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Abstract 

In order to analyze a lift offshore performed from a vessel, focus is often put on preparing a 
good model of the main lifted object, the vessel motions (RAOs), the crane characteristics 
plus the sea state characteristics. However, something that is not so often put into focus is 
how to find the correct characteristic load that is affecting the object based on statistical data. 

Usually, an irregular sea state is used when analyzing lifts at sea. In this thesis, a 
consideration of an object launch through the splash zone in a defined sea state has been 
analyzed. The resulting hydrodynamic forces in such a case are highly dependent on the 
timing with the incoming wave and the vessel motions. Therefore, several simulations of the 
same situation need to be performed in order to see the resulting characteristic load based on 
statistics.  

In the industry today, there has not been established a standardized way of finding such a 
characteristic load. Neither has it been accurately determined what an acceptable probability 
of non-exceedance should be, or how statistical confidence is to be determined, meaning how 
many simulations that is sufficient to reproduce a result within a given accuracy.  

DNV RP-H103 (2014) shows how the characteristic load can be determined from repeated 
time-domain simulations if the loads are Rayleigh distributed. In this thesis; the main case of 
a ROV lift performed by a LARS (Launch and Recovery System) arrangement are considered 
to cover a typical light lift scenario offshore. The simulation software Orcaflex has been used 
for the dynamic lifting analyses, while Excel has been used to analyze the statistical results 
using probability distributions. The non-linear effects such as slamming and drag forces and 
the short duration of the simulations are governing keys to explain the resulting extreme 
value load distributions.  

The calculated results reveal that given repeated dynamic simulations for lifting operations 
offshore in a short term sea state does: 

1. The most extreme loads experienced not always follow a Gumbel distribution and that 
the tail region given the use of probability papers should be considered;  

2. The given characteristic loads may have a large statistical scatter depending on the 
simulation size, and; 

3. Given the DNV standard regulations where a probability of structural failure should 
be less than 1 per 10000 lifting operations (DNV-OS-H101, 2011, Section 1, A201), 
large sample/simulation sizes are required in order to get a high level of confidence. A 
second criterion has therefore been proposed for implementation.  
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Terminology  

The terms described in cursive below is a direct copy of the terminology as described in 
DNV-OS-H101 (2011, p.9): 

Airy/linear wave theory: A theory of surface waves on the water where the nonlinear 
boundary conditions have been linearized. 

“Characteristic condition: A condition which has a defined probability of being exceeded 
within a defined time period”.  

“Characteristic load: The reference value of a load to be used in the determination of load 
effects. The characteristic load is normally based upon a defined fractile in the upper end of 
the distribution function for the load”. 

“Design load: A load or load condition which forms basis for design and design 
verification”. 

“Displacement: The mass of the vessel/object including permanent equipment”. 

Ergodic process: Attribute to a stochastic process where the expected value is time and place 
independent. 

“Marine operation: Non-routine operation of a limited defined duration related to handling 
of object(s) and/or vessel(s) in the marine environment during temporary phases. In this 
context the marine environment is defined as construction sites, quay areas, inshore/offshore 
waters or sub-sea”. 

“Object: The structure handled during the marine operation, typically a module, deck 
structure, jacket, GBS, sub-sea structures, risers, pipes, etc.” 

“Operation: Used as a short form for marine operation in this standard.” 

“Short term: A period of time wherein statistical environmental parameters may be assumed 
stationary. This period is normally taken as 3 hours.” 

“Significant wave height: Four times the standard deviation of the surface elevation in a 
short term wave condition (close to the average of the one third highest waves).” 

Stochastic Process: The process 𝑥𝑥(𝑡𝑡) is stochastic if 𝑥𝑥(𝑡𝑡) for any value of 𝑡𝑡 in the interval 
(𝑎𝑎, 𝑏𝑏) is a random variable. A stochastic process can be seen as all possible realizations in 
terms of sequences of data from an experiment that involves a certain degree of randomness. 

Turbulence: The opposite of a laminar flow. The following characteristics are common: 

• Irregular and random flow 
• Diffusive and gives a quick mix and increased transport of heat motions and mass 

across the mainstream 
• High Reynolds numbers 
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• Three-dimensional fluctuating eddies of varying size. 
• Dissipative: Kinetic energy is dissipated in the inner fluid. 
• Continuously and exists in the entire flow stream (not in the main fluid). 

“Unrestricted operations: Operations with characteristic environmental conditions estimated 
according to long term statistics.” 

“Vessel: Barge, ship, tug, mobile offshore unit, crane vessel or other vessel involved in the 
marine operation.” 

“VMO (Veritas Marine Operations): The unit(s) within Det Norske Veritas providing marine 
warranty survey and marine advisory services.” 

“Weather restricted operations: Operations with defined restrictions to the characteristic 
environmental conditions, planned performed within the period for reliable weather 
forecasts.”
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Nomenclature 
Latin symbols 
𝐴𝐴     Areal 
𝑎𝑎𝑟𝑟     Fluid particle acceleration relative to the earth and body 
𝑎𝑎𝑤𝑤     Water particle accelerations 
𝐴𝐴33    Added mass 
𝐴𝐴330      Sectional added mass 
𝐴𝐴33∞      High-frequency limit added mass 
𝐴𝐴𝑝𝑝     Projected area 
𝐴𝐴𝑤𝑤     Slamming area 
𝐵𝐵     Minimum breaking load (MBL), (DNV Standard No.2.22) 
𝑏𝑏1/𝑏𝑏2     Non-dimensional damping coefficients 
𝐵𝐵1     Linear drag constant in an oscillatory flow 
𝐵𝐵2     Quadratic drag constant in an oscillatory flow 
𝑐𝑐     Damping constant 
𝐶𝐶     Damping ratio 
𝐶𝐶𝑎𝑎    Added mass 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐     Critical damping 
𝐶𝐶𝑑𝑑     Drag coefficient in oscillatory flow 
𝐶𝐶𝑑𝑑𝑑𝑑    Drag coefficient in steady state flow  
𝐶𝐶𝑒𝑒     Water exit coefficient 
𝐶𝐶𝑠𝑠     Slamming coefficient 
𝐶𝐶1     Constant for the Gumbel distribution 
𝐶𝐶2     Constant for the Gumbel distribution 
𝑑𝑑    Water depth (−𝑧𝑧) 
𝐷𝐷     Characteristic dimension of the structural member 
𝐷𝐷(𝜃𝜃)     Direction spreading of wave system 
𝑑𝑑 − ℎ𝑜𝑜𝑜𝑜𝑜𝑜 (𝑑𝑑ℎ)  𝑑𝑑 amount of hours 
𝐸𝐸     Cross-sectional Young`s modulus 
𝐹𝐹     Force or load 
𝐹𝐹𝐵𝐵     Buoyancy force  
𝐹𝐹𝐷𝐷     Drag force 
𝐹𝐹𝐻𝐻     Hydrodynamic force 
𝐹𝐹𝐻𝐻𝐻𝐻     Hydrodynamic drag 
FL     Lift line force 
FMax     Maximum force 
𝐹𝐹𝑅𝑅     Reaction force 
𝐹𝐹𝑠𝑠     Slamming force 
𝐹𝐹𝑊𝑊     Wave/fluid force 
𝑓𝑓     Frequency 
𝑓𝑓(𝑥𝑥)     Probability density function 
𝐹𝐹(𝑥𝑥)     Cumulative distribution function 
𝑔𝑔     Gravitational force (9.81 m/s2) 
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ℎ     Time interval 
ℎ𝛯𝛯𝛯𝛯     Transfer function 
𝐻𝐻𝑠𝑠     Significant wave height 
𝐻𝐻𝑠𝑠,𝑙𝑙𝑙𝑙𝑙𝑙    Limiting significant design wave height 
𝐻𝐻𝑠𝑠,𝑂𝑂𝑂𝑂     Maximum significant operational wave height 
𝐻𝐻𝑠𝑠,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷    Significant design wave height 
𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚     Maximum wave height 
𝐻𝐻max _𝑊𝑊𝑊𝑊    Forecasted maximum wave height 
𝑖𝑖     Individual number 
𝑖𝑖0     Imaginary number 
𝑚𝑚     Slope of line 
𝑀𝑀     Mass 
𝑀𝑀𝑠𝑠    Structural mass 
𝑀𝑀0     Zero moment of load spectrum 
𝑀𝑀2     Second moment of load spectrum 
𝑛𝑛�     Global Maxima 
N     Total number 
𝑁𝑁𝐾𝐾−𝐶𝐶     Keulegan-Carpenter number 
𝑁𝑁𝐿𝐿𝐿𝐿𝐿𝐿    Limiting number 
𝐾𝐾    Stiffness 
𝑘𝑘     Shape parameter 
𝑘𝑘�     Shape parameter estimator 
𝑘𝑘𝑖𝑖     Wave number 𝑖𝑖 
𝐾𝐾𝑝𝑝    Frequency factor 
𝐿𝐿     Length 
𝑂𝑂𝑂𝑂𝑙𝑙𝑙𝑙𝑙𝑙     Operational environmental limiting criteria 
𝑂𝑂𝑂𝑂𝑊𝑊𝑊𝑊     Forecasted (monitored) operation criteria 
𝑝𝑝     Probability/Percentage 
𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒    Probability of exceeding a value 
𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛−𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒    Probability of not exceeding a value 
𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛−𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎   The actual probability of not exceeding a value 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝    Pressure at surface 
𝑝𝑝0     Atmospheric pressure 
𝑅𝑅     Random variable 
𝑅𝑅𝐶𝐶     Characteristic resistance 
𝑅𝑅𝐷𝐷     Design Resistance 
𝑅𝑅2    Squared error 
𝑟𝑟1     Random number generated 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅()   Random number ranging from 0 to 1 
𝑟̃𝑟𝑚𝑚𝑚𝑚𝑚𝑚     Largest maximum load 
𝑆𝑆     Maximum load in the wire rope 
𝑆𝑆𝐷𝐷     Design load 
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𝑆𝑆𝐹𝐹     Safety factor 
𝑆𝑆𝐽𝐽    JONSWAP spectrum 
𝑆𝑆𝑘𝑘     Characteristic load component 
𝑆𝑆𝑃𝑃𝑃𝑃    Pierson-Moskowitz spectrum 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆     Wave spectrum for pure swell sea 
𝑆𝑆𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑠𝑠𝑠𝑠𝑠𝑠    Wave spectrum for pure wind sea 
𝑆𝑆(𝑓𝑓)     Frequency domain of the load spectrum 
𝑆𝑆(𝜔𝜔)     Angular frequency domain of the load spectrum 
𝑆𝑆(𝜃𝜃,𝜔𝜔)   Directional wave spectrum 
𝑆𝑆𝛯𝛯𝛯𝛯     Wave spectrum 
t    Time in seconds 
𝑇𝑇     Period 
𝑇𝑇𝐶𝐶     Contingency time 
𝑇𝑇𝑃𝑃    Peak Period 
𝑇𝑇𝑃𝑃𝑃𝑃     Spectral Peak Period 
𝑇𝑇𝑅𝑅     Return Period 
𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅     Reference Period 
𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃     Planned Operational Period 
𝑇𝑇𝑧𝑧     Average Zero-up-crossing period 
𝑟𝑟     Number of parameters 
𝑢𝑢     Threshold value 
𝑣𝑣     Degrees of freedom 
𝑣𝑣𝑒𝑒     Water exit velocity 
𝑣𝑣𝑟𝑟     Velocity between the object and the water particles 
𝑣𝑣𝑤𝑤     Water particle velocities  
V     Volume 
𝑉𝑉𝑉𝑉     Variance in letter terms 
𝑉𝑉𝑜𝑜     Volume of object 
𝑉𝑉�⃗      Vector 
W     Weight of an object submerged 
W0     Weight of object in air 
𝑦𝑦     Number 
𝑥𝑥     Value or motion vector 
𝑥̇𝑥     Velocity vector 
𝑥̈𝑥     Acceleration vector 
𝑥̅𝑥     Mean/average value 
𝑥𝑥𝑀𝑀𝑀𝑀𝑀𝑀    Most probable largest value 
𝑥𝑥𝑝𝑝    𝑥𝑥 given a probability of occurrence 𝑝𝑝 
𝑥𝑥𝑝𝑝,𝐿𝐿    Upper end of the confidence level given 𝑝𝑝 
𝑥𝑥𝑝𝑝,𝐻𝐻    Lower end of the confidence level given 𝑝𝑝 
𝑥𝑥𝑠𝑠    Significant response 
𝑧𝑧     Water depth 
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𝑧𝑧1−∝ 2�
= −𝑧𝑧∝

2�
   Standard normal variable 

 
Greek symbols 
𝛼𝛼     Alfa factor 
𝛽𝛽     Beta 
𝛽𝛽0     Frequency ratio 
𝛽𝛽1     Skewness 
𝛽𝛽2     Kurtosis 
𝛽̂𝛽     Beta estimator parameter 
∆    Delta 
∆𝐿𝐿𝐿𝐿𝐿𝐿     Motion amplitude limit 
∆𝑥𝑥     Pendulum motion 
∆𝑦𝑦    Motion amplitude 
∇     Laplace operator 
ε     Random phase angle 
𝜖𝜖     Wire strain 
𝛿𝛿     Deflection 
γ     Gamma or Euler number (0.57722) 
𝛾𝛾1     Shape parameter – Weibull distribution 
𝛾𝛾2     Peak enhancement factor 
𝛾𝛾𝑐𝑐     Consequence factor 
𝛾𝛾𝑑𝑑     Design factor 
𝛾𝛾𝑓𝑓      Load factor 
𝛾𝛾𝑚𝑚     Material factor 
𝛾𝛾𝑟𝑟     Reduction factor 
𝛾𝛾𝑠𝑠𝑠𝑠     Safety factor 
𝛾𝛾𝑡𝑡𝑡𝑡    Twist reduction factor 
𝛾𝛾𝑤𝑤    Wear and application factor 
𝛤𝛤     Gamma function 
𝜑𝜑      Velocity Potential 
𝜑𝜑𝑛𝑛     Phase angle 
𝜂𝜂     Vertical Motion 
𝜂𝜂𝑛𝑛     Vessel displacement 
𝜂𝜂𝑡𝑡𝑡𝑡     Crane tip motion 
𝜇𝜇     Mean value 
𝜇̂𝜇     Mean estimator value 
𝜆𝜆     Wave length 
𝜃𝜃     Angle/Wave direction 
𝜃𝜃𝑝𝑝     Main direction 
ρ     Density 
𝜎𝜎     Standard Deviation 
𝜎𝜎𝑝𝑝    Standard deviation for a given level of probability 
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𝜎𝜎𝑟𝑟      Standard deviation of the dynamic load 
𝜎𝜎𝑤𝑤    Standard deviation of water particle velocity 
𝜔𝜔     Angular wave frequency 
𝜔𝜔𝑝𝑝     Angular spectral peak frequency 
𝜔𝜔′     Non-dimensional frequency of oscillations 
𝜒𝜒     Chi 
𝜉𝜉     Free surface elevation 
𝜉𝜉0                                           Wave amplitude 
𝜍𝜍̇                                             Vertical velocity of the real sea surface 

 

 

 

 

 

XVII 
 



University of Stavanger  Introduction 

1. Introduction 

1.1 Background and motivation 
 
Today, DeepOcean is a service company providing subsea operations as inspection, 
maintenance and repair (IMR), survey, de-commissioning work, installations, pipeline 
repairs, and “Subsea, Umbilical, Riser and Flowline” (SURF) work. In order to keep a vessel 
fully operative during weather restricted operations, downtime caused by the environment 
(i.e. sea state, wind, current, and water depth issues) must be kept to a minimum. 

In general, operations offshore performed from an offshore construction- or survey vessel 
involve using either one or two remotely operated vehicles (ROVs) at a time. When 
launching and recovering an object through the upper water columns, critical drag- and 
slamming forces may occur due to large incoming waves and resulting water particle 
kinematics. The water columns where critical forces may occur is therefore in the literature 
often referred to as the splash zone. During a lifting phase, hydrodynamic forces on the object 
from an incoming wave may cause uplift with a corresponding slack wire. A wire undergoing 
slack is resulting in large forces, and limiting criteria will most often be related to the forces 
experienced after a snap load has occurred in the wire.  

As design loads are of major importance when lowering objects through the wave zone, 
accurate prediction of these loads may increase the number of suitable offshore vessels, 
increase the safety level of operations, and reduce the total cost of an operation. 

A way of finding a characteristic load is described in many regulations and standards all over 
the world. However, as the DNV standards are known to be very detailed and are the main 
source of information and regulations for especially Norwegian based offshore vessel 
companies, the DNV standards will often be used as a direct source when evaluating the 
procedure of finding a characteristic load.  

A characteristic load as defined in DNV-OS-H102 (2012, Section 1, C200) is “the reference 
value of load to be used in the determination of load effects. The characteristic load is 
normally based upon a defined fractile in the upper end of the distribution function for the 
load”.  

The characteristic load is in the DNV RP-H103 (2014) determined from a time domain 
simulation using a Rayleigh statistical distribution. This procedure is often lacking when 
considering lifting phases of less than 1 minute due to maximum loads not being Rayleigh 
distributed, and uncertainties in both the statistical confidence and the probability of 
exceeding a given characteristic load. Therefore, another method will be suggested in this 
thesis in order to establish a method for finding a characteristic load for lifting operations 
from a vessel through the splash zone offshore.  
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1.2 Objective 
 
The main objective of this thesis is to establish a procedure for finding characteristic load 
when lifting of light objects from a vessel through the splash zone. In DNV-RP-H103 (2014, 
chapter 9.1.1.6), a lifting operation may be divided into either a heavy- or a light lift 
operation. In a light lift, the lifted object weight is less that 1-2% of the vessel displacement, 
and the lifted object does not affect vessel motions. A heavy lift would then mean an object 
weight of more than 1-2% of the vessel displacement, typically more than 1000 tons. Often, 
heave compensation would not be possible for such cases, although other methods may be 
used to minimize dynamic loads. 

The purpose is thereby to establish a way of finding a sufficiently accurate and reliable 
characteristic load for light lifts in a short term wave condition performed by an offshore 
vessel. The analysis will be based on requirements described in the DNV standards, and 
statistical methods.  

Today, repeated simulations in the time domain are time consuming, and limitations on the 
simulation size have to be done. The DNV standards propose a Gumbel distribution for use 
when analyzing extreme value data (DNV-RP-C205, 2010, 10.7.3), which is a practice 
offshore vessel companies has taken as a standardized distribution for use. The alternative is 
to use a Rayleigh distribution in a long term stationary analysis (t > 30 minutes) of the wave 
process (DNV RP-H103, 2014, 3.4.3.5) and corresponding forces as the object is fixed in a 
selected position in the splash zone. These distributions will be scrutinized throughout the 
thesis and compared with some other well-known distributions that may prove better for 
simulations that have to be repeated in the time domain in order to find a suitable 
characteristic load where a given level of non-exceedance is maintained. 

A characteristic load is important for the design consideration of the lifted equipment and its 
rigging arrangement. It is also important in order to establish a correct value for the 
consideration of possible snap loads caused by a slack in the wire. Orcaflex analyses in the 
time domain are to be performed, where the results will be evaluated by use of a 
proposed/recommended statistical method in Excel.  
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1.3 Structure of the Report 
 
The thesis is divided into 11 chapters. In chapter 2, investigations on what the DNV standards 
says about analysis of weather restricted operations in a short term wave condition is 
conducted.  

Chapter 3 and 4 provide a discussion on relevant wave spectrums and different relevant 
statistical distributions, including how they are used in different scenarios, and how they 
relate to what the DNV standards recommend when finding a characteristic load through the 
use of simulation software.  

In chapter 5, the loads acting on an object in the splash zone is discussed.  

In chapter 6, the software programs used in this thesis are presented and explained. Also, the 
vessel and the ROV launch and recovery system (LARS) used are described. This is the basis 
for the input used in the time domain simulations in Orcaflex.  

Chapter 7 presents the analysis methodology relevant for this thesis, while chapter 8 presents 
the results obtained from the dynamic time domain calculations in Orcaflex. Further analyses 
of these results in order to find a characteristic load are here carried out using Excel 
spreadsheets.  

Chapter 9 addresses a discussion on the results obtained, while the conclusions of this thesis 
and recommendations for further work are given in chapters 10 and 11. 
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2. Offshore Lifting Operations in accordance with DNV 

2.1 DNV Standards 

DNV GL is an international certification society created in 2013 as a result of an 
amalgamation between Det Norske Veritas, DNV (Norway) and Germanischer Lloyd, GL 
(Germany). Although DNV GL is a recently merged company, its history goes all the way 
back to 1864 when DNV was established in Norway to lead the technical inspection and 
evaluation of Norwegian merchant vessels. DNV has developed rules and standards for 
ships and vessels for over a century (The Maritime Executive, 2016).  

On the other hand, Germanischer Lloyd was founded in 1867 by a group of 600 ship 
owners, ship builders and insurers. The classification society was created in order to 
ensure the safety of life and properties at sea, as well as prevent any pollution of the 
marine environment (Edumaritime, 2016).  

Today, DNV and Germanischer Lloyd form DNV GL which is divided into 5 divisions, 
respectively (1) Maritime; (2) Oil & Gas; (3) Energy; (4) Business Assurance, and (5) 
Software. As this thesis is directed towards (1) maritime, focus will be directed towards 
the current offshore standards (OS) and recommended practices (RP) for marine 
operations. The offshore standards provide acceptance criteria and technical provisions 
for general use by the offshore industry, while the recommended practices provide proven 
technology and engineering practice. Some of these (RP-/OS-) standards give marine 
service companies as DeepOcean AS guidelines on how to engineer their operations and 
equipment. Especially the VMO standards (DNV-OS-H101, DNV-OS-H102 and DNV-
OS-H201 through DNV-OS-H206) are important as they cover marine operations. 

In the following sections, a literature study of relevant DNV standards will be carried out, 
focusing on what DNV recommends when finding a characteristic load, and how this load 
shall be taken towards limiting factors of the lifting system used. Also, relevant statistics 
and sea state specifics will be scrutinized. 

 

2.1.1 Limit State design for lifting systems 

Generally, a limit state can be defined as a state in which the structure is unable to fulfill its 
purpose and satisfy the conditions for which it was meant to. As mentioned in chapter 1, a 
characteristic load is important for the design consideration of the lifted equipment and its 
rigging arrangement. When looking at a LARS/crane lift performed in an irregular sea state, 
some limiting safety criteria must be applied to the crane/LARS fundament. 

The ultimate limit state (ULS) criteria are related to the maximum load carrying capacity. 
ULS is one of the four criteria a structure has to cope with to ensure a safety level is as high 
as reasonable practical. The other criteria that is important for lifting at sea is the accidental 
limit state (ALS) criterion that copes with accidental loads, and ensures a 10-4 probability of 
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failure to be maintained. The other 2 criteria are the serviceability limit state (SLS), and the 
fatigue limit state (FLS).  

After finding the characteristic load from wave impacts, a consideration has to be assessed 
for whether the lifting arrangement and the object can handle the load impacts. To ensure that 
safety concerns are maintained, DNV-OS-H102 (2012, sec.5, A100) recommends using the 
LRFD (load- and resistance factor design) method. This method is a design code where 
partial load- and material factors reflects uncertainties in the structural design. By using this 
method, load components may be considered individually. 
 
Generally, one has to fulfill (DNV-OS-H102, 2012, sec.5, A400): 

 𝑆𝑆𝐷𝐷 ≤ 𝑅𝑅𝐷𝐷 (1) 

Where 𝑆𝑆𝐷𝐷 represents the design load, and 𝑅𝑅𝐷𝐷 represents the design resistance. 

As described, A characteristic load is in DNV-OS-H102 (2012, Section 1, C200) referred to 
as the value of loads to be used in the determination of load effects.  A characteristic 
resistance (Rc) refers to the reference value of the maximum (structural) resistance to be used 
in determination of the design resistance. “𝑅𝑅𝑐𝑐 may be calculated based on the characteristic 
values of the relevant parameters or determined by testing. Characteristic values should be 
based on the 5th or the 95th percentile of the test results, whichever is the most conservative” 
(DNV-OS-H102, sec.5, A500). 
 
One thereby gets: 
 ��𝛾𝛾𝑓𝑓,𝑖𝑖� ∗ 𝑆𝑆 <

𝑅𝑅𝐶𝐶
𝛾𝛾𝑚𝑚

,    𝑖𝑖 = 𝐺𝐺,𝑄𝑄,𝐷𝐷,𝐸𝐸,𝐴𝐴
𝑖𝑖

 (2) 

𝛾𝛾𝑓𝑓 : Load factor 
𝛾𝛾𝑚𝑚: Material factor  
𝑆𝑆 : Characteristic load component 
𝑅𝑅𝐶𝐶 : Characteristic resistance 
𝑖𝑖 ∶ Load Categories (See Table 1) 
 
With reference to the load factors, they shall comply with (1) ULS-A which takes into 
consideration extreme permanent and variable loads in regular environmental conditions, and 
(2) ULS-B where permanent loads with more extreme environmental conditions are present.  
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Table 1: Load factors (DNV-OS-H102, 2012, sec.5, B200) 

Load 
Conditions 

Load Categories 
G 
(permanent 
loads) 

Q (Variable 
functional 
loads) 

D (Deformation 
loads) 

E 
(Environmental 
loads) 

A (Accidental 
loads) 

A 1.3 1.3 1.0 0.7 NA 
B 1.0 1.0 1.0 1.3 NA 
 
The material factor (𝛾𝛾𝑚𝑚) is to be taken as minimum 1.15 for steel structures (DNV-OS-H102, 
Section 5, B401). 

It should however be noted that the main lifting system fundament most often not are of 
concern when evaluating lifts offshore. 

 

2.1.2 Limit State design for lifting wire and slings 
 
In order to check the capacity of the wire/rigging on a LARS or a crane, DNV proposes 
different methods for establishing a safety reduction factor (𝛾𝛾𝑠𝑠𝑠𝑠).  
 
Method 1 
 
The first method stated by DNV-OS-H205 (chapter 4.1.5.2) says that the maximum 
characteristic sling load (𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑆𝑆𝑆𝑆𝑆𝑆) should be less than:  

 
𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 <

𝑀𝑀𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝛾𝛾𝑠𝑠𝑠𝑠

 (3) 

Where 𝑀𝑀𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 gives the minimum breaking load of the sling(s) used. The nominal safety 
factor (𝛾𝛾𝑠𝑠𝑠𝑠) for slings and grommets are taken as the greatest of the following two products 
of partial factors (DNV-OS-H205, chapter 4.1.5.): 

𝛾𝛾𝑠𝑠𝑠𝑠 = 𝛾𝛾𝑓𝑓𝛾𝛾𝑐𝑐𝛾𝛾𝑟𝑟𝛾𝛾𝑤𝑤𝛾𝛾𝑚𝑚𝛾𝛾𝑡𝑡𝑡𝑡 
𝛾𝛾𝑠𝑠𝑠𝑠 = 2.3𝛾𝛾𝑟𝑟𝛾𝛾𝑤𝑤𝛾𝛾𝑡𝑡𝑡𝑡 

Where: 𝛾𝛾𝑓𝑓 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝛾𝛾𝑐𝑐 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝛾𝛾𝑟𝑟 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝛾𝛾𝑤𝑤 =
𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝛾𝛾𝑚𝑚 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝛾𝛾𝑡𝑡𝑡𝑡 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

The different factors are found in DNV-OS-H205, chapter 4.1.5.3 through 4.1.5.13. 
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Method 2 
 
The second method given in the DNV Standard for certification No.2.22 (2011, ch.2, section 
3, B505) says that the "Minimum breaking load B of steel wire ropes shall not be less than: 

 𝐵𝐵 = 𝑆𝑆𝐹𝐹 ∗ 𝑆𝑆 (4) 

Where S is the maximum load in the wire rope". The launch and recovery system (LARS) of 
an ROV consists of a tether (lifting wire) on top of either the TMS (Tether Management 
System), or directly onto the ROV (if no TMS). The minimum breaking load for a tether or a 
crane wire can be found by the certification certificate where the minimum breaking load 
(MBL) has been tested and verified in accordance to DNV-OS-H102 (2012) to obtain a 95% 
upper safety percentile. A load test is normally to be performed ones a year.  
 
DNV Standard for certification No.2.22 (2011, ch.2, section 3, B505) says that the "steel wire 
rope safety factor (𝑆𝑆𝐹𝐹) for running applications or forming part of sling and for mast stays, 
pendants and similar standing applications shall be the greater of: 
   
not less than 3 and: 
 

𝑆𝑆𝐹𝐹 =
104

0.885 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆[𝑘𝑘𝑘𝑘] + 1910
 (5) 

But not exceed 5. 
 
Or, 𝑆𝑆𝐹𝐹 = 2.3 ∗ 𝐷𝐷𝐷𝐷𝐷𝐷  
 
SWL is in this thesis the “Safe Working Load” of the lifting equipment. 
 
Conclusion: 

As shown, two methods may prove reliable when finding a safety factor for use on a 
crane/LARS wire or typical rigging equipment. Anyway, some distinctions must be drawn. 
The first method is mostly directed towards rigging equipment (i.e. slings, chains, shackles, 
etc.) and not for stationary lifting equipment on fixed installations (i.e. cranes/LARS/Module 
handling systems). Therefore, method 1 may be applicable for finding a safety factor for 
rigging equipment used for instance during a crane lift operation (i.e. Figure 1), while method 
2 should be used for the main crane/LARS lifting wire. 
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Figure 1: Illustration of a typical lifting arrangement using a vessel crane 
 
The second method proposed is more directed towards wire ropes for lifting appliances. Also, 
in the DNV Standard for certification No.2.22 (2011, section 11) it is stated that "the 
requirements given in Sec.6 for offshore cranes are valid for launch and recovery 
arrangement for ROV" as well. 

DNV Standard for certification No.2.22 (2011, section 3, B200) finds the dynamic 
amplification factor as 1.3 for jib cranes, in this thesis representative to the lifting 
arrangements used. Anyway, “for offshore lifting operations it is advisable to ascertain that 
the load stipulations include necessary reserves for dynamic amplifications that follow from 
lifting in waves” (DNV Standard for certification No.2.22, 2011, appendix E, A307). 
Therefore, certified de-rating tables are required for use during offshore lifting operations.  
 

2.2 Limiting Criteria’s  

According to the DNV standards, only one absolute limiting criterion has to be applied for 
lifting of structures offshore. This first criterion has to be fulfilled if a sea state is to be taken 
as acceptable. The second criterion stated in the summary below is a proposal based on 
research performed in chapter 8. This is a criterion that would make it more predictable to see 
if a lift is safe or not as the first criterion may have a very large statistical scatter. The third 
criterion is applicable in particular if no time domain software is being used, meaning 
simplified hand calculations (i.e. according to DNV-RP-H103, chapter 4). It should however 
be noted that a slack sling that is undergoing slack may result in large forces of high 
unpredictability. Therefore, this criterion should be applied to large and/or heavy lifting 
operations with high consequences if a failure occurs. 

It should also be noted that light objects (i.e. ROVs, light baskets, etc.) have a higher degree 
of slack in the wire during splash zone lifts. But as it is the resulting peak load that imposes a 
limitation, this criterion might be omitted by having a reliable method for handling dynamic 
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loads after a slack sling has occurred. This can be done by time domain calculation in a 
software program as Orcaflex. 

In addition, some other criteria (number 4-6) proposed by Sandvik and Kopsov (1995) may 
be applicable for some specific cases: 

1. The ultimate analysis states that the total structural capacity of a crane/LARS and its 
components shall not be exceeded more often than 1 per 10 000 operations (DNV-
OS-H101, 2011, Section 1, A201): 

𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚,𝑑𝑑𝑑𝑑𝑑𝑑 (𝑝𝑝=0.9999) < 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
 
It is noted by DNV-OS-H101 (2011, Section 1, A202) that the intention of the load-, 
safety- and material factors in the VMO Standard is to ensure a probability for 
structural failure less than 1/10 000 per operation. Anyway, when also considering 
operational errors the total probability of failure may increase.  
 

2. The most probable maximum dynamic tension in any lifting appliances for a safety 
level of x% shall not exceed the dynamic capacity of the crane, the design capacity of 
any lifting equipment, or the design capacity for the structure: 

 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚,𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝=𝑋𝑋𝑋𝑋%)

< 𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑑𝑑𝑑𝑑𝑑𝑑.𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ;𝐹𝐹𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐;𝐹𝐹𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (6) 

With regards to the safety level, research is performed in chapter 8 to give a 
conclusion on a suitable level. 
 

3. The most probable minimum dynamic tension in the crane wire/rigging shall be larger 
than 10% of the static tension in the crane wire/rigging in air (DNV-RP-H103, 2014, 
4.4.3.3): 

𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≥ 0.1 × 𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  
 

4. For deck operations, the pendulum motion (∆𝑥𝑥) and motion amplitude (∆𝑦𝑦) shall be 
within safe limits (∆𝐿𝐿𝐿𝐿𝐿𝐿) (Sandvik and Kopsov, 1995, 5c): 

∆𝑥𝑥∆𝑦𝑦< ∆𝐿𝐿𝐿𝐿𝐿𝐿 
 
This criterion may be addressed by using preventive measures as bumper frames, 
tugger winches, or manually handling by ropes.  
 

5. If heave compensation is used during the operation, the limiting wave height, 𝐻𝐻𝑠𝑠, 
shall be less than the limiting design wave height 𝐻𝐻𝑠𝑠,𝑙𝑙𝑙𝑙𝑙𝑙 for the heave compensation 
system (Sandvik and Kopsov, 1995, 5e): 

𝐻𝐻𝑠𝑠 > 𝐻𝐻𝑠𝑠,𝑙𝑙𝑙𝑙𝑙𝑙 
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As this criterion is a very general recommendation usually not specified for more than 
a few wave periods/heights, a more detailed analysis covering the system limitations 
(max allowable crane tip amplitude, velocity and acceleration) should be performed. 
 

6. During operations with long duration and many lifts, the number of force variation 
cycles shall be within any limits determined from low cycle fatigue analysis of the 
main load carrying elements (crane, structure and installation equipment) (Sandvik 
and Kopsov, 1995, 5d): 

𝑁𝑁 < 𝑁𝑁𝐿𝐿𝐿𝐿𝐿𝐿 
 

2.3 The Alfa factor criterion 

From the limiting criteria described in the last chapter, limiting wave conditions are found. 
Before a lifting operation is to be carried out offshore, a wave forecast and, if possible, wave 
monitoring shall be considered. But, as a wave forecast/monitoring does not include 
uncertainties in the data, DNV-RP-H101 (2011) states that an Alfa-factor should be applied 
to cover for any deviates between the forecasted and the real ocean waves, meaning: 
 

𝛼𝛼 =
𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚

𝐻𝐻max _𝑊𝑊𝑊𝑊
 (7) 

Where 𝐻𝐻max _𝑊𝑊𝑊𝑊 is the maximum forecasted wave height, and 𝐻𝐻max  is the maximum wave 
height with a 10-4 probability for exceedance during the period under consideration. 
Generally, the 𝛼𝛼-factors are applicable for weather restricted operations, meaning operations 
with a reference period (𝑇𝑇𝑅𝑅) of less than 96 hours, and a planned operational period (𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃) of 
less than 72 hours: 
 𝑇𝑇𝑅𝑅 = 𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝑇𝑇𝐶𝐶 (8) 

Where 𝑇𝑇𝐶𝐶 is the contingency time to cover for uncertainties done during the assessment of 
𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃, see DNV-RP-H101 (2011). 

Further, as the waves/weather is hard to predict 100% accurate, restrictions must be applied 
to the operational limit criterion (𝑂𝑂𝑂𝑂𝑙𝑙𝑙𝑙𝑙𝑙) found from analysis: 

 𝑂𝑂𝑂𝑂𝑊𝑊𝑊𝑊 = 𝛼𝛼 ∗ 𝑂𝑂𝑂𝑂𝑙𝑙𝑙𝑙𝑙𝑙 (9) 

Or in wave terminology as: 
 𝐻𝐻𝑠𝑠,𝑂𝑂𝑂𝑂 = 𝛼𝛼 ∗ 𝐻𝐻𝑆𝑆,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (10) 

Where 𝐻𝐻𝑆𝑆,𝑂𝑂𝑂𝑂 is the maximum significant operational wave height to be allowed during 
operation, and 𝐻𝐻𝑆𝑆,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 is the significant design wave height found from analysis. 

Some of the factors that are proposed by DNV-RP-H101 (2011) for use in the Norwegian Sea 
area are shown in Table 2 below: 
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Table 2: Norwegian Sea alpha factors based on one forecasting source and no meteorologist on site (DNV-
RP-H101, 2011) 

Operational 
Period [hours] 

Design Wave Height [m] 

𝐻𝐻𝑆𝑆 = 1 
1 < 𝐻𝐻𝑆𝑆
< 2 

𝐻𝐻𝑆𝑆 = 2 
2 < 𝐻𝐻𝑆𝑆
< 4 

𝐻𝐻𝑆𝑆 = 4 
4 < 𝐻𝐻𝑆𝑆
< 6 

𝐻𝐻𝑆𝑆 ≥ 6 

𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃 ≤ 12 0.65 
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0.76 
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0.79 
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0.80 
𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃 ≤ 24 0.63 0.73 0.76 0.78 
𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃 ≤ 36 0.62 0.71 0.73 0.76 
𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃 ≤ 48 0.60 0.68 0.71 0.74 
𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃 ≤ 72 0.55 0.63 0.68 0.72 

 
It should however be noted that these factors may be increased by having either (1) more 
forecasting sources and inputs, meteorologist(s) on site, or (3) monitoring instruments or 
sources that can measure the weather condition and thereby cope with uncertainties. For more 
information, reference is made to DNV-RP-H101 (2011). 
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3. Statistics 

3.1 Statistical distributions 

In order to describe different stochastic and ergodic phenomena, statistics are used to 
summarize available data sets. This is done by a statistical function which according to 
Investopedia (2016) is:  

"A function that describes all the possible values and likelihoods that a random variable can 
take within a given range. This range will be between the minimum and maximum 
statistically possible values, but where the possible value is likely to be plotted on the 
probability distribution depends on a number of factors, including the distribution mean, 
standard deviation, skewness and kurtosis". 

Different statistical functions may be used to represent data sets (Figure 3). However, some 
of them are known to be more representative for cases involving wave heights and 
corresponding wire forces. A few of them will briefly be introduced below. 

 

3.1.1 Continuous value distributions 
 
When evaluating a wave process in the time domain, one often assumes that it follows a 
Gaussian distribution when a stationary random stochastic and ergodic process goes towards 
infinity. In a Gaussian process, every instance of a wave elevation may be assumed to be 
normally distributed. A normal distribution (Figure 2) has the following probability density 
function (PDF): 
 

𝑓𝑓(𝑥𝑥) =
1

𝜎𝜎√2𝜋𝜋
𝑒𝑒−

(𝑋𝑋−𝜇𝜇)
2𝜎𝜎2  (11) 

 
Where 𝜇𝜇 represents the mean expectation of the distribution, and 𝜎𝜎 is the standard deviation 
of the process. If 𝜇𝜇 = 0 and 𝜎𝜎 = 1, the distribution is called a standard normal distribution. 
The standard normal distribution has skewness (𝛽𝛽1) and kurtosis (𝛽𝛽2) values equal to 0. 

 
Figure 2: Probability density function (PDF) given a normally distributed data set 
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3.1.2 Peak value distributions 

In this thesis, the maximum wire tension is the quantity of interest. The wire tension is 
assumed to be a stochastic process. Summarizing all global maximums in the wire over a 
sufficient time period, the statistical distribution may be assumed to follow the same 
distribution as the wave height process, namely a Weibull distribution (Myrhaug, 2014). This 
is based on the assumption that the wire follows the wave process, and other phenomena such 
as snatch forces or quadratic damping are not present or negligible.  

The Weibull distribution is a continuous probability distribution, meaning that variables can 
take any value. The Weibull distribution is also commonly used in reliability and life data 
analysis due to its adaptability. The adaptability for a three-parameter Weibull distribution is 
created by adjusting the shape (𝑘𝑘), scale (𝛽𝛽), and 𝛾𝛾1-parameter values. The probability 
density function reads: 
 

𝑓𝑓(𝑥𝑥;𝛽𝛽,𝑘𝑘) =
𝑘𝑘
𝛽𝛽
�
𝑥𝑥 − 𝛾𝛾1
𝛽𝛽

�
𝑘𝑘−1

𝑒𝑒

−

⎝

⎜
⎛(𝑥𝑥−𝛾𝛾1)

𝛽𝛽�

⎠

⎟
⎞

𝑘𝑘

,   𝑥𝑥 ≥ 0 
(12) 

Integrating the Weibull PDF function, the cumulative distribution function (CDF) reads: 

 
 

𝐹𝐹(𝑥𝑥;𝛽𝛽, 𝑘𝑘) = 1 − 𝑒𝑒

−

⎝

⎜
⎛(𝑥𝑥−𝛾𝛾1)

𝛽𝛽�

⎠

⎟
⎞

𝑘𝑘

,   𝑥𝑥 ≥ 0 

(13) 

The Weibull distribution is from here commonly adapted to form either the exponential 
distribution (𝑘𝑘 = 1), or the Rayleigh distribution (𝑘𝑘 = 2). When one considers individual 
wave heights/wire tension in a stochastic process, the minimums/maximums are assumed to 
be statistically independent, and follow a Rayleigh distribution (Myrhaug, 2014). 

3.1.3 Extreme value distributions 
 
When considering a stochastic process over a longer time period, the smallest/largest among 
all outcomes in that process is considered to be an extreme value. Summing up many extreme 
values in with the same distribution, the data set can be described one of the following 
generalized extreme value distributions (Haver et. al, 1980): 

1. Exponential type distributions which results in a Gumbel extreme value distribution. 
A perfect Gumbel distribution has skewness, 𝛽𝛽1 = 1.3 and kurtosis, 𝛽𝛽2 = 5.4. 
Examples of exponential type distributions are the normal, the log-normal, and the 
Rayleigh. 

2. Distributions with finite moments (i.e. the Cauchy distribution) resulting in a Frechet 
extreme value distribution. 

Bounded distributions (i.e. the beta distribution) resulting in a Weibull extreme value 
distribution. 
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Figure 3: Illustration of an irregular stochastic process for a given time unit 
 

3.2 Sea State Specifics 
 
As an ROV launch often is done through the splash zone usually is done in 10-20 seconds, a 
short term wave condition applies. The DNV-RP-C205 (2010, 3.5.1) defines a short term 
wave conditions as an assumption that a sea state is stationary for a duration of 20 minutes to 
3-6 hours. By having a stationary sea surface one may find a characteristic set of 
environmental parameters such as the significant wave height (𝐻𝐻𝑠𝑠) defined as the average of 
the highest third waves, and the peak period (𝑇𝑇𝑝𝑝) which is the wave period with the highest 
energy.  
 

3.2.1 Wave spectra 

Real sea water is compressible and inhomogeneous. However, this and some other features 
have only minor impact on an object during the splash zone lifting phase. Therefore, the 
potential flow theory basis for Orcaflex calculations is based on some simplifications of the 
real environment (Gudmestad, 2015):  

i. The seawater is incompressible and homogeneous, ∇ ∗ 𝑉𝑉�⃗ = 0 . 
ii. Non-rotational flow, ∇ × 𝑉𝑉�⃗ (𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) = 0, where 𝑉𝑉�⃗ (𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) is the velocity vector of 

the water particle at time 𝑡𝑡 at the point (𝑥𝑥,𝑦𝑦, 𝑧𝑧) and ∇ is the Laplace operator. This is 
an ideal fluid with no shear forces between particles. 

iii. No water flow through the bottom, 𝑊𝑊|𝑧𝑧=−𝑑𝑑 = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑧𝑧=−𝑑𝑑

= 0, where 𝑑𝑑 is water depth in 

negative 𝑧𝑧-direction. 
iv. A water particle at the surface will always remain at the surface, 𝜉𝜉 = 𝜉𝜉(𝑥𝑥, 𝑡𝑡).  
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v. The pressure at the surface is constant and equal to the atmospheric pressure, 𝑝𝑝 = 𝑝𝑝0 
for all 𝑧𝑧 = 𝜉𝜉(𝑥𝑥, 𝑡𝑡). 

vi. Wave form invariant in time and space.  
vii. Coriolis effect neglected 

In order to check that these assumptions are correct, one should optimally use real data to 
solve the equations. If the error between the calculated and measured data is negligible, the 
approximation is correct. Next, data from open sea is obtained and the equations are solved to 
establish under what conditions our approximations are still valid.  

According to these simplifications, the wave specifics of long crested sinusoidal waves 
(Figure 4) given an airy/linear wave theory on deep water (𝜆𝜆 < 2𝑑𝑑) may be taken as in Table 
3. 

Table 3: Description of regular long crested waves on deep water (Gudmestad, 2015) 
 Deep water (𝜆𝜆 < 2𝑑𝑑)  
Wave number 𝑘𝑘𝑖𝑖 = 2𝜋𝜋

𝜆𝜆�  
Wave angular frequency 𝜔𝜔 = 2𝜋𝜋

𝑇𝑇�  
Wave frequency 𝑓𝑓 = 1

𝑇𝑇�  

Velocity potential    𝜑𝜑 =
𝑔𝑔𝜉𝜉0
𝜔𝜔

𝑒𝑒𝑘𝑘𝑖𝑖𝑧𝑧cos (𝜔𝜔𝜔𝜔 − 𝑘𝑘𝑖𝑖𝑥𝑥) 

Connection between wave number 𝑘𝑘𝑖𝑖 and 
circular frequency 𝜔𝜔 

𝜔𝜔2

𝑔𝑔
= 𝑘𝑘𝑖𝑖 

Connection between wavelength 𝜆𝜆 and wave 
period 𝑇𝑇 (Dispersion relation) 

𝜆𝜆 =
𝑔𝑔

2𝜋𝜋
𝑇𝑇2 

Wave profile 𝜉𝜉 = 𝜉𝜉0sin (𝜔𝜔𝜔𝜔 − 𝑘𝑘𝑖𝑖𝑥𝑥) 
Dynamic pressure 𝑝𝑝𝑑𝑑 = 𝜌𝜌𝜌𝜌𝜉𝜉0𝑒𝑒𝑘𝑘0𝑧𝑧sin (𝜔𝜔𝜔𝜔 − 𝑘𝑘𝑖𝑖𝑥𝑥) 

Phase velocity 𝑣𝑣 = 𝜆𝜆
𝑇𝑇� = 𝜔𝜔

𝑘𝑘𝑖𝑖�  

x-component of velocity 𝑣𝑣𝑥𝑥 = 𝜔𝜔𝜉𝜉0𝑒𝑒𝑘𝑘𝑖𝑖𝑧𝑧sin (𝜔𝜔𝜔𝜔 − 𝑘𝑘𝑖𝑖𝑥𝑥) 
z-component of velocity 𝑣𝑣𝑧𝑧 = 𝜔𝜔𝜉𝜉0𝑒𝑒𝑘𝑘𝑖𝑖𝑧𝑧cos (𝜔𝜔𝜔𝜔 − 𝑘𝑘𝑖𝑖𝑥𝑥) 
x-component of acceleration 𝑎𝑎𝑥𝑥 = 𝜔𝜔2𝜉𝜉0𝑒𝑒𝑘𝑘𝑖𝑖𝑧𝑧cos (𝜔𝜔𝜔𝜔 − 𝑘𝑘𝑖𝑖𝑥𝑥) 
z-component of acceleration 𝑎𝑎𝑧𝑧 = −𝜔𝜔2𝜉𝜉0𝑒𝑒𝑘𝑘𝑖𝑖𝑧𝑧sin (𝜔𝜔𝜔𝜔 − 𝑘𝑘𝑖𝑖𝑥𝑥) 
Wave Length (𝜆𝜆): The wave length λ is the distance between successive crests. 
Wave Period (𝑇𝑇): Time for two successive crests to pass a particular point. 
𝜉𝜉0: Wave amplitude 
𝑔𝑔: Acceleration of gravity 
𝑡𝑡: Time variable 
𝑥𝑥: Direction of wave propagation 
𝑧𝑧: Vertical coordinate with positive upwards 
𝑝𝑝𝑑𝑑 − 𝜌𝜌𝜌𝜌𝜌𝜌 + 𝑝𝑝0: Total pressure in the fluid 
𝑝𝑝0 : Atmospheric pressure 
𝑝𝑝𝑑𝑑: Pressure at depth (d) 
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Figure 4: Illustration of some wave parameters of a regular sinusoidal wave profile 
 
Whereas long crested waves are based on linear theory, the real ocean environment is 
irregular and random in nature. If one assumes that waves are propagating in the same 
direction, the real sea surface can be expressed by a linear superposition of a series of regular 
sinusoidal waves. This is called short crested waves and can be described as (Faltinsen, 
1990): 
 

𝜉𝜉 = �𝜉𝜉0𝑖𝑖sin (𝜔𝜔𝑖𝑖𝑡𝑡 − 𝑘𝑘𝑖𝑖𝑥𝑥 + 𝜀𝜀𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 (14) 

Where 𝑛𝑛 is the number of regular wave components.  
 εi is the random phase angle considered to be uniformly distributed between 0 and 2π. 

Wave elevation is commonly assumed Gaussian distributed with a mean value of 0 and 
variance σ2. Looking at a shorter time frame, usually 3 hours, the wave process may be 
considered stationary, meaning that within this period the mean value and variance of the 
process will remain constant.  
 
When evaluating the force response of a structure, an appropriate method for finding a 
correct value must be established. For simplicity, a regular sinusoidal wave with a given 
period and height may be used when assessing the extreme response. However, more 
accuracy may be needed. Therefore, for short term sea states, a random irregular ocean wave 
can be described by an energy density spectrum where statistical parameters are present. A 
wave spectrum may be given in a table form, or as a parameterized analytic formula. The 
wave spectrum (𝑆𝑆𝛯𝛯𝛯𝛯) can then be used to describe the energy content of a wave and its 
distribution over a frequency range of the random wave.  
 
In order to decide on a suitable spectra, information on the geographical area, local 
bathymetry, and environmental conditions (wind, current, tides and general weather 
considerations) contributing to the sea state characteristics needs to be assessed (DNV-RP-
C205, 2010, 3.5.2.2). 
A wave spectrum is defined in such way that (Haver, 2015): 
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𝑆𝑆𝛯𝛯𝛯𝛯(𝜔𝜔𝑖𝑖) =

𝜉𝜉0,𝑖𝑖
2

2𝛥𝛥𝛥𝛥
 

(15) 

Where 𝜉𝜉0,𝑖𝑖 and 𝜔𝜔 is the amplitude and angular wave frequency in rad/s of wave component i, 
whereas 𝛥𝛥𝛥𝛥 is the difference between successive wave frequencies: 

 𝛥𝛥𝛥𝛥 =
𝜔𝜔𝑛𝑛 − 𝜔𝜔1

𝑛𝑛 − 1
 (16) 

Or as a frequency wave spectrum in Hertz as: 

 𝑆𝑆𝛯𝛯𝛯𝛯(𝑓𝑓𝑖𝑖) = 𝑆𝑆𝛯𝛯𝛯𝛯(𝜔𝜔𝑖𝑖) ∗ 2𝜋𝜋 (17) 

The variance of the sea state is equal to the first order moment: 

 
𝑀𝑀0 = 𝜎𝜎𝛯𝛯𝛯𝛯2 = � 𝜔𝜔0𝑆𝑆𝛯𝛯𝛯𝛯(𝜔𝜔)𝑑𝑑𝑑𝑑 = �𝑆𝑆𝛯𝛯𝛯𝛯(𝜔𝜔𝑖𝑖) ∗ ∆𝜔𝜔

𝑛𝑛

𝑖𝑖=1

∞

0

 (18) 

Several ocean spectrums are created and used to cope with different scenarios. They all build 
on observed properties of ocean waves, and are therefore empirical in nature. In Orcaflex, 
five different spectrums can be used to describe irregular waves: JONSWAP, the ISSC 
model, Ochi-Hubble, Torsethaugen, and Gaussian swell. Other common spectrums are the 
Pierson-Moskowitz and the Brethschneider. The main difference between these is that for a 
given energy content, the frequency band distributes the energy unequally. This means that 
different spectrums give different responses of a structure/object for the same wave energy.  

  
Before going in depth on some of the most commonly used spectrums for lifting applications 
offshore, some relevant definitions must be established to understand the models fully. 
 
Wind sea: A wind sea refers to a sea state developed by a local wind field. A wind sea may 
be further divided into either a growing wind sea or fully developed wind sea. A growing 
wind sea starts when turbulence in the wind produces random pressure fluctuations at the sea 
surface, thereby producing small waves. These small waves will eventually grow as the wind 
continues to produce pressure differences along the wave profiles. A fully developed wind 
sea is a condition where the wind has blown steadily for a long time 
(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 > 10000 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) over a large area (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 > 5000 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑠𝑠), and 
equilibrium of the sea state has been reached. The spectrum form will then not change 
(Gudmestad, 2015).  
 
Swell sea: A swell sea can be viewed as the period after a wind sea has been generated, and 
the local wind strength is reduced or moved to another area. Often, this type of sea state is 
characterized by low frequencies and long wave periods compared to the height of the 
corresponding waves. The dispersion relationship (Table 3) gives that swell waves are 
traveling faster than wind generated waves.  
 
Combined sea: A combined sea state is a combination between wind- and swell sea. This sea 
state is most often the case and should be used for most problems under consideration.  
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3.2.1.1 Pierson-Moskowitz spectrum 
 
The Pierson-Moskowitz spectrum is developed by Pierson and Moskowitz (1964). The 
spectrum is derived from data collection in the North Atlantic Ocean, and is representative 
for fully developed sea states in an open sea condition. To check whether the sea state is fully 
developed or not, Haver (2013, p.149) proposed the following formula for checking if the 
spectrum is suitable: 
 𝑡𝑡𝑝𝑝 ≈ 5�ℎ𝑠𝑠 (19) 

The Pierson-Moskowitz spectrum has the shape (DNV-RP-H103, 2014, 2.2.6.2): 
 
 

𝑆𝑆𝑃𝑃𝑃𝑃(𝜔𝜔) =
5

16
∗ 𝐻𝐻𝑠𝑠2𝜔𝜔𝑝𝑝4 ∗ 𝜔𝜔−5 ∗ 𝑒𝑒𝑒𝑒𝑒𝑒 �−

5
4
�
𝜔𝜔
𝜔𝜔𝑝𝑝
�
−4

� 
(20) 

Where 𝜔𝜔 is the wave angular frequency in rad/s, and 𝜔𝜔𝑝𝑝 is the angular spectral frequency in 

rad/s (2𝜋𝜋
𝑇𝑇𝑝𝑝� ). 

 
The relation between 𝑇𝑇𝑧𝑧 and 𝑇𝑇𝑝𝑝 can be taken as 𝑇𝑇𝑝𝑝 = 1.4𝑇𝑇𝑧𝑧 (DNV-RP-H103, 2014, 4.3.2.1). 
 

3.2.1.2 JONSWAP spectrum 
 
The JONSWAP spectrum (Joint North Sea Wave Observation Project), where theory is 
proposed by Hasselman (1973), is at present time the most commonly used spectrum for the 
North Sea area. The spectrum is formulated as a modification of the Pierson-Moskowitz 
spectrum for a developing sea state in a fetch limited situation (Figure 5). The difference is 
that in the JONSWAP spectrum waves continue to grow with distance (or time), given by the 
𝐴𝐴𝛾𝛾-term. Also, the peak (𝛾𝛾2) is more pronounced and leads to nonlinear interactions 
(Gudmestad, 2015). It is described using five parameters, where only two of them, 𝜔𝜔𝑝𝑝 and 
𝐻𝐻𝑆𝑆, varies when the spectrum has been applied to a location. The spectrum is modified from 
the PM spectrum as (DNV-RP-H103, 2014, 2.2.6.2): 
 

𝑆𝑆𝐽𝐽(𝜔𝜔) = 𝐴𝐴𝛾𝛾 ∗ 𝑆𝑆𝑃𝑃𝑃𝑃(𝜔𝜔) ∗ 𝛾𝛾2
𝑒𝑒𝑒𝑒𝑒𝑒

�−0.5�
𝜔𝜔−𝜔𝜔𝑝𝑝
𝜔𝜔p𝜎𝜎

�
2
�

 (21) 

 Where 𝜎𝜎 is given as (Hasselmann, 1973): 
 
 

𝜎𝜎 = �
0.07 𝑓𝑓𝑓𝑓𝑓𝑓 𝜔𝜔 ≤ 𝜔𝜔𝑝𝑝
0.09 𝑓𝑓𝑓𝑓𝑓𝑓 𝜔𝜔 ≥ 𝜔𝜔𝑝𝑝

 
(22) 

If no particular peak value has been applied, the peak enhancement factor can be calculated 
from DNV-RP-H103 (2014, 2.2.6.9): 
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𝛾𝛾2 =

⎩
⎪⎪
⎨

⎪⎪
⎧ 5                              𝑓𝑓𝑓𝑓𝑓𝑓 

𝑡𝑡𝑝𝑝
ℎ𝑠𝑠
≤ 3.6

𝑒𝑒𝑒𝑒𝑒𝑒 �5.75 − 1.15
𝑡𝑡𝑝𝑝
�ℎ𝑠𝑠

�  𝑓𝑓𝑓𝑓𝑓𝑓 3.6 <
𝑡𝑡𝑝𝑝
�ℎ𝑠𝑠

< 5

1                            𝑓𝑓𝑓𝑓𝑓𝑓 
𝑡𝑡𝑝𝑝
�ℎ𝑠𝑠

> 5 

 (23) 

𝐴𝐴𝛾𝛾2 in a normalizing factor taken as 1 − 0.287ln (𝛾𝛾2). 
 
Further, 𝑇𝑇𝑧𝑧 is related to 𝑇𝑇𝑝𝑝 by the following relation (DNV-RP-H103, 2014, 2.2.6.8): 
 𝑇𝑇𝑧𝑧

𝑇𝑇𝑝𝑝
= 0.6673 + 0.0503𝛾𝛾2 − 0.006230𝛾𝛾22 + 0.0003341𝛾𝛾23 (24) 

Based on Haver (2013, p.118), the JONSWAP may be applicable for sea states not far from 
the relation given by Torsethaugen (2004): 

 
𝑡𝑡𝑝𝑝0 = 0.78𝑓𝑓𝑒𝑒

1
6ℎ𝑠𝑠

1
3 (25) 

Where 𝑓𝑓𝑒𝑒 is the effective fetch length.  

Typically, the JONSWAP is applicable for (DNV-RP-H103, 2014, 2.2.6.7): 

 3.6 < 𝑇𝑇𝑝𝑝
�𝐻𝐻𝑠𝑠
� < 5 (26) 

 
Figure 5: PM and JONSWAP wave spectrums for Hs=3m and Tp=5s 
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3.2.1.3 Torsethaugen spectrum 
 
The Torsethaugen spectrum, developed by Torsethaugen (2004) is based on measurements 
from the Norwegian Continental Shelf (Statfjord and Haltenbanken). The spectrum is based 
on a superposition of two JONSWAP spectra fitted together; one representing wind sea while 
the other is representing swell sea. These two spectra are then divided by the spectral peak 
period (𝑇𝑇𝑃𝑃𝑃𝑃) to form a fully developed sea at the location under consideration. 
 
One has that for: 

• Wind dominating sea: 𝑇𝑇𝑃𝑃 < 𝑇𝑇𝑃𝑃𝑃𝑃 
• Swell dominated sea: 𝑇𝑇𝑃𝑃 > 𝑇𝑇𝑃𝑃𝑃𝑃 

 
This spectrum is dependent upon the significant wave height (𝐻𝐻𝑆𝑆) and the spectral peak 
period (𝑇𝑇𝑃𝑃). There is also need for complex residual parameters. In order to avoid this 
complexity, Torsethaugen and Haver (2004) developed a new spectral model sumarized in 
Appendix 1. The reason for this simplified model was to reduce the use of free parameters 
only of concern at lower sea states, thereby not applicable for design loads. Therefore, the 
spectrum proposed was only defined by 𝐻𝐻𝑆𝑆 and 𝑇𝑇𝑃𝑃, parameterized by regression analysis and 
curve fitting.   
 
When analysing a sea state using a spectrum, a long crested sea state may be used with good 
results. Anyway, the effects of short crested waves where different wave directions are taken 
into accounted may be important and affect the results obtained in a time domain analysis 
(DNV-RP-H103, 2014, 4.3.3.8). A uni-directional spectra reads (DNV-RP-H103, 2014, 
2.2.7.1): 
 𝑆𝑆(𝜃𝜃,𝜔𝜔) = 𝑆𝑆(𝜔𝜔)𝐷𝐷(𝜃𝜃,𝜔𝜔) = 𝑆𝑆(𝜔𝜔)𝐷𝐷(𝜃𝜃) (27) 

Where 𝜃𝜃 is the angle between the direction of elementary wave trains and gives the main 
direction of the short crested wave system.  
 
A double peaked wave spectrum are then taken as (DNV-RP-H103, 2014, 2.2.7.1): 
 

 
𝑆𝑆(𝜃𝜃,𝜔𝜔) = 𝑆𝑆𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔)𝐷𝐷𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃) + 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔)𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃) 

(28) 

Where: 
𝑆𝑆𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔): Wave spectrum for pure wind sea 
𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔): Wave spectrum for pure swell sea 
 
The directional spreading of the spectrum is: 

 𝐷𝐷(𝜃𝜃) =
𝛤𝛤 �1 + 𝑛𝑛

2�

√𝜋𝜋𝛤𝛤 �1
2 + 𝑛𝑛

2�
𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛(𝜃𝜃 − 𝜃𝜃𝑝𝑝) (29) 
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Where 𝛤𝛤 is the Gamma function, and �𝜃𝜃 − 𝜃𝜃𝑝𝑝� ≤
𝜋𝜋
2
. The constant 𝑛𝑛 is typically 2 or 4 for 

wind sea, wheras for swell it is to be taken as equal to or greater that 6 (DNV-RP-C205, 
2010, 3.5.8.6). 
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4. Extreme loads and responses  
 
When considering responses in a given sea state, separate analysis from repeated simulations 
should be carried out to determine the conditional distribution of the maximum responses.  
Using the analogy of continuous probability distributions, the cumulative density function of 
the extreme response for an irregular short term sea state can be expressed as (Cheng, 2002): 
 

𝐹𝐹(𝑥𝑥) = � 𝐹𝐹(𝑥𝑥|𝑈𝑈�,𝐻𝐻𝑠𝑠,
 

𝐻𝐻𝑠𝑠,𝑇𝑇𝑧𝑧,𝑈𝑈�

𝑇𝑇𝑧𝑧) ∗ 𝑓𝑓(𝑈𝑈�,𝐻𝐻𝑠𝑠,𝑇𝑇𝑧𝑧)𝑑𝑑𝑈𝑈�𝑑𝑑𝐻𝐻𝑠𝑠𝑑𝑑𝑇𝑇𝑧𝑧 (30) 

Where: 
𝑥𝑥 is the response variable 
𝑓𝑓(𝑈𝑈�,𝐻𝐻𝑠𝑠,𝑇𝑇𝑧𝑧) is the joint probability density for the parameters; and 
𝐹𝐹(𝑥𝑥|𝑈𝑈�,𝐻𝐻𝑠𝑠,𝑇𝑇𝑧𝑧) is the conditional distribution of the maximum response. 
 
As some operations may last for a long-term period (i.e. more than 3 hours), it can be 
assumed that the different (stationary) sea states are independent and the probability of non-
exceedance for a maximum response in a number of sea states is therefore: 

 𝐹𝐹(𝑥𝑥) = (𝐹𝐹(𝑥𝑥))𝑁𝑁 (31) 

Where 𝑁𝑁 is the number of independent sea states in a period of time and 𝑥𝑥 is the maximum 
response in 𝑁𝑁 number of sea states. 
 

4.1 Characteristic Most Probable Largest Load   

When evaluating the characteristic largest load, the total load is either a combination of a 
static and a dynamic force component (where no slack in wire), or a combination of static- 
and snap forces from a wire that has undergone slack. According to DNV-RP-H103 (2014, 
3.4.3), by assuming that incoming waves and the resulting dynamic peak loads follows a 
Rayleigh distribution, the most probable largest maximum load, 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚, may be found by the 
following calculation: 

 
𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜎𝜎𝑟𝑟�2𝑙𝑙𝑙𝑙 � 𝑡𝑡

𝑇𝑇𝑧𝑧
� = 𝜎𝜎𝑟𝑟�2𝑙𝑙𝑙𝑙(𝑛𝑛�)     [𝑁𝑁]  (32) 

Where 𝑡𝑡 is the time under consideration in seconds and 𝑛𝑛� is the number of maxima observed. 
𝜎𝜎𝑟𝑟 is the standard deviation of the load responses (𝑥𝑥𝑖𝑖): 

 

𝜎𝜎𝑟𝑟 = �
1
𝑁𝑁
�(𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)2
𝑁𝑁

𝑖𝑖=1

 (33) 

The average zero-up-crossing period 𝑇𝑇𝑧𝑧 represents the average time interval between two 
successive up-crossings of the load process: 
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𝑇𝑇𝑧𝑧 = 2𝜋𝜋 ∗ �

𝑚𝑚0

𝑚𝑚2
  (34) 

Where the moments of the load spectrum reads: 

 
𝑚𝑚𝑛𝑛 = � 𝜔𝜔𝑛𝑛𝑆𝑆(𝜔𝜔)𝑑𝑑𝜔𝜔𝑛𝑛 = � 𝑓𝑓𝑛𝑛𝑆𝑆(𝑓𝑓)𝑑𝑑𝑑𝑑

∞

0
,    𝑛𝑛 = 0,1,2, … .

∞

0

 (35) 

Anyway, DNV-RP-H103 (2014, 3.4.3.5) also gives us the guidance note that: 
“In most dynamic non-linear cases the response does not adequately fit the Rayleigh 
distribution. The estimated maximum load should therefore always be compared with the 
largest observed load in the simulation”. 
 

4.2 Study of Most Probable Largest Load 
 
To evaluate the most probable largest load as described by DNV, one can consider that a 
variable is of an additive nature, meaning that several sources of similar effect contribute to 
its value. A Gaussian model would then be a reasonable choice. Therefore, with the 
assumption of linearity, a response process can be modeled as a Gaussian stochastic process 
since the sea surface elevation process is Gaussian (Haver, 2015).  
 
Further, as a linear system‘s global maximum amplitude for an narrow banded process (i.e. 
narrow banded wave spectrum), meaning the largest response maxima between two adjacent 
up-crossings may be reasonably well modeled using a Rayleigh distribution (Haver, 2015): 

 
𝑓𝑓𝑥𝑥(𝑥𝑥) =

𝑥𝑥
𝜎𝜎𝑟𝑟2

𝑒𝑒𝑒𝑒𝑒𝑒 �−
1
2
�
𝑥𝑥
𝜎𝜎𝑟𝑟
�
2
� (36) 

Where the cumulative distribution function is: 

 
𝐹𝐹𝑥𝑥(𝑥𝑥) = � �𝑓𝑓𝑥𝑥(𝑥𝑥)�

𝑥𝑥

0
𝑑𝑑𝑑𝑑 = 1 − 𝑒𝑒𝑒𝑒𝑒𝑒 �−

1
2
�
𝑥𝑥
𝜎𝜎𝑟𝑟
�
2
� (37) 

By assuming Rayleigh distributed and 𝑛𝑛� global maxima, the characteristic largest value in a 
stationary sea state which is expected to be exceeded on average once every d-hour is equal 
to 1 𝑛𝑛�� . The most probable largest characteristic response amplitude 𝑥𝑥 is then given by: 

 1 − 𝐹𝐹𝑥𝑥(𝑥𝑥) =
1
𝑛𝑛�

    (38) 

 
𝑒𝑒𝑒𝑒𝑒𝑒 �− 1

2
� 𝑥𝑥
𝜎𝜎𝑟𝑟
�
2
� = 1

𝑛𝑛�
  → 𝒙𝒙 = 𝒓𝒓�𝒎𝒎𝒎𝒎𝒎𝒎 = 𝝈𝝈𝒓𝒓√𝟐𝟐𝒍𝒍𝒍𝒍𝒏𝒏� (39) 

This means that the level of not exceeding the given characteristic value is a factor depending 
on the period and corresponding global maxima number. 
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As the surface elevation process can be modeled as a Gaussian process, then 𝐻𝐻𝑠𝑠 = 4𝜎𝜎𝑟𝑟. The 
corresponding 𝐻𝐻𝑠𝑠 may then be calculated based on the characteristic largest ocean response 
amplitude (𝜉𝜉) where 𝑥𝑥 = 𝜉𝜉: 

 
𝜉𝜉 =

𝐻𝐻𝑠𝑠
4
√2ln 𝑛𝑛�  → 𝐻𝐻𝑠𝑠 =

4𝜉𝜉
√2ln𝑛𝑛� 

 (40) 

In simulation software, one will be able to observe a number of realizations of the same short 
term sea state. Due to fluctuations in the sum given by probability density function (equation 
36), the maximum value will vary. This means that the largest value observed is a variable of 
randomness. Assuming independent and identically distributed, the cumulative distribution 
function for the d-hour maximum (𝑥𝑥𝑑𝑑ℎ,𝑚𝑚𝑚𝑚𝑚𝑚) can then be found by (Haver, 2015): 

𝐹𝐹𝛯𝛯𝛯𝛯ℎ�𝑥𝑥𝑑𝑑ℎ,𝑚𝑚𝑚𝑚𝑚𝑚� = �𝑃𝑃�𝑥𝑥1 ≤ 𝑥𝑥𝑑𝑑ℎ,𝑚𝑚𝑚𝑚𝑚𝑚� ∩ �𝑥𝑥2 ≤ 𝑥𝑥𝑑𝑑ℎ,𝑚𝑚𝑚𝑚𝑚𝑚� ∩ … .∩ �𝑥𝑥𝑛𝑛 ≤ 𝑥𝑥𝑑𝑑ℎ,𝑚𝑚𝑚𝑚𝑚𝑚�� 

𝐹𝐹𝛯𝛯3ℎ�𝑥𝑥𝑑𝑑ℎ,𝑚𝑚𝑚𝑚𝑚𝑚� = 𝐹𝐹𝑥𝑥�𝑥𝑥𝑑𝑑ℎ,𝑚𝑚𝑚𝑚𝑚𝑚� ∗ 𝐹𝐹𝑥𝑥�𝑥𝑥𝑑𝑑ℎ,𝑚𝑚𝑚𝑚𝑚𝑚� ∗ … ∗ 𝐹𝐹𝑥𝑥�𝑥𝑥𝑑𝑑ℎ,𝑚𝑚𝑚𝑚𝑚𝑚� 

𝐹𝐹𝛯𝛯𝛯𝛯ℎ�𝑥𝑥𝑑𝑑ℎ,𝑚𝑚𝑚𝑚𝑚𝑚� = �𝐹𝐹𝛯𝛯3ℎ�𝑥𝑥𝑑𝑑ℎ,𝑚𝑚𝑚𝑚𝑚𝑚��
𝑛𝑛�𝑑𝑑ℎ 

 
𝐹𝐹𝛯𝛯3ℎ(𝑥𝑥) = �1 − 𝑒𝑒𝑒𝑒𝑒𝑒 �−

1
2
�
𝑥𝑥
𝜎𝜎𝑟𝑟
�
2
��

𝑛𝑛�𝑑𝑑ℎ

  

 

= �1 − 𝑒𝑒𝑒𝑒𝑒𝑒 �−
1
2
�
𝜎𝜎𝑟𝑟�2𝑙𝑙𝑙𝑙𝑛𝑛�𝑑𝑑ℎ

𝜎𝜎𝑟𝑟
�
2

��

𝑛𝑛�𝑑𝑑ℎ

 (41) 

lim
𝑛𝑛�→∞

�1 −
1
𝑛𝑛
�
𝑛𝑛�𝑑𝑑ℎ

= 𝑒𝑒−1 ≈ 0.3678 

Meaning that the probability of a value above 𝑥𝑥𝑑𝑑ℎ,𝑚𝑚𝑚𝑚𝑚𝑚 can be approximated to 0.6321 as 
𝑛𝑛� → ∞.  
 
The most probable largest value for a period of d-hour is the value with largest density, i.e. 
the top point in the given d-hour extreme value density function (Rayleighn). The value is 
found as: 

𝑓𝑓𝛯𝛯𝛯𝛯ℎ(𝑥𝑥) =
𝑑𝑑𝑑𝑑(𝐹𝐹𝛯𝛯𝛯𝛯ℎ)
𝑑𝑑𝑥𝑥𝑠𝑠

= 0 

 
𝑓𝑓𝛯𝛯𝛯𝛯ℎ(𝑥𝑥) =

𝑛𝑛�3ℎ𝑥𝑥𝑠𝑠
𝜎𝜎𝑟𝑟2

𝑒𝑒𝑒𝑒𝑒𝑒 �−
1
2
�
𝑥𝑥𝑠𝑠
𝜎𝜎𝑟𝑟
�
2
� �1 − 𝑒𝑒𝑒𝑒𝑒𝑒 �−

1
2
�
𝑥𝑥𝑠𝑠
𝜎𝜎𝑟𝑟
�
2
��

𝑛𝑛�𝑑𝑑ℎ

= 0 (42) 

 
Which gives the function also given in DNV-RP-H103 (2014, 2.2.8.1) as: 

 
𝑥𝑥𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑥𝑥𝑠𝑠 ∗ �

1
2
𝑙𝑙𝑙𝑙(𝑛𝑛�𝑑𝑑ℎ) (43) 

Where 𝑥𝑥𝑠𝑠 here is the significant peak response equal to 2𝜎𝜎𝑟𝑟.  
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This means that the most probable largest value (𝑥𝑥𝑀𝑀𝑀𝑀𝑀𝑀) is equal to the characteristic largest 
value (𝑥𝑥�𝑑𝑑ℎ): 
 

𝑥𝑥𝑠𝑠 ∗ �
1
2
𝑙𝑙𝑙𝑙(𝑛𝑛�𝑑𝑑ℎ) = 𝜎𝜎𝑟𝑟�2𝑙𝑙𝑙𝑙(𝑛𝑛�𝑑𝑑ℎ) → 𝜎𝜎𝑟𝑟√2�𝑙𝑙𝑙𝑙(𝑛𝑛�𝑑𝑑ℎ) = 𝜎𝜎𝑟𝑟√2�𝑙𝑙𝑙𝑙(𝑛𝑛�𝑑𝑑ℎ) (44) 

From the probability function, an expected extreme value may be found as: 
 

𝐸𝐸[𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚] = � 𝑥𝑥𝑓𝑓𝑥𝑥(𝑥𝑥)𝑑𝑑𝑑𝑑
∞

0

 (45) 

Which after progressing the formula becomes: 
 

𝐸𝐸[𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚] = 𝑥𝑥𝑠𝑠 ∗ �
1
2
𝑙𝑙𝑙𝑙(𝑛𝑛�𝑑𝑑ℎ) ∗ �1 +

0.5772
𝑙𝑙𝑙𝑙𝑙𝑙

�
0.5

 (46) 

The expected extreme value from equation 46 is then �1 + 0.5772
𝑙𝑙𝑙𝑙𝑙𝑙

�
0.5

 larger than the 
characteristic value determined in equation 39. The probability of exceeding this value may 
be determined from the CDF function, and is on average about 43% (Haver, 2016). 
 
Conclusion: 
To conclude, the probability of exceeding a given value should be taken into account when 
considering design values for a specific case. This should be chosen based on consequence- 
and safety factors from the specific case.  
 
Given the use of a Rayleigh distribution for analyzing lifting operations through the splash 
zone, a long term analysis of at least 30 minutes (optimally 3 hours) has to be performed for a 
maximum load to be extracted correctly. For repeated lifting operations through the splash 
zone where an analysis last for a realistic duration (i.e. 30 second

simulation
) and the maximum load 

is extracted from each of these simulations, a criterion of not exceeding a given upper fractile 
in the distribution function should be applied.  
 

4.3 Generalized Extreme Value distribution 
 
As stated, for a Rayleighn-distributed d-hour maximum: 

 
𝑓𝑓𝛯𝛯𝛯𝛯ℎ(𝑥𝑥) =

𝑛𝑛�𝑑𝑑ℎ𝑥𝑥
𝜎𝜎𝑟𝑟2

𝑒𝑒𝑒𝑒𝑒𝑒 �−
1
2
�
𝑥𝑥
𝜎𝜎𝑟𝑟
�
2
� �1 − 𝑒𝑒𝑒𝑒𝑒𝑒 �−

1
2
�
𝑥𝑥
𝜎𝜎𝑟𝑟
�
2
��

𝑛𝑛�𝑑𝑑ℎ

 (47) 

As 𝑛𝑛� → ∞ and 𝑥𝑥 increases, 𝑓𝑓𝛯𝛯𝛯𝛯ℎ(𝑥𝑥) is normally decaying exponentially. The distribution of 
the maximum will then be characterized by a generalized extreme value probability function 
with a shape parameter (𝑘𝑘) of 0: 
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𝑓𝑓(𝑥𝑥) =

1
𝛽̂𝛽
�1 + 𝑘𝑘 �

𝑥𝑥 − 𝜇̂𝜇
𝛽̂𝛽

��
−� 1
𝑘𝑘+1�

∗ 𝑒𝑒𝑒𝑒𝑒𝑒 �− �1 + 𝑘𝑘 �
𝑥𝑥 − 𝜇̂𝜇
𝛽̂𝛽

���
−�1𝑘𝑘�

 (48) 

Whereas the cumulative distribution function reads: 

 
𝐹𝐹(𝑥𝑥) = 1 − �1 + 𝑘𝑘 �

𝑥𝑥 − 𝜇̂𝜇
𝛽̂𝛽

��
−�1𝑘𝑘�

= 𝑒𝑒𝑒𝑒𝑒𝑒 �− �1 + 𝑘𝑘 �
𝑥𝑥 − 𝜇̂𝜇
𝛽̂𝛽

���
−�1𝑘𝑘�

 (49) 

Where 𝛽̂𝛽 is the scale parameter, 𝜇̂𝜇 is the (mode) location parameter, and 𝑘𝑘 is the shape 
parameter determining the rate of tail decay (Figure 6), with: 

- 𝑘𝑘 > 0 giving a heavy tail (Fréchet) 

- 𝑘𝑘 = 0 giving a light tail (Gumbel) 

- 𝑘𝑘 < 0 giving a short tail (Negative Weibull) 

 
Figure 6: Typical generalized extreme value densities for different shape parameters  
 
The inverse distribution gives the return level associated with the return period:  
 

𝑥𝑥𝑝𝑝,𝑚𝑚𝑚𝑚𝑚𝑚 = µ� −
𝛽̂𝛽
𝑘𝑘
�1 − �−𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥)�

−𝑘𝑘
� (50) 

The maximum value expected for every 𝑛𝑛� global maximum is then calculated as: 

 1 − 𝐹𝐹(𝑥𝑥) =
1
𝑛𝑛�

 (51) 

Rewriting the full term gives: 
 

𝑥𝑥𝑝𝑝,𝑚𝑚𝑚𝑚𝑚𝑚 = µ� −
𝛽̂𝛽
𝑘𝑘
�1 − �−𝑙𝑙𝑙𝑙�1 − (1/𝑛𝑛�)��

−𝑘𝑘
� (52) 

Where the return level is given as: 
 𝑇𝑇𝑅𝑅 =

1
1 − 𝐹𝐹(𝑥𝑥) (53) 

As the shape parameter (𝑘𝑘) for a maximum given a Gumbel distribution can be equaled to 
zero, the Gumbel probability function applies as: 
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𝑓𝑓𝑥𝑥(𝑥𝑥) =

1
𝛽̂𝛽
𝑒𝑒𝑒𝑒𝑒𝑒 �−

𝑥𝑥 − µ�
𝛽̂𝛽

− 𝑒𝑒𝑒𝑒𝑒𝑒 �− �
𝑥𝑥 − µ�
𝛽̂𝛽

��� (54) 

The Gumbel cumulative distribution functions for maximum and minimum values are then 
given by: 
 

𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐹𝐹𝑥𝑥(𝑥𝑥) = � 𝑓𝑓𝑥𝑥(𝑥𝑥)𝑑𝑑𝑑𝑑
𝑥𝑥

0
= 𝑒𝑒𝑒𝑒𝑒𝑒 �−𝑒𝑒𝑒𝑒𝑒𝑒 �− �

𝑥𝑥 − µ�
𝛽̂𝛽

���

= 𝑒𝑒𝑒𝑒𝑒𝑒

⎩
⎪
⎨

⎪
⎧

−𝑒𝑒𝑒𝑒𝑒𝑒�−�
𝑥𝑥 − 𝜎𝜎𝑟𝑟�2ln(n3h)

𝜎𝜎𝑟𝑟
�2ln(n3h)

��

⎭
⎪
⎬

⎪
⎫

 
(55) 

 
𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 = 1 − 𝐹𝐹𝑥𝑥(𝑥𝑥; µ,𝛽𝛽) = 1 −� 𝑓𝑓𝑥𝑥(𝑥𝑥)𝑑𝑑𝑑𝑑

𝑥𝑥

0

= 1 − 𝑒𝑒𝑒𝑒𝑒𝑒 �−𝑒𝑒𝑒𝑒𝑒𝑒 �− �
𝑥𝑥 − µ�
𝛽̂𝛽

��� 
(56) 

By using moments estimators (µ� , 𝛽̂𝛽), the mean (𝑥̅𝑥) and standard deviation (𝜎𝜎𝑟𝑟) of the force 
responses are used to determine these parameters. The mode parameter is determined from: 

 

µ� = 𝑥̅𝑥 − 𝐶𝐶2 𝛽̂𝛽 =⏞
𝑛𝑛�→∞

𝑥̅𝑥 − γ𝛽̂𝛽 
(57) 

Where γ is the Euler-Mascheroni constant which is equal to 0.5772 when the selection (𝑛𝑛�) 
goes towards infinity. When limited sample size, the constant 𝐶𝐶2 should be used ( 
Table 4).  
𝑥̅𝑥 is here the expected extreme value from a set of extremes (𝑥𝑥𝑖𝑖): 

 
𝑥̅𝑥 =

∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1

𝑛𝑛�
 (58) 

While the estimated 𝛽𝛽-dispersion relation reads: 

 
𝛽̂𝛽 =

𝜎𝜎𝑟𝑟
𝐶𝐶1

=⏞
𝑛𝑛�→∞𝜎𝜎𝑟𝑟 ∗ √6

𝜋𝜋
  (59) 

Where 𝐶𝐶1 is a constant given in Table 4. 
 
The standard deviation (𝜎𝜎𝑟𝑟) of the extreme wire tensions can be calculated by: 

 

𝜎𝜎𝑟𝑟 = �
1
𝑁𝑁
�(𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)2
𝑁𝑁

𝑖𝑖=1

 (60) 

27 
 



University of Stavanger                                                                Extreme Loads and responses 

 
Table 4: Gumbel constants given by Moan, Spidsøe and Haver (1980) 

𝒏𝒏� 𝑪𝑪𝟏𝟏 𝑪𝑪𝟐𝟐 𝒏𝒏� 𝑪𝑪𝟏𝟏 𝑪𝑪𝟐𝟐 
10 0.9497 0.4952 80 1.19382 0.55688 
20 1.06283 0.52355 100 1.20649 0.56002 
30 1.11238 0.53622 250 1.24292 0.56878 
40 1.14132 0.54362 500 1.25880 0.57240 
50 1.16066 0.54854 1000 1.26851 0.57450 
60 1.17467 0.55208 Infinity 1.28255 0.57722 

 
To estimate the maxima with a given probability of occurrence 𝑝𝑝, one may utilize the 
equation for a Gumbel cumulative distribution function:  

𝐹𝐹𝑥𝑥�𝑥𝑥𝑝𝑝� = 𝑒𝑒𝑒𝑒𝑒𝑒 �−𝑒𝑒𝑒𝑒𝑒𝑒 �− �
𝑥𝑥𝑝𝑝 − µ�
𝛽̂𝛽

��� = 1 − 𝑝𝑝 

�−𝑒𝑒𝑒𝑒𝑒𝑒 �− �
𝑥𝑥𝑝𝑝 − µ�
𝛽̂𝛽

��� = ln (1 − 𝑝𝑝) 

�
𝑥𝑥𝑝𝑝 − µ�
𝛽̂𝛽

� = −ln(−ln (1− 𝑝𝑝)) 

 𝑥𝑥𝑝𝑝,𝑚𝑚𝑚𝑚𝑚𝑚 = µ� − 𝛽̂𝛽�𝑙𝑙𝑙𝑙�−𝑙𝑙𝑙𝑙(1 − 𝑝𝑝)�� (61) 
 
One may also establish a characteristic value which is not exceeded with a probability 𝑝𝑝 
during a sea state of n-hours. From the formula (41) one gets: 

 
𝐹𝐹𝛯𝛯𝛯𝛯ℎ�𝑥𝑥𝑝𝑝� = �1 − 𝑒𝑒𝑒𝑒𝑒𝑒 �−

1
2
�
𝑥𝑥𝑝𝑝
𝜎𝜎𝑟𝑟
�
2
��

𝑛𝑛�

= 𝑝𝑝 
 

(62) 

𝑥𝑥𝑝𝑝 = 𝜎𝜎𝑟𝑟��−2𝑙𝑙𝑙𝑙(1 − 𝑝𝑝)1 𝑛𝑛�� �  (63) 

If the acceptance probability is p for every z-hour event, the return period (𝑇𝑇𝑅𝑅) of the 
maximum allowable value is: 
 𝑇𝑇𝑅𝑅 =

1
𝑝𝑝
∗ (

t
3600

) (64) 

Where t is given in seconds. 
 
The probability of exceeding the return crest height is given by: 

 𝑃𝑃�𝑥𝑥 ≤ 𝑥𝑥𝑇𝑇𝑅𝑅� = 1 − 𝑃𝑃�𝑥𝑥 > 𝑥𝑥𝑇𝑇𝑅𝑅� = 1 − 𝑝𝑝𝑛𝑛�  (65) 

 → 𝑃𝑃�𝑥𝑥 > 𝑥𝑥𝑇𝑇𝑅𝑅� = 1 − [(1 − 𝑝𝑝)𝑛𝑛�] (66) 
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5. Lifting operation through the splash zone  
 
In a lifting phase offshore, the lifted object is exposed to dynamic loads due to incoming 
waves and motions of the vessel and crane tip. A general offshore lift will consist of (1) 
liftoff from deck and over the vessel side, (2) lowering through the splash zone, (3) further 
lowering through the water columns, and commonly (4), landing of the object where 
applicable. Although the liftoff phase may cause a pendulum motion of the structure and 
therefore very often be a limiting criterion for large structures due to deck handling 
constrains, focus in this thesis will be on the extreme direct wave loading forces experienced 
in the splash zone due to significant water particle velocities and accelerations. As the lifting 
phase through the splash zone only lasts for a shorter timeframe, the hydrodynamic forces are 
highly dependent upon the incoming wave(s). The following sections in chapter 5 will 
therefore give a representation of some of the physical phenomena expected during a splash 
zone lift, and how they will affect a lifted object.  

5.1 Splash zone loads 

When lifting an object from the vessel deck and through the splash zone, large forces may 
occur depending on the size and steepness of the waves present, and where the object hits the 
incoming wave(s). The corresponding forces from irregular waves determine the operational 
wave height criteria to be set. These forces also contribute to a characteristic load condition 
which is the basis for dimensioning and design of the object, the crane/LARS and its 
fundament, and the wire used for lifting. It is therefore of high priority to establish these 
forces as accurately as possible in order to reduce downtime of the vessel, and increase the 
safety of lifting operations. 

5.1.1 Weight of Structure 
 
According to DNV-RP-H103 (2014, 3.2.3.6), the weight of an object submerged can be taken 
by the weight of a structure in air (𝑊𝑊0) and subtracting the buoyancy force (𝐹𝐹𝐵𝐵). 
 
 𝑊𝑊 = 𝑊𝑊0 − 𝐹𝐹𝐵𝐵 = (𝑀𝑀− 𝜌𝜌𝜌𝜌)𝑔𝑔 (67) 
 
Where 𝑀𝑀 is the total mass of the object, 𝑉𝑉 is submerged volume, 𝜌𝜌 is the density of salt water 
and 𝑔𝑔 is the acceleration of gravity.  

 

5.1.2 Hydrodynamic forces 

Hydrodynamic loads relevant for the splash zone area are by Faltinsen (1990) categorized 
into two separate problems; (1) radiation, and (2) wave excitation. Both of these problems are 
described by linear dynamic loads and motions in regular waves. The radiation problem 
represents the waves generated by the vessel due to its motions. Radiation effects can be 
considered both negative and positive. Positive if radiated waves are far from the phase of 
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any incoming waves, providing neutralizing effects. Negative if they are close to the natural 
frequency, thereby increasing the amplification and corresponding motions. Effects caused by 
radiation can be reduced by forcing the vessel to oscillate in all 6 degrees of freedom (DOF) 
without incident waves. The hydrodynamic loads in the radiation scenario are the added 
mass, damping, and restoring forces. 

The wave excitation problem is represented by the Froude-Kriloff and diffraction forces. The 
Froude-Kriloff forces represent the forces acting on the structure from wave propagating 
pressure. The diffraction forces recover impermeability and cause a flow due to the presence 
of the structure.  

Due to linearity, the excitation and the diffraction problems may be added together as a 
representation of the hydrodynamic force FH. The total time domain force in vertical 
direction can then be taken as (Sandvik and Kopsov, 1995):  

 𝐹𝐹𝐻𝐻 + 𝐹𝐹𝐿𝐿 −𝑊𝑊 = 𝐹𝐹𝑅𝑅 (68) 

Where FH is representing the hydrodynamic forces and FL is the main lift line forces. 
 
The issue of excitation can be solved by restraining the object from oscillatory motions, and 
allowing for incoming waves to interact with the object. Analysis performed in Orcaflex is 
based on the assumption that the lifted object is small compared to the wave length and that 
wave diffraction can be ignored for most structures. However, as some structures have a size 
comparable to the relevant wave lengths, a small body assumption may give conservative lift 
line forces in the splash zone (Sandvik and Kopsov, 1995). 
 
The radiation force 𝐹𝐹𝑅𝑅 is determined from the velocity (𝑥̇𝑥) and acceleration (𝑥̈𝑥) of the object. 
Due to the proximity to the free surface, the hydrodynamic forces will be dependent upon the 
distance to the free surface (Sandvik and Kopsov, 1995): 

 
𝐹𝐹𝑅𝑅 =

𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑀𝑀𝑥̇𝑥) + 𝐵𝐵1𝑥̇𝑥 + 𝐵𝐵2𝑥̇𝑥|𝑥̇𝑥| (69) 

Where 𝑥̇𝑥 is the relative velocity of the object, and 𝑀𝑀 is here the sum of structural and added 
mass: 
 𝑀𝑀 = 𝑀𝑀𝑠𝑠 + 𝐴𝐴33 

= 𝑀𝑀𝑠𝑠 + 𝜌𝜌𝜌𝜌𝐶𝐶𝑎𝑎 (70) 

𝐵𝐵1 and 𝐵𝐵2 is the linear and quadratic drag constants representing hydrodynamic damping in 
an oscillatory flow. These are further discussed in section 5.1.4. 

The mass variations with time can be represented as (Sandvik and Kopsov, 1995): 

 𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑀𝑀𝑥̇𝑥) = 𝑀𝑀𝑥̈𝑥 + 𝜌𝜌𝑥̇𝑥
𝑑𝑑(𝐶𝐶𝑎𝑎𝑉𝑉)
𝑑𝑑𝑑𝑑

= 𝑀𝑀𝑥̈𝑥 +
𝑑𝑑𝐴𝐴33
𝑑𝑑𝑑𝑑

𝑥̇𝑥 
(71) 
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𝑀𝑀 coupled with acceleration (𝑥̈𝑥) gives the inertia term. The mass variations with time are then 
calculated from the position dependent added mass representing vertical slamming forces.  

The wave forces (𝐹𝐹𝑊𝑊) is dependent upon water particle velocities (𝑣𝑣𝑤𝑤) and accelerations 
(𝑎𝑎𝑤𝑤). The equation is given as: 
 

𝐹𝐹𝑊𝑊 = 𝜌𝜌𝜌𝜌𝑎𝑎𝑤𝑤 +
𝑑𝑑
𝑑𝑑𝑑𝑑

(𝐴𝐴33𝑣𝑣𝑤𝑤) + 𝐹𝐹𝐻𝐻𝐻𝐻 (72) 

 
= (𝜌𝜌𝜌𝜌 + 𝐴𝐴33)𝑎𝑎𝑤𝑤 +

𝑑𝑑𝐴𝐴33
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑎𝑎𝑤𝑤) + 𝐹𝐹𝐻𝐻𝐻𝐻 (73) 

The first part of the wave force equation is the pressure gradient due to the waves, whereas 
the second equation is the change of fluid momentum. The second part is also associated with 
the slamming force. The last part of the equation (𝐹𝐹𝐻𝐻𝐻𝐻) is the hydrodynamic drag (or 
damping) and is expressed in the same manner as the damping terms in equation (69), but 
also dependent on the water particle velocity (𝑣𝑣𝑤𝑤). 

The general time-domain representation of the total hydrodynamic forces acting on a lifted 
object offshore may then be taken as a combination of the body reaction- and wave forces 
(Øritsland and Lehn, 1989): 

 (𝑀𝑀𝑠𝑠 + 𝐴𝐴33)𝑥̈𝑥���������
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

= 𝐵𝐵1𝑣𝑣𝑟𝑟�
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

+ 𝐵𝐵2𝑣𝑣𝑟𝑟|𝑣𝑣𝑟𝑟|�����
𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

+ (𝜌𝜌𝜌𝜌 + 𝐴𝐴33)𝑎𝑎𝑤𝑤���������
𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

+
𝑑𝑑𝐴𝐴33∞

𝑑𝑑𝑑𝑑
𝑣𝑣𝑟𝑟�����

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

− 𝑊𝑊⏟
𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡

+ 𝐹𝐹𝐿𝐿(𝑡𝑡)���
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

 
(74) 

Here, 𝑣𝑣𝑟𝑟 is the characteristic vertical velocity between the object system and the water 
particles. The added mass 𝐴𝐴33∞  in the slamming equation is an expression of the high-
frequency limit added mass, which assumes that the water particle accelerations due to the 
slamming effects are much larger than the acceleration of gravity.  

The slamming force may also be taken as (DNV-RP-H103, 2014, 3.2.9): 

 
𝐹𝐹𝑠𝑠 =

𝑑𝑑(𝐴𝐴33∞ 𝑣𝑣𝑠𝑠)
𝑑𝑑𝑑𝑑

=
1
2
𝜌𝜌𝐶𝐶𝑠𝑠𝐴𝐴𝑝𝑝𝑣𝑣𝑟𝑟2 (75) 

Where 𝐴𝐴33∞  is the instantaneous high-frequency limit heave added mass, and 𝐴𝐴𝑝𝑝 is the 
horizontal projected area of the object.  
 
The slamming coefficient (𝐶𝐶𝑠𝑠) may be taken as a function of the rate of change of the 
sectional added mass (𝐴𝐴330 ) with submergence 𝑧𝑧: 

 
𝐶𝐶𝑠𝑠 =

2
𝜌𝜌𝐴𝐴𝑝𝑝

𝑑𝑑𝐴𝐴330

𝑑𝑑𝑑𝑑
 (76) 

For cases where an object is lifted through the upper water columns, the slamming force can 
be taken as: 
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 𝐹𝐹𝑠𝑠 =
1
2
𝜌𝜌𝐶𝐶𝑠𝑠𝐴𝐴𝑝𝑝(𝜍𝜍̇ − 𝜂̇𝜂) (77) 

𝜍𝜍̇ is the vertical velocity of the sea surface, and 𝜂̇𝜂 is the vertical motion of the object.  

Another force present during recovery of a structure is the water exit force 𝐹𝐹𝑒𝑒:  

 𝐹𝐹𝑒𝑒 = −
1
2
𝜌𝜌𝐶𝐶𝑒𝑒𝐴𝐴𝑝𝑝𝑣𝑣𝑒𝑒2 (78) 

𝑣𝑣𝑒𝑒 is the water exit velocity. 
 
This force is a function of the water exit coefficient 𝐶𝐶𝑒𝑒: 

 
𝐶𝐶𝑒𝑒 = −

1
𝜌𝜌𝐴𝐴𝑝𝑝

𝑑𝑑𝐴𝐴330

𝑑𝑑𝑑𝑑
=
𝐶𝐶𝑠𝑠
2

 (79) 

It should also be noted that other phenomenon’s like vortex shedding and air-cavity 
entrapment can occur dependent on how the structure and the waves interact. 

5.1.3 Slamming forces 
 
During lifting operations offshore, the resulting hydrodynamic forces are highly dependent 
upon the incoming wave(s). Therefore, nonlinear effects from slamming and drag may vary 
significantly from lift to lift in quite similar wave conditions. Slamming loads will appear in 
milliseconds as vertical impulse loads on the object with corresponding high pressure peaks. 
Therefore, as the relative velocity between the object and the fluid flow increases, the 
slamming impact increases too. Also, slamming increases as the impact angle (𝜃𝜃) decreases. 
The resulting slamming impact on an object will be determined from the structure water 
absorption capabilities. Slamming forces will generally decrease as the object moves through 
the water columns (Faltinsen, 1990).  

When lifting an object, the payout rate remains constant. As an impulse load strikes the 
object in positive upwards direction, a decrease in wire tension and vertical speed causes a 
peak load to occur. Worst case scenario would be if the wire goes slack, causing snap loads 
critical to the capacity of the lifting system/object. The number of cases where a slack in the 
wire occurs is expected to increase with decreasing weight of the object and with rapid/large 
vessel motions. Also, the severity usually increases with the duration of slack. Cases 
involving slack is hard to predict accurately due to the nonlinearities present, but can be 
predicted using statistical methods as discussed throughout this thesis. 
 

5.1.4 Drag forces 
 
When incoming waves gets in contact with an object, linear drag forces result onto the object. 
A representative formula for viscous drag force can be expressed by the Morison equation 
(DNV-RP-H103, 2014, 3.2.8.1): 
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 𝐹𝐹𝑑𝑑 =
1
2
𝜌𝜌𝐶𝐶𝐷𝐷𝐴𝐴𝑝𝑝𝑣𝑣𝑟𝑟|𝑣𝑣𝑟𝑟| (80) 

By introducing the Keulegan-Carpenter number (𝑁𝑁𝐾𝐾−𝐶𝐶) for irregular wave conditions one 
may further evaluate this definition in relation to lifting operations (DNV-RP-H103, 2014, 
3.2.8.3): 
 

𝑁𝑁𝐾𝐾−𝐶𝐶 =
�√2𝜎𝜎𝑤𝑤�𝑇𝑇𝑧𝑧

𝐷𝐷
 (81) 

Where 𝑇𝑇𝑧𝑧 is the zero up-crossing period, 𝜎𝜎𝑤𝑤 is the standard deviation of water particle 
velocity, and 𝐷𝐷 is the characteristic dimension of the structural member.  

The 𝑁𝑁𝐾𝐾−𝐶𝐶 number is a representation of how the flow acts. Low numbers of 𝑁𝑁𝐾𝐾−𝐶𝐶 means that 
the flow oscillates fast. For lifting operations offshore, the Keulegan-Carpenter number can 
usually be taken as lower than 10. This means that flow particles travel less than 10 times the 
characteristic length of the body during one oscillation. In such cases, the drag and damping 
terms may instead be taken as the sum of a linear and quadratic term, 𝐵𝐵1 and 𝐵𝐵2 respectively 
(DNV-RP-H103, 2014, 3.2.8.2). In oscillatory flow with low KC numbers, the drag 
coefficient is typically in the order of 2-3 times the steady state drag coefficient CDS 

(Øritsland and Lehn, 1989). Therefore, by ignoring oscillatory flow, underestimation of the 
damping and overestimation of resonant motions is likely (DNV-RP-H103, 2014, 4.6.2.2). 

By considering a linear and quadratic drag term, coefficients dependent on wave amplitudes 
may be replaced. The linear and quadratic damping coefficients can be taken as (DNV-RP-
H103, 2014, 3.2.8.8):  

 
𝐵𝐵1 =

2𝜌𝜌𝐴𝐴𝑝𝑝�2𝑔𝑔𝑔𝑔
3𝜋𝜋2

𝑏𝑏1 (82) 

 𝐵𝐵2 =
1
2
𝜌𝜌𝐴𝐴𝑝𝑝𝑏𝑏2 (83) 

Where 𝑏𝑏1 and 𝑏𝑏2 are non-dimensional damping coefficients. By assuming that the damping 
energy is dissipated throughout the quadratic term, 𝐵𝐵1 and 𝐵𝐵2 can be simplified to form the 
drag term of Morison`s formula (DNV-RP-H103, 2014, 3.2.8.7): 

 
𝐶𝐶𝑑𝑑 =

𝑏𝑏1
𝜔𝜔′ + 𝑏𝑏2 (84) 

Where 𝜔𝜔′ is the non-dimensional frequency of oscillations: 
 

𝜔𝜔′ = 𝜔𝜔�
𝐷𝐷

2𝑔𝑔
 (85) 
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6. Analysis of ROV lift operation 

6.1 Orcaflex theory 
 
Orcaflex, developed by Orcina, is a world leading time- and frequency domain element 
program serving the global offshore market. It`s main use lies within static and dynamic 
analysis of offshore systems as risers, mooring systems, towing systems, and 
installation/lifting cases. This section will describe the program as represented in the 
OrcaFlex User Manual, (Orcina, 2015). 
 
In order to provide a start configuration for a dynamic simulation as well as determine the 
conditions of equilibrium of the system under weight, buoyancy, hydrodynamic drag, etc. in a 
dynamic analysis; a static analysis is performed in three iterative steps (Orcina, 2015, Section 
5.5). First, a dynamic analysis over a preset time period is initiated from the initial conditions 
calculated by the static analysis.  The dynamic analysis is then separated into two steps; the 
build-up and the simulation period. The build-up period is where the waves and the system 
under consideration are developed from a static state to a fully developed dynamic condition. 
This step helps to reduce transients when changing from a static position to a dynamic 
motion. The final simulation step is directed towards solving the dynamic equations in the 
time domain.  
 

6.2 Dynamic time domain analysis 
 
Although some hydrodynamic loads not influenced by the proximity of boundaries (i.e. 
seabed and water surface) can be described by linear wave theories in a frequency domain 
approach, this is not always the case. In the splash zone, large nonlinearities are present 
causing a linear approach to be inaccurate. Therefore, non-linear waves and extreme load 
effects are preferably handled in time-domain using step-by-step integration methods (DNV-
RP-H103, 2014, 2.3.6.1). A wave spectrum is then used to simulate irregular wave 
kinematics by generating random time series.  

An object will during a lift be exposed to the direct wave loading, but also some load caused 
by vessel motions. A time-domain analysis is able combine these loads, and handles non-
linear hydrodynamic load effects and force coefficients that occurs through a wave period. It 
will also cover non-linear interaction effects such as transient response after slamming or 
snatch loading. Also, such an analysis would give the response statistics without making 
assumptions regarding the response distribution (DNV-RP-H103, 2014, 2.3.6.2). 

Let us consider the case of a single degree of freedom (SDOF) system: 

 𝐹𝐹(𝑡𝑡) = 𝑀𝑀𝑥̈𝑥(𝑡𝑡) + 𝐶𝐶𝑥̇𝑥(𝑡𝑡) + 𝐾𝐾𝐾𝐾(𝑡𝑡)  (86) 

 
Where 𝑀𝑀 is the system mass, 𝐶𝐶 is the system damping, 𝐾𝐾 is the system stiffness, and 𝐹𝐹 is the 
external loads in the time domain. 
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The differential relations between acceleration 𝑥̈𝑥(𝑡𝑡), speed 𝑥̇𝑥(𝑡𝑡), and velocity 𝑥𝑥(𝑡𝑡) is given 
as: 
 

𝑥̈𝑥(𝑡𝑡) =
𝑑𝑑𝑥̇𝑥(𝑡𝑡)
𝑑𝑑𝑑𝑑

 (87) 

 
𝑥̇𝑥(𝑡𝑡) =

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

   (88) 

Assuming that one knows the motion quantities at time 𝑡𝑡 and the acceleration of motion over 
the time interval 𝑡𝑡 + ℎ, one can determine the speed and displacement by:  

 
𝑥̇𝑥(𝑡𝑡 + ℎ) = 𝑥̇𝑥(𝑡𝑡) + � 𝑥̈𝑥(𝑡𝑡)𝑑𝑑𝑑𝑑

ℎ

0

  (89) 

 
𝑥𝑥(𝑡𝑡 + ℎ) = 𝑥𝑥(𝑡𝑡) + � 𝑥̇𝑥(𝑡𝑡)𝑑𝑑𝑑𝑑

ℎ

0

  (90) 

In Orcaflex, two complementary dynamic integrations methods may be used to solve the 
dynamic equation, either explicit or implicit. The implicit method uses a generalized α 
integration, while the explicit is a forward Euler integration. Both of these methods are 
generalizations of the Newmark-beta method (Newmark, 1959): 

 𝑥̇𝑥(𝑡𝑡 + ℎ) = 𝑥̇𝑥(𝑡𝑡) + (1 − 𝛾𝛾)𝑥̈𝑥(𝑡𝑡) + 𝛾𝛾𝑥̈𝑥(𝑡𝑡 + ℎ)  (91) 

 𝑥𝑥(𝑡𝑡 + ℎ) = 𝑥𝑥(𝑡𝑡) + ℎ𝑥̇𝑥(𝑡𝑡) + �
1
2
− 𝛽𝛽�ℎ2𝑥̈𝑥(𝑡𝑡) + 𝛽𝛽ℎ2𝑥̈𝑥(𝑡𝑡 + ℎ)   (92) 

Further, a simplification based on a constant acceleration over the time interval means that 
𝛾𝛾 = 1

2
 and 𝛽𝛽 = 1

4
: 

 𝑥̈𝑥(𝜀𝜀) =
1
2
�𝑥̈𝑥(𝑡𝑡) + 𝑥̈𝑥(𝑡𝑡 + ℎ)�, 𝑡𝑡 ≤ 𝜀𝜀 ≤ 𝑡𝑡 + ℎ   (93) 

 
Putting equation 93 into equation 90 gives: 
 

𝑥̇𝑥(𝑡𝑡 + ℎ) = 𝑥̇𝑥(𝑡𝑡) +
1
2
�𝑥̈𝑥(𝑡𝑡) + 𝑥̈𝑥(𝑡𝑡 + ℎ)��𝑑𝑑𝑑𝑑

ℎ

0

= 𝑥̇𝑥(𝑡𝑡) +
1
2
ℎ�𝑥̈𝑥(𝑡𝑡) + 𝑥̈𝑥(𝑡𝑡 + ℎ)� 

(94) 

 
𝑥𝑥(𝑡𝑡 + ℎ) = 𝑥𝑥(𝑡𝑡) + ��𝑥̇𝑥(𝑡𝑡) +

1
2
𝜀𝜀(𝑥̈𝑥(𝑡𝑡) + 𝑥̈𝑥(𝑡𝑡 + ℎ))�𝑑𝑑𝑑𝑑

ℎ

0

= 𝑥𝑥(𝑡𝑡) + 𝑥̇𝑥(𝑡𝑡)ℎ +
1
4
ℎ2�𝑥̈𝑥(𝑡𝑡) + 𝑥̈𝑥(𝑡𝑡 + ℎ)� 

(95) 

 

Next, one can calculate the state one step length ahead of the known state by taking ℎ as 
equal to a step length. One can then use that 𝑥𝑥𝑖𝑖 = 𝑥𝑥(𝑡𝑡),   𝑥𝑥𝑖𝑖+1 = 𝑥𝑥(𝑡𝑡 + ℎ), 𝑥̇𝑥𝑖𝑖 = 𝑥̇𝑥(𝑡𝑡), 𝑥̇𝑥𝑖𝑖+1 =
𝑥𝑥(𝑡𝑡 + ℎ), 𝑥̈𝑥𝑖𝑖 = 𝑥̈𝑥(𝑡𝑡) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑥̈𝑥(𝑡𝑡 + ℎ). With these notations one denote a step by step method as: 
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 𝑥̇𝑥𝑖𝑖+1 = 𝑥̇𝑥𝑖𝑖 +
1
2

(𝑥̈𝑥𝑖𝑖 + 𝑥̈𝑥𝑖𝑖+1)ℎ   (96) 

 𝑥𝑥𝑖𝑖+1 = 𝑥𝑥𝑖𝑖 + 𝑥̇𝑥𝑖𝑖ℎ +
1
4

(𝑥̈𝑥𝑖𝑖 + 𝑥̈𝑥𝑖𝑖+1)ℎ2  (97) 

Rewriting equation (97): 
 𝑥̈𝑥𝑖𝑖+1 =

4
ℎ2
𝑥𝑥𝑖𝑖+1 −

4
ℎ2
𝑥𝑥𝑖𝑖 −

4
ℎ
𝑥̇𝑥𝑖𝑖 − 𝑥̈𝑥𝑖𝑖    (98) 

Introducing equation (97) into equation (96) gives: 

 𝑥̇𝑥𝑖𝑖+1 = 𝑥̇𝑥𝑖𝑖 +
1
2
ℎ �𝑥̈𝑥𝑖𝑖 +

4
ℎ2
𝑥𝑥𝑖𝑖+1 −

4
ℎ2
𝑥𝑥𝑖𝑖 −

4
ℎ
𝑥̇𝑥𝑖𝑖 − 𝑥̈𝑥𝑖𝑖� =

2
ℎ
𝑥𝑥𝑖𝑖+1 −

2
ℎ
𝑥𝑥𝑖𝑖 − 𝑥̇𝑥𝑖𝑖   (99) 

The motion at step 𝑖𝑖 + 1 is thus: 

 𝑀𝑀𝑥̈𝑥𝑖𝑖+1 + 𝐶𝐶𝑥̇𝑥𝑖𝑖+1 + 𝐾𝐾𝑥𝑥𝑖𝑖+1 = 𝐹𝐹𝑖𝑖+1 (100) 

By putting equation (98) and (99) into equation (100): 

 𝑀𝑀�
4
ℎ2
𝑥𝑥𝑖𝑖+1 −

4
ℎ2
𝑥𝑥𝑖𝑖 −

4
ℎ
𝑥̇𝑥𝑖𝑖 − 𝑥̈𝑥𝑖𝑖� + 𝐶𝐶 �

2
ℎ
𝑥𝑥𝑖𝑖+1 −

2
ℎ
𝑥𝑥𝑖𝑖 − 𝑥̇𝑥𝑖𝑖� + 𝐾𝐾𝑥𝑥𝑖𝑖+1 = 𝐹𝐹𝑖𝑖+1 (101) 

The motion one time step ahead is then expressed as: 

 

𝑥𝑥𝑖𝑖+1 =
𝐹𝐹𝑖𝑖+1 + 𝑀𝑀𝑥̈𝑥𝑖𝑖 + ��4𝑀𝑀

ℎ + 𝐶𝐶� 𝑥̇𝑥𝑖𝑖 − �4𝑀𝑀
ℎ2 + 2𝐶𝐶

ℎ � 𝑥𝑥𝑖𝑖�

�4𝑀𝑀
ℎ2 + 2𝐶𝐶

ℎ + 𝐾𝐾�
 (102) 

As the initial conditions (𝑥𝑥0, 𝑥̇𝑥0) determined from the static analysis are known, formula 
(100) is used to obtain: 
 𝑥̈𝑥0 =

𝐹𝐹0
𝑀𝑀

 (103) 

When the initial acceleration are known, equation (102) are solved to find 𝑥𝑥1. Next, 𝑥̇𝑥1 and 𝑥̈𝑥1 
are decided from equation (98) and (99). 𝑥𝑥2 may then found from equation (102) again. So, 
by repeating these steps over and over again in time intervals (h) for each free body and line 
node in the model, a representation of the response in the time domain are created. 

Looking at short term response problems, a wave spectrum over a given time period (d-hour) 
should first be used to generate a realization of the wave elevation process. The water particle 
speed and accelerations may then be calculated. Also, loads at each nodal point of an object 
and the equation of motion can be solved by a step-by-step numerical integration, resulting in 
time domain series of all nodal points’ responses. The distribution of global response maxima 
may then be determined. So, by repeating the time domain simulations a sufficiently amount 
of times, a representation of the extreme value distribution is obtained. 
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6.2.1 Simulations in the time domain 

DNV-RP-H103 (2014, 2.3.6.5) states that a time-domain analysis of structural response 
caused by non-linear load effects must be carried out long enough to obtain stationary 
statistics. When lifting an object through the splash zone in a defined sea state, the resulting 
hydrodynamic forces are highly dependent on timing with the incoming wave(s) due to a 
launch period of 10-20 seconds through the critical splash zone area. Therefore, several 
simulations of the same situations needs to be performed in order to see the resulting 
characteristic load based on statistics. 

Wave simulations in Orcaflex uses regular sinusoidal waves, either long-crested or short-
crested. As described earlier, short-crested waves are composite series of sine waves with 
constant amplitude but pseudo-random phases chosen by a random number generator. This 
results in similar wave trains given the same simulation setup.  

As the linear wave theory only takes into account wave kinematics up to a mean water level 
and is proved to overestimate forces appearing at the surface. Orcaflex may compensate for 
this by stretching the wave kinematics either by vertically stretching, Wheeler stretching 
(Wheeler, 1969), or by extrapolation. This avoids unrealistic high velocities of the waves.  

1. Vertical stretching takes the values above the mean water level (𝑧𝑧 > 0) and replace 
them with the given values for (𝑧𝑧 = 0). 

2. Wheeler stretching stretches or compresses the water column kinematics at the 
original level 𝑧𝑧 to a modified level 𝑧𝑧′. The corrected vertical coordinate is given as: 

 
𝑧𝑧′ =

𝑧𝑧 − 𝜉𝜉

1 + 𝜉𝜉
𝑑𝑑

 (104) 

Where 𝑑𝑑 is the water depth, and 𝜉𝜉 is the free surface elevation. 
3. Extrapolation uses the tangent of the mean water level to linearly extrapolate the sea 

water characteristics for 𝑧𝑧 > 0.    
 

6.2.2 Coordinate systems 

Two different coordinate systems can be utilized in Orcaflex. The first one is a global 
coordinate system which is denoted GXYZ, where G is the global origin surrounded by the 
global axes GX, GY, and GZ. For each modeled object, a local coordinate system (Lxyz) is 
used. The coordinate systems have positive rotations clockwise looking in the direction of the 
axis under consideration.  
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6.3 Objects 

6.3.1 Vessel 

The vessel is a system with six degrees of freedom, respectively three longitude motions 
(surge, sway and heave) and three rotated motions (roll, pitch and yaw). Such a system is 
frequently used for the modeling of ships, platforms, semisubmersibles and other floating 
structures. The motions of a vessel are described by the RAOs assigned to the vessels COG. 
These motions are categorized as either low or wave frequency. Both types of motions are 
usually present, but can be calculated separately where the wave frequency motions are what 
Orcaflex refer to as superimposed of the low frequency (primary) motions.  
 

6.3.2 Buoys 

Buoys are in Orcaflex combined to represent the body features of an object. In Orcaflex, one 
can choose to use either a six dimensional buoy or a three dimensional buoy. Further, three 
different types of 6D buoys can be used; the spar-, the towed fish-, and the lumped buoy.  In 
this thesis, only 6D lumped buoys are used for modeling of the ROV system due to its 
geometrical flexibility. These rigid bodies have properties such as mass, size, moments of 
inertia and hydrodynamic properties such as drag and added mass. A 6D buoy is represented 
with a rigid body with six degrees of freedom, 3 along axis and 3 around axis. These motions 
are calculated by time domain integration in Orcaflex. The hydrodynamic loads are 
calculated from an extended Morison`s equation: 

 𝐹𝐹𝑤𝑤 = (∆𝑎𝑎𝑤𝑤 + 𝐶𝐶𝑎𝑎∆𝑎𝑎𝑟𝑟) + (
1
2
𝜌𝜌𝐶𝐶𝐷𝐷𝐴𝐴𝑝𝑝𝑣𝑣𝑟𝑟|𝑣𝑣𝑟𝑟|) (105) 

Where 𝐹𝐹𝑤𝑤 is the fluid force defined as the sum of inertia- and drag forces. The inertia part is 
represented by ∆ which is the mass of displaced water, 𝑎𝑎𝑤𝑤 and 𝑎𝑎𝑟𝑟 which is the fluid particle 
acceleration relative to the earth and body, whereas 𝐶𝐶𝑎𝑎 is the added mass coefficient. The 
drag equation is dependent on the fluid particle (𝑣𝑣𝑟𝑟) relative to the body with a projected area 
(𝐴𝐴𝑝𝑝), and a drag coefficient (𝐶𝐶𝐷𝐷).  

Slamming loads are determined from the following equation: 

 𝐹𝐹𝑠𝑠 = 𝜌𝜌𝐶𝐶𝑠𝑠𝐴𝐴𝑤𝑤|𝑣𝑣𝑟𝑟|2𝑉𝑉�⃗  (106) 

Where 𝐶𝐶𝑠𝑠 is the slamming coefficient, 𝐴𝐴𝑤𝑤 is the slamming area, and 𝑉𝑉�⃗  is the unit vector in the 
surface. The slamming force on a lumped buoy is calculated using fluid kinematics at the 
center of the wetted volume. The loads are then scaled by a scaling factor equal to the 
proportion wet of the buoy. For a spar buoy forces is calculated independently for each 
defined cylinder.  

The lumped buoy is defined without a detailed geometry. This results in inaccuracy when 
modeling due to roll and pitch motions not being captured. Further, the buoyancy for a 
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lumped buoy is treated as a vertical element with length equal to the specified height of the 
buoy. The buoyancy force then changes linearly with the vertical submergence of the buoy.  
 

6.3.3 Links 

In Orcaflex, links used to connect two objects are mass-less and may be modeled as a tether 
or a spring-damper system. The difference lies in that the spring-damper can take both 
tension and compression, whereas the tether is an elastic tie that can only take tension (often 
used to model slings in lifting operations).  

6.3.4 Winch 

Two types of winches can be utilized in Orcaflex, either a simple or a detailed model. The 
simple winch used in this thesis is massless and connected between two or more points in the 
model. Further, the wire is given stiffness and a specified length, before a preset tension in 
the static analysis is decided from: 

 
𝑇𝑇 = 𝐹𝐹𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ =

(𝐿𝐿 − 𝐿𝐿0)
𝐿𝐿0

𝐾𝐾𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝐾𝐾𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 ∗ 𝜖𝜖 (107) 

Where: 
𝐾𝐾𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤: Wire Stiffness 
𝐿𝐿: Total length of the winch wire path 
𝐿𝐿0: Un-stretched length of wire paid out 
𝜖𝜖: Wire Strain 
 
Inertia forces are in this model ignored. During a dynamic analysis, a specified length, 
velocity, acceleration controls the winch. Further, the dynamic tension is then taken as: 

 
𝑇𝑇 = 𝐹𝐹𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ =

(𝐿𝐿 − 𝐿𝐿0)
𝐿𝐿0

∗ 𝐶𝐶𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝐾𝐾𝐾𝐾 ∗ 𝐵𝐵𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 ∗ 𝐾𝐾𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 ∗
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 (108) 

Where: 
𝐵𝐵𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤: Wire Damping 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

: Wire strain rate 
 
As seen from the above equation, compression is not possible in the winch wire if 𝑇𝑇 
calculated is negative. If 𝑇𝑇 ≤ 0, the wire is in slack. 
 
 
 

6.4 Installation Vessel 

The specific vessel picked for use in this thesis is Rem Ocean (Figure 7). Rem Ocean is a 
construction vessel specifically suited to perform inspection-, maintenance- and repair (IMR) 
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work below the waterline. The selection of vessel type and size will often influence the 
limiting sea state, although the splash zone most often will determine the sea state limitation. 
In cases where wave forces on the structure are the main contribution to the experienced load, 
the limiting sea state will be independent of vessel type (Sandvik and Kopsov, 1995). 

When performing IMR work one always uses ROVs to either get a visual view of situations 
subsea, or perform various tasks using their manipulators (commonly in combination with 
purpose made tools). Next to the use of ROVs; operation by either the crane and/or the 
module handling system (MHS) is commonly for maintenance, construction, and repair work.  

 Main characteristics of the vessel are presented in Table 5.  

 
Figure 7: Photo of Rem Ocean taken by Valderhaug (2014) 
 
 Table 5: Rem Ocean main dimensions 
Main dimensions – Rem 
Ocean 

Value Unit 

Length w.l. 106.90 [m] 
Length p.p. 100.45 [m] 
Breadth 22.00 [m] 
Max draft  7.15 [m] 
Design/regular draft 5.18 [m] 
Deadweight 6000  [Te] 
Gross tonnage 7300 [Te] 
Displacement 9018 [Te] 
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6.5 ROV, TMS and LARS 

Rem Ocean is equipped with two Supporter MK2 working remotely operated vehicles 
(WROVs) (Figure 8) and one Sea Owl XTI Observation ROV (OROV). They are all situated 
in the hangar, and handled by a launch and recovery system (LARS). The tether management 
system (TMS) holds a drum with a tether for connecting the ROVs to the vessel system 
through a stiff umbilical going from the top of the TMS to the drum in the hangar.  

The systems for the WROVs is launched and recovered by an A-frame of type FSM90 
(LARS). Further, the TMS is connected to the ROV by a latch during the launch/recovery 
phase and is usually disconnected about 20-30 meters from the seabed. The TMS c/w a tether 
drum is a commonly used method today to ensure that the ROVs can work undisturbed by 
things as umbilical drag, movement restrictions, and (partly) the vessel location.  

In this thesis, the Supporter WROVs onboard Rem Ocean is considered as the main case 
under consideration. The main dimensions of the ROV, TMS, LARS and the umbilical can be 
found in Table 6 below. Note that the mass of the ROV includes the bottom skid and its 
manipulators.     

 
Figure 8: Picture of a Supporter Mk2 WROV onboard Rem Ocean taken by Aasen (2015) 
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Table 6: Main dimensions on the ROV system 
Structural Input Value Unit 
Constants 
Gravity 9.81 [m/s2] 
Seawater density 1027 [kg/m3] 
Steel density 7850 [kg/m3] 
Supporter MK2 WROV - Main dimensions 
Length 2.50 [m] 
Width 1.70 [m] 
Height 2.00 (skid included) [m] 
Displacement 3.46 [m3] 
Mass 3.62 [Te] 
Weight 35.50  [kN] 
Weight in water 0.00 (will vary, but assumed neutral) [kN] 
Max payload 0.40 [Te] 
TMS with tether - Main dimensions 
Diameter 2.20 [m] 
Height 2.13 [m] 
Displacement 0.77 [m3] 
Mass 3.62 [Te] 
Weight 35.50 [kN] 
Weight in water 27.08 [kN] 
ROV and TMS – Main dimensions 
Length 2.50 (modeled as an equivalent rectangular box) [m] 
Width 1.70 [m] 
Height 3.07 (TMS height reduced 50% in Orcaflex due 

to the shape) 
[m] 

Displacement 4.24 [m3] 
Mass 7.19 [Te] 
Weight 70.50 [kN] 
Weight in water 27.08 [kN] 
COB 0.2 [m] 
COG  -0.2 [m] 
Umbilical - Main dimensions 
Outer diameter 34.6 [mm] 
Mass/unit length 4.2 [kg/m] 
Mass in seawater/unit length 3.2 [kg/m] 
Axial stiffness 44000 [kN] 
Minimum Breaking Load 
(MBL) 

620 [kN] 

Damping ratio (C) 3 % 
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6.6 Crane/LARS capacity 

A LARS/crane`s dynamic capacity is determined by the safe working load (SWL), Dynamic 
amplification factor (DAF), lifting height, and lifting sector ranges. The dynamic 
amplification factor (DAF) characterized by the dynamic capacity is defined as: 

 𝐷𝐷𝐷𝐷𝐷𝐷 =
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

=
1

��1 − 𝛽𝛽0
2�

2
+ (2𝐶𝐶𝛽𝛽0)2�

2 
(109) 

Where:  
The frequency ratio, 𝛽𝛽0 = 𝜔𝜔

𝜔𝜔𝑛𝑛
 

And the damping ratio, 𝐶𝐶 = 𝑐𝑐 (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

= 𝑐𝑐
2𝑚𝑚𝜔𝜔𝑛𝑛

 

 
Where 𝑚𝑚 is mass of the object,  𝜔𝜔 and 𝜔𝜔𝑛𝑛 is the system- and natural frequency of the system 
respectively. 𝑐𝑐 is a constant which is specific to the system under consideration. 
 
The DAF factor can for a deck/sea lift be taken to be from 1.3 up to 2.0 based on the lifted 
object weight compared to the SWL (Safe Working Load). For lowering through the splash 
zone, the winch payout rate may have a significant influence on the value of the dynamic 
loading since it determines the period where the most extreme forces occurs (Sandvik and 
Kopsov, 1995). 
 

6.7 Modeling in Orcaflex 

As a basket/ROV lift operation is considered to be a light lift operation, the LARS/crane 
system may be modeled as rigid, hence the motions of the tip can be determined from the 
wave induced motions of the vessel (RAOs), meaning the transfer functions of the body 
motions. The RAOs are given as (Haver, 2015): 

 𝑅𝑅𝑅𝑅𝑅𝑅𝛯𝛯𝛯𝛯(𝜔𝜔𝑛𝑛) = ℎ𝛯𝛯𝛯𝛯(𝜔𝜔𝑛𝑛) =
𝑋𝑋0,𝑛𝑛

𝜉𝜉0,𝑛𝑛
 (110) 

Where ℎ𝛯𝛯𝛯𝛯(𝜔𝜔𝑛𝑛) is the transfer function, and 𝑋𝑋0,𝑛𝑛 is the response amplitude per unit wave 
amplitude (𝜉𝜉0,𝑛𝑛). 

The RAOs are given in six rigid degrees of freedom (surge, sway, heave, roll, pitch, yaw) 
defined numerically at the center of gravity (COG) of the vessel for a given load condition. 
The RAOs together with the crane tip are used to define the wave induced translational 
motion of the crane tip.   
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The displacement of the vessel (𝜂𝜂𝑛𝑛) at the 𝑛𝑛𝑡𝑡ℎ degrees of freedom is then calculated by 
multiplying the RAO with respect to the relevant wave direction as well as the degree of 
freedom of the wave amplitude: 

 𝜂𝜂𝑛𝑛(𝑡𝑡) = 𝑅𝑅𝑅𝑅�ℎ𝛯𝛯𝛯𝛯(𝜔𝜔𝑛𝑛) ∗ 𝜉𝜉0𝑒𝑒𝑖𝑖0𝜔𝜔𝜔𝜔� 

= |ℎ𝛯𝛯𝛯𝛯(𝜔𝜔𝑛𝑛)| ∗ 𝜉𝜉0cos (𝜔𝜔𝜔𝜔 + 𝜑𝜑𝑛𝑛) 
(111) 

Where 𝑛𝑛 = 1,2, … ,6. 

𝜔𝜔 is the wave frequency given in rad/s, 𝑡𝑡 is the time in seconds, 𝜑𝜑𝑛𝑛 is the phase angle in 
radians, and 𝜉𝜉0 is the wave amplitude. 𝑖𝑖0 is here an imaginary number.  
It should be noted that the equations is meant for use when the vessel is in a lifting phase, i.e. 
floating on open sea without any thrusting or anchoring. 
 
The dynamic tension in the wire cable (𝐹𝐹𝐷𝐷𝐷𝐷𝐷𝐷) may be developed from the dynamic transfer 
function in complex form (S.Rao, 2005): 

 
ℎ𝛯𝛯𝛯𝛯𝛯𝛯𝛯𝛯𝛯𝛯(𝜔𝜔𝑛𝑛) =

𝐹𝐹𝐷𝐷𝐷𝐷𝐷𝐷
𝜉𝜉(𝑡𝑡)

 (112) 

The dynamic tension on the wire for an un-damped case where the frequency of the wire is 
smaller than the natural frequency of the lifting system is expressed from (S.Rao, 2005): 

 𝐹𝐹𝐷𝐷𝐷𝐷𝐷𝐷 = −𝜔𝜔2𝑀𝑀𝑒𝑒𝑖𝑖0𝜔𝜔𝜔𝜔𝜂𝜂𝑡𝑡𝑡𝑡 (113) 

Where 𝑀𝑀 is the mass of the lifted object plus wire weight, and the crane tip motion (𝜂𝜂𝑡𝑡𝑡𝑡) in 
this thesis is assumed to follow the vessel motions (𝜂𝜂𝑛𝑛) converted from the COG of the 
vessel to the crane tip: 
 𝜂𝜂𝑛𝑛(𝑡𝑡) = 𝑅𝑅𝑅𝑅�ℎ𝛯𝛯𝛯𝛯(𝜔𝜔𝑛𝑛) ∗ 𝜉𝜉0𝑒𝑒𝑖𝑖0𝜔𝜔𝜔𝜔� 

= |ℎ𝛯𝛯𝛯𝛯(𝜔𝜔𝑛𝑛)| ∗ 𝜉𝜉0𝑐𝑐𝑐𝑐𝑐𝑐 (𝜔𝜔𝜔𝜔 + 𝜑𝜑𝑛𝑛) 
(114) 

Where 𝑛𝑛 = 1,2, … ,6. 
 
A response spectrum for the dynamic tension in the wire is then obtained as: 

 𝑆𝑆𝛯𝛯𝛯𝛯(𝜔𝜔𝑖𝑖) = 𝑆𝑆𝛯𝛯𝛯𝛯(𝜔𝜔𝑖𝑖) ∗ |ℎ𝛯𝛯𝛯𝛯(𝜔𝜔𝑛𝑛)|2 (115) 

 
While the combined response spectrum is then taken as (Haver et al., 2002): 

 𝑆𝑆𝑅𝑅𝑅𝑅(𝜔𝜔) = |ℎ𝛯𝛯𝛯𝛯𝛯𝛯𝛯𝛯𝛯𝛯(𝜔𝜔𝑛𝑛)|2 ∗ 𝑆𝑆𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔) + |ℎ𝛯𝛯𝛯𝛯𝛯𝛯𝛯𝛯𝛯𝛯𝛯𝛯(𝜔𝜔𝑛𝑛)|2 ∗ 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔) (116) 

Where:  

ℎ𝛯𝛯𝛯𝛯𝛯𝛯𝛯𝛯𝛯𝛯(𝜔𝜔𝑛𝑛): Dynamic tension amplitude due to wind sea 
ℎ𝛯𝛯𝛯𝛯𝛯𝛯𝛯𝛯𝛯𝛯𝛯𝛯(𝜔𝜔𝑛𝑛): Dynamic tension amplitude due to swell sea 
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6.7.1 ROV and TMS 

The ROV are represented by a rectangular box reflecting the characteristic dimensions of the 
ROV with TMS. In Orcaflex, these objects are represented as 6 dimensional “lumped buoys” 
(meaning buoys that are combined in Orcaflex to represent the body features of an object).  
 

6.7.2 LARS 

Although the LARS (or crane if used) may be modeled as stiff; some stiffness data has been 
included to introduce some more elasticity to the hoisting system. This would reduce snatch 
loads, and be more representative for a real life case. The rest of the hoisting system has been 
conservatively modeled as infinitely rigid, although some elasticity is likely to be introduced 
by hydraulic cylinders, winch mechanisms, etcetera.  
 
The deflection on the A-frame and its elements (i.e. crane wire, soft slings, master links, etc.) 
is assumed linear between applied force and deformation: 

 𝐾𝐾 =
𝐹𝐹
𝛿𝛿

 (117) 

The stiffness contributions from the A-frame/crane are then combined with the wire and 
rigging stiffness to form the total stiffness: 

 1
𝐾𝐾

=
1

𝐾𝐾𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
+

1
𝐾𝐾𝑤𝑤

+
1

𝐾𝐾𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.
+

1
𝐾𝐾𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

+
1

𝐾𝐾𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
+

1
𝐾𝐾𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒

 (118) 

𝐾𝐾𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = Stiffness of rigging arrangement (i.e. shackles, softstrops, chains, etc.) [N/m] 
𝐾𝐾𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. = Stiffness of (active/passive) heave compensation system used [N/m] 
𝐾𝐾𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = Stiffness of multiple lines in a block if used [N/m] 
𝐾𝐾𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = Stiffness of crane/LARS boom [N/m] 
𝐾𝐾𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑟𝑟 = Stiffness of other contributions if any [N/m] 
𝐾𝐾𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐/𝐴𝐴−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = Total crane stiffness [N/m] 
 
The longitudinal wire stiffness is: 
 

𝐾𝐾𝑤𝑤 =
𝐸𝐸𝑤𝑤𝐴𝐴𝑤𝑤
𝐿𝐿𝑤𝑤

=
𝐸𝐸𝑤𝑤𝜋𝜋𝑑𝑑𝑤𝑤2

4𝐿𝐿𝑤𝑤
 (119) 

 
Where 𝐸𝐸𝑤𝑤 is the cross-sectional Young`s modulus, 𝐴𝐴𝑤𝑤 is the circumscribed wire area,  𝑑𝑑𝑤𝑤 is 
the wire diameter, and 𝐿𝐿𝑤𝑤 is the wire length. 
 
The eigenperiod which may cause resonant motions and corresponding load of the system in 
z-direction is then: 
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𝑇𝑇0 =

2𝜋𝜋
𝜔𝜔0

= �𝑀𝑀
𝐾𝐾

= �𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑀𝑀𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑀𝑀𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝐴𝐴33
𝐾𝐾

 (120) 

Where 𝑀𝑀 is representing the weight of the object, rigging, and the wire. 𝐴𝐴33 is the added 
mass term.  

The stiffness of the LARS system (Figure 9) is taken as in Table 7. 

Table 7: Stiffness of the LARS system 
Umbilical - Main dimensions 
K - LARS 10117 [kN/m] 
K – Umbilical 44000 [kN/m] 
1/K - combined 0.00012 [1/kN] 
K - combined 8225 [kN] 

 
Figure 9: WROV system at Rem Ocean 
 
The launch point has in Orcaflex been modeled with a fully extended A-frame in order to 
give a representative vessel motion. 
 

6.7.3 Capacity check  

As the capacity for the lifting wire on the LARS frame is known to be the limiting criterion 
for the cases discussed in this thesis, a safety factor must be found. The safety factor can be 
taken as (DNV Standard for certification No.2.22 (2011, ch.2, section 3, B505): 

not less than 3 and: 
 

𝑆𝑆𝐹𝐹 =
104

0.885 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆[𝑘𝑘𝑘𝑘] + 1910
 (121) 

But not exceed 5. 
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As the SWL is not defined for a ROV umbilical, the minimum demand is used, giving a 
safety factor of 3.0. The maximum safe working load in the wire rope (S) is then: 

 
𝑆𝑆 =

𝐵𝐵
𝑆𝑆𝐹𝐹

=
620𝑘𝑘𝑘𝑘

3.0
= 206.66𝑘𝑘𝑘𝑘 (122) 

 

  

47 
 



University of Stavanger                                                              Analysis of ROV lift operation 

6.8 Hydrodynamic coefficients for the ROV system  

In order to determine forces acting on an object and corresponding responses through the 
splash zone as accurate as possible, a proper evaluation of the hydrodynamic properties 
should be carried out as far as time and resources allows. This means either theoretically from 
design properties, empirically by i.e. CFD modeling, or by model tests. The hydrodynamic 
properties are dependent upon things as the geometry of the structure, weight, perforation, 
Reynolds number, and the Keulegan-Carpenter number. In addition, motion- and wave 
direction, wave frequency, and the vicinity to the surface will give contributions. 

6.8.1 Added Mass 

In fluid mechanics, the added mass term is a representation of inertia added to a system due 
to the fact that an accelerating or decelerating object will deflect some of the fluid volume 
surrounding it as it moves. This phenomena is a common issue because the object and the 
surrounding fluid can`t occupy the same physical space simultaneously.  

The dimensionless added mass coefficient (𝐶𝐶𝐴𝐴𝐴𝐴) is found by using the added mass in one 
direction and divide by the displaced fluid mass (DNV-RP-H103, 2014): 

 𝐶𝐶𝐴𝐴𝐴𝐴 =
𝐴𝐴𝑖𝑖
𝜌𝜌𝑤𝑤𝑉𝑉𝑜𝑜

      𝑖𝑖 = 𝑥𝑥,𝑦𝑦, 𝑧𝑧 (123) 

Where: 
𝐴𝐴𝑖𝑖: Uncoupled added mass in x/y/z-direction [kg] 
𝜌𝜌𝑤𝑤: Water density [kg/m3] 
𝑉𝑉𝑜𝑜: Displaced volume of object in still water [m3] 
 
The Recommended Practice (DNV-RP-H103, 2014) proposes coefficients for simple 2- and 
3- dimensional bodies. But due to the complexity of a ROV system, these cannot be used 
directly. A common way to find added mass properties of 3D bodies is to use the geometry of 
the structure and find the added mass of the non-perforated object. Then the perforation 
degree is used to find a reduction factor. A proposal of such a calculation can be found in 
either DNV-RP-H103 (2014) or in Sandvik (2007). A calculation using the Sandvik method 
can be found in Appendix 2. 

The properties for the Supporter Mk2 based on calculations made in Appendix 2 gives: 

• 𝐴𝐴𝑥𝑥 = 4.57 𝑇𝑇𝑇𝑇 and 𝐶𝐶𝐴𝐴𝐴𝐴 = 0.90 
• 𝐴𝐴𝑦𝑦 = 6.18 𝑇𝑇𝑇𝑇 and 𝐶𝐶𝐴𝐴𝐴𝐴 = 0.71 
• 𝐴𝐴𝑧𝑧 = 5.11 𝑇𝑇𝑇𝑇 and 𝐶𝐶𝐴𝐴𝐴𝐴 = 0.84 

Model tests done by Sayer (2008) concludes that the inertia coefficient (𝐶𝐶𝑚𝑚 = 1 + 𝐶𝐶𝑎𝑎) lies in 
the range of 1.4-1.6 for a typical WROV, meaning added mass coefficients (𝐶𝐶𝐴𝐴) of 0.4-0.6. 
Further, due to the effects of proximity of free surface, the coefficients may be increased 
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about 10%. But it should be noted that the Super Scorpio WROV used in these tests are 
smaller than the Supporter Mk2 that is being used in this thesis.  
 
Taking into account the TMS system comes with the ROV, the following properties are 
derived: 

• 𝐴𝐴𝑥𝑥 = 8.51 𝑇𝑇𝑇𝑇 and 𝐶𝐶𝐴𝐴𝐴𝐴 = 1.68 
• 𝐴𝐴𝑦𝑦 = 6.62 𝑇𝑇𝑇𝑇 and 𝐶𝐶𝐴𝐴𝐴𝐴 = 0.76 
• 𝐴𝐴𝑧𝑧 = 7.85 𝑇𝑇𝑇𝑇 and 𝐶𝐶𝐴𝐴𝐴𝐴 = 1.29 

 

6.8.2 Drag Factors 
 
The drag factor is a dimensionless quantity obtained from the resistance of an object towards 
any environmental fluid. Generally, low drag numbers corresponds with low drag forces onto 
an object. An example of how one can find simplified drag coefficients (𝐶𝐶𝐷𝐷𝐷𝐷) in steady state 
flow based on design values of an ROV without TMS can be found in Appendix 3. Factors 
range from 2 to 2.5 in X/Y/Z-direction. Anyhow, these numbers are only valid in steady state 
scenarios. Drag coefficient in an oscillatory flow (𝐶𝐶𝐷𝐷) is likely to be higher. Therefore, DNV-
RP-H103 (2014, 4.6.2.4) states that unless CFD studies or model tests have been performed, 
drag factors in an oscillatory flow should be equal to or higher than 2.5.     
 

6.8.3 Slamming and Water Entry Factors 

In order to represent slamming forces on the structure during the launching phase through the 
water columns, slamming buoys are added along the members subjected to slamming. 
According to DNV-RP-C205 (2010, 8.6.1.2), a slamming coefficient 𝐶𝐶𝑠𝑠 for structures similar 
to smooth circular cylinders can be taken as 5.15 as the structure enters the fluid flow. This 
representative value may be used for the TMS. For other structures, the slamming force value 
should be taken as equal to or greater than 5 (DNV-RP-H103, 2014, 4.3.5.1).  

The water exit force in still water can be expressed as the rate of change of fluid kinetic 
energy (DNV-RP-H103, 2014, 3.2.11.2): 

 
𝐹𝐹𝑒𝑒(𝑡𝑡) = −

1
𝑣𝑣𝑒𝑒

𝑑𝑑
𝑑𝑑𝑑𝑑
�

1
2
𝐴𝐴330 𝑣𝑣𝑒𝑒2� = −

1
2
𝑑𝑑𝑑𝑑330

𝑑𝑑𝑑𝑑
𝑣𝑣𝑒𝑒 = −

1
2
𝜌𝜌𝐶𝐶𝑒𝑒𝐴𝐴𝑝𝑝(𝜍𝜍̇ − 𝜂̇𝜂)2 (124) 

Where 𝜂̇𝜂 is the vertical velocity of the sea surface (positive upwards), and 𝜍𝜍̇ is the vertical 
motion of the object. 𝑣𝑣𝑒𝑒 is the water exit velocity. The water exit coefficients (𝐶𝐶𝑒𝑒) may then 
be taken as: 
 

𝐶𝐶𝑒𝑒 = −
1
𝜌𝜌𝐴𝐴𝑝𝑝

𝑑𝑑𝑑𝑑330

𝑑𝑑ℎ
=

1
2
𝐶𝐶𝑠𝑠 = 2.5 − 2.575 (125) 
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7. Analysis 

7.1 Hindcast data 

When analyzing lifts to be performed at sea, baseline would be to choose the most suitable 
wave spectra and perform simulations in a stationary sea state for a set time period. The 
results obtained may then be fitted to a statistical distribution so that a representation of 
critical values can be established. 

Another method to get these critical values more accurate would be if one has historical wave 
data of the location where the lifting operation would be executed. This is called hindcast 
data which is a way to test or verify a mathematical/statistical model. This method is based 
on the principle of feeding historical (known) data into the model used in order to see how 
accurate the output values matches current or near past known data. If the model correlates 
well with the given data, the model may prove reliable for the prediction of future unknown 
data. Drawing such conclusions based on data is called statistical inference (Haver, 2015). 
Statistical inference makes it possible to (1) draw conclusions regarding the choice of 
probabilistic models, (2) estimate parameters for the probabilistic distribution, and (3) test if 
our fitted model is in agreement with what data samples suggest (Haver, 2015).  

The reason why the historical data rarely are used is the fact that the data needed are usually 
not available for the users, or that accurate measurements with good quality are not generated 
over a sufficiently long term history where also many extreme weather phenomena are 
present. Extreme weather such as wind, waves, current, and storm surge is needed for the 
estimation of the probability distribution which provides the basis for calculating design loads 
and events. Data samples should be sampled under identical boundary conditions and as far 
as possible be statistical independent. The sample size must also be large enough for 
estimating distribution parameters with sufficient accuracy (epistemic uncertainty reduction). 

 

7.2 Uncertainties 

7.2.1 Model uncertainty 

As statistical methods are models built on observed quantities, statistical uncertainties will 
always be present. In general, two types of uncertainties may create misalignments and 
uncertainties in a model towards its true values. The first one is aleatory uncertainty which is 
uncertainty towards the random nature of a phenomenon. For instance, one cannot be certain 
about the largest observed annual wave height in the future due to the inherent random nature 
of waves, and therefore also wave induced loads and responses (Haver, 2015). A good 
description of this variability is therefore required, involving probabilistic methods. 

The second uncertainty is epistemic where a deterministic phenomenon or parameter are 
uncertain and may vary due to lack of proper data and/or prior information (i.e. expert 
judgment, technical knowledge, data from similar cases, etc.). This type of uncertainty gives 
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uncertainty related to the choice of probabilistic distribution types for the stochastic variables.  
Epistemic uncertainty can be indicated by bootstrapping (Monte Carlo simulations). Anyway, 
a fitted model can never prove 100% correct. Only indications of whether or not a model is 
acceptable can be established. This can be accomplished by (1) gaining more 
data/knowledge, (2) executing research work regarding the underlying structure of the 
phenomenon, or (3) investigating in more accurate equipment for observing a phenomenon 
(Haver, 2015).  

 

7.2.2 Chi-squared method 

A way to verify that the deviation between a fitted model and available data is larger than 
what is likely to be a consequence of inherent randomness, is by doing a chi-squared (𝜒𝜒2) 
test. This test gives us guidance on the suitability of a given probability model. First step of 
this test is to group the given sample space into 𝑚𝑚 classes such that the class probability, 
𝑝𝑝𝑚𝑚,𝑚𝑚 = 1,2, … ,𝑁𝑁 are more or less the same for all classes. As the class width will be narrow 
in the central part of the distribution and broader in the tail region, the expected number of 
observations should as guidance be at least 5 in each class (Haver, 2015).  The target class 
probability thus becomes: 
 

𝑝𝑝 =
5
𝑛𝑛

 (126) 

 
Also, the number of classes, 𝑚𝑚, should be large enough to get a reasonable resolution.  
 
The steps of the 𝜒𝜒2-test is (Haver, 2015): 

1. Class limits are determined such that the class probability of the fitted model is 𝑝𝑝 for 
all classes.  

2. Observations of the given phenomena are pooled into the various classes. The number 
of observations within each class no. 𝑖𝑖 is denoted 𝑜𝑜𝑖𝑖, 𝑖𝑖 = 1,2, … ,𝑛𝑛. 

3. The error between observations and fitted model is then calculated as follows: 

 
𝜒𝜒2 = �

(𝑜𝑜𝑖𝑖 − 𝑛𝑛𝑛𝑛)2

𝑛𝑛𝑛𝑛

𝑚𝑚

𝑘𝑘=1

 (127) 

4. As 𝑜𝑜𝑖𝑖 is unknown prior to the observations, this random variable will be the case for 
the sum. 

Further, if it is given that: 

i. The fitted model is the true model 
ii. That 𝑛𝑛𝑛𝑛 → ∞ for all classes 

iii. The parameters of the fitted distribution are estimated using the maximum 
likelihood method 
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It can be shown that 𝜒𝜒2 is a realization from a chi-square variable with 𝑣𝑣 = 𝑛𝑛 − 𝑟𝑟 − 1 
degrees of freedom, where 𝑟𝑟 is the number of parameters estimated from the sample. But as 
seen, our minimum value for 𝑛𝑛𝑛𝑛 is far from infinity and the parameters may be estimated by 
other techniques. Due to this, the test will be used by assuming that one can utilize the same 
probabilistic structure of the error variable.  

5. From tables of the chi-square distribution, the value of exceeding 1 − 𝛼𝛼 is found as 
𝜒𝜒𝑣𝑣,1−𝛼𝛼
2 . 

6. If the calculated error, 𝜒𝜒2, is larger than 𝜒𝜒𝑣𝑣,1−𝛼𝛼
2  , the model will be rejected on 

significance level 1 − 𝛼𝛼. The probability of a rejected model thus becomes 1 − 𝛼𝛼. 

   

7.2.3 Monte Carlo 

When analyzing lifts that is to be performed offshore, one will often perform simulations in 
time domain software to get representative forces so that limiting wave conditions can be 
found. But, after generating 𝑛𝑛 amount of simulations, the characteristic load that is extracted 
from a suitable statistical distribution will have uncertainties. To cover for this uncertainty, 
the confidence should be assessed. As performing many repeated simulations in Orcaflex is 
time consuming, the question thus becomes how one can numerically generate a value that is 
representative to a true observable value so that one can estimate the confidence/uncertainty 
in a distribution. This can be done using Monte Carlo simulation of a realization from a given 
distribution function with a set of estimated parameters.  
 
First, the original data set is fitted to the most suitable probability model in i.e. a probability 
paper. Before the realization of the sample 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 are known and the corresponding 
cumulative distribution function 𝐹𝐹𝑥𝑥(𝑥𝑥) is given as a random variable 𝑅𝑅 = 𝐹𝐹𝑥𝑥(𝑥𝑥). No matter 
what the true distribution of 𝑥𝑥 is, 𝑅𝑅 is uniformly distributed between 0 and 1. The simulation 
is then performed by the following steps (Haver, 2015): 

1. Generate a number of randomness between 0 and 1 by using a random number 
generator, denoted 𝑟𝑟1. 

2. The corresponding value of 𝑥𝑥 is: 𝑥𝑥1 = 𝐹𝐹𝑥𝑥−1(𝑟𝑟1). 
3. Repeat step 1. and 2. 𝑦𝑦 times in order to obtain a sample of 𝑛𝑛 values from 𝐹𝐹𝑥𝑥(𝑥𝑥). 
4. Fit the same type of probabilistic model used for the original data set to the 𝑦𝑦 samples. 

One then gets 𝑦𝑦 estimates for the distribution parameters.  
5. Calculate the mean parameters of the 𝑦𝑦 estimates and compare to the parameters of 

the (“true”) distribution used for the Monte Carlo simulations.  
 

If the means of the 𝑦𝑦 estimates is approximately equal to the background values, the 
estimation process indicates that unbiased estimates are being generated. 
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7.3 Extraction of data  

When observing or simulating a value (i.e. 𝐻𝐻𝑠𝑠, 𝑇𝑇𝑝𝑝 or wire tension) for a given case, not all 
values obtained are of interest.  Therefore, if only the more extreme values are of interest, 
they may be extracted generally by using two methods.  
 

1) MAX method 

In the max method, the response maximum of each simulation is extracted. From the 
maximums of multiple simulations, the data can be fitted to an extreme value distribution. A 
limitation of this approach is that several simulations need to be performed (Gudmestad, 
2015). Also, the method totally disregards the information in the remaining data. 
 

2) Peak over threshold (POT) 
In the peak over threshold (POT) approach, only peak values above a given threshold is 
extracted from the simulation(s).  A process called de-clustering ensures that only successive 
peak observations are retained from the time series. It also ensures that only the peaks that are 
at a certain range of distance apart are taken into account in the POT. The obtained data 
points are assumed to follow some sort of a Generalized Pareto Distribution (GDP) 
(Gudmestad, 2015). 
 
The POT method allows for more data points to be taken into consideration in statistical 
analysis than the MAX method. The threshold limit is a subjective choice, although a low 
threshold may result in a data set with high variance. The minimum required threshold to 
provide a reasonably good GPD model may be determined from the threshold stability 
property of the GPD (Gudmestad, 2015): 

 𝛽̂𝛽𝑢𝑢 = 𝛽̂𝛽𝑢𝑢0 + 𝑘𝑘(𝑢𝑢 − 𝑢𝑢0) (128) 

Where 𝑢𝑢0 is the minimum threshold, 𝑢𝑢 is the higher threshold, 𝛽̂𝛽 is the scale parameter of the 
GDP, and 𝑘𝑘 is the shape parameter.  

The number of exceedances for 𝑢𝑢 for a given period of time is assumed to follow a Poisson 
distribution, where the density function reads: 

 
𝑓𝑓(𝑋𝑋 = 𝑥𝑥) =

𝜇𝜇𝑥𝑥

𝑥𝑥!
𝑒𝑒−𝜇𝜇 (129) 

Where 𝜇𝜇 gives the expected frequency of occurrence, and 𝑥𝑥 is the number of occurrences. 
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7.4 Fitting of data 

As mentioned, a probability distribution may be determined by data analysis using a suitable 
wave spectrum and historical data if present. This can be done simply by looking at the 
probability density function for the present data, but can prove difficult in some scenarios. 
More often, the process of fitting a distribution to available data are done by plotting the 
empirical data distribution in probability papers. The aim of fitting data to a specific 
distribution is to predict the probability or to forecast the frequency of occurrence of the 
extent of a phenomenon in a certain time interval. Generally, a large data sample should be 
aimed for as a number of different probabilistic models may seem reasonable for smaller data 
sets. Especially the tail region should be of large concern as this area most often provides the 
extreme value predictions of interest.   

In order to obtain an empirical/cumulative distribution function, various methods may be 
used. The most logic choice to select might be to take the sample distribution function: 

 𝐹𝐹�(𝑥𝑥) =
𝑛𝑛𝑖𝑖
𝑁𝑁

      𝑛𝑛𝑖𝑖 = 1,2,3, … . ,𝑁𝑁  (130) 

Where 𝑛𝑛𝑖𝑖 is the cumulative amount of observations and 𝑁𝑁 is the total number of observations. 
This approach will provide wrong results when 𝑛𝑛𝑖𝑖 goes equal to 𝑁𝑁. Therefore, the most 
common method (also used in this thesis) is: 

 𝐹𝐹�(𝑥𝑥) =
𝑛𝑛𝑖𝑖

𝑁𝑁 + 1
,      𝑛𝑛𝑖𝑖 = 1,2,3, … . ,𝑁𝑁  (131) 

Or the more general method proposed by Blom (1958): 

 𝐹𝐹�(𝑥𝑥) =
𝑖𝑖 − 𝑐𝑐𝑖𝑖

𝑁𝑁 + 1 − 2𝑐𝑐𝑖𝑖
,      0 ≤ 𝑐𝑐𝑖𝑖 ≤ 1  (132) 

Where 𝑖𝑖 is the rank of the data point. 
  
The last method might be able to put the points in a median position and thereby provide a 
very small bias when plotting data points. 

After a probability distribution has been established, an estimate of the true parameters in the 
distribution function can be done. This can be done by various approaches (Haver, 2015, 
p.34): 

1. Method of moment: Using the method of moment technique, more weight to the tail 
may be provided compared to the maximum likelihood method, but typically less 
than the least square approach used in the tail region.  

2. Least square fit: In this approach, one uses the y-axis probability scale to 
draw/calculate the x-axis value based on a fitted line in the probability paper. 
Although the probability plot and/or the fitted line may be skewed so that slightly 
distorted values results, this method provides a fast and effective way to get the 
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wanted parameters with good accuracy. It may also be fitted to the tail region by 
excluding value below a set threshold. 

3. Method of maximum likelihood: In this method, the parameters are estimated based 
on the fact that an observed sample is the most likely sample. For large sample sizes 
with good quality, this method provides most efficient if the chosen probability 
model is correct. For smaller sample sizes, this technique may not prove reliable. 
 
 

7.4.1 Method of moments 

The method of moment is a method for estimating parameters. It is very much used in the 
offshore industry as it gives much weight to the tail region and is easy to implement. It is to 
be noted that the method will only give estimates and not true values unless the sample size is 
unlimited. The Gumbel and the Weibull distribution will be used in the examples described 
below.  

Weibull: 

The 2-parameter Weibull distribution function is given as (Haver, 2015): 

 

𝑓𝑓(𝑥𝑥;𝛽𝛽,𝑘𝑘) =
𝑘𝑘
𝛽𝛽
�
𝑥𝑥
𝛽𝛽
�
𝑘𝑘−1

𝑒𝑒

−

⎝

⎜
⎛(𝑥𝑥)

𝛽𝛽�

⎠

⎟
⎞

𝑘𝑘

    
(133) 

The expected value and the variance may be given in terms of moments as: 

 
𝜇𝜇𝑥𝑥

(𝑛𝑛) = 𝐸𝐸[𝑋𝑋𝑛𝑛] = � 𝑥𝑥𝑛𝑛𝑓𝑓𝑥𝑥(𝑥𝑥)𝑑𝑑𝑑𝑑 = 𝛽̂𝛽𝑛𝑛𝛤𝛤 �1 +
1
𝑘𝑘�
�

∞

0
 (134) 

Giving: 
 𝐸𝐸(𝑥𝑥) = 𝛽̂𝛽𝛤𝛤 �1 +

1
𝑘𝑘�
� (135) 

 
𝑉𝑉𝑉𝑉𝑉𝑉(𝑥𝑥) = 𝐸𝐸(𝑥𝑥2) − 𝐸𝐸(𝑥𝑥)2 = 𝛽̂𝛽2 �𝛤𝛤 �1 +

2
𝑘𝑘�
� − 𝛤𝛤2 �1 +

1
𝑘𝑘�
�� (136) 

𝛤𝛤 () represents the gamma function. 

 
The moments may then be calculated by requiring: 

 𝑥̅𝑥 = 𝛽̂𝛽𝛤𝛤 �1 +
1
𝑘𝑘�
� (137) 

 𝜎𝜎𝑥𝑥2 = 𝛽̂𝛽2 �𝛤𝛤 �1 +
2
𝑘𝑘�
� − 𝛤𝛤2 �1 +

1
𝑘𝑘�
�� (138) 

 
The shape estimator parameter 𝑘𝑘�/alpha is then estimated by equaling: 
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�𝛤𝛤 �1 + 2

𝑘𝑘�
� − 𝛤𝛤2 �1 + 1

𝑘𝑘�
��

𝛤𝛤2 �1 + 1
𝑘𝑘�
�

= �
𝜎𝜎𝑥𝑥2

𝑥̅𝑥
�
2

 (139) 

A corresponding β�-value may then be found by introducing the estimated k� into equation 
137. 

 
Gumbel: 
For a Gumbel distribution, the usual moment of order 𝑟𝑟 is obtained as (Mahdi & Cenac, 
2004) 

 
𝜇𝜇𝑟𝑟 = 𝐸𝐸(𝑋𝑋𝑟𝑟) = ��𝑘𝑘�

𝑟𝑟
� 𝛽̂𝛽𝑟𝑟−𝑘𝑘� µ�𝑘𝑘� �𝑦𝑦𝑟𝑟−𝑘𝑘� 𝑒𝑒𝑒𝑒𝑒𝑒[𝑦𝑦 + 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑦𝑦)]𝑑𝑑𝑑𝑑

𝑅𝑅

𝑟𝑟

𝑘𝑘=0

 (140) 

In cases of order 𝑟𝑟 = 1 and 𝑟𝑟 = 2, we get after computation and simplification: 

 µ�1 = 𝛽̂𝛽𝐶𝐶2 + µ� (141) 

 µ�2 = 𝛽̂𝛽2𝐽𝐽 + 2𝛽̂𝛽µ�𝐶𝐶2 + µ�2 (142) 

Where 𝐶𝐶2 is a constant equal to 0.577215 𝐽𝐽 ≈ 1.978 when the sample size goes large. From 
the above equation the method of moment estimates can be expressed as: 

 
𝛽̂𝛽 = �

𝑥𝑥2��� − 𝑥̅𝑥2

𝐽𝐽 − 𝐶𝐶22
�

1
2�

 (143) 

 µ� = 𝑥̅𝑥 − 𝐶𝐶2𝛽̂𝛽 (144) 

Where 𝑥̅𝑥 and 𝑥𝑥2��� are the empirical moments of order 1 and 2 given from the sample. 

 

7.4.2 Least square fit 
 
As the method of moments is associated with uncertainties especially when applied to a small 
number of observations, other method may prove more accurate. One technique of indicating 
uncertainties in a fitted distribution is to use bootstrapping. Generally, two bootstrapping 
techniques are commonly used, parametric bootstrapping or classic bootstrapping. 
  
Classic bootstrapping: 
In classic bootstrapping, a sample of size 𝑛𝑛 is used to produce a trend line fitted to data in the 
most suitable probability paper.  As the nature is inherent random in nature, this data sample 
is just one of many possibilities. Other possible combinations may then be obtained by 
resample with replacements from the original data set. By producing multiple re-sampled 
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samples, a scatter in the fitted distributions will be present, indicating uncertainties. A 
disadvantage of using this method is the fact that no samples outside the original data set are 
obtained (Haver, 2015). 
 
Parametric bootstrapping: 
In parametric bootstrapping, one assumes the trend line fitted to the original data sample to be 
the true model. Then, Monte Carlo simulations are performed in order to generate new 
samples from the distribution fitted to the original sample (Haver, 2015).  
 

7.4.3 Maximum Likelihood method 
 
Another method often used to estimate parameters such that the observed such that the 
simulated/observed is the most likely sample, is the maximum likelihood method. This 
method uses obtained information in an efficient way, especially for larger sample sizes. For 
small/moderate sized samples, other methods may prove more accurate (Haver, 2015). 
 
Given that 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 are random samples following a Gumbel distribution, the likelihood 
function is given as (Mahdi and Cenac, 2004): 

 
𝐿𝐿�µ� , 𝛽̂𝛽� = �𝑓𝑓�µ� , 𝛽̂𝛽�

𝑛𝑛

𝑖𝑖=1

= �
1
𝛽̂𝛽
𝑒𝑒𝑒𝑒𝑒𝑒 �−

𝑥𝑥 − µ�
𝛽̂𝛽

− 𝑒𝑒𝑒𝑒𝑒𝑒 �− �
𝑥𝑥 − µ�
𝛽̂𝛽

���
𝑛𝑛

𝑖𝑖=1

 (145) 

 
𝑙𝑙�µ� , 𝛽̂𝛽� = 𝑙𝑙𝑙𝑙𝑙𝑙�µ� , 𝛽̂𝛽� = −𝑛𝑛𝑛𝑛𝑛𝑛𝛽̂𝛽 −�

𝑥𝑥𝑖𝑖 − µ�
𝛽̂𝛽

𝑛𝑛

𝑖𝑖=1

−�𝑒𝑒𝑒𝑒𝑒𝑒 − �
𝑥𝑥𝑖𝑖 − µ�
𝛽̂𝛽

�
𝑛𝑛

𝑖𝑖=1

 (146) 

This gives the partial derivatives: 

 𝑑𝑑𝑑𝑑�µ� , 𝛽̂𝛽�
𝑑𝑑𝛽̂𝛽

= −
𝑛𝑛
𝛽̂𝛽

+ �
𝑥𝑥𝑖𝑖 − µ�
𝛽̂𝛽2

𝑛𝑛

𝑖𝑖=1

−��
𝑥𝑥𝑖𝑖 − µ�
𝛽̂𝛽2

� 𝑒𝑒𝑒𝑒𝑒𝑒 − �
𝑥𝑥𝑖𝑖 − µ�
𝛽̂𝛽

�
𝑛𝑛

𝑖𝑖=1

 (147) 

And: 
 𝑑𝑑𝑑𝑑�µ� , 𝛽̂𝛽�

𝑑𝑑µ�
=

1
µ�
�𝑛𝑛 −�𝑒𝑒𝑒𝑒𝑒𝑒 �

𝑥𝑥𝑖𝑖 − µ�
𝛽̂𝛽

�
𝑛𝑛

𝑖𝑖=1

� (148) 

For 𝛽̂𝛽 ≠ 0, the system can be solved by 𝑑𝑑𝑑𝑑�µ�,𝛽𝛽��
𝑑𝑑𝛽𝛽�

= 𝑑𝑑𝑑𝑑�µ�,𝛽𝛽��
𝑑𝑑µ�

= 0. This yields the maximum 

likelihood (ML) estimates of the two estimators (𝛽̂𝛽, µ�) as numerical solutions given by the 
following equations: 
 

µ� = 𝛽̂𝛽 �ln𝑛𝑛 − 𝑙𝑙𝑙𝑙�𝑒𝑒𝑒𝑒𝑒𝑒 − �
𝑥𝑥𝑖𝑖
𝛽̂𝛽
�

𝑛𝑛

𝑖𝑖=1

� (149) 

 

𝑥̅𝑥 = 𝛽̂𝛽 +
∑ 𝑥𝑥𝑖𝑖 ∗ 𝑒𝑒𝑒𝑒𝑒𝑒 − �𝑥𝑥𝑖𝑖

𝛽̂𝛽
�𝑛𝑛

𝑖𝑖=1

∑ 𝑒𝑒𝑒𝑒𝑒𝑒 − �𝑥𝑥𝑖𝑖
𝛽̂𝛽
�𝑛𝑛

𝑖𝑖=1

 (150) 
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Where 𝑥̅𝑥 denotes the sample mean. 
 
The estimate of 𝛽̂𝛽 is explicitly obtained from equation (150), before the estimate of µ� is 
implicitly obtained from equation (149) after substitution of the estimate of 𝛽̂𝛽. 
 

7.5 Statistical confidence 
 
When setting up a ROV model in a software program as Orcaflex, simplifications of the 
environment and wave processes must be done. One thereby gets uncertainties in the results 
obtained. To narrow the gap of uncertainty, DNV-RP-C205 (2010, 10.8.4) says that a 
repeatability of the specific case should be documented with a high level of confidence. From 
DNV-RP-C205 (2010, 10.7.3) one can further obtain that due to strongly nonlinear waves 
and statistical variability problems when running simulations, multiple realizations in the 
same wave spectrum may be needed to overcome some problems of the confidence accuracy.  
 
When simulating in irregular sea states, statistical results will vary for each simulation. 
Therefore, many simulations must be run to obtain accurate and reliable results. In the 
following sections, some theory behind confidence levels is reviewed.  
 
Given observations 𝑋𝑋1, …𝑋𝑋𝑛𝑛, one can estimate the mean by: 
 

µ� = ��
𝑋𝑋𝑖𝑖
𝑛𝑛
�

𝑛𝑛

𝑖𝑖=1

 (151) 

And the variance as: 
 

𝑉𝑉𝑉𝑉 =
1
𝑁𝑁
�(𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)2
𝑁𝑁

𝑖𝑖=1

 (152) 

 
The exact variable moments are given by Fisher (1928): 
 

𝑉𝑉𝑉𝑉𝑉𝑉[µ�] =
𝜎𝜎2

𝑛𝑛
 (153) 

 
𝑉𝑉𝑉𝑉𝑉𝑉[𝑉𝑉𝑉𝑉] = �𝛼𝛼4 − 1 +

2
𝑛𝑛 − 1

�
𝜎𝜎4

𝑛𝑛
≈ (𝛼𝛼4 − 1)

𝜎𝜎4

𝑛𝑛
 (154) 

 
𝐶𝐶𝐶𝐶𝐶𝐶[µ� ,𝑉𝑉𝑉𝑉] = 𝛼𝛼3

𝜎𝜎3

𝑛𝑛
 (155) 

As results often are derived using the standard deviation rather than the variance, a Taylor 
series for the standard deviation estimate (𝜎𝜎�) can be taken as Fisher (1928): 

 𝜎𝜎� = 𝑉𝑉𝑉𝑉1 2� = 𝑉𝑉𝑉𝑉����1 2� +
1
2
𝑉𝑉𝑉𝑉����1 2� (𝑉𝑉𝑉𝑉 − 𝑉𝑉𝑉𝑉����) (156) 

Where 𝑉𝑉𝑉𝑉���� = 𝐸𝐸[𝑉𝑉𝑉𝑉] = 𝜎𝜎2.  
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This results in the following equations: 
 

𝑉𝑉𝑉𝑉𝑉𝑉[µ�] =
𝜎𝜎2

𝑛𝑛
 (157) 

 
𝑉𝑉𝑉𝑉𝑉𝑉[𝜎𝜎�] ≈ �

𝛼𝛼4 − 1
4

�
𝜎𝜎2

𝑛𝑛
 (158) 

 
𝐶𝐶𝐶𝐶𝐶𝐶[µ� ,𝜎𝜎�] ≈

𝛼𝛼3
2
𝜎𝜎2

𝑛𝑛
 (159) 

The first moment reflects the uncertainty in the mean, the second the uncertainty in the 
standard deviation, whareas the last gives the correlation between these two estimates. These 
estimators are general, meaning they can be applied to any distribution. For a Gumbel model, 
the higher moments 𝛼𝛼3 and 𝛼𝛼4, are 1.14 and 5.4 respectively, while for a normal distribution, 
𝛼𝛼3 = 0 and 𝛼𝛼4 = 3. 
 
The first two moments are then used to predict the standard error 𝑆𝑆𝑆𝑆�𝑥𝑥𝑝𝑝� of the simulations 𝑛𝑛 
as (Winterstein et al., 2001):  
 

𝑆𝑆𝑆𝑆�𝑥𝑥𝑝𝑝� =
𝜎𝜎
√𝑛𝑛

�1 + 𝛼𝛼3 ∗ 𝐾𝐾𝑝𝑝 + �
𝛼𝛼4 − 1

4
� ∗ 𝐾𝐾𝑝𝑝2 (160) 

Where 𝐾𝐾𝑝𝑝 = �𝑥𝑥𝑝𝑝 − µ��
𝜎𝜎�   

Rewriting the term gives: 
 𝑥𝑥𝑝𝑝 = 𝐾𝐾𝑝𝑝𝜎𝜎 + 𝛽̂𝛽 (161) 

In terms of a Gumbel standardized variable: 

 𝐾𝐾𝑝𝑝 = 0.78[−ln (−ln (𝑝𝑝)] − 0.45 (162) 

The confidence intervals for the quantile estimate are then made using the standard error 
(SE[𝑥𝑥𝑝𝑝]). The 𝑝𝑝% confidence level may then be expressed as: 

 
�𝑥𝑥𝑝𝑝𝐿𝐿 

, 𝑥𝑥𝑝𝑝𝐻𝐻 
� = �𝑥̅𝑥𝑝𝑝 − 𝑧𝑧1−𝛼𝛼2

∗ 𝑆𝑆𝑆𝑆�𝑥𝑥𝑝𝑝�, 𝑥̅𝑥𝑝𝑝 + 𝑧𝑧𝛼𝛼/2 ∗ 𝑆𝑆𝑆𝑆�𝑥𝑥𝑝𝑝�� = 1 − 𝛼𝛼 (163) 

𝑧𝑧1−∝ 2�
= −𝑧𝑧∝

2�
 is the standard normal variable of a two tailored distribution for levels 

corresponding to the confidence interval 1 − 𝛼𝛼. 𝑧𝑧 is here a confidence multiplier of a two 
tailed normal distribution. For a 90% confidence level, 𝑧𝑧 = 1.65, for a 95% confidence level, 
𝑧𝑧 = 1.96, whereas a 99% level yields 𝑧𝑧 = 2.58, etc.  
 
Notice that 𝑥𝑥𝐿𝐿 and 𝑥𝑥𝐻𝐻 are stochastic variables. When the confidence interval is calculated, the 
resulting interval either contains the true value of 𝑥𝑥𝑝𝑝 or not. Although when repeating an 
experiment/observation many times, the confidence interval should include the true value 
(1 − 𝛼𝛼) ∗ 100% of the times.  
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7.6 Limitations 
 
For the specific lifting operation under consideration in this thesis, limitations and 
assumptions must be done: 

1. The ROV model used in Orcaflex is a simplification of a real ROV. Even though the 
mass and volume is correct, uncertainties in buoyancy, COG, and simplifications 
regarding shape will affect the results slightly. Also, the hydrodynamic properties and 
distribution of drag and added mass are estimates and cannot be taken as 100% 
accurate unless model tests and/or CFD studies are carried out to confirm the values 
obtained.  

2. The stiffness of the A-frame would be an estimate based on a simple “Staad Pro” 
software model. Also, the winch is simple and without any mass. The umbilical data 
are supplier specifications and should be fairly accurate. 

3. Wind and current effects are not present in the analysis. The wind may cause a 
pendulum when using a vessel crane. When using a LARS frame, the TMS comes 
with the ROV gets fastened to the LARS tip prior to a launch, so neither the wind nor 
the vessel motions will have significant effects on the wire pendulum. Any current 
effects are neglected in the splash zone, although some horizontal forces may occur. 

4. The main cases (Case 1a and 1b) under consideration handles a ROV launch with A-
frame over the side of the vessel. Anyhow, the methodology discussed in this thesis 
would be the same for moonpool or crane operations. 

5. Due to the complexity of phasing between incoming waves and lifting operation, the 
load case is investigated for a number of wave realizations. The operation is modeled 
as a "blind" lift, meaning that start of submergence/recovery is chosen arbitrary and 
no optimization has been applied with regards to timing of the lift. A winch speed of 
1.0 m/s is used as base case.  

6. Waves on the leeward side of the vessel would be dampened to some degree. But due 
to the fact that the motion of the vessel is only described by first order transfer 
functions, the presence of the vessel in the waves is not captured. Therefore, 
shielding- and radiation effects from vessel oscillation are not considered. Anyhow, 
shielding would not always be possible during a ROV/object launch/recovery. This 
goes especially for the two WROVs on Rem Ocean that is usually in operation 
simultaneously.  

7. For simplification of the analysis, the crane/LARS tip motions are conservatively 
taken to represent the motion of the load. The crane/LARS motions are obtained from 
the COG of the vessel motions. 
 
Although these limitations and assumptions may have contributions when finding a 
characteristic load, the methodology suggested in this thesis will not suffer as a result.  
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7.7 Method for use in analysis 
 
When performing analysis of lifting operations offshore, DNV-RP-H103 (2014, 3.4.3.7.) 
states: 

“For lowering operations it is generally recommended to keep the object fixed in selected 
positions for minimum 30 min. If a continuous lowering of the object is simulated a large 
number of realizations is required in order to obtain a proper statistical confidence”. 

Also, from DNV-RP-C205 (2010, 10.7.2) one reads: 

“For linear processes, the behaviors of the extremes are reasonably well known based on the 
standard deviation of the process, while for nonlinear processes it is essential to use and 
interpret measured extremes in a proper and consistent way. If only one sea state realization 
is run, it is better to use extreme estimates based on fitting of the tail of the peak distribution, 
rather than single sample extremes. 

 Further (DNV-RP-C205, 2010, 10.7.3):  

“An extensive and accurate way to overcome the statistical variability problem is to run a 
large number of different realizations of the same spectrum, in order to obtain robust 
estimates. Strongly nonlinear processes exhibit a larger statistical scatter than weakly 
nonlinear processes, and the multiple realization approach is then often recommended. 
Sample extremes from each realization can be fitted to a Gumbel distribution, from which 
more robust extreme estimates can be estimated”. 

Two methods may then be applicable to use: 

1. A stationary analysis where the object first is being stationed in some critical wave 
scenarios, or lowered slowly through the wave zone. This is done for some regular 
wave heights and wave periods to find the most critical situation and object position. 
Next, a stationary analysis in irregular waves based on a wave spectrum is performed 
while the object is placed in the most critical position. The analysis should last for 
0.5-3 hours. Based on the results from analysis, extreme sea state/loads may be 
determined from statistical analysis. 

2. Repeated lowering in critical irregular waves based on a wave spectrum where the 
object is lifted from air to well below surface in a short time frame (usually<
1 minute). Different wave realizations then appear from each case. From the results 
in each case, the maximum forces, and if applicable, also minimum forces are 
extracted. These results may then be used in statistical analysis to study time series 
and estimate extreme sea state forces based on limiting criteria.  

Method 1 will for cases involving lifting of light objects often give unrealistic values. This is 
partly due to the fact that a lift through the splash zone most often will be performed in less 
than1 minute, but also because waves interacting with a lifted object stationed in the wave 
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zone will cause a pendulum motion and thereby misaligned forces compared to a real splash 
zone lift will occur. Method 2 will therefore be preferred. 
 
Based on chapter 2.2, the limiting criteria used in this thesis are the following: 

1. The ultimate analysis states that the maximum structural capacity of the 
crane/LARS/object shall not be exceeded more often than in 1 per 10 000 operations 
(DNV-OS-H101, 2011, Section 1, A201): 

𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 (𝑝𝑝=0.9999) < 𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶/𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿/𝑂𝑂𝑏𝑏𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗,𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
 

2. The most probable maximum dynamic tension in any lifting appliances shall be lower 
than the lowest of either the SWL of the crane times the DAF used in the structural 
design, the wire design capacity, or the design capacity of the rigging. 

 

𝐹𝐹max,𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝=𝑋𝑋%) < 𝑚𝑚𝑚𝑚𝑚𝑚

⎩
⎪⎪
⎨

⎪⎪
⎧

(𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 × 𝐷𝐷𝐷𝐷𝐷𝐷) + 𝑊𝑊𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝐹𝐹 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑀𝑀𝑀𝑀𝑀𝑀)

𝛾𝛾𝑠𝑠𝑠𝑠�

𝐹𝐹 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑀𝑀𝐵𝐵𝐵𝐵)
𝛾𝛾𝑠𝑠𝑠𝑠�

⎭
⎪⎪
⎬

⎪⎪
⎫

 (164) 

Where 𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the safe working load for the crane at the given maximum radius used 
during the lift. 𝑊𝑊𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is the summarizing weight of all rigging equipment. Also, a safety 
factor (𝛾𝛾𝑠𝑠𝑠𝑠) is applied to the rigging equipment and lifting wire minimum breaking loads 
(MBL) to get the design load. The design load is representative to a safe working load (SWL) 
multiplied with the dynamic amplification factor (DAF). The required level of non-
exceedance will be discussed in chapter 8 and 9. 

The analysis performed in Orcaflex has been checked by zero-up crossing wave periods 
between (DNV-RP-H103, 2014, 4.3.2.1.): 

 
8.9�

𝐻𝐻𝑠𝑠
𝑔𝑔
≤ 𝑇𝑇𝑧𝑧 ≤ 13      [𝑠𝑠] (165) 

The splash zone analyses are then run multiple times using different seed numbers for a target 
heading ±15° of the wave direction (ref. DNV-RP-H103, 2014, 4.3.3.7), different wave 
periods (𝑇𝑇𝑧𝑧), and significant wave heights to find the most critical scenario where snatch 
forces might occur. This critical scenario is then used as basis in this thesis for further 
statistical analysis. For the time-domain analysis, time steps (ℎ) of 0.005s are used. 
 
A spectrum covering a fully-developed sea state is used. The wave spectrum used in this 
thesis is based on DNV-RP-H103 (2014, 2.2.5.7) where a JONSWAP spectrum is proposed. 
The JONSWAP spectrum is covering fetch limited as well as the most critical sea states in 
relation to lifting operations in a good way, especially for the North Sea area (Gudmestad, 
2015, p.352).  
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The maximum tensions from each simulation are then extracted and fitted to different 
distributions in probability papers. This is done to find the most suitable distribution for the 
prediction of maximum tensions.  
 
To find the most suitable distribution, the least square error (𝑅𝑅2) function in excel has been 
used in the probability papers. The target is to get as close to 1 as possible, meaning the data 
follows a straight line perfectly.  The least square error is defined as: 

 
𝑅𝑅2 =

∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2 − ∑�𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�
2

∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2  (166) 

Where: 
𝑦𝑦𝑖𝑖 is the extreme values (𝑖𝑖 = 1,2, …𝑛𝑛) obtained from individual simulations 
𝑦𝑦� is the average of all extreme values obtained 
𝑦𝑦𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 for the given extreme value (𝑥𝑥𝑖𝑖) is taken as: 
𝑦𝑦𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑚𝑚𝑥𝑥𝑖𝑖 + 𝑏𝑏  
Where 𝑚𝑚 is the slope/gradient of the line, and 𝑏𝑏 is the value of 𝑦𝑦 when the line intersects with 
the 𝑥𝑥-axis. 
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8. Results 

8.1 Linearization of non-linearized distributions in probability paper 
 

When plotting on probability paper, a linearization of the non-linearized cumulative 
distribution function must be performed. The following Table 8 can be made, where 𝐹𝐹�(𝑥𝑥) 
represents the level of non-exceedance (Equation 133): 

Table 8: Linearization of non-linear cumulative distributed functions (CDF) 
Equation Non-linear CDF equation, 

𝑭𝑭(𝒙𝒙) 
Linearized equation Linearized variables 

x-axis y-axis 

Weibull 
𝐹𝐹(𝑥𝑥) = 1 − 𝑒𝑒−�

𝑥𝑥
𝛽𝛽� �

𝑘𝑘

 ln �− ln �1 − 𝐹𝐹�(𝑥𝑥)��
= 𝑘𝑘𝑘𝑘𝑘𝑘(𝑥𝑥) − 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 

𝑙𝑙𝑙𝑙(𝑥𝑥) ln �− ln �1 − 𝐹𝐹�(𝑥𝑥)�� 

Exponential 
𝐹𝐹(𝑥𝑥) = 1 − 𝑒𝑒−�

(𝑥𝑥)
𝛽𝛽� � ��− ln �1 − 𝐹𝐹�(𝑥𝑥)���

=
𝑥𝑥
𝛽𝛽

 
𝑥𝑥 

�− ln �1 − 𝐹𝐹�(x)�� 

Gumbel 𝐹𝐹(𝑥𝑥)

= 𝑒𝑒𝑒𝑒𝑒𝑒 �−𝑒𝑒𝑒𝑒𝑒𝑒 �− �
𝑥𝑥 − µ
𝛽𝛽

��� 

−ln �− ln �𝐹𝐹�(𝑥𝑥)��

=
𝑥𝑥 − 𝜇𝜇
𝛽𝛽

 

 
𝑥𝑥 

− ln �− ln �𝐹𝐹�(𝑥𝑥)�� 

Normal 
𝐹𝐹(𝑥𝑥) =

1
√2𝜋𝜋

� 𝑒𝑒−𝑥𝑥
2
2� 𝑑𝑑𝑑𝑑

𝑧𝑧

−∞
= 𝑧𝑧1−∝ 2�

 
 

𝑧𝑧1−∝ 2�
= 𝑥𝑥 

 
𝑥𝑥 𝑧𝑧1−∝ 2�

= −𝑧𝑧∝
2�
 

Log-normal 𝐹𝐹(𝑥𝑥)

=
1

√2𝜋𝜋
� 𝑒𝑒−𝑥𝑥

2
2� 𝑑𝑑𝑑𝑑

𝑧𝑧

−∞

∗ �
𝑙𝑙𝑙𝑙𝑙𝑙 − 𝜇𝜇

𝜎𝜎
� = 𝑧𝑧1−∝ 2�

 

𝑧𝑧1−∝ 2�
= 𝑙𝑙𝑙𝑙(𝑥𝑥) 
 

𝑙𝑙𝑙𝑙(𝑥𝑥) 
 

𝑧𝑧1−∝ 2�
= −𝑧𝑧∝

2�
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8.2 Case 1 – Supporter Mk2 WROV 
 
In the first case, 500 simulations in a sea state with a significant wave height of 7.5 meter and 
zero up-crossing periods of 8 seconds are run (see Appendix 4 for data set values). The ROV 
is launched, and then recovered from 15m subsea in one continuous operation with a winch 
speed of 1 m/s. The largest observed wire tensions in each simulation are used to find a 
suitable distribution function. The distribution model generated from the given sample size 
(here 500 simulations) will then be assumed to be the “true” model. 
 
It should also be noted that minimum values will not be considered here as occasions with no 
tension in the wire must be expected when evaluating objects with a relative low submerged 
weight. 
 

8.1.1 Case 1a – Maximum forces during launch of a Supporter Mk2 

Results using the best suited true distribution given all 500 simulation samples 
 
Table 9 below illustrates the least square errors of 5 statistical distributions, and Figure 10 
shows in probability paper the most suitable distributions for use when considering the 500 
simulations generated in Orcaflex. 
 
Table 9: R2 values for different probability papers when considering all 500 simulations 

Function 𝑹𝑹𝟐𝟐 
Weibull 0.3981 

Exponential 0.8093 
Gumbel 0.6815 
Normal 0.4736 

Log-normal 0.5887 
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Figure 10: The Exponential distribution on probability paper using all 500 simulations when fitting the 
trend line 
 
Considering the probability paper plots of the data simulations, one can see that the 
Exponential distribution seem to fit the data samples best in this case (Table 9). Based on the 
fact that the maximum in each simulation is extracted, a Gumbel extreme value distribution 
may in theory be assumed to be the most suitable for use (i.e. DNV-RP-C205, 2010, 3.7.3.2/ 
DNV-RP-C205, 2010, 10.7.3). Anyway, partly due to a limited number of wave crests during 
one simulation and thereby not extreme forces in each simulation, an exponential type of 
distribution seems reasonable for this case based on the probability paper plots (Table 9 and 
Figure 10).  

From the true fitted line in the exponential plot where all 500 simulations have been taken 
into account, one can see that the 99.99% non-exceedance level equals: 

 −ln(1 − 𝑝𝑝) = 𝑥𝑥𝑝𝑝 (167) 

 −ln(1 − 0.9999) = 9.21 (168) 

One sees from Figure 10 that the trend line at 𝑦𝑦 = 9.21 intersects with the x-axis at about 
330kN. 
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Results using the best suited distribution given simulation samples above 100kN 
 
As the Exponential distribution in reality is poor when considering all 500 simulations 
performed, only values above a lower threshold value should be considered as it is the tail 
region that usually is of most importance. The lower threshold will here be set to 100kN 
based on the shape of the probability papers.  
 
Table 10 below illustrates the least square errors of 5 statistical distributions, and Figure 11 
and Figure 12 shows in a probability- and a CDF paper the most suitable distributions for use 
when considering the 59 samples with a value above 100kN. This lower value of 100kN 
might be adjusted down to about 90kN (Ln(90) = 4.5) without large deviations in the results 
obtained. The important thing is to get a sufficient amount of the largest loads (i.e. more than 
10% of the largest load), and that they all follow a given distribution quite well. Therefore, 
values below 90kN will cause larger deviations as the distribution for these values does not 
follow a Weibull well, see Figure 11. 
 
Table 10: R2 values for different probability papers when considering values above 100kN (59 
simulations) 

Function 𝑹𝑹𝟐𝟐 
Weibull 0.9815 

Exponential 0.9724 
Gumbel 0.9713 
Normal 0.9511 

Log-normal 0.9842 

 
Figure 11: The Weibull distribution proves most suitable for use in this case 
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Figure 12: Illustration of the CDF by comparing the Weibull function with the empirical function, the 
parameters is k=0.6, 𝛽𝛽=10.0 and X=X-Xmin (71.436kN). 
 
As the tail region has more extreme values, a Gumbel distribution might prove more accurate 
for use when considering the most extreme values. However, as the least square test for 
values exceeding 100kN for the Gumbel distribution (𝑅𝑅2 = 0.9713) proves slightly less 
accurate than for the Weibull (𝑅𝑅2 = 0.9815), the Weibull distribution should prove reliable 
for this area as well. The lognormal may prove just as good, but as the Weibull distribution is 
an exponential type of distribution, which in theory follows the wave process, one may 
assume this to be a suitable model in this specific case. 
 
To let the Weibull distribution start out from 0 and set a lower threshold value, a 3-parameter 
distribution with a 𝛾𝛾1-parameter is used to slide/straighten the Weibull function (Figure 13). 
This parameter is set to the lowest observation value among the 500 simulations, here 
71.436kN equals 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚. 

 
Figure 13: The Weibull probability plot adjusted with a minimum value, Xmin=71.436kN 
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Limiting criteria #1, 𝑝𝑝 = 99.99% non-exceedance 

By using method of moments for estimating parameters of the Weibull distribution, one gets 
from the upper 59 simulations that: 

𝒌𝒌� = 𝟏𝟏.𝟎𝟎𝟎𝟎 
𝜷𝜷� = 𝟒𝟒𝟒𝟒.𝟓𝟓𝟓𝟓 

Also, the 𝛾𝛾1-parameter is set to the lowest observation value among the 59 simulations, here 
101.86kN equals 𝛾𝛾1 = 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚. 
 

𝐹𝐹(𝑥𝑥) = 1 − 𝑒𝑒
−�

�𝑥𝑥𝑝𝑝−𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚�
𝛽𝛽�
� �

𝑘𝑘�

 
(169) 

 ln �− ln �1 − 𝐹𝐹�(𝑥𝑥)�� = 𝑘𝑘�𝑙𝑙𝑙𝑙�𝑥𝑥𝑝𝑝 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚� − 𝑘𝑘�𝑙𝑙𝑙𝑙𝛽̂𝛽 (170) 

 
𝑥𝑥𝑝𝑝 = 𝑒𝑒

�
ln�− ln�1−𝐹𝐹�(𝑥𝑥)��

𝑘𝑘�
�
∗ 𝛽̂𝛽 + 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 (171) 

 𝑥𝑥0.9999 = 𝑒𝑒�
ln(− ln(1−0.9999))

1.05 � ∗ 44.59 + 101.86𝑘𝑘𝑘𝑘 = 473.58 𝑘𝑘𝑘𝑘 (172) 
 
In this case, one has 441 values lower than the tailfitted line range. This means that the value 
of 486.00 kN actually corresponds to a higher probability of non-exceedance by the relation: 

 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛−𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

= 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛−𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

+ �𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ∗ �1 − �
𝑛𝑛𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑛𝑛𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
��� 

(173) 

The 99.99% quantile for the tail fitted range therefore corresponds to: 

 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛−𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

= 99.99% + �0.01% ∗ �1 − �
59 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

500 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
���

= 99.9988% 

(174) 

 
For the line fitted to the 59 simulations, a 99.914% probability of non-exceedance then 
actually corresponds to a 99.99% level, meaning that: 

 𝑥𝑥0.9999 = 𝑒𝑒�
ln(− ln(1−0.99914))

1.05 � ∗ 44.59 + 101.86𝑘𝑘𝑘𝑘 = 388.65 𝑘𝑘𝑘𝑘 (175) 

 𝑴𝑴𝑴𝑴𝑴𝑴 < 𝑭𝑭𝒎𝒎𝒎𝒎𝒎𝒎(𝒙𝒙𝟎𝟎.𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗) → 𝟑𝟑𝟑𝟑𝟑𝟑.𝟔𝟔𝟔𝟔𝟔𝟔𝟔𝟔 < 𝟔𝟔𝟔𝟔𝟔𝟔𝟔𝟔𝟔𝟔 → 𝑶𝑶𝑶𝑶 (176) 
 
𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 is the maximim load given a probability of non-exceedance (𝑥𝑥𝑝𝑝). 
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Assessing the uncertainty:  
 
In this case where a Supporter Mk2 is being launched, 500 simulations were performed. Due 
to long simulation time and the fact that results does not seem to converge to a specific value 
of non-exceedance, this approach is not feasible in the long run. In general, one will have two 
opposing pressures: 

1. Generating too few simulations/samples resulting in low confidence, and therefore 
inaccurate outputs and graphs. 

2. The generation of too many simulations/samples; resulting in long simulation time, 
and often even longer time to plot graphs, export and analyze data, etc. afterwards. 
 

To get a representation of the confidence level of the results when having other sample sizes, 
a parametric bootstrapping method is used to get random numbers using excel. As the 
exponential distribution is suitable for use in the tail region (𝑘𝑘 ≈ 1 and 𝑅𝑅2 = 0.9713), the 
following equation will be generated in excel in order to create new samples: 

 𝒙𝒙𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 = [−𝐥𝐥𝐥𝐥 (𝟏𝟏 − 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓())] ∗ 𝜷𝜷� + 𝒙𝒙𝒎𝒎𝒎𝒎𝒎𝒎���������������������
𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈

 (177) 

Where 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟() give random numbers ranging from 0 to 1. It should also be noted that focus is 
put on the upper tail region, and to simplify, 50 generated samples (not 59) from the upper 
tail region will therefore correspond to 500 samples in the true distribution using 𝑘𝑘 = 1, 
𝛽̂𝛽 = 42.12, and 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 = 110.41𝑘𝑘𝑘𝑘. 
 
Then, 1000 random groups of 𝑁𝑁 samples are simulated to find a trend of the confidence level. 
A trend of the 90%, 95% and 99.99% (Figure 15) confidence interval levels can be drawn 
based on the fact that the limiting quantile of the 1000 groups are expected to be 
approximately normally distributed (Figure 14). 
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Figure 14: Some examples to prove that the x% level of non-exceedance follows a normal distribution 
quite well given 1000 groups of 100 (bottom) and 500 (top) samples. More accurate the more samples one 
has.  

The formula used to produce the confidence level trend lines is then expressed as: 

 
�𝑥𝑥𝑝𝑝𝐿𝐿 

, 𝑥𝑥𝑝𝑝𝐻𝐻 
� = �𝑥̅𝑥𝑝𝑝 − 𝑧𝑧1−𝛼𝛼2

∗ 𝑆𝑆𝑆𝑆�𝑥𝑥𝑝𝑝�, 𝑥̅𝑥𝑝𝑝 + 𝑧𝑧𝛼𝛼/2 ∗ 𝑆𝑆𝑆𝑆�𝑥𝑥𝑝𝑝�� = 1 − 𝛼𝛼 (178) 

 �𝑥𝑥𝑝𝑝𝐿𝐿 
, 𝑥𝑥𝑝𝑝𝐻𝐻 

� = �𝑥̅𝑥𝑝𝑝 − 𝑧𝑧1−𝛼𝛼2
∗ 𝜎𝜎𝑝𝑝,  𝑥̅𝑥𝑝𝑝 + 𝑧𝑧𝛼𝛼/2 ∗ 𝜎𝜎𝑝𝑝� = 1 − 𝛼𝛼 (179) 

 

  
Figure 15: Confidence interval variations of the 99.99% quantile when considering the exponential 
distribution as "true" for the upper tail region; Left figure is up to 1000 samples; Right up to 10.000 
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By using the power trend line function in Excel, a curved line suited to compare 
measurements that decrease at a specific rate is being used as an indicator of the uncertainty. 
One can then see that the uncertainty/deviation from the assumed "true" model seems to stall 
somehow at about 1000 simulations, flattening at 10 000 simulations where 7.5% uncertainty 
is expected.  
 
From the 99.99% confidence interval, one sees that a variation from the mean 99.99% 
quantile of about 80% may appear when generating 500 simulations. Meaning that this result 
may emerge: 
 
 𝑭𝑭𝒎𝒎𝒎𝒎𝒎𝒎(𝒙𝒙𝟎𝟎.𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗) ∗ 𝟏𝟏.𝟖𝟖 < 𝑴𝑴𝑴𝑴𝑴𝑴 → 𝟕𝟕𝟕𝟕𝟕𝟕.𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓 < 𝟔𝟔𝟔𝟔𝟔𝟔𝟔𝟔𝟔𝟔 → 𝑵𝑵𝑵𝑵𝑵𝑵 𝑶𝑶𝑶𝑶 (180) 
 
In order not to go beyond the minimum breaking load (MBL) of the lifting wire, one needs 
less than 55.70% uncertainty deviation from the (average) “true” distribution. To get this 
level of confidence, one should here have at least 1000 simulation samples. As a simulation 
size of 1000 is inefficient when finding the characteristic load criteria, a second more reliable 
criterion is needed. This criterion would then be used as a double check as the 10-4 
probability of non-exceedance has a quite large variability, especially for smaller simulation 
sizes. It is therefore difficult to establish a sufficient reliable characteristic load based on 
extrapolating towards a value outside the value range given from repeated simulations in the 
time domain.  
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Additional research notes about the parametric bootstrapping method used: 
 
As a note, the assumed “true” distribution model might in reality be offset compared to if 
new simulations are performed in Orcaflex; thereby skewing the uncertainty interval. 
Optimally, the uncertainty/confidence should be assessed by running multiple runs of 
simulations in Orcaflex to capture the physical parameter uncertainty (not only the statistical 
parameters) as well. But this procedure would be very time consuming.  
 
By running 10 new sets of 500 simulations in Orcaflex, one may assume from Figure 16 that 
the outer deviations compared to the average would indicate a normally distributed 90% 
confidence interval. One then gets the 99.99% non-exceedance confidence interval by the 
relation: 

(ℎ𝑖𝑖𝑖𝑖ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 11 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= �
439𝑘𝑘𝑘𝑘 − 302𝑘𝑘𝑘𝑘

374𝑘𝑘𝑘𝑘
� ∗ 100% = 36.54% 

 
Also here, the exponential distribution is used for the upper 50 values in each group. From 
(Figure 15), the parametric bootstrapping indicates an uncertainty of 36.07% given a 90% 
confidence interval of the 99.99% non-exceedance value.  
 
Based on this, and checking other values of non-exceedance as well, it seems reasonable to 
assume/believe that Monte Carlo simulations by parametric bootstrapping in the tail region 
are effective when assessing the uncertainty although some variations are experienced for 
other values of non-exceedance. Parametric bootstrapping can never be taken as the fully 
truth as physical differences are not covered by the statistics (aleatory uncertainty), and no 
“new” information (epistemic uncertainty) is received by using this method. Therefore, only 
indications of whether or not a given model is “true” can be established. One would then 
never be fully certain that characteristic load criteria are being maintained using parametric 
bootstrapping, although the confidence intervals make sure that a conservative load is 
extracted. 

 
Figure 16: Illustration of the uncertainty in the assumed "true" model by generating 10 new groups of 
500 simulations in Orcaflex. Comparison between Orcaflex sample generation and Monte Carlo sample 
generation for the tail region can be done towards the right Figure 17. 
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Limiting criteria #2 

For the second criterion, a non-exceedance value where the design capacity is just not being 
exceeded may be a good starting point. For the line fitted to the 59 samples, a total 
probability of 98.82% non-exceedance corresponds to a 90% level for the fitted line: 

 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥0.9882) = 𝑒𝑒�
ln(− ln(1−0.90))

1.05 � ∗ 44.59 + 101.86 = 201.46 𝑘𝑘𝑘𝑘 (181) 

 𝑭𝑭𝒎𝒎𝒎𝒎𝒎𝒎(𝒙𝒙𝟎𝟎.𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗) <
𝑴𝑴𝑴𝑴𝑴𝑴
𝜸𝜸𝒔𝒔𝒔𝒔

→ 𝟐𝟐𝟐𝟐𝟐𝟐.𝟓𝟓𝟓𝟓𝒌𝒌𝒌𝒌 < 𝟐𝟐𝟐𝟐𝟐𝟐.𝟔𝟔𝟔𝟔𝟔𝟔𝟔𝟔 → 𝑶𝑶𝑶𝑶 (182) 

By evaluating the variation in data, one can draw Figure 17 based on the randomly generated 
Monte Carlo simulations, here by using the Weibull distribution relation: 

 

𝒙𝒙𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔,𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾 𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 = 𝑳𝑳𝑳𝑳

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

⎣
⎢
⎢
⎢
⎢
⎢
⎡

𝒆𝒆⎝
⎜⎜
⎛
𝒍𝒍𝒍𝒍

⎝

⎜
⎛−𝒍𝒍𝒍𝒍(𝟏𝟏−𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓())
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⎤
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𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾 𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔

→𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮 𝒕𝒕𝒕𝒕 𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾 𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 (𝑳𝑳𝑳𝑳(𝒙𝒙𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔))

 
(183) 

Where 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟() gives random numbers ranging from 0 to 1. Here, 𝑘𝑘� = 0.603, 𝛽̂𝛽 = 10.0 and 
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 = 71.436𝑘𝑘𝑘𝑘 are used. 
 

  
Figure 17: Visualization of the uncertainty in 20 data groups for 20 and 500 samples respectively (Weibull 
generated samples). Some deviation from the “true” distribution in the lower regions due the “Method of 
Moment” focusing on the tail region, and the fact that the samples are not following a Weibull 
distribution that well in other areas than in the tail region. Also, other parameters should be used for the 
tail region for more accuracy. 
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The confidence intervals for a 99% quantile (Figure 18) are extracted from the exponential 
distribution (Equation 177). 

 
Figure 18: 99% quantile confidence intervals 
   
From the results using 500 samples, a 99.99% confidence interval variation in the mean 99% 
quantile of about 50% is expected (Figure 18). Meaning that this result may emerge: 

 𝑭𝑭𝒎𝒎𝒎𝒎𝒎𝒎(𝒙𝒙𝟎𝟎.𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗) ∗ 𝟏𝟏.𝟓𝟓 <
𝑴𝑴𝑴𝑴𝑴𝑴
𝜸𝜸𝒔𝒔𝒔𝒔

→ 𝟑𝟑𝟑𝟑𝟑𝟑.𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝟖 < 𝟐𝟐𝟐𝟐𝟐𝟐.𝟔𝟔𝟔𝟔𝟔𝟔𝟔𝟔 → 𝑵𝑵𝑵𝑵𝑵𝑵 𝑶𝑶𝑶𝑶 (184) 

By lowering the probability of non-exceedance to 95%, the following result is generated from 
the tail-fitted range: 
 𝑥𝑥0.95 = 𝑒𝑒�

ln(− ln(1−0.58))
1.05 � ∗ 44.59 + 101.86𝑘𝑘𝑘𝑘 = 140.80 𝑘𝑘𝑘𝑘 (185) 

 

 
Figure 19: Confidence intervals of the 95% quantile 
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Given 500 samples, one can see from the figure that a variability of about 25% from the mean 
“true” distribution is expected using a 99.99% confidence interval (Figure 19). One thereby 
gets: 
 𝑭𝑭𝒎𝒎𝒎𝒎𝒎𝒎(𝒙𝒙𝟎𝟎.𝟗𝟗𝟗𝟗) ∗ 𝟏𝟏.𝟐𝟐𝟐𝟐 <

𝑴𝑴𝑴𝑴𝑴𝑴
𝜸𝜸𝒔𝒔𝒔𝒔

→ 𝟏𝟏𝟏𝟏𝟏𝟏.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 < 𝟐𝟐𝟐𝟐𝟐𝟐.𝟔𝟔𝟔𝟔𝟔𝟔𝟔𝟔 → 𝑶𝑶𝑶𝑶 (186) 

If only 150 samples were generated and assuming the same generated trend line, about 45% 
uncertainty from the mean is expected given a 99.99% confidence interval: 

 𝑭𝑭𝒎𝒎𝒎𝒎𝒎𝒎(𝒙𝒙𝟎𝟎.𝟗𝟗𝟗𝟗) ∗ 𝟏𝟏.𝟒𝟒𝟒𝟒 <
𝑴𝑴𝑴𝑴𝑴𝑴
𝜸𝜸𝒔𝒔𝒔𝒔

→ 𝟐𝟐𝟐𝟐𝟐𝟐.𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 < 𝟐𝟐𝟐𝟐𝟐𝟐.𝟔𝟔𝟔𝟔𝟔𝟔𝟔𝟔 → 𝑶𝑶𝑶𝑶 (187) 

Based on results obtained, it would be advisable to keep the confidence intervals close to the 
same level as the level of non-exceedance. This means that the second criterion would in this 
case be withheld by keeping a 95% non-exceedance level and generating more than 40 
samples. 
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8.1.2 Case 1b – Maximum forces during recovery of a Supporter Mk2 
 
Below are two illustrations of how typical time series looks like when recovering the 
Supporter Mk2 ROV onboard Rem Ocean. The first one (left figure) has some occurrences of 
slack, resulting in snap forces/peaks at around 350kN. The second right figure is a more 
common case without any slack. The maximum wire force is here about 110kN.  
 

 
Figure 20: Two time series for the recovery of a Supporter Mk2 ROV onboard Rem Ocean 
 

Illustration of the best suited true distribution given all 500 samples 

As an illustration only, Table 11 gives the best least square errors (𝑅𝑅2) when considering all 
500 simulations (see Appendix 5 for exact numbers), while Figure 21 gives a probability plot 
of the most suitable distribution. No calculations will be performed as the results will be 
unrealistic (ref. chapter 8.1.1). 
 
Table 11: R2 values for different probability papers when considering all 500 simulations 

Function 𝑹𝑹𝟐𝟐 
Weibull 0.5115 

Exponential 0.6955 
Gumbel 0.5963 
Normal 0.4204 

Log-normal 0.6920 
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Figure 21: Least square error produced on an Exponential paper plot using all 500 samples 
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Results using the best suited distribution given samples above 120kN 
 
To find a well suited distribution for the tail region, a lower threshold of 120kN is set. Table 
12 below illustrates the least square errors of 5 statistical distributions, and Figure 22 and 
Figure 23 gives a probability plot and a CDF illustration of the most suitable distribution for 
use when considering the 40 samples with a value higher than 120kN. 
 
Table 12: R2 values for different probability papers when considering values above 120kN (the 40 upper 
out of 500 simulations) 

Function 𝑹𝑹𝟐𝟐 
Weibull 0.9090 

Exponential 0.7839 
Gumbel 0.7806 
Normal 0.7287 

Log-normal 0.9114 
 

  
Figure 22: By considering the least square error produced for loads above 120kN, the lognormal 
distribution seems most suitable. The right graph is adjusted with the minimum value in the distribution, 
Xmin=72.224kN. 
 

 
Figure 23: CDF by comparing the lognormal function with the empirical function.  
 
From the adjusted lognormal graph (Figure 22, right), it seems like it follows a straight line 
quite well when using all 500 simulations as well (𝑅𝑅2 = 0.9783), although the line produced 
for values above 120kN follows the tail region better. 
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Limiting criteria #1, 𝑝𝑝 = 99.99% non-exceedance 
 
From the lognormal distribution, the following results are derived (99.87% corresponding to 
a 99.99% non-exceedance level for fitted line) using the 40 values above 120kN: 

 𝑙𝑙𝑙𝑙�𝑥𝑥𝑝𝑝 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚� = 𝜇𝜇 + 𝜎𝜎𝑧𝑧1−𝛼𝛼 2�
 (188) 

 𝑥𝑥𝑝𝑝 = 𝑒𝑒𝜇𝜇+𝜎𝜎𝑧𝑧1−𝛼𝛼 2� + 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 (189) 
 𝑥𝑥0.9999 = 𝑒𝑒(4.37+0.49∗3.011) + 118.64𝑘𝑘𝑘𝑘 = 𝟒𝟒𝟒𝟒𝟒𝟒.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 < 𝟔𝟔𝟔𝟔𝟔𝟔𝟔𝟔𝟔𝟔 → 𝑶𝑶𝑶𝑶 (190) 
 
New data sets are then produced using a Weibull distribution for the upper 40 values, while 
the uncertainties are assessed by using the Lognormal distribution to find the non-exceedance 
level for every groups of samples. The formula used in the Monte Carlo simulation is: 

 

𝒙𝒙𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 = 𝑳𝑳𝑳𝑳
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𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈

 (191) 

Where 𝑘𝑘� = 1.25, 𝛽̂𝛽 = 99.83, and 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 = 118.64𝑘𝑘𝑘𝑘. 
 
Looking at the confidence intervals as shown in the illustration below (Figure 24), the 
indication is that one should have at least 5000 samples to be within the MBL limits of a 
99.99% confidence interval.  
  

  
Figure 24: Confidence interval variations of the 99.99 % quantile; Left up to 1000; Right up to 10.000 
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Limiting criteria #2 

For the second criterion, a total probability of 96.63% non-exceedance is chosen 
(corresponding to a 58% level for the fitted line) as the design capacity is not exceeded then: 

 𝑥𝑥0.9880 = 𝑒𝑒(4.38+0.49∗0.2) + 118.64𝑘𝑘𝑘𝑘 = 206.16 𝑘𝑘𝑘𝑘 (192) 

 
𝑭𝑭𝒎𝒎𝒎𝒎𝒎𝒎(𝒙𝒙𝟎𝟎.𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗) <

𝑴𝑴𝑴𝑴𝑴𝑴
𝜸𝜸𝒔𝒔𝒔𝒔

→ 𝟐𝟐𝟐𝟐𝟐𝟐.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 <
𝟔𝟔𝟔𝟔𝟔𝟔𝟔𝟔𝟔𝟔
𝟑𝟑.𝟎𝟎

→ 𝑶𝑶𝑶𝑶 (193) 

By evaluating the uncertainty in the data, the following uncertainty and confidence interval 
graphs (Figure 25) can be made: 

  
Figure 25: Confidence interval variations of the 96.63% quantile 
 
From the power line function one may see that a 95% confidence interval variation in the 
96.63% quantile of about 15% is expected for 500 samples, meaning that: 

 𝑭𝑭𝒎𝒎𝒎𝒎𝒎𝒎(𝒙𝒙𝟎𝟎.𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗) ∗ 𝟏𝟏.𝟏𝟏𝟏𝟏 <
𝑴𝑴𝑴𝑴𝑴𝑴
𝜸𝜸𝒔𝒔𝒔𝒔

→ 𝟐𝟐𝟐𝟐𝟐𝟐.𝟎𝟎𝟎𝟎𝒌𝒌𝒌𝒌 < 𝟐𝟐𝟐𝟐𝟐𝟐.𝟔𝟔𝟔𝟔𝟔𝟔𝟔𝟔 → 𝑵𝑵𝑵𝑵𝑵𝑵 𝑶𝑶𝑶𝑶 (194) 

By lowering the probability of non-exceedance to 95%, the following result is generated from 
the tail fitted range: 

 𝑭𝑭𝒎𝒎𝒎𝒎𝒎𝒎(𝒙𝒙𝟎𝟎.𝟗𝟗𝟗𝟗) = 𝒆𝒆(𝟒𝟒.𝟑𝟑𝟑𝟑+𝟎𝟎.𝟒𝟒𝟒𝟒∗(−𝟎𝟎.𝟑𝟑𝟑𝟑)) + 𝟏𝟏𝟏𝟏𝟏𝟏.𝟔𝟔𝟔𝟔𝟔𝟔𝟔𝟔 = 𝟏𝟏𝟏𝟏𝟏𝟏.𝟕𝟕𝟕𝟕𝟕𝟕𝟕𝟕
< 𝟐𝟐𝟐𝟐𝟐𝟐.𝟔𝟔𝟔𝟔𝟔𝟔𝟔𝟔 → 𝑶𝑶𝑶𝑶 

(195) 
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Figure 26: Confidence interval variations of the 95% quantile 
 
From Figure 26 one can see that a variability of less than 10% in the 95% confidence interval 
is achieved by having more than 1000 samples. Given 1000 samples, the variability from the 
mean is about: 

 𝑭𝑭𝒎𝒎𝒂𝒂𝒙𝒙(𝒙𝒙𝟎𝟎.𝟗𝟗𝟗𝟗) ∗ 𝟏𝟏.𝟏𝟏𝟏𝟏 <
𝑴𝑴𝑴𝑴𝑴𝑴
𝜸𝜸𝒔𝒔𝒔𝒔

→ 𝟐𝟐𝟐𝟐𝟐𝟐.𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 < 𝟐𝟐𝟐𝟐𝟐𝟐.𝟔𝟔𝟔𝟔𝟔𝟔𝟔𝟔 → 𝑶𝑶𝑶𝑶 (196) 

 
The limiting 𝐻𝐻𝑠𝑠 for the lifting wire MBL during launch and recovery based on one 
forecasting source and a sufficient amount of simulations performed will then be: 

 𝐻𝐻𝑠𝑠,𝑂𝑂𝑂𝑂 = 𝛼𝛼 ∗ 𝐻𝐻𝑆𝑆,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (197) 

 𝑯𝑯𝒔𝒔,𝑶𝑶𝑶𝑶 = 𝟎𝟎.𝟖𝟖 ∗ 𝟕𝟕.𝟓𝟓𝟓𝟓 = 𝟔𝟔𝟔𝟔𝟔𝟔𝟔𝟔𝟔𝟔𝟔𝟔 (198) 

 
It should be noted that the limit might be higher (or lower) when considering a higher design 
𝐻𝐻𝑠𝑠 and other wave periods. Also, other limitations with regards to heave compensation, 
LARS frame, fundaments etc. is not evaluated. 
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8.2.1 Case 2 - ROV launch, Maximum forces 
 
As an additional case, a Kystdesign Installer 4 WROV without any TMS (Figure 27) has been 
simulated in Orcaflex to see how the statistical distribution is acting on a neutral buoyant 
object alone during a launch case. It is then expected that a slack wire will occur for every 
simulation performed, and thereby also some responding snap forces. 500 simulations in a 
sea state with a significant wave height of 3 meter and zero up-crossing periods of 5 seconds 
are used. Appendix 6 summarizes the Orcaflex values that are obtained. 

 
Figure 27: Installer 4 onboard Crest Bazan 2 (right picture), launched by a smaller crane. Photos are 
obtained from Sveen (2015). 
 
The properties used as input for the ROV and crane are shown in the Table 13 below. The 
hydrodynamic properties of the Installer ROV are derived in the same manner as for the 
Supporter Mk2 ROV used in case 1 (Appendix 2). The vessel used is Crest Bazan 2 which is 
a bit smaller than Rem Ocean. 
 
Table 13: Properties of the vessel and the Installer 4 WROV system 
Structural Input Value Unit 
Constants 
Gravity 9.81 [m/s2] 
Seawater density 1027 [kg/m3] 
Steel density 7850 [kg/m3] 
Derived added mass factors 
x/y/z 

Ax = 4.81 Te and CAx = 0.75 
Ay = 5.65 Te and CAy = 0.65 
Az = 4.51 Te and CAz = 0.74 

[Te and -] 

Drag factors x/y/z 2.5 [-] 
Water entry/exit coefficients 5.0 / 2.5 [-] 
Crest Bazan 2 main characteristics 
Gross Tonnage 1944 [Te] 
Deadweight 1452 [Te] 
Length x Breadth 60m x 16m [m2] 
Installer 4 WROV - Main dimensions 
Length 3.00 [m] 
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Width 1.50 [m] 
Height 2.00 (skid included) [m] 
Displacement 4.24 [m3] 
Weight 43.50  [kN] 
Weight in water 0.00 (will vary, but assumed neutral) [kN] 
Umbilical and crane - Main dimensions 
Outer diameter 19.05 [mm] 
Mass/unit length 2.30 [kg/m] 
Minimum Breaking Load 
(MBL) – Wire 

308 [kN] 

SWL crane at 10m arm 73.9 [kN] 
Design Factor/DAF 1.3 [-] 
K - Crane 10117 [kN/m] 
K – Umbilical 44000 [kN/m] 
K - combined 8225 [kN] 
 
The limiting structural capacity is here the wire (𝑴𝑴𝑴𝑴𝑴𝑴 = 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑), while the second criterion 
is limited by the crane: 

 (𝑺𝑺𝑺𝑺𝑺𝑺𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 × 𝑫𝑫𝑫𝑫𝑫𝑫) + 𝑾𝑾𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 = 𝟕𝟕𝟕𝟕.𝟗𝟗𝟗𝟗𝟗𝟗 ∗ 𝟏𝟏.𝟑𝟑 = 𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗 (199) 

By evaluating all 500 samples (Table 14, Figure 28 and Figure 29); one can see that the 
exponential distribution is a good distribution model for the samples although the upper two 
samples seems to have a slope reduction. This makes the exponential distribution very useful 
also when considering the confidence interval levels.  
 
Table 14: R2 values for different probability papers when considering all 500 simulations 

Function 𝑹𝑹𝟐𝟐 
Weibull 0.7400 

Exponential 0.9938 
Gumbel 0.9581 
Normal 0.8256 

Log-normal 0.9086 
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Figure 28: Probability paper plot of the Exponential distribution on probability paper 

 
Figure 29: CDF of the Exponential distribution compared with the true distribution 
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Limiting criteria #1, 𝑝𝑝 = 99.99% non-exceedance 

From the true fitted line where all 500 samples has been taken into account, the following 
results are derived from the exponential linearized distribution (99.99% non-exceedance): 

 
𝐹𝐹(𝑥𝑥) = 1 − 𝑒𝑒

−�
𝑥𝑥𝑝𝑝−𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

𝛽𝛽��
�

= 𝑝𝑝 (200) 

 
−�𝑥𝑥𝑝𝑝 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

𝛽̂𝛽� � = ln (1 − 𝑝𝑝) (201) 

 𝑥𝑥𝑝𝑝 = − ln(1 − 𝑝𝑝) ∗ 𝛽̂𝛽 + 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 (202) 
 
Where 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 is the minimum value among the 500 samples, here 45.19kN. This value is 
subtracted from all the original values to have the exponential distribution starting out from 0.  
 
 𝑥𝑥0.9999 = − ln(1 − 𝑝𝑝) ∗ 𝛽̂𝛽 + 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

= − ln(1 − 0.9999) ∗ 19.95 + 45.193𝑘𝑘𝑘𝑘 = 228.90 𝑘𝑘𝑘𝑘 
(203) 

 𝑭𝑭𝒎𝒎𝒎𝒎𝒎𝒎(𝒙𝒙𝟎𝟎.𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗) < 𝑴𝑴𝑴𝑴𝑴𝑴 → 𝟐𝟐𝟐𝟐𝟐𝟐.𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗 < 𝟑𝟑𝟑𝟑𝟑𝟑.𝟎𝟎𝟎𝟎𝒌𝒌𝒌𝒌 → 𝑶𝑶𝑶𝑶 (204) 

 
As seen from Figure 30, a 99.99% confidence interval is maintained given more than 350 
samples. 
 

 
Figure 30: Confidence interval variations for the 99.99% quantile 
 
The figures below (Figure 31 and Figure 32) are illustrating the uncertainty in the exponential 
distribution used given 20 and 500 Monte Carlo generated simulations.  
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Figure 31: Illustration of the uncertainties in a sample size of 500 (20 groups generated by Monte Carlo 
simulations). The trend lines are shown to the right. The red line in each illustration is the original/”true” 
sample from Orcaflex simulations. 

 
Figure 32: Illustrations of the uncertainties in a sample size of 20 (20 groups generated).  
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Limiting criteria #2 

For the second criterion, the proposed 95% non-exceedance criterion is being generated at 
first: 
 𝑥𝑥0.95 = − ln(1 − 𝑝𝑝) ∗ 𝛽̂𝛽 + 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 = − ln(1 − 0.95) ∗ 19.95 + 45.193

= 104.94 𝑘𝑘𝑘𝑘 
(205) 

 𝑭𝑭𝒎𝒎𝒎𝒎𝒎𝒎(𝒙𝒙𝟎𝟎.𝟗𝟗𝟗𝟗) < (𝑺𝑺𝑺𝑺𝑺𝑺𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 × 𝑫𝑫𝑫𝑫𝑫𝑫) → 𝟏𝟏𝟏𝟏𝟏𝟏.𝟗𝟗𝟗𝟗𝒌𝒌𝒌𝒌 > 𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗 → 𝑵𝑵𝑵𝑵𝑵𝑵 𝑶𝑶𝑶𝑶 (206) 
 
By evaluating the uncertainty in the data by use of an Exponential distribution, the following 
uncertainty graph (Figure 33) can be made: 
 

 
Figure 33: Confidence interval variations for the 95% quantile 
  
A 95% confidence interval for the 95% quantile gives about 10% uncertainty from the 
median given 500 samples. For a sample size of 20, the uncertainty increases to 50%.  

By lowering the probability to an 80% level of non-exceedance, one gets: 

 𝑥𝑥0.80 = − ln(1 − 𝑝𝑝) ∗ 𝛽̂𝛽 + 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 = − ln(1 − 0.80) ∗ 19.95 + 45.193
= 77.29 𝑘𝑘𝑘𝑘 

(207) 

 𝑭𝑭𝒎𝒎𝒎𝒎𝒎𝒎(𝒙𝒙𝟎𝟎.𝟗𝟗𝟗𝟗) < (𝑺𝑺𝑺𝑺𝑺𝑺𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 × 𝑫𝑫𝑫𝑫𝑫𝑫) → 𝟕𝟕𝟕𝟕.𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 > 𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗 → 𝑶𝑶𝑶𝑶 (208) 
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Figure 34: Confidence interval variations from the mean given an 80% quantile 
 
Taking the uncertainty into account, one will need an uncertainty interval of less than 24.20% 
in order not to go beyond the crane design capacity at 10m. Based on a 95% confidence 
interval variation (Figure 34), this is achieved by having a sample size larger than 50. 
 
Conclusion: 
For this case, the 95% of non-exceedance may be used in order not to push the limits. 
Therefore, a lower maximum operational sea state will prove safer for this specific operation. 
Anyway, it could be argued that a lower quantile may be taken as acceptable as the 
consequences from a lifting wire breakdown are fairly small in this case as the ROV will still 
be connected by the umbilical and float/dive by its own. Also, the main criterion of a 10-4 
probability is maintained by a 34.5% confidence interval using the “true” distribution made 
from the 500 Orcaflex simulations. This confidence is for a 99.99% interval here maintained 
by having at least 350 simulations. 
 
Table 15 below summarizes the three cases based on the criteria stated in this thesis: 

Table 15: Summarizing the amount of simulations required based on cases investigated in chapter 8 
 Case 1a Case 1b Case 2 
10-4 level of non-
exceedance within a 
99.99% interval 

1000 samples 5000 samples 350 samples 

95% level of non-
exceedance within a 
95% interval 

40 samples 1000 samples NA 

80% level of non-
exceedance within a 
95% interval 

  50 samples 
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9. Discussion 
 
Based on these three cases where lifts of a Supporter Mk2 WROV onboard Rem Ocean and 
launches of an Installer WROV onboard the Crest Bazan 2 have been investigated, it might 
sound reasonable to implement a 95% probability of not exceeding the safe working load 
times the DAF of the lifting equipment/lifting system within a confidence interval level of 
95%. This is to ensure that one has a criterion that can cope with the uncertainties when 
evaluating the 10-4 probability of exceeding structural capacities given a smaller sample size. 
Given that the 99.99% level of non-exceedance is being maintained within a 99.99% 
confidence level, it would be advisable to increase the sea state to get closer to the limitations 
of the 99.99% quantile. As long as the 99.99% confidence interval is maintained, the second 
criterion might be adjusted down. But this would often mean that unfeasible many 
simulations have to be run. 
 

Evaluation of accept criteria 
 
Considering offshore lifting operations and limiting criteria, the use of a 95% percent quantile 
of not exceeding the design capacity means that given stationary sea state conditions, the 
95%-quantile will be exceeded on average in one out of twenty runs. Anyway, by also taking 
into account the safety factor(s) used for the lifting device(s), a probability of structural 
failure in less than 1/10000 operations (10−4) might be achieved although the 95%-quantile 
may be exceeded once every 20th run/lift. 
 
A typical offshore IMR/survey vessel might have about 2500 launches and 2500 recoveries 
on the most regular used ROV in one year. Given that all lifts are done in limiting conditions 
(i.e. a 𝐻𝐻𝑠𝑠 of 5 meter and a 𝑇𝑇𝑝𝑝 of 8 seconds), a ROV lifting cable might break once every two 

years (1 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
10000 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

∗ 5000 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦

= 1  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
2 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦

). If the ROV is being destroyed as well, a loss 

of reputation- and cash flow applies to the company. Using the scatter diagram (Table 16) for 
the North Sea area given by Faltinsen (1990), this limiting wave condition only applies about 
0.315% of the time. As the α-factor takes into account uncertainties in the sea state, the ROV 
under consideration will then on average break its lifting cable once every 635 years 

� 1
1 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
10.000 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∗ 5000 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 ∗ 0.00315

� without adjusting for operational errors and other concerns that 

might lower this number. It should also be noted that other sea heights with different wave 
periods will lower this number somehow. Anyway, the risk of failure is very low, and an 
acceptable risk taking into the account the expenditures that will apply with regards to 
upgrades and/or waiting on the weather if the risk taking should be even lower. 
 
The 95% probability of not exceeding a design capacity might be more arguable as the 
probability of exceeding this level is only about once every 635 lift ( 1

0.05∗0.00315
) in this case. 

In low risk lifting operations (i.e. ROV/baskets/light equipment/etc.) it might be argued that a 
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lower percentile can be used as the risk and expenditure of a possible failure is small, and 
timing of lifts is common among the operator(s). By using a larger sample size in the 
simulations, the 10-4 probability of exceeding the MBL might be determined with an 
acceptable confidence level (i.e. within a 99.99% confidence interval level). The probability 
of exceeding the design load might then be lowered to some degree (down 5-15% from the 
95% quantile). For larger operations (i.e. module replacements, template lifts, unfamiliar 
lifting operations and similar) with higher risks and uncertainties, the 95% quantile should be 
more rigid as possible snap forces might be more inaccurate and of higher risk potential. 
Results from snap load calculations in Orcaflex are subject to uncertainties and should 
therefore be treated with caution. Loads from snaps in the wire are of short duration and the 
responses are highly dependent upon configuration of the system with regards to i.e. 
structural damping of the umbilical/wire, and stiffness of the lifting system. Therefore, some 
conservatism should be applied for operations with higher consequences and risk factors. 
Also, the third criterion of more than 10% of the object`s tension in air for any lifting 
appliances should normally be maintained in such cases.  
 
Table 16: Scatter diagram for the North Sea area given by Faltinsen (1990) 
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8 
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9 

885 575 309 142 58 21 7 2 1 4839 

7 0 0 0 0 0 2 27 136 347 528 533 387 217 98 37 12 4 1 0 2329 
8 0 0 0 0 0 0 2 20 88 197 261 226 138 64 23 7 2 0 0 1028 
9 0 0 0 0 0 0 0 2 15 54 101 111 78 39 14 4 1 0 0 419 
10 0 0 0 0 0 0 0 0 2 11 30 45 39 22 8 2 1 0 0 160 
11 0 0 0 0 0 0 0 0 0 2 7 15 16 11 5 1 0 0 0 57 
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10. Conclusions 

General conclusions 

DNV says that given extreme type loads, a Gumbel distribution is suitable. The most extreme 
loads given from repeated dynamic simulations in a short duration have in this thesis been 
shown not always to follow a Gumbel distribution well, at least for splash zone lifts with a 
relative short timeframe (~30 seconds) through the upper water columns. It seems reasonable 
to believe that the load forces experienced in such short time most often are not extreme at 
all. Even for the tail region (upper 10-15% of the simulations) where the most extreme values 
are placed, other distributions than a Gumbel might prove to be the most feasible.   
 
Further, DNV wants a maximum characteristic load to be derived from a Rayleigh 
distribution. This might be suitable when doing long term analysis (i.e. 3 hours) where the 
object is stationed in the critical wave zone, but is not feasible when doing repeated lifting 
simulations of shorter duration (<1 minute). For such cases, a maximum load should be 
extracted from each simulation, and then get a characteristic load from the distribution 
function used.  
 
With regards to the required confidence interval levels given repeated lifting operations in the 
time domain, DNV gives the instruction to gather a large amount of simulations in order to 
obtain robust estimates. In this thesis, research has been performed to see how many 
simulations some common lifting cases needs to get a given level of confidence interval. 
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Procedure for finding the required level of confidence 

As the confidence level is of major importance, this thesis aims to give some guidelines on 
how to reach a sufficient level of confidence. The following procedure is proposed based on 
the DNV standards and results obtained in chapter 8: 

1. Run simulations for 30 minutes for every parameter (𝐻𝐻𝑠𝑠 and 𝑇𝑇𝑝𝑝/𝑇𝑇𝑧𝑧) in different 
scenarios/object positions according to the simplified wave zone calculations 
proposed by DNV-RP-H103 (2014, chapter 4). A typical case would be to keep the 
object in the following positons; (1) When the object has just passed the waterline, (2) 
when the object is half immersed, and (3) when the object is 1m below the waterline 
(Figure 35). This is done in order to screen the allowable weather window for the 
operation under consideration. The most critical wave condition may then be decided.  

 
Figure 35: Load case 1-3 considering a lifting operation with a ROV cw. TMS  

 
It should be noted that given light objects, some unrealistic forces may be experienced 
if the object starts to swing in the wave zone. Therefore, a better (and more time 
consuming) way may be to perform a screening by doing a slowly lowering of the 
object through harmonic/sinusoidal waves in order to find the scenarios where the 
most critical load conditions occur. The most critical load conditions given harmonic 
waves will also give the toughest load situations in irregular waves. This would also 
give more accurate results given more complex structures. 

2. Run analyses with 100 or more seeds for the most critical wave condition. 
3. Estimate the most suitable statistical distribution by using probability paper plots        

(with focus on the tail region).  
4. Perform Monte Carlo analysis by generating at least 100 (or optimally 1000) new 

groups of samples of i.e. 20, 50, 100, 250, 500 and 1000 random numbers in order to 
form a trend of the uncertainty/confidence interval given different amount of samples. 
Based on an expected normal distribution of the p-percentile (i.e. 𝑝𝑝 = 95% non-
exceedance) of the results obtained, the average/mean (𝑥̅𝑥𝑝𝑝) and standard deviation 
(𝜎𝜎𝑝𝑝) of the wire tensions during the (𝑛𝑛) simulated groups are found. 
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The confidence level is then expressed as: 

 
�𝑥𝑥𝑝𝑝𝐿𝐿 

, 𝑥𝑥𝑝𝑝𝐻𝐻 
� = �𝑥̅𝑥𝑝𝑝 − 𝑧𝑧1−𝛼𝛼2

∗ 𝑆𝑆𝑆𝑆�𝑥𝑥𝑝𝑝�, 𝑥̅𝑥𝑝𝑝 + 𝑧𝑧𝛼𝛼/2 ∗ 𝑆𝑆𝑆𝑆�𝑥𝑥𝑝𝑝�� = 1 − 𝛼𝛼 (209) 

Where the standard error for a normal distribution may be expressed as:  
 

𝑆𝑆𝑆𝑆�𝑥𝑥𝑝𝑝� = 𝜎𝜎𝑝𝑝 =
�∑ �𝑥𝑥𝑖𝑖 − 𝑥̅𝑥𝑝𝑝�

2𝑛𝑛
𝑖𝑖=1

√𝑛𝑛
 (210) 

This means that the error may be reduced be either decreasing the numerator, or by 
increasing the denominator. The numerator may be reduced by choosing a better 
random number generator, or by improving/increasing the distribution of returns. The 
denominator will improve as the square root of the ratio of the number of additional 
runs.  

5. Then the required amounts of seeds are run and the actual spreading errors for every 
combination of parameters in the simulated 𝐻𝐻𝑠𝑠/𝑇𝑇𝑧𝑧-matrix are shown. Finally, the 
calculated spreading error for the most critical case is implemented in the extreme 
value for the maximum wire tension. An example may be that the wire tension for a 
given wave condition is given as 100kN for a 95% quantile with a 95% confidence 
interval deviation of less than 20% from the mean/”true” distribution. One may then 
use 100kN multiplied by 1.2 to find the conservative characteristic load of 120kN in 
the statistical distribution. 
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11.  Recommendations for Further Work 

To add some recommendations for further action, the following topics may be assessed: 

• DNV to provide more accurate recommendations of the required level of confidence when 
considering offshore lifting cases. Also, it should also be noted that the simulations seems 
not to converge to a specific value even for very large sample sizes. Often, the uncertainty 
reduction in the results stalls somehow at about 1000-2000 simulations using Orcaflex 
software.  
 

• As the Gumbel distribution might not be the most suitable distribution for use in every 
offshore lifting case performed in time domain software, it might be advisable to update 
the DNV standards to add some flexibility to the distribution used in different cases. 
 

• The main criterion in the DNV standards of having less than a 10-4 probability of structural 
failure during an offshore lift is a criterion that it is hard to fully control when having 
smaller simulation sizes. This is related to the fact that an estimated distribution function 
cannot be taken as the fully truth. Even for an unlimited sample size, the model used will 
in some way deviate from the truth. Also, if performing new simulations with the equal 
amount of samples as the first sample size, deviations will appear (physical- and statistical 
variations). 
 
It is therefore advisable to add a second offshore lifting criterion to the DNV standards 
that can give more certain answers without guessing/hoping that a given distribution is 
maintained also outside the simulated range, or having to perform unjustifiable amounts of 
simulations that would take hours to generate and handle afterwards. A 95% non-
exceedance criterion for staying below the design limits of the lifting equipment/system is 
proposed based on research performed in chapter 8, although a lower criterion might be 
accepted for in some cases (see chapter 9).   

 
• From the probability papers obtained in chapter 8, it seems to be common in the tail region 

(largest 5-15% of the simulations) with a decrease in the slope of the line. This is assumed 
to follow from either (1) non-linear impacts as snap loads and quadratic damping, or (2) 
statistical spread. However, the distribution most suited for the tail region should be 
considered. For the future, it could be interesting to see when, how and why these larger 
extreme forces occur. This can be done by i.e. looking individually at each simulation and 
see how the minimum tension or slack duration in the wire/lifting slings corresponds with 
the maximum output force.   
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Appendix 1 

Simplified double peak spectral model for ocean waves 
 
This appendix is mainly based on notes published by Torsethaugen and Haver (2004). 
Parameters used here are not being refered or linked to parameters mentioned in the  
nomenclature. Empirical parameters are given in Table 17. 
 
Table 17: Empirical Parameters used in the Torsethaugen simplified wave spectrum 

Parameter Value 
𝑎𝑎𝑒𝑒 2 sm−1/3 
𝑎𝑎𝑓𝑓 6.6 sm−1/3 for a fetch length of 370 km 

(Haver, 2013) 
𝑎𝑎𝑢𝑢 25.0 s 
𝑎𝑎1 0.5 
𝑎𝑎2 0.3 
𝑎𝑎3 6.0 
𝑎𝑎10 0.7 
𝑎𝑎20 0.6 
𝑏𝑏1 2.0 s 
𝑘𝑘𝑔𝑔 35.0 m/s2 
𝜀𝜀𝑙𝑙 Non-dimensional scales for the spectral peak 

period (Wind sea) 
𝜀𝜀𝑢𝑢 Non-dimensional scales for the spectral peak 

period (Swell sea) 
 
 
Fully developed sea peak period for the location 
 

𝑇𝑇𝑝𝑝𝑝𝑝 =  𝑎𝑎𝑓𝑓𝐻𝐻𝑠𝑠1/3 
 
Considering primary spectral peak periods less than or equal to peak periods in a fully 
developed sea,  Tp ≤ Tpf, a wind sea system generated. For Tp > Tpf, a swell system is 
generated. 
 
Spectral Parameters for Wind dominated sea 𝑇𝑇𝑝𝑝 ≤ 𝑇𝑇𝑝𝑝𝑝𝑝 
 
1) Primary peak  
 
• Significant wave height  
 

𝐻𝐻𝑤𝑤1 = 𝑅𝑅𝑤𝑤𝐻𝐻𝑠𝑠;    𝑅𝑅𝑤𝑤 = (1 − 𝑎𝑎10)𝑒𝑒−�
𝜀𝜀1
𝑎𝑎1
�
2

+ 𝑎𝑎10      
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𝜀𝜀𝑙𝑙 = (𝑇𝑇𝑝𝑝𝑝𝑝−𝑇𝑇𝑝𝑝)
(𝑇𝑇𝑝𝑝𝑝𝑝−𝑇𝑇𝑙𝑙) 

;     T𝑙𝑙 = 𝑎𝑎𝑒𝑒𝐻𝐻𝑠𝑠1/2   

 
For values of 𝑇𝑇𝑝𝑝 less than T𝑙𝑙, 𝜀𝜀𝑙𝑙 is set to 1.  

• Spectral peak period  

𝑇𝑇𝑝𝑝𝑝𝑝1 = 𝑇𝑇𝑝𝑝;   
 
• Peak enhancement factor 
 
 𝛾𝛾 =  𝑘𝑘𝑔𝑔𝑠𝑠𝑝𝑝6/7;   𝑠𝑠𝑝𝑝 = (2𝜋𝜋

𝑔𝑔
)�𝐻𝐻𝑤𝑤1/𝑇𝑇𝑝𝑝𝑝𝑝12 � 

 
2) Secondary peak 
  
• Significant wave height  
 
𝐻𝐻𝑤𝑤2 = (1 − 𝑅𝑅𝑤𝑤2 )1/2𝐻𝐻𝑠𝑠  
  
• Spectral peak period  
 
𝑇𝑇𝑝𝑝𝑝𝑝2 = 𝑇𝑇𝑝𝑝𝑝𝑝 + 𝑏𝑏1   

• Peak enhancement factor, 𝛾𝛾 =  1   

 

Spectral Parameters for Swell dominated sea T𝑝𝑝 > T𝑝𝑝𝑝𝑝  

1) Primary peak 
 
• Significant wave height  

𝐻𝐻𝑠𝑠1 = 𝑅𝑅𝑠𝑠𝐻𝐻𝑠𝑠;   𝑅𝑅𝑠𝑠 = (1 −  𝑎𝑎20)𝑒𝑒−�
𝜀𝜀𝑢𝑢
𝑎𝑎2
�
2

+ 𝑎𝑎20  

𝜀𝜀𝑢𝑢 = (𝑇𝑇𝑝𝑝−𝑇𝑇𝑝𝑝𝑝𝑝)
(𝑇𝑇𝑢𝑢−𝑇𝑇𝑝𝑝𝑝𝑝 )

 ; 𝑇𝑇𝑢𝑢 = 𝑎𝑎𝑢𝑢  

For values of 𝑇𝑇𝑝𝑝 above 𝑇𝑇𝑢𝑢, 𝜀𝜀𝑢𝑢 is set to 1.  

• Spectral peak period  

𝑇𝑇𝑝𝑝𝑝𝑝1 = 𝑇𝑇𝑝𝑝  

• Peak enhancement factor 
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𝛾𝛾 =  𝑘𝑘𝑔𝑔𝑠𝑠𝑝𝑝6/7;   𝑠𝑠𝑓𝑓 = (2𝜋𝜋
𝑔𝑔

)�𝐻𝐻𝑤𝑤1/𝑇𝑇𝑝𝑝𝑝𝑝12 � 

 𝛾𝛾 =  𝛾𝛾𝑓𝑓(1 + 𝑎𝑎3𝜀𝜀𝑢𝑢)  
 𝛾𝛾𝑓𝑓  =  𝑘𝑘𝑔𝑔 𝑠𝑠𝑓𝑓6/7 

 𝑠𝑠𝑓𝑓  =  (2𝜋𝜋
𝑔𝑔

)�𝐻𝐻𝑠𝑠/𝑇𝑇𝑝𝑝𝑝𝑝2 � 

 
2) Secondary peak   
 
• Significant wave height  

𝐻𝐻𝑠𝑠2 = (1 −  𝑅𝑅𝑠𝑠2)1/2𝐻𝐻𝑠𝑠;  

• Spectral peak period  

𝑇𝑇𝑝𝑝𝑝𝑝2 = 𝑎𝑎𝑓𝑓𝐻𝐻𝑠𝑠2
1/3;  

• Peak enhancement factor, 𝛾𝛾 =  1  
 
 
Resulting spectral formula: 

𝑆𝑆(𝑓𝑓𝑛𝑛) = �𝐸𝐸𝑖𝑖𝑆𝑆𝑖𝑖,𝑛𝑛�𝑓𝑓𝑖𝑖,𝑛𝑛�
2

𝑖𝑖=1

 

𝑖𝑖 = 1 - Primary sea system 
𝑖𝑖 = 2 - Secondary sea system 

𝐸𝐸1 =
1

16
𝐻𝐻12𝑇𝑇𝑝𝑝1 

𝐸𝐸2 =
1

16
𝐻𝐻22𝑇𝑇𝑝𝑝2 

𝑆𝑆1,𝑛𝑛�𝑓𝑓1,𝑛𝑛� = 𝐺𝐺0𝐴𝐴𝛾𝛾𝑓𝑓1𝑛𝑛−4𝑒𝑒−𝑓𝑓1𝑛𝑛
−4𝛾𝛾𝑒𝑒

− 1
2𝜎𝜎2

�𝑓𝑓1𝑛𝑛−1�
2

 

𝑆𝑆2,𝑛𝑛�𝑓𝑓2,𝑛𝑛� = 𝐺𝐺0𝑓𝑓2𝑛𝑛−4𝑒𝑒−𝑓𝑓2𝑛𝑛
−4 

𝑓𝑓1𝑛𝑛 = 𝑓𝑓𝑇𝑇𝑝𝑝1,𝑓𝑓2𝑛𝑛 = 𝑓𝑓𝑇𝑇𝑝𝑝2,𝐺𝐺0 = 3.26,𝐴𝐴𝛾𝛾 =
1 + 1.1ln (𝛾𝛾)1.19

𝛾𝛾
   and σ = 0.07 for 𝑓𝑓𝑛𝑛 < 1  and σ

= 0.09 for 𝑓𝑓𝑛𝑛 > 1 

For wind dominated sea cases: 
𝐻𝐻1 = 𝐻𝐻𝑤𝑤1 and H2 = 𝐻𝐻𝑤𝑤2 

𝑇𝑇𝑝𝑝1 = 𝑇𝑇𝑝𝑝𝑝𝑝1  and 𝑇𝑇𝑝𝑝2 = 𝑇𝑇𝑝𝑝𝑝𝑝2 

For swell dominated sea cases: 
𝐻𝐻1 = 𝐻𝐻𝑠𝑠1 and 𝐻𝐻2 = 𝐻𝐻𝑠𝑠2 

𝑇𝑇𝑝𝑝1 = 𝑇𝑇𝑝𝑝𝑝𝑝1  and 𝑇𝑇𝑝𝑝2 = 𝑇𝑇𝑝𝑝𝑝𝑝2  
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Appendix 2 

Estimation of mass coefficients for a ROV Supporter Mk2 
 
This appendix is mainly based on notes published by Sandvik (2007). Parameters used here 
are not being refered or linked to in the nomenclature. 
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Appendix 3 

Estimation of steady flow drag coefficients for a ROV Supporter Mk2 (Figure 36) 
 

 
Figure 36: Illustration of the Supporter Mk2 obtained from AutoCad 
 
First thing to do when finding estimated steady flow drag coefficients is to find an area 
representative for the estimated drag factor. Further, data on thruster forces are obtained from 
the supplier (Kystdesign, Table 18), and the maximum ROV speed in seawater close to the 
seabed with no currents are given based on ROV operators experiences onboard Rem Ocean. 
By having these three values in all X/Y/Z-directions, an estimation of the drag factors in an 
ideal flow can be obtained (not representative in an oscillatory flow). But, it should be noted 
that these values will vary dependent on for instance currents through cross sections (i.e. 
rotation, shadows, Reynolds number and surface roughness). Also, the thruster power values 
given are only representative in an ideal laminar water flow. Therefore, these numbers are 
likely to be reduced by about 20% due to phenomena’s as for instance turbulence and 
currents.   
 
Table 18: Thruster data of the Supporter Mk2 provided by the supplier (Holsbrekken, 2015) 
Thrust direction Force Unit 

Forward, 𝑥𝑥 676 kilogram 
Aft, 𝑥𝑥 669 kilogram 
Lateral, 𝑦𝑦 616 kilogram 
Vertically up, 𝑧𝑧 633 kilogram 
Vertically down, 𝑧𝑧 691 kilogram 
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Surge: 

 
Estimated areal from Inventor data; 𝐴𝐴𝑥𝑥 = 1.6𝑚𝑚2 

𝐶𝐶𝐷𝐷𝐷𝐷,𝑥𝑥 =
2𝐹𝐹𝑥𝑥

𝜌𝜌 ∗ 𝑣𝑣𝑥𝑥2 ∗ 𝐴𝐴𝑥𝑥
=

2 ∗ 0.8 ∗ 676𝑘𝑘𝑘𝑘 ∗ 9.81 𝑚𝑚𝑠𝑠2

1027 𝑘𝑘𝑘𝑘𝑚𝑚3 ∗ �1.8𝑚𝑚𝑠𝑠 �
2
∗ 1.6𝑚𝑚2

= 2 

Sway: 

 
Estimated areal from Inventor data; 𝐴𝐴𝑦𝑦 = 2.3𝑚𝑚2 

𝐶𝐶𝐷𝐷𝐷𝐷,𝑦𝑦 =
2𝐹𝐹𝑦𝑦

𝜌𝜌 ∗ 𝑣𝑣𝑦𝑦2 ∗ 𝐴𝐴𝑦𝑦
=

2 ∗ 0.8 ∗ 616𝑘𝑘𝑘𝑘 ∗ 9.81 𝑚𝑚𝑠𝑠2

1027 𝑘𝑘𝑘𝑘𝑚𝑚3 ∗ �1.3𝑚𝑚𝑠𝑠 �
2
∗ 2.3𝑚𝑚2

= 2.42 

Heave: 

 
Estimated areal from Inventor data; 𝐴𝐴𝑧𝑧 = 3.2𝑚𝑚2 

𝐶𝐶𝐷𝐷𝐷𝐷,𝑧𝑧 =
2𝐹𝐹𝑧𝑧

𝜌𝜌 ∗ 𝑣𝑣𝑧𝑧2 ∗ 𝐴𝐴𝑧𝑧
=

2 ∗ 0.8 ∗ 633𝑘𝑘𝑘𝑘 ∗ 9.81 𝑚𝑚𝑠𝑠2

1027 𝑘𝑘𝑘𝑘𝑚𝑚3 ∗ �1.1𝑚𝑚𝑠𝑠 �
2
∗ 3.2𝑚𝑚2

= 2.50
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Appendix 4 

Main Orcaflex dataset obtained in Case 1a 
Hs = 7.5m and Tz = 8s  
500 simulations performed, launch of a Supporter Mk2 at Rem Ocean 
Values are in kN 

288.197 106.212 84.354 80.887 79.338 78.074 76.897 76.321 75.342 74.095 

286.9 106.001 84.203 80.877 79.331 78.053 76.877 76.312 75.328 74.082 
263.233 105.335 84.168 80.858 79.281 78.017 76.868 76.299 75.317 74.006 
229.275 104.707 84.083 80.849 79.232 78.002 76.865 76.294 75.307 73.995 
201.972 104.444 83.891 80.776 79.219 77.987 76.857 76.246 75.304 73.995 
197.073 103.383 83.787 80.768 79.207 77.985 76.852 76.23 75.292 73.991 
186.649 102.778 83.66 80.767 79.197 77.921 76.836 76.219 75.27 73.982 
184.508 101.855 83.508 80.55 79.182 77.896 76.828 76.212 75.243 73.942 
173.737 101.58 83.461 80.512 79.181 77.894 76.795 76.17 75.237 73.915 

171.9 98.985 83.353 80.494 79.142 77.893 76.793 76.155 75.227 73.87 
171.639 98.874 83.2 80.367 79.12 77.886 76.784 76.119 75.177 73.843 

170.52 98.432 83.179 80.344 79.079 77.863 76.783 76.095 75.095 73.793 
164.029 98.42 83.04 80.323 78.984 77.856 76.781 76.075 75.08 73.755 
161.853 97.454 82.979 80.301 78.98 77.848 76.779 76.05 75.055 73.745 
158.176 97.338 82.972 80.291 78.928 77.803 76.76 76.034 75.029 73.731 
156.924 96.877 82.904 80.254 78.906 77.802 76.756 75.952 75.012 73.661 
154.444 96.783 82.628 80.227 78.904 77.79 76.742 75.948 74.99 73.639 
152.938 96.317 82.61 80.135 78.848 77.752 76.722 75.933 74.956 73.599 
151.287 94.221 82.603 80.113 78.835 77.687 76.716 75.912 74.927 73.595 
149.426 92.284 82.444 80.075 78.834 77.686 76.703 75.908 74.914 73.582 
144.661 92.194 82.397 80.072 78.822 77.659 76.701 75.894 74.907 73.572 
144.489 92.135 82.388 80.064 78.808 77.617 76.686 75.893 74.869 73.57 

141.51 91.113 82.36 80.028 78.776 77.606 76.684 75.885 74.834 73.544 
141.495 90.989 82.306 80.026 78.772 77.58 76.682 75.866 74.79 73.524 
140.317 90.315 82.222 79.997 78.746 77.575 76.665 75.865 74.781 73.518 

138.31 90.147 82.101 79.992 78.738 77.569 76.642 75.858 74.778 73.414 
138.236 89.85 82.08 79.98 78.687 77.567 76.623 75.837 74.777 73.398 
137.321 89.788 82.05 79.824 78.637 77.535 76.596 75.833 74.768 73.323 

136.41 89.511 82.021 79.807 78.631 77.428 76.595 75.808 74.758 73.282 
135.535 89.465 82.015 79.791 78.598 77.411 76.592 75.795 74.756 73.267 
132.808 88.221 81.953 79.791 78.518 77.402 76.589 75.771 74.742 73.181 
132.136 87.587 81.874 79.784 78.507 77.401 76.582 75.697 74.739 73.13 

131.81 87.482 81.792 79.757 78.502 77.375 76.576 75.676 74.691 73.127 
131.767 87.351 81.737 79.713 78.489 77.295 76.559 75.652 74.675 73.1 
129.572 87.326 81.486 79.677 78.449 77.281 76.542 75.607 74.638 72.963 
129.131 87.285 81.458 79.634 78.431 77.242 76.538 75.556 74.615 72.899 
127.515 87.266 81.445 79.623 78.409 77.2 76.528 75.536 74.606 72.786 
124.541 87.218 81.443 79.605 78.409 77.165 76.523 75.531 74.513 72.775 

124.07 86.697 81.375 79.602 78.398 77.122 76.522 75.524 74.508 72.744 
123.353 86.549 81.361 79.552 78.384 77.115 76.502 75.49 74.482 72.727 
120.733 86.451 81.299 79.546 78.359 77.089 76.491 75.477 74.406 72.58 
119.338 85.958 81.274 79.532 78.338 77.081 76.487 75.465 74.321 72.577 
118.557 85.261 81.147 79.477 78.298 77.053 76.452 75.461 74.277 72.481 
117.445 85.117 81.122 79.468 78.265 77.019 76.427 75.455 74.249 72.427 
115.304 84.731 81.109 79.424 78.221 77.019 76.421 75.455 74.23 72.372 
115.275 84.668 81.095 79.413 78.189 77.009 76.414 75.438 74.214 72.287 
111.505 84.634 81.048 79.403 78.14 77.004 76.412 75.421 74.193 71.957 

111.36 84.51 80.979 79.354 78.103 76.918 76.375 75.384 74.182 71.927 
110.412 84.49 80.946 79.348 78.1 76.909 76.369 75.368 74.112 71.603 
110.071 84.361 80.939 79.348 78.09 76.897 76.324 75.345 74.095 71.436 
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Appendix 5 

Orcaflex dataset obtained in Case 1b 
Hs = 7.5m and Tz = 8s  
500 simulations performed, recovery of a Supporter Mk2 at Rem Ocean 
Values are in kN 

554.294 114.369 98.107 91.161 87.469 84.831 82.753 80.964 79.446 77.992 
275.974 113.889 97.942 91.006 87.466 84.83 82.723 80.926 79.434 77.822 
271.583 113.415 97.709 90.922 87.419 84.79 82.548 80.891 79.383 77.67 
258.831 112.877 97.655 90.851 87.403 84.778 82.526 80.873 79.344 77.576 
243.194 112.562 97.437 90.84 87.386 84.764 82.469 80.846 79.34 77.571 
207.133 112.103 97.295 90.767 87.22 84.509 82.404 80.785 79.337 77.471 
202.586 112.081 97.255 90.566 87.105 84.474 82.372 80.762 79.335 77.402 
176.304 111.777 97.209 90.44 87.05 84.364 82.361 80.735 79.322 77.307 
169.965 110.446 96.722 90.438 86.919 84.359 82.327 80.732 79.282 77.268 
169.717 110.419 96.479 90.434 86.891 84.261 82.27 80.718 79.27 77.241 
161.739 109.553 96.338 90.405 86.878 84.203 82.262 80.685 79.26 77.239 
159.769 109.024 96.026 90.288 86.787 84.202 82.242 80.684 79.256 77.232 
156.625 108.535 95.682 90.158 86.651 84.193 82.216 80.674 79.215 77.216 
152.596 107.109 95.619 89.909 86.598 84.188 82.157 80.625 79.21 77.192 
149.556 106.888 95.291 89.893 86.55 84.165 82.109 80.623 79.19 77.091 

148.91 106.744 95.277 89.62 86.428 84.112 82.108 80.615 79.108 76.938 
146.72 106.324 95.274 89.512 86.406 84.112 82.091 80.486 79.05 76.912 

143.923 105.978 95.117 89.498 86.384 84.097 82.056 80.451 78.986 76.798 
141.204 105.905 94.891 89.453 86.338 84.089 82.044 80.433 78.954 76.728 
140.745 105.844 94.89 89.396 86.307 84.059 82.033 80.415 78.937 76.686 
140.736 105.399 94.874 89.367 86.152 84.001 82.022 80.389 78.9 76.455 
139.948 104.982 94.849 89.363 86.014 83.896 82.014 80.31 78.879 76.325 
139.073 104.754 94.825 89.221 85.907 83.842 81.978 80.281 78.795 76.301 
137.485 103.955 94.666 89.118 85.903 83.83 81.963 80.233 78.792 76.234 
136.482 103.179 94.537 89.019 85.873 83.82 81.946 80.135 78.739 76.11 

134.81 103.029 94.49 88.8 85.87 83.657 81.92 80.103 78.599 76.071 
132.902 102.508 93.884 88.743 85.79 83.651 81.896 80.092 78.587 76.057 
130.144 102.42 93.874 88.636 85.786 83.623 81.846 80.088 78.576 75.864 
129.649 102.27 93.81 88.506 85.774 83.557 81.787 80.068 78.566 75.828 
128.622 102.131 93.391 88.484 85.667 83.519 81.755 80.067 78.536 75.816 

126.71 101.947 93.298 88.481 85.653 83.518 81.733 80.055 78.518 75.621 
126.354 101.945 93.232 88.194 85.639 83.44 81.698 80.037 78.501 75.475 
123.998 101.793 93.067 88.174 85.609 83.439 81.636 80 78.476 75.45 
123.863 101.621 92.75 88.173 85.582 83.378 81.571 79.987 78.459 75.34 
122.046 101.296 92.593 88.073 85.573 83.351 81.557 79.973 78.425 75.097 
121.716 101.227 92.575 88.058 85.571 83.347 81.481 79.969 78.357 75.097 
121.619 101.14 92.152 87.982 85.529 83.339 81.48 79.955 78.336 75.04 
121.512 100.992 92.139 87.974 85.526 83.332 81.386 79.947 78.279 74.979 
120.567 100.981 92.034 87.955 85.471 83.267 81.331 79.94 78.257 74.925 
118.639 100.749 92.028 87.902 85.363 83.197 81.308 79.83 78.241 74.795 
117.736 100.647 91.971 87.823 85.305 83.118 81.307 79.662 78.2 74.75 

117.24 100.512 91.894 87.787 85.223 83.019 81.294 79.65 78.172 74.712 
117.1 100.084 91.885 87.776 85.221 83.001 81.22 79.645 78.169 74.674 

116.666 99.835 91.726 87.725 85.212 82.964 81.086 79.565 78.097 74.508 
116.268 99.68 91.716 87.698 85.142 82.923 81.05 79.554 78.087 74.123 
115.705 99.272 91.402 87.677 85.084 82.869 81.039 79.545 78.08 73.966 
114.906 99.249 91.354 87.669 85.08 82.859 81.035 79.543 78.071 73.722 
114.736 99.153 91.324 87.556 85.003 82.822 80.99 79.498 78.046 73.516 
114.708 98.808 91.237 87.555 84.975 82.81 80.983 79.479 78.036 73.16 
114.669 98.459 91.207 87.534 84.892 82.768 80.98 79.45 78.015 72.224 
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Appendix 6 

Orcaflex dataset obtained in Case 2 
Hs = 3m and Tz = 5s  
500 simulations performed, launch of Installer at Crest Bazan 2 
 

173.909 88.814 77.264 68.861 63.006 59.152 55.899 53.583 51.626 50.211 
149.703 88.508 77.252 68.756 62.715 59.107 55.881 53.517 51.603 50.168 
126.802 88.31 77.106 68.584 62.684 59.02 55.868 53.517 51.562 50.107 
125.662 87.941 76.645 68.437 62.567 58.966 55.864 53.511 51.558 50.106 
122.347 87.673 76.333 68.315 62.339 58.809 55.831 53.505 51.55 50.072 
121.779 87.502 76.23 68.221 62.121 58.755 55.827 53.499 51.51 49.963 
119.545 87.071 76.188 68.22 62.078 58.565 55.821 53.437 51.484 49.952 
114.077 86.779 76.11 68.093 62.038 58.22 55.734 53.413 51.462 49.936 

113.42 86.706 76.085 68.057 62.029 58.158 55.711 53.378 51.449 49.838 
112.322 86.138 75.695 67.827 62.014 58.141 55.703 53.377 51.446 49.736 
111.217 86.115 75.382 67.803 62.012 58.109 55.61 53.337 51.399 49.706 
110.894 86.073 75.182 67.773 61.998 58.054 55.592 53.315 51.364 49.682 
109.724 86.008 74.642 67.694 61.941 58.013 55.439 53.315 51.357 49.669 
109.087 85.694 74.531 67.684 61.852 58.008 55.436 53.276 51.334 49.636 
109.055 85.677 74.442 67.582 61.672 57.969 55.432 53.258 51.313 49.619 
108.834 84.679 74.392 67.393 61.607 57.878 55.427 53.186 51.301 49.536 

108.35 84.29 74.059 67.279 61.585 57.814 55.287 53.095 51.277 49.455 
108.052 84.261 73.95 67.076 61.432 57.676 55.281 52.994 51.252 49.451 
107.844 84.16 73.87 67.063 61.427 57.643 55.276 52.874 51.201 49.392 
105.934 83.759 73.639 67.048 61.418 57.643 55.166 52.865 51.162 49.374 
105.844 83.487 73.168 67.034 61.373 57.616 55.146 52.744 51.13 49.362 
103.093 83.44 73.044 66.9 61.225 57.583 55.044 52.707 51.103 49.175 
101.807 83.321 72.982 66.82 61.225 57.511 54.944 52.701 51.091 49.142 
101.352 83.203 72.459 66.59 61.149 57.448 54.944 52.692 51.019 49.08 
100.968 83.092 72.406 66.541 61.11 57.394 54.882 52.644 50.983 48.806 
100.924 82.617 72.072 66.169 61.083 57.386 54.842 52.604 50.925 48.794 
100.799 82.44 71.983 65.751 60.899 57.264 54.822 52.582 50.901 48.707 

99.807 81.233 71.758 65.751 60.763 57.232 54.714 52.564 50.895 48.602 
98.436 81.076 71.734 65.732 60.726 57.188 54.657 52.529 50.88 48.432 
97.982 81.049 71.642 65.474 60.686 57.172 54.63 52.529 50.835 48.37 
96.966 80.894 71.548 65.236 60.597 57.169 54.619 52.481 50.835 48.321 
96.729 79.949 71.461 65.124 60.508 57.087 54.41 52.424 50.832 48.293 
95.45 79.83 71.395 64.977 60.468 57.08 54.403 52.304 50.753 48.122 

95.126 79.726 71.22 64.939 60.434 57.07 54.366 52.293 50.747 48.059 
95.008 79.601 71.098 64.924 60.356 56.9 54.317 52.253 50.728 47.999 
94.81 79.573 70.91 64.924 60.286 56.767 54.308 52.245 50.683 47.866 

94.217 79.041 70.722 64.856 60.242 56.748 54.083 52.224 50.671 47.782 
94.217 78.889 70.651 64.745 60.174 56.711 54.062 52.136 50.599 47.564 
93.487 78.852 70.596 64.744 59.979 56.71 54.007 52.128 50.513 47.487 
92.691 78.807 70.45 64.455 59.896 56.682 53.853 52.094 50.506 47.203 
92.16 78.637 70.372 64.248 59.677 56.612 53.832 52.077 50.502 47.049 

91.561 78.545 70.274 64.222 59.573 56.572 53.829 52.059 50.464 46.958 
90.665 78.36 70.025 63.905 59.566 56.556 53.787 52.045 50.382 46.66 
90.59 78.282 69.924 63.596 59.469 56.467 53.747 51.965 50.325 46.472 

90.136 78.197 69.753 63.342 59.461 56.414 53.742 51.938 50.29 46.227 
90.117 78.113 69.58 63.261 59.394 56.34 53.738 51.929 50.274 46.149 
89.997 77.763 69.574 63.158 59.383 56.235 53.705 51.853 50.257 46.071 
89.525 77.538 69.343 63.107 59.344 56.103 53.654 51.749 50.255 45.54 
89.517 77.369 69.274 63.073 59.271 56.048 53.628 51.712 50.241 45.494 
89.482 77.297 69.081 63.026 59.166 56.041 53.591 51.631 50.211 45.193 
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