

Using machine learning to identify �ow regimes

from capacitance sensor data

University of Stavanger

Lars Kartevoll

June 2016

Using machine learning to identify �ow regimes

from capacitance sensor data

Lars Kartevoll

Abstract

In this thesis the k-means clustering and a neural network is developed and used to

classify capacitance data from multi phase �ow in a horizontal tube.

Theoretical background for the unsupervised machine learning algorithm: k-

means clustering and for the supervised machine learning algorithm: Neural network

with one hidden layer is presented. Data acquisition method and analysis of the

multi-phase �ow data is discussed. The machine learning algorithms are created

in Maltab in a general manner so that the programs will work for input of varying

sizes. The k-means algorithm is used as a method for clustering provided data

examples in �ow regime clusters. The algorithm fails to provide rigid clusters which

match observations at phase transitions, but works well as a general indicator of

�ow regime clusters. Classi�cations from the k-means algorithm and a set of manual

classi�cations is used as input in the neural network for training and testing. The

neural network provides overall good results, and shows its ability to detect complex

patterns.

I

Contents

1 Introduction 1

1.1 Thesis statement . 1

1.2 Approach and comments . 2

2 Theory 4

2.1 Flow regimes and identi�cation . 4

2.2 Capacitance sensors and data . 7

2.3 Machine learning . 11

2.3.1 Unsupervised learning: k-means clustering 11

2.3.2 Supervised learning: Neural network 12

3 Method 21

3.1 Extracting and plotting information 21

3.2 k-means program . 25

3.2.1 kmain.m . 25

3.2.2 randomInit.m and runkmeans.m 26

3.2.3 assignClosestCentroid.m and computeCentroids.m 26

3.2.4 computedist.m and plotKmeans.m 26

3.3 Neural network . 27

3.3.1 NNmain.m . 28

3.3.2 nnRandInit.m and randInitializeWeights.m 29

3.3.3 nnCostFunction.m and Predict.m 29

3.3.4 plotNN.m . 30

4 Results 32

4.1 Clustering with k-means . 32

4.2 Assigning regimes to examples . 34

4.3 Running the neural network . 36

5 Conclusion 40

II

CONTENTS

Bibliography 42

Nomenclature 45

Appendix 1

A k-means Matlab code 1

A.1 kmain.m . 1

A.2 randomInit.m . 3

A.3 runkmeans.m . 3

A.4 assignClosestCentroid.m . 4

A.5 computeCentroids.m . 5

A.6 computedist.m . 5

A.7 plotKmeans.m . 6

B Neural network Matlab code 8

B.1 NNmain.m . 8

B.2 nnRandInit.m . 11

B.3 randInitializeWeights.m . 11

B.4 nnCostFunction.m . 12

B.5 sigmoid.m . 14

B.6 sigmoidGradient.m . 14

B.7 plotNN.m . 14

C Plotting data from capacitance sensors 16

III

Chapter 1

Introduction

Machine learning is the science of getting computers to learn, without being ex-

plicitly programmed [10]. The process of machine learning is used more and more

around us, and surrounds us in our daily lives. Everything from spam �lters, to deep

space analysis. Machine learning algorithms are capable of doing a lot of complex

tasks. Multi phase �ow is a study of the �ow regimes that occur when matter of

di�erent phases �ow together. The �ow regimes that occur are of a complex nature,

and should be a great target for machine learning.

This thesis started with a provided set of data, which was collected many years

ago. The capacitance sensor data is a measurement of the �ow regimes on a hor-

izontal tube. The data was collected by Time [24] and Eeg [3]. This data would

serve as the basis for the machine learning application.

Although machine learning is everywhere around us, I had very little knowledge

about the subject. More information was needed about methods. Choosing a good

programming environment important. Finding methods which would be able to

provide correct regime classi�cations. The programs should also be made in such

a way that they can be utilized later by myself or other students. These questions

lead to the following thesis statement.

1.1 Thesis statement

These are the main points that were set at the beginning and throughout the working

process of this thesis,

� Do a literature study of machine learning used for �ow regime identi�cation

� Look for additional datasets comparable to the provided datasets

1

CHAPTER 1. INTRODUCTION

� Create a machine learning program for classifying �ow regimes

� The machine learning program should be of a general nature, so that they can

be utilized later or for other projects.

� Run data from the time series through the machine learning algorithms

� Use di�erent input information to �nd a good �ow regime identi�er

1.2 Approach and comments

From the beginning, literature search was focused on machine learning utilized with

�ow regime identi�cation. This yielded a handful of papers which had used di�erent

types of data analysis before inserting it into the machine learning algorithms. The

papers were often relatively short in explaining how to build a machine learning

algorithm, as this was not their main purpose.

This quickly lead to the discovery that a more general search for machine learn-

ing algorithms, and how to build one was required. This opened up a vast jungle

of: Di�erent types of machine learning, di�erent programs used for implementation,

di�erent explanations of machine learning principles, and many, many di�use ar-

ticles about machine learning mechanics and implementations. A lot of time was

spent reading articles written above my understanding of programming and being

left with very little new knowledge. In the end I came across a MOOC (Massive

Open Online Course) on Coursera.org called "Machine Learning". This course was

an inspiration, and made this thesis possible. This MOOC was completed and its

teachings were utilized when applying machine learning. Some of the sources used

from the Machine Learning courses wiki-page are not available online, without sign-

ing in. Screen-shots of these web-pages have been included with the digital content

of this thesis after clarifying with Coursera via email.

Searching for data similar to the data provided was also time consuming. There

were some articles and studies which seemed promising, but in the end, the time se-

ries were not available. This seemed to be the case for the most of available articles.

I was also in contact with institutions which perform measurements on multiphase

�ow, but email contact was very slow. In the end, no additional data was acquired.

Two approaches were chosen as methods to classify the �ow regimes from the

data �les. One unsupervised machine learning method, the k-means method. The

2

CHAPTER 1. INTRODUCTION

other, a supervised machine learning method, the neural network. The unsupervised

method does not require a classi�cation of the sensor data samples as input, and

can be used to try and classify the data �ow regimes given the sensor data. The

supervised method does, however require a classi�cation of the data samples. This

is because a neural network uses the classi�cation of the datasets to train itself to

recognize patterns in the input data. For a long time it was believed that the data

from Time [24] could be easily identi�ed using an available diagram, but this turned

out to be wrong. The only classi�ed data was therefor from Eeg [3].

The neural network therefore got two sets of classi�ed input. This mostly just as

a test that the neural network works, since there was no absolute or visual classi�ca-

tion of the examples available. One set was taken from the k-means algorithm. The

other was based on the observations done by Eeg [3] and some manual interpretation.

3

Chapter 2

Theory

The main theory surrounding the subjects is presented in this chapter. Many sub-

jects will be touched upon, and some will be examined more deeply than others.

Firstly �ow regimes and identi�cation will be discussed. The factors which de�ne,

and which can be used to determine a �ow regime are many. The three main areas

used in this thesis are density functions, spectral analysis, and cross correlation.

A quick look at the capacitance sensor, their setup, and the data output from

the sensors will also be presented. An understanding of the data is essential for

interpretation of the output related to the input in the machine learning part.

Machine learning will be separated into two main parts. The �rst will be un-

supervised learning. Here the k-means algorithm will be discussed and used as a

method for clustering the examples. The data inserted into the algorithm are fea-

tures gathered from the data sets. The other method is supervised learning. Here

the features of an example will be grouped with a classi�er and inserted into a neu-

ral network. The network will then train based on the features and classi�ers and

produce a hypothesis for predicting a classi�cation based on only features.

2.1 Flow regimes and identi�cation

A lot of study has been done in identifying �ow regimes. One of the most known

regime maps for horizontal �ow is probably the theoretical and experiment based

maps from Taitel and Dukler [22], and Mandhane [8]. Their models have been used

for many years, and the regime maps are a function of the super�cial �ow velocity.

ULS =
qL
A

(2.1)

UGS =
qG
A

(2.2)

4

CHAPTER 2. THEORY

Here ULS and UGS are the super�cial velocities of liquid and gas respectively. A

is the cross-sectional area of the tube. qL and qG are the volumetric �ow rates of

liquid and gas respectively.

The model of plotting the �ow regime based on the super�cial velocities is well

known. The problem with the model is however that it is dependant on the inner

diameter of the tube. As the cross section of the tube is dependant on the diameter.

Of course also other factors which would a�ect the �uids in the tube will also distort

the regime maps. The �ow regime maps done by Taitel and Dukler, and Mandhane

are therefor not universal [8] [22]. An example of the Taitel-Dukler model can be

seen in �gure 2.1.

Figure 2.1: An example of a Taitel Dukler model done by Time [24]. The model is

based on a tube diameter of 4 centimetre.

Well known methods for extracting information from time series for identi�ca-

tion purposes are: Probability density models, and frequency analysis. There are

three probability density models applied in this thesis. The standard probability

density function, PDF, the cumulative density function, CDF, and the probability

distribution function PDSF [6]. The probability density function applied to time

series shows the probability of a value being measured.

5

CHAPTER 2. THEORY

The discrete version of this is to count the number of times a number, or a number

in a set interval or "bin" occurs in a time series. For multi phase �ow the PDF will

vary depending of the type of regime in the tube.

The CDF is very similar to the PDF. Insted of a bin only holding the value

for the given interval, it holds the sum of the given interval and all before it. The

CDF also rescales the function value so that is goes from 0 to 1. A measurement

with mostly low values, like annular or dispersed bubble will reach 1 quickly while

a measurement with high values will reach 1 slowly.

The PDSF or probability distribution function, as it is named by Lee. et al [6],

is all the measurements sorted by size. The features of the PDSF have also been

rescaled by dividing it by 10 000. This way it is in the same size scale as the CDF.

The main reason for using CDF and PSDF over PDF is that the discrete version of

the PDF can seem quite "choppy" and uneven, as seen in �gure 3.3. This can lead

to the neural network having problems with detecting characteristics.

Spectral analysis of the sensor data can be done using the Fourier Transform.

The fourier transform converts the signal from the time-domain to the frequency-

domain. [2] This makes it possible to detect the peak frequencies in the �ow regimes.

Some �ow regimes can be distinguished by their peak frequency, like slug and strat-

i�ed wavy. Dispersed and annular however share a similar fourier transform out-

put [23].

The last data output used in this thesis comes from the use of the cross correlation

function on a sensor pair. The signals are compared by taking the product of

each signal . One of the sensor signals is then displaced by one element, and the

function value is calculated again. This is done for the entire length of the sensor

vector. The plotted function values will then have a peak where the two sensors'

signal values are most like each other. The number of element steps to reach the

peak is then correlated with the scan delay of the sensors, and the slug velocity is

calculated [1]. The di�erence in slug velocity from the three sensor pairs may serve

as a characteristic for �ow regime in the neural network. An example of the cross

correlation principle can be seen in �gure 2.2

6

CHAPTER 2. THEORY

Figure 2.2: The �gure illustrates the concept of the cross correlation function. [18]

2.2 Capacitance sensors and data

The data used in this project was collected in 1991 - 1992 and was collected by

Rune W. Time and Ole Eeg for their doctoral thesis [24] and master's thesis [3]

respectively. The sensors themselves were built and developed by Time. The ca-

pacitance sensor are set up in three pairs. The sensors are numbered from 1 to 6,

and are paired according to capacitor orientation. The pairs are: pair 1: Sensor

1 and 6, pair 2: Sensor 2 and 5 and pair 3: Sensor 3 and 4. The sensors were

mounted on the outside of a horizontal tube which was part of a �ow loop. The �ow

passed through the sensors in the direction from sensor 6 to sensor 1. The sensors

pairs are di�erent from each other. The �rst sensor pair is mounted horizontally,

the second pair is mounted vertically. The third pair has one large capacitance

sensor on the botton, and one small at the top of the pipe to ensure great sensitiv-

ity at the top. An illustration of the sensor pair orientations can be seen in �gure 2.3

The capacitance sensors are connected to a voltage source which alternated be-

tween negative and positive. At �rst the supply imposes a positive voltage, and the

capacitors charge. When the capacitors reach a set charge, the voltage is switched

to negative, and the capacitors discharge, before charging again. The time it takes

for the capacitors to reach the amount of charge where the voltage swaps is propor-

7

CHAPTER 2. THEORY

Figure 2.3: An illustration of the three orientations of the sensor pairs done by

Eeg. [3]. The sensor pairs will have di�erent sensitivities in di�erent parts of the

tube.

tional to the capacitance. Because of this the frequency of the voltage becomes a

expression for the capacitance. [24] [3]. The voltage signal is then sent to a frequency

converter which transfers its signal to the data acquisition device.

The data acquisition device then outputs the data through a program made by

Time, and outputs a standardized output for all of the sensors, ranging from 0 to

10000. As seen in the �gure, a low number represents a low liquid height, and a

high number represents a high liquid height. The standardized signal and the rep-

resentative liquid height in the tube can be seen in �gure 2.4. It shows very well

that the sensors have di�erent sensitivity-areas in the tube cross section.

The data �les output from the program contain a lot of data. The �rst 40 lines

are strings of data, many not viable to this project, and some not used by Time at

the time of recording [24]. The data used from the comment section of each �le are

the super�cial velocities from line 32 and 34, and the scan delay for the recorded

run from line 4. Figure 2.5 show a crop of the top of a data�le. The capacitance

sensor output is listed in columns numbered by sensor number V1 to V6. Each �le

holds a total of 5000 capacitance measurements per sensor, and the recording time

is calculated from the scan delay.

8

CHAPTER 2. THEORY

Figure 2.4: A plot showing the sensor calibration with oil from Time [24]. The

sensor pairs behave di�erently to di�erent liquid heights, because of their respective

sensitive areas in the pipe.

9

CHAPTER 2. THEORY

Figure 2.5: Here is a crop of the top part of one of the data �les. The data �les

include many lines of information, for example: Super�cial velocities at the sensor

and scan delay, before the capacitance log starts.

10

CHAPTER 2. THEORY

2.3 Machine learning

Machine learning is a science where you want a machine to solve a problem with-

out speci�cally programming it [10]. The are countless implementations of machine

learning surrounding you everywhere at this day of age. Some examples are spam

�lters, "auto complete" functions, image recognition and self driving cars. The aim

will be to use the outputs from the clustering algorithm together with my own in-

tuition to produce the inputs for the neural network.

The formulations used in this chapter are heavily in�uenced by the "Machine Learn-

ing" MOOC from Stanford University, which is available online at Coursera [10].

2.3.1 Unsupervised learning: k-means clustering

The �rst use of the name k-means was by James MacQueen [7] in his paper where

he: "Described a process for partitioning an N-dimensional population into k sets on

the basis of a sample."

A quick explanation of the k-means clustering algorithm is that it takes an unla-

beled dataset and groups the data into a prede�ned set of clusters. The algorithm is

an iterative process which consists of two parts. The �rst part is cluster assignment.

The algorithm goes through every input example and assigns it to one of the pre-

de�ned cluster centroids. The second part is reassigning of centroids. The centroid

is moved to the mean point of all its assigned examples [10]. This also is where its

name comes from.

The k-means algorithm in its basics only require two types of input:

� K - total numbers of clusters

� A set of examples {x(1), x(2), ..., x(m)}

Here x(i) represents an example vector, and m is the total number of examples.

The �rst step for the algorithm is the random initialization of the cluster centroids.

There are many possible ways of doing this, but one especially has been used for a

long time, and is very e�ective [7]. A number of clusters K is manually chosen. K

training examples, x(i), are then randomly picked and assigned to the cluster cen-

troids {µ1, µ2, ..., µK} so that {µ1 = x(i), µ2 = x(j)} and so forth.

The next step goes to the inner loop of k-means. The �rst step in the loop is

often called the cluster assignment step. Here each example is assigned to the closest

11

CHAPTER 2. THEORY

cluster. The distance used is often the squared distance [10] [11].

c(i) = argmink [x(i) − µk]2 (2.3)

Here c is the index of cluster (1, 2, ... , K) to which the x(i) example is assigned.

The second step in the inner loop of k-means is often called the move centroid

step. Here the average value of points assigned to cluster k is set as the new cluster

centroid.

µk =
1

n
[x(k1) + x(k2) + ...+ x(kn)] (2.4)

Here n is the total number of examples assigned to a cluster. These two steps

are iterated until the algorithm converges. Additional iterations will then no longer

do anything to the cluster centroid or assignment of examples.

The optimization objective of the algorithm can be de�ned from the cost func-

tion, often called distortion when used for k-means. Calculating the distortion for

k-means is a method for comparing the input of the algorithm to the output. For the

k-means purpose we de�ne it as the sum of the square distances from the examples

to their assigned centroids [10] [11]. The distortion can be expressed as:

J(c(i), ..., c(m), µ1, ..., µK) =
1

m

m∑
i=1

[x(i) − µ(i)
c]2 (2.5)

J represents the cost function, or distortion. The objective is then to minimize

all the parameters using this distortion function. Or in other word: Find the values

in the sets of clusters c, and the centroids µ which will minimize the average distance

of every example to the cluster centroid. [11]

Because of the nature of randomized initializations and possible outlying data

points, there might be problems with �nding local minima when utilizing the k-

means algorithm. This can be circumvented by running a number of times, and in

the end comparing the computed distortion for each run. For a large number of runs

compared to the data samples, a near global maxima will be found [10]. Figure 2.6

shows a simple example of global and local minima and maxima.

2.3.2 Supervised learning: Neural network

The neural network is often compared to neurons in your brain, and the ability to

mimic the brain was the inspiration for the neural network algorithm. An often

cited inspiration comes from psychologist Donald O. Hebb and his postulate about

12

CHAPTER 2. THEORY

Figure 2.6: A simple illustration of global and local maxima on a graph [20]. De-

pending on where you start on the graph and travel down the slope, you could end

up at either the local or global minima.

a method for learning: Let us assume that the persistence or repetition of a rever-

beratory activity (or "trace") tends to induce lasting cellular changes that add to its

stability.. . . When an axon of cell A is near enough to excite a cell B and repeatedly

or persistently takes part in �ring it, some growth process or metabolic change takes

place in one or both cells such that A's e�ciency, as one of the cells �ring B, is

increased. [4].

Neural networks are an old idea, which have fallen in and out of popularity for

some time, but is now one of the "state of the art" techniques for many machine

learning applications [10]. One of the main reasons for the rising popularity in later

years is the increase of computational power in modern machines. Now it is possible

to run large and complex neural network in a moderate amount of time. Figure

2.7 shows a simple illustration of a neural network with one input layer, one hidden

layer and one output layer.

A neural network can learn complex non-linear hypotheses even when the num-

ber of features is very large. Before the neural network can be discussed, logistic

regression which is a stepping stone to the neural network will be presented.

Supervised learning: logistic regression

Supervised learning has a very simple basis. Given a training set input to the learn-

ing algorithm, the algorithm then produces a hypothesis h. Using this hypothesis,

a set of features of the same kind as in the training example can then be input to

the hypothesis, and it will output an estimation or prediction.

13

CHAPTER 2. THEORY

Figure 2.7: An illustration of a neural network [19]. This neural network has three

input nodes, one hidden layer with four nodes and two outputs.

The hypothesis can be presented in its basic form for linear regression as:

hθ(x) = θ0 + θ1x1 + θ2x2 + ...+ θnxn (2.6)

Here n is the total number of features in an example, and θ0 is weight of the

"bias unit" x0 and is equal to one. θ(i) is the weight given a feature in an example.

As the hypothesis stands now, it is a series of sums. Using matrix multiplication,

this can be written as [10] [12]:

hθ(x) =
[
θ0 θ1 ... θn

]

x0

x1

...

xn

 = θTx (2.7)

Here T indicates the transpose of the theta vector which is a row vector of all the

weights. This representation only handles one example and can be further extended

14

CHAPTER 2. THEORY

by storing all example and the weights row-wise [10] [12]:

X =


x

(1)
0 x

(1)
1

x
(2)
0 x

(2)
1

x
(3)
0 x

(3)
1

 , θ =

[
θ0

θ1

]
(2.8)

Here there are three examples, each with one bias and one feature and a total of

two weights, one accompanying each feature. The hypothesis can then be simpli�ed

as:

hθ(X) = Xθ (2.9)

The neural network wants to predict a certain identi�cation. In this case de-

termine the type of �ow regime. The hypothesis therefore has to be modi�ed into

logistic regression. For logistic regression you want to interpret the output as either

a "yes" or a "no", a 0 or a 1. This is done by running the output through the

sigmoid function, also called the "Logistic Function" [10] [13]. A plot of the sigmoid

function can be seen in �gure 2.8. Rede�ning the hypothesis to include the sigmoid

function, it becomes:

hθ(x) = g(θTx) (2.10)

z = θTx (2.11)

g(z) =
1

1 + e−z
(2.12)

The decision boundary of the hypothesis will now be that all outputs from the

sigmoid function larger than or equal to 0.5 will give y = 1 and all outputs smaller

than 0.5 will give y = 0. This handles decisions for only one class. To apply it

to classi�cation with multiple possible classes, use the "one vs all" method. When

evaluating one category, set all other categories into a separate category. This way,

each classi�cation will become a binary classi�cation problem. The hypothesis which

then returned the highest result is then chosen as the prediction [13].

The cost function is then applied to the logistic regression. The goal of the

cost function for logistic regression in neural networks is to evaluate the hypothesis

output and compare it to the classi�cation for that training example. The general

version of the cost function for logistic regression can be expressed as:

J(θ) =
1

m

m∑
i=1

Cost(hθ(x
(i)), y(i)) (2.13)

15

CHAPTER 2. THEORY

Figure 2.8: A plot of the sigmoid function [25]. The sigmoid function outputs a

number between 0 and 1, and works well with translating an arbitrary value output

into a classi�er.

For logistic regression to avoid the problem of local minima, the cost function is

de�ned di�erently given the input y = 1 or y = 0 [13] [10].

J(θ) =

−log(hθ(x)) if y = 1

−log(1− hθ(x)) if y = 0
(2.14)

Input into one equation which tackles both possibilities simultaneously and is

implementable without an if function.

J(θ) = −y log(hθ(x))− (1− y)log(1− hθ(x)) (2.15)

The last addition to the cost function is then to battle the problem of over�t-

ting. Over�tting is when the algorithm �ts the available training data too well, but

preforms poorly on other test data input into the model. There are two easy ways

to combat this problem. One is to reduce the number of features, the second is to

implement regularization. Regularization is favoured when we have a lot of slightly

useful features [16] [10].

Regularization alters the weights of the hypothesis. It smoothes out the hypothe-

sis function as a means to reduce over�tting [9]. In logistic regression, regularization

is applied to all weights except for the bias [10]. The cost function with logistic re-

gression applied is [16]:

J(θ) = − 1

m

m∑
i=1

[y log(hθ(x)) + (1− y)log(1− hθ(x))] +
λ

2m

n∑
j=1

θ2
j (2.16)

The λ in the regularization term is the degree of regularization applied to the

function and is manually set. The summation of the regularization term from j to

n is because the bias unit is not included in the regularization.

The �nal step of the process is to minimize the cost function by making changes

to the weights. One way of doing this, which is easily explained, is using gradient

descent which calculates the gradient, or slope, of the cost function and updates

16

CHAPTER 2. THEORY

the weights by taking a step in that direction [13]. The weights must be updated

simultaneously for each step [10]. A learning curve can be plotted from the cost

versus each iteration. When the plotted slope �attens out, further iterations will

not achieve a signi�cantly better result.

θj = thetaj − α
∂

∂θj
J(θ) (2.17)

Here α represents the step size for each repeat of the gradient descent. This

process requires heavy computing, and will not be utilized. The method utilized is

and advanced optimization algorithm of a more advanced nature, and not covered

by the thesis. Matlab has available advanced optimization algorithms.

Neural Network with one hidden layer

Logistic regression will now be extended to the neural network. Instead of having

a straight step from input to output via calculation, the neural networks adds a

"hidden layer". The name hidden layer is because the values calculated and output

through the hidden layer are not shown during the calculation. The hidden layer has

randomly generated weights and because of this has the ability to detect non-linear

characteristics in the input data.

When talking about neural networks it is common to talk about layers and nodes.

The �rst layer is the input layer, containing all of the examples and features. The

second layer is the hidden layer. Here the di�erent nodes provide output informa-

tion which rely information about characteristics in the input. The last layer is the

output layer. Here the output from the hidden layer is gathered in each output

node, and the one �ring the most is chosen. An example of the neural network can

be seen in �gure 2.9.

In a neural network each node in the hidden layer acts as a single logistic re-

gression function, outputting a value from 0 to 1 depending on how well a feature it

has been tuned for is prominent in an example. The output from the hidden layer

is then passed forward to the output layers and give an output hypothesis [15].
x0

x1

...

xn

→

a

(2)
1

a
(2)
2

...

a
(2)
m

→ hθ(x) (2.18)

17

CHAPTER 2. THEORY

Figure 2.9: Here is an illustration of a neural network with one hidden layer [10].

Both the input layer and the hidden layer contain three nodes. The biases are not

included in the illustration.

Here n is the number of features in and example the input layer, m is the number

of nodes in the hidden layer. One node in the hidden layer is represented by a
(j)
i

where i represents the node number and j represents the layer. Using this subscript,

the weight acting on a layer can be written as Θ
(j)
in . The way of calculating a

(2)
1 and

a
(2)
2 would then be [15]:

a
(2)
1 = g(Θ

(1)
10 x0 + Θ

(1)
11 x1 + ...+ Θ

(1)
1nxn) (2.19)

a
(2)
2 = g(Θ

(1)
20 x0 + Θ

(1)
21 x1 + ...+ Θ

(1)
2nxn) (2.20)

The equation can be simpli�ed by setting:

z
(2)
1 = Θ

(1)
10 x0 + Θ

(1)
11 x1 + ...+ Θ

(1)
1nxn (2.21)

z
(2)
2 = Θ

(1)
20 x0 + Θ

(1)
21 x1 + ...+ Θ

(1)
2nxn (2.22)

so that :

a
(2)
1 = g(z

(2)
1) (2.23)

a
(2)
2 = g(z

(2)
2) (2.24)

The equation for calculating the hypothesis output for 1 output as above would

then be [15]:

18

CHAPTER 2. THEORY

hΘ(x) = a
(3)
1 = g(Θ

(2)
10 a

(2)
0 + Θ

(2)
11 a

(2)
1 + ...+ Θ(2)

mna
(2)
m) (2.25)

For multi class classi�cation, and not single class like above, the hypothesis

output becomes a column vector of zeros and a 1 for the right classi�er. For example

here the hypothesis shows the third classi�cation:

hΘ(x) =


0

0

1

 (2.26)

Initializing all the weights in a neural network with the same value does not

work [10]. This will cause all of the nodes in a hidden layer to update to the same

value repeatedly. A method of random initialization which ensures a quick neural

network and the ability to detect complex features is [17]:

ε =

√
6√

Loutput+ Linput
(2.27)

Θ(l) = 2 ε rand (Loutput, Linput+ 1)− ε (2.28)

Here ε is a value for setting the range interval of the random initialization of

weights. Linput and Loutput are the sizes of the input and output layers the weights

are de�ned for.

The last part of the neural network is applying the cost function, and calculating

the gradient. The cost function for a neural network is [14]:

J(Θ) =
− 1
m

∑m
i=1

∑K
k=1[y

(i)
k log((hΘ(x(i)))k) + (1− y(i)

k log(1− (hΘ(x(i)))k)]

+ λ
2m

∑L−1
l=1

∑sl
i=1

∑sl+1

j=1 (Θ
(l)
ji)2

(2.29)

A quick explanation without going too much into detail. Compared to the lo-

gistic regression cost the �rst part of the equation has a nested sum over the total

number of output nodes K. In the second part, multiple weight matrices are taken

account for. The number of of columns in the current theta matrix is equal to the

number of nodes in the current layer (including bias). The number of rows in the

current theta matrix is equal to the number of nodes in the next layer (excluding

bias unit). sl is the number of nodes in a layer excluding the bias unit. L is the

total number of layers. The tripple sum just sums up all of the individual weights

except for the bias, which is not regularized [14].

19

CHAPTER 2. THEORY

The last part of the neural network is the to calculate the gradient. The gradient

of a neural network is calculated from the back-propagation algorithm and is very

complex. What it does is sums up the error over every individual node, so that the

error reduction can be traced back to the nodes that produces the greatest errors.

The errors are then propagated backwards through the neural network. The process

can be shortened to six steps [10] [14].

First: Perform a calculation through the neural network.

Second: For each output unit k in the output layer set

δ
(3)
k = (a

(3)
k − yk) (2.30)

Where yk is either 0 or 1, and indicates if the current training example belongs

to class k, or to a di�erent class.

Third: For the hidden layer, set:

δ(2) = (Θ(2))T δ(3). ∗ g′(z(2)) (2.31)

(.* denotes element-wise multiplication, and T the transpose.)

Fourth: Accumulate the gradient from this example:

∆(l) = Delta(l) + δ(l+1)(a(l))T (2.32)

Fifth: Obtain the un-regularized gradient for the neural network cost function

from the accumulated gradients and divide by number of examples:

∂

∂Θ
(l)
ij

J(Θ) = D
(l)
ij =

1

m
∆

(l)
ij (2.33)

Sixth: Include the regularization for all terms except the bias:

∂

∂Θ
(l)
ij

J(Θ) = D
(l)
ij =

1

m
∆

(l)
ij +

λ

m
Θ

(l)
ij (2.34)

The cost and gradient of the neural network is then used together with an ad-

vanced optimization function to train the neural network for a given number of

iterations until the cost versus iterations graph �attens out.

20

Chapter 3

Method

A program for extracting and plotting information from the data �les had already

been developed in beforehand of the thesis. During the thesis this program was

edited and improved on to �t the needs of the project. This program was also

ported into python, but due to time constraint, more of the project was not.

Matlab [5] was used as the development environment for the machine learning

algorithms. The main reason for this is that Matlab o�ers a very quick and easy way

of handling vector and matrix multiplications. The language is built with this in

mind, so the code will more often be easily read. Perfect for a low-level programmer.

In other languages, many of the features in Matlab are not built in, and requires call-

ing of additional packages, which often can lead to a code which is not as easily read.

The Matlab programs made for the machine learning algorithms are heavily in-

�uenced by the teachings of Andrew Ng from Stanford University, and their available

course in machine learning on Coursera.org [10]. The sections covering the di�erent

Matlab programs for machine learning are meant as a explanation of the process

the programs go through, ans is best read together with the corresponding program

code available in the appendix.

3.1 Extracting and plotting information

From the start of the project, a program for exporting the sensor data from the data

�les was provided called readColCapData.m, created by Time. Additionally a pro-

gram for plotting: the sensor data versus time, Probability Density Function, Single

sided amplitude spectrum FFT, and cross correlation plot with Uslug calculation.

The last three functions were only implemented based on one sensor, or sensor pair.

21

CHAPTER 3. METHOD

The plotting program was extended to apply the last three function to all sensor

pairs, and was also used as the main basis for a data-extraction program for the

thesis. For the data extraction, sections of the provided program was changed, just

to �t its purpose. It has not been included with the thesis, a short description will

however be given.

The �rst output of the plotting program was not altered. It plots the time when

a measurement was recorded on the x-axis, and plots the recorded capacitance on

the y-axis. The sensors are grouped by pairs and plotted in the same sub-plot in

a 3x1 plot as shown in �gure 3.1. The time plotted on the x-axis is not stored by

itself, but is based on the number of times the capacitance sensors logged data, and

the scan delay between each recording. The scan delay is also extracted from the �le.

Figure 3.1: Here is an example of the �rst output �gure from the plotting program.

The plot is a time trace of the capacitance sensor readout.

The next part of the program computes and plots the single-sided fast Fourier

transform of the data from the capacitance sensors. The program originally only

plotted this for one sensor, but was extended to include all sensors and paired in

groups similar to the capacitance time trace plot. An example can be seen in Figure

3.2

22

CHAPTER 3. METHOD

Figure 3.2: Here is an example of the second output �gure from the plotting pro-

gram. shows the single sided fast Fourier transform of the capacitance sensor data,

displaying frequency data.

The third output of the program is a histogram of the capacitance sensor data.

This serves as a plot of the probability density function, as it counts the number

of occurrences of numbers within a set "distance". The tops of the bins in the his-

togram will then represent a PDF plot. An example can be seen in �gure3.3.

The last part of the program does a cross correlation of the capacitance sensor

pairs and calculates the slug speed based on this cross correlation. The process is

done by using the Matlab circshift function. One of the capacitance sensor time

series is kept the same through the whole process, the other one of the pair is dis-

placed one by one measurement at a time. The displacement is done by taking the

last measurement, and putting it at the start of the time series, and moving all other

measurements one space. The logic is that this will produce the greatest peak when

the measurement tops match each other. The slug speed (Uslug) is then calculated

based on the number of steps to the peak of the cross correlation function and the

scan delay of the sensor. The cross correlations function is also plotted, but only

serves as a visualization of the process, and holds little other signi�cance.

The program also outputs a mixture velocity (Umix) and a ration between Us-

lug and Umix based on the super�cial velocities recorded alongside the capacitance

recordings. The super�cial velocities are assumed as unknown in the machine learn-

23

CHAPTER 3. METHOD

Figure 3.3: The third �gure output form the program is a discrete probability density

function.

ing process, and will not be used. An alternate version of this program also exists.

It produces a single �gure containing the top three outputs, capacitance time series,

Fourier transform and probability density function in a 3x3 plot. These �gures were

saved with for each data-�le and used together with the k-means program to try

and manually interpret a classi�cation of the �ow regime.

24

CHAPTER 3. METHOD

3.2 k-means program

The k-means program bases itself on the theory presented in chapter 2.3.1 Unsuper-

vised learning: k-means clustering. Some of the text might be a bit repetitive, as it

goes through much of the same objective.

The program is a combination of 7 �les. One main program for running the full

algorithm, and functions for calling di�erent parts or "sub algorithms". This ar-

rangement makes it easier to spot mistakes, and test di�erent parts of the algorithm,

as you can call one of the at a time. The full code for the program can be seen in

the appendix.

kmain.m The main program for running the whole al-

gorithm.

randomInit.m Random initialization of centroids.

runkmeans.m Runs the k-means part of the algorithm.

assignClosestCentroid.m Assigns data sets to the closest centroid.

computeCentroids.m Computes new centroids based on the assigned

data sets.

computedist.m Computes the distortion of the k-means run.

plotKmeans.m Plots the assigned clusters in a Uls-Ugs dia-

gram.

3.2.1 kmain.m

The kmain.m program is the main hub of the algorithm, and this is where the user

input is controlled. The program initializes at the start with clearing all previous

stored information in the matlab memory, and then initiates a counting variable.

Following the user input is listed: "K", the number of clusters, totalloops, the num-

ber of randomly initialized loops, and lastly, max_iterate, the number of iteration

to de�ne the cluster centroid per initialization.

The input data values are then loaded, and assigned to the X matrix. In the

X matrix each row represents a di�erent measurement. Each column represents a

type of data from that measurement. There is also a choice to enable calculation of

the standard score, a form of normalization. This can be applicable if many types

of data of di�erent magnitudes are used.

The rest of kmain.m is just the complete run of the K-means algorithm, calling

the other functions, and lastly �nding data associated with the global minima (or

25

CHAPTER 3. METHOD

in most cases a near global minima) and plotting it with the plotKmeans.m.

3.2.2 randomInit.m and runkmeans.m

The randomInit.m function secures the randomized initialization of each run of the

k-means algorithm. The program randomly rearranges the rows of the X matrix

and then chooses the �rst number of rows from the rearranged matrix equal to the

number of centroids. This would mean that each centroid will start of equal to a

point de�ned by one of the samples. This will help prevent unassigned centroids,

and should be very rear with this initialization.

The next program runs the main par of the k-means algorithm. The k-means

algorithm relies on two other functions. This setup is for a hierarchical and easier

management. For every iteration from 1 to max_iterate, runkmeans.m will call on

assignClosestCentroid.m for assigning the di�erent experiments to the nearest

centroid. Afterwards the computeCentroids.m is called to calculate new values for

the centroids based on the assignments. For each iteration, the centroid will move

closer to its local optima based on the randomized initial values.

3.2.3 assignClosestCentroid.m and computeCentroids.m

The assignment of each example to its closest centroid is done by looping over the

number of centroids, and computing the squared distance from each example to

the looping centroid. Each example is then assigned to the centroid with the least

squared distance.

The computation of new centroids is then done be taking the mean value of

all examples which are assigned to the same cluster. The computeCentroids.m

also checks if one of centroid has become unassigned and does not perform the

computation if this is true, as this would lead to errors.

3.2.4 computedist.m and plotKmeans.m

The �rst of the �nal functions, computedist.m, computes the distortion of the k-

means run. This is the squared distance from the examples within a cluster, to that

cluster centroid. Then the sum of all of the squared distances is stored and used for

comparison after all random initializations have been run.

26

CHAPTER 3. METHOD

Before plotKmeans.m handles the plotting. the main program �nds the cluster

assignment which yields the lowest distortion. These cluster indexes are then fed

to the plotting function, and each example is plotted on a Uls-Ugs plot. Each

example is represented as a point using Uls and Ugs data collected alongside the

capacitance data. The cluster to which the data has been assign is shown with a

marker. This will help to correlate the assignments with often used models, like

Taitel and Dukler [22] or Mandhane [8] �ow regime maps. In Figure 3.4 you can see

an example of �gure output from plotKmeans.m.

Figure 3.4: This is an example of the output from the plotting function after a

k-means run. Here there are �ve clusters, based on CDF of data from sensor 1.

3.3 Neural network

The full code of the neural network can be seen in Appendix B, with the exception

of the fminunc function. This is created by Rebello and is a function minimization

routine for logistic regression similar to the Matlab function fminunc. The fmincg.m

is available online [21].

It is common practice to check the implementation of the back propagation algo-

rithm by doing gradient descent. This requires some time consuming programming

and testing. The program presented in the Machine Learning course came with

a gradient checker, but requiered modi�cation to work with this program. As an

alternative the program provided was therefore tested with a sample of data used

27

CHAPTER 3. METHOD

in the Machine Learning course [10]. This test data had the same outputs for both

implementations, and the back propagation was seen as correctly implemented.

The program is a combination of 10 �les. The �les are here listed in chronological

working order.

NNmain.m The main program for running the whole al-

gorithm.

nnRandomInit.m Randomly chooses examples for traing and

test set.

randInitializeWeights.m Randomly initializes the weights in the neural

network.

nnCostFunction.m The cost function for the neural network com-

putes both forward propagation and the back

propagation through the network.

sigmoid.m Computes the sigmoid function.

sigmoidGradient.m Computes the gradient of the sigmoid func-

tion.

fmincg.m A function minimization routine [21].

predict.m Predicts the classi�cation of an input based on

the trained neural network.

plotNN.m Plots the predictions and speci�es false predic-

tions.

3.3.1 NNmain.m

The NNmain.m acts in a similar way as the main �le for the k-means algorithm. It

is the main hub for the algorithm, inputting user data and choosing perimeters.

The assignment of the example matrix, X, and choosing which features to use is the

�rst input. the y variable is set to the matrix containing the classi�cation for each

example.

It is then possible to choose a randomized initialization where a number of the

examples are picked for training, and the rest are picked for testing the algortihm.

This will lead to variances in the result, because of the possibility of a large portion

of the test series being outlier which are hard to identify from the example set. The

other option is to test the set on itself, but can lead to misleading prediction infor-

mation due to over �tting.

28

CHAPTER 3. METHOD

The sizes of the di�erent layers are then chosen. The input layer size is auto-

matically assigned, as its size is determined by the amount of training examples.

The number of hidden layers can be manually set, and the number of labels is set

by checking the maximum value (and should work automatically given the labelling

method given earlier). Lambda is also set for use of regularization.

3.3.2 nnRandInit.m and randInitializeWeights.m

The function for randomly selecting examples for training and testing, nnRandInit.m,

bases itself on the method of the k-means randomInit function. The number of ex-

amples used for training is based on the training size input. This should be a fraction

between 0 to 1. A common practice is to use 70 percent for training and the rest for

testing. The function multiplies the examples with the fraction and rounds to the

nearest whole number. These are chosen as a training set and the rest as a test set.

The y column vector is added to the end of the X matrix to secure that the exam-

ple factors and classi�er stays connected. The rows are then resorted in a random

pattern, and the randomized index is stored. The training sets are then selected

from the randomized list by extracting rows from the top to the size of the training

set, and then the rest of the rows as test sets. The last column is then separated

from the matrix and again stored as the classi�er for the train and test set separately.

The randomized initialization of weights is based on the method proposed by

Nguyen et. al which is discussed in chapter two. The function randomly initialises

the weights based on the sizes of the input layer, the hidden layer and the output

layer [17].

3.3.3 nnCostFunction.m and Predict.m

The cost function for logistic regression is implemented in nnCostFunction.m. Be-

fore the initial values for the weights (Θ) are input into the algorithm, they are

unrolled. This is to make it work with the fmincg function. Inside they are then

reshaped before proceeding. The function then does three things: A forward propa-

gation of the neural network, calculates the cost of the neural network with regular-

ization, and then does a back propagation to �nd the gradient of the weights. The

outputs from this function is the cost and the gradient of the weights. The fmincg

function is then used as an advanced optimizer to iterate over the nnCostFunction

29

CHAPTER 3. METHOD

and minimizing the error caused by the weights and the cost as an indicator for it.

The cost for each iteration is logged, and can be plotted to check if the number of

training iterations are enough. Figure 3.5 shows that the graph �attens out as the

cost approached 100 iterations. More iterations will not reduce the cost signi�cantly.

Figure 3.5: Here the cost of a run on the Neural Network is plotted against the

number of iterations. It serves as a measurement of how well the training is working.

The nnCostFunction also calls the sigmoid.m and sigmoidGradient.m. These are

a Matlab implementation of the sigmoid function, and the gradient calculation of

the sigmoid function, and follows the theory from chapter 2.

The predict function is used for predicting the classi�cation of data based on the

trained network. It takes the input of the weight calculated from the training step

and the features from new example(s). The function then outputs the predicted

classi�cation for either one example or as a column vector for many examples.

3.3.4 plotNN.m

The plotting program borrows a lot from plotting function for k-means. It takes

the preduction, the number of labels, the index numbers of the test set and the

test set itself as input. The prediction is then plotted, following which the wrongly

predicted examples are crossed over by a red x. The function also returns the index

30

CHAPTER 3. METHOD

of the miss-predictions so that it is possible to check which ones fail more easily. An

example of the output plot can be seen in �gure 3.6

Figure 3.6: Here is an example of the output from the plotNN function. The run

uses the classi�cation from �gure 3.4, and the PDSF from sensor 1 to train on a

random 70 percentage of the data. The wrongly predicted examples are marked

with a red x.

31

Chapter 4

Results

Firstly this section will discuss the clusters output from the k-means algorithm. This

section will also contain the methodology and process used to try and manually as-

sign the di�erent data-recordings to the �ow regime it represents. The supervised

neural network needs the classi�er as an input to its training set, and also as a way

to check the validity of the predictions on the test set. Afterwards the outputs and

the neural network will be presented and discussed.

A problem with the data provided is that it only covers two zones in the Tai-

tel and Dukler model, see �gure 4.3. According to this model, there should only

be two clusters. On the other hand, the intermittent �ow regime covers a large

area, and the �ow regime may cover many smaller sub regimes which are somewhat

distinguishable.

4.1 Clustering with k-means

The k-means algorithm was used to run a series of tests with varying input and

cluster centroids. The idea behind this process is to see if some cluster borders on

the Uls-Ugs diagram will remain, or shift for di�erent data input and number of

clusters. This can then be an indicator if a cluster is very rigid and separated by

some distance in vector space, or if the examples are in an "oblong cloud" of points

and clusters can move greatly based on the number of clusters and data. It can also

be a pointer to whether the data input serves as a good indicator for �ow regime.

For the �gures discussed in this section, the k-means algorithm was run with

40 iteration per initialization to properly center the centroids, and 200 random ini-

tializations were run to minimize the chance of missing the global minima, or at

32

CHAPTER 4. RESULTS

least hitting a very close to global minima. The run-times of the k-means algorithm

becomes very long when the input matrices are large. For example, a run with all

sensor data, and four clusters took about 21 minutes to �nish.

The �rst runs was done using four clusters and the capacitance sensor data as

input. The runs were repeated with a number of di�erent data inputs. First one run

for each sensor, then one run for each sensor pair. After that a run for sensor 1, 2

and 3, and 4, 5 and 6. Lastly a run with all sensors as input. A comparison between

the runs shows that sensor 1 and 6 and the pair as input produces the same result

(or very close). The same goes for the rest of the sensors. The runs with 1, 2, and 3

and 4, 5, and 6 also produces the same result as the run with all sensors. This will

reduce the number of runs required signi�cantly to get the information. For the rest

of the runs, only individual runs with sensor 1, 2 and 3 and a run with all three will

be used. As the clusters output from other inputs will be assumed the same. A full

test was also done with three clusters. The same observations were made.

Figure 4.1: The k-means algorithm run with 200 random initializations based on

sensor 6 capacitance sensor data.

The algorithm was run for clusters ranging from 2 to 5, and for data types: ca-

pacitance sensor data, Uslug. It was also tested with the CDF and the sorted data

PDSF. Since the PDSF holds exactly the same values as the capacitance sensor data,

but sorted, it yields the same results in the k-means algorithm. It can however be

noted that the PDSF retains its "clustering quality" even when "compressed" a lot.

33

CHAPTER 4. RESULTS

If for example only every 100th value is taken from the PDSF, and then run in the

k-means, it will produce the same result as the full vector, but in a much shorter

time. Figure 4.2 shows the output from the k-means algorithm based on capacitance

sensor data from sensor 6.

The k-means algorithm produces somewhat stable cluster segregation for the

sensor pairs as the number of clusters increase. The k-means algorithm did not fare

well with the Uslug data, nor the FFT. This may be because of the implementation

of the FFT data, which is the amplitude data put in, and should rather be linked to

tops and locations. Both the sensor data, PDF and CDF seem to produce somewhat

similar clusters. The k-means algorithm seems like it is better suited for a general

assessment of �ow regimes, but not good for �nding clear borders between �ow

regimes.

Figure 4.2: The k-means algorithm run with 200 random initializations based on

sensor 6 capacitance sensor data.

4.2 Assigning regimes to examples

Throughout the thesis it was believed that previous interpretation of the examples

could be used as a guideline for assigning �ow regimes to the di�erent data examples

before inputting into the neural network. This, however, was not feasible. Therefore

a manual approach was chosen, based on the outputs of the k-means algorithm, the

�gures of sensor data, PDF and FFT, as well as a comparison with the Taitel and

34

CHAPTER 4. RESULTS

Dukler model.

When the Uls-Ugs plot of the data was compared with the Taitel and Dukler

model by Time, �gure 2.1,

Figure 4.3: Here the straight lines from the Taitel and Dukler model from �gure 2.1

has been roughly traced on top of a plot of all examples in Uls - Ugs space. The red

line marks the end of the original �gure, and the lines to the left have been assumed

to follow the same trend.

The only classi�cation available was from the test runs done by Eeg [3]. He had

noted the observed regime as either: Dispersed bubble, Intermittent or slug. The

de�nition of the three being:

Dispersed bubble: Dispersed bubble �ow, both visually con�rmed and from

the oscilloscope.

Intermittent: Visually looks like dispersed bubble �ow, but sensor sen-

sor 3 and 4 show great �uctuations on the oscilloscope.

Slug: Visually observed as slug slow, and the oscilloscope

clearly shows a slug pattern.

A plot of the observations done by Eeg, can be seen in �gure 4.4, also with the

Taitel and Dukler model traced on it. As you can see, the model does not �t the

observations done by Eeg, and an for the model to �t, an adjustment is required.

One other problem with the Eeg observations is the intermittent between slug and

dispersed bubble. These can be very hard to determine manually afterwards, and

35

CHAPTER 4. RESULTS

most likely a line will have to be set based on a "hunch".

Figure 4.4: A plot showing the oberserved classi�cations of Eeg [3] and the Taitel

and Dukler model from �gure 2.1 roughly traced on top.

After reviewing the data output from the k-means algorithm and also manually

checking the PDF and FFT data of some of the data point close to the border. Then

trying to correlate this data with the observation from Eeg, it was hard to �nd a solid

"border marker" for identifying the �ow regimes. A choice was made to have one

set of identi�ers just based on sensor data run through the k-means algorithm with

four clusters, which means four classi�ers. The other was based on the observation

by Eeg, and trying to adjust the Taitel and Dukler to group into dispersed bubble,

intermittend and slug. Two data sets were chosen, to see if di�erent classi�cation

lines in the data would a�ect the prediction values of the neural network.

4.3 Running the neural network

After labelling the examples, the neural network can be trained and used to predict

�ow regime on test examples. The program itself randomly selects training exam-

ples, and the rest as a test set. It is also possible to train the neural network on all

of the examples, and test it on itself, but this will not re�ect how well it will behave

with outside data. Therefore a test set will better illustrate this. The randomness of

the test set will cause the prediction accuracy to vary somewhat based on which ex-

36

CHAPTER 4. RESULTS

amples get trained and tested. If it were to achieve 100 percent accuracy on the test

set each time, this would mean the input information and hypothesis would easily

distinguish �ow regimes. This will probably not be the case, but a hight prediction

accuracy should be possible, at least with the k-means classi�ers.

The k-means classi�ers were run �rst through the neural network. The network

was �rst tested on itself, to see if the prediction percentage with di�erent input

would yield results di�ering a lot from each other. All identi�ers gave outcome of

100 percent when testing on themselves, except for Uslug. The Uslug speed is there-

for not a good identi�er by itelf, but might help in some situations. Another way

of pretesting the neural network is to check prediction precision when only predic-

tion one classi�cation. In the k-means set, this is classi�er 2 which yields 39 percent.

The random initialization was then run and tested with di�erent identi�ers. For

each test, a total of 20 random initializations were run, and the maximum, mini-

mum, and average value of the prediction is presented. 20 initialization might not be

enough to the real maximum, minimum and average values for the neural network,

but it gives an indication of how well the data performs.

Test data Max Min Average

Sensor 1 CDF 100 92 97

Sensor 2 CDF 100 90 96

Sensor 3 CDF 96 76 86

All sensor CDF 98 82 92

Sensor 1 data 84 70 76

Sensor 3 data 80 56 66

Sensor 1, 2, 3 data 86 62 76

Sensor 1 PDSF 100 92 96

Sensor 3 PDSF 94 78 87

Sensor 1, 2, 3 PDSF 100 80 94

Sensor 1 PDSF 10 values 100 90 97

Sensor 1 FFT 90 72 81

Uslug 70 46 57

The PDSF 10 values are extracted taking every 50th value from the PSDF ex-

amples. The Neural network overall performs very well on the k-means classi�ers,

scoring averages as high as 94 percent correct prediction. The PDSF is able to retain

its prediction qualities for �ow regime classi�cations, even though only 10 values are

37

CHAPTER 4. RESULTS

used to represent the function. This lets you do a very quick training of the network

if you have a lot of examples.

The Eeg-based identi�cations were the next to be run through the algorithm.

More problems is to be expected, as the manual classi�cation proved di�cult. When

testing on the whole training set, and using CDF there were a lot 23 miss-predictions.

These can be seen in �gure 4.5. if you were to only predict one classi�cation, the

maximum hit in the Eeg-based classi�ers is classi�cation 3, "slug", and yield 53

percent hit.

Figure 4.5: The output plot from the neural network testing on the whole training

set using CDF from sensor 1.

The data was then run through the randomly initialized test in the same manner

as for the k-means classi�ers. The output can be seen in the table below.

38

CHAPTER 4. RESULTS

Test data Max Min Average

Sensor 1 CDF 98 84 90

Sensor 2 CDF 88 78 80

Sensor 3 CDF 98 86 91

All sensor CDF 96 86 94

Sensor 1 data 86 66 78

Sensor 3 data 86 48 73

Sensor 1, 2, 3 data 94 82 87

Sensor 1 PDSF 94 78 85

Sensor 3 PDSF 98 82 91

Sensor 1, 2, 3 PDSF 98 90 94

Sensor 1 PDSF 10 values 90 72 82

Sensor 1 FFT 92 72 81

Uslug 76 54 64

Overall, the neural network predictions worked very well with many di�erent

inputs. The capacitance sensor data, CDF, PDSF were the ones that yielded the

highest results. Even a very reduced version of the PDSF, only represented by ten

points, yielded good results. The k-means classi�cation yielded better results than

manual / Eeg-based identi�cations did. The latter were probably poorly classi�ed

by me, as this turned out to be hard to do without observations.

39

Chapter 5

Conclusion

Two machine learning programs were created. The unsupervised k-means clustering

algorithm and the supervised neural network. The k-means clustering algorithm

was able produce clusters based on the input data fed into it. The clustering did,

however, not match up in a satisfactory way to the visual classi�cations of examples

that were available. The algorithm can serve as a general indication towards which

�ow regime an example should be grouped. Precision at �ow regime borders is where

the algorithm falls short. This is at least true for the data used in this thesis. Other

methods for analysing time series exist. These might be better suited for use with

the k-means clustering algorithm.

The neural network is a supervised learning algorithm. The neural network

therefore requires a classi�cation of the input examples. This was only available for

a fraction of the data examples utilized in this thesis. This meant that the data had

to be classi�ed manually before being entered into the neural network. This was

where the k-means algorithm was going to be applied, but it did not produce opti-

mal results. The neural network was therefore tested on two classi�cation sets. One

set produced by the k-means algorithm and one set based on the available visual

classi�cations and some manual interpretation. The manual interpretation was not

easy, as interpreting the �ow regimes without visual observation was not an easy

task. This lead to classi�cations of the examples which were not optimal. Even so,

the neural network was, with a high success rate, able to predict the classi�cation

of the example data sets. This shows that the neural network truly is a powerful

tool in analysing complex non-linear hypothesis.

The two machine learning algorithms were build in Matlab. They are build in a

general manner, so that they can be used again in the future and for other tasks as

40

CHAPTER 5. CONCLUSION

well. This as long as the input data is arranged in the same order. Hopefully these

programs will be utilized, not only by me, but by anyone who wants to try out a

k-means algorithm or a neural network.

The task as presented in the introduction was partly solved. Machine learning

was applied as a method for identi�cation of multi phase �ow regimes. The results

were okay, and at the time expected. They were partly impacted limitations of the

example data.

41

Bibliography

[1] John P Bentley. Principles of measurement systems. Pearson Education India,

1995.

[2] E Besalú. A graphical representation to teach the concept of the fourier trans-

form. J. Chem. Educ, 83(12):1795, 2006.

[3] Ole S. Eeg. Undersøgelse af gasfraktions fordeling ved dispergeret boblestrøm

i horisontale rør. Master's thesis, Høgskolessenteret i Rogaland, July 1992.

[4] Donald Olding Hebb. The organization of behavior: A neuropsychological ap-

proach. John Wiley & Sons, 1949.

[5] The Mathworks Inc. Matlab 8.4 release 2014b. Natic, Massachusetts, United

States.

[6] Jae Young Lee, Mamoru Ishii, and Nam Seok Kim. Instantaneous and objec-

tive �ow regime identi�cation method for the vertical upward and downward

co-current two-phase �ow. International Journal of Heat and Mass Transfer,

51(13):3442�3459, 2008.

[7] James MacQueen et al. Some methods for classi�cation and analysis of multi-

variate observations. In Proceedings of the �fth Berkeley symposium on mathe-

matical statistics and probability, volume 1, pages 281�297. Oakland, CA, USA.,

1967.

[8] JM Mandhane, GA Gregory, and K Aziz. A �ow pattern map for gas�liquid

�ow in horizontal pipes. International Journal of Multiphase Flow, 1(4):537�

553, 1974.

[9] Arnold Neumaier. Solving ill-conditioned and singular linear systems: A tuto-

rial on regularization. SIAM review, 40(3):636�666, 1998.

[10] Andrew Ng. Machine learning. https://www.coursera.org/learn/

machine-learning. Date accessed: 2016.04.29.

42

BIBLIOGRAPHY

[11] Andrew Ng. Machine learning wiki and lecture notes: Clustering. https:

//share.coursera.org/wiki/index.php/ML:Clustering. [Online; accessed:

2016.05.06.

[12] Andrew Ng. Machine learning wiki and lecture notes: Linear regres-

sion with multiple variables. https://share.coursera.org/wiki/index.

php/ML:Linear_Regression_with_Multiple_Variables. [Online; accessed:

2016.05.10.

[13] Andrew Ng. Machine learning wiki and lecture notes: Logistic re-

gression. https://share.coursera.org/wiki/index.php/ML:Logistic_

Regression. [Online; accessed: 2016.05.10.

[14] Andrew Ng. Machine learning wiki and lecture notes: Neural networks: Learn-

ing. https://share.coursera.org/wiki/index.php/ML:Neural_Networks:

_Learning. [Online; accessed: 2016.05.12.

[15] Andrew Ng. Machine learning wiki and lecture notes: Neural net-

works: Representation. https://share.coursera.org/wiki/index.php/ML:

Neural_Networks:_Representation. [Online; accessed: 2016.05.11.

[16] Andrew Ng. Machine learning wiki and lecture notes: Regularization. https:

//share.coursera.org/wiki/index.php/ML:Regularization. [Online; ac-

cessed: 2016.05.10.

[17] Derrick Nguyen and Bernard Widrow. Improving the learning speed of 2-layer

neural networks by choosing initial values of the adaptive weights. In Neural

Networks, 1990., 1990 IJCNN International Joint Conference on, pages 21�26.

IEEE, 1990.

[18] Cmglee of Wikipedia the free encyclopedia. Comparison convolu-

tion correlation. https://commons.wikimedia.org/wiki/File:Comparison_

convolution_correlation.svg, 2014. [Online; accessed 2016.06.26].

[19] Glosser.ca of Wikipedia the free encyclopedia. Colored neural network. https:

//commons.wikimedia.org/wiki/File:Colored_neural_network.svg,

2016. [Online; accessed 2016.05.27].

[20] KSmrq of Wikipedia the free encyclopedia. Extrema example. Ihttps://

commons.wikimedia.org/wiki/File:Extrema_example.svg, 2016. [Online;

accessed 2016.04.30].

43

BIBLIOGRAPHY

[21] Jason Rebello. Logistic regression with regularization used to classify hand writ-

ten digits. https://www.mathworks.com/matlabcentral/�leexchange/42770-

logistic-regression-with-regularization-used-to-classify-hand-written-

digits/content/Logistic [Online; accessed: 2016.05.15].

[22] Yemada Taitel and AE Dukler. A model for predicting �ow regime transitions

in horizontal and near horizontal gas-liquid �ow. AIChE Journal, 22(1):47�55,

1976.

[23] Rune Time. Two-Phase Flow in Pipelines: Course Compendium. Deparment

of Petroleum Engineering, Faculty of Science and Technology, University of

Stavanger, 2009.

[24] Rune W. Time. Analysis of space and time structures in two-phase �ow using

capacitance sensors. PhD thesis, Høgskolesenteret i Rogaland, December 1993.

[25] Neylon Tyler. Logistic function. https://share.coursera.org/wiki/index.

php/File:Logistic_function.png, 2015. [Online; accessed 2016.05.27].

44

Nomenclature

∆ The accumulated gradient from backwards propagation

δ The error of a node in a layer

ε A value for setting the random initialization of weights

λ The regularization factor. regulates the degree of regularization

µ A cluster centroid. The vector representing the center of a cluster

θ A vector containing the weight vectors for all features

Θ
(j)
in the weight acting on layer j, for node i and feature n

θ(i) The weight for one particular feature in an example.

θ(i) The weight given a feature in an example

A The cross-sectional area of a tube

a
(j)
i The activation value of node number i in layer j

c(i) The index of a cluster, k, to which an example, x(i), is assigned

D The accumulated gradient divided by the amount of examples from backwards

propagation

g(z) The sigmoid function

hθ The hypothesis produced by a learning algorithm

J The cost function

K The total number of clusters de�ned in the k-means algorithm

k a speci�c cluster in the k-means algorithm

Linput Size of the input layer for random initialization of weights

45

BIBLIOGRAPHY

Loutput Size of the output layer for random initialization of weights

qG The volumetric gas �ow rate

qL The volumetric liquid �ow rate

UGS The super�cial gas velocity

ULS The super�cial liquid velocity

X A matrix containing all examples and features

x(i) An example vector containing features

y A vector containing the classi�cation of all examples

z
(j)
n The value of node n in layer j before the sigmoid function

46

Appendix A

k-means Matlab code

Presented here is the Matlab code for k-means listed per �le, and in a chronological

working order. The code is based heavily on the teachings of Andrew Ng and his

course on Coursera. [10]

A.1 kmain.m

%Clears everything as an initialization of the program

clc, clear, close('all')

tic %for timing the program

%Main program for running the K-means clustering.

%initiate counting of cycles

cycles = 0;

%======== User input======================

%Number of clusters

K = 1;

%Total of random initialized loops

totalloops = 200;

%Number of iterations to find the optimal cluster per loop

max_iterat = 40;

%Choose wether or not to count cycles; 1 = yes

countcycles = 1;

%Load values

%forstetall = loadforstetall();

1

APPENDIX A. K-MEANS MATLAB CODE

load('../flowdata/CDF_500space.mat');

load('../flowdata/PDF_500space.mat');

load('../flowdata/per_sensor_data.mat');

load('../flowdata/per_sensor_data_sorted.mat');

load('../flowdata/Uslug_data.mat');

load('../flowdata/FFT_data.mat');

load('../flowdata/sensor_shift_diff.mat');

X = [sensor1cdf500];

m = size(X,1);

n = size(X,2);

%Standard score, if wanted. Applicable when using

%data of different sizes or nature

[X, mu, sigma] = zscore(X);

%%

%============== The K-means algorithm ==============

%Apply K-means a number of times to avoid local

%minima and find global minima

for i = 1 : totalloops

%Randomly initialize centroids

initial_centroids = randomInit(X, K);

%Run the kmeans algorith for this set of initialization centroids

[centroids, idx] = runkmeans(X, initial_centroids, max_iterat);

%Remember the centroids and assignments for each run

centroidsroll(i,:) = centroids(:)';

idxroll(:,i) = idx;

%compute the distortion (cost function for k-means)

J(i) = computedist(X, centroids, idx);

if countcycles == 1

cycles = cycles + 1

else

end

end

2

APPENDIX A. K-MEANS MATLAB CODE

%Find minimum value for distortion, and it's index

[distortion, index] = min(J);

least_dist_idx = idxroll(:,index);

least_dist_centroids = reshape(centroidsroll(index,:),[K,n]);

distortion;

%plot the measurements in an Uls Ugs diagram and show the assigned

%centroids.

plotKmeans(least_dist_idx,K);

toc

A.2 randomInit.m

function centroids = randomInit(X, K)

%This function creats a random initialization

%of centroids based on examples Given in X

% initialize values

centroids = zeros(K, size(X, 2));

% Randomly reorder the indices of examples

randomindex = randperm(size(X, 1));

% Take the first K examples as centroids

centroids = X(randomindex(1:K), :);

end

A.3 runkmeans.m

function [centroids idx] = runkmeans(X, initial_centroids, max_iters)

% Each row of X represents an example, and each column of X

% is a feature of X. runkmeans runs the K-means algorithm on

% the X matrix, with the given initial centrois, for a given

3

APPENDIX A. K-MEANS MATLAB CODE

% max iterations.

%initializing values

[m n] = size(X);

K = size(initial_centroids, 1);

centroids = initial_centroids;

idx = zeros(m, 1);

for i = 1:max_iters

%Assign the closest centroid for each example in X

idx = assignClosestCentroid(X, centroids);

%Given assignment to centroids, compute new centroids

centroids = computeCentroids(X, idx, K);

end

end

A.4 assignClosestCentroid.m

function idx = assignClosestCentroids(X, centroids)

% assignClosestCentroid computes the centroid memberships for

% every example

%Initialize values

% Set K

K = size(centroids, 1);

idx = zeros(size(X,1), 1);

distance = zeros(size(X,1),K);

%Find the distance from each point to the initialized centroids

for i = 1:K

diffs = bsxfun(@minus, X, centroids(i,:));

distance(:,i) = sum(diffs.^2, 2);

end

4

APPENDIX A. K-MEANS MATLAB CODE

% index the column which holds the minimum distance.

[fodder index] = min(distance, [], 2);

idx = index;

end

A.5 computeCentroids.m

function centroids = computeCentroids(X, idx, K)

%This function computes new centroids based on the

%samples assigned to each centroid.

%It should also deal with the unlikely situation of an

%unassigned centroid.

[m, n] = size(X);

centroids = zeros(K, n);

for i = 1:K

select = find(idx==i);

if isempty(select) == 0

centroids(i,:) = mean(X(select,:));

else

end

end

end

A.6 computedist.m

function J = computedist(X, centroids, idx)

K = size(centroids, 1);

m = size(X,1);

5

APPENDIX A. K-MEANS MATLAB CODE

for i = 1:K

diffs = bsxfun(@minus, X(i == idx,:),centroids(i,:));

distortion = sum(sum(diffs.^2, 2));

holder(:,i) = distortion;

end

J = (1/m) * sum(holder);

end

A.7 plotKmeans.m

function plotKmeans(idx, K)

figure; hold on;

Mrkr = '+oxsd^v><ph';

load('../flowdata/Ugs_Uls_speeds.mat');

for i = 1:K

cluster = find(idx==i);

plot(Ugs_Uls_speeds(cluster, 1), ...

Ugs_Uls_speeds(cluster, 2), Mrkr(i), ...

'LineWidth', 2.5, 'MarkerSize', 9)

end

xlabel('Ugs [m/s]', 'FontSize', 25)

ylabel('Uls [m/s]', 'FontSize', 25)

set(gca, 'xscale', 'log')

set(gca, 'yscale', 'log')

set(gca, 'XLim', [0.1 10])

set(gca, 'YLim', [0.1 10])

set(gca, 'XGrid', 'on')

set(gca, 'XMinorGrid', 'on')

set(gca, 'YGrid', 'on')

set(gca, 'YMinorGrid', 'on')

set(gca, 'GridLineStyle', '-')

set(gca, 'fontsize', 18)

set(gca, 'GridAlpha', 0.50)

set(gca, 'MinorGridAlpha', 0.40)

6

APPENDIX A. K-MEANS MATLAB CODE

for i = 1:K

legendnames{i} = ['Cluster' num2str(i)];

end

legenden = legend('show', legendnames);

set(legenden, 'FontSize', 18);

hold off;

end

7

Appendix B

Neural network Matlab code

Here is the matlab code for the neural network developed and used during the

project. It is heavily in�uenced by the course: "Machine Learning" available on

Coursera.org [10] The program also uses the function fmincg.m which is an advanced

optimization function. It has not been included in the text version of the thesis, but

it is available online. [21]

B.1 NNmain.m

%%

%Initialization and choosing variables

clc, clear, close('all')

tic

%Main program for running the neural network with one hidden layer

%load data features and classifiers.

load('kmeans_id.mat');

load('eeg_id.mat');

%load('../flowdata/forstetall.mat');

load('../flowdata/CDF_500space.mat');

load('../flowdata/PDF_500space.mat');

load('../flowdata/per_sensor_data.mat');

load('../flowdata/per_sensor_data_sorted.mat');

load('../flowdata/Uslug_data.mat');

load('../flowdata/FFT_data.mat');

load('../flowdata/sensor_shift_diff.mat');

%Choose wether to test on train whole set, or random init

8

APPENDIX B. NEURAL NETWORK MATLAB CODE

% 1 = ramdom init, 0 = train on whole set

random_init = 0;

%X is the data chosen for training the algortihm

X = [Uslug_data];

%y is the identifyer vector containing predetermined

%classification data

y = kmeans_id;

%y = Eeg_id;

%set lambda for regularization

lambda = 1;

%feature normalization, standard score.

%Makes is easier for the weights to adapt.

[X, mu, sigma] = zscore(X);

if random_init == 1

%randomly chooses training and test data given a fraction

%to be amount of training data.

%The randomized index is also extracted for camparison

[X ,y ,X_test ,y_test, ...

train_randindex, test_randindex] = nnRandInit(X,y,0.70);

else

%Train the whole set, then test it on itself

X_test = X;

y_test = y;

test_randindex = [1 : size(X,1)]';

end

%Set the number of learning iterations

learning_iterations = 100;

%set the different layer sizes

input_layer_size = size(X,2);

number_hidden_layer = 50;

num_labels = max(y);

%%

%random initialization

initial_Theta1 = randInitializeWeights(input_layer_size, ...

9

APPENDIX B. NEURAL NETWORK MATLAB CODE

number_hidden_layer);

initial_Theta2 = randInitializeWeights(number_hidden_layer, ...

num_labels);

%unroll parameters

initial_nn_params = [initial_Theta1(:); initial_Theta2(:)];

% ======== Training the Neural Network ========

options = optimset('MaxIter', learning_iterations);

costFunction = @(p) nnCostFunction (p, ...

input_layer_size, ...

number_hidden_layer, ...

num_labels, X, y, lambda);

[nn_params, cost] = fmincg(costFunction, initial_nn_params, ...

options);

Theta1 = reshape(nn_params(1:number_hidden_layer * ...

(input_layer_size + 1)), ...

number_hidden_layer, (input_layer_size + 1));

Theta2 = reshape(nn_params((1 + (number_hidden_layer * ...

(input_layer_size + 1))):end), ...

num_labels, (number_hidden_layer + 1));

%%

% =============== Predict using the trained neural network=======

pred = predict(Theta1, Theta2, X_test);

Prediction_percentage = mean(double(pred==y_test))*100;

%This plots the test set, and marks the one that

%it failed to identify correctly.

%the index of the missed file is also output

miss = plotNN(pred,num_labels,test_randindex,y_test)

Prediction_percentage

toc

10

APPENDIX B. NEURAL NETWORK MATLAB CODE

B.2 nnRandInit.m

function [train_X, train_y ...

test_X, test_y, train_randindex, ...

test_randindex] = nnRandInit(X,y,trainsize)

%This randomly picks examples for training and test set

%Gets the sizes of the input matrix and vector

[Xm, Xn] = size(X);

%The number of examples used for training

train_amount = round(trainsize*Xm);

%consolidates X and Y for randomization, so that the

%indexes of X and y will remain the same after randperm

allData = [X y];

%Randomizes the index of the data

randomindex = randperm(size(allData, 1));

%gets the randomized data in a train and test set

train_set = allData(randomindex(1:train_amount), :);

test_set = allData(randomindex(train_amount+1:end), :);

%Gets original indexes of the training and test set

train_randindex = randomindex(:,1:train_amount)';

test_randindex = randomindex(:,train_amount+1:end)';

%extracts the X and y values from train and test sets

train_X = train_set(:,1:Xn);

train_y = train_set(:,Xn+1);

test_X = test_set(:,1:Xn);

test_y = test_set(:,Xn+1);

end

B.3 randInitializeWeights.m

function W = randInitializeWeights(L_in, L_out)

% Randomly initializes weights based on the size of the

% input layer and the hidden layer

W = zeros(L_out, 1 + L_in);

11

APPENDIX B. NEURAL NETWORK MATLAB CODE

epsilon_init = sqrt(6) / sqrt(L_in + L_out);

W = (rand(L_out, 1 + L_in) * 2 * epsilon_init) - epsilon_init;

end

B.4 nnCostFunction.m

function [J grad] = nnCostFunction(nn_params, ...

input_layer_size, ...

hidden_layer_size, ...

num_labels, ...

X, y, lambda)

%Implementation of the cost function for this neural network

% Reshape nn_params back into the parameters

% Theta1 and Theta2, the weight matrices

% for our 2 layer neural network

Theta1 = reshape(nn_params(1:hidden_layer_size * ...

(input_layer_size + 1)), ...

hidden_layer_size, (input_layer_size + 1));

Theta2 = reshape(nn_params((1 + (hidden_layer_size * ...

(input_layer_size + 1))):end), ...

num_labels, (hidden_layer_size + 1));

% Setup some useful variables

m = size(X, 1);

%--- Part 1: implement forward propagation and calculate cost----

% --- Forward propagation through the network ---

% Convert the classifier (y) values into matrixes

% containing 0 and ones for the correct indexes

eye_matrix = eye(num_labels);

y_matrix = eye_matrix(y,:);

% Add a column of ones to X (the bias)

a1 = [ones(m,1) X];

12

APPENDIX B. NEURAL NETWORK MATLAB CODE

%Calculate the values in the hidden layer

z2 = Theta1 * a1';

a2 = [sigmoid(z2)]';

%Add the bias to the hidden layer

a2 = [ones(size(a2,1),1) a2];

%Calculate the values in the output layer

z3 = Theta2 * a2';

a3 = [sigmoid(z3)]';

h = a3;

%---- cost function calculation---

%Calculate the cost for the neural network with regularization

mpart1 = (- y_matrix .* log(h));

mpart2 = (1 - y_matrix) .* log(1 - h);

cost = ((1/m) * sum(sum(mpart1 - mpart2, 2)));

%compute regularization

regur = (lambda / (2*m)) * (sum(sum(Theta1(:,2:end).^2, 2)) ...

+ sum(sum(Theta2(:,2:end).^2, 2)));

J = cost + regur;

% ------------- Backpropagation--------------------%

%compute the error term in the output layer.

d3 = a3 - y_matrix;

%Compute the error term in the hidden layer.

d2 = (d3 * Theta2(:,2:end)) .* sigmoidGradient(z2');

%Compute accumulated gradient

Delta1 = d2' * a1;

Delta2 = d3' * a2;

Theta1_grad_un = Delta1 * (1/m);

Theta2_grad_un = Delta2 * (1/m);

13

APPENDIX B. NEURAL NETWORK MATLAB CODE

%Regularization of the gradient------------------

Theta1(:,1) = 0;

Theta2(:,1) = 0;

Theta1 = Theta1 * (lambda / m);

Theta2 = Theta2 * (lambda / m);

Theta1_grad = Theta1_grad_un + Theta1;

Theta2_grad = Theta2_grad_un + Theta2;

% ---

% Unroll gradients

grad = [Theta1_grad(:) ; Theta2_grad(:)];

end

B.5 sigmoid.m

function g = sigmoid(z)

% computes the sigmoid function of z

g = 1.0 ./ (1.0 + exp(-z));

end

B.6 sigmoidGradient.m

function g = sigmoidGradient(z)

% Computes the gradient of the sigmoid function

g = sigmoid(z) .* (1 - sigmoid(z));

end

B.7 plotNN.m

function miss = plotKmeans(pred, num_labels, test_randindex, y_test)

14

APPENDIX B. NEURAL NETWORK MATLAB CODE

figure; hold on;

Mrkr = '+osd^xv><ph';

load('../flowdata/Ugs_Uls_speeds.mat');

Ugs_Uls_speeds_hit = Ugs_Uls_speeds(test_randindex,:);

for i = 1:num_labels

label = find(pred==i);

plot(Ugs_Uls_speeds_hit(label, 1), ...

Ugs_Uls_speeds_hit(label, 2), Mrkr(i), ...

'LineWidth', 2.5, 'MarkerSize', 9)

end

miss = test_randindex(pred~=y_test);

plot(Ugs_Uls_speeds(miss,1), ...

Ugs_Uls_speeds(miss,2), 'xr', 'LineWidth', 2.5, ...

'MarkerSize', 9)

xlabel('Ugs [m/s]', 'FontSize', 25)

ylabel('Uls [m/s]', 'FontSize', 25)

set(gca, 'xscale', 'log')

set(gca, 'yscale', 'log')

set(gca, 'XLim', [0.1 10])

set(gca, 'YLim', [0.1 10])

set(gca, 'XGrid', 'on')

set(gca, 'XMinorGrid', 'on')

set(gca, 'YGrid', 'on')

set(gca, 'YMinorGrid', 'on')

set(gca, 'GridLineStyle', '-')

set(gca, 'fontsize', 18)

set(gca, 'GridAlpha', 0.50)

set(gca, 'MinorGridAlpha', 0.40)

for i = 1:num_labels

legendnames{i} = ['Classification' num2str(i)];

end

legenden = legend('show', legendnames);

set(legenden, 'FontSize', 18);

hold off;

end

15

Appendix C

Plotting data from capacitance

sensors

This following matlab code is based upon a program originally written by Time,

and was provided at the start of the project. The program is discussed in Chapter

3.1

%===

% SLUG FLOW (PART 1)

%===

% Made from "Slug_flow_1.m"

clc

clear

close all

% ********* SENSOR DISTANCES:*********

L16=.102+.081+.062+.082+.102;

L25=.081+.062+.082;

L34=.062;

% ************************************

load('scan_frequency.mat');

origfolder = cd

cd('Sensor data')

filenames = dir('*.txt');

%Chose file number from the list of files in Sensor data

%from 1 to 166

filenumber = 60

fname =filenames(filenumber).name

16

APPENDIX C. PLOTTING DATA FROM CAPACITANCE SENSORS

nhead = 40; % number of lines of header information

ncols = 6; % number of columns in the data file

[labels,V] = readColCapData(fname,ncols,nhead);

M = length(V(:,1))

Tid = 1:M;

dt = scan_frequency(filenumber)

Tid = Tid*dt;

L1 = 1

L2 = 5000 % number of points

figure(1) % Plot Capacitance sensors - time trace

subplot(3,1,1); plot(Tid(L1:L2),V(L1:L2,1),'b-');

hold on

plot(Tid(L1:L2),V(L1:L2,6),'r-');

xlabel('Time (s)','FontSize',15); % add axis labels and plot title

ylabel('Sensor signal (0 - 10000)','FontSize',15);

title('Capacitance sensors - time trace','FontSize',14);

legend('Sensor 1','Sensor 6',1);

set(gca, 'fontsize', 12)

subplot(3,1,2); plot(Tid(L1:L2),V(L1:L2,2),'b-');

hold on;

plot(Tid(L1:L2),V(L1:L2,5),'r-');

xlabel('Time (s)','FontSize',15);

ylabel('Sensor signal','FontSize',15);

legend('Sensor 2','Sensor 5',1);

set(gca, 'fontsize', 12)

subplot(3,1,3); plot(Tid(L1:L2),V(L1:L2,3),'b-');

hold on;

plot(Tid(L1:L2),V(L1:L2,4),'r-');

xlabel('Time (s)','FontSize',15);

ylabel('Sensor signal','FontSize',15);

legend('Sensor 3','Sensor 4',1);

set(gca, 'fontsize', 12)

17

APPENDIX C. PLOTTING DATA FROM CAPACITANCE SENSORS

% *********** FFT ANALYSIS **************************

%

% **

for i = 1 : 6

ISE=i; %Sensor number

L = M;

sensordata(:,i) = V(:,ISE);

y(:,i) = sensordata(:,i) - mean(sensordata(:,i));

Fs = 1/dt;

NFFT = 2^nextpow2(L); % Next power of 2 from length of y

Y(:,i) = fft(y(:,i),NFFT)/L;

f = Fs/2*linspace(0,1,NFFT/2);

end

for i = 1:3

figure(2) % Plot Single-sided amplitude spectrum.

sens16 = [1,6];

sens25 = [2,5];

sens34 = [3,4];

if i == 1

sensor = sens16;

elseif i == 2

sensor = sens25;

else

sensor = sens34;

end

subplot(3,1,i); semilogx(f,2*abs(Y(1:NFFT/2,i)),'-r')

hold on

semilogx(f,2*abs(Y(1:NFFT/2,7-i)),'-b')

hold off

title(['Single-Sided Amplitude Spectrum of y(t) sensor ' ...

num2str(sensor(1,1)) ' and ' num2str(sensor(1,2))])

xlabel('Frequency (Hz)')

ylabel('|Y(f)|')

legend(['Sensor ' num2str(sensor(1,1))],['Sensor ' ...

num2str(sensor(1,2))],1)

end

%****************************

% PDF histogram

18

APPENDIX C. PLOTTING DATA FROM CAPACITANCE SENSORS

%****************************

for i = 1:3

figure(4) % Histrogram Probability density function

sens16 = [1,6];

sens25 = [2,5];

sens34 = [3,4];

if i == 1

sensor = sens16;

elseif i == 2

sensor = sens25;

else

sensor = sens34;

end

subplot(3,1,i); hist(sensordata(:,sensor),100)

title(['Probability density funciton sensor ' ...

num2str(sensor(1,1)) ' and ' num2str(sensor(1,2))])

xlabel ('Sensor reading')

ylabel('Number of counts')

legend(['Sensor ' num2str(sensor(1,1))],['Sensor ' ...

num2str(sensor(1,2))],1)

end

%*****CROSS CORRELATION FUNCTION**************

%

%***

for j = 1:3

x(:,j)=V(L1:L2,j); % 1 function (1 sensor)

y(:,j)=V(L1:L2,7-j); % 2 function (6 sensor)

N=length(Tid(L1:L2));

yy(j,:)=y(:,j)';

ntau=200

for i=1:ntau

yy(j,:) = circshift(yy(j,:),[0,+1]);

CCF(i,j) = yy(j,:)*x(:,j)/N;

end

figure(5) % Plot Cross correlation function

plot(CCF)

xlabel('Time (ms)'),

ylabel('Correlation')

19

APPENDIX C. PLOTTING DATA FROM CAPACITANCE SENSORS

title('Cross correlation function')

legend('sensor 1&6', 'sensor 2&5', 'sensor 3&4',1)

maxccf=max(CCF(:,j))

for i=1:ntau

if CCF(i,j)==maxccf

tshift(1,j)=i % Time shift

end;

end

if j == 1

sensor = L16;

elseif j == 2

sensor = L25;

else

sensor = L34;

end

Uslug(1,j)=sensor/(tshift(1,j)/(1/dt)) % Slug velocity

fin = fopen(fname,'r');

for i=1:9, buffer = fgetl(fin); end

Uls=str2double(buffer(16:28)) % Superficial liquid velocity

Ugs=str2double(buffer(40:52)) % Superficial gas velocity

Umix=Uls+Ugs; % Mixture velocity

Ratio(1,j)=Uslug(1,j)/Umix;

end

Uslug

Ratio

Umix

dt

cd(origfolder);

20

