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Abstract

This thesis examines estimation errors which occur in control charts with estimated parameters,
the effect that these errors have on the charts and the current methods which aim to account
for the errors. There is a particular focus on how these errors affect the average run length of
the chart and how to improve the average run length using current methods. The best methods
to account for estimation error in Shewhart control charts, from the methods discussed, are the
bootstrap method and the reduction of exceedance probability method. Both aim to reduce
the probability that the run length of a chart is less than a specified value by adjusting the
chart’s control limits. However the bootstrap method has the advantage that it can be adapted
to other types of control charts including risk-adjusted versions. The bootstrap method is used
to analyse the Helping Babies Breath (HBB) training program data to see if there is a clinically
relevant change in the probability that an infant survives 24 hours at Haydom Lutheran Hospital,
Tanzania. The use of risk-adjusted cumulative sum (CUSUM) charts, with adjusted limits to
account for estimation error, shows a decrease in the probability of infants not surviving 24
hours, demonstrating the positive impact of the HBB training program.
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1. Introduction

The aim of Statistical Process Control (SPC) is to monitor the variability of some chosen
quality characteristic for the output of a given process and signal when the variation is outside
the limits of “normal variation”. In any process there will be normal variation, or chance causes
of variation. This is the natural variation, or background noise, of the process due to many
small, unavoidable causes. A process is said to be in statistical control when it is operating
with only chance causes of variation. There may also be other kinds of variability present in
the output of a process. The sources of variability which are not part of the chance causes of
variation are referred to as assignable causes of variation. For basic SPC, if assignable causes
of variation are present the process is said to be out of statistical control.

Control charts are a method of indicating when a process may be out of statistical control,
as well as being an effective tool in reducing the variability of the process. There are many
quantities that can be monitored by control charts. The simplest is an individual measurement,
where each sample is a single observation. This is useful when the process has few outputs.
One example is monitoring survival rates of patients who have undergone a certain surgery. If
a process produces a high volume of output then it may be better to take a sample of size n,
after every time interval t. The mean of these samples can then be used to construct a control
chart, as well as the sample range or standard deviation.

When a monitored quality characteristic is qualitative or each output has many quality
characteristics which need to be monitored, such that each output can either be conforming or
nonconforming, a control chart of the number or proportion of nonconforming outputs can be
constructed. When monitoring the number of nonconforming units, each sample must have the
same size. When monitoring the proportion of nonconforming units then the sample size can
vary, however large variations in the sample size could have an effect on the control chart. For
units that have input variables which affect the quality characteristic, a risk-adjusted chart can
be constructed which takes the assignable variation from the input variables into account.

A typical control chart contains a centre line, a lower control limit and an upper control
limit. The centre line is the long run average value of the quality characteristic corresponding
to the in-control state, for example the mean of the underlying process distribution. In some
applications it may instead be the target value of the quality control statistic. The upper and
lower control limits are most commonly a distance of L from the centre line, where L is often
expressed in standard deviation (SD) units. If the value of a sample plots within the upper
and lower control limits it is assumed that the process is in statistical control. However, if the
value of a sample exceeds the control limits, it is assumed that the process is out of statistical
control. When this occurs, the process is investigated to see if an assignable cause can be found
to account for the large variability.

The centre line and control limits are calculated using the underlying distribution of the
quality characteristic, relating to the output when the process is in-control. When the underlying
distribution is not known, it is instead estimated from historical process data. An estimated
distribution is instead used to calculate the centre line and control limits. This can result in



the control chart resembling an in-control process when the process is actually out-of-control or
vice versa.

The use of control charts in SPC carries the problem of unknown parameter estimates which
are used to calculate the control limits. The use of estimated parameters results in errors when
calculating the centre line and control limits, affecting the accuracy of the charts. Many have
acknowledged this estimation error and demonstrated the effect it has upon control charts,
however few have looked at how to account for the estimation error.

This thesis will look at the basic control charts, how they are constructed and the errors
which occur when estimating the chart parameters. The effects of these estimation errors will
be outlined and a comparison of a few methods which have been suggested to account for the
errors are discussed. The most applicable method will then be applied to a medical data set with
the aim to see if the Helping Babies Breath resuscitation training program has been successful
in decreasing infant mortality rates in Haydom Lutheran Hospital, Tanzania.



2. Common Control Charts

The three most common control charts are Shewhart, Cumulative Sum (CUSUM) and Expo-
nentially Weighted Moving Average (EWMA). Each has a different method in calculating the
centre line and/or the control limits. These methods will be discussed for the case in which it
is assumed that the underlying distribution is known, along with the mean and SD.

Performance measures such as Average Run Length (ARL) and hitting probabilities can be
used to assess the control charts. The ARL of a chart is the average number of samples taken
until the chart signals that the process is out-of-control. Two values that are of interest when
looking at the ARL are the in-control ARL and the out-of-control ARL. The in-control ARL,
ARLy, is the average number of samples until a false out-of-control signal is given when a process
is in-control. The out-of-control ARL, ARL1, is the average number of samples it will take for
the chart to give an out-of-control signal once the process is out-of-control (Montgomery, 2013).

The hitting probability of a control chart is the probability that the chart will give an out-
of-control signal within T samples (Gandy and Kvalgy, 2013). For Shewhart charts the ARL
and hitting probability are easy to calculate. However for the CUSUM and EWMA charts the
easiest method to calculate the ARL and hitting probability is through simulation. Both the
ARL and hitting probability are affected by the control limits as well as the size, and therefore
standard deviation, of each sample. For a specified ARL or hitting probability to be achieved,
the control limits and/or sample size have to be adjusted, to achieve the specified performance
measure (Montgomery, 2013).

2.1 Shewhart Charts

Most common Shewhart charts are £ and R charts. The Z chart, or the control chart for the
mean, monitors the mean or average value of the chosen quality characteristic. At time i the
sample mean, &;, is plotted on the control chart. The sample mean is calculated using

T+ Tt ..+ Tin

P =

n

where x;; is the 4" observation of sample i with j =1,2,...,n and n is the size of the sample.
If the sample mean is within the control limits, the process is in-control. However, if a sample
plots outside the control limits, then it is out-of-control and the cause of the variability must
be investigated (Saleh et al., 2015).

For the Z chart the centre line will be the in-control mean of the monitored quality charac-
teristic, and is denoted as p9. The Upper Control Limit (UCL) and Lower Control Limit (LCL)
are

00
UCL = L=X 2.1
o + 7n (2.1)
and o
LOL = pg — L22 (2.2)

vn



where g is the in-control mean, oy is the in-control SD and L, the critical value, is some constant
which is usually set so as to only detect large changes in the process (Grigg and Farewell, 2004).
Slight adjustments to the value of L will affect the ARL and the hitting probability of the
Shewhart chart.

R charts, or the control chart for the range, monitors the range of each sample when the
sample size, n, is greater than 1 (Montgomery, 2013). At time i the range of sample, R;, is
plotted on the control chart. The centre line and control limits of the R chart are dependent on
the size of each sample, n, where n > 2 and, if applicable, the specified ARL. The centre line is
given by doog, the UCL = Dsog and LC'L = Dyog, where D1, Dy and ds are some constants
dependent on the sample size n. A table displaying the different values of each D1, Dy and ds
can be found in Appendiz VI of Montgomery (2013).

Basic Example

A Shewhart chart of 25 samples, each of size n = 5 has been constructed, where the 125
observations are independent variables drawn from the standard normal distribution. Therefore
the mean and SD are pg = 0 and o9 = 1 respectively. The control limits have been calculated
using L = 3, as this is common practise, giving ARLy = 370.

Basic Shewhart Chart
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Figure 2.1: Example of a Shewhart control chart for standard normal distribution

An example of a basic Shewhart chart which is in control is shown in Figure 2.1. The



observations used for the data can be found in Table A.1 in Appendix A. The centre line is
equal to po = 0 and the control limits are LCL = —1.34 and UCL = 1.34. None of the 25
samples plot outside the control limits suggesting that the process is in control.

Performance Measures

The ARL of the Shewhart T chart is easy to calculate for any underlying distribution. The
in-control ARL is given by ARLy = é, where « is the probability that an in-control sample
will plot outside the control limits. The in-control run length follows a geometric distribution,
which has the mean %, where in this case the probability p = « . To calculate the ARLq for a
normal underlying distribution, o must first be found by

LC’L—M()) B (UC’L—,LL0>
oo/Vn oo/vn )’
where ® denotes the standard normal cumulative density function (Yang et al., 2012). However

looking at the control limit equations (2.1) and (2.2), it can be seen that this can be simplified
to

a:1+<I><

a=1+®(—L)— (L)

=2—28(L) (2:3)

When the critical value L = 3 is used to calculate the control limits of a Z chart o = 0.0027 and
the ARLg = 370. If an ARL( or probability of a false out-of-control signal is specified, then

1 «
_ &1 _ —_ ! _ s
L=27& <1 o Lo,s> ) (1 5 ) , (2.4)

where ARLg , is the specified ARLy and a is the specified probability.

The out-of-control ARL is denoted by ARL; = ﬁ, where [ is the probability of not
detecting a change in the process on the first sample after the change has occurred. The
shift in the mean and SD are denoted by ¢, and J,, in terms of og, and have the constraints
—00 < 6, < o0 and 0 < §, < oo. Therefore 3 is the probability that a sample with mean
p1 = po + 0,00 and standard deviation o1 = d,0¢ falls within the control limits of the Z chart
(Yang et al., 2012). This can be denoted as

f=P{LCL<z<UCL|p=p,0=o01}. (2.5)
Since & ~ N (u1,0%/n), equation (2.5) can be expressed as

. UCL—(M0+5 0'0) B LCL—(/Lo-i-(S 0’0)
B_Q)( 5000/\/ﬁﬂ ) (I)< 5000/\/ﬁﬂ > (26)

Substituting equations (2.1) and (2.2) into equation (2.6) and simplifying gives

R I

Using L = 3 and n = 5, the ARL; is found when a shift occurs such that p; = pg + o9 and
o1 = 0g. Therefore ¢, = 1 and J, = 1. Substituting these values into equation (2.7) gives

6:(1)(3—\/5)—(1)(—3—\/5):0.778



The resulting ARL; = ﬁ = 4.495, and so it would take on average 4.495 samples to detect
a shift in the mean of oy.

The ARL is effected by 0,, and d, as well as the critical value, L. When the in-control ARL
is specified, L, and thus, ARL; are adjusted. To demonstrate the effect of the variables on the
out-of-control ARL, ARL; was calculated for §, = 1 and varying J,, values when the specified
ARLyg is chosen to be 370. This is then repeated for ARLy = 100 and ARLy = 1000.

Effects of 3, and ARLy on ARL;
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Figure 2.2: ARL, for varying ARLq and J,,

It can be seen in Figure 2.2 that the greater the shift in the mean, d,, the smaller the ARL;
is and so the quicker a shift will be detected. It can also be seen that the greater the in-control
ARL is, the greater the out-of-control ARL will be, and so the longer it will take to detect
a shift in the mean of J,. It is common for the shift in the mean to be set in the range of
0.5<0, <1



Effects of §, and ARLy on ARL;
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Figure 2.3: ARL, for varying ARLy and 0.5 <6, <1

Figure 2.3 shows more clearly the effect that ARLg and d,, have on the ARL;. When 6, = 0.5
the ARL; values are approximately 65, 35 and 15 when the in-control ARL is 1000, 370 and 100
respectively. This shows that although a larger ARLy is preferable, the corresponding AR
should be taken into consideration when the user defines the in-control ARL.

The hitting probability is the probability that within 7" samples an out-of-control signal
occurs (Gandy and Kvalgy, 2013). The probability that an out-of-control signal occurs for any
sample is p, and so the probability that an out-of-control signal does not occur for any sample
is 1 — p. Therefore the hitting probability is

P=1-(1-p

When a process is in-control, the probability of a sample plotting outside the control limits is
a. It follows that the in-control hitting probability is

Po=1-(1-a)T (2.8)

From equation (2.3) it can be seen that the in-control hitting probability depends on the critical
value, L. Taking the example from ARLg, where L = 3 and o = 0.0027, then Py =1 — (1 —
0.0027)T. If T = 100 thenPy = 1 — (1 — 0.0027)'%° = 0.237. Thus there is a probability of
0.237 that an out-of-control signal will occur in 100 samples when the process is in-control. If
an in-control hitting probability is specified then equation (2.8) can be rearranged to give

a=1-(1-P)T. (2.9)



Once « has been calculated, equation (2.4) can then be used to calculate the critical value and
thus the control limits.

The probability for any sample that an out-of-control signal will occur when the process is
out-of-control is 1 — 3. Therefore the out-of-control hitting probability is

P=1-(1-01-8)T=1-p". (2.10)

Equation (2.7) shows that the out-of-control hitting probability is dependent on the critical
value L, the sample size n and some specified shift in the mean and/or SD.

2.2 CUSUM Charts

CUSUM charts are better at detecting smaller persistent shifts in the process than Shewhart
charts. CUSUM charts incorporate the information collected in all previous samples by plotting
the cumulative sum of the deviation of each sample from the expected or target value.

The most common CUSUM chart is the tabular (or algorithmic) CUSUM. The tabular
CUSUM is designed to detect a specified change in the quality characteristic of interest. For
detecting changes in the mean, the statistic CT accumulates the deviations from pg that are
above the mean and the statistic C'~ accumulates deviations from g that are below the mean
(Grigg et al., 2003). The values C* and C'~ are known as the one-side upper and lower CUSUMs,
and are calculated as
Ct = maz[0,z; — (o + K) + C;" 4]

(2

and
C; =max0, (o — K) —z; + C;,_4],

1

where

Cq=Cy =0.

K= “‘0;7“1‘ is known as the reference value, where u; = g + 0 % is the out-of-control mean
which is specified by the user and n > 1 is the number of observations in each sample. The
process is said to be out-of-control when either CT or C~ exceeds a threshold, H. The values
of K and H can also be expressed in terms of og such that K = k”—% and H = h”—%, where n
is the number of observations in each sample and h is the critical value. If only the deviation
of the process either above or below the mean is to be detected, a one-sided CUSUM chart can
be constructed by plotting just the relevant one-sided CUSUM values.
The CUSUM can also be standardised such that

Ct = maz[0,y; — k + C;" ] (2.11)

C; =maz[0,—k —y; + C,_,], (2.12)

)

where y; = £ and k = $. The control limit must also be standardised and thus becomes
oo/v/n 2

# = h. From now on any CUSUM chart will be computed as a standardised CUSUM chart.

Performance Measures

The values of k and h effect the ARL and hitting probability of the chart and can be slightly
altered to improve the chart performance (Montgomery, 2013). Unfortunately the ARL and
hitting probability of the CUSUM chart are more complicated to calculate than the those of
the Shewhart chart. The most straightforward approach to finding the ARL of the CUSUM



chart is the Siegmund Approximation which is outlined by Montgomery (2013, pg.423). This
can provide an estimate for the ARL of each one-sided upper and lower CUSUM, ARL™ and
ARL™, respectively. The ARL of a two-sided CUSUM chart is then found using equation (9.7)
in Montgomery (2013, pg. 423) which states

S S

ARL  ARL* = ARL~
Other methods to calculate the ARL of the CUSUM chart are the Markov Chain approach
and the Integral Equation method. Brook and Evens (1972) and Fu et al. (2002) outline the

Markov Chain approach. For further information on the Integral Equation methods see Rao
et al. (2001) and Champ et al. (2001).

Basic Example

The 25 samples from the standard normal distribution found in Table A.1 in Appendix A were
used to produced an example of a standardised basic CUSUM chart. The control limits were set
to h = 5 and the specified out-of-control mean was chosen such that £ = 0.5. These parameters
give an ARLy = 465, which has been calculated by using the spc R package (Knoth, 2015),
where the ARL is estimated using the integral equation method.

CUSUM Basic Chart
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Figure 2.4: Example of a standardised CUSUM chart for standard normal distribution



Figure 2.4 is a two-sided CUSUM chart with C;r plotted above 0 and C; below 0. The
chart suggests that the process is in-control for all 25 samples.

2.3 EWMA Charts

Exponentially Weighted Moving Average (EWMA) charts give each sample a weight, depending
on the age of the sample; the older the sample, the less weight it is given. Like the CUSUM,
the EWMA is preferred to the Shewhart chart when the detection of smaller process shifts is
required. The exponentially weighted average is given as

Zi = A\T; + (1 — )\)Zi—la (2.13)

where z; is the mean of the sample taken at time ¢ and A is some constant between 0 and 1.
To construct the EWMA chart, the exponentially weighted average, z;, is plotted on the
control chart. The centre line of the chart is pg. The control limits are calculated by

UCL = po + Lo,

LCL = poy — Lo,

where

Oz = UO\/MU - (1 - A)Zi]v (214)

and L is the critical value. In Equation 2.14, the term [I — (1 — \)?] approaches unity as i
increases and therefore will sometimes lead to the standard deviation of z; being defined as
O, = 004 /ﬁ (Montgomery, 2013; Serel and Moskowtiz, 2008). This is a simpler calculation
but may lead to an early out-of-control signal not being detected. In cases where only the

deviations above or below the mean are to be monitored, a one-sided EWMA chart can be used
instead. For further information on one-sided EWMA charts see Shu et al. (2007).

Performance Measures

The ARL and the hitting probability of the EWMA chart are dependent on the variables L and
A. As with the CUSUM chart it is difficult to calculate the ARL and hitting probability. See
Chen and Chen (2007) for more information on the methods which can be used. The ARL and
hitting probability can also be estimated using simulation, where varying the values of L and A
shows the effect on the ARL and hitting probability.

Basic Example

The 25 samples used to construct this example can be found in Table A.1 in Appendix A. The
control limits were calculated using n = 5, L = 3 and A = 0.2. These parameters give an
ARLgy = 560, which has been calculated by using the spc R package (Knoth, 2015), where the
ARL is estimated using the integral equation method.

10



Basic EWMA Chart
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Figure 2.5: Example of a EWMA chart for standard normal distribution

The control chart in Figure 2.5 suggests that the process is in-control. The control limits
have been constructed using equation 2.14. This can be seen from the expansion of the limits
for the first 7 samples until they reach a steady state. The crosses on the chart represent the
Z; value for each sample.

2.4 Risk Adjusted Charts

When the data is heterogeneous then the explainable variation present in the samples must
be accounted for. In such cases risk-adjusted control charts are used. A regression model is
applied to the sampled data, which takes into account the explainable variation. Therefore when
a risk-adjusted chart signals that the process is out-of-control, this means that some assignable
variation is present in the process which has not been included in the regression model (Gandy
and Kvalgy, 2013). The residuals of the regression model are used, rather than the observed
data, to construct the control chart.

Linear Regression Example

To demonstrate a risk-adjusted chart the Cascade process data shown in Table 11.5 of Mont-
gomery (2013, p.529) has been used. The Cascade process data has 40 samples which each have
two outputs y; and yo. However for this example only the y; output will be used, and will be

11



referred to as y. For each y; there are nine input process variables, x; to x9. The estimated
mean of the data is fip = % = 952.78, where m = 40. The estimated SD of the data is
60 = 0.743 and was calculated using the Moving Range method which is explained in Chapter
3. A standardised CUSUM chart of y was first constructed in R using the formulas

7 ~

C = max [O,yiﬂo—kk—i-C;“_l}
G0

C~ = maz [0, . y"f“"+q_1] ,

(2 0.0

where C’ar = (C, =0, k= 0.5 and the control limits are h = 5.

CUSUM Chart of Cascade Data

L ]
L X ]
L ]
/
9 - .
- L]
S J
IS
v /
>
S .
<(9, — /
L ]
Y
E b B EEEEEEEEEEEE T UDB
S ,
(] . .
o . e el
= o >
E S e /‘
=1 ot
E ..-...-----.\ ......................................... e m - LDB
S . "y
O \ °
L]
HS — \ /
o | ° /n
o
15 \ .
L ]
: . /
0] \ . A
mO 3 7 LN ]
N — °
| \
. e ®e ®
L] L ]
. ,
..

FTTTTTTTT T TTTT T T T T T T T T T T T T T T T T T T TITI T T T T T
1 35 7 9 12 15 18 21 24 27 30 33 36 39

Group

Figure 2.6: Standardised CUSUM chart of cascade process data

From Figure 2.6 it can be seen that most of the points plot out-of-control. However as the
data has the nine z; input variables a regression model can be fitted to the data. For this
example a linear regression model was fitted, and the following equation was used to calculate
the estimated data points:

y = 825.89+40.474x1 +1.4412x9 — 0.117x3 — 0.08224 — 2.3925 — 1.3x6 + 2.1827 +2.98x5 + 113.22z9

12



The residuals of the linear regression were then used as the data points for a standardised
CUSUM chart with the equations

ri—O_

r

- . k+Cy

CT = max O,Ti_o—k:—i-C';'_l} C; = max [O,_

where r; is the residual of each data point, the estimated mean of the residuals is i, = 0,
k = 0.5 and the estimated SD of the residuals is 6, = 0.663. The control limits are h = 5 which
corresponds to an ARLy = 465.

CUSUM Chart of Linear Regression Cascade Data

--------------------------------------------------------------------- UDB
¢_
g L]
8 . AN
o PR
: SN
<N .
: : : /
@ . /N . \ .
g \ 0/' ‘. / /
g © —— - :
- V) A
> .
3) / / \
+— N _] .
%| . .
g N/
3 \L
[5) .
o
<
|
--------------------------------------------------------------------- LDB

FTTTTTTTT T TTTT T T T T T T T T T T T T T T T T T T TITI T T T T T
1 35 7 9 12 15 18 21 24 27 30 33 36 39

Group

Figure 2.7: Standardised CUSUM chart of linear regression cascade process data

Comparing Figures 2.6 and 2.7, it can be seen that when the input process variables are
taken into account the CUSUM chart appears to be in-control during all 40 data points. This
is a vast improvement on the standardised CUSUM chart where no input process variables are
taken into account.

Logistic Regression

For risk-adjusted charts which monitor binary data, a logistic regression can be used to account
for the explainable variation present in the samples. These charts are favoured in the health care
industry where the outcome of a procedure is considered to be either successful or unsuccessful.
Explainable variation in the data due to patient differences can be accounted for in the regression
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model and thus decrease the number of false signals compared to when a basic control chart is
used. An example of this is using the Parsonnet score as the input variable when the 30-day
mortality for patients after cardiac surgery is being monitored. The Parsonnet score is the risk
score of a patient and depends on factors such as age, health status and type of operation the
patient has undergone (Grigg et al., 2003). In logistic regression models the log likelihood ratio,
rather than the observed minus expected data, is used to construct the control chart.

For binary variables Y;, i = 1,...,n, which are the observed responses in the process, the
likelihood ratio needs to be defined to produce a risk-adjusted chart. To find the likelihood
ratio, the logistic or logit regression model for the data must first be found. The logit model is
the estimation of the log of the odds. This gives

logit (p;) = ln( bi > — X8, (2.15)
1 —pi

where p; is the probability that the it sample is successful, such that ¥; = 1. X is the vector of

input variables and [ is the coefficient for the input variables in the regression model (Steiner

et al., 2000). Equation 2.15 can be rearranged to give the probability that ¥; = 1 as

e (X)

" 1texp(XiB)
If the variable Y; follows the Bernoulli distribution, the probability of the outcome is defined as
P (y) = pY (1 — p)?, where y is the binary variable. The likelihood ratio, LR, is then calculated

by dividing the likelihood for the out-of-control situation, L1, by the likelihood for the in-control
situation, Ly. Lo can be calculated by

Lo=p'(1—p)'7Y

() ()

_ (exp(XB))*
1+ exp (XP)

To detect a change to the logit model for a out-of-control situation, the logit function can be
given as

where A is the change in the logit such that the process is out-of-control and is defined by the
user. Using the logit function as given in Equation 2.16, the likelihood for the out-of-control
situation can be calculated as

I exp (A + XB)Y
"T 1t exp(A+ X5

The likelihood ratio for a single observation is then expressed as

exp (A)Y (1 4 exp (X;8))
1+exp(A+X,0)

To construct the risk-adjusted CUSUM chart the C statistic is C; = max (0,C;—1 + R;), where
R; =In(LR) and Cy = 0 (Gandy and Kvalgy, 2015). When the out-of-control situation is more
likely than in the in-control situation, R; > 0, which gives a larger C; value than when the
situation is more likely to be in-control. To monitor an increase in the odds when the process
in out-of-control A should be set to greater than 0. To monitor a decrease in the odds when
the process is out-of-control, A should be set to less than 0.

LR; =
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3. Estimation of Chart Parameters

When using control charts in practice, the underlying distribution is generally unknown, and
therefore must be estimated. The development of control charts is then divided into two phases.
In Phase I the underlying distribution is estimated from historical data. Using the m historical
samples, of size n, estimates of the unknown parameters are calculated. Phase I control charts
are then constructed by using the methods outlined in Chapter 2, with the known mean and
SD, i and o, being replaced with the calculated estimations, i and &.

If the Phase I control chart shows that all of the m historical samples plot in-control then
the estimated parameters are used to monitor samples in Phase II. If an out-of-control signal
does occur, the process is investigated for assignable causes. The sample that plotted out-of-
control is then removed from the Phase I data and the parameter estimates are revised. This
process is repeated until all the samples used to calculate the estimations indicate an in-control
signal. These estimates are then used in Phase II to construct a control chart to monitor the
performance of the process (Montgomery, 2013).

3.1 Estimation Methods

When the underlying distribution is assumed to follow the normal distribution, there are several
methods to estimate the unknown parameters of © and o. To estimate the mean,

~ =1
= ) 3.1
o - (3.1)
where T; = 2 *; , the mean of each sample, or if n = 1, then Z; = x;, the individual observation.

To estimate the standard deviation there are a variety of methods, of which three will be
discussed. For an overview on other methods see Saleh et al. (2015).

Method 1

Method I involves either the range of each sample, when n > 1, or the moving range of the m
samples when n = 1. When n > 1, the average of the sample ranges,

> Ri
R _ =1
m
is used to estimate the SD such that 5
o — 3.2
(o] d2 (n) ) ( )
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where R; is the range of sample i and da(n) is some constant which depends on the size of each
sample (Saleh et al., 2015). A table containing the values of ds, depending on various values of
n can be found in Appendiz VI of Montgomery (2013).

When n = 1, the moving range is used instead of the range and is defined as

m—1
Y MR
MR="1
m—1

where M R; = |x;+1 — 2;|. The SD estimate is then calculated as

MR MR
0= —— = ———. 3.3
707 B(2) T 1128 (3:3)
For the moving range estimate, d2(n) is used where n = 2, as the moving range of two samples
is used (Montgomery, 2013).

Method 11

Method II uses the sample variances to estimate the SD and is referred to as the Spypeq method
in Saleh et al. (2015). When n > 1, the samples variance of each historical sample is calculated
as
- =2
(wij — i)
=1
5. =

When n = 1 the data is treated as one sample with m observations, instead of m samples which
each contain 1 observation. From Equation 3.4, it can be seen that if m is substituted with n,
and n = 1, the SD estimate is then just square root of the sample variance. Therefore

(3.5)

where x; is the i*" observation and 7 = *

Method III

Another method of calculating the SD is to adjust the biased sample SD by dividing by a
constant, which is dependent on n, to give an unbiased SD estimate. When n > 1, the unbiased
SD estimate is given as

(3.6)

gp = C4(’I’L)’

Si

=1

3|LbJ

where 5 =

and c¢4(n) is a constant which depends on n, the values of which can be found
in Appendiz VI of Montgomery (2013). When n = 1 the data is treated as one sample with m
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observations, rather than m samples that each have one observation. This then gives § = s and

SO

cy(m
m 2 m
> (x:—7) PO
_ =1 = __ i=1
where s = \| =——— and 7 = =~

3.2 Examples of Estimated Control Charts

(3.7)

The Phase I data for the process which manufactures engine piston rings can be found in Table
6.3 of Montgomery (2013, pg.260). The data consists of 25 samples, each with 5 observations,
where the quality characteristic is the diameter of the ring. To estimate the SD, method III is

used, and so Equations 3.1 and 3.6 are used to estimated the mean and SD respectively.

Table 3.1: Summary of Mean, SD Estimation and Standardised Values of Piston Data

Sample Number T; S; Yi
1 74.01020 0.0148 2.1457
2 74.00060 0.0075 -0.1370
3 74.00800 0.0147 1.6226
4 74.00300 0.0091 0.4337
5 74.00340 0.0122 0.5288
6 73.99560 0.0087 -1.3259
7 74.00000 0.0055 -0.2796
8 73.99680 0.0123 -1.0405
9 74.00420 0.0055 0.7190
10 73.99800 0.0063 -0.7552
11 73.99420 0.0029 -1.6587
12 74.00140 0.0042 0.0533
13 73.99840 0.0105 -0.6601
14 73.99020 0.0153 -2.6099
15 74.00600 0.0073 1.1470
16 73.99660 0.0078 -1.0881
17 74.00080 0.0106 -0.0894
18 74.00740 0.0070 1.4799
19 73.99820 0.0085 -0.7076
20 74.00920 0.0080 1.9079
21 73.99980 0.0122 -0.3272
22 74.00160 0.0074 0.1008
23 74.00240 0.0119 0.2910
24 74.00520 0.0087 0.9568
25 73.99820 0.0162 -0.7076
> 1850.029 0.235
T 74.001 s 0.0094

Table 3.1 shows the estimated mean and average of the sample SD estimation for the Piston
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diameter data. From this the estimated SD can be calculated using
0.0094  0.0094

T ca(5)  0.9896

To construct the Phase I Shewhart control chart the in-control ARL was specified as ARLy =

350. This gives the critical value of L = 2.98. Using this with the estimated mean, fig = 74.001,
as the centre line, the upper and lower control limits are

= 0.0095.

UCL = fip + L\”—; = 74.001 + 2.98(0.0097) = 74.014
n

o)

-

and

LCL =jin—L = 74.001 — 2.98(0.0097) = 73.99.

Shewhart Chart of Piston Diameter Data
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Figure 3.1: Example of a Shewhart control chart with estimated parameters

From Figure 3.1 it can be seen that using the estimated mean and SD, all 25 samples appear
to be in-control and so the centre line and control limits calculated for this chart would be used
to monitor the piston ring diameter in Phase II.

To construct a CUSUM chart for the piston data, standardised values of the data, the y;
values in Table 3.1, are found using the estimated mean and SD such that

;i — flo z; — 74.001
Yi = =

Gov/n  0.0095/v/5
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For a specified ARLy = 350, the critical value is h = 4.72 and the upper and lower CUSUM
values are calculated using equations 2.11 and 2.12. To calculate the critical value, h, the spc R
package was used (Knoth, 2015), which estimates the ARL using the integral equation method.

CUSUM Chart of Pison Diameter Data
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Figure 3.2: Example of a CUSUM control chart with estimated parameters

Figure 3.2 illustrates that all the Phase I data points appear to be in-control and so the
estimated mean and SD of jip = 74.001 and ¢ = 0.0098 can be used to construct the Phase II
control chart to monitor the diameter of piston rings.

To construct an EWMA chart for the piston ring data, the mean of each sample, Z;, is
needed as well as the estimated mean and SD. The exponentially weighted average is calculated
using Equation 2.13 is plotted on a EWMA chart with a centre line which is equal to jig and
control limits

UCL = jiy + Lo,

LCL = fig — Lo,

where

Oz = &0\/(2—)\A)Tl[l - (1 - )‘)21]

For an in-control ARL of ARLy = 350, a critical value of L = 2.84 is used to calculate the
control limits. This critical value was found using the spc R package (Knoth, 2015), which uses
the integral equation method to estimate the ARL.
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EWMA Chart of Piston Diameter Data

74.010
|
+

UCL

74.005
|

Group Summary Statistics
74.000
|

LCL

73.995
|

73.990
|
+

Group

Figure 3.3: Example of a EWMA control chart with estimated parameters

Again the EWMA chart in Figure 3.3 shows that all 25 Phase I samples are in-control and
so the centre line and control limits calculated for Figure 3.3 would be used to monitor the data
in Phase II. The crosses at each group 7 represent the mean for each sample, Z;.
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4. Impact of Estimation Errors

When the underlying distribution is unknown and thus chart parameters are estimated, the
estimations can effect the efficiency of the control chart. The impact that the estimation error
has on the chart efficiency has been discussed by many, including Jensen et al. (2006) and Jones
and Steiner (2011). To demonstrate the impact that estimating the underlying distribution can
have, the true in-control ARL is calculated using estimated parameters for samples drawn from
a known distribution. The following generic algorithm is used to illustrate the impact of the
estimation error for normally distributed data.

Algorithm 1 Estimation Error Impact

1. Generate Phase I sample data from normal distribution with known pg and og.
2. Estimate [ig and ¢ from Phase I data.

3. Calculate critical value for a specified in-control ARL using [ig, 69 and specified reference
value if applicable.

4. Calculate true in-control ARL (ARLg trye), with the critical value from the estimated
chart parameters, fig and &g, and an in-control data stream with known ug and og and
specified reference value if applicable.

5. Repeat B times.

The critical value for Shewhart and EWMA charts has been previously denoted as L, while
the critical value for the CUSUM charts has been denoted as h. For each use of Algorithm
1, the in-control ARL was specified as 100, and the algorithm was repeated 1000 times. The
Phase I data was generated from the known standard normal distribution, such that pg = 0
and o9 = 1. When the true in-control ARL of a CUSUM chart is investigated, the reference
value k£ = 0.5 has been used, unless otherwise specified.

4.1 Samples with Multiple Observations

It is stated in Montgomery (2013, pg.239) that “it is desirable to have 20-25 samples of size
n” for the Phase I data, where “n is typically between 3 and 5”. The effect of the number of
samples, m, on the estimated parameters has been investigated and discussed in detail, see Saleh
et al. (2015) for more information. To illustrate how the number of Phase I samples affects the
ARLgy, samples containing 5 observations were generated with the number of samples varying
from 20 to 2000. Algorithm 1 was then used to illustrate the effect of Phase I sample size on
the in-control ARL of both Shewhart and CUSUM charts.
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Unbiased SD Estimation Method
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Figure 4.1: ARLg trye distribution of Shewhart control charts with estimated parameters for
Phase I data of sample size 20, 200 and 2000, where each sample has 5 observations. The
boxplots show the 2.5%, 10%, 25%, 50%, 75%, 90% and 97.5% quantiles of the ARLg trye
distribution. A log-scale has been applied to the horizontal axis.

Figure 4.1 shows the true in-control ARL of Phase I samples for Shewhart charts when the
number of samples vary. The SD of each sample was calculated using Method III as shown
in Chapter 3. As the number of samples increases, the mean of the ARLg ;4. becomes closer
to the specified ARLg, however all three boxplots have a mean which is close to the specified
in-control ARL. The main difference between the boxplots is that, as the number of Phase 1
samples increases, the variation of the true in-control ARL decreases. For m = 20 the variation
in the true in-control ARL is very large. When the true in-control ARL is considerably smaller
than the specified in-control ARL, the probability of a false out-of-control signal increases.
When the true in-control of the ARL is considerably larger than the specified in-control ARL,
the probability of a false in-control signal increases. These false signals can have a profound
effect on the reliability of the control chart. The impact of parameter estimation using each of
the three SD estimation methods were very similar and can be seen in Appendix B.
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Unbiased SD Estimation Method
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Figure 4.2: ARLg iy distribution of CUSUM control chart with estimated parameters for Phase
I data of sample size 20, 200 and 2000, where each sample has 5 observations. The boxplots
show the 2.5%, 10%, 25%, 50%, 75%, 90% and 97.5% quantiles of the ARLq trye distribution

Figure 4.2 shows the true in-control ARL of Phase I for CUSUM charts when the number of
samples varies. The SD of each sample used to produce Figure 4.2 was calculated using Method
IIT as shown in Chapter 3. When the Phase I data contains only 20 samples, the average
in-control run length is around 70. As the number of Phase I samples increases, the average of
the true in-control run length tends towards the specified in-control ARL. As in Figure 4.1, as
the number of samples increases, the variability of the true in-control ARL decreases, in turn
decreasing the probability of false signals in the control chart. Boxplots of all three methods of
SD estimation were very similar and have again been included in Appendix B.

4.2 Samples with Single Observations

In some situations, each Phase I sample will contain only one observation. This occurs for
example in medical settings where each patient is regarded as an observation, or in production
settings where there is a low number of products produced. Algorithm 1 was used to illustrate
the effect of parameter estimation on both the Shewhart and CUSUM charts for varying Phase
I sample sizes.
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Unbiased SD Estimation Method
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Figure 4.3: ARLq¢rye distribution of Shewhart control chart with estimated parameters for
Phase I data of sample size 100, 1000 and 10000, where each sample has 1 observations. The
boxplots show the 2.5%, 10%, 25%, 50%, 75%, 90% and 97.5% quantiles of the ARLg trye
distribution. A log-scale has been applied to the x-axis.

Figure 4.3 shows the true in-control ARL for Phase I Shewhart charts with single obser-
vations. The SD was estimated using Method III as shown in Chapter 3. The results from
using all three estimation methods gave similar results and can be seen in Appendix B. As with
multiple observation data, the more samples available to estimate the chart parameters from,
the better the estimation and the less variation between the true in-control ARL of the charts.
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Unbiased SD Estimation Method
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Figure 4.4: ARLg iy distribution of CUSUM control chart with estimated parameters for Phase
I data of sample size 100, 1000 and 10000, where each sample has 1 observations. The boxplots
show the 2.5%, 10%, 25%, 50%, 75%, 90% and 97.5% quantiles of the ARL trye distribution.

Figure 4.4 shows the true in-control ARL for Phase I CUSUM charts with sample size of
n = 1 where the SD was calculated using the unbiased variance method, Method III in Chapter
3. Appendix B contains boxplots which illustrate the effect of each SD estimation method for
CUSUM charts with each sample containing a single observation. Figure 4.4 once again shows
similar results to the previous figures: the greater the number of Phase I samples, the better
the estimation of the underlying observation.

It can be noted that for Figures 4.1 to 4.4 that the suggested number of Phase I of 25 can
lead to a true in-control ARL which is greatly different from the specified in-control ARL. This
will affect the probability of false in-control and out-of-control signals occurring and the chart
may not be as effective as the user believes it to be. A comparison of Figure 4.1 with 4.3 and
Figure 4.2 with 4.4 shows that when the total of number of observations is the same, but sample
size differs, the distribution of the actual ARLgy does not differ greatly.

Effect of Reference Value on Estimated CUSUM Charts

When looking at the impact of estimating chart parameters, the reference value has so far been
specified as k£ = 0.5. However the reference value also has an effect on the ARL of the CUSUM
chart. To investigate the effect, Algorithm 1 was applied whilst varying the reference value
between k£ = 0.25 and k£ = 1.5.
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Figure 4.5: ARLg tyye distribution of CUSUM control charts with estimated parameters for
various reference values. The boxplots show the 2.5%, 10%, 25%, 50%, 75%, 90% and 97.5%
quantiles of the ARL ¢y distribution.

From Figure 4.5 it can be see that as the reference value increases, the median of the
true ARLy becomes closer to the specified ARLg. For smaller reference values, the change in
the mean wishing to be detected is small and so the errors present in the estimation of the
parameters can increase the probability of a false out-of-control signal.
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5. Accounting for Estimation Error

Although many authors have demonstrated the impact of estimation error on control charts,
few have investigated how to account for the estimation errors (Albers and Kallenberg, 2005).
Examples of authors who discuss accounting for the estimation error are Albers and Kallenberg
(2005) and Gandy and Kvalgy (2013).

5.1 Corrections for Shewhart Charts

Albers and Kallenberg have produced various papers on how to account for parameter estimation
error in Shewhart control charts. They have developed two main approaches for this. The first
aims to reduce ARL bias. The second is to limit the exceedance probability of the chosen
performance measure. For each approach an adjustment factor is included in the control limit
equations. These corrections work well for Shewhart charts and can be implemented easily
without needing to understand exactly how they work. However these corrections are limited
by the fact that they cannot be applied to other types of control charts.

5.1.1 Reduction of ARL Bias

Looking at Figure 4.3, it can be seen that the median of the true ARLg distribution is roughly
equal to the specified ARLg. However when calculated, the mean of the distribution is slightly
larger than the specified ARLq at 113. The reduction of ARL bias method, aims to correct the
distribution such that the mean, or expected value of the true ARLy, is approximately equal to
the specified ARLgy. Albers and Kallenberg (2005) state that to reduce the ARL bias when the
parameters are estimated, the control limits should be corrected to

R 60 B
UCL = L2 (142
Lo + \/ﬁ< +m>
R 6o B
LOL = jig— L2 (1+ =
Ho \/ﬁ< +m>

where B = % (1 — L272) and 7 depends on the method used to estimate the SD and the number
of observations in each sample. It is worth noting in Equation 5.1 that as the number of Phase
I samples, m, increases, the correction factor added to the limits decreases. As discussed in
Chapter 4, the greater the number of observations used to estimate the parameters, the less
variation is present in the estimations.

For each SD method as described in Chapter 3, Albers and Kallenberg (2005) have specified
how to calculate 72. Each SD estimate can be expressed as 6 = ‘%, where ¢* is a biased SD
estimate and A is a constant which reduces bias from the SD estimation. From this 72 can be

calculated as .
2 = n}gnoo {m - Var (E((IJ*)> }
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A brief outline of how to find the control limits when Method III has been used to estimate the
SD follows. To see the calculation of control limits for the other SD estimation methods see
Appendix C. For a more detailed description of how to find the control limits see Albers and
Kallenberg (2005).

Method III

For this SD estimation method where the sample size is n=1, 72 = % From this B is calculated
as

12
T2 4
_2-L?
4

This gives the control limits with correction factor for n =1 as

4dm

22
UCL:ﬂo+L&0{1+ }
(5.2)

2— 2
LCL:ﬂO—L6O{1+ }
4m

In these control limit equations if L? > 2, or L > /2, then the bias reduction limits will be
reduced compared to the unadjusted limits.
For n > 1, 72 = n (¢;*(n) — 1), which gives
1
B = 5 (1 —n(cy?(n) —1)L?)

From this the control limits can then be expressed as

1—n (cf(n) —1)L? }

2m

UCL:@0+La0{1+

1—n(c;%(n) —1) L?
LOL = jig — Léy {1 I (642(n) ) }
m

5.1.2 Reduction of Exceedance Probability

When the user wishes to reduce the probability that the true ARLy will exceed a certain
percentage of the specified in-control ARL, ARLy g, the following control limits can be used

UCL = jip+ Lop {1 + E}
LCL = jigp — Loog {1 + E}
where
O(a)T €
m2 - L2(1—¢)
and « and € are specified by the user such that the true ARLg is not below (1 —€)ARLg s in
more than 100a% of the applications. For example if the specified ARLy = 500 and the user

E =
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wishes for the true ARLy to not be less than 450 in at most 20% of the applications, then
a = 12—000 =02ande=1-— % = 0.1. As with the bias reduction method, 7 depends on which
SD estimation is used. The derivation of the control limits for the SD estimation Method IIT
from Chapter 3 is shown below. It should be noted that with e = 0 the adjusted control limits
will always be increased compared to the unadjusted control limits. For other SD estimation

methods, see Appendix C.

Method III

When the SD has been estimated using method III and n = 1, 7 = i. The adjusted control
limits are therefore given by

d(a) €
UCL = |i Lo 1 —
po "0{ i L2<1—e>}
. . P () €
LCL = — L 1 —
Ho "0{ T L2<1—e>}

1
For samples where n > 1, then 7 = [n (cf(n) —1)]* and the control limits are

Y a) [n (c72(n) — 3 c
LOL = fo— 152 Ly 2@ [n (c;%(n) — 1)]2 e

NGO m3 2(1-¢)

5.2 Bootstrap Method for Guaranteed Conditional Perfor-
mance

Gandy and Kvalgy (2013) have developed a method which is not limited to Shewhart charts, but
instead can be used on many others “without having to derive specific approximation formulas
in each setting”. The method produces control limits which are constructed such that for
approximately 100(1 — a))% of the applications, the true ARL(y will be at least the specified
ARLy.

For a one-sided control chart without any adjustments, the control limit is calculated as
c(P,é) for a specified in-control ARL, where ¢ is the control limit, which is dependent on
the estimated distribution, P, and parameters, é However as shown in Chapter 4 this does
not always produce a true in-control ARL which is close to the specified ARLg. If the true
distribution of the process, P, is known then the control limit ¢(P; f) can be found, which gives
the correct in-control ARL. The distribution ¢(P;€) — ¢(P;€) can be calculated and from this,
a constant p, can be found such that

P (C(P;é) —c(P; ) >pa) =l-a

This can be rearranged to give

P(c(P;ﬁ) < ¢(P; )fpa> =1l-«



If such a p, exists then (—oo, C(P; é: ) — pa> would be considered as an approximate lower one-

sided (1 — a)100% confidence interval for ¢(P;€) for a one-sided chart. However as the true
distribution is unknown, p, is also unknown, but can be approximated by creating bootstrap
samples from the estimated distribution.

Each bootstrap sample has the same dimension as the Phase I data and follows the estimated
distribution P. For each bootstrap sample the distribution, 15*, and parameters, é*, can be
estimated. The distribution ¢(P*;£*) — ¢(P;£*) can thus be simulated, and a constant p¥, can
be found such that

A~

P (e(P*5E0) = e(Pié) > il P) =1-a

The constant p}, is approximately equal to p,. Thus (—oo,c(f?; f) — pZ) is an approximate

one-sided 1 — a confidence interval that c(P; f), for a one-sided chart, is below C(P,é) — ph.
Thus in practise the adjusted control limit is set as ¢ ]5,5) — p}, for a one-sided control chart.
In approximately (1 — a)100% of the applications, the true ARL( will then be at least as large
as the specified ARLy. The adjustment factor is thus said to produce guaranteed conditional
performance.

To find the adjusted control limits for a two-sided control chart, o should be replaced with

5 in the above equations to give the UCL and 1 — § for the LCL. For the UCL this gives

that <—m,cU(]5*;f*) — p’&) is an approximate confidence interval that cgy(P; é), for a two-
2
sided chart, is below ¢y (P;€) — p% . For the LCL <—oo, e (P €%) — p’l‘_g> is an approximate
2 2

confidence interval that cz,(P;€), for a two-sided chart, is above cr,(P;€) — pj_a. Thus in
2
practise the control limits for a two-sided control chart are

UCL = cy <ﬁ’,é> —ph

2

LCL = (P.€) ~pi_s

5.3 Comparison of Methods which Account for Estimation Er-
ror

For a quick comparison of each method to reduce estimation error, 100 samples, each of size 1,
from a standard normal distribution were used to produce a Shewhart chart with a specified
in-control ARL of 370. The R package qcc (Scrucca, 2004) was used to produce the chart.
Method III was used to estimate the SD. The ARL bias reducing, exceedance probability and
guaranteed condition performance control limits for the same samples were then calculated and
added to the control chart as shown in Figure 5.1.
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Shewhart Chart Comparing Control Limits

- Unadjusted —— Exceedance
— Bias Guarenteed
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Sample

Figure 5.1: A Shewhart Control Chart with specified in-control ARL of 370, demonstrating the
change of the limits whilst employing each method of reducing estimation error.

For each method of calculating the control limits the true ARLq was calculated using Al-
gorithm 1. For the standard Shewhart control limits the ARLy = 519. For the reduction of
ARL bias the ARLy = 433. For the exceedance probability with o = 0.2 and ¢ = 0.1 the
ARLg = 845, and for the guaranteed conditional performance method the ARLy = 1546. Al-
though these in-control ARLs are larger than the specified 370, this means that there will be
fewer false out-of-control signals. To compute the critical value for the guaranteed performance
method the spcadjust R package was used (Gandy and Kvalgy, 2013).

Algorithm 1 can be used to compare the true ARLg distribution for each method of ac-
counting for estimation error. Samples of size 100, each with one observation were generated
from the standard normal distribution with a specified ARLy = 100 for each iteration of the
algorithm. The algorithm was then iterated 1000 times to show how each method affects the
ARLg distribution.

31



Unbiased SD Estimation Method
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Figure 5.2: The true in-control ARL distribution of Shewhart Charts for various control limits.
The boxplots show the 2.5%, 10%, 25%, 50%, 75%, 90% and 97.5% quantiles of the ARLg trye
distribution. A log-scale has been applied to the horizontal axis.

Figure 5.2 shows the distribution of the true in-control ARL of Shewhart charts for each
method of calculating the control limits. For the exceedance case o = 0.1 and ¢ = 0.1 and for
the Bootstrap method o« = 0.1. It can be seen that the variance in the true in-control ARL
distributions does not reduce with each method. In the ARL biased reduction method, the
true ARLg distribution has shifted to the left as expected. The mean of the unadjusted ARLg
distribution is 111 and the mean of the ARL¢ distribution for the biased reduction adjustment
method is 101. This shows that although the method produces a distribution with a mean
which is closer to the specified ARLg, it has a higher chance of producing a true ARLg which
is less than the specified ARLy.

For the exceedance and guaranteed conditional performance, the distributions of the true in-
control ARL both have a large number of run lengths greater than the specified in-control ARL.
These methods are favoured as the number of false out-of-control signals is greatly reduced.
This does lead to a longer true out-of-control run length, but the out-of-control ARL is not
considerably affected by the increase to the in-control ARL.
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Unbiased SD Estimation Method

Guaren
1

Exceed
1

Biased
1

T
il

10 20 30 40 50 60 70

ARL;

Figure 5.3: The true out-of-control ARL distribution of Shewhart Charts for various control
limits when the out-of-control mean to be detected is p1 = pg + 0g. The boxplots show the
2.5%, 10%, 25%, 50%, 75%, 90% and 97.5% quantiles of the ARL; 4 distribution. A log-scale
has been applied to the horizontal axis.

Figure 5.3 shows the distribution of the out-of-control ARL for each method of calculating
the control limits. Using the method described in Chapter 2 for a control chart with known
normal distribution, which is used to detect a shift in mean of p; = po + g, the out-of-control
ARL is 17.33. For the unadjusted control limits and the bias adjusted control limits the median
of the ARL distribution is close to that of the expected out-of-control ARL when the parameters
are known. For the exceedance probability and bootstrap guaranteed adjusted control limits,
the median of the ARL; distribution is close to double the ARL; when the underlying normal
distribution is known. It would take around 30 samples from when the shift in the underlying
mean occurs, to detect the change when using either of these two methods. This is not a
huge difference from the unadjusted limits and has the added bonus of less false out-of-control
signals and so will not greatly effect the control chart’s ability to detect significant changes to
the underlying distribution.

For the exceedance probability reduction method, if ¢ = 0 and a = 0.1, then the method
aims to give a true in-control run length which does not fall below the specified ARLg for at
least 90% of the applications. This is also the specification for the guaranteed performance
method and so can be directly compared when the exceedance probability is used with the
specified parameters.
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Unbiased SD Estimation Method
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Figure 5.4: The actual in-control ARL distribution of Shewhart Charts for various control limits.
The boxplots show the 2.5%, 10%, 25%, 50%, 75%, 90% and 97.5% quantiles of the ARLg trye
distribution. A log-scale has been applied to the horizontal axis.

From Figure 5.4 it can be seen that when ¢ = 0 and o = 0.1 for the exceedance probability
method this gives approximately the same result as the bootstrap guaranteed performance
method with o = 0.1. However the exceedance probability method has the disadvantage that it
can only be applied to Shewhart charts whereas the bootstrap guaranteed performance method
can be applied to other types of charts, as well as risk-adjusted charts.

The effect of the bootstrap guaranteed performance method on the in-control ARL distribu-
tion can be shown for risk-adjusted CUSUM charts. When the response variable, Y; is binary,
a logistic regression model must be fitted as described in Section 2.4. Each observation is de-
pendent on one variable X, which is between 0 and 70 and thus is set to produce an example
of how the Parsonnet score can effect the recovery of a patient who has undergone surgery.
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ARL for Various Control Limits
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Figure 5.5: The actual in-control ARL distribution of risk-adjusted CUSUM charts for various
control limits. The boxplots show the 2.5%, 10%, 25%, 50%, 75%, 90% and 97.5% quantiles of
the ARLg tyye distribution. A log-scale has been applied to the horizontal axis.

Figure 5.5 shows the distribution of the true in-control run lengths for risk-adjusted CUSUM
charts, where a logistic regression model has been fitted to the response variable. It can be seen
that when the chart limits have not been adjusted, the median of the ARLg distribution is close
to 100, and so on average, roughly half the applications of the unadjusted control limits will
have an in-control ARL less than the specified value. For the bootstrap guaranteed performance
method, as expected, on average approximately 10% of the applications will have an in-control
ARL which is less than the specified 100. Figure 5.5 shows that for charts which have bootstrap
adjusted control limits, on average only 2.5% of the applications will have an in-control ARL of
less than 75. Thus for the 10% of applications where the ARL is less than 100, the true ARLg
for the majority of these applications will still be close to the specified ARLy.
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6. Cardiac Surgery Analysis

The use of the risk-adjusted CUSUM chart is extremely useful in the monitoring of medical
data. To show an example of where an increase in the probability of an event occurring is to
be detected, the surgical data as seen in Steiner et al. (2000) can be used. The data contains
the surgical performance for nearly 7000 patients who all underwent a cardiac operation in the
same surgical centre situated in the UK, from 1% January 1992 to 315* December 1998. The
surgical performance is monitored using the 30 day mortality of each patient. For this situation,
Y; = 1 if the event occurs, i.e. if the patient does not survive for 30 days after the surgery.

The first two years of the data is treated as the Phase I period. The adjusted control
limits are calculated using the Phase I data and the spcadjust R package (Gandy and Kvalgy,
2013). For the spcadjust package to calculate the adjusted control limits a value of A must be
specified. The value of A is found such that it corresponds to the change in the probability of
death the user wishes to detect, as shown in Equation 2.16. The probability of death in the
Phase I samples is first calculated. During Phase I 2218 patients underwent surgery with 413
patients who did not survive at least 30 days post surgery. This gives a mortality probability
of p = 0.0644. If we wish to detect that the probability of mortality doubles, we must use that
logit(p;) = X;B, as shown in the logistic regression section of Chapter 2.4, as each patient has
a binary response variable Y;. From this the sort of “average” in-control risk score is

(i)

Substituting in p = 0.064 gives the average in-control value of

- 0.0644

To detect a change such that the probability of mortality doubles then the average out-of-control
risk score can be calculated as

Xﬁ%—Azln( 2p )

1-2p
:ln< 0.129 )

1-0.129
=-191

Taking the average in-control risk score from the average out-of-control risk score will then give
the value of A for the risk-adjusted CUSUM chart used to detect a doubling of the 30 day
mortality probability.

A =—191— (—2.67) = 0.76 (6.1)

A target of the in-control ARL must also be specified for the spcadjust R package to calculate
the adjusted control limit. For this example the target in-control ARL was specified as 10000.
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Steiner et al. (2000) states that using backwards elimination, only the Parsonnet score of each
patient was included as an explanatory variable in the logistic regression model. This gave the
regression model of

logit(p;) = —3.68 + 0.077X;

where X; is the Parsonnet score for patient 7. Using this logistic regression model and the
spcadjust R package, the Phase I and Phase II risk-adjusted CUSUM charts are produced for
the cardiac surgery data.
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Figure 6.1: Risk-adjusted CUSUM chart showing Phase I data for 30 day mortality of cardiac
surgery patients. Adjusted control limit is 6.2, unadjusted control limit is 5.2.

Figure 6.1 shows the risk-adjusted CUSUM chart for the Phase I data. From the chart it
can be seen that for both the adjusted and unadjusted control limits, the chart is in-control.
These limits can now be used to produce the chart containing the Phase II data.
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Figure 6.2: Risk-adjusted CUSUM chart showing Phase II data for 30 day mortality of cardiac
surgery patients. Adjusted control limit is 6.2, unadjusted control limit is 5.2.

Figure 6.2 show the risk-adjusted CUSUM chart for the Phase II cardiac surgery data.
It can be seen that just before July 1995 there is a steep increase in the number of 30 day
mortalities occurring for this surgical centre. Between July 1995 and January 1996 the chart
signals out-of-control and so it should be investigated as to why there is such an increase in 30
day mortality.
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7. Helping Babies Breath Analysis

The risk-adjusted CUSUM chart can be used to monitor a change in the probability of a medical
data set. This process is applied to the Helping Babies Breath (HBB) data which was presented
in Mduma et al. (2015). The data contains information on infants born after the introduction
of the HBB program in Haydom Lutheran Hospital in Northern Tanzania. In February 2010
the National HBB study started which included a one-day course where the care providers were
assessed before and after the course on their basic neonatal resuscitation management. Mduma
et al. (2015) states that the pass rate for newborn resuscitation in a test set up increased after
completion on the day of the course compared to the assessment carried out prior to the course.
However this did not translate into a decrease in infant mortality for observations after the
course.

In February 2011 Frequent and Brief On-Site (FBOS) HBB simulation training was imple-
mented, which included providing equipment to the hospital such that it was easily available for
frequent practice. Monthly training sessions were also carried out within the hospital. The data
analysed in Mduma et al. (2015) contains information on all infants born in Haydom Lutheran
Hospital from February 2010 until January 2012. The neonatal outcome in the first year, when
the one-day HBB course was completed, with the neonatal outcome of the second year, when
the FBOS training was started is compared. An updated version of this data is used to illustrate
the use of the risk-adjusted CUSUM chart when monitoring for a change in probability, where
the last observations were the infants born on 31%* January 2016.

The data collected from the introduction of the one-day HBB course on 15¢ February 2010
up until the 315 January 2011, the day before the introduction of the FBOS training, will be
treated as the Phase I data. The Phase II data is from 15¢ February 2011 until 315¢ January
2016. This will aid in comparing the effectiveness of the FBOS training to the one-day HBB
course and to see if there is a noticeable decrease in the number of infant mortalities since the
introduction of the FBOS training. The Phase I data contains 4844 observations and the Phase
IT data 22176 observations. The data contains many variables including the outcome after 24
hours for each infant. This is the binary response variable Y;, where Y; = 1 if the infant did not
survive 24 hours or was classified as a fresh stillbirth.

7.1 Initial Analysis

The first stage in analysing the HBB data is to produce a basic CUSUM chart for Phase I with
both unadjusted and adjusted control limits. The adjusted control limits will be calculated using
the bootstrap method as this is the method which can be applied to CUSUM charts. To be able
to construct the CUSUM chart, the change in the probability to be detected must be specified.
Although the data is not to be risk-adjusted in this initial analysis, the logistic regression set up
from Section 2.4 is used, including only a constant term such that logit (p;) = 1. This set-up
is needed as the response variable is binary.
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Determining Delta

To monitor if a “clinically relevant” change in the probability of the data occurs, a value of A
must be found for Equation 2.16 in Section 2.4. The HBB data has a binary response, with
Y; = 1if the event occurred, i.e. the infant does not survive the first 24 hours. During the Phase
I data there were 133 deaths and 4844 samples, giving a probability of death as p = 0.0275.
This gives an in-control average risk score of

. 0.0275
p=in (1 - 0.0275> 356

It was decided that a 20% decrease in the probability of death would be clinically relevant, such
that a probability of p = 0.022 was to be detected. The resulting out-of-control constant term

is thus given by
. 0.022
A=in(—"")=-3
ot ”(1—0.022) 379

From this A can be calculated as
A =-379 —(-3.56) = —0.23

where A < 0 gives a CUSUM chart which gives an out-of-control signal when the probability
of death decreases.

Phase 1

Using the value of A = —0.23, the control limits for the basic CUSUM chart were calculated
using the spcadjust R package (Gandy and Kvalgy, 2013) to be 4.5 for the unadjusted control
limit, unfortunately the current set up the spcadjust package cannot determine the adjusted
control limit for a regression model which is only dependent on a constant term. The unadjusted
control limit is then used with a specified ARLy = 40000 to produce a CUSUM chart for the
Phase I data.
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Figure 7.1: Phase I basic CUSUM chart for detecting a decrease in the probability of infant
mortality of the HBB data. The unadjusted control limit is 4.5.

From Figure 7.1 it can be seen that all Phase I observations are in control for the control
limit, and thus this control limit can be used to monitor the Phase II observations.

Phase 11

The control limits found using the Phase I samples can be used to construct the Phase II
CUSUM chart, with the parameters of A and ARLg as specified for the Phase I chart.
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Figure 7.2: Phase II basic CUSUM chart for detecting a decrease in the probability of infant
mortality of the HBB data. The unadjusted control limit is 4.5.

Figure 7.2 shows the basic CUSUM chart of the Phase I HBB data. It can be seen that the
chart first gives an out-of-control signal around July 2012. It should be noted that the chart is
constructed using only the unadjusted control limit and that the chart will signal out-of-control
earlier than if an adjusted control limit was used. However the chart remains out-of-control and
from March 2013 onwards the chart shows a steady increase in the value of C),. This suggests
that the FBOS HBB training program has a positive effect on the probability of an infant
surviving for the first 24 hours, but it is not until September 2012 for this effect to be formally
established as clinically relevant.

Variable Life Adjusted Display

The CUSUM chart is a good visual indicator with formal control limits for the effect of the
HBB training program. However when showing the CUSUM chart to those involved in the HBB
program, it may be hard to interpret the y-axis. To help with this interpretation a Variable
Life Adjusted Display (VLAD) can also be constructed. A VLAD is a plot which shows the
cumulative sum of the expected number of outcomes minus the observed number of outcomes
against time Lovegrove et al. (1997).

For the HBB data the expected number of outcomes, i.e. death of the infant, for each sample
is the probability of death during Phase I, which is 0.0275. The observed number of outcomes
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is the binary response variable Y; of the Phase II samples. The equation used to calculate the

VLAD at each observation j is

Vi=Y (Yir-Yio) (7.1)

i=1

(0.0275 — Y 0)

I
‘M“

1

)

where V; is the cumulative number of excess survivors, Y; g is the expected number of outcomes
for observation ¢ and Y; o is the observed number of outcomes for observation i. Thus if V; is
greater than 0, this means that the expected number of outcomes is greater than the observed
and thus there has been a decrease in deaths during the Phase II observations compared to the
baseline Phase I samples. If V; is less than 0, then the number of observed outcomes is greater
than the expected number of outcomes and indicates an increase in deaths during Phase II

compared to Phase I.
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Figure 7.3: VLAD plot for Phase II HBB Data with expected value of 0.0275.

From Figure 7.3 it can be seen that from February 2011 to January 2016 there has been
a great increase in the number of infants surviving, compared to expected value of Phase I
data. The shape of the VLAD is similar to the shape of the basic CUSUM shown in Figure
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7.2, however the y-axis of the VLAD corresponds to the cumulative number of infants surviving
compared to the baseline level. In this case it can be seen from this plot that there were around
130 lives saved over the Phase II period compared to the baseline level.

7.2 Risk-Adjusted CUSUM Chart

To produce a risk-adjusted CUSUM chart of the HBB data a suitable regression model must
first be fitted to the data. It is reasonable to fit a regression model to the data as there are
many factors which could effect the outcome for each infant. These factors need to be taken
into consideration, as the difficulty of each case will effect the outcome. As with the cardiac
data in Chapter 6, the response variable is binary and so a logistic regression must be fitted to
the data. The effectiveness of the training is to be analysed and so any “management” variables
are not included. The regression model should only contain variables which are related to the
health of the child and the mother. To find the regression model for the HBB data, the stats R
package was used (R Core Team, 2015).

Fitting an Appropriate Regression Model

Regression models for each individual variable are first produced. For each of the individual
regression models, if the variable was significant at the 20% level it was included in the initial
multiple regression model. The initial multiple model contains the 15 variables as shown in
Table D.1 in Appendix D. To find an appropriate multiple model, the stepwise method was
used to remove any variables which were not significant from the initial multiple model. This
gave the multiple regression model as

Y; =4.45 - 0.0014X;; — 2.43X;2 + 3.58X3 + 7.34 X4 + 0.18 X5 + 4.44 X6 + 1.29X;7  (7.2)

where the covariates are explained in Table 7.1.

Table 7.1: Covariates Present in Equation 7.2

Covariate Description
X; Birth weight, grams
X; If the mother suffered from pre-eclampsia
X; Abnormal foetal heart rate
X; Foetal heart rate not measured/not detected
X; Caesarean section delivery
X; Assisted breech delivery
X; Vacuum extraction

However when this model is fitted to the Phase I data it has 945 missing observations of
4844. Therefore the model expressed in Equation 7.2 is fitted on only 80% of the data. When
looking at the data most of these missing observations are present in the variable delivery mode,
which has 920 of 4844 observations missing. It was decided to exclude any variable with large
missing observations in either Phase I or Phase II. Of the 15 variables shown in Table D.1,
admission and delivery mode had around 20% of observations missing in Phase I and prolonged
labour has over 50% of the observations missing in Phase II. These variables were removed
from the initial multiple model, before finding the final model using the step-wise method. The
resulting regression model is

44



where the covariates of the model are explained in Table 7.2

Table 7.2: Covariates Present in Equation 7.3

Covariate Description
X; Birth weight, grams
X; If the mother suffered from pre-eclampsia
X; Abnormal foetal heart rate
X; Foetal heart rate not measured/notdetected
X; Presentation of baby was breeched
X; Presentation of the baby was shoulder dystocia
X7 Presentation of baby was tranversed

Xis Other presentation of the baby

Phase 1

Using A = —0.23 and the spcadjust R package (Gandy and Kvalgy, 2013), the adjusted and
unadjusted control limits for the risk-adjusted CUSUM chart are 4.0 and 3.4 respectively. The
Phase I control chart is constructed using these control limits and the regression equation as
shown in Equation 7.3, with a specified ARLy = 40000.
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Figure 7.4: Phase I risk-adjusted CUSUM chart detecting a decrease in the probability of
infant mortality of the HBB data. The unadjusted and adjusted control limits are 3.4 and 4.0
respectively.

From Figure 7.4 it can be seen that when using both the unadjusted and the adjusted control
limits, the chart is in-control. This shows that the Phase I data is assumed to be in-control and
the adjusted control limits can be used for the Phase II data.

Phase 11

Using the parameter values for A, the specified ARLg and the control limits found for the Phase
I data, a risk-adjusted CUSUM chart for the Phase II data was constructed, using the logistic
regression model as shown in Equation 7.3.
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Figure 7.5: Phase II risk-adjusted CUSUM chart detecting a decrease in the probability of
infant mortality of the HBB data. The unadjusted and adjusted control limits are 3.4 and 4.0
respectively.

From Figure 7.5 it can be seen that as early as September 2011, the chart is out-of-control
for a small period of time, before again signalling out-of-control from around December 2011
onwards. This signal means that the probability of an infant not surviving the first 24 hours of
its life has decreased by a clinically relevant amount during Phase II. It can be concluded that
the FBOS HBB training is having a positive effect on the survival of infants born at Haydom
Lutheran Hospital.

Figure 7.5 can be compared to the basic chart. It can be seen when comparing Figures
7.5 and 7.2 that the risk-adjusted CUSUM chart signals earlier than the basic chart. The most
noticeable difference in the two CUSUM charts is between July 2012 and February 2013. During
this time the C), value of risk-adjusted CUSUM chart increases steadily whereas the C,, value
of the basic CUSUM chart varies between 5 and 7. This is due to variation present in the basic
CUSUM chart which has been accounted for in the risk-adjusted CUSUM chart. In practice
this means that the Phase II data contains more difficult cases during this time period, and
when this difficulty is taken into account, the number of infants surviving is greater than to
be expected. The risk-adjusted CUSUM chart shows that the HBB training has been having
a more positive effect on the number of infants surviving than if just the basic CUSUM chart
was used to analyse the data.
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VLAD for Risk-Adjusted Data

A VLAD can also be constructed in which the expected value for each observation in Phase 11
is calculated using the regression model in Equation 7.3. The VLAD at each observation j is
then

J
Vi =Y (Yir - Yio0)
i=1

where Y;  is the estimated value of Y7 found using the regression model in Equation 7.3. This
takes into account the difficulty of each case, where a more difficult case will have a higher
probability of the infant not surviving the first 24 hours.
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Figure 7.6: VLAD plot for Phase IT HBB Data with expected values calculated from the re-
gression model.

Figure 7.6 shows the VLAD for when the expected value is calculated for each Phase II
sample using the regression model, Equation 7.3. Figure 7.6 is similar to Figure 7.3, but it
does not have the fluctuation from July 2012 to February 2013 which is present in Figure
7.3. During this time period more difficult cases were present and when this is taken into
account, the cumulative number of infants surviving continued to increase steadily. It also has
a slightly higher overall number of additional infants which survive 24 hours than expected
of approximately 140 compared to the 130 which is shown in Figure 7.3. This indicates that
Phase II had a greater number of difficult cases than expected, but still the cumulative number
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of infants surviving the first 24 hours increased throughout the time period. Both figures agree
with the risk-adjusted CUSUM chart that since the introduction of the HBB training program
there has been a significant increase in the number of infants surviving 24 hours in Haydom
Lutheran Hospital.

7.3 Further Analysis of HBB Data

From Figure 7.5 it can be seen that after February 2014 there is a steady decrease in the C,
value until around August 2014 when the C,, value once again increases. To check that there is
not a significant decrease in the number of infants surviving a CUSUM chart which monitors for
an increase in the probability that an infant will not survive the first 24 hours is constructed.
To monitor a 20% increase in the probability of death gives a probability of p = 0.033. The
resulting out-of-control average risk score is given by

= —-3.38

X (1 205)

1-0.033

From this A can be calculated as
A =-338—(-3.56) =0.18

where A > 0 gives an out-of-control signal when the probability of death increases. The adjust
and unadjusted control limits were then calculated as 3.8 and 3.0 respectively using the Phase
I data.
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Figure 7.7: Phase II risk-adjusted CUSUM chart for HBB data which detects an increase in the
probability of infant mortality.

CUSUM charts for both Phase I and II were created, with the Phase I chart shown in
Appendix D used as a check that the Phase I is in control for the adjusted control limits.
Figure 7.7 shows that all Phase II observations are in control when monitoring for a 20%
increase in the probability of infant mortality. This suggests that since the introduction of the
HBB training program there has not been a significant increase in the probability of infant
mortality at Haydom Lutheran Hospital.
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8. Conclusion

In this thesis the aim was to see how to construct control charts when the chart parameters are
estimated and how this estimation affects the performance of the chart. In particular the effect
of the estimation errors on the chart’s ARLy was demonstrated. Three methods which account
for the estimation error by adjusting the control limits of the chart were investigated and their
effect on the ARLgy of Shewhart and CUSUM charts was simulated.

The bias reduction method aims to correct the mean of the ARL distribution so it is closer
to the specified ARLq for Shewhart charts. In chapter 4 the mean of the distribution was greater
than the specified ARLy and so the bias reduction method shifted the ARLg distribution to
the left in Figure 5.2. Although the mean of the bias reduction ARLg distribution was closer to
the specified ARLg, this increased the number of applications with a run length less than the
specified ARLg, and thus gives an increase in the number of applications which are quicker to
give a false out-of-control signal than expected.

The exceedance probability reduction method and bootstrap guaranteed performance
method both aim to adjust the ARLg distribution so that roughly only a given percentage
of the run lengths are less than the specified ARLg. The exceedance probability method does
this by adding adjustment factors to the control limits of Shewhart charts. The bootstrap
method estimates a confidence interval for the control limit by producing a number of boot-
strapped samples taken from the estimated distribution. This method has the advantage that
it can not only be applied to Shewhart charts but other types of control charts as well as risk-
adjusted charts. Both methods increase the ARL1, but the increase in the ARL; is not so great
that it outweighs the reduction of false out-of-control signals.

An analysis of the HBB data provided by the SAFER partnership involved constructing
CUSUM charts to demonstrate the use of the bootstrap guaranteed performance method. Basic
and risk-adjusted CUSUM charts, alongside VLAD plots, clearly illustrate the clinically relevant
positive effect that the HBB training program has had on the number of infants surviving 24
hours at Haydom Lutheran Hospital, Tanzania. The risk-adjusted CUSUM chart shows that
from as earlier as December 2011 there was a clinically relevant decrease in the probability that
an infant does not survive the first 24 hours after birth. VLAD plots show that over the period
February 2011 until January 2016, there were 130-140 more infants which survived the first 24
hours than compared to the baseline period of February 2010 to January 2011. The VLAD
plots support the conclusions of the CUSUM charts in a way that is easy to interpret.

8.1 Further Work

This thesis focused on three methods for how to account for estimation error in Shewhart and
CUSUM charts. A more thorough investigation into other methods which aim to account for
the estimation error in these charts, and the methods which aim to account for estimation
error in EWMA charts could be completed. The affect of these methods on the in-control and
out-of-control ARL should be compared to those of the methods discussed.
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When looking at the risk-adjusted CUSUM chart of the HBB data in Figure 7.5 there are
periods in which the C,, value is decreasing or fairly stable. This can be seen throughout the
period of October 2013 until January 2015. An extension of the HBB analysis could be to see
if any of the variables which have been recorded attributes to these trends in the data or if it is
due to a greater number of difficult cases than expected. This could be valuable information to
the SAFER partnership and could provide a guide on other factors which should be focused on
to further increase the number of infants that survive the first 24 hours after birth. These time
periods could also be compared to the variable delivery mode that was found to be significant
when a multiple regression model was first applied to the data, but had large missingness in
Phase I and so was excluding from the regression model. If there was an increase in one of
the delivery modes recorded during this time period, it could indicate that this delivery mode
affects the probability of the infant not surviving the first 24 hours after birth greater than
other delivery modes.

When calculating the control limits of the risk-adjusted chart for the HBB data, the sp-
cadjust R package (Gandy and Kvalgy, 2013) did not produce definitive values for the control
limits, but differed when certain parameters of the package varied. For the variable “presenta-
tion of the infant was shoulder dystocia” in the multiple regression model, there were only 9
occurrences throughout the Phase I data. This low number of occurrences was a factor in why
the spcadjust package did not produce uniform control limits when parameters of the package
were varied. Further work could be completed to see if removing variables from the regression
model which had few occurrences in Phase I leads to more stable control limits being produced
from the spcadjust package, and if the shape of the risk-adjusted CUSUM remains fairly sim-
ilar to when these variables are included. If so, the risk-adjusted chart produced using the
regression model which excludes variables with low occurrences can be compared to the current
risk-adjusted CUSUM chart for the Phase II period to see if there is a considerable difference
in when the charts signal out-of-control.
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A. Data Sets

The following data set was used as the observations for Figures 2.1, 2.4 and 2.5

Table A.1: Standard Normal Variable Data Set

Sample Observations
1 -1.5099  0.7936 -1.7719 1.0944 0.0423
2 1.6475 -0.0421 -1.3108 -0.7379  2.0397
3 -1.6089  0.0002 -1.9091 0.1974 0.1144
4 0.0216 0.8425 2.0311 0.8593 0.1348
5 1.3367 1.2272 1.6683 0.3085  0.9601
6 0.0837 1.0599 0.6030 -0.2527 1.0030
7 -1.8969 -0.6325 1.4666 -1.5282 -1.0241
8 0.7284 -0.5805 -0.2846 0.3179 1.6103

Ne)

0.1622 0.8321 -1.6722 0.8924 -1.0868
10 0.4663 1.3533 -0.2769 0.5870 -1.6260
11 0.9116 -0.1866 -2.0147 -1.0367 0.1585
12 -0.3115  1.1638 -0.4258  0.5765 -0.6901
13 -1.2441  1.1201 -0.6849 1.3108 0.8878
14 0.3440 -0.8275 -0.8371 -0.3521 0.0382
15 -0.0001  0.5875 -0.4194 -0.9640 1.1959
16 -0.5655  0.4085 0.9024 0.6160 1.5717
17 0.0812 -0.1707 -0.8191 -0.1286 0.9844
18 0.7408 0.3426  0.4853 -0.4588 -0.9455
19 0.7782  0.0714 -0.8856 0.6825 -1.2570
20 1.0159 0.2784 0.1522 -0.9618 -1.5155
21 1.1347 -0.1750 -1.8665 0.0416  0.4077
22 0.1539 0.8868 0.0887 -0.3671 -1.7509
23 -0.3886 -0.4860 0.6348 0.2653 1.3424
24 -0.1282  0.1917 0.9025  1.4904 -2.0707
25 24954 1.7098 -0.1339 -0.9791 0.3583
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B. Impact of Estimation Error: Additional
Information

B.1 Samples with Multiple Observations

Unbiased SD Estimation Method
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Figure B.1: ARLg distribution of Shewhart control Chart with estimated parameters for Phase
I data of sample size 20, 200 and 2000, where each sample has 5 observations. The boxplots
show the 2.5%, 10%, 25%, 50%, 75%, 90% and 97.5% quantiles of the ARLg ¢y distribution.
A log-scale has been applied to the horizontal axis.
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Unbiased SD Estimation Method
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Figure B.2: ARLy distribution of CUSUM control charts with estimated parameters for Phase
I data of sample size 20, 200 and 2000, where each sample has 5 observations. The boxplots
show the 2.5%, 10%, 25%, 50%, 75%, 90% and 97.5% quantiles of the ARL trye distribution.
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B.2 Samples with Single Observations

Unbiased SD Estimation Method
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Figure B.3: ARLg trye distribution of Shewhart control charts with estimated parameters for
Phase I data of sample size 100, 1000 and 10000, where each sample has 1 observations. The
boxplots show the 2.5%, 10%, 25%, 50%, 75%, 90% and 97.5% quantiles of the ARLg trye
distribution. A log-scale has been applied to the x-axis.
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Unbiased SD Estimation Method
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Figure B.4: ARLg tpye distribution of CUSUM control charts with estimated parameters for
Phase I data of sample size 100, 1000 and 10000, where each sample has 1 observations. The
boxplots show the 2.5%, 10%, 25%, 50%, 75%, 90% and 97.5% quantiles of the ARLg trye
distribution.
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CUSUM Charts with Varied Reference Value

Boxplot for various values of k when m=1000
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Figure B.5: ARLg trye Distribution of CUSUM Control Charts with Estimated Parameters for
Various Reference Values. The boxplots show the 2.5%, 10%, 25%, 50%, 75%, 90% and 97.5%
quantiles of the ARL ¢y distribution.

60



C. Accounting for Estimation Error Contin-
ued

C.1 Reduction of Standard Deviation Bias

Method 1

For the moving range method, where each sample size in n = 1, from Equation 3.3 it can be

seen that ox = MR and A = do(2). Using this, it can be found that 72 ~ 0.826. This gives

B = %. This can then be substituted into Equation 5.1 to give

1—0.826L2
UCL_WL&O{HW}
2m
1—0.826L2
LCL:ﬂO_L&O{1+m}
2m

Method 11
Corrections can only be applied to the Spppeq method when n > 1, such that A = \/m and

2 cannot be

m

o* = /> s?. If n = 1 the estimate cannot be split into A and o* and so 7
i=1

calculated. Albers and Kallenberg (2005) state that when this method is used then 72 = ﬁ

This can be used to give
1 nL?
B=-(2-
4 ( n— 1)

This then gives the control limits as

1 nL?
L=jpo+Logyl+ —— —F——
ve Ho UO{ +2m 4m(n—1)}
1 nL?
LCL =figp—Lopy14+ — — —F——
Ho UO{ i 2m 4m(n—1)}

C.2 Reduction of the Exceedance Probability

Method 1

When using the moving range average to estimate SD, when n = 1, as stated previously 72 ~
0.826. Therefore to find E, 7 = 0.91 is used. This gives the control limits as
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UCL:/)0+L&0{1+09 (@) ‘ }

mz - L*(1—¢)
R R 0.919 () €
LCL = [ig— L 1 -
Ho 70 { " m% L2(1 - 6) }

Method 11

When the SD has be estimated using the Spopeq method and n > 1, then as previously stated
1

2 = ﬁ’ which leads to 7 = [

the Shewhart chart as

ﬁ} 2 Using this to calculate F gives the control limits for

. G 2@)[_n ] €
UCL—M“LJ%{“ mi [2<n—1>} ‘L2<1—6>}
s @ o E
LCL—“O‘LJ%{“ ' [2(n—1)} _L2<1—6>}
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Helping Babies Breath Analysis Contin-
ued

HBB Regression Model Variables

Table D.1: Covariates Included in Initial Multivariate Regression Model

Covariate

Multiple birth
Pregnancy complication
Source of admission
Maternal infection
Fetal heart rate
Delivery mode
Presentation of the baby
Prolonged labour
Obstructed labour
Pre-eclampsia
Uterine rupture
Cord prolaps
Bleeding before labour
Birth weight, g
Genstational age, weeks

Table D.1 shows the variables which were significant in each individual regression fitted to the
HBB data.

D.2 Phase I CUSUM charts

The Phase I CUSUM charts are used to check that the Phase I observations are in-control for
the calculated control limits, throughout Phase I.This ensures that the adjusted control limits
can then be applied to the Phase II observations.
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Figure D.1: Phase I basic CUSUM chart for detecting a decrease in the probability of infant
mortality of the HBB data.

Figure D.1 shows that for the adjusted control limit all Phase I observations are in control
and so this control limit can be used to analysis the Phase II data.
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E. R Code

E.1 Impact of Estimation Error

The follow code was used to produce the true ARL distributions used to illustrate the impact
of estimation error of Shewhart control charts.

library (qcc)
library (spc)
options (scipen=999)

#Specify the number of interations , alpha which for specified in—control
#ARL and corresponding critical values and number and size of samples

B <— 1000

alpha <-0.01

L <— gnorm(1l—(alpha/2).,0,1, lower. tail=TRUE, log.p=FALSE) #Shewhart cv
crit <— xcusum. crit (mu0=0, LO=RL, k=0.5, sided="two”) #CUSUM cv

mK—100

n<— 1

#Define known distribution and critical values
mu <— 0
sigma <— 1

#Produce samples to estimate parameters from
x <—matrix (rnorm ( (n*m+B), mean=mu, sd=sigma), nrow=(m*B), ncol=n)

for (i in 1:B){

#split x into iteration samples
a<— ((i—1)%m)+1

b<— ixm

if (n==1){

z<—qcc(x[a:b,], type="xbar.one”, std.dev="SD”, nsigmas=L, plot=FALSE)}
else{

z<—qcc(x[a:b,], type="xbar”, std.dev="UWAVER”,6 nsigmas=L, plot=FALSE)}

#FEstimate parameters from Phase 1 samples
mhat [i] <— z$center
sdhat[i] <— Pooled (matrix(x[a:b,]))
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#Calculate true distribution of critical value and thus true in—control
#ARL for Shewhart charts

mtrue[i] <— (mu—mhat[i])/sdhat[i]

strue[i] <— sqrt((sigma”2)/(sdhat[i]"2))
lower [i] <— pnorm(—L, mtrue[i], strue[i], lower. tail=TRUE)
upper [i] <— pnorm(L, mtrue[i], strue[i], lower. tail=TRUE)

sARL[i] <~ 1/(1+lower[i]—upper[i])

#Calculate the true critical values and thus the true in—control

#ARL for CUSUM charts

h[i]<— crit*(sdhat[i]/sigma)

cARL[i]|<— xcusum.arl(h[i], k=0.5, mu=(muO—mhat[i])/(sdhat[i]), sided="two”)

}

Using the true ARLg found in the above code the boxplots in Chapter 4 to illustrate the
impact of estimation error were then constructed for various values of m and n.

E.2 Accounting for Estimation Error

This code was used to illustrate the impact of the various methods which take the estimation
error of control charts into account for both the ARLy and ARL; in Chapter 5.

library (qcc)
library (spcadjust)
options(scipen=999)

#number of iterations , alpha for specified in—control
#ARL and number and size of samples

B <— 1000

alpha <-0.01

m<—100

n<— 1

#specified eplison and alpha for exceedance probability method
eps <— 0
a<—0.1

#Known distribution parameters and estimated critical value
mu <— 0

sigma <— 1

L <— gnorm(1—(alpha/2),0,1, lower. tail=TRUE, log.p=FALSE)

#Produce samples to estimate parameters from
x <-matrix (rnorm ( (n*m+B), mean=mu, sd=sigma), nrow=(m*B), ncol=n)

for (i in 1:B){

#split = into iteration samples
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a<— ((1—1)%m)+1
b<— ism

f (n==1)
z<—qcc(x[a:b,], type="xbar.one”, std.dev="SD”, nsigmas=L, plot=FALSE)}
else{

z<—qcc(x[a:b,], type="xbar”, std.dev="UWAVE-SD” , nsigmas=L, plot=FALSE)}

#Estimated parameters
mhat [1] <— z$center
sdhat[i] <— z$std.dev

#Btas adjusted and Fxceedance probability adjustements
bLim<—(2—(L"2)) /4
eLim<—(pnorm(a,0,1)/sqrt(m))—(eps/(L*L*(1—eps)))

#Bootstrap adjusted control limits

chartShew <— new(”SPCShew” ;model=SPCModelNormal () , twosided=TRUE)

cal<— SPCproperty (data=x[a:b,] ,nrep=100, property="calARL” ,
chart=chartShew , params=list (target=(1/alpha)), quiet=IRUE)

g<—matrix(cal@res, nrow=1, ncol=1)

cLim<—g[1,1]

#True distribution and in—control ARLs
mtrue[i] <— (mu—mhat[i])/sdhat[i]
strue [1] <— sqrt((sigma”2)/(sdhat[i]"2))

IARL[i] <— 1/(14pnorm(—L, mtrue[i],strue[i], lower. tail=TRUE)—
pnorm(L, mtrue[i], strue[i], lower.tail=TRUE))

bARL[ i ]<—1/(14+pnorm(—L#*(1+(bLim/m)), mtrue[i], strue[i], lower. tail=TRUE)—
pnorm (L*(1+(bLim/m)), mtrue[i],strue[i], lower. tail=ITRUE))

eARL[i]|<-1/(1+pnorm(—Lx*(1+eLim), mtrue[i],strue[i], lower.tail=IRUE)—
pnorm (L%(1+eLim), mtrue[i], strue[i], lower. tail=TRUE))

cARL[i]|<-1/(14+pnorm(—cLim, mtrueli strue [i1], lower. tail=TRUE)—

I
pnorm(cLim, mtrue[i], strue[i], lower.tail=TRUE))
h

#Calculate out—of—control run lengths for each method
uARLI<— pnorm(L—1, mean=mtrue, sd=strue, lower. tail=TRUE)—
pnorm(—L—1, mean=mtrue, sd=strue, lower. tail=TRUE)

bARLI<— pnorm((L%(14+bLim))—1, mean=mtrue, sd=strue, lower.tail=IRUE)—
pnorm(—(L#(1+bLim)) —1, mean=mtrue, sd=strue, lower. tail=ITRUE)

eARLI<— pnorm ( (L%(14+eLim)) —1, mean=mtrue, sd=strue, lower.tail=TRUE)—
pnorm(—(L#(1+eLim))—1, mean=mtrue, sd=strue, lower.tail=TRUE)
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cARLI<— pnorm(cLim—1, mean=mtrue, sd=strue, lower. tail=TRUE)—
pnorm(—cLim —1, mean=mtrue, sd=strue, lower. tail=IRUE)

To illustrate the how the bootstrap guaranteed method effected the ARLq distribution the
following code was use, which was provided by Jan Terje Kvalgy.

library (spcadjust)

# The two following functions are calculating the ARL for a CUSUM
# chart using the Markov approximation

getQ <— function(c, gridpoints ,pobs){

p<— ¢c(0,(0.5+(0:(gridpoints —2)))*c/(gridpoints —1))

ptarget <— p+c/(gridpoints —1)/2

ptarget [1] <— ptarget[l]— c/(gridpoints —1)/4

sapply (p,function(x) {res <— pobs(ptarget—x); c(res[1l],diff(res))})

}

ARL_CUSUM_Markovapprox <— function(c, gridpoints=100,pobs, gridpointsmax=500){

if (c<=0) return(1);

if (pobs(0)>=1) return(Inf);

gridpointsakt <— gridpoints

while (gridpointsakt <gridpoints*8 && gridpointsakt<gridpointsmax){

gridsize <— c¢/(gridpointsakt —1)/2

if (pobs(gridsize)<0.99) break;

gridpointsakt <— min(gridpointsmax ,gridpointsakt*2)

if (gridpointsakt=—gridpointsmax) {

warning (paste (” Adjustment_of_grid._size _.reached .maximum.of” ,gridpointsmax ,
7grid _points.”))

}

}

##cannot reach third grid point

if (pobs(c/(gridpointsakt —1)/2.01)>=1) return(Inf);

Q <— getQ(c, gridpointsakt ,pobs)

tryCatch (rep (1, gridpointsakt )%+%solve (diag(rep(1,gridpointsakt))—
Q.,c(1l,rep(0,gridpointsakt —1))),error=function(e) Inf)

¥

#Generate a huge dataset using the true model. These data will be used
#to approximate the true distribution of the updates of the CUSUM when
#the CUSUM is run with data from the true model, but wusing chart
#parameters and thresholds estimated from a small dataset.

nfuture=1e6

xf <— runif(nfuture ,0,70)

beta0=—5

betal=0.1

pxf=exp(betalO+betal*xxf)/(1+exp(betal+betal*xxf))

yf=rbinom (n=nfuture ,1, prob=pxf)

datafut <— data.frame(y=yf 6 x=xf)
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nrep=10

ARLtruenaive <— vector (length=nrep)

ARLtrueadjusted <— vector (length=nrep)

nobs=100

betal0=-5

betal=0.1

Delta=-0.23

chartlogreg<— new(”SPCCUSUM” , model=SPCModellogregLikRatio
(Delta=Delta, formula="y x”))

# iterate from here

for(i in 1l:nrep){

x <— runif(nobs,0,70) #put this and the line below outside the loop

#if you want to keep it fizxed

px=exp (betal+betal+*x)/(14+exp(betal+betal*x))

y=rbinom (n=nobs, 1, prob=px)

dataxy=data.frame(y,x)

xihat<— xiofdata(chartlogreg , dataxy)

cal <— SPCproperty (data=dataxy, nrep=100, chart=chartilogreg ,
property="calARL” , params=list (target=100, gridpoints=100))

betaOi=xihat$coefficients [1]

betali=xihat$coefficients [2]

xbeta=betali+betalixxf

updatesfut=Deltaxyf + log(l+exp(xbeta)) — log(l+exp(Deltat+xbeta))

updatesdist=ecdf (updatesfut) # Approzimately the true cdf of the

# updates of the CUSUM when data come

# from the true model and we run with

# estimated parameters and thresholds

ARLtruenaive [i] <— ARL_CUSUM_Markovapprox (c=cal@raw ,pobs=updatesdist ,
gridpoints=100)

ARLtrueadjusted [i] <— ARL_CUSUM_Markovapprox (c=cal@res , pobs=updatesdist ,
gridpoints=100)
¥

ARLtruenaive
ARLtrueadjusted

E.3 Cardiac Surgery Analysis

This code was used to verify the regression model for the cardiac surgery data from Steiner
et al. (2000) and produce a risk-adjusted CUSUM chart with adjusted control limits in Chapter
6. This code was provided by Jan Terje Kvalgy with some adjustments made.

library (zoo)
SGHdata <— read.table(”SGHdata. txt” ,header=T)

#Use dead within 30 days as response
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dead30 <— as.numeric(SGHdata$Died>=0 & SGHdata$Died <=30)

#Use the two first years of data as phase I sample

dates <— as.Date(SGHdata$OP_DATE, ”%d%b%y” )

startdate <— 71993-12-31"

daynumber <— as.numeric(dates—as.Date(startdate))

monthnumber=as . numeric ((as.yearmon (strptime (dates , format = "%Y-%m%d”))—
as.yearmon (strptime (dates[1], format = "%Y-%m%d” )))*12+1)

nmonths=tail (monthnumber ,n=1)

estdata <— data.frame(y=dead30[daynumber <0],x=SGHdata$Parsonnet [daynumber <0])
rundata <— data.frame(y=dead30 [daynumber>=0],x=SGHdata$Parsonnet [daynumber >=0],
year=daynumber [daynumber>=0]|/365)

#Verify that we get the same estimate as Steiner et al
estmod <— glm(y~x,family=binomial (”logit”),data=estdata)
print (summary (estmod ) )

#Decide on a value of Delta

p<—sum(estdata8y)/length(estdata8y) #Gives Phase I probability of death
EP<—log(p/(1—-p)) #Average z"(t)beta value

change<—2 #set change in p wish to detect for mean to be out—of—control
pchange<—p=xchange

EPdelta<—log (pchange/(1—pchange))

delta<—EPdelta—EP

library (spcadjust)

# FEstimate chart parameters

chartlogreg <— new(”SPCCUSUM” ,model=SPCModellogregLikRatio
(Delta=delta , formula="y x”))

xihat <— xiofdata(chartlogreg ,estdata)
print (xihat)

# Find threshold

cal <— SPCproperty (data=estdata ,

nrep=1000,chart=chartlogreg ,

property="calARL” ,params=list (target =10000,gridpoints=200), reportdistr=TRUE)
print (cal)

# First calculating the number of births in each month (the wvariable nmonth.
nmonth=vector (length=nmonths)
for (i in 1:nmonths){
nosurgery=which (monthnumber=—i)
ifelse (length(nosurgery)==0, nmonth[i|<—
length (which (monthnumber>(i —1)&monthnumber<(i+1))),nmonth[i]|<—
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length (nosurgery))

}

#Then calculating the cumulative number of births by the end of each month:
cnmonth=cumsum(nmonth)

#Cumulative number of births for specified months:

cnmonth2=cumsum(nmonth [1:24])#used for axzis for Phase I
cnmonth3=cumsum(nmonth [25: nmonths | ) #Used for axzis for Phase II

# Run chart and plot

S <— runchart (chartlogreg , newdata=rundata , xi=xihat)

par (mfrow=c (1,1) ,mar=c(4,5,0.5,0.5))

plot (S, ylab=expression(C[n]) ,xlab="" xaxt="n", type="1",
ylim=range (S, cal@res+1,cal@raw))

axis (1, las=2, at=c(1l, cnmonth3[6]+1, cnmonth3[12]+1, cnmonth3[18]+1,
cnmonth3[24]+1, cnmonth3[30]+1, cnmonth3[36]+1, cnmonth3[42]+1,
cnmonth3[48]+1, cnmonth3[54]4+1), labels=c(”Jan.94” ;" Jul_.94” ;”Jan_95",
Y Jul 957, Jan.96” .7 Jul 967 ,” Jan_97” ,” Jul .97 ,” Jan_98” ,” Jul 98" ))

mtext(side=1, text="Month” , line=4)
points (seq(from=1, to=length(S), by=1),S, type="p”, pch=20,
col = ifelse (S < cal@raw, 'black’,’red’))

lines (c(0,length(S)),rep(cal@res,2), lty=1)
lines(c(0,length(S)),rep(cal@raw,2), lty=2)
legend (" topright” ,c(” Adjusted .Threshold” ,” Unadjusted . Threshold” ), 1ty =1:2)

E.4 Helping Babies Breath

To find the adjusted control limits and produce the risk-adjusted CUSUM chart for the HBB
data, the following R code was used. This code is an modified version of an original code
provided by Jan Terje Kvalgy.

library (foreign) #To read SPSS file
library (zoo) #For handling dates
hbbdata=read.spss (” Complete _HBB_.data.sav” ,
use.value.labels = FALSE, to.data.frame = TRUE)
hbbdata=hbbdata [ ( hbbdataSNEONATAL_OUTCOM<5) ,|#Removes Neonatal outcome=5
hbbdata=hbbdata[!is.na(hbbdataSNEONATAL OUTCOM) ,|#removes Neonatal outcome=NA

#Combine admission 2 and 3
hbbdata$ADMISSION<-replace (hbbdata$ADMISSION, hbbdata$ADMISSION==3, 2)

#Neonatal0l is 1 when neonatal outcome is & or 4
neonatal<-replace (hbbdata$NEONATAL_OUTCOM, hbbdata$NEONATAL_OUICOM==4,3)
hbbdata$NEONATALOI<—as . integer (neonatal==3)
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#Replace Multi so 0 is singular birth and 1 4s multiple birth baby
hbbdata$MULTK— replace (hbbdata$MULTI, hbbdata$MULTI==8,0)
hbbdata$MULTK— replace (hbbdata$MULTI, hbbdata$MULTI==2,1)
hbbdata$MULTK— replace (hbbdata$MULTI, hbbdata$MULTI==3,1)

#Factorise significant covariates
hbbdata$INFECTION <—factor (hbbdata$INFECTION,
leveISZC(”lﬂ , 77277 , 77377 , 77477 , 77577 ))

hbbdata$FETAL_HEART <—factor (hbbdatabase$SFETAL_HEART,
leVGISZC(77177 , 77277 , 77377))

hbbdata$DELIVERY MODE <—factor (hbbdatabase$DELIVERY MODE,
leVeIS:C(”l” , ’7277 , 7’377 , 7747’))

hbbdata$PRESENTATION <—factor (hbbdatabase $PRESENTATION,
levelszc(”]-” , 77277 , 77377 , 77477 , 77577))

# Calculate dates, weeknumbers and monthnumbers:

dates=as.Date(as.POSIXct(hbbdata|,1], origin="1582—-10—14", tz = "GMI"))

monthnumber=as . numeric ((as.yearmon (strptime (dates , format = "%Y-%m%d”))—
as.yearmon (strptime (dates[1], format = "%Y-%m%d”)))*12+1)

weeknumber=floor (as.vector(difftime (dates ,dates[1],units="weeks”)+1))
nmonths=tail (monthnumber,n=1)
nweeks=tail (weeknumber ,n=1)

#Compile pre—implementation database containing only significant covariates
hbbdatabase=hbbdata [monthnumber>7 & monthnumber<=19, ¢ (11,13,20,25,46)]
x<—complete. cases (hbbdatabase)

estdata<— data.frame(y=hbbdatabase$SNEONATALOl[x]|, a=hbbdatabase$BIRTH_WEIGHT [x],
b=hbbdatabase$SPREECLAMP|x| , c2=as.integer (hbbdatabase$SFETAL_HEART [x]|==2),
c3=as.integer (hbbdatabase$SFETAL HEART[x]==3)
f2=as.integer (hbbdatabase $PRESENTATION x|
f3=as.integer (hbbdatabase SPRESENTATION x|
f4=as.integer (hbbdatabase SPRESENTATION x|
f5=as.integer (hbbdatabase SPRESENTATION | x]

Y

)
)
)
)

2
3
4),
5))

data=hbbdata [monthnumber>=20, c¢(46,11,13,20,25)]

z<—complete. cases (data)

rundata<— data.frame(y=dataSNEONATAIOl[z]|, a=data$BIRTH_WEIGHT[z],
b=data$PREECLAMP|z] , c2=as.integer (data$FETAL _HEART[z]|==2),
c3=as.integer (dataSFETAL _HEART[z]|==3),
f2=as.integer (data$PRESENTATION|z]|=
f3=as.integer (data$PRESENTATION]| z|
f4=as.integer (data$PRESENTATION]| z |

=2),
=3),
=4)

?

72



f5=as.integer (data$PRESENTATION|z]|==5))

#verify model
estmod<—glm (y~ at+b+c2+c3+f24+f3+f4+f5 , family=binomial(”logit”), data=estdata)
summary (estmod )

library (spcadjust)
#FEstimate new chart parameters

chartlogreg<— new(”SPCCUSUM” , model=SPCModellogregLikRatio
(Delta=-0.23, formula="y  a+b+c2+4+c3+f2+f3+f4+£57))

xihat<— xiofdata (chartlogreg , estdata)

#Find threshold

cal<— SPCproperty (data=estdata , nrep=100, chart=chartlogreg,
reportdistr=ITRUE, property="calARL” , params=list (target=40000,
gridpoints=500))

# First calculating the number of births in each month (the wvariable nmonth.
nmonth=vector (length=nmonths)

monthnumberl<—monthnumber [monthnumber>7 & monthnumber <=19]
monthnumber2<—monthnumberl [x |

monthnumber3<—monthnumber [ monthnumber >19]

monthnumber4<—monthnumber3 |z ]

plmonth<—c (monthnumber [monthnumber <=7], monthnumber2, monthnumber4)
for (i in 1l:nmonths){
noutcomem=which (plmonth=—i)
ifelse (length (noutcomem)==0, nmonth[i|<—
length (which (plmonth>(i —1)&plmonth<(i+1))),nmonth[i]|<-length (noutcomem))

}

#Then calculating the cumulative number of births by the end of each month:
cnmonth=cumsum (nmonth )

#Cumulative number of births starting in February 2010:
cnmonth2=cumsum(nmonth [8:19])

#Cumulative number of births starting in February 2011:
cnmonth3=cumsum(nmonth [20: nmonths|)

#Run chart and plot

S<— runchart(chartlogreg , newdata=estdata , xi=xihat)

par (mfrow=c (1,1), mar=c(5,5,0.5,0.5))

plot (S, ylab=expression(C[n]), xlab="", xaxt="n”, type="1",
ylim=range (0, max(cal@raw, cal@res,S)+2))

axis (1, las=2, at=c(1l, cnmonth2[2]+1, cnmonth2[4]+1, cnmonth2[6]+1,

cnmonth2[8]+1, cnmonth2[10]+1), labels=c(”Feb_10", "Apr.10",
” Jun.10” , ”Aug.10”, ”Oct_10”, "Dec.10"))
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mtext(side=1, text="Month” , line=4)
points(seq(from=1, to=length(S), by=1), S, type="p”, pch=20,
col=ifelse (S<cal@raw, ’black’, ’'red’))

lines(c(0, length(S)), rep(cal@Qres,2), lty=1)
lines(c(0,length(S)), rep(cal@raw,2), lty=2)
legend (" topright”, c(” Adjusted_Threshold”, ”Unadjusted._.Threshold”), lty=1:2)

By changing the A value and the data used and the regression equation to produce the
CUSUM chart, this code was used to plot the CUSUM charts in Chapter 7.

To produce the VLAD plots in Chapter 7 the following code was used with estdata, rundata,
estmod and cnmonth as defined in the code above.

j<-seq(from=1, to=21746, by=1)
dim(j)<—c(21746,1)

#Run chart and plot
yhat<-mean(estdataS$y)
S<—c(0%21746)
S[l]<—yhat—rundata$y[1]

for(k in 2:21746){
S[k]<-S[k—1]4+(yhat—rundata$y[k])

dim (S)<—c (21746 ,1)

#Produe VLAD for expected Yi=0.0275

par (mfrow=c (1,1), mar=c(5,5,0.5,0.5))

plot (x=j, y=S, ylab="Cumulative_number_of_excess_survivors”, xlab="" xaxt="n",
ylim=range (min(S)+0.5, max(S)+0.5), type="1")

axis (1,las=2,at=c(1,cnmonth3[4]+1,cnmonth3[8]+1,cnmonth3[12]+1,
cnmonth3[16]+1, cnmonth3[20]+1,cnmonth3[24]+1,cnmonth3[28]+1,
cnmonth3[32]+1,cnmonth3[36]+1,cnmonth3[40]+1, cnmonth3[44]+1,
cnmonth3[48]+1, cnmonth3[52]+1, cnmonth3[56]+1),
labels=c(”Feb.11” ;”Jun.11” ,”Oct_11" ;”Feb._12” , "Jun.12"
"Oct_12” ,”Feb_13” ,” Jun_13” , "Oct_13”, "Feb_.14”, ”Jun.14”,
”»Oct_14”, "Feb_15", "Jun_15", ”Oct.15"))

mtext (side=1, text="Month” , line=4)

#Calculated Vj for expected Yi from regression model
Sa<—c (0%21746)

Sb<—predict (estmod , newdata=rundata, type="response”)
Sa[1]<—Sb[l] —rundata$y[1]

for(1l in 2:21746){
Sa[l]<—Sa[l—1]+(Sb[1l]—rundata$y[1])

¥

dim(Sa)<—c(21746,1)
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#Produce VLAD where expected Yi calculated from regression model

par (mfrow=c (1,1), mar=c(5,5,0.5,0.5))

plot (x=j, y=Sa, ylab="Cumulative_number_of_excess_survivors”, xlab="" xaxt="n",
ylim=range (min(Sa)+0.5, max(Sa)+0.5), type="1")

axis(1l,las=2,at=c(1,cnmonth3[4]+1,cnmonth3[8]+1,cnmonth3[12]+1,
cnmonth3[16]+1,cnmonth3[20]+1,cnmonth3[24]+1,cnmonth3[28]+1,
cnmonth3[32]+1,cnmonth3[36]+1,cnmonth3[40]+1, cnmonth3[44]+1,
cnmonth3[48]+1, cnmonth3[52]+1, cnmonth3[56]+1),
labels=c(”Feb.117 ,”Jun_11” ,” Oct_117 ,”Feb_12” ,” Jun_.12"
"Oct.12” ,”Feb.13" ,”Jun.13” ,” Oct_13" , "Feb_14" , ”Jun.14" |
" Oct.14” ,”Feb_15” , "Jun_.15”", "Oct.15"))

mtext (side=1, text="Month” , line=4)
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