
Davidrajuh, R. (2013) Distributed workflow based approach for
eliminating redundancy in virtual enterprising. The Journal of
Sumpercomputing 63(1), pp. 107-125

Link to published article:
DOI: 10.1007/s11227-010-0544-6
(Access to content may be restricted)

UiS Brage
http://brage.bibsys.no/uis/

ft

Distributed workflow based approach for eliminating
redundancy in virtual enterprising

Reggie Davidrajuh

Abstract The existence of redundancy is a serious problem in virtual enterprise in
which a number of collaborating enterprises join together to manufacture and sell a
class of product for a time-limited period. This paper proposes a new approach for
detection and elimination of redundancy in virtual enterprises; the proposed approach
is based on workflow and uses a Petri net for modeling and simulation of workflows.
This paper also presents a working example as a proof of concept.

Keywords petri net · workflow · redundancy · virtual enterprising · GPenSIM

1 Introduction

The research problem discussed in this paper is the existence of redundancy in
virtual enterprises. Virtual enterprise means a nucleus enterprise (or main
assembler) joins with a number of collaborating enterprises (supply and distribution
enterprises, transporting agents), to manufacture and sell a class of product with
the characteristics such as qualitative, agility, and leanness, to achieve maximum
customer satisfaction [5, 6]. When market requirements are changed, a new class
of products or an improved version of the product should be turned out to meet the
new market requirements. In this case, the nucleus enterprise may seek for a new
combination of collaborating enterprises that are more suitable to manufacture the
new class of products; thus the main aspect of virtual enterprise is dynamic logic of
organization and reorganization of collaboration [1].

Formation of a virtual enterprise is rather quick, as market opportunities for which
the virtual enterprise is being formed are time-limited. Due to the time constraint
and due to the independency of collaborating enterprises, when forming a virtual

enterprise, collaborating enterprises are mainly concerned about division of labor
and responsibilities for production, distribution, and sales of products; there is not
much time left for any one of the collaborating enterprises to see what and how the
other enterprise is going to perform its operations. Hence, there will be redundancy
as two or more enterprises may be unknowingly doing the same operations, job, or
functions.

2 Related works and our new approach

In this paper, we propose a new approach for eliminating redundancy in virtual
enterprising. Before the new approach is presented, in order to better understand
how this paper advances the state of the art, a systematic description of the related
work is also given.

2.1 Related works

In the last decade, workflows have been studied intensively in the context of
geographically distributed computing systems (Grids) [7]. In the context of Grid,
also the concept of virtual organization (VO) was introduced [8]. Especially, in the
context of e-Science, scientific workflows have been proved useful for
collaboration of scientists from various organizations [10]. Many systems for
workflow specification, planning, optimization, management have been proposed
[18, 19]. Researchers have also proposed to use UML for high-level specification of
workflows [2]. This paper proposes an approach based on distributed workflow.

As explained in the next subsection, this approach has roots in an approach pro-
posed by van der Aalst and Weske [17]; however, the approach proposed by van der
Aalst and Weske is not a distributed approach. In order to allow distributed workflow
simulation, this paper also makes use of new tool known as GPenSIM [11].

2.2 Our new approach

Our approach is an iterative approach in which simulations are done iteratively until
simulations results converge resulting in an optimal design. Our approach consists of
four stages (Fig. 1):
• Stage-1: Starting with a crude global workflow: The collaborating enterprises agree

on a virtual-enterprise wide global workflow; the global workflow clearly identifies
main functional blocks (or domains, e.g. manufacturing, sales, suppliers,
distributors, etc.) of the virtual enterprise and also the interfaces between the
functional blocks. The global workflow serves as an outline (or contract) between
these collaborative enterprises. Though the global workflow clearly identifies
both functional blocks and the interfaces between them, the functional blocks are
crude and lack details.

• Stage-2: Partitioning the global workflow into workflow modules: Based on the
clearly identified functional blocks, the collaborating enterprises (or the
dominating nucleus enterprise) may divide the global workflow into workflow
modules.

Fig. 1 Workflow based approach for eliminating redundancy in virtual enterprising

The collaborating enterprises will be given responsibility to realize (add details)
one or more of the workflow modules; thus, collaborating enterprises get their own
local workflows.
Stages 1 and 2 are based on a methodology proposed by [17].

• Stage-3: Optimizing local workflow modules individually (locally): The
collaborating enterprises work on the workflow modules that are allocated to them.
Firstly, they add details to the workflow modules so as to reflect the business
processes. Then they optimize the workflow after finding and eliminating
performance problems such as bottlenecks, redundancies, deadlocks, etc. Though
the enterprises are free to develop their own workflow modules as they wish, they
cannot change the already agreed interfaces between the modules.

• Stage-4: Global optimization: The individual locally optimized workflow modules
are joined together to form the collaborative workflow. Simulations are done on the
collaborative workflow to see whether it satisfies the overall targets of the virtual
enterprise. Simulations may reveal two types of performance problems: global and
local.

Global problems (such as overall delays, high product costs, etc.) affect the whole
virtual enterprise; redesigning the initial global workflow with emphasis on
redefining the interfaces between the functional blocks, or redividing the global
workflow into different set of functional blocks may help solve global problems.
Local problems affect individual enterprises only. Local problems are solved by
redesigning the local workflow modules.

3 Technology and tools: Petri nets and GPenSIM

To make this paper self-contained, this section introduces the technologies and tools
used in this paper namely Petri nets, and GPenSIM.

3.1 Petri nets

This section will give a brief introduction to Petri nets. For further details, interested
readers are referred to [3]. Carl Adam Petri invented Petri nets in 1962, as part of
his dissertation titled “Kommunikation mit Automaten” at the University of Bonn.
This work significantly advanced the fields of parallel and distributed computing, and
helped define the modern studies of complex systems and workflow management.

3.1.1 Elements of Petri nets

A Petri net contains four types of elements: tokens, places, arcs, and transitions.
Tokens represent objects in the Petri net models. In a system modeling fish

farming, typically a token represents a fish. A token is represented with a dot in
Petri net models. When the number of tokens becomes large, it is usually represented
with the number of tokens.

Places can hold tokens. Figure 2 shows places p1, p2, and p3 with 4, 3m and 1
tokens (black spots). Each place is capable of holding any number of tokens.

Arcs are connections between places and transitions. Arcs are bipartite meaning
it is not possible to have an arc connecting two places together or two transitions

Fig. 2 Sample Petri net

Fig. 3 Sample Petri net after
one cycle

together. Each arc has a weight, which is the number of tokens that are transported
simultaneously when the transitions of which the arc is connected to fires.

Transitions correspond to events and are connected by arcs to places. When a
transition fires, the number of tokens within the places connected to the firing
transition, are changed according to the arcs weights and directions; when a
transition fires, it consumes tokens (input parts) from the input places and puts
tokens (output parts) into the output places. For a transition to be able to fire, the
number of tokens in the input places must be equal or higher than the weights of the
arcs connecting the input places to the transition. The transition will then be an
enabled transition. Figure 3 shows the state of the sample Petri net from Fig. 2
after the transition T1 has fired once.

3.1.2 Formal definition of Petri nets

A Petri net is a four-tuple (P ,T , A, x0) where

P is the set of places, P = [p1, p2, . . . , pn]
T is the set of transitions, T = [t1, t2, . . . , tm]
A ⊆ (P × T) ∪ (T × P) is a set of arcs from places to transitions and from
transitions to places, and
x = [x(p1), x(p2), . . . , x(pn1)] ∈ N n is the row vector of markings (tokens) on the
set of places; x0 is the initial marking.

3.1.3 Input and output places of a transition

In the Petri net in Fig. 3, the places p1 and p2 are inputs to transition t1, and P3 is
an out place of transition t1. It is convenient to use I (tj) to represent the set of input
places to transition tj and O(tj) to represent the set of output places to transition tj

when describing a Petri net:

I (Tj) =
�

pi ∈ P : (pi , tj) ∈ A
l

O(tj) =
�

pi ∈ P : (pi , tj) ∈ A
l

We see from Fig. 3, that the weight of the arc from input place p1 to transition t1
has a weight = 2. This is denoted by: w(p1, t1) = 2.

3.1.4 Enabled transition

A transition tj ∈ T in a Petri net is said to be enabled if [12]:

x(pi) ≥ w(pi , tj) for all pi ∈ I (tj).

The transition t1 in Fig. 3 is enabled, since the numbers of tokens in the input places
p1 and p2(2) are at least as large as the weight of the arcs connecting them to
t1(w(p1, t1) = 2 and w(p1, t1) = 2).

3.1.5 Petri net dynamics

The markings of a Petri net, which is the distribution of tokens to the places, represent
the state of the Petri net. A Petri net representing a discrete event system, where the
transitions represent events, goes through many states during a simulation process.
The different states could be represented with the row vector of markings (the 4.th-
tuple): x = [x(p1), x(p2), . . . , x(pn1)].

The number of states an infinite capacity net can have is generally infinite, since
each place can hold an arbitrary nonnegative integer number of tokens [9]. A finite
capacity net on the other hand, will have a given number of possible states. n n

The state transition function, f : ℵ × T → ℵ , of a Petri net is defined for a
transition tj ∈ T if and only if, x(pi) ≥ w(pi , tj) for all pi ∈ I (tj).

If f (x, tj) is defined then xi = f (x, tj), where

x i(pi) = x(pi) − w(pi , tj) + w(tj , pi), i = 1, . . . , n.

3.1.6 Why Petri nets

Several tools could be used for simulation of discrete event systems; Automata, State-
flow, and Petri nets (high level) are some of the most commonly used [5]. The lack
of structure possibilities (hierarchy) in Automata is a serious shortcoming, since the
Atlantic salmon farming industry is a complex system which should be a be decom-
posed into modules and sub systems [Harhalakis, G., Proth]. Stateflow, developed by
The MathWorks, extends the Simulink part of MATLAB with functionality similar
to Petri net; charts are used for graphical representation of hierarchical and parallel
states and for the event-driven transitions between them [5]. A Petri net model of
a discrete event system could easily be converted into a Stateflow model and vice
versa, but learning Stateflow is much more difficult than learning Petri net due to the
syntactic, semantic, and graphical details in Stateflow. Stateflow also requires some

Fig. 4 3-layer architecture

knowledge of Simulink, in addition to MATLAB, while the GPenSIM tool used for
Petri net simulation in this paper runs under the MATLAB environment only. Petri
nets is widely accepted by the research community for modeling and simulation of
discrete event-driven systems, mainly due to graphical representation and the well
defined semantics which makes it possible to use formal analysis of the models [5].

3.2 GPenSIM

GPenSIM (General Purpose Petri net Simulator) is written in MATLAB language
which allows seamless integration with the other toolboxes that also available in the
MATLAB environment [11].

3.2.1 Architecture of GPenSIM

GPenSIM is designed using the well-proven paradigms in software engineering such
as: layered architecture, modular components, and natural language interface.

GPenSIM is built following 3-layer architecture; see Fig. 4. The bottom layer deals
with Petri net run-time dynamics; this layer computes newer states with the help of
linear algebraic equations and matrix manipulations. The middle layer adds more
high-level functionality such as stochastic timing, coloring of tokens, user-defined
conditions (‘guard-conditions’ in some literature), etc. The top layer offers
applications such building a Petri net based model, running simulations, determining
coverability tree, printing the simulation results, etc.

3.2.2 Modular components

A model of a discrete event system developed with GPenSIM consists of a number
of files. The main simulation file (MSF) is the file that will be run directly by the
MATLAB platform. In addition to the main simulation file, there will be one or more
Petri net definition files (PDFs); definition of a Petri net graph (static details) is given
in the Petri net Definition File. There may be a number of PDFs, if the Petri net model
is divided into many modules, and each module is defined in a separate PDF. While
the Petri net definition file has the static details, the main simulation file contains the
dynamic information (such as initial tokens in places, firing times of transitions) of
the Petri net. In addition to these files (main simulation file and Petri net definition
files), there can be a number of transition definition files (TDFs), also.

Fig. 5 The architecture of GPenSIM

There are two types of transition definition file (TDF): preprocessor and post-
processor. A preprocessor generally consists of additional conditions that determine
whether an enabled transition can fire or not. The additional conditions are called
“user defined condition” in GPenSIM terminology, whereas in some other literature
(e.g., Colored Petri Net) it is referred to as “guard-functions”). There can be a separate
preprocessor for each transition in a Petri net model. A post-processor generally do
the tidying-up work or accounting work after firing of a transition.

3.2.3 Natural language interface

Users need not know Petri net mathematics when creating a Petri net model of a
discrete event system. GPenSIM offers a natural language interface with which model
building mainly deals with identifying the basic elements of a system and establishing
the connections between these elements. Figure 5 shows the overall architecture of
GPenSIM.

Figure 6 shows the main loop of the simulator. As in any Petri net simulator, the
main loop consists of a simple cycle that first checks whether any transitions are
enabled and then it puts the enabled transitions into the firing queue, provided that
the transitions satisfy additional user defined conditions, if any; inputs tokens are
also taken away (consumed) by the corresponding transitions. Then the loop checks
whether any firing transitions are completing or have completed. In this case, the
firing transitions are popped out of the firing queue and output tokens are deposited
into the respective output places.

Figure 6 also shows that there are two kinds of timers are in use. The first timer—
called global timer is the one that is normally used. The second timer called stochastic

Fig. 6 The main loop of the simulation runs

timer is used only for “stochastic systems.” Stochastic systems can be leisurely de-
fined as continuous systems (as opposed discrete systems) that are to be discretized
first into discrete systems so that a Petri net model can be created for them. A case
study on stochastic systems is performed in Sect. 5.

Finally, the main loop shown in Fig. 6 hints an extension to GPenSIM: by using a
Real-Timer (computer’s real-time clock) instead of stochastic or global timer, a Real-

Time GPenSIM version can be developed. This Real-Time GPenSIM is basically a
soft Programmable Logic Controller (PLC), which will use a Digital & Analogue
Input Output Card (DAC) to read sensor inputs from the outside world and will also
output digital signals to triggers via the card. In this real.-time version, the main
loop should read the sensor data at the start of each cycle, and the state of the firing
transitions should be mapped to the output triggers.

3.2.4 Methodology for modeling and simulation with GPenSIM

Creating a Petri net model consists of two steps:

• Defining the static Petri net graph, and
• Assigning initial dynamics in the main simulation file.

Defining the Petri net graph in one or more Petri net Definition Files (PDF): this
is the static part. This step consist of three sub-steps:

• Identifying the basic elements of a Petri net graph: the places,
• Identifying the basic elements of a Petri net graph: the transitions, and
• Connecting the elements with arcs.

Assigning the dynamics of a Petri net in the Main Simulation File (MSF):

• The initial markings on the places, and possibly
• The firing times of the transitions.
After creating a Petri net model, simulations can be done.

4 Using Petri nets

This section only deals with the stage-4 “global Optimization” of the approach given
in the previous section. Due to space limitation, stages 1–3 are not discussed any
further.

This paper uses Petri nets for analyzing workflows. Petri net is a widely accepted
for modeling and simulation of discrete event-based systems.

A Petri net model of collaborative workflow can be huge and difficult to manage as
the virtual enterprise may contain many layers of suppliers and distributors. Because
of the huge size of the Petri net model, the model has to be built module-by-module
using the modular approach.

The modular approach for Petri net model building consists mainly of modeling
individual enterprises as modules, and then connecting the modules together through
their input/output ports. The modular modeling approach is a three step process, the
step are explained in the following subsections.

4.1 Step-1: collaborative enterprises as event graphs

In this first step, the collaborating enterprises are modeled as event graph modules, as
event graphs can be easily reduced into minimal size using existing theories; model

Fig. 7 Event graph module of different types of collaborating enterprises

reduction will be done in step-2. The event graph modules must also posses In-
put/Output ports (I/O ports); it is only through the I/O ports, the modules are going
to be connected with the other modules in order to obtain the complete model.

Figure 7 shows the modules of different types of collaborating enterprises as event
graphs; event graphs are Petri nets models in which all the places have exactly one
input transition and one output transition. The description of places and transitions of
the modules shown in Fig. 7 is given in Table 1.

4.2 Step-2: reducing event graph modules

The second step is to reduce the size of the modules; Savi and Xie [16] and Harha-
lakis et al. [12] show a reduction method that is suitable for reducing event graph
modules surrounded by I/O ports (transitions). According to the reduction theorem,
the minimal representation (reduced model) has the same set of input and output ports

Table 1 Description of the
places and transitions Raw material supplier

T01 Receive order from part supplier/assembler
T02 Production of raw material
T03 Ship material to part manufacturer
P01 Orders for material received
P02 Material ready for shipment
P03 Volume of material to produce
Part supplier
T04 Material arrive (from mat. supplier)
T05 Orders received from assembler
T06 Production calculations
T07 Manufacture of parts
T08 Order raw materials
T09 Ship parts to main assembler
T10 Send bid to main assembler
P04 Unloaded material in queue
P05 Received orders for parts
P06 Ready for production of parts
P07 Monitor of quantity produced
P08 Monitor of materials used
P09 Parts ready for shipment
P10 Bid for parts (to assembler)
Main assembler
T11 Bids for parts and raw materials
T12 Parts and raw materials arrive
T13 Orders received
T14 Production calculations
T15 Manufacture of products
T16 Order parts and raw materials
T17 Ship products to distributors
P11 Received bids from suppliers
P12 Unloaded parts in queue
P13 Ready for manufacture
P14 Monitor of quantity produced
P15 Received orders for products
P16 Monitor of parts/materials used
P17 Products ready for shipment
Distributor
T18 Goods arrive from main assembler
T19 Receive orders for goods from sales agent
T20 Supply and distribution calculation
T21 Order goods from main assembler
T22 Ship goods to sales agents
P18 Stock of goods
P19 Received orders for goods
P20 Monitor of free capacity
P21 Goods ready for shipment
Sales agent
T23 Goods arrive from distributor
T24 Sales
T25 Order goods from distributor
P21 Stock of goods
P22 Monitor of free capacity
P23 Monitor of sales

Fig. 8 Minimal representations for different types of enterprises

as the initial module, but has fewer internal places and do not has any internal
transitions [16]. Therefore, the removal of internal transitions and reduction in
internal places greatly reduces the overall size of the complete model.

By the reduction theorem, though simple event graph module called minimal
representations replaces more complex modules of different kinds of enterprises,
the liveness and boundedness properties of the original modules are preserved.

Figure 8 shows the minimal representations of the event graph modules that are
shown in Fig. 7.

4.3 Step-3: connecting event graph modules together

The third step is to connect the modules together to form a complete model of the
virtual enterprise. The modules are connected through their I/O ports. Since the I/O
ports are transitions, the connecting line should inject a place in between the modules.

4.4 Working example

Figure 9 shows a collaborative workflow of a virtual enterprise consisting of 12
collaborating enterprises. Since the working example is given as a proof-of-concept,
it is intentionally made simpler with just 12 collaborating enterprises. Not shown in
Fig. 9: the event graph modules for the transporting agents are unique as these
modules have only one I/O port as this port functions as both input and output
port. Technically, this I/O port is a single transition. Also, the market is represented
by an event graph module consisting of a single input port; there is no output port
in this module, and hence it functions as “sink”—consuming whatever passed to it.

The tool General Purpose Petri net Simulator (GPenSIM) [11] is used for
simulation. GPenSIM uses colors to detect possible redundancy in the virtual
enterprising. For more details on coloring in Petri nets, interested readers are referred
to the GPen-SIM user manual [11].

Fig. 9 Model of a virtual enterprise consisting of material suppliers, part suppliers and the main assembler

4.4.1 Simulation program

The simulation program consists of 14 modules (12 modules, one for each collabo-
rating enterprises; one module for the market, and one for the main simulation file
that also posses the order generators and the buffer places between the modules. Due
to space restriction, we present the 2-line code snippet for simulation run:

4.4.2 Simulation results

Simulation results, shown in Fig. 10, depict that there could be two sets of redundant
functions:

Fig. 10 Simulation results

• Transporting agent 01, and Transporting agent 03 are perhaps transporting
materials in the same region, thus can be combined. Similarly,

• Transporting agent 05, and Transporting agent 04 are perhaps transporting
materials in the same region, thus can be combined.

5 Distributed workflow simulation

Though the approach presented above is for a distributed system like virtual
enterprising where individual enterprises work independently, the simulation
program assumes that all the modules for simulation are available in one place. In
order to perform a truly distributed simulation, where individual modules are
modeled, simulated, and optimized individually, before they are combined, and
ready for iterative optimization cycle, the tool for modeling and simulation must
provide distributed modeling and simulation capabilities.

5.1 Extending GPenSIM to provide distributed capabilities

Though GPenSIM originally was designed with distributed applications in mind, the
current version is not suitable for distributed applications, yet. This is because the
support in MATLAB for distributed applications was not satisfactory until recently.
MATLAB did not support multithreading: it did not support starting parallel sessions

Fig. 11 Distributed approach for optimizing workflow modules

within the same program, so that these parallel sessions can really run in parallel and
function as proxies for distributed applications running elsewhere. However, MAT-
LAB has now provided a new toolbox called Parallel Computing Toolbox [14]. With
Parallel Computing Toolbox, implementing a distributed GPenSIM has become a
distinct possibility. To make a distributed GPenSIM version and to use it for
simulating redundancy elimination in virtual enterprising, there are some
improvements needed to the GPenSIM architecture.

5.2 Using local workers as proxies for distributed applications

Figure 11 shows distributed approach:

• Stage-1: Once the crude virtual-enterprise wide global workflow is made, it is
portioned into workflow modules for the individual enterprises; these modules
are loaded into the local workers that are running on the desktop system of the
nucleus enterprise.

• Stage-2: Partitioned workflow modules inside the local workers and sent to
distributed applications that are run on the platforms of collaborating enterprises.

• Stage-3: After optimizing workflow modules individually, collaborating
enterprises sent their optimized workflow modules back to the nucleus enterprise.

• Stage-4: Global optimization: The individual locally optimized workflow modules
are now available in the local workers are joined together to form the collaborative
workflow.

There are some restrictions on the number of local workers that can run in parallel
as the current version of the MATLAB Parallel Computing Toolbox set the maximum

Fig. 12 Two different approaches for coding distributed workflow modules

number of local workers that can run in parallel to four. This is indeed a serious
problem, as a virtual enterprises could constitute many collaborating enterprises.

5.3 PNML as the format for exchanging Petri net modules

Virtual enterprises’ heterogeneous platform—a huge diversity of programming
languages and operating systems—is a barrier to distributed workflow
management. Thus, the communication between platforms must be based on a
language and operating system neutral standard, meaning the modeling and
simulation tool GPenSIM should allow workflow modules and messaging between
the modules in a standard interchange format, such as XML based PNML (Petri Net
Markup Language) [15].

5.3.1 Using PNML for workflow modules

Figure 12 shows two approaches for coding workflow modules. 1) Using PNML
(shown on the left-hand side of Fig. 12), and 2) Using GPenSIM language (shown
on the right-hand side of Fig. 12).

By the first approach, the overall Petri net model of a system is described in a
single source file is called is PNML document, using PNML language; PNML
document is then fed to GPenSIM parser, which will convert the PNML document
into a set of source files (one MSF, one PDF, and zero or more TDF). The current
version of GPenSIM does not allow the use of PNML to model subsystems as
separate Petri nets, meaning there will be only one PDF generated by the parser.
By the second approach, all the source files (MSF, PDFs, TDFs) are coded in
GPenSIM language.

5.4 Summary

This section presents the programming language and techniques for extending GPen-
SIM to support distributed workflow simulations. This work is not complete yet. The

main performance problem that is visible at this stage is the scalability: MATLAB
Parallel Computing Toolbox allows a maximum of 3 parallel processes per node.
This means, for simulation on n virtual enterprises, at least n/3 computing nodes
must be utilized.

6 Conclusion

This paper shows a new approach for detection and elimination of redundancy in
virtual enterprises. The approach uses distributed workflows. The approach uses an
open tool known as GPenSIM that is available for the industry standard modeling and
simulation platform MATLAB; in addition this approach proposes the use of platform
and language neutral PNML language for coding the workflow modules.

Literature review reveals that distributed workload management is not a new
concept [4, 9, 13]. However, all the papers available on this topic use their own
propriety systems and not an open industry standard platform like the one
proposed in this paper. This paper emphasizes use of open standard tools as the
approach requires co-ordination across diverse IT groups, including strategy,
development, and datacenter operations. In many enterprises, these organizations rely
on different tools, platforms, and policies and have limited points of shared decision
making and policy development. As a result, there is some risk that distributed
workload solutions will struggle to find internal optimized sub-solutions, unless the
workloads and applications are fully packaged for portability.

References

1. Badir YF, Buchel B, Tucci ChL (2005) The role of the network lead company in integrating the NPD
process across strategic partners. Int J Entrepreneurship Innov Manag 5(1–2):117–137

2. Brandic I, Pllana S, Benkner S (2008) Specification, planning, and execution of QoS-aware grid work-
flows within the Amadeus environment. Concurr Comput Pract Experience 20(4):331–345

3. Cassandaras CG, Lafortune SL (1999) Introduction to discrete event systems. Kluwer Academic,
Norwell, ISBN 0-7923-8609-4

4. Churches D, Gombas G, Harrison A (2005) Programming scientific and distributed workflow with
Triana services. Concurr Comput Pract Experience 18(10):1021–1037

5. Davidrajuh R (2000a) Automating supplier selection procedures. PhD Thesis, Norwegian University
of Science & Technology, Trondheim, Norway; ISBN: 82-7984-159-8, ISSN: 1081-1393

6. Davidrajuh R (2000b) A Petri net approach for performance measurement of supply chain in agile
virtual enterprise. In: MIS Rev, vol 10, December 2000, ISSN: 1081-1393

7. Foster I, Kesselman C, Nick JM, Tuecke S (2002) Grid services for distributed system integration.
Computer 35(6):37–46

8. Foster I, Kesselman C, Tuecke S (2001) Int J High Perform Comput Appl 15(3):200–222
9. Geppert A, Tombros D (2009) Event-based distributed workflow execution with EVE. In: Proceedings

of the IFIP international conference on distributed systems platforms and open distributed processing,
The Lake District, United Kingdom, pp 427–442

10. Gil Y, Deelman E, Ellisman M, Fahringer T, Fox G, Gannon D, Goble C, Livny M, Moreau L, Myers
J (2007) Computer 40(12):24–32

11. GPenSIM (2010) http://www.davidrajuh.net/gpensim
12. Harhalakis G, Proth JM, Savi VM, Xie X (1991) A stepwise specification of a manufacturing system

using Petri nets. In: Proceedings of the 1991 IEEE international conference on systems, man and
cybernetics, Charlottesville, Virginia, October 1991

http://www.davidrajuh.net/gpensim

13. Kochut K, Arnold J, Sheth A, Miller J, Kramer E, Arpinar B, Cardoso J (2003) IntelliGEN: a dis-
tributed workflow system for discovering protein-protein interactions. J Distrib Parallel Databases
13(1):43–72

14. MATLAB (2010) Parallel Computing Toolbox; Available: http://www.mathworks.com
15. PNML (2010) Available: http://www2.informatik.hu-berlin.de/top/pnml/
16. Savi VM, Xie X (1992) Liveness and boundedness analysis for Petri nets with event graph modules.

In: Petri nets. Lecture notes in computer science series. Springer, Berlin
17. Van der Aalst W, Weske M (2001) The P2P approach to interorganizational workflows. In: Lecture

notes in computer science. Springer, Berlin
18. Yu J, Buyya R (2005) A taxonomy of workflow management systems for grid computing. J Grid

Comput 3(3):171–200
19. Zur Muehlen M (2004) Organizational management in workflow applications—issues and perspec-

tives. Inf Technol Manag 5(3):271–291

http://www.mathworks.com/
http://www2.informatik.hu-berlin.de/top/pnml/

	circadian_clocks.pdf
	Semi-algebraic optimization of temperature compensation in a general switch-type negative feedback model of circadian clocks
	Abstract
	Introduction
	Methods of calculation
	A theory for semi-algebraic analysis
	Linear system analysis
	Nonlinear feedback analysis
	Computing derivatives
	Local curve optimization for temperature compensation
	A Goodwin-type model with hysteretic switch
	Local curve optimizations
	Discussion
	Acknowledgments

	Article_Ramvi.pdf
	Introduction
	Student nurses’ clinical training
	Conditions for the development of empathy
	Parallel processes in relationships
	Student – patient relationships
	Student – contact nurse relationships
	Social defence system
	An unconscious defence intertwined with a system of efficiency
	References

	Article_Knudsen.pdf
	dok2.pdf
	Litteraturliste.pdf
	Litteraturliste

	Article.pdf
	Reggie Davidrajuh
	1 Introduction
	2 Related works and our new approach
	3 Technology and tools: Petri nets and GPenSIM
	4 Using Petri nets
	5 Distributed workflow simulation
	6 Conclusion
	References

