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Distributed workflow based approach for eliminating 
redundancy in virtual enterprising 

Reggie Davidrajuh 

Abstract The existence of redundancy is a serious problem in virtual enterprise in 
which a number of collaborating enterprises join together to manufacture and sell a 
class of product for a time-limited period. This paper proposes a new approach for 
detection and elimination of redundancy in virtual enterprises; the proposed approach 
is based on workflow and uses a Petri net for modeling and simulation of workflows. 
This paper also presents a working example as a proof of concept. 
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1 Introduction 

The research problem discussed in this paper is the existence of redundancy in 
virtual enterprises. Virtual enterprise means a nucleus enterprise (or main 
assembler) joins with a number of collaborating enterprises (supply and distribution 
enterprises, transporting agents), to manufacture and sell a class of product with 
the characteristics such as qualitative, agility, and leanness, to achieve maximum 
customer satisfaction [5, 6]. When market requirements are changed, a new class 
of products or an improved version of the product should be turned out to meet the 
new market requirements. In this case, the nucleus enterprise may seek for a new 
combination of collaborating enterprises that are more suitable to manufacture the 
new class of products; thus the main aspect of virtual enterprise is dynamic logic of 
organization and reorganization of collaboration [1]. 

Formation of a virtual enterprise is rather quick, as market opportunities for which 
the virtual enterprise is being formed are time-limited. Due to the time constraint 
and due to the independency of collaborating enterprises, when forming a virtual 



enterprise, collaborating enterprises are mainly concerned about division of labor 
and responsibilities for production, distribution, and sales of products; there is not 
much time left for any one of the collaborating enterprises to see what and how the 
other enterprise is going to perform its operations. Hence, there will be redundancy 
as two or more enterprises may be unknowingly doing the same operations, job, or 
functions. 

 
 

2 Related works and our new approach 
 

In this paper, we propose a new approach for eliminating redundancy in virtual 
enterprising. Before the new approach is presented, in order to better understand 
how this paper advances the state of the art, a systematic description of the related 
work is also given. 

 
2.1 Related works 

 
In the last decade, workflows have been studied intensively in the context of 
geographically distributed computing systems (Grids) [7]. In the context of Grid, 
also the concept of virtual organization (VO) was introduced [8]. Especially, in the 
context of e-Science, scientific workflows have been proved useful for 
collaboration of scientists from various organizations [10]. Many systems for 
workflow specification, planning, optimization, management have been proposed 
[18, 19]. Researchers have also proposed to use UML for high-level specification of 
workflows [2]. This paper proposes an approach based on distributed workflow. 

As explained in the next subsection, this approach has roots in an approach pro- 
posed by van der Aalst and Weske [17]; however, the approach proposed by van der 
Aalst and Weske is not a distributed approach. In order to allow distributed workflow 
simulation, this paper also makes use of new tool known as GPenSIM [11]. 

 
2.2 Our new approach 

 
Our approach is an iterative approach in which simulations are done iteratively until 
simulations results converge resulting in an optimal design. Our approach consists of 
four stages (Fig. 1): 
• Stage-1: Starting with a crude global workflow: The collaborating enterprises agree 

on a virtual-enterprise wide global workflow; the global workflow clearly identifies 
main functional blocks (or domains, e.g. manufacturing, sales, suppliers, 
distributors, etc.) of the virtual enterprise and also the interfaces between the 
functional blocks. The global workflow serves as an outline (or contract) between 
these collaborative enterprises. Though the global workflow clearly identifies 
both functional blocks and the interfaces between them, the functional blocks are 
crude and lack details. 

• Stage-2: Partitioning the global workflow into workflow modules: Based on the 
clearly identified functional blocks, the collaborating enterprises (or the 
dominating nucleus enterprise) may divide the global workflow into workflow 
modules. 



Fig. 1  Workflow based approach for eliminating redundancy in virtual enterprising 

The collaborating enterprises will be given responsibility to realize (add details) 
one or more of the workflow modules; thus, collaborating enterprises get their own 
local workflows. 
Stages 1 and 2 are based on a methodology proposed by [17]. 

• Stage-3: Optimizing local workflow modules individually (locally): The
collaborating enterprises work on the workflow modules that are allocated to them. 
Firstly, they add details to the workflow modules so as to reflect the business 
processes. Then they optimize the workflow after finding and eliminating 
performance problems such as bottlenecks, redundancies, deadlocks, etc. Though 
the enterprises are free to develop their own workflow modules as they wish, they 
cannot change the already agreed interfaces between the modules. 

• Stage-4: Global optimization: The individual locally optimized workflow modules
are joined together to form the collaborative workflow. Simulations are done on the 
collaborative workflow to see whether it satisfies the overall targets of the virtual 
enterprise. Simulations may reveal two types of performance problems: global and 
local. 



Global problems (such as overall delays, high product costs, etc.) affect the whole 
virtual enterprise; redesigning the initial global workflow with emphasis on 
redefining the interfaces between the functional blocks, or redividing the global 
workflow into different set of functional blocks may help solve global problems. 
Local problems affect individual enterprises only. Local problems are solved by 
redesigning the local workflow modules. 

3 Technology and tools: Petri nets and GPenSIM 

To make this paper self-contained, this section introduces the technologies and tools 
used in this paper namely Petri nets, and GPenSIM. 

3.1 Petri nets 

This section will give a brief introduction to Petri nets. For further details, interested 
readers are referred to [3]. Carl Adam Petri invented Petri nets in 1962, as part of 
his dissertation titled “Kommunikation mit Automaten” at the University of Bonn. 
This work significantly advanced the fields of parallel and distributed computing, and 
helped define the modern studies of complex systems and workflow management. 

3.1.1 Elements of Petri nets 

A Petri net contains four types of elements: tokens, places, arcs, and transitions. 
Tokens represent objects in the Petri net models. In a system modeling fish 

farming, typically a token represents a fish. A token is represented with a dot in 
Petri net models. When the number of tokens becomes large, it is usually represented 
with the number of tokens. 

Places can hold tokens. Figure 2 shows places p1, p2, and p3 with 4, 3m and 1 
tokens (black spots). Each place is capable of holding any number of tokens. 

Arcs are connections between places and transitions. Arcs are bipartite meaning 
it is not possible to have an arc connecting two places together or two transitions 

Fig. 2  Sample Petri net 



Fig. 3  Sample Petri net after 
one cycle 

together. Each arc has a weight, which is the number of tokens that are transported 
simultaneously when the transitions of which the arc is connected to fires. 

Transitions correspond to events and are connected by arcs to places. When a 
transition fires, the number of tokens within the places connected to the firing 
transition, are changed according to the arcs weights and directions; when a 
transition fires, it consumes tokens (input parts) from the input places and puts 
tokens (output parts) into the output places. For a transition to be able to fire, the 
number of tokens in the input places must be equal or higher than the weights of the 
arcs connecting the input places to the transition. The transition will then be an 
enabled transition. Figure 3 shows the state of the sample Petri net from Fig. 2 
after the transition T1 has fired once. 

3.1.2 Formal definition of Petri nets 

A Petri net is a four-tuple (P ,T , A, x0) where 

P is the set of places, P = [p1, p2, . . . , pn]  
T is the set of transitions, T = [t1, t2, . . . , tm] 
A ⊆ (P × T ) ∪ (T × P ) is a set of arcs from places to transitions and from 
transitions to places, and 
x = [x(p1), x(p2), . . . , x(pn1)] ∈ N n is the row vector of markings (tokens) on the 
set of places; x0 is the initial marking. 

3.1.3 Input and output places of a transition 

In the Petri net in Fig. 3, the places p1 and p2 are inputs to transition t1, and P3 is 
an out place of transition t1. It is convenient to use I (tj ) to represent the set of input 
places to transition tj  and O(tj ) to represent the set of output places to transition tj



when describing a Petri net: 

I (Tj ) = 
�

pi ∈ P : (pi , tj ) ∈ A
l

O(tj ) = 
�

pi ∈ P : (pi , tj ) ∈ A
l

We see from Fig. 3, that the weight of the arc from input place p1 to transition t1
has a weight = 2. This is denoted by: w(p1, t1) = 2. 

3.1.4 Enabled transition 

A transition tj ∈ T in a Petri net is said to be enabled if [12]: 

x(pi ) ≥ w(pi , tj )   for all pi ∈ I (tj ). 

The transition t1 in Fig. 3 is enabled, since the numbers of tokens in the input places 
p1  and p2(2) are at least as large as the weight of the arcs connecting them to 
t1(w(p1, t1) = 2 and w(p1, t1) = 2). 

3.1.5 Petri net dynamics 

The markings of a Petri net, which is the distribution of tokens to the places, represent 
the state of the Petri net. A Petri net representing a discrete event system, where the 
transitions represent events, goes through many states during a simulation process. 
The different states could be represented with the row vector of markings (the 4.th- 
tuple): x = [x(p1), x(p2), . . . , x(pn1)]. 

The number of states an infinite capacity net can have is generally infinite, since 
each place can hold an arbitrary nonnegative integer number of tokens [9]. A finite 
capacity net on the other hand, will have a given number of possible states. n n 

The state transition function, f : ℵ × T → ℵ , of a Petri net is defined for a 
transition tj ∈ T if and only if, x(pi ) ≥ w(pi , tj ) for all pi ∈ I (tj ). 

If f (x, tj ) is defined then xi = f (x, tj ), where 

x i(pi ) = x(pi ) − w(pi , tj ) + w(tj , pi ), i = 1, . . . , n. 

3.1.6 Why Petri nets 

Several tools could be used for simulation of discrete event systems; Automata, State- 
flow, and Petri nets (high level) are some of the most commonly used [5]. The lack 
of structure possibilities (hierarchy) in Automata is a serious shortcoming, since the 
Atlantic salmon farming industry is a complex system which should be a be decom- 
posed into modules and sub systems [Harhalakis, G., Proth]. Stateflow, developed by 
The MathWorks, extends the Simulink part of MATLAB with functionality similar 
to Petri net; charts are used for graphical representation of hierarchical and parallel 
states and for the event-driven transitions between them [5]. A Petri net model of 
a discrete event system could easily be converted into a Stateflow model and vice 
versa, but learning Stateflow is much more difficult than learning Petri net due to the 
syntactic, semantic, and graphical details in Stateflow. Stateflow also requires some 



Fig. 4  3-layer architecture 

knowledge of Simulink, in addition to MATLAB, while the GPenSIM tool used for 
Petri net simulation in this paper runs under the MATLAB environment only. Petri 
nets is widely accepted by the research community for modeling and simulation of 
discrete event-driven systems, mainly due to graphical representation and the well 
defined semantics which makes it possible to use formal analysis of the models [5]. 

3.2 GPenSIM 

GPenSIM (General Purpose Petri net Simulator) is written in MATLAB language 
which allows seamless integration with the other toolboxes that also available in the 
MATLAB environment [11]. 

3.2.1 Architecture of GPenSIM 

GPenSIM is designed using the well-proven paradigms in software engineering such 
as: layered architecture, modular components, and natural language interface. 

GPenSIM is built following 3-layer architecture; see Fig. 4. The bottom layer deals 
with Petri net run-time dynamics; this layer computes newer states with the help of 
linear algebraic equations and matrix manipulations. The middle layer adds more 
high-level functionality such as stochastic timing, coloring of tokens, user-defined 
conditions (‘guard-conditions’ in some literature), etc. The top layer offers 
applications such building a Petri net based model, running simulations, determining 
coverability tree, printing the simulation results, etc. 

3.2.2 Modular components 

A model of a discrete event system developed with GPenSIM consists of a number 
of files. The main simulation file (MSF) is the file that will be run directly by the 
MATLAB platform. In addition to the main simulation file, there will be one or more 
Petri net definition files (PDFs); definition of a Petri net graph (static details) is given 
in the Petri net Definition File. There may be a number of PDFs, if the Petri net model 
is divided into many modules, and each module is defined in a separate PDF. While 
the Petri net definition file has the static details, the main simulation file contains the 
dynamic information (such as initial tokens in places, firing times of transitions) of 
the Petri net. In addition to these files (main simulation file and Petri net definition 
files), there can be a number of transition definition files (TDFs), also. 



Fig. 5  The architecture of GPenSIM 

There are two types of transition definition file (TDF): preprocessor and post- 
processor. A preprocessor generally consists of additional conditions that determine 
whether an enabled transition can fire or not. The additional conditions are called 
“user defined condition” in GPenSIM terminology, whereas in some other literature 
(e.g., Colored Petri Net) it is referred to as “guard-functions”). There can be a separate 
preprocessor for each transition in a Petri net model. A post-processor generally do 
the tidying-up work or accounting work after firing of a transition. 

3.2.3 Natural language interface 

Users need not know Petri net mathematics when creating a Petri net model of a 
discrete event system. GPenSIM offers a natural language interface with which model 
building mainly deals with identifying the basic elements of a system and establishing 
the connections between these elements. Figure 5 shows the overall architecture of 
GPenSIM. 

Figure 6 shows the main loop of the simulator. As in any Petri net simulator, the 
main loop consists of a simple cycle that first checks whether any transitions are 
enabled and then it puts the enabled transitions into the firing queue, provided that 
the transitions satisfy additional user defined conditions, if any; inputs tokens are 
also taken away (consumed) by the corresponding transitions. Then the loop checks 
whether any firing transitions are completing or have completed. In this case, the 
firing transitions are popped out of the firing queue and output tokens are deposited 
into the respective output places. 

Figure 6 also shows that there are two kinds of timers are in use. The first timer— 
called global timer is the one that is normally used. The second timer called stochastic 



Fig. 6  The main loop of the simulation runs 

timer is used only for “stochastic systems.” Stochastic systems can be leisurely de- 
fined as continuous systems (as opposed discrete systems) that are to be discretized 
first into discrete systems so that a Petri net model can be created for them. A case 
study on stochastic systems is performed in Sect. 5. 

Finally, the main loop shown in Fig. 6 hints an extension to GPenSIM: by using a 
Real-Timer (computer’s real-time clock) instead of stochastic or global timer, a Real- 



Time GPenSIM version can be developed. This Real-Time GPenSIM is basically a 
soft Programmable Logic Controller (PLC), which will use a Digital & Analogue 
Input Output Card (DAC) to read sensor inputs from the outside world and will also 
output digital signals to triggers via the card. In this real.-time version, the main 
loop should read the sensor data at the start of each cycle, and the state of the firing 
transitions should be mapped to the output triggers. 

3.2.4 Methodology for modeling and simulation with GPenSIM 

Creating a Petri net model consists of two steps: 

• Defining the static Petri net graph, and
• Assigning initial dynamics in the main simulation file.

Defining the Petri net graph in one or more Petri net Definition Files (PDF): this
is the static part. This step consist of three sub-steps: 

• Identifying the basic elements of a Petri net graph: the places,
• Identifying the basic elements of a Petri net graph: the transitions, and
• Connecting the elements with arcs.

Assigning the dynamics of a Petri net in the Main Simulation File (MSF):

• The initial markings on the places, and possibly
• The firing times of the transitions.
After creating a Petri net model, simulations can be done. 

4 Using Petri nets 

This section only deals with the stage-4 “global Optimization” of the approach given 
in the previous section. Due to space limitation, stages 1–3 are not discussed any 
further. 

This paper uses Petri nets for analyzing workflows. Petri net is a widely accepted 
for modeling and simulation of discrete event-based systems. 

A Petri net model of collaborative workflow can be huge and difficult to manage as 
the virtual enterprise may contain many layers of suppliers and distributors. Because 
of the huge size of the Petri net model, the model has to be built module-by-module 
using the modular approach. 

The modular approach for Petri net model building consists mainly of modeling 
individual enterprises as modules, and then connecting the modules together through 
their input/output ports. The modular modeling approach is a three step process, the 
step are explained in the following subsections. 

4.1 Step-1: collaborative enterprises as event graphs 

In this first step, the collaborating enterprises are modeled as event graph modules, as 
event graphs can be easily reduced into minimal size using existing theories; model 



Fig. 7  Event graph module of different types of collaborating enterprises 

reduction will be done in step-2. The event graph modules must also posses In- 
put/Output ports (I/O ports); it is only through the I/O ports, the modules are going 
to be connected with the other modules in order to obtain the complete model. 

Figure 7 shows the modules of different types of collaborating enterprises as event 
graphs; event graphs are Petri nets models in which all the places have exactly one 
input transition and one output transition. The description of places and transitions of 
the modules shown in Fig. 7 is given in Table 1. 

4.2 Step-2: reducing event graph modules 

The second step is to reduce the size of the modules; Savi and Xie [16] and Harha- 
lakis et al. [12] show a reduction method that is suitable for reducing event graph 
modules surrounded by I/O ports (transitions). According to the reduction theorem, 
the minimal representation (reduced model) has the same set of input and output ports 



Table 1  Description of the 
places and transitions Raw material supplier 

T01 Receive order from part supplier/assembler 
T02 Production of raw material 
T03 Ship material to part manufacturer 
P01 Orders for material received 
P02 Material ready for shipment 
P03 Volume of material to produce 
Part supplier 
T04 Material arrive (from mat. supplier) 
T05 Orders received from assembler 
T06 Production calculations 
T07 Manufacture of parts 
T08 Order raw materials 
T09 Ship parts to main assembler 
T10 Send bid to main assembler 
P04 Unloaded material in queue 
P05 Received orders for parts 
P06 Ready for production of parts 
P07 Monitor of quantity produced 
P08 Monitor of materials used 
P09 Parts ready for shipment 
P10 Bid for parts (to assembler) 
Main assembler 
T11 Bids for parts and raw materials 
T12 Parts and raw materials arrive 
T13 Orders received 
T14 Production calculations 
T15 Manufacture of products 
T16 Order parts and raw materials 
T17 Ship products to distributors 
P11 Received bids from suppliers 
P12 Unloaded parts in queue 
P13 Ready for manufacture 
P14 Monitor of quantity produced 
P15 Received orders for products 
P16 Monitor of parts/materials used 
P17 Products ready for shipment 
Distributor 
T18 Goods arrive from main assembler 
T19 Receive orders for goods from sales agent 
T20 Supply and distribution calculation 
T21 Order goods from main assembler 
T22 Ship goods to sales agents 
P18 Stock of goods 
P19 Received orders for goods 
P20 Monitor of free capacity 
P21 Goods ready for shipment 
Sales agent 
T23 Goods arrive from distributor 
T24 Sales 
T25 Order goods from distributor 
P21 Stock of goods 
P22 Monitor of free capacity 
P23 Monitor of sales 



Fig. 8  Minimal representations for different types of enterprises 

as the initial module, but has fewer internal places and do not has any internal 
transitions [16]. Therefore, the removal of internal transitions and reduction in 
internal places greatly reduces the overall size of the complete model. 

By the reduction theorem, though simple event graph module called minimal 
representations replaces more complex modules of different kinds of enterprises, 
the liveness and boundedness properties of the original modules are preserved. 

Figure 8 shows the minimal representations of the event graph modules that are 
shown in Fig. 7. 

4.3 Step-3: connecting event graph modules together 

The third step is to connect the modules together to form a complete model of the 
virtual enterprise. The modules are connected through their I/O ports. Since the I/O 
ports are transitions, the connecting line should inject a place in between the modules. 

4.4 Working example 

Figure 9 shows a collaborative workflow of a virtual enterprise consisting of 12 
collaborating enterprises. Since the working example is given as a proof-of-concept, 
it is intentionally made simpler with just 12 collaborating enterprises. Not shown in 
Fig. 9: the event graph modules for the transporting agents are unique as these 
modules have only one I/O port as this port functions as both input and output 
port. Technically, this I/O port is a single transition. Also, the market is represented 
by an event graph module consisting of a single input port; there is no output port 
in this module, and hence it functions as “sink”—consuming whatever passed to it. 

The tool General Purpose Petri net Simulator (GPenSIM) [11] is used for 
simulation. GPenSIM uses colors to detect possible redundancy in the virtual 
enterprising. For more details on coloring in Petri nets, interested readers are referred 
to the GPen-SIM user manual [11]. 



Fig. 9  Model of a virtual enterprise consisting of material suppliers, part suppliers and the main assembler 

4.4.1 Simulation program 

The simulation program consists of 14 modules (12 modules, one for each collabo- 
rating enterprises; one module for the market, and one for the main simulation file 
that also posses the order generators and the buffer places between the modules. Due 
to space restriction, we present the 2-line code snippet for simulation run: 

4.4.2 Simulation results 

Simulation results, shown in Fig. 10, depict that there could be two sets of redundant 
functions: 



Fig. 10  Simulation results 

• Transporting agent 01, and Transporting agent 03 are perhaps transporting
materials in the same region, thus can be combined. Similarly,

• Transporting agent 05, and Transporting agent 04 are perhaps transporting
materials in the same region, thus can be combined.

5 Distributed workflow simulation 

Though the approach presented above is for a distributed system like virtual 
enterprising where individual enterprises work independently, the simulation 
program assumes that all the modules for simulation are available in one place. In 
order to perform a truly distributed simulation, where individual modules are 
modeled, simulated, and optimized individually, before they are combined, and 
ready for iterative optimization cycle, the tool for modeling and simulation must 
provide distributed modeling and simulation capabilities. 

5.1 Extending GPenSIM to provide distributed capabilities 

Though GPenSIM originally was designed with distributed applications in mind, the 
current version is not suitable for distributed applications, yet. This is because the 
support in MATLAB for distributed applications was not satisfactory until recently. 
MATLAB did not support multithreading: it did not support starting parallel sessions 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11  Distributed approach for optimizing workflow modules 
 
 

within the same program, so that these parallel sessions can really run in parallel and 
function as proxies for distributed applications running elsewhere. However, MAT- 
LAB has now provided a new toolbox called Parallel Computing Toolbox [14]. With 
Parallel Computing Toolbox, implementing a distributed GPenSIM has become a 
distinct possibility. To make a distributed GPenSIM version and to use it for 
simulating redundancy elimination in virtual enterprising, there are some 
improvements needed to the GPenSIM architecture. 

5.2 Using local workers as proxies for distributed applications 

Figure 11 shows distributed approach: 

• Stage-1: Once the crude virtual-enterprise wide global workflow is made, it is 
portioned into workflow modules for the individual enterprises; these modules 
are loaded into the local workers that are running on the desktop system of the 
nucleus enterprise. 

• Stage-2: Partitioned workflow modules inside the local workers and sent to 
distributed applications that are run on the platforms of collaborating enterprises. 

• Stage-3: After optimizing workflow modules individually, collaborating 
enterprises sent their optimized workflow modules back to the nucleus enterprise. 

• Stage-4: Global optimization: The individual locally optimized workflow modules 
are now available in the local workers are joined together to form the collaborative 
workflow. 

 

There are some restrictions on the number of local workers that can run in parallel 
as the current version of the MATLAB Parallel Computing Toolbox set the maximum 

 

 
 



Fig. 12  Two different approaches for coding distributed workflow modules 

number of local workers that can run in parallel to four. This is indeed a serious 
problem, as a virtual enterprises could constitute many collaborating enterprises. 

5.3 PNML as the format for exchanging Petri net modules 

Virtual enterprises’ heterogeneous platform—a huge diversity of programming 
languages and operating systems—is a barrier to distributed workflow 
management. Thus, the communication between platforms must be based on a 
language and operating system neutral standard, meaning the modeling and 
simulation tool GPenSIM should allow workflow modules and messaging between 
the modules in a standard interchange format, such as XML based PNML (Petri Net 
Markup Language) [15]. 

5.3.1 Using PNML for workflow modules 

Figure 12 shows two approaches for coding workflow modules. 1) Using PNML 
(shown on the left-hand side of Fig. 12), and 2) Using GPenSIM language (shown 
on the right-hand side of Fig. 12). 

By the first approach, the overall Petri net model of a system is described in a 
single source file is called is PNML document, using PNML language; PNML 
document is then fed to GPenSIM parser, which will convert the PNML document 
into a set of source files (one MSF, one PDF, and zero or more TDF). The current 
version of GPenSIM does not allow the use of PNML to model subsystems as 
separate Petri nets, meaning there will be only one PDF generated by the parser. 
By the second approach, all the source files (MSF, PDFs, TDFs) are coded in 
GPenSIM language. 

5.4 Summary 

This section presents the programming language and techniques for extending GPen- 
SIM to support distributed workflow simulations. This work is not complete yet. The 



main performance problem that is visible at this stage is the scalability: MATLAB 
Parallel Computing Toolbox allows a maximum of 3 parallel processes per node. 
This means, for simulation on n virtual enterprises, at least n/3 computing nodes 
must be utilized. 

6 Conclusion 

This paper shows a new approach for detection and elimination of redundancy in 
virtual enterprises. The approach uses distributed workflows. The approach uses an 
open tool known as GPenSIM that is available for the industry standard modeling and 
simulation platform MATLAB; in addition this approach proposes the use of platform 
and language neutral PNML language for coding the workflow modules. 

Literature review reveals that distributed workload management is not a new 
concept [4, 9, 13]. However, all the papers available on this topic use their own 
propriety systems and not an open industry standard platform like the one 
proposed in this paper. This paper emphasizes use of open standard tools as the 
approach requires co-ordination across diverse IT groups, including strategy, 
development, and datacenter operations. In many enterprises, these organizations rely 
on different tools, platforms, and policies and have limited points of shared decision 
making and policy development. As a result, there is some risk that distributed 
workload solutions will struggle to find internal optimized sub-solutions, unless the 
workloads and applications are fully packaged for portability. 
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