asymmetry on the temperature.

Double-time integration. To evaluate (3.27) we replace the spectral ‘self-energy’ Πρ

by its Wigner-transform using a relation similar to (3.9b). The double-time integration
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Figure 3. Components of the equilibrium spectral function for two values of the degeneracy

parameter in the runaway and crossing regimes. For q we use average thermal momentum of a

boson with mass µ. To make the comparison with figure 2 easier we have replaced the dependence

of the spectral function on q0 by a dependence on a mass parameter M using q0 ≡ (q2 + M2)
1
2 .

The solid vertical lines mark positions the effective masses M1 and M2. Effective masses and

temperature are given in the units of µ.

can then be performed analytically, e.g.:

F (q0, p0, k0, t) ≡
t∫

0

dt′
t∫

0

dt′′ e−iq0(t′′−t′)e−ip0t
′
eik0t

′′
=

1− ei(q0−p0)t

q0 − p0

1− e−i(q0−k0)t

q0 − k0
. (5.1)
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As can readily be checked, even though the denominator of (5.1) vanishes for q0 = p0

and q0 = k0, the numerator simultaneously vanishes as well and the ratios are finite.

Rearranging the terms, we can then rewrite (3.27) in the form

tr η(t,q) =− 2J

detM

∫ ∞
0

dq0

2π

∫ ∞
0

dp0

2π

∫ ∞
0

dk0

2π
Πρ(q0,q)

× Im

(
ΠR(p0,q)F (q0, p0, k0, t)

det ΩR(p0,q) det ΩA(k0,q)
− ΠR(p0,q)F (−q0, p0, k0, t)

det ΩR(p0,q) det ΩA(k0,q)

+
ΠR(p0,q)F (q0, p0,−k0, t)

det ΩR(p0,q) det ΩR(k0,q)
− ΠR(p0,q)F (−q0, p0,−k0, t)

det ΩR(p0,q) det ΩR(k0,q)

)
. (5.2)

Because the integration in (5.2) is over positive values of q0, p0 and k0, the dominant

contribution is due to the first term where q0 − p0 and q0 − k0 in the denominator can

vanish simultaneously. In this section we will only consider this ‘difference of frequencies’

contribution and neglect the other three. They are studied numerically in section 6.

To evaluate the remaining momentum integrals we use the approximation (4.10).

Introducing xI ≡ q2
0,I − q2 we can rewrite its right-hand side in the form,

1

det ΩR(q0,q)
≈ − Z

x1 − x2

1(
q2

0 − q2
0,1

) +
Z

x1 − x2

1(
q2

0 − q2
0,2

) . (5.3)

Similarly,

1

det ΩA(q0,q)
≈ − Z∗

x∗1 − x∗2
1(

q2
0 − q2

0,1

)∗ − Z∗

x∗1 − x∗2
1(

q2
0 − q2

0,2

)∗ . (5.4)

Substituting these expressions, we find for the first term of (5.2):

tr η(t, q) = − 2J

detM

|Z|2

|x1 − x2|2

∫ ∞
0

dq0

2π
Πρ(q0,q) (5.5)

× Im

∑
I=1,2

∫ ∞
0

dp0

2π

ΠR(p0,q)

p2
0 − q2

0,I

1−ei(q0−p0)t

q0 − p0

∫ ∞
0

dk0

2π

1(
k2

0−q2
0,I

)∗ 1− e−i(q0−k0)t

q0−k0

−
I 6=J∑
I=1,2

∫ ∞
0

dp0

2π

ΠR(p0,q)

p2
0 − q2

0,I

1− ei(q0−p0)t

q0 − p0

∫ ∞
0

dk0

2π

1(
k2

0 − q2
0,J

)∗ 1− e−i(q0−k0)t

q0 − k0

 .
Note that the two terms in square brackets have opposite sign, i.e. there is a destructive

interference. This effect can be traced back to equations (5.3) and (5.4). In the limit

q0,2 → q0,1 the difference x1−x2 in the denominator of (5.5) vanishes. However, because of

the destructive interference, the numerator simultaneously vanishes as well and the ratio

remains finite. This conclusion is consistent with the results of [62].

Hierarchical mass spectrum. For a hierarchical mass spectrum q0,1 and q0,2 are well

separated and the contribution of the interference term is negligible. Therefore, it is suffi-

cient to consider only the first term of (5.5). Because the integrands are strongly peaked
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in the vicinity of q0,I , we can approximate ΠR(p0,q) by ΠR(ωI ,q). The p0 and k0 inte-

grals are then complex conjugates of each other and their product is real valued. Since

Im ΠR(ωI ,q) = 1
2Πρ(ωI ,q) this results in

tr η(t,q) ≈ − J

detM

|Z|2

|x1 − x2|2
∑
I=1,2

Πρ(ωI ,q)

∫ ∞
0

dq0

2π
Πρ(q0,q)

×
∫ ∞

0

dp0

2π

1

p2
0 − q2

0,I

1− ei(q0−p0)t

q0 − p0

∫ ∞
0

dk0

2π

1(
k2

0 − q2
0,I

)∗ 1− e−i(q0−k0)t

q0 − k0
. (5.6)

The integrations over p0 and k0 give approximately:∫ ∞
0

dp0

2π

1(
p2

0 − q2
0,I

) 1− ei(q0−p0)t

q0 − p0
≈ − i

2q0,I

1− ei(q0−q0,I)t

q0 − q0,I
, (5.7a)

∫ ∞
0

dk0

2π

1(
k2

0 − q2
0,I

)∗ 1− e−i(q0−p0)t

q0 − k0
≈ i

2q∗I,0

1− e−i(q0−q
∗
I,0)t

q0 − q∗I,0
. (5.7b)

These expressions are valid in the vicinity of q0 ≈ ωI and result in

tr η(t,q) ≈ − J

detM

|Z|2

|x1 − x2|2
∑
I=1,2

Πρ(ωI ,q)

∫ ∞
0

dq0

2π
Πρ(q0,q)

× 1

(2ωI)2

|1− ei(q0−ωI)te−
1
2
ΓI t|2

(q0 − ωI)2 +
(

1
2ΓI

)2 . (5.8)

Using

lim
ε→0

2ε

ω2 + ε2
= 2πδ(ω) , (5.9)

we can perform the integration over q0 and obtain

tr η(t,q) ≈ − J

detM

|Z|2

|x1 − x2|2
∑
I=1,2

Π2
ρ(ωI ,q)

(2ωI)2

(
1− e−

1
2
ΓI t
)2

ΓI
. (5.10)

The obtained time dependence,
(

1− e−
1
2
ΓI t
)2

, is consistent with the result of [33]. How-

ever, numerical analysis shows that this approximation is rather crude. The oscillating

exponent ei(q0−ωI)t substantially changes the shape of the peak in the vicinity of q0 ≈ ωI
and renders this approximation inaccurate. On the other hand, a very accurate approxi-

mation is provided by

tr η(t,q) ≈ − J

detM

|Z|2

|x1 − x2|2
∑
I=1,2

Π2
ρ(ωI ,q)

(2ωI)2

1− e−ΓI t

ΓI
, (5.11)

compare with (2.64). In other words, by taking into account the oscillating exponent

we recover the time dependence expected in the Boltzmann approximation, see [33, 62],

without introducing an effective width of the particles forming the thermal bath. Note that

1

|x1 − x2|2
≈ 1(

M2
1 −M2

2

)2
+ (ω1Γ1 − ω2Γ2)2

, (5.12)
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i.e. we recover the usual resonant enhancement [52, 62]. Furthermore, combining (5.12)

with the definition J , see (3.5), we find that the product of the first two terms in (5.11) is

equal to,

− J

detM

1

|x1 − x2|2
=

Im
(
H2

12

) (
M2

2 −M2
1

)(
M2

1 −M2
2

)2
+ (ω1Γ1 − ω2Γ2)2

, (5.13)

which strongly resembles equation (137) of [62] found there empirically using numerical

analysis. The peculiarity of this expression is that its numerator contains the mass param-

eters of the Lagrangian, whereas the denominator contains effective masses and widths.

Let us finally compare (5.11) with (2.63). For a strongly hierarchical mass spectrum

the deviation of the thermal masses and widths from the vacuum ones is negligible. Fur-

thermore, the MiΓi terms are small compared to M2
i −M2

j . Therefore (5.13) is approxi-

mately equal to (16π)2 εvac
i MiΓi. Taking into account that Πρ = Lρ/(8π) and using (2.58)

we obtain,

tr η(t,q) = 2
∑
i

(
1− e−Γit

) 1

2ωi

Mi

ωi
εi(ωi,q)Lρ(ωi,q) . (5.14)

In other words, η can be viewed as a weighted average of the in-medium CP -violating

parameter with some kinematical and thermal functions. Substituting (5.14) into (3.16)

and recalling the relation between ∆F (q) and ∆f(0,q) we see that the resulting expression

for qS(t) is identical to (2.63).

Quasidegenerate mass spectrum. For a quasi-degenerate mass spectrum q0,1 and q0,2

are very close and we need to take into account also the contributions of the J 6= I term

in (5.5). Since away of p2
0 = q2 region ΠR(p0,q) is a slowly varying function of p0 we can

approximate it by ΠR(ω̄,q), where ω̄ ≡ 1
2(ω1 + ω2). In this approximation the products

(J = I contributions) and the sum of the products (J 6= I contributions) of the momentum

integrals in (5.5) are again real valued and we obtain

tr η(t, q) = − J

detM

|Z|2

|x1 − x2|2
Πρ(ω̄,q)

∫ ∞
0

dq0

2π
Πρ(q0,q) (5.15)

×

∑
I=1,2

∫ ∞
0

dp0

2π

1

p2
0 − q2

0,I

1− ei(q0−p0)t

q0 − p0

∫ ∞
0

dk0

2π

1(
k2

0 − q2
0,I

)∗ 1− e−i(q0−k0)t

q0 − k0

−2Re

∫ ∞
0

dp0

2π

1

p2
0 − q2

0,1

1− ei(q0−p0)t

q0 − p0

∫ ∞
0

dk0

2π

1(
k2

0 − q2
0,2

)∗ 1− e−i(q0−k0)t

q0 − k0

 .
Using approximations (5.7) and integrating over q0 we arrive at

tr η(t,q) ≈ − J

detM

|Z|2

|x1 − x2|2
Π2
ρ(ω̄,q)

(2ω̄)2

×

∑
I=1,2

1− e−ΓI t

ΓI
− 2Re

1− e−i(ω1−ω2)te−
1
2

(Γ1+Γ2)t

i(ω1 − ω2) + 1
2(Γ1 + Γ2)

 , (5.16)
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Figure 4. Time dependence of the two approximate expressions for tr η (in units of 1/µ) in the

runaway and crossing regimes for R = 5 and two values of the temperature, T = 0.01 and T = 1

(in units of µ). Time is given in units of 1/Γ ≡ 1/Γ1 + 1/Γ2.

which is analogous to the result of [62], compare also with (2.71). As has been discussed

above, if M2 → M1 and Γ2 → Γ1 simultaneously, then both the numerator and the

difference x1 − x2 in the denominator of (5.16) vanish simultaneously, but their ratio

remains finite.

For illustration we present the time-dependence of the two expressions for tr η,

eq. (5.11) and eq. (5.16) in figure 4, for R = 5. For this value of the degeneracy parameter

both the hierarchical and quasi-degenerate approximations are expected to be reasonably

good. At low temperatures the two approximations give similar results. On the other hand

at high temperatures they yield values for the final asymmetry which differ by roughly 40%.

Asymptotic behaviour. For t → ∞ the hierarchical and quasi-degenerate approxima-

tions, eq. (5.11) and eq. (5.16), simplify to

tr η(∞,q) = − J

detM

|Z|2

|x1 − x2|2
∑
I=1,2

Π2
ρ(ωI ,q)

(2ωI)2

1

ΓI
, (5.17a)

tr η(∞,q) = − J

detM

|Z|2

|x1 − x2|2
Π2
ρ(ω̄q,q)

(2ω̄q)2

×

∑
I=1,2

1

ΓI
− 2Re

1

i(ω1 − ω2) + 1
2(Γ1 + Γ2)

 . (5.17b)

We can try to improve the estimate of the asymptotic value of the asymmetry. To this

end we note that for t → ∞ the contributions of the oscillating terms in (5.6) and (5.15)
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vanish. The integrations over p0 and k0 can then be performed analytically:∫ ∞
0

dp0

2π

1

p2
0 − q2

0,I

1− ei(q0−p0)t

q0 − p0
→ lim

ε→0

∫ ∞
0

dp0

2π

1(
p2

0 − q2
0,I

) 1

q0 − p0 + iε
(5.18a)

=
1

2π

 ln(q0)−iπ(
q2

0 − q2
0,I

) +
1

2q0,I

ln(q0,I)

q0 + q0,I
− 1

2q0,I

ln(−q0,I)

q0−q0,I

,
∫ ∞

0

dk0

2π

1(
k2

0−q2
0,I

)∗ 1−e−i(q0−k0)t

q0 − k0
→ lim

ε→0

∫ ∞
0

dk0

2π

1(
k2

0 − q2
0,I

)∗ 1

q0 − k0 − iε
(5.18b)

=
1

2π

 ln(q0)+iπ(
q2

0−q2
0,I

)∗ +
1

2q∗0,I

ln(q∗0,I)

q0+q∗0,I
− 1

2q∗0,I

ln(−q∗0,I)
q0−q∗0,I

.
A numerical comparison of the q0 integrands computed using (5.7) and (5.18) shows that in

the relevant range of q0 the difference between the two is completely negligible even at the

crossing point. In other words, (5.17a) provides a very accurate estimate of the asymmetry

for a strongly hierarchical mass spectrum, whereas (5.17b) provides a very accurate estimate

of the asymmetry for a quasi-degenerate mass spectrum. Their temperature dependence

in the runaway and crossing regimes for R = 1 is presented in figure 6. In the crossing

regime the hierarchical approximation for tr η develops a spurious peak. Contrary to what

one would naively expect the peak is located at a temperature somewhat lower than the

crossing temperature. This can be traced back to the second term in the denominator

of (5.13). The effective widths also depend on the temperature, see figure 2. For R = 1 the

difference of the effective widths reaches minimum around T ∼ 0.14, whereas the difference

of the effective masses reaches minimum around T ∼ 0.38. As a result tr η computed in the

Boltzmann approximation peaks at a temperature between these two. The contribution

of the negative interference terms ensures that the quasi-degenerate approximation for tr η

remains smooth for all values of T and does not develop a peak.

For intermediate values of R neither (5.17a) nor (5.17b) is applicable. To obtain an

analytical expression valid for any R we note that in the p0 integrand in (5.5) it is sufficient

to approximate ΠR(p0,q) by ΠR(ωI ,q). Furthermore, in the relevant q0 range Πρ(q0,q) is

a smooth function of q0 and is well approximated by its linear expansion. The integration

then results in

tr η(∞,q) = − J

detM

|Z|2

|x1 − x2|2

[∑
I=1,2

Π2
ρ(ωI ,q)

(2ωI)2

1

ΓI

− 1

2

Πρ(ω1,q) + Πρ(ω2,q)

(2ω1)(2ω2)
Re

Πρ(ω1,q)(1− iδ) + Πρ(ω2,q)(1 + iδ)

i(ω1 − ω2) + 1
2(Γ1 + Γ2)

− 1

4

Πh(ω1,q)−Πh(ω2,q)

(2ω1)(2ω2)
Im

Πρ(ω1,q)(1− iδ) + Πρ(ω2,q)(1 + iδ)

i(ω1 − ω2) + 1
2(Γ1 + Γ2)

]
, (5.19)

where δ ≡ 1
2(Γ1 − Γ2)/(ω1 − ω2). For a strongly hierarchical spectrum the last two terms

are negligible and (5.19) reverts to (5.17a). On the other hand, for a quasi-degenerate mass

– 32 –



J
H
E
P
0
7
(
2
0
1
4
)
1
3
0

0

0.25

0.5

0.75

1

1.25

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T

C-violation in runaway regime, R=1

eq. (5.17a)

eq. (5.17b)

0

0.25

0.5

0.75

1

1.25

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T

C-violation in crossing regime, R=1

eq. (5.17a)

eq. (5.17b)

Figure 5. Dependence of the asymptotic value of tr η (in units of 1/µ) on the temperature (in units

of µ) in the runaway and crossing regimes for R = 1.

spectrum we can neglect the difference between ω2 and ω1 and replace them by ω̄ in Πρ

and Πh. The δ-terms then cancel out, the last line vanishes and (5.19) reverts to (5.17b).

The R dependence of tr η for various values of the temperature is presented in figure 6. In

both regimes tr η vanishes at very large and very small values of the degeneracy parameter

because for large R the C -violating parameter is proportional to 1/R whereas for small

R it is proportional to R. Let us stress once again that tr η automatically vanishes in

the limit M2 = M1, i.e. for R = 0, because the Lagrangian is C -symmetric in this case.

Just as expected, eq. (5.19) gives an accurate result for the final asymmetry not only for

a hierarchical or quasi-degenerate spectrum, but also for the intermediate values of R. On

the other hand, the expression obtained assuming a hierarchical mass spectrum, eq. (5.17a),

overestimates the final asymmetry at small R, whereas the expression obtained assuming

a quasi-degenerate mass spectrum overestimates the final asymmetry at large R. In the

runaway regime both the hierarchical and quasi-degenerate approximations are smooth for

all values of R and give similar results. On the other hand, in the crossing regime the

hierarchical approximation for tr η develops a spurious peak that we have already observed

at figure 5. The contribution of the negative interference terms ensures that the exact

result for tr η remains smooth for all values of R and T and does not develop a peak in the

vicinity of the crossing point.

6 Numerical treatment of sub-leading effects

In this section we compare the contribution of off-shell effects in the late time limit by

computing numerically the contribution of the second, third and fourth terms in (5.2).

Thereby we show that the assumptions made in the previous section are justified. To this
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Figure 6. Dependence of the asymptotic value of tr η (in units of 1/µ) on the degeneracy parameter

R in the runaway and crossing regimes (in units of µ).

end we rewrite (5.2), using (5.1), as

tr η(t,q) = − 2J

detM

∫ ∞
0

Πρ(q0,q)

(2π)3
Im (I1I2 − I3I4 + I1I5 − I3I6) dq0 , (6.1)

with

I1 =

∫ ∞
0

dp0
(1− ei(q0−p0)t)ΠR(p0,q)

(q0 − p0) det ΩR(p0,q)
, I2 =

∫ ∞
0

dk0
1− e−i(q0−k0)t

(q0 − k0) det ΩA(k0,q)
,

I3 =

∫ ∞
0

dp0
(1− e−i(q0+p0)t)ΠR(p0,q)

(q0 + p0) det ΩR(p0,q)
, I4 =

∫ ∞
0

dk0
1− ei(q0+k0)t

(q0 + k0) det ΩA(k0,q)
,

I5 =

∫ ∞
0

dp0
(1− e−i(q0−p0)t)

(q0 + p0) det ΩR(p0,q)
, I6 =

∫ ∞
0

dk0
1− ei(q0−k0)t

(q0 − k0) det ΩA(k0,q)
. (6.2)

The different integrals I1 . . . I6 are all complex valued and finite. In particular the inte-

grands are finite at q0 = p0 , k0. The integrands of I1 , I3 , I5 exhibit integrable singularities

for p0 = |q| due to logarithmic singularities of the self-energies. As discussed below equa-

tion (5.2), the contribution of the first term dominates the total of (6.1) and setting the

last three terms in I3 . . . I6 to zero would correspond to the approximation used in the

previous section. Here we are interested in their relative contribution in order to know how

accurate our assumptions were.

At finite time the contributions to the integrands by the exponentials are oscillating

as functions of the integration variables (with frequency t). Since the integrals extend to

+∞, a large simplification is achieved if we restrict ourselves to the late-time limit. Similar

to (5.18), it is obtained by substituting q0 → q0 ± iε in each of the integrals. We obtain
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Figure 7. Dependence of the ratio of tr η(∞,q), computed without Breit-Wigner approximation,

on the degeneracy parameter in the crossing regime for T = 1 (in units of µ). Also shown is the

value of |Z| which enters the result in the Breit-Wigner approximation. The R-dependence in the

runaway regime is similar and not shown. ‘Breit-Wigner conv.’ refers to the conventional method

to determine effective masses and widths sketched above in which one searches the complex zeros

of det Ω.

for t→∞:

I1 = lim
ε→0

∫ ∞
0

ΠR(p0,q) dp0

(q0 − p0 + iε) det ΩR(p0,q)
, I2 = lim

ε→0

∫ ∞
0

dk0

(q0 − k0 − iε) det ΩA(k0,q)
,

I3 =

∫ ∞
0

ΠR(p0,q) dp0

(q0 + p0) det ΩR(p0,q)
, I4 =

∫ ∞
0

dk0

(q0 + k0) det ΩA(k0,q)
, (6.3)

I5 =

∫ ∞
0

dp0

(q0 + p0) det ΩR(p0,q)
, I6 = lim

ε→0

∫ ∞
0

dk0

(q0 − k0 + iε) det ΩA(k0,q)
.

Technically we choose a small constant value for ε in the numerical computation which we

decrease until the results do not change significantly anymore. The performed transforma-

tions have turned (6.1) into a two-fold integral. However the hermitian self-energy included

in ΠR contains a further integral such that the overall dimensionality of tr η(t,q) is 3. The

quadrature is complicated by the presence of the integrable singularity of ΠR at p0 = |q|
and the poles due to det ΩR and det ΩA. These difficulties can be overcome by performing

appropriate integral transformations on small intervals surrounding these poles.

Further simplification is achieved by performing the Breit-Wigner approximation

in (6.3), i.e. by using (5.3) and (5.4) everywhere. In this approximation it is possible

to obtain closed-form analytic expressions for I1 . . . I6 neglecting the finite temperature

contributions to ΠR. At non-zero temperature these contributions to I1 and I3 still need

to be integrated numerically but the partial analytic results stabilize the computation of

the total integral (6.1). To demonstrate the accuracy of the Breit-Wigner approximation

we present the ratio of the first term of (6.1), computed without and with this assumption,

in figure 7. We find that the relative error made for average momenta is below 5%, even

for smallest degeneracy parameters.
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Figure 8. Ratio of the asymptotic values of the contributions of the second, third and fourth term

of (5.2) to that of the the first term. Shown is the dependence on the temperature (in units of µ)

in the runaway and crossing regimes for R = 1. The contributions from term 3 and term 4 have

opposite sign for T below the dotted vertical line.

This result motivates us to study the contribution of off-shell effects in the Breit-Wigner

approximation as well. Figure 8 shows the T -dependence of the relative contributions by

the second, third and fourth term to (6.1) with respect to that by the first one. The

contributions of the third and fourth terms are small, for all values of T , compared to the on-

shell contribution because only one of the (q0±k0) and (q0±p0) factors in the denominators

of the integrands of I1, I3, I5, I6 can vanish for each of them. For the same reason the

contribution of the second term is even smaller. In this case none of the (q0 + k0) and

(q0 +p0) terms can vanish since the integration is only over positive momenta. Additionally

the two contributions by the third and the fourth term enter with opposite signs (only for

small T in case of the runaway regime).

Figure 9 shows the R-dependence of the same quantities for fixed temperature T = 1

(in units of µ) and the corresponding average momentum q. Remarkably the relative

contribution of off-shell effects increases with increasing degeneracy parameter. It flattens

for large R and stays below 1% in our examples. For this behaviour it is crucial that the

contributions of the third and fourth terms of (6.1) cancel again for large R.

7 Summary and outlook

For resonant leptogenesis the mass difference is typically of the order of the sum of the

decay widths. Therefore the thermal corrections to the effective masses, which are of the

order of the widths, are comparable to the mass difference. Depending on the values of

the couplings either runway or crossing regime is realized. These have not been discussed

in the context of leptogenesis before. In the runaway regime the mass difference grows

with increasing temperature, whereas in the crossing regime the difference of the masses
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Figure 9. Ratio of the asymptotic values of the contributions of the second, third and fourth term

of (5.2) and that of the the first term. Shown is the dependence on the degeneracy parameter in

the runaway and crossing regimes for T/µ = 1. The contributions from term 3 and term 4 have

opposite sign for R above the dotted vertical line.

initially decreases, such that the effective masses become equal at some temperature, and

then increase again at even higher T . The main goal of this work was to investigate the

asymmetry generation in the vicinity of the crossing point. We obtained consistent results

for the CP -violating source term which maintains the CP -properties of the Lagrangian as

the temperature changes. In particular this enabled us to find answers to three questions

which may be asked based on the results of previous studies relying on Boltzmann-like

equations combined with conventional quantum field theory: is the source term suppressed

(or does it even change sign) when the difference of the effective masses vanishes at the

crossing point? Can a Boltzmann-like approximation, which takes into account thermal

corrections to the masses and decay widths, adequately describe the asymmetry generation

close to a crossing point? What is the relative size of off-shell contributions beyond the

Breit-Wigner approximation?

As far as the first question is concerned, it has been found in earlier works that the

CP -violating parameters are proportional to the mass difference. In the limit of equal

masses they vanish (as the mass difference passes through zero) which is consistent with

the CP -invariance of the Lagrangian in this case. Because the difference of the effective

masses vanishes at the crossing temperature, one could naively expect that CP -violation

also vanishes or is at least suppressed at the crossing point. Here we have demonstrated

analytically that the masses in the numerator and denominator of (1.1) have different ori-

gin. Whereas masses and widths in the denominator of the canonical expression for the

CP -violating parameter may be interpreted as the effective thermal masses, the numerator

contains the mass parameters of the Lagrangian. These do not depend on temperature by

definition. Therefore, contrary to the naive expectation, the vanishing of the difference of
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the effective masses by no means implies vanishing of the CP -violating source term. The

ability to distinguish between the mass parameters of the Lagrangian and the effective

masses relies on an important technical aspect of our analysis. In contrast to the approach

followed in earlier works we did not use renormalization group equations to minimize the

difference between the mass parameters and effective masses at each temperature. Instead

we have fixed the renormalization scale at zero temperature. As a result, the mass matrix

appearing in the Kadanoff-Baym equations and throughout the rest of the paper coincides

with the mass parameters of the Lagrangian. The latter can in principle be measured

experimentally at zero temperature in e.g. decay and scattering experiments. In other

words, this approach has the advantage that the relation between the, in principle measur-

able, zero-temperature masses and widths and the asymmetry generated at temperatures

comparable to the masses remains transparent.

Concerning the second question, peaks of the spectral functions that correspond to the

quasiparticle excitations may strongly overlap in the resonant regime. This renders the

applicability of the Boltzmann approximation questionable. One could expect that this

approximation breaks down completely at the crossing point. Our analysis confirms that

even taking the thermal effects in the form of effective masses and widths into account does

not substantially improve the quality of the quasiparticle approximation. In particular,

close to the crossing point the asymmetry computed in the Boltzmann approximation

develops a spurious peak absent in the exact result. Additional contributions that describe

coherent transitions between the two mass shells exactly compensate the enhancement of

the non-oscillating contributions. We would like to stress that these coherent transitions are

determined by basis-invariant effective masses and widths and affect all components of the

two-point functions, which are not basis-invariant. In other words, the dynamics is basis-

covariant and can be formulated in terms of basis-invariant quantities. Because in both

regimes the mass difference grows at high temperatures one can expect that the quality

of quasiparticle approximation increases. We find that this is indeed the case. However,

this improvement is not related to an increasing separation of the peaks of the spectral

function. It turns out that for a quasi-degenerate mass spectrum at high temperatures the

positions of the peaks are not determined by the effective masses.

Finally, coming to the third question, the very fact that in the crossing regime the

quasiparticle approximation completely breaks down also raises the question of the rela-

tive size of off-shell contributions. Comparing our analytical results with exact numerical

computations we find that purely off-shell effects are small, of the order of 1% or less for

our benchmark scenarios. The Breit-Wigner approximation itself entails a relative error

of less than 5% even at the crossing point. Note that all our computations relied on the

toy-model and that quantitative results could differ for the phenomenological scenario.

In addition to clarifying the qualitatively important and interesting questions raised

above, the results of this work also provide a reference solution for various approximation

schemes. Here we have demonstrated that the Boltzmann approximation is not applicable

in the crossing regime. In a forthcoming publication we will perform a more detailed

comparison of the Kadanoff-Baym and density matrix equations and present a derivation

of the density matrix equations applicable for quasidegenerate as well as hierarchical mass

spectra from first-principles.
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