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Summary 
 

The goal of this thesis was to investigate the effect that production tolerances has on the strength 

capacities of a beam or column.  The out-of-straightness imperfection on a pinned column, and its 

effect on the flexural buckling resistance, was chosen as the main consideration. The production 

standard NS-EN 1090-3 has different production tolerances that must be followed if a beam or 

column is going to be approved according to Eurocode 9. This includes a tolerance limit for the out-

of-straightness imperfection. This tolerance limit was investigated in order to determine if it was safe 

to follow. Imperfections in the cross-section geometry, and its respective tolerance limits, was also 

considered in this thesis. 

The effect of the out-of-straightness imperfection was investigated using the Perry-Robertson 

formula. This Perry-Robertson method is in part used to develop the buckling curves that are 

presented in both Eurocode 3 and Eurocode 9 today. However, these buckling curves have been 

strengthen by tests results and experiments. As a simplified method, the Perry-Robertson formula 

can therefore not offer a perfect representation of the actual buckling behavior of an imperfect 

column, but it can be used to illustrate the effect of an out-of-straightness imperfection rather well. 

Several Perry-Robertson calculations were performed for different cross-section types and for 

different imperfection values. The results from these calculations showed a large drop in flexural 

buckling resistance for an imperfect column compared with a perfectly straight column. The loss in 

load carrying capacity also grew with larger imperfections. It was shown that cross-sections, which 

has a low resistance to buckling, was effected more severely by the imperfection. The production 

tolerance for an out-of-straightness imperfection, as given in NS-EN 1090-3, was compared with 

these calculations. With this comparison, it was found that trusting the tolerance limit might prove 

dangerous in some situations. An ANSYS finite element analysis was carried at Marine Aluminium for 

multiple columns with an imperfection of 10 mm, in order to verify the Perry-Robertson calculations. 

The results from this analysis indicated that the Perry-Robertson method was conservative, but that 

it simulated the effect of the imperfection well.  

The same column-models was then used in Eurocode 9 capacity calculations. The Eurocode 9 

guidelines for flexural buckling resistance has an imperfection safety factor that is used in all buckling 

calculations. The results from these calculations yielded a lower flexural buckling resistance than the 

Perry-Robertson method for all the columns that were tested. The Eurocode 9 calculations proved to 

be conservative enough that no dangerous situation was found while staying true to the tolerance 

limits given in NS-EN 1090-3. An argument that the imperfection safety factor is too conservative in 

some situations is made and the optimization of Eurocode 9 buckling calculations is discussed.  
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Chapter 1 
 

1. Introduction 
 

Imperfections in structures is something that must be accepted, as it is impossible to produce a 100% 

perfect beam or cross-section. An imperfection can be many things, for example a beam that is not 

perfectly straight will have an out-of-straightness imperfection. Imperfections will usually have a 

negative effect on the load carrying capacity of a member or a structure, but the actual reduction in 

load carrying capacity is hard to determine. In most cases, the imperfections found in beams are so 

small that they can be safely neglected, but what defines a small imperfection?  

When a structure is being built, there are different productions standards that can help in answering 

the question above or similar ones. They often use the ratio between the imperfection and the total 

length of the component, which allows them to determine if the imperfection can be neglected or 

not. However, these standards give little insight into how these ratios are deemed acceptable or not. 

Are these imperfection tolerances overly conservative or can they be dangerous to follow blindly?  

In this thesis, a few simple column models with different degrees of out-of-straightness 

imperfections will be presented. The flexural buckling behavior of these models will be analyzed, as 

to better understand the impact of initial imperfections. Aluminum will be used as the structural 

material and so buckling will be calculated according to Eurocode 9 [1]. The imperfection tolerances 

will be collected from the fabrication standard for aluminum structures, NS-EN 1090-3:2008 [3]. 

Hand calculated buckling curves will be determined using the Perry-Robertson equation, which was 

regarded as the “backbone” for most buckling curves used in national standards [7]. To validate the 

hand calculations a finite element analysis will be presented, obtained through the software program 

ANSYS. The ultimate goal being to gain a better understanding of the impact that crookedness can 

have on a columns strength and check if the present tolerance limit, presented by EN 1090-3, is safe 

to follow.  

In an article named “Use of Perry formula to represent the new European strut curves”, on the subject 

of imperfections, author J.B. Dwight wrote:  

“In view of the importance of initial crookedness in strut behavior it is surprising that so little is known 

statistically about the values which actually occur.”[7] 
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1.1. Background for thesis 
 

This thesis is written at the request and under the supervision of Marine Aluminium AS. Buckling of 

beams and columns is something that is calculated regularly and so most structural engineers are 

comfortable in this area. However, geometrical imperfections, and the effect that these 

imperfections has on the load carrying capacities, might not be as well known. When beams are 

ordered, it is expected that they hold a certain standard. If it is not obvious by eyesight that they are 

not as expected, beams with significant imperfections could be used in a structure. Although Marine 

Aluminium has not had any previous failures due to imperfections, they are interested in researching 

the complications that might occur.  If the imperfection should prove to be more harmful than 

expected, mitigating measures can be implemented at an early stage of production.  

Marine Aluminium is a company that has specialized itself in offshore constructions and now their 

two major products are helidecks and telescopic gangways, mainly constructed using aluminium. 

They also produce living quarters and safety railings, amongst other things. The company started up 

in 1953 and delivered their first helideck in 1973. Their first offshore telescopic gangway was 

delivered in 1979. Today Marine Aluminium’s main office is located on Karmøy with a production site 

on Stord. They also have a smaller office with a staff of about 50 people working from Ningbo, China. 

Although mainly focused on the offshore industry, Marine Aluminium has also delivered some 

onshore helidecks, perhaps most notably in 2010 when they delivered a helideck to Haukeland 

Hospital in Bergen. With over 60 years of experience Marine Aluminium is world leading in 

aluminium access solutions for offshore use. 

 

 

Picture 1: The main office of Marine Aluminium, Karmøy 

 

  



   

13 
 

1.2. Aluminium as a structural material 
 

Aluminium might not be as common as steel or concrete, but it is still a great structural material. It is 

a lightweight yet strong material, with excellent corrosion properties. When aluminum was first 

produced chemically, it was not suitable for structural applications due to the cost. With time, newer 

and cheaper methods of production were introduced and aluminum structures became an excellent 

option, especially for the aircraft industry [10]. The lightweight material was perfect for airplane 

fuselages. Being successfully introduced to the aircraft industry, the development of aluminum 

boomed and new alloys, with different properties, were discovered. The most common alloys 

contain Copper, Zinc, Magnesium, Manganese or Silicon or a combination of these. For structural 

beams the 6000-series of aluminum is often the preferred alloy, this alloy contains Magnesium and 

Silicon. The 6000-series allows the aluminum to be extruded both easily and economically [10].   

One of aluminums greatest attributes is the fact that beams can be extruded. The extruding process 

is used to create a fixed cross section profile and it is performed by pressing an aluminum bar 

through a pre-manufactured die that creates the desired cross-section. The advantages of this is that 

very complex cross sections can be produced with relative ease. This gives the structural engineers a 

huge amount of choice in the designing phase. A natural disadvantage to extruding profiles is the size 

limitations inherent when using a die and extruding machines to create the cross-section.  

One of the difficulties when using aluminum is the heat-affected zone (HAZ), which is a phenomenon 

that occurs where the material is not melted but the microstructure and properties are changed due 

to the heat. This is unavoidable around welds and can diminish the strength of the material. The 

most common problem is often reduced tensile strength in the HAZ. This obstacle can be overcome 

by using extruded beams and bolted connections, thereby reducing the need for welding to a 

minimum.  

Aluminum has many different uses in different industries. In the offshore industry, aluminum is used 

for the helidecks, gangways, railings, ladders and living quarters, to name a few. Aluminium has also 

shown promising properties in arctic areas, where structures might be required to withstand 

temperatures down to minus 60 degrees Celsius. At these temperature, steel will lose a lot of 

capacity and become brittle. Aluminium does not show these characteristics and will retain its elastic 

nature. 
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1.3. Imperfections 
 

When looking at structural beams an imperfection, as the name implies, is an unwanted property. 

Imperfections are often subcategorized into geometrical imperfections and mechanical 

imperfections [3].  

Mechanical imperfections include residual stress cases. Residual stress is often defined as stress that 

remains in a material after the initial cause of the stress is removed. Residual stress can be a problem 

in situations where plastic deformations, large temperature variations or welding has occurred. 

These residual stresses can lead to failure of the structure.  

Geometrical imperfections are a lot easier to visualize than mechanical imperfections. Geometrical 

imperfections include deformations such as out-of-straightness and variations in the cross-section 

geometry. A beam with an out-of-straightness imperfection can simply be defined as a beam that is 

not perfectly straight and the deformation is often idealized as sinusoidal or parabolic expression 

during calculations, with the maximum displacement located at the midspan. This type of 

imperfection is present in all beam, as it is impossible to produce a perfectly straight beam. The 

imperfection is usually larger in rolled sections compared to extruded sections [8].  

Another kind of geometrical imperfection is an uneven cross-section. Meaning that for example the 

width of the web is not constant or that the one of the flanges is slightly tilted. This can lead to local 

weak zones and an uneven stress distribution. Added material might also cause unexpected weight 

issues. Tilted flanges can induce difficulties when installing/fastening the beam. A tilted web can 

cause unexpected moments to arise, which will lower the capacity of the whole beam. These are just 

some of the dangers when working with uneven cross-sections.  

Other kinds of imperfection that occur in structures are loading imperfections. Situations can occur 

where the force from a load does not go through the centerline as intended, causing unforeseen 

moments in the structure. This is called loading eccentricities. An eccentrically loaded column will 

deform similarly to a column with an out-of-straightness imperfection, assuming that the largest 

deflection is at the middle. The illustration of imperfect loading and the resulting deformation is 

shown in Figure 1. 

 

 
Figure 1: Imperfect loading + deformed shape 
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1.4. Overview of NS-EN 1090-3:2008 
 

The full name of this standard NS-EN 1090-3:2008 is “Execution of steel structures and aluminium 

structures, Part 3: Technical requirements for aluminium structures” [3]. This European standard 

specifies requirements for the execution of aluminium structures, in order to ensure adequate levels 

of mechanical resistance and stability, serviceability and durability [3]. Among other things, the 

standard includes a section on geometrical tolerances and an annex that lists permitted deviations 

for different situations. The annex gives quantitative values for permitted deviations, but these 

deviations should not be used for elastic deformations. This mean that if a given beam unexpectedly 

becomes elastically deformed while subjected to loading, one cannot argue that this is permitted 

because the deformation is within the accepted deviations given in the annex.  

In this thesis, a lot of attention will be given to the out-of-straightness permitted deviation, which 

states: 

𝛿 =
𝐿

750
 

Where: 

 𝐿 = 𝑙𝑒𝑛𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑒𝑎𝑚 

 𝛿 = 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑐𝑒𝑛𝑡𝑒𝑟𝑙𝑖𝑛𝑒 

This means that for a 5 meter long beam the largest permitted out-of-straightness deviation will be 

6.67 millimeters. According to “Aluminium structural analysis” [8] an analysis of extruded profiles 

from several European countries showed that the average difference between an extruded industrial 

bar and a “perfect” bar was L/2000. Which means that the average extruded industrial bar is well 

within the permitted area. Extruded profiles is usually a lot straighter than those that have been 

straighten by rolling. Extruded aluminium bars are straighter because of the more severe traction 

process. 
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Chapter 2 
 

2. Theoretical background 
 

When investigating the effect that an out-of-straightness imperfection has on a column, the flexural 

buckling resistance of the column must be considered. This chapter will introduce the theoretical 

background of buckling and show the derivation of some of the formulas used in the calculations. 

Most of the work that has been done in this field stems from the research done by Leonhard Euler. 

He discovered a formula, known as Euler’s critical load formula, that can be used to find the 

maximum force a column can withstand before it becomes unstable and buckles.  This formula is 

derived in order to gain a better understanding of buckling.  A formula known as the Perry-Robertson 

equation is also described and derived. This formula is very useful when considering an imperfect 

column. At the end of the chapter, the flexural buckling resistance calculation method used in 

Eurocode 9 is introduced.  

 

2.1. Buckling 
 

Buckling is characterized by a structural member suddenly subjected to sideways failure, as a result 

of compressive stress. The working compressive stress during buckling is lower than the ultimate 

compressive stress that the material can withstand. Depending on the shape of the cross-section, a 

member subjected to axial force can buckle in three different ways. These are plane buckling, twist 

buckling and lateral torsional buckling [8]. Buckling is unique when compared to other structural 

considerations as it results from an unstable equilibrium state. 

Bending and buckling can be easily confused with each other, as their respective deformation shape 

is very similar. The major difference is that bending is induced by forces acting perpendicular to the 

beams principle axis and buckling is induced by forces acting through the principle axis. To better 

illustrate these concepts, examples from everyday life can be useful. Picture a heavy man sitting in 

the middle of a wooden bench, the bench is in this case subjected to pure bending. Now take a 

plastic ruler and place the short edge on the desk, apply pressure with a finger on the top, with 

enough pressure the ruler will buckle.  

An axial loaded member will fail by either buckling or crushing. The failure mode is dependent on the 

slenderness of member. Long and slender member will buckle while short and bulky members will 

fail by crushing. The most common compressive member is the column and it can be used too easily 

illustrate the two different failure scenarios, when looking at a “short” and “long” member subjected 

to a critical axial force. This is illustrated in Figure 4: the short column fails by crushing, while the long 

column fails by buckling.  
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Bending:  
 

 
Figure 2: Bending deformation 

Buckling:  
 

 
Figure 3: Buckling deformation 

 

 

 
Figure 4: Crushing deformation and buckling deformation 

 

.  
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2.2. Euler’s critical load 
 

The Euler’s critical load formula can be used to determine the maximum axial force that a column 

can withstand before it fails due to flexural buckling: 

𝐹 =
𝜋2 ∙ 𝐸𝐼

(𝑘 ∙ 𝐿)2
 

 F = Maximum force 

 E = Modulus of elasticity 

 I = Area moment of inertia 

 k = Effective length factor 

 L = Length of column 

This equation is also known as Euler’s buckling formula. From this equation, it is easy to see that the 

maximum force will increase when the length of the column decreases and vice versa. By, for 

example, doubling the length of a given column, it can now only carry one quarter of the original 

maximum force. The choice of support (pinned/fixed) is also a very important factor as it directly 

affects the effective length of the column. For simplicity sake, a chart is often used to identify the 

effective length factor.  The theoretical factor is based on the deformation shape the column will 

develop during buckling. Standards often use a recommended design value for the effective length 

factor, which for some supports is more conservative [1]. To gain a better understanding of the 

impact of this factor two different support situation will be presented: 

Table 1: Effective length factor [14] 
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Two identical columns with different supports: 

 

 Column 1 Column 2 

Drawing  

 
Figure 5: Fixed column 

 

 
 

 
Figure 6: Free end column 

 

Effective length factor 𝑘1 = 0.5 𝑘2 = 2.0 

Initial formula 
𝐹1 =

𝜋2 ∙ 𝐸𝐼

(𝑘1 ∙ 𝐿)
2

 

 

𝐹2 =
𝜋2 ∙ 𝐸𝐼

(𝑘2 ∙ 𝐿)
2

 

Simplification 
𝑋 =

𝜋2 ∙ 𝐸𝐼

𝐿2
 

Calculation 
𝐹1 =

1

0.52
∙ 𝑋 𝐹2 =

1

22
∙ 𝑋 

 𝐹1 = 4 ∙ 𝑋 𝐹2 = 0.25 ∙ 𝑋 

Result 𝐹1
𝐹2
=

4 ∙ 𝑋

0.25 ∙ 𝑋
= 16 

 

The example shows that the fixed column can carry a load 16 times larger than the load that the 

unsupported column can withstand, before failing by flexural buckling. Failure by crushing is now 

considered in Euler’s critical load formula. 

Using the Euler’s critical load formula with short columns will results in very large maximal forces 

before failure is assumed to occur. If the resulting stress from this force is higher than the yield 

stress, the column will already have failed due to material limit. Euler’s critical load formula is 

therefore not applicable for short columns.  
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2.3. Deriving Euler’s critical load equation 
 

In this subchapter, the Euler critical load equation will be derived using two different methods. The 

first method uses the moment-curvature relationship, while the second method is based on the 

assumed deformation shape and the criteria that the internal bending moment is equal to the 

external. The assumed deformation will be exactly the same shape as an out-of-straightness 

imperfection. The equation is derived in order to gain a better understanding of how buckling occurs. 

Assume an ideal pinned column: 

 Homogeneous and linear-elastic material 

 Load is applied directly through the center, no load eccentricity 

 

When axial loading is applied, the column will begin to bend and gain a curvature. This is shown in 

the Figure 7.  

 

                                                              
                                                                                  Figure 7: Forces on crooked column 

 
The known moment-curvature relationship is as follows [14}: 

𝑑2𝑣

𝑑𝑥2
=
𝑀

𝐸𝐼
 

Moment equilibrium for the cut figure gives the following equation: 

Σ𝑀𝑐𝑢𝑡 = 0 → 𝑀 + 𝑃 ∙ 𝑣 = 0 
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𝑀 = −𝑃 ∙ 𝑣 

Substituting this back into the moment-curvature relationship: 

𝑑2𝑣

𝑑𝑥2
=
𝑀

𝐸𝐼
 →  

𝑑2𝑣

𝑑𝑥2
=
−𝑃 ∙ 𝑣

𝐸𝐼
 

The result is a second order linear differential equation: 

𝑑2𝑣

𝑑𝑥2
+
𝑃

𝐸𝐼
∙ 𝑣 = 0 

The general solution of this equation will be [14]: 

𝑣(𝑥) = 𝐴 ∙ sin(√
𝑃

𝐸𝐼
∙ 𝑥) + 𝐵 ∙ cos(√

𝑃

𝐸𝐼
∙ 𝑥) 

Now the constants A and B can be determined by using the following boundary conditions: 

𝑣(0) = 0   𝑎𝑛𝑑   𝑣(𝐿) = 0 

𝑣(0) = 0 → 𝐴 ∙ 0 + 𝐵 ∙ 1 = 0 

𝐵 = 0 

𝑣(𝐿) = 0 → 𝐴 ∙ sin(√
𝑃

𝐸𝐼
∙ 𝐿) = 0 

𝐴 = 0 

Although this is correct, it is a trivial solution and nothing is learned from it. Another solution is found 

when the sine expression is equal to zero. This is only the case if the core is equal to Pi or an integer 

multiplied with Pi. 

sin(√
𝑃

𝐸𝐼
∙ 𝐿) = 0 

√
𝑃

𝐸𝐼
∙ 𝐿 = 𝑛 ∙ 𝜋 

The critical load will be the lowest load that causes the column too buckle, and that load will be 

found when n=1: 

√
𝑃

𝐸𝐼
∙ 𝐿 = 1 ∙ 𝜋 

𝑃

𝐸𝐼
∙ 𝐿 = 𝜋2 

𝑃 =
𝜋2 ∙ 𝐸𝐼

𝐿
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This is the equation know as Euler’s critical load, but this equation is only applicable for a hinged 

column. In order to make it applicable for all types of supports a modification is needed for the 

length. This is done by substituting the length for an effective buckling length that is based on the 

actual length of the column and a factor dependent on the support situation.  

The critical load formula can also be found by using an assumed deformed shape and the fact that 

the internal bending moment is equal to the external bending moment. This method assumes that 

the column will take the deformation shape of a half-sine wave, so that the largest deformation is 

always at the middle of the span. 

 
Figure 8: Column with a half sine-wave deflection 

  

When assuming the formula for the deformed shape, the boundary conditions must be satisfied. As 

this is still a pinned column, the fact that the deflection will be equal to zero for both ends of the 

column is known: 

𝑣(0) = 0  𝑎𝑛𝑑  𝑣(𝐿) = 0 

 

By implementing these boundary conditions, the sine expression for the deflection can be assumed 

to look like this:  

𝑣(𝑥) = sin (
𝜋 ∙ 𝑥

𝐿
) 

 

This expression satisfies the two initial boundary conditions, but a physical factor is needed to make 

it applicable for the column in question. It is know that the displacement is largest at the middle of 

the beam; this gives a third boundary condition:  

𝑣 (
𝐿

2
) = 𝛿𝑚𝑎𝑥 

𝑋 ∙ sin(
𝜋 ∙ (

𝐿
2)

𝐿
) = 𝛿𝑚𝑎𝑥 

𝑋 ∙ 1 = 𝛿𝑚𝑎𝑥 

The final expression for the deformed shape becomes: 

𝑣(𝑥) = 𝛿𝑚𝑎𝑥 ∙ sin (
𝜋 ∙ 𝑥

𝐿
) 
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Implementing the expression for moment-curvature relationship: 

𝑑2𝑣

𝑑𝑥2
=
𝑀

𝐸𝐼
 

𝑀 = 𝐸𝐼 ∙ 𝑣′′(𝑥) 

 

Finding the derivative using the chain rule: 

𝑣(𝑥) = 𝛿𝑚𝑎𝑥 ∙ sin (
𝜋 ∙ 𝑥

𝐿
) 

𝑣′(𝑥) =
𝛿𝑚𝑎𝑥 ∙ 𝜋

𝐿
∙ cos (

𝜋 ∙ 𝑥

𝐿
) 

𝑣′′(𝑥) = −
𝛿𝑚𝑎𝑥 ∙ 𝜋

2

𝐿2
∙ sin (

𝜋 ∙ 𝑥

𝐿
) 

The expression for the internal bending moment becomes: 

𝑀𝑖𝑛𝑡 = −
𝐸𝐼 ∙ 𝛿𝑚𝑎𝑥 ∙ 𝜋

2

𝐿2
∙ sin (

𝜋 ∙ 𝑥

𝐿
) 

𝑀𝑖𝑛𝑡 = −
𝐸𝐼 ∙ 𝜋2

𝐿2
∙ 𝑣(𝑥) 

The expression for the external bending moment is much simpler to determine, as it is a common 

force multiplied by arm expression: 

𝑀𝑒𝑥𝑡 = −𝑃 ∙ 𝑣(𝑥) 

 

𝑀𝑒𝑥𝑡 = 𝑀𝑖𝑛𝑡 

−𝑃 ∙ 𝑣(𝑥) = −
𝐸𝐼 ∙ 𝜋2

𝐿2
∙ 𝑣(𝑥) 

Removing the displacement expression from both sides of the equation: 

𝑃 =
𝜋2 ∙ 𝐸𝐼

𝐿2
 

The exact same formula is obtained as the one Euler found with his more mathematical approach 

[12]. One of the reason why this “assumed deformed state” model is interesting is that it is very 

useful when looking at geometric imperfect columns.  
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2.4. Buckling of imperfect columns: 
 

 

 
Figure 9: Buckling of imperfect column 

 

The buckling of an imperfect column is similar to buckling of a perfect column, but the Euler critical 

load formula cannot be used to determine the maximum axial force the column can withstand. When 

loaded, an imperfect column will have a larger deflection than a perfectly straight column. This will 

lead to a reduction of the load carrying capacity. An expression for the total deflection of the column 

must be found in order to investigate how much of a load carrying capacity reduction is present. The 

expression for the total deflection can be found by using the new governing equilibrium equation 

[12]:  

𝐸𝐼 ∙ 𝑣′′(𝑥) + 𝑃 ∙ 𝑣′(𝑥) + 𝑃 ∙ 𝑣0(𝑥) = 0 

The form that 𝑣0(𝑥) takes is already know from the previous example with the assumed deformation 

shape: 

𝑣0(𝑥) = 𝛿0 ∙ sin (
𝜋 ∙ 𝑥

𝐿
) 

Implementing this into the equilibrium equation gives the following differential equation: 

𝐸𝐼 ∙ 𝑣′′(𝑥) + 𝑃 ∙ 𝑣(𝑥) = −𝑃 ∙ 𝛿0 ∙ sin (
𝜋 ∙ 𝑥

𝐿
) 

The form of the homogenous solution is already known: 

𝑣ℎ = 𝐴 ∙ sin(√
𝑃

𝐸𝐼
∙ 𝑥) + 𝐵 ∙ sin(√

𝑃

𝐸𝐼
∙ 𝑥) 

The particular solution is found by guessing the form and then substituting it into the original 

governing equilibrium equation: 

𝑣𝑝 = 𝛼 ∙ sin (
𝜋 ∙ 𝑥

𝐿
) 

𝑣𝑝
′ =

𝛼 ∙ 𝜋

𝐿
∙ cos (

𝜋 ∙ 𝑥

𝐿
) 

𝑣𝑝
′′ = −

𝛼 ∙ 𝜋2

𝐿2
∙ sin (

𝜋 ∙ 𝑥

𝐿
) 
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𝐸𝐼 ∙ (−
𝛼 ∙ 𝜋2

𝐿2
∙ sin (

𝜋 ∙ 𝑥

𝐿
)) + 𝑃 ∙ (𝛼 ∙ sin (

𝜋 ∙ 𝑥

𝐿
)) = −𝑃 ∙ 𝛿0 ∙ sin (

𝜋 ∙ 𝑥

𝐿
) 

This equation is true for all values of x, but it is greatly simplified by implementing: 

𝑥 =
𝐿

2
 → sin (

𝜋 ∙ 𝑥

𝐿
) = 1 

𝐸𝐼 ∙ (−
𝛼 ∙ 𝜋2

𝐿2
) + 𝑃 ∙ 𝛼 = −𝑃 ∙ 𝛿0 

This again can be simplified: 

𝐸𝐼 ∙ (
𝛼 ∙ 𝜋2

𝑃 ∙ 𝐿2
) − 𝛼 = 𝛿0 

𝛼 ∙ (
𝐸𝐼 ∙ 𝜋2

𝑃 ∙ 𝐿2
− 1) = 𝛿0 

𝛼 =
𝛿0

(
𝐸𝐼 ∙ 𝜋2

𝑃 ∙ 𝐿2
) − 1

 

This must now be substituted back into the original particular solution: 

𝑣𝑝 =
𝛿0

(
𝐸𝐼 ∙ 𝜋2

𝑃 ∙ 𝐿2
) − 1

∙ sin (
𝜋 ∙ 𝑥

𝐿
) 

The solution to the differential equation becomes: 

𝑣(𝑥) = 𝑣ℎ + 𝑣𝑝 

𝑣(𝑥) = 𝐴 ∙ sin (
𝜋 ∙ 𝑥

𝐿
) + 𝐵 ∙ cos (

𝜋 ∙ 𝑥

𝐿
) +

𝛿0

(
𝐸𝐼 ∙ 𝜋2

𝑃 ∙ 𝐿2 
) − 1

∙ sin (
𝜋 ∙ 𝑥

𝐿
) 

Now the boundary conditions for a pinned column is introduced: 

𝑣(0) = 0  𝑎𝑛𝑑  𝑣(𝐿) = 0 

 

𝑥 = 0 → 𝐵 ∙ 1 = 0 

𝐵 = 0 

 

𝑥 = 𝐿 → 𝐴 ∙ 0 +
𝛿0

(
𝐸𝐼 ∙ 𝜋2

𝑃 ∙ 𝐿2
) − 𝐿

∙ 0 = 0 

𝐴 = 0 
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With both coefficients equal to zero we are left with the particular solution only: 

𝑣(𝑥) =
𝛿0

(
𝐸𝐼 ∙ 𝜋2

𝑃 ∙ 𝐿2
) − 1

∙ sin (
𝜋 ∙ 𝑥

𝐿
) 

 

This equation can be simplified by recognizing known equations: 

𝑃𝑐𝑟 =
𝜋2 ∙ 𝐸𝐼

𝐿2
   𝑎𝑛𝑑   𝑣0(𝑥) = 𝛿0 ∙ sin (

𝜋 ∙ 𝑥

𝐿
) 

 

𝑣(𝑥) =
𝑣0(𝑥)

𝑃𝑐𝑟
𝑃
− 1

 

The total deflection is then: 

𝑣(𝑥) + 𝑣0(𝑥) =
𝑣0(𝑥)

𝑃𝑐𝑟
𝑃 − 1

+ 𝑣0(𝑥) 

This can be simplified to the final expression for total deflection, 𝛿: 

𝛿(𝑥) =
𝑣0(𝑥)

1 −
𝑃
𝑃𝑐𝑟

 

  

This equation can be used to find the actual deformation in an imperfect pinned column, being 

loaded by applied force “P”. It will also be important when the Perry-Robertson equation is derived.  
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2.5. Slenderness ratio 
 

The term “slenderness-ratio” is quite important on the subject of buckling as it helps to classify if a 

column is considered long or short. As touched upon earlier a short column will most likely not fail by 

buckling, but a long column might buckle long before the critical load for the material is reached. The 

slenderness-ratio is defined as follows: 

𝜆 =
𝑘 ∙ 𝐿

𝑟
 

Where: 

 𝜆 = The slenderness ratio 

 k = Effective length factor 

 L = Length of the column 

 r = Least radius of gyration 

The effective length factor is included to account for different end support situations. The least 

radius of gyration is defined as: 

𝑟 = √
𝐼

𝐴
 

Where: 

 I = The second moment of Area 

 A = The cross-sectional area 

The slenderness ratio is then compared with a “column constant”, which is based on material type, 

to determine if it shall be considered as a long or short column. When doing buckling calculations in 

both Eurocode 3 [2] and Eurocode 9 [1] a relative slenderness is used instead. The relative 

slenderness is in both standards defined as: 

�̅� = √
𝐴𝑒𝑓𝑓 ∙ 𝑓0

𝑁𝑐𝑟
 

Where: 

 𝐴𝑒𝑓𝑓 = Effective cross-sectional area, this is depended on classification of cross-section. 

 𝑓0 = Yield strength of material. 

 𝑁𝑐𝑟= elastic critical force or Euler’s critical load. 

 

This relative slenderness will vary depending on which type of buckling that is being considered.   
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2.6. Different methods of buckling 
 

Failure by buckling can happen in many different ways and to both beams and shells/plates. The 

most well-known and common failure mode is flexural buckling, often referred to as Euler buckling, 

strut buckling or just buckling. Torsional buckling, flexural torsional buckling, lateral torsional 

buckling and plastic buckling are the other most common phenomenon that occurs, and these are 

known to most structural engineers. In some cases, long columns can even buckle with no other 

forces than gravity working on it. This phenomenon is known as self-buckling. Some of the buckling 

types are presented here: 

 

2.6.1 Torsional buckling 

 

Torsional buckling, as the name suggests, happens when a beam or bar is twisted around the 

longitudinal axis. This type of buckling may occur in members that a have a torsional stiffness that is 

significantly smaller than the flexural stiffness [13] 

 

2.6.2 Flexural torsional buckling 

 

Flexural torsional buckling is a combination between flexural buckling and torsional buckling. Flexural 

torsional buckling can be very influential in cases where the sections are single symmetry or without 

symmetry. In these cases, the center of gravity is not in the same place as the shear center, which 

will lead to new torsional forces created in the cross-section. This occurrence is most prominent in 

shear loaded beams but can in some cases also occur under axial loading [8]. These forces give the 

beam/bar a lateral deflection and the cross-section will twist. The shear center will always be located 

on the axis of symmetry, so for a double symmetric cross-section the shear center will be located on 

the intersection between the two axes. If the material is homogenous, this will also be the location of 

the center of gravity. When the center of gravity and the shear center are located in the same spot, 

no torsional forces will arise in the cross-section. This is the reason why most double symmetric 

cross-sections are automatically approved where flexural torsional buckling is concerned.  

Flexural torsional buckling is most common in members such as channels and structural trees. It is 

worth noting that due to the many different shapes extruded aluminium members can take, checking 

for flexural torsional buckling becomes extremely important.  
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2.6.3 Lateral torsional buckling 

 

When a simply supported beam is loaded in flexure, or normal bending, there exists one compression 

flange and one tension flange. With large enough compression forces working on the compression 

flange, it is forced to move away from its original position, in a lateral direction [10]. At the same 

time, the tension flange tries to keep the member straight. The lateral movement of the compression 

flange creates restoring forces. These forces combined with the other forces working on the cross-

section can cause the member to twist about its longitudinal axis. This means that when the 

compression flange buckles the cross-section will twist due to torsional forces and the outcome will 

be member failure due to lateral torsional buckling.  

Lateral torsional buckling happens in unrestrained beams. An unrestrained beam is a beam where 

the compression flange can displace freely in the lateral direction and rotate freely. If a beam is 

susceptible to lateral torsional buckling steps can be taken to restrain the movement of the 

compression flange. 
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2.7. The Perry-Robertson equation 
 

The Perry-Robertson formula has been the background for strut curves, or buckling curves, for many 

years and unbeknownst to many it is the cornerstone of column design in many countries [7]. The 

formula helps in determining the maximum stress an imperfect column can withstand. In this 

context, an imperfect column refers to an initially crooked column. Other imperfections such as 

residual stress is not accounted for in the formula. Some additional column qualities are assumed 

when using the formula, such as: 

 The column is pinned 

 The loading at the ends are perfectly centered 

 No residual stress 

 Material is linearly elastic 

 Failure is assumed to happen when the central stress reaches yield stress levels. 

These assumptions are often regarded as the formulas biggest flaws, as they are not realistic in most 

cases. However, a modified version is still used to find the buckling curves presented in standards 

such as Eurocode 3 and Eurocode 9.  

Many different versions exists of the Perry-Robertson equation, the following will be used in the 

calculations within this thesis: 

𝜎 =
𝜎𝑦 + 𝜎𝐸 ∙ (𝜂 + 1) − √(𝜎𝑦 + 𝜎𝐸 ∙ (𝜂 + 1))

2
− 4 ∙ 𝜎𝑦 ∙ 𝜎𝐸

2
 

Where: 

 𝜎 = 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑠𝑡𝑟𝑒𝑠𝑠 

 𝜎𝑦 = 𝑦𝑖𝑒𝑙𝑑 𝑠𝑡𝑟𝑒𝑠𝑠 

 𝜎𝐸 = 𝐸𝑢𝑙𝑒𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 

 𝜂 = 𝐼𝑚𝑝𝑒𝑟𝑓𝑒𝑐𝑡𝑖𝑜𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 
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2.8. Deriving the Perry Robertson equation 
 

 
Figure 10: Buckling of imperfect beam 

 

The starting point for deriving the Perry-Robertson formula is to investigate the maximum stress at 

the midspan of the column [7]. Because of the crooked shape, the maximum stress will be a result of 

both bending and compression stress. Both the equation for the initial shape and the total deflection 

were derived earlier and can be used: 

𝑣0(𝑥) = 𝛿0 ∙ sin (
𝜋 ∙ 𝑥

𝐿
) 

𝛿 =
𝑣(𝑥)

1 −
𝑃
𝑃𝑐𝑟

 

The maximum bending moment will occur at the middle of the column, and so the expression for 

initial deflection is replaced with the actual deflection at the midspan. The moment will be equal to 

the force times the total deflection at the midspan. The equation becomes: 

𝑀 = 𝛿 ∙ 𝑃 =
𝛿0

1 −
𝑃
𝑃𝑐𝑟

∙ 𝑃 

With both moment and axial force working on a member the maximum stress is given by the 

following equation [14]: 

𝜎𝑚𝑎𝑥 =
𝑃

𝐴
+
𝑀 ∙ 𝑦

𝐼
 

Where: 

 P = Axial load 

 A = Cross-section area 

 M = Moment 

 y = distance to the neutral axis 

 I = Second moment of area 

The next step is to introduce the expression for the moment and simplifying the equation with some 

known expressions for stress due to an axial load and the expression for the radius of gyration: 
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𝜎𝑚𝑎𝑥 =
𝑃

𝐴
+

𝛿0 ∙ 𝑦 ∙ 𝑃

(1 −
𝑃
𝑃𝑐𝑟
) ∙ 𝐼

 

𝜎 =
𝑃

𝐴
 

𝑟2 =
𝐼

𝐴
 

𝑃

𝑃𝑐𝑟
=
𝜎

𝜎𝐸
 

𝜎𝑚𝑎𝑥 = 𝜎 +
𝛿0 ∙ 𝑦 ∙ 𝑃

(1 −
𝑃
𝑃𝑐𝑟
) ∙ 𝑟2 ∙ 𝐴

 

𝜎𝑚𝑎𝑥 = 𝜎 +
𝛿0 ∙ 𝑦 ∙ 𝜎

(1 −
𝑃
𝑃𝑐𝑟
) ∙ 𝑟2

 

𝜎𝑚𝑎𝑥 = 𝜎 +
𝛿0 ∙ 𝑦 ∙ 𝜎

(1 −
𝜎
𝜎𝐸
) ∙ 𝑟2

 

Where 𝜎𝐸 is the stress associated with Euler’s critical load. 

At this point one of the assumptions made by Perry-Robertson is implemented, the assumption 

states that the maximum stress will be equal to the yield stress [7]: 

𝜎𝑦 = 𝜎𝑚𝑎𝑥 

𝜂 =
𝛿0 ∙ 𝑦

𝑟2
 

𝜎𝑦 = 𝜎 +
𝜎

(1 −
𝜎
𝜎𝐸
)
∙ 𝜂 

Simplifying the equation: 

 

𝜎𝑦 = 𝜎 +
𝜎 ∙ 𝜂

(1 −
𝜎
𝜎𝐸
)
 

𝜎 ∙ (1 −
𝜎

𝜎𝐸
) + 𝜎 ∙ 𝜂 − 𝜎𝑦 ∙ (1 −

𝜎

𝜎𝐸
) = 0 

𝜎 −
𝜎2

𝜎𝐸
+ 𝜎 ∙ 𝜂 − 𝜎𝑦 −

𝜎 ∙ 𝜎𝑦

𝜎𝐸
= 0 

−𝜎 ∙ 𝜎𝐸 + 𝜎
2 − 𝜎 ∙ 𝜎𝐸 ∙ 𝜂 + 𝜎𝑦 ∙ 𝜎𝐸 − 𝜎 ∙ 𝜎𝑦 = 0 

𝜎2 − 𝜎 ∙ (𝜎𝐸 + 𝜎𝐸 ∙ 𝜂 + 𝜎𝑦) + 𝜎𝑦 ∙ 𝜎𝐸 = 0 

𝜎2 − 𝜎 ∙ (𝜎𝑦 + 𝜎𝐸 ∙ (𝜂 + 1)) + 𝜎𝑦 ∙ 𝜎𝐸 = 0 
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This second order equation is solved using the well-known quadratic expression: 

𝑎 ∙ 𝑥2 + 𝑏 ∙ 𝑥 + 𝑐 = 0 

𝑥 =
−𝑏 ± √𝑏2 − 4 ∙ 𝑎 ∙ 𝑐

2 ∙ 𝑎
 

 

The answer becomes: 

𝜎 =
𝜎𝑦 + 𝜎𝐸 ∙ (𝜂 + 1) − √(𝜎𝑦 + 𝜎𝐸 ∙ (𝜂 + 1))

2
− 4 ∙ 𝜎𝑦 ∙ 𝜎𝐸

2
 

This is now the expression known as the Perry- Robertson equation. It is rather simple to derive and 

the effect of the imperfection has been contained in a single variable, eta. For plotting purposes, the 

expression can be further simplified by dividing each side with the yield stress, resulting in a stress 

ratio instead:    

𝜎

𝜎𝑦
= 0.5 ∙

(

 
 
(1 +

𝜎𝐸
𝜎𝑦
∙ (𝜂 + 1)) −√(1 +

𝜎𝐸
𝜎𝑦
∙ (𝜂 + 1))

2

− 4 ∙
𝜎𝐸
𝜎𝑦

)

 
 

 

𝑃

𝑃𝑦
=
𝜎

𝜎𝑦
 

𝜂 =
𝛿0 ∙ 𝑦

𝑟2
 

Where: 

 P = Maximum axial load for an imperfect column. 

 Py = Axial load associated with yield stress. 

 𝛿𝑜 = Initial imperfection at midspan. 

 y = distance to neutral axis. 

 r = radius of gyration. 

 𝜎𝐸 = Euler stress. 

 𝜎𝑦 = Yield stress. 

 

Robertson suggested that the imperfection variable, eta, be set to 0.003 times the beams 

slenderness [7]. This value was based on tests and it represented an initial out-of-straightness 

imperfection that is greater than L/1000. Some allowance for residual stress is also included in this 

theoretical value as the crookedness is exaggerated.   

In chapter 4, the Perry-Robertson equation is used to develop buckling curves for different values of 

an out-of-straightness imperfection. The imperfection variable suggested by Robertson is therefore 

not used, as it is only applicable for a set value of an out-of-straightness imperfection.  
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2.9. Eurocode 9 calculation method 
 

To gain a better understanding of the effect that the out-of-straightness imperfections have on 

Eurocode 9 capacities, the capacities of a regular column must be known. The buckling calculations 

for aluminium member presented in Eurocode 9 is very similar to the guidelines given in Eurocode 3 

for steel members. The same governing equations are used when determining the buckling curves 

but some of the factors that are used has different values. This is due to the fact that both methods 

are based on the Perry-Robertson equation. 

When a member is subjected to axial compression only, three different design checks has to be 

made. These are the compression resistance, flexural buckling resistance and torsional-flexural 

buckling resistance.  

The compression resistance is determined by the yield stress of the material and the area of the 

cross-section, with the inclusion of a safety factor. For a cross-section without any unfilled holes, the 

following equation is used: 

Equation 6.22 [1] 

𝑁𝑐𝑅𝑑 =
𝐴𝑒𝑓𝑓 ∙ 𝑓0

𝛾𝑀1
 

Where: 

 𝑁𝑐𝑅𝑑 = 𝑑𝑒𝑠𝑖𝑔𝑛 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 

 𝐴𝑒𝑓𝑓 = 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑎𝑟𝑒𝑎 

 𝑓0 = 𝑦𝑖𝑒𝑙𝑑 𝑠𝑡𝑟𝑒𝑠𝑠 

 𝛾𝑀1 = 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑠𝑎𝑓𝑒𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 

The equation for determining the flexural buckling resistance is very similar: 

Equation 6.49 [1] 

𝑁𝑏𝑅𝑑 =
𝜅 ∙ 𝜒 ∙ 𝐴𝑒𝑓𝑓 ∙ 𝑓0

𝛾𝑀1
 

Where 

 𝜅 = 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 𝑎𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑤𝑒𝑎𝑘𝑒𝑛𝑖𝑛𝑔 𝑎𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝑤𝑒𝑙𝑑𝑖𝑛𝑔 

 𝜒 = 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑡ℎ𝑒 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔 𝑚𝑜𝑑𝑒 

If it is assumed that no welding has been done, the only difference between the compression 

resistance and the flexural buckling resistance is then the buckling reduction factor. This buckling 

reduction factor will therefore be very similar to the maximum stress ratio found when using the 

Perry-Robertson equation. When the reduction factor is equal to 1 the column will fail in 

compression, or in other words failure by crushing. If the reduction factor is less than 1, the column 

will fail by flexural buckling. This is also true for the Perry-Robertson stress ratio. Detailed Eurocode 9 

column calculations are performed in Appendix B and presented in chapter 4. The torsional-flexural 

buckling resistance is not calculated, as this failure type is not considered in the Perry-Robertson 

equation. 
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Eurocode 9 also has a dedicated chapter on the subject of imperfections, in case the production 

tolerance is exceeded. It begins with an important notice: 

“Note Geometrical imperfections equal or less than the fundamental geometrical tolerances given in 

prEN 1090-3 are considered in the resistance formulae, the buckling curves and the 𝛾𝑚-valued in EN 

1999” [1] 

Which mean that when doing calculations on a column in accordance with Eurocode 9, it is in 

practice an imperfect beam that is being considered. This is done as a safety measure and it is the 

reason that NS-EN 1090-3 automatically approves imperfections lower than its permitted deviation 

[3]:  

𝛿 =
𝐿

750
 

 

As presented earlier this is the permitted deviation given in NS-EN 1090-3, and therefore also the 

assumed crookedness of the majority of aluminium beams and columns calculated in accordance 

with Eurocode 9. As touched upon in a previous section the straightness of an extruded aluminium 

profile is impressive, with some tests finding the average value of the out-of-straightness 

imperfection to be L/2000 [8]. Which means that the calculations according to Eurocode assumes 

that the imperfection is almost three times larger than the actual average. It is also important to note 

that these tests were carried out around thirty years ago and production and manufacturing might 

have improved since then. Rolling, on the other hand, does not yield equally impressive straightness 

due mostly to the less severe traction process when compared to extruding. Aluminium is also still 

considered a new structural material, at least when compared to steel, and its behavior is less known 

than that of steel. This may result in a higher required safety factor.  

In the case of a known geometrical imperfection that is larger than the permitted deviation, the 

Eurocode gives certain guidelines on how these should be handled. In the case of a column with an 

out-of-straightness imperfection, the situation is simplified by replacing the imperfection with 

equivalent horizontal forces [1]. These forces are then added to all design calculations for the 

column. This is not a perfect way to represent the effect of an actual imperfection, but it does offer 

an alternative method of calculation.  A graphical representation of the equivalent horizontal forces 

is shown in Figure 11. For the out-of-straightness imperfection, or bow imperfection as it is referred 

to in Eurocode 9, the imperfection is replaced by horizontal forces. These horizontal forces are given 

as a product of the axial loading and will cause a bending moment to arise in the column. This 

bending moment will cause a deformation in the column that is similar to the out-of-straightness 

imperfection.  
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Figure 11: Eurocode 9, equivalent horizontal forces [1] 

 

Out-of-straightness imperfections are not the only imperfection that can be simplified. Initial sway 

imperfections can also be described by equivalent horizontal forces. Calculations using the equivalent 

horizontal forces method for a column with an out-of-straightness imperfection is performed in 

Appendix C and presented in chapter 4. The exact same method for simplifying imperfection 

calculations is also presented in Eurocode 3 [2].  
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Chapter 3 
 

3. Previous works 
 

The subject of buckling is very large and papers on the subject are regularly being published. With 

the large array of different buckling failure modes, different structural elements susceptible to 

buckling and the different types of material, there is no wonder that new theories and methods are 

discovered every year. In this chapter, some of the newest findings concerning flexural buckling of 

columns will be presented and discussed. 

 

3.1. A new design method for stainless steel columns subjected to flexural 

buckling 
 

In 2014, a paper called “A new design method for stainless steel columns subjected to flexural 

buckling” [4] was written by Ganping Shu, Baofeng Zheng and Lianchun Xin. Their goal was to 

investigate and possibly improve the method for finding the buckling strength curve for stainless 

steel members. The present method used by many design codes for finding this strength curve is 

based on low carbon steel. There are large differences between low carbon steel and stainless steel 

in material properties. One of the main differences between the two materials is found in the stress-

strain curve, and so the materials have different properties in the plastic region. There are also some 

large differences in material properties found between the different varieties of stainless steel. 

Different grades of low carbon steel behave more similar to each other, but with different yield 

stresses. With the goal of making strength curves that are suitable for stainless steel, both gradual 

yielding and a wide array of mechanical properties must be taken into consideration. 

The Perry-type formula for buckling curves presented in Eurocode 3 [2] does not consider different 

material properties. Five buckling curves are presented in Eurocode 3, which buckling curve that 

should be used is dependent on cross-section geometry and material grade. However, while there 

are a choice between several different cross-section geometries only two grades of material strength 

is presented. A modified Perry formula was presented in 1997, by Rasmussen and Rondal [11]. In this 

formula, the imperfect parameters were expressed by using the Ramberg-Osgood material model. 

The Ramberg-Osgood material model is used to express non-linearity in the stress-strain curve. With 

this modification of the Perry equation, material properties was taken into consideration and method 

was found to be very accurate.  

The proposed method of creating new strength curves related to flexural buckling, by Shu, Zheng and 

Xin, was based on using the relationship between two known strength curves for different types of 

stainless steel. It is shown that by using two known strength curves and a slenderness conversion 

formula, a series of strength curves for different stainless steels can be generated. It is also shown 

that by using a larger number of known strength curves, a higher accuracy can be achieved. The 

strength curves that were generated in the paper are suitable for hollow sections with no residual 

stress and an initial out-of-straightness imperfection equal to L/1000.  
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The resulting strength curves were validated with a finite element analysis using ANSYS, which 

showed very accurate predictions. When the finite element results were compared to the predictions 

of the current Eurocode 3 design method, it was revealed that the strength curve used by Eurocode 

was suitable for high strength stainless steel columns, but not for columns with low proof strength.  

 

4.2. Stability of 6082-T6 aluminium alloy column with H-section and rectangular 

hollow sections 
 

In 2014, a paper named “Stability of 6082-T6 aluminium alloy columns with H-section and rectangular 

hollow sections” [5] was written by Guy Oyeniran Adeoti, Feng Fan, Yujin Wang and Ximei Zhai. The 

goal of the paper was to present a column curve formula that could accurately predict the strength 

of an extruded column failing by flexural buckling. The paper contains an experimental study 

comprised of fifteen H-sections and fifteen hollow sections of 6082-T6 aluminium alloy. With the use 

of ANSYS, an analysis of the mechanical and overall buckling of the columns was performed. This 

analysis considered both geometrical and material non-linear behavior. The materials stress-strain 

relationship was described by the Ramberg-Osgood equation in this paper as well.  

The effect of an initial out-of-straightness imperfection was simplified to be a half sine curve, as is 

common practice. The imperfections were measured by stretching a metal string between two ends 

of the sections. However, the imperfections proved to be so small that they were impossible to 

detect without expensive equipment. Even though the authors of the paper could not detect any 

imperfections, it was decided that a small imperfection of L/7500 should be used in the numerical 

analysis. This addition of an imperfection is necessary in the numerical analysis as an industrial bar is 

never perfectly straight, and the analysis would not reflect the real world if the imperfection was 

entirely neglected. Since all the section were extruded, residual stress could be ignored.  

With the test results showing good agreement with the results from the numerical analysis, a 

calibration of the parameters of the Perry-Robertson formula was proposed: 

𝜙 = (
1

2 ∙ �̅�2
) ∙ ((1 + 𝜂 + �̅�2) − √(1 + 𝜂 + �̅�2)

2
− 4 ∙ �̅�2) ≤ 1.0  

𝜂 = 𝛼 ∙ (�̅� − �̅�0) 

Where: 

 𝜙 = 𝑛𝑜𝑛 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝑐𝑜𝑙𝑢𝑚𝑛 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 

 �̅� = 𝑛𝑜𝑛 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝑐𝑜𝑙𝑢𝑚𝑛 𝑠𝑙𝑒𝑛𝑑𝑒𝑟𝑛𝑒𝑠𝑠 

 𝜂 = 𝑛𝑜𝑛 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝑖𝑚𝑝𝑒𝑟𝑓𝑒𝑐𝑡𝑖𝑜𝑛 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 

 

This new proposed column curve formula show a larger column strength than Eurocode 9. Which is 

not surprising when considering the low imperfection value that was used. However, the new 

proposed column curve also showed very good agreement with both the buckling results of the 

actual columns that were tested and the finite element analysis.    
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Chapter 4 
 

4. Calculations of imperfect columns 
 

In this chapter, the results of the Perry-Robertson calculations will be presented and discussed. The 

calculations are shown in Appendix D. The calculations has been done for different cross-sections 

and different values for the out-of-straightness imperfection. The Perry-Robertson equation is also 

used to evaluate the strength of a perfectly straight column. This is done in order to see the 

difference in load carrying capacity between an imperfect column and a perfect column. The out of 

straightness production tolerance limit, given by NS-EN 1090-3, is also considered. An ANSYS finite 

element analysis is presented in order to validate the results from these Perry-Robertson 

calculations. Eurocode 9 flexural buckling resistance calculations are also performed and presented in 

order to gain a better understanding of how the out-of-straightness imperfection will affect the 

capacities. These calculations are presented in Appendix B.  

 

4.1. Buckling curve of an imperfect quadratic hollow section column 
 

To gain a better understanding of the effect that the out-of-straightness imperfection actually has on 

a column, the Perry-Robertson equation, derived in chapter 2.8, can be very useful.  The equation 

can be used to create buckling curves, which gives a very good indication of how much the load 

capacity is affected by the length. It also takes the effect of an out-of-straightness imperfection into 

account. To illustrate this, a pinned column will be presented. The column is made from 6082-T6 

aluminium, which has a yield stress of 250 MPa. The cross-section is a 200x10 mm quadratic hollow 

section, an ideal choice with buckling calculations, as there are no weak or strong axis. 

The general cross-section calculations are presented in Appendix A.1.  

The column will have a constant initial out-of-straightness imperfection of 10 mm and the length will 

vary from 0 to 25 m. The choice of this length interval is purely done for illustrative purposes, so that 

the effect of the imperfection is clear. A pinned column with a length of 25 m and without any extra 

support is of course not likely to be built. With this version of the Perry-Robertson equation, the 

results will be given as a ratio of the actual stress in the column to the yield stress of the material. 

When plotting the results the effective length will be on the x-axis. Note that for this pinned column 

situation the effective length is equal to the actual length. The resulting buckling curve for this 

situation is presented in Figure 13: 
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Figure 12: 200x10 mm quadratic hollow section 

 

Figure 13: Buckling curve, 10 mm imperfection 

As expected, this buckling curve bears some resemblance to the buckling curves found the Eurocode 

3 and 9, although those curves are presented with relative slenderness on the x-axis. A clear loss of 

load capacity is shown as the length of the column increases and it is interesting to note that 

according to these calculations, the column will never fail by crushing, as the experienced stress does 

not reach yield stress levels even at the smaller lengths.  

For comparison, the same column will also be presented without an initial imperfection. The 

calculations are done in the same manner as for the imperfect column. The resulting graph is given in 

Figure 14: 
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Figure 14: Buckling curve, no imperfection 

 

In this case, a very distinct horizontal plateau can be seen at small column lengths. In this region, the 

actual stress experienced by the column reaches yield stress levels and the column will fail by 

crushing, if the load is sufficient. The transition between failure by crushing and failure by buckling is 

not as clean as the one shown from these results for an actual column. In the transition area where 

the maximum stress goes from yield stress (plastic behavior) to Euler stress (elastic behavior), the 

column will fail by inelastic buckling [12]. This phenomenon is not considered in the Perry-Robertson 

equation.  When the length has increased beyond this horizontal plateau, a rapid decrease in 

capacity is shown. For a better comparison between the two buckling curves, they are plotted 

together in Figure 15.  
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Figure 15: Buckling curve comparison, 10 mm imperfection and no imperfection 

 

With this side-by-side comparison, some large differences between the two curves can be seen. The 

largest difference in load capacity can be found where the horizontal plateau of the perfect beam 

ends. At this point, the perfect beam will fail by crushing and therefore utilize its full load capacity, at 

the same length the imperfect beam can only utilize about 68% of its elastic load capacity before it 

fails by flexural buckling. A loss of about a third of its capacity can be devastating, if the situation is 

unforeseen and the column is supposed to be loaded close to its maximum. This situation occurs 

when the column approaches 4 m and so a 10 mm imperfection can very easily be missed.  

At larger lengths, the initial deformation does not seem to have any major effect on the load capacity 

as the two curves converge. After the end of the horizontal plateau of the perfect column the 

difference between the two curves becomes smaller and smaller. Which indicates that the initial 

deformation has its largest effect on short columns that are not expected to fail by flexural buckling. 
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4.2. NS-EN 1090-3: Permitted deviation 
 

Now that actual buckling curves have been produced using the Perry-Robertson equation it will be 

interesting to look at the permitted deviation for an out-of-straightness imperfection as listed in NS-

EN 1090-3 [3]: 

𝛿 ≤
𝐿

750
 

 

A 10 mm imperfection was used in the example, which mean that if the column is longer than 7500 

mm it is automatically accepted by the NS-EN 1090-3 standard. Assuming of course that the column 

is approved by the regular Eurocode 9 strength calculations.  Below is the same graph as before but 

with an added tolerance line at 7500 mm, an effective length larger than 7500 mm will be approved. 

This means that everything to the right of the tolerance line is accepted.  

 

Figure 16: Buckling curve comparison with tolerance line, 10 mm imperfection 

 

As can be seen from the graph the tolerance line seem to be situated perfectly. The area with the 

highest difference between perfect and imperfect buckling curve is to the left of the line and 

therefore not accepted. In the area where the tolerance line crosses the curves, the difference is very 

small and becomes even smaller with larger lengths. With this first test, it must be concluded that 

the permitted deviation seems very appropriate. To investigate further different values of 

imperfection will be tested. An imperfection of 15 mm on the same cross-section will be calculated, 

using the exact same procedure. An imperfection of 15 mm will place the tolerance line at 11250 

mm. The results are plotted in the next graph: 
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Figure 17: Buckling curve comparison with tolerance line, 15 mm imperfection 

 

This graph and the earlier graph for the 10 mm imperfection are very similar. The shape of the 

“imperfect” curve is almost identical, but now at lower capacity values. In the accepted area, to the 

right of the tolerance line, the difference between the prefect and imperfect curves are negligible, 

further strengthening the guidelines given by NS-EN 1090-3.  

The same calculations are performed once more, but now with the smaller imperfection of 5 mm. 

The corresponding tolerance line will be placed at 3750 mm. 
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Figure 18: Buckling curve comparison with tolerance line, 5 mm imperfection 

 

In this case, the tolerance line actually intersects with the horizontal plateau of the perfect column. 

With this smaller imperfection, the imperfect column has a higher load capacity ratio, but the largest 

loss of capacity compared to the perfect column is still at approximately 4000 m. This area is now in 

the accepted region and shows that the imperfect column can only withstand 83% of the yield stress 

before buckling.  

It seems that the smaller imperfections are harder for the permitted deviation guideline to handle 

than larger ones. This can be seen by comparing the three graphs for 5, 10 and 15 mm imperfection. 

The changes for the imperfect curves are not as dramatic as the changes in the tolerance line, as they 

retain almost the same shape only at different values. At larger lengths there are almost no 

difference between the three curves at all.  
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Figure 19: Buckling curve comparison, varying imperfections 

 

One of the reasons that the even the small imperfections seems to be so impactful is that it “kick 

starts” the buckling process. When the column is slightly crooked it is much easier for it to buckle 

than when it is perfectly straight. As was shown when the Perry-Robertson equation was derived, the 

crooked shape of an imperfect column under axial loading will cause moment forces to arise in the 

column. With an initial deformation these moment forces becomes dominant and forces the column 

to bend and buckle.  This can also be seen from the graph since none of the curves reaches a full load 

capacity, meaning that they all fail by buckling. In Figure 19, the different imperfections are plotted in 

the same graph. The size of the imperfection is much more important for small columns. At the larger 

lengths the flexural buckling resistance of the column is so low that the size of the imperfection 

hardly matters.  

Since the buckling curve for a column with a 5 mm imperfection gave reason to question the 

guideline from NS-EN 1090-3, the situation will be investigated further.  
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4.3. Assumptions in the Perry-Robertson equation 
 

To gain a better understanding of the results, the assumptions behind the calculations must be 

discussed. The assumptions were as follows:  

 The column is pinned 

 The loading at the ends are perfectly centered 

 No residual stress 

 Material is linearly elastic 

 Failure is assumed to happen when the central stress reaches yield stress levels. 

4.3.1. The column is pinned 

 

A pinned column is most likely not the preferred method of supporting a column in real structures. In 

the calculations the support situation directly affect the effective buckling length. This is due to the 

deformations shape of the column that the different supports yield when subjected to axial 

compression. As seen in chapter 2.2 a table is usually used when deciding the effective length factor. 

For a pinned column the effective length factor is equal to 1, which means that the entire length of 

the column is considered to be the effective buckling length. By choosing more restraining end 

supports, such as fixed supports, the effective length factor will be smaller. This will lead to a smaller 

effective buckling length and a larger load capacity. The effective buckling length is the same for the 

imperfect and perfect column and it is therefore assumed that the difference seen between them is 

the same. The pinned situation is chosen because it was the foundation for deriving the Perry-

Robertson equation and should in theory give the best results. 

  

4.3.2. The loading at the ends are perfectly centered 

 

This assumption is made to in order to achieve pure buckling and is not realistically achievable. With 

an eccentricity in the loading the column will experience a bending moment as well, which is not 

wanted in this simulation. When using this assumption in the calculations the results will be a kind of 

best-case scenario, since the additional load will cause the column to fail at an earlier stage. This is 

especially true when combined with an already imperfect column. 

The deformation shape of an eccentrically loaded column is very similar to the initial shape of an 

imperfect column (out-of-straightness imperfection). As the loading is increased, the deflection at 

the midspan will grow until the column fails. There might exist some scenarios where the eccentricity 

of the loading will be favorable, as it can counteract the effect of an imperfection to a certain degree. 

This would require that the loading try to deform the column in the opposite direction of the initial 

imperfection. This scenario is not very probable and would likely not be intentional from a structural 

perspective. 
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4.3.3. No residual stress 

 

The assumption that the column carries no residual stress is done in order to simplify the 

calculations. Most residual stress cases will lower the maximum capacity of the column. Similar to 

the load eccentricity discussion, the result when using this assumption will yield the least difference 

between the perfect and imperfect column. In this example, the effect of the out-of-straightness 

imperfection is studied. The assumption of no residual stress is therefore acceptable.  

 

4.3.4. Linearly elastic material and failure at yield stress levels 

 

That the material used is linearly elastic is a common assumption to make when doing structural 

analysis, as calculations are greatly simplified. While doing calculations with a linearly elastic material 

the stress can never exceed the yield stress levels, hence it is assumed that the material fails when 

yield stress levels are reached. This is a very conservative assumption to make as the plastic region is 

ignored and effects such as strain hardening is neglected. When using these assumptions the results 

can be regarded as being conservative.  

 

 

With all these assumptions in place, it is highly unlikely that the answer will be true to life. In order to 

get a better results a modification has to be added to the Perry-type formula as is done in both the 

“A new design method for stainless steel columns subjected to flexural buckling”[4] and “Stability of 

6082-T6 aluminium alloy columns with H-section and rectangular hollow sections”[5] papers, which 

were discussed in chapter 3. Both of these papers implemented the Ramberg-Osgood parameters for 

material properties. The Ramberg-Osgood equation is used to describe the stress-strain relationship 

of a material. It is also used to show how a specific material will behave near its yield stress levels. 

This method also takes the effect of strain hardening into account. The Ramberg-Osgood equation or 

law, as it is sometimes called, is now widely used because its predicted behavior is very close to the 

actual behavior of different aluminium alloys [8] and stainless steels. With these extra parameters, 

the assumption that the material has to be linearly elastic needs no longer apply. This will result in 

far more accurate buckling curves, as they are now directly dependent on the material in question.  

However, while doing ultimate limit state calculations no plastic deformations are allowed. This 

means that only the elastic region is utilized. With the objective of the calculations being to see the 

effect that the imperfection has on capacities from Eurocode 9, the same failure criteria should be 

used. With this in mind, it seem appropriate that failure is assumed at yield stress levels or when the 

column becomes unstable.  
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4.4. ANSYS analysis 
 

Since the Perry-Robertson equation is a simplified method it is important to validate the calculations. 

A validation of the results can be achieved in many ways, such as a finite element analysis or by 

conducting actual experiments. A finite element analysis was carried out at Marine Aluminium. The 

model and results will be presented and compared with the results from the Perry-Robertson 

equation in order to find out if the method is acceptable. 

Multiple models was made of the 200x10 mm quadratic hollow section with a 10 mm out-of-

straightness imperfection. The models had varying lengths ranging from 1000 mm to 15000 mm. 

These columns were loaded until failure by buckling. The maximum stress at the point where the 

column became unstable is extracted. These results will then be directly comparable to the stress-

ratios obtained by the Perry-Robertson calculations.  

4.4.1. ANSYS model  

 

All the column models were drawn in Autocad Inventor and then 

imported to ANSYS for the analysis. The models were drawn with 

the out-of-straightness imperfection at the midspan. One of these 

models is shown in Figure 20. The imperfection at the midspan is 

almost unnoticeable.  One complication with the analysis was to 

create the supports. The original calculations were done for a 

pinned column. The main reason that the pinned situation was 

chosen was that the Perry-Robertson equation was derived from 

the deformation shape of a pinned column, as is shown in chapter 

2.8. For a pinned vertical column, the two supports are restrained 

from horizontal movement and one of the supports are restrained 

from vertical movement as well. It is also important that each end 

is free to rotate. In order to create the best possible 

representation of these end support conditions in the model, 

some changes had to be implemented. In order to achieve free 

rotation at the end supports a hole was cut through the cross-

section at each end. These holes then became the rotation 

centers by selecting that the edges of the holes is free to rotate. 

At the top end, a cylindrical bolt is inserted into the hole and the 

axial point load is applied on the middle of this bolt. At the lower 

end only the top half of the edge of the hole was able to freely 

rotate and the bottom half was restricted from any movement. 

The configuration is believed to satisfactory represent a pinned 

situation. The actual length of the beam is measured from center 

hole to center hole. By applying the axial load to the bolt, a 

realistic distribution of the load is believed to occur. In the Perry-

Robertson equation, one of the assumptions is that the load is 

applied at the center of the cross-section. This is not possible for 

the quadratic hollow section. A uniformly distributed load could Figure 20: Imperfect column model 
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have been applied to the edges, but it was assumed that the solution with the bolt was the best 

method.   

 

 
Figure 21: Top end support 

 

 
 

 
Figure 22: Bottom end support 

 

 

 

The goal of the analysis was to decide the maximum axial load that the column could withstand. The 

axial load was therefore increased in intervals. With an increasing load, the deformation of the 

column became increasingly larger. At a certain point the load that was required to deform the 

column further decreased. The peak axial force was extracted and converted into experienced stress.  

In the analysis, the stress-strain relationship was described as bilinear. This differs from the Perry-

Robertson calculation, as a linear stress-strain relationship was one of the assumptions for the 

equation. A bilinear stress-strain relationship is used to simplify the actual stress-strain relationship 

of a material. It uses the regular modulus of elasticity to describe the elastic region and a tangent 

modulus to describe the plastic region [8]. Most materials are able to withstand more load in the 

plastic region before ultimate failure occurs. It is therefore suspected that the load capacity ratio 

found in this analysis will be larger than those found using the Perry-Robertson equation.  

The value of the modulus of elasticity was chosen to be 71000 MPa, as it is in the Perry-Robertson 

equation. The recommended tangent modulus value is sometimes given as: 

𝐸𝑇 =
𝐸

100
= 710 𝑀𝑃𝑎 

 

In the analysis a tangent modulus equal to 500 MPa was chosen, this is believed to be conservative. 
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4.4.2. Analysis results 

 

With the analysis being run for six different length, an interesting pattern appeared. For columns 

with a length equal to or less than 3000 mm the failure did not occur at the midspan of the beam. 

The buckling failure occurred much closer to the lower support. Although this was unexpected, it 

might be caused by small errors in the modeling of the end supports. Presumably, the failure could 

also occur closer to the top support. The deformation shape of the longer columns was as expected 

with buckling occurring at the midspan. The deflection associated with the maximum load was also a 

lot larger in the longer and more slender columns. This is a good indicator of their more elastic 

capabilities compared with the short columns. This was also shown with the actual buckling 

deformation, as the damage to the cross-section was more apparent in the smaller cross-sections. 

 
Figure 23: Buckling deformation, L = 2000 mm  

Figure 24: Buckling deformation, L = 5000 mm 

 

It is also interesting to note that all of the columns failed by flexural buckling. Although the 

deformation of the smaller columns that were analyzed showed some similarities to failure by 

crushing, it was definitely a case of buckling failure. It seems that it is almost impossible for a column 

with an out-of-straightness imperfection to fail by crushing. This was also shown by the Perry-

Robertson calculations. It should be noted that the 10 mm imperfection could be considered rather 

large on a column that is 1 meter long. It is also important to note that the deformation occurred in 

the same direction as the initial imperfection.  
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The maximum stress at the point where the column became unstable, for all the six columns tested, 

is tabulated below: 

Table 2: ANSYS analysis results 

Length of column Maximum stress at failure 

1000 mm 232.5 MPa 

2000 mm 232.5 MPa 

3000 mm 230 MPa 

5000 mm 155 MPa 

10000 mm 47.5 MPa 

15000 mm 22.5 MPa 

 

These results strengthen the conclusion drawn from the deformation shapes. It is shown that not 

one of the columns will fail by crushing, as the yield stress is never achieved. The results obtained 

from the Perry-Robertson equation were presented as a ratio of the yield stress. The yield stress has 

a value of 250 MPa due to the selection of aluminium alloy. When comparing the different results it 

is therefore advantageous to list the ANSYS results as stress-ratios as well, this is done in Table 3: 

Table 3: ANSYS and Perry-Robertson stress ratio comparison 

Length ANSYS stress ratio Perry-Robertson stress ratio 

1000 mm 0.93 0.86 

2000 mm 0.93 0.83 

3000 mm 0.92 0.78 

5000 mm 0.62 0.54 

10000 mm 0.19 0.16 

15000 mm 0.09 0.07 

 

As can be seen from these results, the Perry-Robertson calculations seems to be more conservative 

when compared to the more “real” results from ANSYS. This is expected as the Perry-Robertson 

equation is a simplified method.  

The results can be more easily compared by using the existing graph for the Perry-Robertson results. 

Please note that due to the limited number of known points for the ANSYS results, a perfect graphical 

representation cannot be made. However, by drawing a straight line between the known points an 

idea of the shape that the real buckling curve would take can be formed. 
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Figure 25: Buckling curve comparison, ANSYS and Perry-Robertson 

From this comparison, it can be seen that the two lines are very similar, although the ANSYS line is 

very crude. By looking closer at both the known points and the graphical comparisons, it would seem 

that the difference in the results obtained by ANSYS and the Perry-Robertson equation is almost 

constant. For the values at the known points, the ANSYS results are consistently about 10% larger 

than the calculated results. Which means that, although the results obtained by the Perry-Robertson 

equation are conservative, they do grant a better idea of the effect that the imperfection has on the 

strength of the column. The Perry-Robertson equation therefore seems credible when discussing 

imperfect columns. The largest discrepancy between the two lines is between lengths of 5000 mm 

and 10000 mm, this is most likely due to a lack of known points in a crucial region. The region can be 

considered as crucial because of the rapid loss of load capacity that is shown here. The two lines 

converge greatly at higher lengths, but this is ultimately pointless as a fifteen meter long 

unsupported column is not likely to be built. However, it still speaks to the Perry-Robertson 

equations ability to predict the behavior of this imperfect column.  

The analysis was performed in order to validate the results from the Perry-Robertson equation and it 

was successful, to a certain degree. For a relatively simple method, the Perry-Robertson equation 

manages to calculate the behavior of an imperfect column with good accuracy. It will certainly give a 

rough estimate for the load capacity of an imperfect column. In this regard, it might be good that the 

method is conservative, given the safety factors one must consider. Although only a 10 mm 

imperfection was modeled, the achieved results is assumed valid for similar situations as well. As is 

the case for similar cross-sections.  
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4.5. Eurocode 9 column calculations 
 

As was seen by the Perry-Robertson buckling curve comparisons in chapter 4.2, some large 

differences between a perfectly straight column and an imperfect column exists. In the example with 

a 5 mm imperfection, the largest difference in load capacity ratio was found for lengths that would 

have been approved with the 5 mm imperfection. These results must be compared to some actual 

calculations, after the rules and regulations given in Eurocode 9 [1], in order to see if this can be 

dangerous or not.   

These calculations are shown in Appendix B.1. 

A straight column subjected to axial compression will be considered. In cases with axial forces, three 

different failure situation must be considered when doing calculations in accordance with Eurocode 

9, these being failure by compression, flexural buckling and torsional-flexural buckling. As these 

results are to be compared with the results from the Perry-Robertson equation, there is no need to 

calculate torsional-flexural buckling. This is because the results from the Perry-Robertson equation 

only considers compression and flexural buckling. The calculations were performed for lengths 

between 1 mm and 10000 mm. The resistances in compression and flexural buckling is presented in 

the table below: 

 

Table 4: Eurocode 9, compression resistance and flexural buckling resistance 

Length Compression resistance  Flexural buckling resistance  

1 mm 1727 kN 1762 kN 

500 mm 1727 kN 1720 kN 

1000 mm 1727 kN 1676 kN 

2000 mm 1727 kN 1572 kN 

2500 mm 1727 kN 1502 kN 

3000 mm 1727 kN 1412 kN 

3750 mm 1727 kN 1234 kN 

4500 mm 1727 kN 1024 kN 

5000 mm 1727 kN 891 kN  

5500 mm 1727 kN 772 kN 

6000 mm 1727 kN 671 kN 

6500 mm 1727 kN 586 kN 

7000 mm 1727 kN 514 kN 

7500 mm 1727 kN 455 kN 

8000 mm 1727 kN 405 kN 

8500 mm 1727 kN 362 kN 

9000 mm 1727 kN 326 kN 

9500 mm 1727 kN 294 kN 

10000 mm 1727 kN 267 kN 
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As the compression resistance is only dependent on area and the yield stress of the material, it 

remains constant with varying length. The flexural buckling resistance however, decreases rapidly 

with the increasing length. For this cross-section, the flexural buckling resistance is usually the critical 

resistance.  The critical resistance is the lesser of compression and flexural buckling, also known as 

the design resistance or governing resistance. The only time the flexural buckling resistance is not 

critical is for absurdly short columns, which are included for plotting purposes only.  

In order to compare these results with the results from the Perry-Robertson equation, these 

resistances must be converted into maximum allowable stress. The maximum allowable force is 

equal to the resistance, if the safety factor for the load is neglected. The relationship between an 

axial force and the equivalent stress is only dependent on the area. The axial force and stress 

relationship is as follows:  

𝜎 =
𝐹

𝐴
 

Where: 

 𝜎 = 𝑠𝑡𝑟𝑒𝑠𝑠 

 𝐹 = 𝑎𝑥𝑖𝑎𝑙 𝑓𝑜𝑟𝑐𝑒 

 𝐴 = 𝑎𝑟𝑒𝑎 

The stress ratio is still based on a yield stress of 250 MPa. 

Table 5: Eurocode 9, critical resistance and stress ratio 

Length Critical resistance Stress Stress ratio 

1 mm 1727 kN 232 MPa 0.928 

500 mm 1720 kN 226 MPa 0.905 

1000 mm 1676 kN 221 MPa 0.882 

2000 mm 1572 kN 207 MPa 0.828 

2500 mm 1502 kN 198 MPa 0.791 

3000 mm 1412 kN 186 MPa 0.743 

3750 mm 1234 kN 162 MPa 0.649 

4500 mm 1024 kN 135 MPa 0.539 

5000 mm 891 kN  117 MPa 0.469 

5500 mm 772 kN 102 MPa 0.406 

6000 mm 671 kN 88 MPa 0.353 

6500 mm 586 kN 77 MPa 0.309 

7000 mm 514 kN 68 MPa 0.271 

7500 mm 455 kN 60 MPa 0.240 

8000 mm 405 kN 53 MPa 0.213 

8500 mm 362 kN 48 MPa 0.191 

9000 mm 326 kN 43 MPa 0.171 

9500 mm 294 kN 39 MPa 0.155 

10000 mm 267 kN 35 MPa 0.141 

 

With the conversion of the Eurocode 9 calculation results, they can now be compared to the results 

from the Perry-Robertson equation. The first comparison will be with the straight Perry-Robertson 

column. 
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Figure 26: Buckling curve comparison, Perry-Robertson (no imperfection) and Eurocode 9 

The two curves shows huge differences. The main reasons for this is the out-of-straightness 

imperfection imbedded in all Eurocode 9 calculations. At 4000 mm the Eurocode column can only 

manage a stress ratio of about 60 %, while the perfect column can reach yield stress levels. As 

mention in chapter 2.9., the permitted deviation found in NS-EN 1090-3 [3] is used as a safety factor 

in all buckling calculations performed in accordance with Eurocode 9. This means that at 4000 mm 

the Eurocode column is assumed to have an out-of-straightness imperfection equal to: 

𝛿 =
4000 𝑚𝑚

750
= 5.33 𝑚𝑚 

This is a rather large imperfection and will be responsible for a large part of the reduction in load 

carrying capacity. Although the values found by the Perry-Robertson equation should only be used as 

an indication of strength, they were proven conservative in the 10 mm imperfection case by the 

ANSYS analysis. If the results from the perfect column is also conservative, the Eurocode seems to be 

surprisingly strict with their initial out-of-straightness demand. Even though the two curves converge 

with the higher lengths, large losses in potential load capacity is shown throughout.  

By implementing the permitted deviation from NS-EN 1090-3 into the Perry-Robertson formula, the 

result should look very similar to the results from Eurocode 9.  
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Figure 27: Buckling curve comparison, Perry-Robertson with varying imperfection and Eurocode 9 

 

Figure 28: Buckling curve comparison, various imperfections 

From the comparison in Figure 27, it is clear that the two graphs are very similar. If the material 

safety factor used in the Eurocode 9 calculations is removed, the two graphs becomes almost 

identical. This is shown in Figure 28. In addition, two other Perry-Robertson curves with imperfection 

L/1500 and L/2000 is shown. It becomes quite clear that the buckling curves used in Eurocode 9 

stems from a Perry-type equation. It is almost surprising how similar they are, as the Eurocode’s 

curve is a variation on the Perry curve strengthen by test results and experiments [7]. 
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In chapter 4.2, a significant difference in the load bearing capacity was found between the perfect 

and the 5 mm imperfect column. This difference was found to the right of the tolerance line at about 

4000 mm. At this length, the 5 mm imperfection would be acceptable according to the permitted 

deviation from NS-EN 1090-3. This could potentially create a dangerous situation. However, given 

that the actual Eurocode calculations operates with an imperfection equal to or larger than 5.33 mm 

in this region, the potentially dangerous situation is averted. This is visualized below: 

 

Figure 29: Buckling curve comparison with tolerance line, Perry-Robertson with 5 mm imperfection and Eurocode 9 
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4.6. Eurocode 9, imperfect column design 
 

A column with a larger imperfection than the permitted deviation given in NS-EN 1090-3 can still be 

accepted by Eurocode 9, but additional calculations must be performed. By implementing equivalent 

horizontal forces corresponding to the imperfection, the regular design checks can be made. The 

equivalent horizontal forces are implemented as shown in the picture below: 

 

Picture 2: Eurocode 9, equivalent horizontal forces method [1] 

 

With the obtained results from the Perry-Robertson buckling curves, the effect of different values of 

imperfection was shown. It will be interesting to see how this compares to Eurocode’s own 

calculation method. With the equivalent horizontal forces method, new design checks are necessary 

for shear resistance and bending moment resistance.  

The same 200x10 quadratic hollow section, as used in previous calculations, will be utilized. The 

column will be 5000 mm long with a 10 mm out-of-straightness imperfection and pinned end 

supports.  
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The calculations are shown in Appendix C.1., the following resistances were found: 

Table 6: Eurocode 9, design resistances and maximum allowable axial force 

Check Resistance Maximum allowable axial force 

Compression 1727 kN 1727 kN 

Bending 104.2 kNm 10240 kN 

Shear 524.9 kN 65612.5 kN 

Flexural buckling 891 kN 891 kN 

 

As can be seen from these results, flexural buckling is still the critical resistance. Since the 

imperfection does not alter the cross-section in the equivalent horizontal forces method, the 

resistances will remain constant. A larger imperfection will however yield larger shear forces and in 

turn, a larger design moment. These forces will directly affect the maximum allowable axial force. 

The maximum allowable axial force is calculated form the different load types using the relationship 

between the forces as given in Eurocode 9. Since the shear force is only a fraction of the axial load, 

the resulting maximum axial force calculated from the shear resistance is very high. From Table 6, it 

can be seen that the governing design check is still flexural buckling, as it allows for the smallest 

maximum axial force. With both moment and axial force working on the column, an additional 

flexural buckling criterion must be met. This is to allow the two forces to work together to buckle the 

column. It should be noted that the combined effect of shear forces and bending moment should 

also be checked in accordance with Eurocode 9. However, given the small values for shear force and 

bending moment compared to the axial force in this example, it is assumed that flexural buckling will 

be the governing design check.  

 

For members in bending and axial compression: 

According to 6.3.3.1 (3): Hollow cross-sections should satisfy the following criterion [1]: 

(
𝑁𝐸𝑑

𝜒𝑚𝑖𝑛 ∙ 𝜔𝑥 ∙ 𝑁𝑅𝑑
)
𝜓𝑐

+
1

𝜔0
((
𝑀𝑦,𝐸𝑑

𝑀𝑦,𝑅𝑑
)

1.7

+ (
𝑀𝑧,𝐸𝑑
𝑀𝑧,𝑅𝑑

)

1.7

)

0.6

≤ 1.00 

Where: 

 𝜒𝑚𝑖𝑛 = 0.714, 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 𝑓𝑙𝑒𝑥𝑢𝑟𝑎𝑙 𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔 𝑓𝑜𝑢𝑛𝑑 𝑖𝑛 𝐴𝑝𝑝𝑒𝑛𝑑𝑖𝑥 𝐵 

 𝜔𝑥 = 𝜔0 = 1  

 𝜓𝑐 = 0.8 

 𝑁𝐸𝑑 = 𝑎𝑥𝑖𝑎𝑙 𝑙𝑜𝑎𝑑 

 𝑀𝑦,𝐸𝑑 = 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑑 𝑚𝑜𝑚𝑒𝑛𝑡 𝑓𝑜𝑟𝑐𝑒 𝑤𝑖𝑡ℎ 𝑟𝑒𝑔𝑎𝑟𝑑𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑦 − 𝑎𝑥𝑖𝑠 

 𝑀𝑧,𝐸𝑑 = 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑑 𝑚𝑜𝑚𝑒𝑛𝑡 𝑓𝑜𝑟𝑐𝑒 𝑤𝑖𝑡ℎ 𝑟𝑒𝑔𝑎𝑟𝑑𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑧 − 𝑎𝑥𝑖𝑠 

In order to check if the criteria is fulfilled for a column, a numeric value for the axial force and 

bending moment is needed. With the equivalent horizontal forces method and a pinned column, the 

design value for bending moment and axial force has the following relationship: 

𝑀𝑦,𝐸𝑑 =
𝑞 ∙ 𝐿2

8
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Where q is the uniformly distributed load as is given by the equivalent horizontal forces method: 

𝑞 =
8 ∙ 𝑁𝐸𝑑 ∙ 𝑒0𝑑

𝐿2
 

By uniting these two equations, a simple relationship between the maximum moment and the 

maximum allowable axial force can be determined: 

𝑀𝑦,𝐸𝑑 =
8 ∙ 𝑁𝐸𝑑 ∙ 𝑒0𝑑

𝐿2
∙
𝐿2

8
 

𝑀𝑦,𝐸𝑑 = 𝑁𝐸𝑑 ∙ 𝑒0𝑑 

 

The resistance calculations revealed that the maximum allowable axial load for the column was 891 

kN. By using this value as the design value for the axial load, the criterion for members in bending 

and axial compression can be checked. 

(
𝑁𝐸𝑑

𝜒𝑚𝑖𝑛 ∙ 𝜔𝑥 ∙ 𝑁𝑅𝑑
)
𝜓𝑐

+
1

𝜔0
((
𝑀𝑦,𝐸𝑑

𝑀𝑦,𝑅𝑑
)

1.7

+ (
𝑀𝑧,𝐸𝑑
𝑀𝑧,𝑅𝑑

)

1.7

)

0.6

≤ 1.00 

(
891 𝑘𝑁

0.516 ∙ 1 ∙ 1727 kN
)
0.8

+
1

1
((
891 𝑘𝑁 ∙ 10 𝑚𝑚

104.2 𝑘𝑁𝑚
)
1.7

+ (
0

104.2 𝑘𝑁𝑚
)
1.7

)

0.6

≤ 1.00 

1 + 0.081 ≤ 1 

1.081 > 1 

The criteria is not satisfied. This is not surprising as the column was already loaded to the maximum 

for flexural buckling due to compression only. With the additional moment forces from the 

imperfection, the column will buckle.  It is interesting to note how small the addition from the 

bending moment is, as it only contributes to about 8 percent of the capacity.  Different values for the 

applied axial force and the associated contribution from axial compression and bending moment is 

listed in the table below.  

Table 7: Eurocode 9, Bending moment + axial force criteria check 

𝑵𝑬𝒅 Axial contribution Bending moment 
contribution 

Total utilization Criteria check 

891 kN 1.000 0.081 1.081 Not OK 

870 kN 0.981 0.079 1.060 Not OK 

850 kN 0.963 0.078 1.040 Not OK 

830 kN 0.945 0.076 1.020 Not OK 

810 kN 0.926 0.074 1.000 OK 

 

These results show that a reduction of 81 kN, or about 9 %, applied to the axial load is needed for the 

column to be approved, due to the 10 mm imperfection. It is also shown that the contribution from 

the bending moment does not vary that much with the decreasing axial load. It must be noted that 

this 10 mm imperfection is not the “actual” imperfection of the column. A 5000 mm long column will 

inherently have an out-of-straightness imperfection equal to 6.67 mm, which is the permitted out of 
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straightness deviation [3]. Since two different imperfection are used in different phases of the 

calculations, it becomes hard to argue how large the actual imperfection is. However, the L/750 

imperfection should be taken as a safety factor and not an actual imperfection, the results from 

these calculations should therefore be used to represent an imperfection equal to 10 mm. 

The effect of the imperfection is better visualized in the Figure 30. The maximum allowable axial load 

is plotted against increasing imperfection. The calculations were performed in the same manner as 

for the 5000 mm long column with a 10 mm imperfection. These calculations are presented in 

Appendix C.2. 

 

 

Figure 30: Eurocode 9, imperfection effect 

 

From the graph, it is clear to see that the effect of the imperfection is much more important in short 

columns. This is logical since the longer column already operates with a sizeable imperfection and the 

effect of the “extra” imperfection is less noticeable. A similar conclusion was shown with the Perry-

Robertson calculations, where the difference between the perfect and imperfect column was much 

larger at short lengths and negligible at longer lengths. 

To compare these results with results found earlier, the maximum stress must be determined. The 

stress contribution from axial force and bending moment can be combined with the following 

formula: 

𝜎𝑚𝑎𝑥 =
𝑃

𝐴
+
𝑀 ∙ 𝑦

𝐼
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Where: 

 P = Axial load 

 A = Cross-section area  

 M = Moment 

 y = distance to the neutral axis 

 I = moment of inertia 

 

Table 8: Eurocode 9, imperfection effect on design resistances 

Length (mm) Imperfection 
(mm) 

Design axial 
force (kN) 

Design bending 
moment (kNm) 

Maximum stress 
(MPa) 

3000 10 1218.00 12.2  186.63 

5000 10 809.00 8.09 124.10 

7500 10 433.00 4.33 66.42 

 

The maximum stress for the imperfect beam found by Eurocode equivalent horizontal force can now 

be compared to the result from both the ANSYS analysis and the Perry-Robertson equation. One of 

the ANSYS values are approximates found by linear interpolation, as there were no known values at 

this length.  

 

Table 9: Stress comparison: Eurocode 9, Perry-Robertson and ANSYS 

Length           
(mm) 

Imperfection 
(mm) 

Max stress (MPa) 

Eurocode 9 Perry-Robertson ANSYS analysis 

3000 10 173.65 195.00 230.00 

5000 10 124.10 135.00 155.00 

7500 10 66.42 70.00 Ca. 101.25 

 

With this comparison, it is shown that the use of equivalent horizontal forces instead of the 

imperfection works well. There is a good fit between the results from Eurocode and Perry-Robertson. 

Although the value from ANSYS is a bit higher than expected for the 7500 mm long column, it is most 

likely due to the lack of known values between 5000 and 10000 mm.  

It is also shown that Eurocode retains its safety factor, as it is more conservative than the Perry-

Robertson results and much more conservative than the ANSYS results. This was the expected results 

as Eurocode 9 calculates with a larger imperfection and a material safety factor. The method of 

equivalent horizontal forces can therefore be said to be an acceptable calculation method for dealing 

with out-of-straightness imperfections. The method does require a precise measurement of the 

imperfection, which can be very difficult to obtain. In cases where there are no other choice than to 

use a column with a larger imperfection than the permitted deviation, then this method can safely be 

used to interpret the effect of the imperfection. In certain modeling programs, it can be quite 

difficult to create the shape of an out-of-straightness imperfection, this method offers an acceptable 

solution to that problem.   



   

66 
 

4.7. H-400 calculations 
 

As the previous calculations were all done for a quadratic hollow cross-section, some additional 

calculations will be done for an I-type cross-section. This is done in order to determine that the effect 

that the out-of-straightness imperfection had on the quadratic hollow section is not unique to that 

type of cross-section. One major difference when using the I-section in flexural buckling calculations 

is that these types of cross-sections has a major and a minor buckling axis. In other words, two 

different values for the moment of inertia exists. Flexural buckling occurs about the axis with the 

largest slenderness ratio, and the smallest radius of gyration. The moment of inertia is directly used 

to calculate the radius of gyration and an increase in moment of inertia will result in an increase of 

the radius of gyration. Flexural buckling will therefore occur more easily about the axis with the 

lowest moment of inertia.   

 

In Figure 31, both the minor and major axes are drawn on a 

sketch of an I-type cross-section. The moment of inertia is based 

on the slenderness of each component and its location compared 

to the neutral axis. A component with a large height and low 

thickness is considered slender and will have a large contribution 

to the moment of inertia. The web of the I-section will therefore 

be considered slender about the y-axis and not slender about the 

x-axis. This is illustrated by rotating the sketch of the I-section, 

this is shown in Figure 32. In most I-sections, this will result in the 

x-axis being considered the minor axis and the most critical for 

buckling concerns. However, it is not uncommon practice to 

reinforce the buckling resistance about the minor axis, in beams 

or columns susceptible to buckling. With this in mind, it will be 

interesting to investigate the effect of the out-of-straightness 

imperfection for both the minor and major axis.  

 

 

Figure 32: Rotated H-400 cross-section 

 

  

Figure 31: H-400 cross-section 
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The H-400 cross-section, which will be considered in the calculations, is presented in Figure 33. The 

cross-sectional properties is calculated in Appendix A.2. With the moment of inertia calculations, it is 

shown that the x-axis was indeed the minor axis. It was also shown that, according to Eurocode 9, the 

web is so slender that it is susceptible to local buckling. This will result in a reduction of flexural 

buckling resistance in the Eurocode 9 calculation; this reduction is applicable for both minor and 

major axis. As the Perry-Robertson equation does not take local buckling into consideration, a larger 

difference between the results from the Perry-Robertson calculations compared to Eurocode 9 is 

expected for the H-400 cross-section when compared with those found for the 200x10 mm quadratic 

hollow section. Local buckling and its impact on the Eurocode 9 capacities is discussed more in 

chapter 5.  

 

 

Figure 33: H-400 cross-section dimensions 

The calculations will be done in much the same manner as for the 200x10 mm quadratic hollow 

section. Both a column with a constant imperfection and a “perfect” column will be calculated with 

the Perry-Robertson equation, so that the effect of the imperfection can be decided. This result will 

then be compared to regular Eurocode 9 calculations. In the Perry-Robertson equation, the out of 

straightness imperfection is on the axis about which buckling is considered. In other words when 

buckling about the x-axis is considered, the deflection at the midpoint of the column will be along the 

y-axis. In the Eurocode 9 calculations, the imperfection safety factor is present in all buckling 

calculations, which should give a comparable answer when both the minor and major axis is 

considered.  
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The Perry-Robertson calculations for the H-400 cross-section is performed in Appendix D5 to D8. The 

imperfection was set at 10 mm for both the x- and y-axis. The results are plotted with maximum 

stress-ratio against length of the column. As with the previous Perry-Robertson calculations, the 

column is assumed to be pinned. Although a pinned column might not be the most realistic support 

configuration, it allows the deformation shape to take the form of a half sine wave. Different end 

supports can be used with the addition of a buckling length factor, as discussed in chapter 2.2. The 

same factor would be used in both the Perry-Robertson and the Eurocode 9 calculation, which should 

therefore not be important to the comparison.   

 

Figure 34: Buckling curve comparison, H-400 minor axis 
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Figure 35: Buckling curve comparison, H-400 major axis 

The comparison between Figure 34 and Figure 35 shows very large differences between the flexural 

buckling resistance for the minor and major axis. The “perfect” column buckles about the x-axis at 

2000 mm. If buckling about this axis is restrained the column could be up to 8000 mm before 

buckling about the y-axis would occur. This also illustrate how much more effective an I-section is at 

resisting bending moment about its major axis. From the plots, it can also be seen that the 10 mm 

imperfection has a much larger effect on the minor axis.  At certain lengths, this relatively weak axis 

loses about 30 % -40 % of its load capacity with this imperfection. Comparably the strong axis only 

loses about 20 % of its capacity and this is at a larger length as well. This indicates that the effect of 

the imperfection is not only based on the imperfection size, as the effect is not the same for these 

two axes. With a 10 mm imperfection, the maximum load capacity reduction is definitely largest for 

the minor axis of the H-400 column compared to the major axis and the 200x10 mm quadratic hollow 

section. The minor axis has the lowest moment of inertia of the three. An axis or cross-section with a 

low moment of inertia will also have a low resistance to flexural buckling or bending. It would 

therefore seem that “weak” columns are much more effected by the initial out-of-straightness 

imperfection, than columns that are more resistant. This is also shown by the major axis, as it has the 

largest moment of inertia and the lowest capacity reduction. 

With the quadratic hollow section calculations, it was found that the Eurocode 9 calculations has 

enough safety factors to warrant the permitted deviation stated in NS-EN 1090-3. For this 10 mm 

imperfection, the column must be at least 7500 mm long to be approved by NS-En 1090-3. For the 

minor axis the largest difference between perfect and imperfect is at lower lengths than 7500 mm 

and would therefore not be approved. For the major axis on the other hand, the largest difference is 

found at about 8500 mm, which would be approved. By comparing with Eurocode calculations 

performed in Appendix B.2., it can be seen that the maximum flexural buckling resistance for the 

major axis at 8500 mm is 1458.3 kN, which can be converted to a load capacity ratio of 0.579.  The 

Perry-Robertson equation gave a load capacity ratio of 0.785 at this length. It can be concluded that 

the Eurocode 9 calculations are conservative enough that there will be no dangerous situations when 

following the tolerance limits given by NS-EN 1090-3. At least when flexural buckling of column is 
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considered. This is the same conclusion that was offered from the quadratic hollow section 

calculations. To illustrate this further two more graphs are presented, showing the “perfect” column 

calculations, the Eurocode 9 calculations and a Perry-Robertson column with varying imperfection. 

This imperfection is equal to L/750, which is the assumed imperfection value that Eurocode 9 uses in 

its buckling calculations. A graph is presented for both the minor and major axis. As with the 

quadratic hollow section calculations, the Eurocode 9 calculations are always the most conservative. 

By comparing the two graphs, it is shown again that an out-of-straightness imperfection has a larger 

effect on the minor axis, strengthening the conclusion.  

 

 

Figure 36: Buckling curve comparison, varying imperfection, H-400 minor axis and Eurocode 9 

 

Figure 37: Buckling curve comparison, varying imperfection, H-400 major axis and Eurocode 9 
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4.8. Result discussion 
 

The main objective behind these calculations was to gain a better understanding of how the 

tolerance limits given by NS-EN 1090-3 affect the capacity of the column. It has been shown that the 

Perry-Robertson gives a good representation of the buckling curves presented by Eurocode 9. Since 

the out-of-straightness tolerance limit is used as a safety factor in all the buckling calculations done 

in accordance with Eurocode 9, it comes as no surprise that the permitted deviation is not dangerous 

to follow. If an out-of-straightness imperfect column is approved by Eurocode 9 with the regular 

calculations and the imperfection is smaller than the permitted deviation, there will be no problems. 

At least not with regards to flexural buckling and compression.  

The results from the “original” Perry-Robertson equation showed large differences between a 

perfect and an imperfect column and the difference between those curves and the Eurocode results 

were larger still. This indicates a rather large loss in potential load capacity due to safety factors. The 

tolerance limit of L/750 seems to be very large when compared to the actual crookedness of most 

produced beams. As mentioned chapter 2.9, measurement from tests performed 30 years ago, show 

an average crookedness of L/2000 for extruded industrial bars. During the test performed in 

“Stability of 6082-T6 aluminium alloy columns with H-section and rectangular hollow sections” [5] no 

initial crookedness was discovered in any of the 30 beams tested, that could be measured without 

high cost equipment. With the comparison between the L/750, L/1500 and L/2000 imperfection, the 

Perry-Robertson equation showed a large difference at certain lengths.  

It should be noted that one of the reasons why the permitted deviation is so strict is to take into 

account any additional reduction in the capacity that can be caused by residual stress [6].The residual 

stress in an extruded aluminium member is very low. It has in fact been deemed insignificant by 

European studies [9]. Residual stresses can also occur as a direct result of welding, but this is 

considered in heat affected zone calculations. This is yet another indication that the out-of-

straightness tolerance limit is very strict for extruded members. However, only flexural buckling and 

compression was considered in the Perry-Robertson formula. The out-of-straightness production 

tolerance is not specifically stated for a column and it will be applicable for beams subjected to shear 

forces and bending moments as well. Since the effect of the imperfection was only considered for a 

column subjected to axial loading, a recommendation for a less restrictive production tolerance 

cannot be based on the obtained results.  

However, the results can be used to discuss the optimization of the buckling curves presented in 

Eurocode 9. In Eurocode 9, all aluminium alloys are divided into one of only two different buckling 

classes based on material properties. Similar to the discussion presented in ”A new design method 

for stainless steel columns subjected to flexural buckling” [4], where the differences in material 

properties between different stainless steel alloys was highlighted, and the effect that these 

properties has on the flexural buckling resistance. The same argument can be made for different 

aluminium alloys. Dividing them all into only two different buckling classes, will most likely prove to 

be inefficient for some alloys.  

In addition, the buckling curves for flexural buckling presented by Eurocode 9 are independent of 

cross-section geometry. The buckling curves for torsional and torsional-flexural buckling separates 

different cross-section geometry into either a general cross-section or a cross-sections composed 

entirely out of radiating outstands [1]. In comparison, Eurocode 3 presents five different buckling 
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curves for flexural buckling. With these buckling curves the geometry of the cross-section is taken 

into account and large differences between the buckling curves are shown, see Figure 38. The 

methods for calculating flexural buckling resistance for steel and aluminium is very similar and so one 

would assume that the similar differences would occur for aluminium cross-sections. The geometry 

of the aluminium cross-section is considered during calculation of the moment of inertia and 

implemented into the buckling curve via the relative slenderness, but this is also true for steel cross-

sections.  

 

 

Figure 38: Eurocode 3, buckling curves [2] 

 

 

Figure 39: Eurocode 9, buckling curves [1] 
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Both Eurocode 3 and Eurocode 9 describes their buckling curves using relative slenderness on the x-

axis and reduction factor on the y-axis. The reduction factor is used with the compression resistance 

in order to determine the flexural buckling resistance. The compression resistance is directly linked 

to the yield stress. This means that this reduction factor is very comparable with the stress-ratio used 

in the Perry-Robertson equation.  

As is shown by figure 37 and 38, Eurocode 3 presents 5 different buckling curves while Eurocode 9 

only presents 2. In Eurocode 3 some very large differences exists in the buckling curve for the 

strongest and the weakest class. Differences is also seen between the two aluminium buckling 

curves, but these differences are much smaller. As mentioned, the buckling class for steel is 

determined using both cross-section type and steel grade. While the aluminium buckling class is only 

determined by the aluminium alloy that is used. The main difference in the reduction factor between 

the different classes is the imperfection factor that is used in the calculations. The strongest steel 

class uses an imperfection factor of 0.13 [2] while the strongest aluminium class uses an imperfection 

factor of 0.20 [1].  A low imperfection factor leads to a higher flexural buckling resistance. 

With the argument that extruded beams are straighter and without residual stress, the calculation 

method in Eurocode 9 seems to be inefficient with regards to the actual flexural buckling capacity. 

Buckling curves based on production method, as well as aluminium alloy used, could create more 

efficient flexural buckling resistance calculations. The introduction of more buckling classes should 

also be considered. The material properties and the behavior of different aluminium alloys varies 

greatly [5] and it seems unlikely that two bucking curves can be used to represent them all efficiently.  

Safety factors are very important and it is not the goal of this discussion to remove them. With more 

precise calculations however, the actual behavior of a member can be better understood. This can 

lead to savings in material costs while still having a good level of safety.   
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Chapter 5 
 

5. Cross-section imperfection and local buckling 
 

Although the focus of this thesis has been the out-of-straightness imperfections and its effect on 

flexural buckling, it is far from the only production tolerance listed in NS-EN 1090-3. In this chapter, 

the effect that an imperfect cross-section has on both local and global buckling will be discussed 

briefly.  

 

5.1. Imperfect cross-section 
 

There are many different permitted deviations, concerning the cross-section geometry, listed in NS-

EN 1090-3. Among these are width of flange, position of web and depth of the cross-section. 

Unexpected deviations in cross-section geometry can be unfortunate as it can lead to less resistance 

to local buckling and a lower flexural buckling resistance.  With alterations in the geometry of the 

different cross-section components, their respective slenderness parameters will also be altered. 

With a higher slenderness, the probability of local buckling is increased. 

While the buckling of a beam is a known as global buckling, the buckling of cross-sectional 

components are known as local buckling. Local buckling can be seen as its own limit state, as it can in 

some cases lead to failure of the member. Local buckling is very similar to global buckling, as it 

affects slender components in compression. In slender components, local buckling may occur long 

before the material strength is reached and the cross-section will become distorted. Normal cross-

sections, such as an I-section, consists of an assembly of thin plates and the slenderness parameter of 

each of these thin plates is a function of width divided by thickness. Slender components have a high 

width to thickness ratio, while a component with a low width to thickness ratio is known as compact. 

A compact component is not susceptible to buckling and failure for such components will come at 

higher stresses than for slender components [10]. 

The components in a cross-section, such as flanges and webs, can be either stiffened against buckling 

or unstiffened. For example, the web of a regular I-section is stiffened by the flanges, while the 

flanges themselves are unstiffened.  A stiffened component will show a larger resistance to buckling 

than an unstiffened component.  In rectangular hollow sections, all the plates that compose the 

section is stiffened.  

The stress distribution in the cross-section is very important when considering local buckling. While 

global buckling only occurs with the inclusion of axial loading, local buckling can happen for almost all 

loading scenarios. With the exception of uniformly distributed tension forces working on the cross-

section. A regular I-section experiencing bending about its major axis will for instance experience 

compression forces in one of its flanges and tension forces in the other. The compression flange can 

therefore be susceptible to local buckling. It is also important to note that local buckling does not 

only occur for slender members. Short column can also be affected by local buckling, if any of the 

components in the cross-section is considered slender. 
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To check if a cross-section is susceptible to local buckling, Eurocode 9 utilizes the cross-section 

classification method. A cross-section is categorized from class 1 to class 4, based on the slenderness 

parameter. The classes are defined as follows:  

 

From 6.1.4.2 Classification, Eurocode 9 [1]: 

- Class 1 cross-sections are those that can form a plastic hinge with the rotation capacity 

required for plastic analysis without reduction of the resistance. 

- Class 2 cross-sections are those that can develop their plastic moment resistance, but have 

limited rotation capacity because of local buckling. 

- Class 3 cross-sections are those in which the calculated stress in the extreme compression 

fibre of the aluminium member can reach its proof strength, but local buckling is liable to 

prevent development of the full plastic moment resistance. 

- Class 4 cross-sections are those in which local buckling will occur before the attainment of 

proof stress in one or more parts of the cross-section. 

 

With elastic calculations, it is only class 4 cross-sections that are susceptible to local buckling, as local 

buckling occurs at a lower stress level than yield stress for these sections. To allow for a class 4 cross-

sections in the design calculations, a reduction to the thickness is needed. This reduction is done in 

order to create an effective cross-section that is assumed not to experience local buckling before 

yield stress levels are reached. This effective cross-section is then used in the resistance calculations.  
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Picture 3: Table G.1 from NS-EN 1090-3 [3] 

  

Table G.1 from NS-EN 1090-3 [3] shows the permitted deviations for a welded I-section. Please note 

that the table presented here is not the complete table. By increasing the width of the flange, two 

differences are immediately noticeable. Both the moment of inertia and the slenderness of the 

flange is increased. With the increase in moment of inertia, the sections resistance to both bending 

and buckling is increased as well. With an increase in the slenderness of the flange, it becomes more 

susceptible to local buckling. This results in a larger resistance to global buckling and less resistance 

to local buckling or vice versa if the width of the flange is decreased.  The same will be true for the 

height of the web.  

The production tolerances in 1090-3 offers little leeway in terms of the permitted flange width 

deviation and web height deviation, by only allowing for +/- 3 mm on the smaller cross-sections. As 

the changes will bring both positive and negative effects, the overall impact on the load capacity is 

assumed small. Calculations of the flexural buckling resistance for two different cross-sections with 

varying width of flange and height of web were performed for two different I-sections; these 

calculations are shown in Appendix E. A worst-case scenario is considered where both the width of 
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the flanges and height of the web is increased or decreased simultaneously. A graphical comparison 

is given in Figure 40 for the H-400 cross-section and in Figure 41 for the H-200 cross-section. 

 

Figure 40: Capacities with variable cross-section, H-400 

 

 

Figure 41: Capacities with variable cross-section, H-200 
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In its original state both the H-400 and H-200 cross-sections have a class 4 web and class 3 flanges, 

when subjected to axial compression. With the increase of flange width, the classification for the 

flanges changed to class 4. A reduction to the thickness is therefore required. In Eurocode 9 the 

required reduction is based on the actual slenderness of the component. Since the slenderness was 

barely categorized as class 4, the required reduction to the thickness became very small. 

Comparably, the web is considered very slender and the thickness was reduced with about 30 %. 

The calculations of these cross-sections showed that the increase in moment of inertia was more 

influential than the required reduction of thickness. This is shown by the increase in flexural buckling 

resistance with increasing geometry dimensions.  Since the permitted deviations are set as a 

constant value and not a function of width or height, the effect will be largest in small cross-sections. 

This was confirmed by the calculations. The overall change in flexural resistance was noticeable but 

not large, especially between -3 mm and 3 mm. As was discussed in chapter 4.8, the flexural buckling 

calculations done in accordance with Eurocode 9 are conservative. With the relative small differences 

in flexural buckling resistance while including the permitted deviations, and the knowledge that 

Eurocode 9 calculations are already conservative, it seems highly unlikely that a dangerous situation 

can occur when following the guidelines given by NS-EN 1090-3. The strict tolerance limits is most 

likely based on installation concerns, as uneven cross-sections may cause problems during 

installation of the member.  

It should be noted that these permitted deviations are specified for a welded I-section and the 

calculations were performed for a cross-section without welds. This was done in order to ignore the 

effects of HAZ-softening (HAZ = heat affected zone) and focus on the impact of the changes in 

geometry. The results are still applicable for this discussion.  
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Chapter 6 
 

6. Conclusion  
 

With the calculations performed in this thesis, it is safe to say that initial imperfections definitely has 

a negative effect on the capacities of a member. A column with an initial out-of-straightness 

imperfection will not be able to withstand the same axial load as a perfectly straight column. The 

largest difference between a perfectly straight column and an imperfect column was in this thesis 

found for flexural buckling about the minor axis of the H-400 cross-section. With a 10 mm 

imperfection and a length of 2000 mm, the imperfect column could only carry 60% of the load that 

the perfect column could carry. A 40% loss in load carrying capacity is very large and a 10 mm 

imperfection could very easily go unnoticed. The largest difference between the perfect and the 

imperfect column always occurred for the lengths at which the perfect column would fail by crushing 

and the imperfect column would fail by flexural buckling. The effect of the imperfection was 

therefore more impactful on the short columns. The initial bend in the column makes the column 

much more susceptible to flexural buckling and a noticeable drop in load capacity can be seen. 

Effects such as inelastic buckling and loading imperfections are not considered in the Perry-

Robertson formula. The results from the perfectly straight Perry-Robertson column is not likely to be 

applicable for real columns. 

Since a 100% perfectly straight column is impossible to produce, it means that all columns will have 

an initial out-of-straightness imperfection. This imperfection will be very small in most cases. The 

imperfection is assumed to be at the midspan of the column, this will both simplify and be 

conservative with regards to the calculations. As discussed earlier, Eurocode 9 simplifies it further by 

using an imperfection of L/750 for all beams and columns regardless of production method. This is 

not an optimized solution. In chapter 4.5, both the imperfections L/1500 and L/2000 were compared 

with L/750 for the 200x10 mm quadratic hollow section. The largest difference between the L/750 

and L/1500 imperfection was equal to 10% of the total load capacity at certain lengths. This 

difference is larger still between the L/750 and L/2000 imperfections.   

Argument can be made against the efficiency of the Eurocode 9 flexural buckling resistance 

calculation method. In the result discussion from chapter 4, several point were brought up that might 

indicate poor optimization of the design capacity. The imperfection safety factor used by Eurocode 9 

seems to be very conservative. If this factor were to be reduced, more efficient column design could 

be achieved.  

The Perry-Robertson equation that was used to investigate the effect of the out-of-straightness 

imperfection is a simplified method. This means that the results will not be accurate when compared 

with a real column, but it gives a good indication of the columns capacity. By implementing the L/750 

imperfection into the Perry-Robertson equation, the results were very similar to Eurocode 9 

calculations. This indicates that the Perry-Robertson equation can be used to predict the effect that 

the out-of-straightness imperfections will have on Eurocode 9 capacities with good accuracy.  
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An extruded member is on average much straighter than the out-of-straightness tolerance limit [8] 

and the residual stress in the member will be insignificant [9]. An extruded column should then be 

close to the perfect column used in the Perry-Robertson equation. Eurocode 9 does not take 

production method of a member into consideration and so the same imperfection safety factor is 

used for all members. As seen throughout the calculations performed in this thesis, the difference 

between Eurocode 9 results and a perfect Perry-Robertson column is significant.  

The imperfection safety factor cannot be removed completely, but it can be optimized. Buckling 

curves for the most common production methods, with their respective imperfection safety factor, 

could be presented in Eurocode 9. This choice between different production methods would most 

likely increase the flexural buckling resistance of an extruded column. The respective imperfection 

safety factor would have to be determined based on actual out-of-straightness measurements, with 

an allowance for other imperfection concerns and a safety factor.  

As a conclusion to this investigation into the effect of the out-of-straightness imperfection, it must be 

said that the effect is significant. Relatively low imperfections were shown to have a large impact on 

the flexural buckling resistance. With the relatively large imperfection safety factor used in Eurocode 

9 today, it is believed that the potential load capacity is heavily reduced in flexural buckling. Changes 

to this assumed crookedness cannot be based on the results given in this thesis, as the Perry-

Robertson equation is a simplified method. A recommendation for further research into the 

optimization of the Eurocode 9 flexural buckling calculation method is given instead.   
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Chapter 7 

7. Future work 
The effect that imperfections and other tolerance limits will have on capacity calculations is a rather 

large field. Only a small part of it was discussed in this thesis. An out-of-straightness imperfection 

does not only affect the flexural buckling resistance, and its effect on other failure modes could be 

interesting to investigate.  

The Perry-Robertson equation that were used in the calculations is a simplified method. The method 

was chosen to investigate the effect that the out-of-straightness imperfection has on Eurocode 9 

capacities. The effect that the imperfection would have on a real column is therefore not precisely 

given from these calculations. The ANSYS results is a better representation of a real column, as it 

uses a bilinear stress-strain relationship. However, the ANSYS analysis has not been validated. A good 

way to validate an analysis is through laboratory experiments. In this case, it can be done by creating 

multiple columns, measuring their initial out-of-straightness imperfection and then apply an 

increasing axial load until failure. This will give the best possible indication off the actual effect that 

the imperfection has on flexural buckling resistance. The results can be used to validate both the 

ANSYS analysis and the Perry-Robertson calculations. The analysis result seem to interpret the effect 

of the imperfection similarly to the Perry-Robertson calculations, but an actual experiment might 

reveal a different effect. 

Investigating other types of imperfections and their effect on the Eurocode 9 calculations should also 

be done. For a column, imperfections such as load eccentricity and support displacement can also 

cause a loss of load capacity. Support displacement will cause a column to have an initial unwanted 

sway. This inclined column will not experience the same loading situation as a perfectly straight 

column would. This type of imperfection can be especially impactful in buildings with a row of 

columns or multi-story buildings, as the imperfection might be applicable for all the columns.  This 

will without doubt enhance the capacity loss for the columns. NS-EN 1090-3 includes permitted 

deviations for the sway of both a single column and columns that are part of a larger structure. It 

would be interesting to investigate these permitted deviations to make sure that they are sufficient. 

Imperfections of this sort is handled very similarly to the out-of-straightness imperfections by 

Eurocode 9. The imperfection is substituted with equivalent horizontal forces in order to simplify the 

calculations. The calculations in this thesis showed that this method was acceptable for the out-of-

straightness imperfection and it would be interesting to find out if this is also true for the sway 

imperfection.  

The Eurocode 9 buckling guidelines and calculations method showed poor optimization, when 

compared to the results from ANSYS and the Perry-Robertson equation. Conservative calculations is 

needed so that the finished structure has the required level of safety. Overly conservative calculation 

will however lead to wasted load carrying potential, which in turn will lead to material waste. To 

optimize the flexural buckling calculation method used in the present Eurocode 9, a lot of research 

and experiments must be performed. These must include the actual buckling behavior of columns 

with different types of cross-section and different aluminium alloys. As of today, the flexural buckling 

calculations in Eurocode 3 has more options for types of cross-section and material grade than 

Eurocode 9, this in turn is assumed to lead to a better optimization of steel columns than aluminium 

columns.   
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Appendix A: Cross-section properties and classification 
 

A.1. The 200x10 mm quadratic hollow section 
 

For a buckling analysis it is proficient to use a quadratic hollow section as it removes much of the 

concern for lateral-torsional buckling. During the analysis in this thesis, this is an advantage as 

flexural buckling is the main consideration. The 200x10 quadratic hollow section is widely used at 

Marine Aluminium and its properties are well known. However, for this thesis a slightly simplified 

version of the cross-section is used so the properties will be calculated using well-known formulas.  

                                 
Figure 42: 200x10 mm quadratic hollow section 

 

Area: 

𝐴 = 2 ∙ 200𝑚𝑚 ∙ 10𝑚𝑚 + 2 ∙ 180𝑚𝑚 ∙ 10𝑚𝑚 = 7600𝑚𝑚2 

 

Second moment of inertia: 

Since the cross-section is symmetric, there is no weak or strong axis. There exists only one second 

moment of inertia for this cross-section, Steiner’s formula is used to find it: 

𝐼 = 2 ∙ (
1

12
∙ 200 ∙ 103) + 2 ∙ (200 ∙ 10) ∙ (100 − 5)2 + 2 ∙ (

1

12
∙ 10 ∙ 1803) + 2 ∙ (180 ∙ 10) ∙ 0 

𝐼 = 45853333.33 𝑚𝑚4 
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Cross-section classification, according to Eurocode 9 [1]: 

6.1.4.3 Slenderness parameter: 

𝛽 =
𝑏′

𝑡
 

Where  

 𝛽 = 𝑠𝑙𝑒𝑛𝑑𝑒𝑟𝑛𝑒𝑠𝑠 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 

 𝑏′ = 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑤𝑖𝑑𝑡ℎ 

 𝑡 = 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 

𝛽 =
(200 − 2 ∙ 10)

10
= 18 

 

 

6.1.4.4 Classification of cross-section parts 

Table 10: Table 6.2 from Eurocode 9 [1] 

 
According to Table 3.2b, the aluminium alloy 6082-T6 has buckling class A and has a yield strength of 

250 MPa. For the use in this thesis the material is also without welds.  

𝜖 = √
250

𝑓0
= √

250

250
= 1 

This quadratic hollow section has a cross-section classification of class 3. Which means that there is 

no reduced thickness to allow for local buckling resistance in further calculations. 

𝐴 = 𝐴𝑒𝑓𝑓 
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A.2. The H-400 cross-section 
 

The H-400 cross-section is a typical aluminium cross-section, consisting of very slender plates. This 

means that local buckling must be considered when using this type of cross-section. This cross-

section may also be susceptible to lateral torsional buckling. It is made from 6082-T6 aluminium 

alloy, which gives it a yield strength of 250 MPa and buckling class A. 

 
Figure 43: H-400 cross-section 

 

Area: 

𝐴 = 2 ∙ 200 𝑚𝑚 ∙ 16 𝑚𝑚 + (400 𝑚𝑚 − 2 ∙ 16 𝑚𝑚) ∙ 10 𝑚𝑚 

𝐴 = 10080 𝑚𝑚2 

Moment of inertia 

This cross-section will have one minor and one major axis. Flexural buckling will normally happen 

with regards to the axis with the lowest moment of inertia. 

𝐼𝑦 = 2 ∙ (
1

12
∙ 200 𝑚𝑚 ∙ (16 ∙ 𝑚𝑚)3) + 2 ∙ 200 𝑚𝑚 ∙ 16 𝑚𝑚 ∙ (

400 𝑚𝑚

2
−
16 𝑚𝑚

2
)
2

+ (
1

12
∙ 10 𝑚𝑚 ∙ (368 𝑚𝑚)3) + 10 𝑚𝑚 ∙ 368 𝑚𝑚 ∙ 02 

𝐼𝑦 = 277596160 𝑚𝑚
4 
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𝐼𝑥 = 2 ∙ (
1

12
∙ 16 𝑚𝑚 ∙ (200 𝑚𝑚)3) + (

1

12
∙ 368 𝑚𝑚 ∙ (10 𝑚𝑚)3) 

𝐼𝑥 = 21364000 𝑚𝑚
4 

 

Cross-section classification, according to Eurocode 9 [1]: 

6.1.4.3 Slenderness parameter: 

The slenderness calculation is based on axial compression forces acting on the cross-section.  

 

Slenderness flange: 

𝛽𝑓 =
(
200 𝑚𝑚
2

−
10 𝑚𝑚
2

)

16 𝑚𝑚
= 5.93 

 

The flange has a cross-section classification of class 3. There will be no need for a reduced thickness. 

 

Slenderness web: 

𝛽𝑤 =
(400 𝑚𝑚 − 2 ∙ 16 𝑚𝑚)

10 𝑚𝑚
= 36.8 

The web has a cross-section classification of class 4. A reduced thickness is needed. 

The reduced thickness is calculated in accordance with 6.1.5 [1]: 

𝑡𝑤
′ = 𝑡𝑤 ∙ 𝑝𝑐 

𝑝𝑐 =
𝐶1

(
𝛽𝑤
𝜖 )

−
𝐶2

(
𝛽𝑤
𝜖 )

2 

Where: 

 𝐶1 = 32 𝑓𝑜𝑟 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑝𝑎𝑟𝑡 

 𝐶2 = 220 𝑓𝑜𝑟 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑝𝑎𝑟𝑡 

 𝜖 = √
250

𝑓0
= 1 

𝑝𝑐 =
32

36.8
−
220

36.82
= 0.707 

𝑡𝑤
′ = 10 𝑚𝑚 ∙ 0.707 = 7.07 𝑚𝑚 

 

With this new web thickness, a new effective area must be calculated: 

𝐴𝑒𝑓𝑓 = 2 ∙ 200 𝑚𝑚 ∙ 16 𝑚𝑚 + 368 𝑚𝑚 ∙ 7.07 𝑚𝑚 = 9001.8 𝑚𝑚
2 
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Appendix B: Eurocode 9 design calculations 
 

B.1. 200x10 mm quadratic hollow section  
 

In chapter 3, a pinned column with a 5 mm out-of-straightness imperfection was presented. Using 

the Perry-Robertson equation, it was found that this column had a load capacity ratio of 83% when it 

was 3750 mm long. In order to see the true effect of these calculation, the strength of this column 

will be calculated using the Eurocode 9 rules and guidelines.  

 

6.2.4 Compression 

Equation 6.20: 

𝑁𝐸𝑑
𝑁𝑐𝑅𝑑

≤ 1.0 

Equation 6.22: 

𝑁𝑐𝑅𝑑 =
𝐴𝑒𝑓𝑓 ∙ 𝑓0

𝛾𝑀1
 

𝑁𝑐𝑅𝑑 =
7600 𝑚𝑚2 ∙ 250 𝑁/𝑚𝑚2

1.10
= 1727 𝑘𝑁 

 

6.3.1.1 Buckling Resistance 

Equation 6.48: 

𝑁𝐸𝑑
𝑁𝑏𝑅𝑑

≤ 1.0 

Equation 6.49: 

𝑁𝑏𝑅𝑑 =
𝜅 ∙ 𝜒 ∙ 𝐴𝑒𝑓𝑓 ∙ 𝑓0

𝛾𝑀1
 

Where: 

 𝜅 = 𝑓𝑎𝑐𝑡𝑜𝑟 𝑡𝑜 𝑎𝑙𝑙𝑜𝑤 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑤𝑒𝑎𝑘𝑒𝑛𝑖𝑛𝑔 𝑒𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝑤𝑒𝑙𝑑𝑖𝑛𝑔 

 𝜒 = 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔 𝑚𝑜𝑑𝑒 

Equation 6.50: 

𝜒 =
1

𝜙 +√𝜙2 − �̅�2
 𝑏𝑢𝑡 𝜒 < 1.0 

 

𝜙 = 0.5 ∙ (1 + 𝛼 ∙ (�̅� − �̅�0) + �̅�
2) 
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�̅� = √
𝐴𝑒𝑓𝑓 ∙ 𝑓0

𝑁𝑐𝑟
 

Where: 

 𝛼 = 𝑖𝑚𝑝𝑒𝑟𝑓𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 

 �̅� = 𝑙𝑖𝑚𝑖𝑡 𝑜𝑓 ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑝𝑙𝑎𝑡𝑒𝑎𝑢 

 𝑁𝑐𝑟 = 𝐸𝑙𝑎𝑠𝑡𝑖𝑐 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑓𝑜𝑟𝑐𝑒 

 

For a member in compression, buckling must be checked for both flexural buckling and torsional-

flexural buckling. However, for this situation only flexural buckling is considered.   

Flexural buckling: 

From table 6.6: 

𝛼 = 0.20 

�̅�0 = 0.10 

 

Slenderness for flexural buckling is defined in 6.3.1.3: 

Equation 6.52: 

�̅� = √
𝐴𝑒𝑓𝑓 ∙ 𝑓0

𝑁𝑐𝑟
=
𝐿𝑐𝑟
𝑖
∙
1

𝜋
∙ √
𝐴𝑒𝑓𝑓

𝐴
∙
𝑓0
𝐸

 

Where: 

 𝐿𝑐𝑟 = 𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑟 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 

 𝑖 = 𝑟𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑔𝑦𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑏𝑜𝑢𝑡 𝑡ℎ𝑒 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑎𝑥𝑖𝑠 

Since this is a pinned situation the effective length will be equal to the actual length of the column. 

The cross-section was found to be a class 3 cross-section in appendix A, which means that the 

effective area is equal to the actual area. The radius of gyration is calculated using the following 

formula: 

𝑖 = √
𝐼𝑥
𝐴
= √

45853333.33 𝑚𝑚4

7600 𝑚𝑚2
= 77.675 𝑚𝑚 

 

�̅� =
3750 𝑚𝑚

77.675 𝑚𝑚
∙
1

𝜋
∙ √
7600 𝑚𝑚2

7600 𝑚𝑚2
∙
250 𝑁/𝑚𝑚2

71000 𝑁/𝑚𝑚2
 

�̅� = 0.912 
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Every variable for determining the buckling resistance for flexural buckling is now known, and the 

resistance can be found:    

 

𝜙 = 0.5 ∙ (1 + 0.20 ∙ (0.912 − 0.10) + 0.9122) = 0.997 

𝜒 =
1

0.997 + √0.9972 − 0.9122
= 0.714 

 

𝑁𝑏𝑅𝑑 =
0.714 ∙ 7600 𝑚𝑚2 ∙ 250 𝑁/𝑚𝑚2

1.10
= 1234 𝑘𝑁 

This is the maximum resistance for the flexural buckling case. 

 

These calculations were repeated with different lengths to obtain the following table: 

Table 11: Eurocode 9 resistances, 200x10 mm quadratic hollow section 

Length Compression resistance  Reduction factor, 𝝌 Flexural buckling 
resistance  

1 mm 1727 kN 1.000 1727 kN 

500 mm 1727 kN 0.996 1720 kN 

1000 mm 1727 kN 0.544 1676 kN 

2000 mm 1727 kN 0.910 1572 kN 

2500 mm 1727 kN 0.870 1502 kN 

3000 mm 1727 kN 0.818 1412 kN 

3750 mm 1727 kN 0.714 1234 kN 

4500 mm 1727 kN 0.593 1024 kN 

5000 mm 1727 kN 0.516 891 kN  

5500 mm 1727 kN 0.447 772 kN 

6000 mm 1727 kN 0.389 671 kN 

6500 mm 1727 kN 0.339 586 kN 

7000 mm 1727 kN 0.298 514 kN 

7500 mm 1727 kN 0.264 455 kN 

8000 mm 1727 kN 0.234 405 kN 

8500 mm 1727 kN 0.210 362 kN 

9000 mm 1727 kN 0.189 326 kN 

9500 mm 1727 kN 0.170 294 kN 

10000 mm 1727 kN 0.155 267 kN 
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B.2. H-400 cross-section 
 

Eurocode 9 calculations will be performed once more, but this time with the H-400 cross-section. 

This is done in order to check if the results found in chapter 4 is applicable for other types of cross-

sections as well. A check for both compression resistance and flexural buckling resistance must be 

done. The H-400 cross-section has slender elements, which means that a reduction in the thickness 

of the web is implemented in the calculations.  

6.2.4 Compression  

 

The maximum compression resistance is given as: 

 

Equation 6.22 

𝑁𝑐𝑅𝑑 =
𝐴𝑒𝑓𝑓 ∙ 𝑓0

𝛾𝑀1
 

Where: 

 𝐴𝑒𝑓𝑓 = 𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝐴𝑟𝑒𝑎 = 9001.8 𝑚𝑚
2 

 𝑓0 = 𝑦𝑖𝑒𝑙𝑑 𝑠𝑡𝑟𝑒𝑠𝑠 = 250 𝑀𝑃𝑎 

 𝛾𝑀1 = 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑠𝑎𝑓𝑒𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 = 1.10 

 

 

𝑁𝑐𝑅𝑑 =
9001.8 𝑚𝑚2 ∙ 250 𝑁/𝑚𝑚2

1.10
= 2045.9 𝑘𝑁 

 

6.3.1.1. Buckling resistance 

From Table 6.6 

𝛼 = 𝑖𝑚𝑝𝑒𝑟𝑓𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 = 0.20 

�̅�0 = 𝑙𝑖𝑚𝑖𝑡 𝑜𝑓 ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑝𝑙𝑎𝑡𝑒𝑢𝑎 = 0.10 

Equation 6.51: 

�̅� = √
𝐴𝑒𝑓𝑓 ∙ 𝑓0

𝑁𝑐𝑟
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Where: 

 �̅� = 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑠𝑙𝑒𝑛𝑑𝑒𝑟𝑛𝑒𝑠𝑠 

 𝑁𝑐𝑟 = 𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑓𝑜𝑟𝑐𝑒 

 

For flexural buckling the relative slenderness can be found with another equation as well. 

Equation 6.52: 

�̅� =
𝐿𝑐𝑟
𝑖
∙
1

𝜋
∙ √
𝐴𝑒𝑓𝑓

𝐴
∙
𝑓0
𝐸

 

Where: 

 𝐿𝑐𝑟 = 𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔 𝑙𝑒𝑛𝑔𝑡ℎ = 𝑘 ∙ 𝐿 

 𝑘 = 𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔 𝑙𝑒𝑛𝑔𝑡ℎ 𝑓𝑎𝑐𝑡𝑜𝑟 = 1 

 𝐸 = 𝑀𝑜𝑑𝑢𝑙𝑢𝑠 𝑜𝑓 𝑒𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 = 71000 𝑀𝑃𝑎 

 𝐴 = 𝐺𝑟𝑜𝑠𝑠 𝑎𝑟𝑒𝑎 = 10080 𝑚𝑚2 

 𝑖 = 𝑟𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑔𝑦𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑏𝑜𝑢𝑡 𝑡ℎ𝑒 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑎𝑥𝑖𝑠 

 

The column is assumed to be pinned, which results in the buckling length factor being 1. These 

calculations will be repeated different lengths varying from 0 mm to 10000 mm. The calculations will 

be shown for a length of 3000 mm.  The calculations will be performed with regards to both axes. 

The radius of gyration can be determined using the following equation: 

 

𝑖𝑥 = √
𝐼𝑥
𝐴
= √

21364000 𝑚𝑚4

10080 𝑚𝑚2
= 46.04 𝑚𝑚 

𝑖𝑦 = √
𝐼𝑦

𝐴
= √

277596160 𝑚𝑚4

10080 𝑚𝑚2
= 165.95 𝑚𝑚 

 

The moment of inertia was calculated in Appendix A.2. The rest of the calculations must be done 

twice, on time for each axis. Flexural buckling usually occurs about the axis with the lowest radius of 

gyration, in this case the x-axis. 

Equation 6.52: 

�̅�𝑥 =
𝐿𝑐𝑟
𝑖𝑥
∙
1

𝜋
∙ √
𝐴𝑒𝑓𝑓

𝐴
∙
𝑓0
𝐸
=
3000 𝑚𝑚

46.04 𝑚𝑚
∙
1

𝜋
∙ √
9001.8 𝑚𝑚2

10080 𝑚𝑚2
∙
250 𝑁/𝑚𝑚2

71000 𝑁/𝑚𝑚2
 

�̅�𝑥 = 1.16 
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�̅�𝑦 =
𝐿𝑐𝑟
𝑖𝑦
∙
1

𝜋
∙ √
𝐴𝑒𝑓𝑓

𝐴
∙
𝑓0
𝐸
=
3000 𝑚𝑚

165.95 𝑚𝑚
∙
1

𝜋
∙ √
9001.8 𝑚𝑚2

10080 𝑚𝑚2
∙
250 𝑁/𝑚𝑚2

71000 𝑁/𝑚𝑚2
 

�̅�𝑦 = 0.323 

A huge difference can be seen between the two values of relative slenderness. A large relative 

slenderness will result in a large reduction factor.  

Equation 6.50 

𝜒 =
1

𝜙 + √𝜙2 − �̅�2
 𝑏𝑢𝑡 𝜒 < 1 

Where: 

 𝜒 = 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 

𝜙 = 0.5 ∙ (1 + 𝛼 ∙ (�̅� − �̅�0) + �̅�
2) 

 

𝜙𝑥 = 0.5 ∙ (1 + 𝛼 ∙ (𝜆𝑥̅̅ ̅ − �̅�0) + 𝜆𝑥̅̅ ̅
2
) = 0.5 ∙ (1 + 0.2 ∙ (1.16 − 0.10) + 1.162) 

𝜙𝑥 = 1.28 

 

𝜙𝑦 = 0.5 ∙ (1 + 𝛼 ∙ (𝜆𝑦̅̅ ̅ − �̅�0) + 𝜆𝑦̅̅ ̅
2
) = 0.5 ∙ (1 + 0.2 ∙ (0.323 − 0.10) + 0.3232) 

𝜙𝑦 = 0.574 

 

𝜒𝑥 =
1

𝜙𝑥 +√𝜙𝑥
2 − �̅�𝑥

2
=

1

1.28 + √1.282 − 1.162
 

𝜒𝑥 = 0.55 

 

𝜒𝑦 =
1

𝜙𝑦 +√𝜙𝑦
2 − �̅�𝑦

2

=
1

0.574 + √0.5742 − 0.3232
 

𝜒𝑦 = 0.95 

 

A large difference is seen here. For this 5000 mm column, the reduction factor is simply huge for the 

x-axis. The actual flexural resistance can now be calculated: 

Equation 6.49 

𝑁𝑏𝑅𝑑 =
𝜅 ∙ 𝜒 ∙ 𝐴𝑒𝑓𝑓 ∙ 𝑓0

𝛾𝑀1
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Where: 

 𝜅 = 𝑓𝑎𝑐𝑡𝑜𝑟 𝑡𝑜 𝑎𝑙𝑙𝑜𝑤 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑤𝑒𝑎𝑘𝑒𝑖𝑚𝑔 𝑒𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝑤𝑒𝑙𝑑𝑖𝑛𝑔 = 1 

 

𝑁𝑏𝑅𝑑−𝑥 =
𝜅 ∙ 𝜒𝑥 ∙ 𝐴𝑒𝑓𝑓 ∙ 𝑓0

𝛾𝑀1
=
1 ∙ 0.55 ∙ 9001.8 𝑚𝑚2 ∙ 250

𝑁
𝑚𝑚2

1.10
 

𝑁𝑏𝑅𝑑−𝑥 = 1125.2 𝑘𝑁 

 

𝑁𝑏𝑅𝑑−𝑦 =
𝜅 ∙ 𝜒𝑦 ∙ 𝐴𝑒𝑓𝑓 ∙ 𝑓0

𝛾𝑀1
=
1 ∙ 0.95 ∙ 9001.8 𝑚𝑚2 ∙ 250

𝑁
𝑚𝑚2

1.10
 

𝑁𝑏𝑅𝑑−𝑦 = 1943.6 𝑘𝑁 

 

 

The calculations are repeated for different lengths, the results are tabulated below: 

Table 12: Eurocode 9 resistances, H-400 

Length Compression 
resistance  

Reduction factor  Flexural buckling resistance  

𝝌𝒙 𝝌𝒚 𝑁𝑏𝑅𝑑−𝑥 𝑁𝑏𝑅𝑑−𝑦 

1 mm 2045.9 kN 1.000 1.000 2045.9 kN 2045.9 kN 

500 mm 2045.9 kN 0.981 1.000 2006.7 kN 2045.9 kN 

1000 mm 2045.9 kN 0.937 0.998 1917.4 kN 2042.7 kN 

1500 mm 2045.9 kN 0.879 0.988 1799.2 kN 2020.4 kN 

2000 mm 2045.9 kN 0.795 0.976 1625.4 kN 1997.7 kN 

2500 mm 2045.9 kN 0.677 0.965 1384.7 kN 1974.2 kN 

3000 mm 2045.9 kN 0.550 0.950 1125.2 kN 1943.6 kN 

3500 mm 2045.9 kN 0.437 0.940 849.2 kN 1923.2 kN 

4000 mm 2045.9 kN 0.351 0.926 717.3 kN 1849.8 kN 

4500 mm 2045.9 kN 0.285 0.911 583.8 kN 1863.9 kN 

5000 mm 2045.9 kN 0.236 0.894 482.6 kN 1829.7 kN 

5500 mm 2045.9 kN 0.198 0.876 404.8 kN 1791.8 kN 

6000 mm 2045.9 kN 0.168 0.855 344.0 kN 1749.5 kN 

6500 mm 2045.9 kN 0.145 0.832 295.8 kN 1702.1 kN 

7000 mm 2045.9 kN 0.126 0.806 256.9 kN 1649.3 kN 

7500 mm 2045.9 kN 0.110 0.778 225.1 kN 1590.7 kN 

8000 mm 2045.9 kN 0.097 0.746 198.9 kN 1526.8 kN 

8500 mm 2045.9 kN 0.087 0.713 177.0 kN 1458.3 kN 

9000 mm 2045.9 kN 0.077 0.678 158.5 kN 1386.4 kN 

9500 mm 2045.9 kN 0.070 0.642 142.7 kN 1312.7 kN 

10000 mm 2045.9 kN 0.063 0.606 129.2 kN 1238.8 kN 
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Appendix C: Eurocode 9 imperfect column design 
 

C.1. Equivalent horizontal forces method.  
 

The column will be 5000 mm long and have an initial out-of-straightness imperfection equal to 10 

mm. This imperfection will be larger than L/750 and so it must be calculated using Eurocode’s 

equivalent horizontal forces. The horizontal forces is in the form of an evenly distributed load. With 

these horizontal forces working on the column, shear and moment forces will arise as well as the 

existing axial forces. The design resistance of the column will be the lowest of the bending resistance, 

shear resistance, compression resistance and flexural buckling resistance.  

The length and imperfection was chosen to coincide with a known point from the ANSYS analyses. 

The cross-section will be a 200x10 quadratic hollow section; the cross-sectional properties are shown 

in Appendix A.1. 

 

Compression resistance: 

Compression resistance is only dependent on area and yield stress, it was calculated in Appendix B.1.  

𝑁𝑐𝑅𝑑 =
𝐴𝑒𝑓𝑓 ∙ 𝑓0

𝛾𝑀1
 

𝑁𝑐𝑅𝑑 =
7600 𝑚𝑚2 ∙ 250 𝑁/𝑚𝑚2

1.10
= 1727 𝑘𝑁 

 

Bending resistance: 

6.2.5.1: The bending moment resistance is to be taken as the lesser of: 

Equation 6.24: 

𝑀𝑢𝑅𝑑 =
𝑊𝑛𝑒𝑡 ∙ 𝑓𝑢
𝛾𝑀2

 

And: 

Equation 6.25: 

𝑀𝑐𝑅𝑑 =
𝛼 ∙ 𝑊𝑒𝑙 ∙ 𝑓0
𝛾𝑀1

 

𝑊𝑛𝑒𝑡 is the elastic modulus of the net section allowing for holes and HAZ softening. As the cross-

section used has neither holes nor have been welded, the net section is equal to the elastic modulus 

for the gross section. 

𝑊𝑛𝑒𝑡 = 𝑊𝑒𝑙 
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𝑊𝑒𝑙 =
𝐼𝑥
𝑦
=
45853333.33 𝑚𝑚4

100 𝑚𝑚
= 458533.33 𝑚𝑚3 

 

𝑀𝑢𝑅𝑑 =
458533.33 𝑚𝑚3 ∙ 290 𝑁/𝑚𝑚2

1.25
= 106.4 𝑘𝑁𝑚 

 

 

According to Table 6.4: 

𝛼 = 𝛼3,𝑢 = 1 

𝑀𝑐𝑅𝑑 =
𝛼 ∙ 𝑊𝑒𝑙 ∙ 𝑓0
𝛾𝑀1

=
1 ∙ 458533.33 𝑚𝑚3 ∙ 250 𝑁/𝑚𝑚2

1.10
= 104.2 𝑘𝑁𝑚 

 

The bending moment resistance is equal to 104.2 kNm. 

𝑀𝑦,𝑅𝑑 = 104.2 𝑘𝑁𝑚 

 

Corresponding maximum axial load is found using the relationship between bending moment and 

axial force, as it is given in the equivalent horizontal forces method: 

𝑀𝑦,𝐸𝑑 = 𝑁𝐸𝑑 ∙ 𝛿0 

𝑁𝐸𝑑 =
104.2 𝑘𝑁𝑚

10 𝑚𝑚
= 10420 𝑘𝑁 

 

Shear: 

Equation 6.29:  

𝑉𝑅𝑑 = 𝐴𝑣 ∙
𝑓0

√3 ∙ 𝛾𝑀1
 

Where: 

 𝐴𝑣 = 𝑆ℎ𝑒𝑎𝑟 𝑎𝑟𝑒𝑎 

𝑉𝑅𝑑 = 2 ∙ 200 𝑚𝑚 ∙ 10 𝑚𝑚 ∙
250 𝑁/𝑚𝑚2

√3 ∙ 1.10 
 

𝑉𝑅𝑑 = 524.9 𝑘𝑁 
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Corresponding maximum axial load: 

𝑉𝐸𝑑 =
4 ∙ 𝑁𝐸𝑑 ∙ 𝑒0𝑑

𝐿2
 

𝑁𝐸𝑑 =
524.9 𝑘𝑁 ∙ 5000 𝑚𝑚

4 ∙ 10 𝑚𝑚
= 65612.5 𝑘𝑁 

 

 

Flexural buckling: 

The new horizontal forces does not have any impact on flexural resistance due to axial load, the 

result is therefore the same as in Appendix B.1. 

 

𝑁𝑏𝑅𝑑 =
0.516 ∙ 7600 𝑚𝑚2 ∙ 250 𝑁/𝑚𝑚2

1.10
= 891.2 𝑘𝑁 
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C.2: Imperfection effect  
 

The effect that different values of imperfection has on the capacities of an imperfect Eurocode 9 

column will be considered. Three columns with different lengths will be used: 3000 mm, 5000 mm 

and 7500 mm. The 200x10 mm quadratic hollow section will be used. The maximum allowable axial 

load with no imperfection has been calculated for these lengths in Appendix B.1. Imperfections 

ranging from 0 mm to 20 mm will be considered.  

The out-of-straightness imperfection will be described using the equivalent horizontal force method. 

In chapter 4.6, it was determined that the flexural buckling criteria for members in bending and axial 

compression is the governing design criteria for these columns. The following relationship exists 

between the bending moment and the axial load:   

𝑀𝑦,𝐸𝑑 = 𝑁𝐸𝑑 ∙ 𝑒0𝑑 

 

The governing criteria: 

Equation 6.62 [1}: 

(
𝑁𝐸𝑑

𝜒𝑚𝑖𝑛 ∙ 𝜔𝑥 ∙ 𝑁𝑅𝑑
)
𝜓𝑐

+
1

𝜔0
((
𝑀𝑦,𝐸𝑑

𝑀𝑦,𝑅𝑑
)

1.7

+ (
𝑀𝑧,𝐸𝑑
𝑀𝑧,𝑅𝑑

)

1.7

)

0.6

≤ 1.00 

(
𝑁𝐸𝑑

𝜒𝑚𝑖𝑛 ∙ 𝜔𝑥 ∙ 𝑁𝑅𝑑
)
𝜓𝑐

+
1

𝜔0
((
𝑁𝐸𝑑 ∙ 𝑒0𝑑
𝑀𝑦,𝑅𝑑

)

1.7

+ (
0

𝑀𝑧,𝑅𝑑
)

1.7

)

0.6

≤ 1.00 

The bending moment resistance and compression resistance is determined in Appendix C.1. The 

flexural buckling reduction factor is determined in Appendix B.1., this factor is dependent on length 

and will be different for the columns at are going to be tested.  

From Appendix B.1.: 

 𝐿 = 3000 𝑚𝑚 →  𝜒𝑚𝑖𝑛 = 0.818 → 𝑁𝐸𝑑 = 1412 𝑘𝑁 

 𝐿 = 5000 𝑚𝑚 →  𝜒𝑚𝑖𝑛 = 0.516 → 𝑁𝐸𝑑 = 891 𝑘𝑁 

 𝐿 = 7500 𝑚𝑚 →  𝜒𝑚𝑖𝑛 = 0.264 → 𝑁𝐸𝑑 = 455 𝑘𝑁 

From Appendix C.1.: 

 𝑁𝑅𝑑 = 1727 𝑘𝑁 

 𝑀𝑦,𝑅𝑑 = 104.2 𝑘𝑁𝑚 

From Eurocode 9: 

 𝜓𝑐 = 0.8 

 𝜔𝑥 = 𝜔0 = 1 

To determine the maximum axial load that satisfies the criteria, the value will be guessed. The results 

are shown in Table 13.   
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Table 13: Eurocode 9, imperfection effect 

Imperfection 
(mm) 

𝐿 = 3000 𝑚𝑚 𝐿 = 5000 𝑚𝑚 𝐿 = 7500 𝑚𝑚 
𝑁𝐸𝑑 𝑀𝑒𝑑 𝑁𝐸𝑑 𝑀𝑒𝑑 𝑁𝐸𝑑 𝑀𝑒𝑑 

0 1412 kN 0.00 kNm 891 kN 0.00 kNm 455 kN 0.00 kNm 

2 1370 kN 2.74 kNm 873 kN 1.75 kNm 451 kN 0.90 kNm 

4 1328 kN 5.31 kNm 856 kN 3.42 kNm 446 kN 1.78 kNm 

6 1290 kN 7.74 kNm 840 kN 5.04 kNm 442 kN 2.65 kNm 

8 1252 kN 10.0 kNm 824 kN 6.59 kNm 438 kN 3.05 kNm 

10 1218 kN 12.2 kNm 809 kN 8.09 kNm 433 kN 4.33 kNm 

12 1185 kN 14.2 kNm 794 kN 9.53 kNm 429 kN 5.15 kNm 

14 1153 kN 16.1 kNm 780 kN 10.92 kNm 425 kN 5.95 kNm 

16 1125 kN 18.0 kNm 767 kN 12.27 kNm 421 kN 6.74 kNm 

18 1096 kN 19.3 kNm 754 kN 13.57 kNm 417 kN 7.50 kNm 

20 1069 kN 23.4 kNm 741 kN 14.82 kNm 413 kN 8.26 kNm 
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Appendix D: Perry-Robertson calculations  
 

To gain a better understanding of the effect that an initial out-of-straightness imperfection has on 

the flexural buckling resistance, the buckling curve for a member with a constant imperfection will be 

presented. As can be seen from the Figure 44, a pinned situation will be considered. The deformation 

will then take the shape of a sinusoidal curve. The Perry-Robertson equation that was derived in 

chapter 2.8 will be used to determine the buckling curve. The results from using this equation will be 

given as a stress ratio at failure. If the ratio is equal to 1, it means that column has failed by crushing. 

Ratios lower than 1 indicates failure by flexural buckling. The stress ratio is based on experienced 

stress at failure divided by the yield stress. The test will be repeated for different values of 

imperfection and different cross-sections.  

 

D.1. 10 mm imperfection, 200x10 mm quadratic hollow section 

 

Figure 44: Imperfect column model, 10 mm imperfection 

 

 

 

For the first test, a 200x10 mm quadratic hollow 

section will be used. This cross-section is an ideal 

choice for investigating the flexural buckling 

resistance, as this cross-section type is not as 

likely to fail due to torsional-flexural buckling and 

it is not susceptible to lateral torsional buckling. 

The basic cross-sectional properties is given in 

Appendix A.1. As the 200x10 mm quadratic 

hollow section is symmetric about both axes, 

there is no major or minor axis about which 

buckling can occurs.  

  

Figure 45: 200x10 mm quadratic hollow section 
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Imperfection at midspan: 

𝛿0 = 10 𝑚𝑚 

Effective buckling length factor: 

𝑘 = 1 

Area of cross-section: 

𝐴 = 7600 𝑚𝑚2 

Moment of inertia: 

𝐼 = 45853333.33 𝑚𝑚4 

Distance to neutral axis: 

𝑦 = 100 𝑚𝑚 

Modulus of elasticity: 

𝐸 = 71000 𝑀𝑃𝑎 

Yield stress: 

𝜎𝑦 = 250 𝑀𝑃𝑎 

Radius of gyration: 

𝑟 = √
𝐼

𝐴
= √

45853333.33 𝑚𝑚4

7600 𝑚𝑚2
= 77.67 𝑚𝑚 

Imperfection variable: 

𝜂 =
𝛿0 ∙ 𝑦

𝑟2
=
10 𝑚𝑚 ∙ 100 𝑚𝑚

(77.67 𝑚𝑚)2
= 0.166 

Euler’s critical load: 

𝑃𝐸 =
𝜋2 ∙ 𝐸 ∙ 𝐼

(𝑘 ∙ 𝐿)2
 

Euler’s critical stress: 

𝜎𝐸 =
𝑃𝐸
𝐴
=
𝜋2 ∙ 𝐸 ∙ 𝐼

(𝑘 ∙ 𝐿)2 ∙ 𝐴
 

Perry-Robertson stress ratio: 

 𝜎

𝜎𝑦
= 0.5 ∙

(

 
 
(1 +

𝜎𝐸
𝜎𝑦
∙ (𝜂 + 1)) − √(1 +

𝜎𝐸
𝜎𝑦
∙ (𝜂 + 1))

2

− 4 ∙
𝜎𝐸
𝜎𝑦

)
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Table 14: Perry-Robertson results, 10 mm imperfection, 200x10 mm quadratic hollow section 

Length 
(mm) 

Euler’s stress, 
𝜎𝐸 (MPa) 

Stress ratio, 
𝜎

𝜎𝑦
  

 
Length (mm) 

Euler’s 
stress, 𝜎𝐸 

(MPa) 

Stress ratio, 
𝜎

𝜎𝑦
   

1 4.22e^9 0.858  10500 38.31 0.149 

500 16894.10 0.856  11000 34.91 0.136 

1000 4223.52 0.851  11500 31.94 0.125 

1500 1877.12 0.843  12000 29.33 0.11 

2000 1055.88 0.829  12500 27.03 0.11 

2500 675.76 0.809  13000 24.99 0.10 

3000 469.28 0.779  13500 23.17 0.09 

3500 344.78 0.737  14000 21.55 0.08 

4000 263.97 0.681  14500 20.09 0.08 

4500 208.57 0.614  15000 18.77 0.07 

5000 168.94 0.543  15500 17.58 0.07 

5500 139.62 0.475  16000 16.50 0.07 

6000 117.32 0.414  16500 15.51 0.06 

6500 99.97 0.362  17000 14.61 0.06 

7000 86.19 0.318  17500 13.79 0.05 

7500 75.08 0.281  18000 13.04 0.05 

8000 65.99 0.249  18500 12.34 0.05 

8500 58.46 0.223  19000 11.70 0.05 

9000 52.14 0.200  19500 11.11 0.04 

9500 46.80 0.180  20000 10.56 0.04 

10000 42.24 0.163     
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D.2. 15 mm imperfection, 200x10 mm quadratic hollow section  

 

Figure 46: Imperfect column model, 15 mm imperfection 

 

The calculations are repeated for an imperfection of 15 mm.  

 

 

Imperfection at midspan: 

𝛿0 = 15 𝑚𝑚 

Effective buckling length factor: 

𝑘 = 1 

Area of cross-section: 

𝐴 = 7600 𝑚𝑚2 

Moment of inertia: 

𝐼 = 45853333.33 𝑚𝑚4 

Distance to neutral axis: 

𝑦 = 100 𝑚𝑚 

Modulus of elasticity: 

𝐸 = 71000 𝑀𝑃𝑎 

Yield stress: 

𝜎𝑦 = 250 𝑀𝑃𝑎 

Radius of gyration: 

𝑟 = √
𝐼

𝐴
= √

45853333.33 𝑚𝑚4

7600 𝑚𝑚2
= 77.67 𝑚𝑚 

Imperfection variable: 

𝜂 =
𝛿0 ∙ 𝑦

𝑟2
=
15 𝑚𝑚 ∙ 100 𝑚𝑚

(77.67 𝑚𝑚)2
= 0.249 
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Euler’s critical load: 

𝑃𝐸 =
𝜋2 ∙ 𝐸 ∙ 𝐼

(𝑘 ∙ 𝐿)2
 

Euler’s critical stress: 

𝜎𝐸 =
𝑃𝐸
𝐴
=
𝜋2 ∙ 𝐸 ∙ 𝐼

(𝑘 ∙ 𝐿)2 ∙ 𝐴
 

Perry-Robertson stress ratio: 

 𝜎

𝜎𝑦
= 0.5 ∙

(

 
 
(1 +

𝜎𝐸
𝜎𝑦
∙ (𝜂 + 1)) − √(1 +

𝜎𝐸
𝜎𝑦
∙ (𝜂 + 1))

2

− 4 ∙
𝜎𝐸
𝜎𝑦

)

 
 
  

 

 

Table 15: Perry-Robertson results, 15 mm imperfection, 200x10 mm quadratic hollow section 

Length 
(mm) 

Euler’s stress, 
𝜎𝐸 (MPa) 

Stress ratio, 
𝜎

𝜎𝑦
  

 
Length (mm) 

Euler’s 
stress, 𝜎𝐸 

(MPa) 

Stress ratio, 
𝜎

𝜎𝑦
   

1 4.22e^9 0.801  10500 38.31 0.147 

500 16894.10 0.799  11000 34.91 0.134 

1000 4223.52 0.793  11500 31.94 0.123 

1500 1877.12 0.783  12000 29.33 0.114 

2000 1055.88 0.767  12500 27.03 0.105 

2500 675.76 0.745  13000 24.99 0.097 

3000 469.28 0.714  13500 23.17 0.090 

3500 344.78 0.673  14000 21.55 0.084 

4000 263.97 0.623  14500 20.09 0.079 

4500 208.57 0.565  15000 18.77 0.074 

5000 168.94 0.505  15500 17.58 0.069 

5500 139.62 0.446  16000 16.50 0.065 

6000 117.32 0.394  16500 15.51 0.061 

6500 99.97 0.347  17000 14.61 0.058 

7000 86.19 0.307  17500 13.79 0.054 

7500 75.08 0.272  18000 13.04 0.051 

8000 65.99 0.243  18500 12.34 0.049 

8500 58.46 0.218  19000 11.70 0.046 

9000 52.14 0.196  19500 11.11 0.044 

9500 46.80 0.177  20000 10.56 0.042 

10000 42.24 0.161     
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D.3. 5 mm imperfection, 200x10 mm quadratic hollow section 
 

 

Figure 47: Imperfect column model, 5 mm imperfection 

 

The calculations are repeated for an imperfection for an imperfection of 5 mm.  

 

 

Imperfection at midspan: 

𝛿0 = 5 𝑚𝑚 

Effective buckling length factor: 

𝑘 = 1 

Area of cross-section: 

𝐴 = 7600 𝑚𝑚2 

Moment of inertia: 

𝐼 = 45853333.33 𝑚𝑚4 

Distance to neutral axis: 

𝑦 = 100 𝑚𝑚 

Modulus of elasticity: 

𝐸 = 71000 𝑀𝑃𝑎 

Yield stress: 

𝜎𝑦 = 250 𝑀𝑃𝑎 

Radius of gyration: 

𝑟 = √
𝐼

𝐴
= √

45853333.33 𝑚𝑚4

7600 𝑚𝑚2
= 77.67 𝑚𝑚 

Imperfection variable: 

𝜂 =
𝛿0 ∙ 𝑦

𝑟2
=
5 𝑚𝑚 ∙ 100 𝑚𝑚

(77.67 𝑚𝑚)2
= 0.0829 
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Euler’s critical load: 

𝑃𝐸 =
𝜋2 ∙ 𝐸 ∙ 𝐼

(𝑘 ∙ 𝐿)2
 

Euler’s critical stress: 

𝜎𝐸 =
𝑃𝐸
𝐴
=
𝜋2 ∙ 𝐸 ∙ 𝐼

(𝑘 ∙ 𝐿)2 ∙ 𝐴
 

Perry-Robertson stress ratio: 

 𝜎

𝜎𝑦
= 0.5 ∙

(

 
 
(1 +

𝜎𝐸
𝜎𝑦
∙ (𝜂 + 1)) − √(1 +

𝜎𝐸
𝜎𝑦
∙ (𝜂 + 1))

2

− 4 ∙
𝜎𝐸
𝜎𝑦

)

 
 
  

 

 

 

Table 16: Perry-Robertson results, 5 mm imperfection, 200x10 mm quadratic hollow section 

Length 
(mm) 

Euler’s stress, 
𝜎𝐸 (MPa) 

Stress ratio, 
𝜎

𝜎𝑦
  

 
Length (mm) 

Euler’s 
stress, 𝜎𝐸 

(MPa) 

Stress ratio, 
𝜎

𝜎𝑦
   

1 4.22e^9 0.923  10500 38.31 0.151 

500 16894.10 0.922  11000 34.91 0.138 

1000 4223.52 0.919  11500 31.94 0.126 

1500 1877.12 0.914  12000 29.33 0.116 

2000 1055.88 0.905  12500 27.03 0.107 

2500 675.76 0.890  13000 24.99 0.099 

3000 469.28 0.867  13500 23.17 0.092 

3500 344.78 0.828  14000 21.55 0.086 

4000 263.97 0.767  14500 20.09 0.080 

4500 208.57 0.684  15000 18.77 0.075 

5000 168.94 0.594  15500 17.58 0.070 

5500 139.62 0.510  16000 16.50 0.066 

6000 117.32 0.439  16500 15.51 0.062 

6500 99.97 0.380  17000 14.61 0.058 

7000 86.19 0.331  17500 13.79 0.055 

7500 75.08 0.290  18000 13.04 0.052 

8000 65.99 0.256  18500 12.34 0.049 

8500 58.46 0.228  19000 11.70 0.047 

9000 52.14 0.204  19500 11.11 0.044 

9500 46.80 0.184  20000 10.56 0.042 

10000 42.24 0.166     
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D.4. No imperfection, 200x10 mm quadratic hollow section 
 

The calculations are performed once more for a column without any imperfection. This is done in 

order to compare the results for this “perfect” column, with the results found for imperfect columns. 

Although a “perfect” column does not exist, the buckling curve will still be interesting to develop. 

 

Imperfection at midspan: 

𝛿0 = 0 𝑚𝑚 

Effective buckling length factor: 

𝑘 = 1 

Area of cross-section: 

𝐴 = 7600 𝑚𝑚2 

Moment of inertia: 

𝐼 = 45853333.33 𝑚𝑚4 

Distance to neutral axis: 

𝑦 = 100 𝑚𝑚 

Modulus of elasticity: 

𝐸 = 71000 𝑀𝑃𝑎 

Yield stress: 

𝜎𝑦 = 250 𝑀𝑃𝑎 

Radius of gyration: 

𝑟 = √
𝐼

𝐴
= √

45853333.33 𝑚𝑚4

7600 𝑚𝑚2
= 77.67 𝑚𝑚 

Imperfection variable: 

𝜂 =
𝛿0 ∙ 𝑦

𝑟2
=
0 𝑚𝑚 ∙ 100 𝑚𝑚

(77.67 𝑚𝑚)2
= 0.00 

Euler’s critical load: 

𝑃𝐸 =
𝜋2 ∙ 𝐸 ∙ 𝐼

(𝑘 ∙ 𝐿)2
 

Euler’s critical stress: 

𝜎𝐸 =
𝑃𝐸
𝐴
=
𝜋2 ∙ 𝐸 ∙ 𝐼

(𝑘 ∙ 𝐿)2 ∙ 𝐴
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Perry-Robertson stress ratio: 

 𝜎

𝜎𝑦
= 0.5 ∙

(

 
 
(1 +

𝜎𝐸
𝜎𝑦
∙ (𝜂 + 1)) − √(1 +

𝜎𝐸
𝜎𝑦
∙ (𝜂 + 1))

2

− 4 ∙
𝜎𝐸
𝜎𝑦

)

 
 
  

 

 

Table 17: Perry-Robertson results, no imperfection, 200x10 mm quadratic hollow section 

Length 
(mm) 

Euler’s stress, 
𝜎𝐸 (MPa) 

Stress ratio, 
𝜎

𝜎𝑦
  

 
Length (mm) 

Euler’s 
stress, 𝜎𝐸 

(MPa) 

Stress ratio, 
𝜎

𝜎𝑦
   

1 4.22e^9 1.000  10500 38.31 0.153 

500 16894.10 1.000  11000 34.91 0.140 

1000 4223.52 1.000  11500 31.94 0.128 

1500 1877.12 1.000  12000 29.33 0.117 

2000 1055.88 1.000  12500 27.03 0.108 

2500 675.76 1.000  13000 24.99 0.100 

3000 469.28 1.000  13500 23.17 0.093 

3500 344.78 1.000  14000 21.55 0.086 

4000 263.97 1.000  14500 20.09 0.080 

4500 208.57 0.834  15000 18.77 0.075 

5000 168.94 0.676  15500 17.58 0.070 

5500 139.62 0.558  16000 16.50 0.066 

6000 117.32 0.469  16500 15.51 0.062 

6500 99.97 0.400  17000 14.61 0.058 

7000 86.19 0.345  17500 13.79 0.055 

7500 75.08 0.300  18000 13.04 0.052 

8000 65.99 0.264  18500 12.34 0.049 

8500 58.46 0.234  19000 11.70 0.047 

9000 52.14 0.209  19500 11.11 0.044 

9500 46.80 0.187  20000 10.56 0.042 

10000 42.24 0.169     
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D.5. 10 mm imperfection, H-400 cross-section - Minor axis 
 

Buckling curves will also be developed for the H-400 cross-

section. This is done in order to compare the buckling 

curves for H-400 and the 200x10 mm quadratic hollow 

section. The H-400 cross-section is very slender and the 

web is susceptible to local buckling. This is not accounted 

for in the Perry-Robertson equation and so it is expected 

that the differences between the Perry-Robertson results 

and Eurocode 9 results will be larger for the H-400 cross-

section compared with the 200x10 mm quadratic hollow 

section. Lateral torsional buckling might also be a problem 

for this I-section.  

 

Calculations of the capacity for this section will be 

performed with regards to flexural buckling about both major and minor axis. The cross-sectional 

properties was calculated in Appendix A.2. The differences between the major and minor axes is the 

moment of inertia and the radius of gyration, as well as the distance to the neutral axis. Flexural 

buckling occurs about the axis with the largest slenderness ratio and the smallest radius of gyration. 

This is then called the minor axis. This means that buckling must be suppressed with regards to the 

minor axis if buckling is ever to occur about the major axis. This is however common practice and the 

results for the major axis will be equally interesting. The following calculations is for the minor axis, 

while the calculations for the major axis is performed in Appendix D.7. 

 

 

Imperfection at midspan: 

𝛿0 = 10 𝑚𝑚 

Effective buckling length factor: 

𝑘 = 1 

Area of cross-section: 

𝐴 = 10080 𝑚𝑚2 

Moment of inertia: 

𝐼𝑥 = 21364000 𝑚𝑚
4 

Distance to neutral axis: 

𝑦𝑥 = 100 𝑚𝑚 

Modulus of elasticity: 

𝐸 = 71000 𝑀𝑃𝑎 

Figure 48: H-400 cross-section 
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Yield stress: 

𝜎𝑦 = 250 𝑀𝑃𝑎 

Radius of gyration: 

𝑟 = √
𝐼𝑥
𝐴
= √

21364000 𝑚𝑚4

10080 𝑚𝑚2
= 46.04 𝑚𝑚 

Imperfection variable: 

𝜂 =
𝛿0 ∙ 𝑦

𝑟2
=
10 𝑚𝑚 ∙ 100 𝑚𝑚

(46.04 𝑚𝑚)2
= 0.472 

 

 

Euler’s critical load: 

𝑃𝐸 =
𝜋2 ∙ 𝐸 ∙ 𝐼𝑥
(𝑘 ∙ 𝐿)2

 

Euler’s critical stress: 

𝜎𝐸 =
𝑃𝐸
𝐴
=
𝜋2 ∙ 𝐸 ∙ 𝐼𝑥
(𝑘 ∙ 𝐿)2 ∙ 𝐴

 

Perry-Robertson stress ratio: 

 𝜎

𝜎𝑦
= 0.5 ∙

(

 
 
(1 +

𝜎𝐸
𝜎𝑦
∙ (𝜂 + 1)) − √(1 +

𝜎𝐸
𝜎𝑦
∙ (𝜂 + 1))

2

− 4 ∙
𝜎𝐸
𝜎𝑦

)
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Table 18: Perry-Robertson results, 10 mm imperfection, H-400 minor axis 

Length (mm) Euler’s stress, 𝜎𝐸 (MPa) Stress ratio, 
𝜎

𝜎𝑦
  

1 1.48e^9 0.679 

500 5934.71 0.673 

1000 1483.68 0.654 

1500 659.41 0.619 

2000 370.92 0.567 

2500 237.39 0.501 

3000 164.85 0.427 

3500 121.12 0.357 

4000 92.73 0.297 

4500 73.27 0.248 

5000 59.35 0.208 

5500 49.05 0.176 

6000 41.21 0.151 

6500 35.12 0.131 

7000 30.28 0.114 

7500 26.38 0.100 

8000 23.18 0.088 

8500 20.54 0.079 

9000 18.32 0.071 

9500 16.44 0.064 

10000 14.84 0.058 
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D.6. No imperfection, H-400 cross-section - Minor axis 
 

The following calculations are done for a “perfect” H-400 column, with regards to the minor axis. 

 

Imperfection at midspan: 

𝛿0 = 0 𝑚𝑚 

Effective buckling length factor: 

𝑘 = 1 

Area of cross-section: 

𝐴 = 10080 𝑚𝑚2 

Moment of inertia: 

𝐼𝑥 = 21364000 𝑚𝑚
4 

Distance to neutral axis: 

𝑦𝑥 = 100 𝑚𝑚 

Modulus of elasticity: 

𝐸 = 71000 𝑀𝑃𝑎 

 

Yield stress: 

𝜎𝑦 = 250 𝑀𝑃𝑎 

Radius of gyration: 

𝑟 = √
𝐼𝑥
𝐴
= √

21364000 𝑚𝑚4

10080 𝑚𝑚2
= 46.04 𝑚𝑚 

Imperfection variable: 

𝜂 =
𝛿0 ∙ 𝑦

𝑟2
=
0 𝑚𝑚 ∙ 100 𝑚𝑚

(46.04 𝑚𝑚)2
= 0 

 

 

Euler’s critical load: 

𝑃𝐸 =
𝜋2 ∙ 𝐸 ∙ 𝐼𝑥
(𝑘 ∙ 𝐿)2

 

Euler’s critical stress: 
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𝜎𝐸 =
𝑃𝐸
𝐴
=
𝜋2 ∙ 𝐸 ∙ 𝐼𝑥
(𝑘 ∙ 𝐿)2 ∙ 𝐴

 

Perry-Robertson stress ratio: 

 𝜎

𝜎𝑦
= 0.5 ∙

(

 
 
(1 +

𝜎𝐸
𝜎𝑦
∙ (𝜂 + 1)) −√(1 +

𝜎𝐸
𝜎𝑦
∙ (𝜂 + 1))

2

− 4 ∙
𝜎𝐸
𝜎𝑦

)

 
 

 

 

Table 19: Perry-Robertson results, no imperfection, H-400 minor axis 

Length (mm) Euler’s stress, 𝜎𝐸 (MPa) Stress ratio, 
𝜎

𝜎𝑦
  

1 1.48e^9 1.000 

500 5934.71 1.000 

1000 1483.68 1.000 

1500 659.41 1.000 

2000 370.92 1.000 

2500 237.39 0.950 

3000 164.85 0.659 

3500 121.12 0.484 

4000 92.73 0.371 

4500 73.27 0.293 

5000 59.35 0.237 

5500 49.05 0.196 

6000 41.21 0.165 

6500 35.12 0.140 

7000 30.28 0.121 

7500 26.38 0.106 

8000 23.18 0.093 

8500 20.54 0.082 

9000 18.32 0.073 

9500 16.44 0.066 

10000 14.84 0.059 
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D.7. 10 mm imperfection, H-400 cross-section - Major axis 
 

The calculations are repeated for the major axis: 

 

Imperfection at midspan: 

𝛿0 = 10 𝑚𝑚 

Effective buckling length factor: 

𝑘 = 1 

Area of cross-section: 

𝐴 = 10080 𝑚𝑚2 

Moment of inertia: 

𝐼𝑦 = 277596160 𝑚𝑚
4 

Distance to neutral axis: 

𝑦𝑦 = 200 𝑚𝑚 

Modulus of elasticity: 

𝐸 = 71000 𝑀𝑃𝑎 

Yield stress: 

𝜎𝑦 = 250 𝑀𝑃𝑎 

Radius of gyration: 

𝑟 = √
𝐼𝑦

𝐴
= √

277596160 𝑚𝑚4

10080 𝑚𝑚2
= 165.95 𝑚𝑚 

Imperfection variable: 

𝜂 =
𝛿0 ∙ 𝑦

𝑟2
=
10 𝑚𝑚 ∙ 200 𝑚𝑚

(165.95 𝑚𝑚)2
= 0.073 

Euler’s critical load: 

𝑃𝐸 =
𝜋2 ∙ 𝐸 ∙ 𝐼𝑦

(𝑘 ∙ 𝐿)2
 

Euler’s critical stress: 

𝜎𝐸 =
𝑃𝐸
𝐴
=
𝜋2 ∙ 𝐸 ∙ 𝐼𝑦
(𝑘 ∙ 𝐿)2 ∙ 𝐴
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Perry-Robertson stress ratio: 

 𝜎

𝜎𝑦
= 0.5 ∙

(

 
 
(1 +

𝜎𝐸
𝜎𝑦
∙ (𝜂 + 1)) −√(1 +

𝜎𝐸
𝜎𝑦
∙ (𝜂 + 1))

2

− 4 ∙
𝜎𝐸
𝜎𝑦

)

 
 

 

 

Table 20: Perry-Robertson results, 10 mm imperfection, H-400 major axis 

Length (mm) Euler’s stress, 𝜎𝐸 (MPa) Stress ratio, 
𝜎

𝜎𝑦
  

1 1.93e^10 0.932 

500 77113.53 0.932 

1000 19278.38 0.932 

1500 8568.17 0.931 

2000 4819.60 0.929 

2500 3084.54 0.927 

3000 2142.04 0.925 

3500 1573.75 0.922 

4000 1204.90 0.918 

4500 952.02 0.913 

5000 771.14 0.907 

5500 637.30 0.899 

6000 535.51 0.890 

6500 456.29 0.877 

7000 393.44 0.862 

7500 342.73 0.842 

8000 301.22 0.816 

8500 266.83 0.785 

9000 238.00 0.747 

9500 213.61 0.706 

10000 192.78 0.662 

10500 174.86 0.617 

11000 159.33 0.575 

11500 145.77 0.534 

12000 133.88 0.497 

12500 123.38 0.463 

13000 114.07 0.431 

13500 105.78 0.402 

14000 98.36 0.376 

14500 91.69 0.352 

15000 85.68 0.330 

15500 80.24 0.310 

16000 75.31 0.292 
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D.8. No imperfection, H-400 cross-section - Major axis 
 

 

Imperfection at midspan: 

𝛿0 = 0 𝑚𝑚 

Effective buckling length factor: 

𝑘 = 1 

Area of cross-section: 

𝐴 = 10080 𝑚𝑚2 

Moment of inertia: 

𝐼𝑦 = 277596160 𝑚𝑚
4 

Distance to neutral axis: 

𝑦𝑦 = 200 𝑚𝑚 

Modulus of elasticity: 

𝐸 = 71000 𝑀𝑃𝑎 

Yield stress: 

𝜎𝑦 = 250 𝑀𝑃𝑎 

Radius of gyration: 

𝑟 = √
𝐼𝑦

𝐴
= √

277596160 𝑚𝑚4

10080 𝑚𝑚2
= 165.95 𝑚𝑚 

Imperfection variable: 

𝜂 =
𝛿0 ∙ 𝑦

𝑟2
=
0 𝑚𝑚 ∙ 200 𝑚𝑚

(165.95 𝑚𝑚)2
= 0.0 

Euler’s critical load: 

𝑃𝐸 =
𝜋2 ∙ 𝐸 ∙ 𝐼𝑦

(𝑘 ∙ 𝐿)2
 

Euler’s critical stress: 

𝜎𝐸 =
𝑃𝐸
𝐴
=
𝜋2 ∙ 𝐸 ∙ 𝐼𝑦
(𝑘 ∙ 𝐿)2 ∙ 𝐴
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Perry-Robertson stress ratio: 

 𝜎

𝜎𝑦
= 0.5 ∙

(

 
 
(1 +

𝜎𝐸
𝜎𝑦
∙ (𝜂 + 1)) −√(1 +

𝜎𝐸
𝜎𝑦
∙ (𝜂 + 1))

2

− 4 ∙
𝜎𝐸
𝜎𝑦

)

 
 

 

 

Table 21: Perry-Robertson results, no imperfection, H-400 major axis 

Length (mm) Euler’s stress, 𝜎𝐸 (MPa) Stress ratio, 
𝜎

𝜎𝑦
  

1 1.93e^10 1.000 

500 77113.53 1.000 

1000 19278.38 1.000 

1500 8568.17 1.000 

2000 4819.60 1.000 

2500 3084.54 1.000 

3000 2142.04 1.000 

3500 1573.75 1.000 

4000 1204.90 1.000 

4500 952.02 1.000 

5000 771.14 1.000 

5500 637.30 1.000 

6000 535.51 1.000 

6500 456.29 1.000 

7000 393.44 1.000 

7500 342.73 1.000 

8000 301.22 1.000 

8500 266.83 1.000 

9000 238.00 0.952 

9500 213.61 0.854 

10000 192.78 0.771 

10500 174.86 0.699 

11000 159.33 0.637 

11500 145.77 0.583 

12000 133.88 0.536 

12500 123.38 0.494 

13000 114.07 0.456 

13500 105.78 0.423 

14000 98.36 0.393 

14500 91.69 0.367 

15000 85.68 0.343 

15500 80.24 0.321 

16000 75.31 0.301 
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Appendix E: Imperfect cross-section calculations 
 

E.1. H-400 Cross-section with varying geometry 
 

To gain a better understanding of the effect that varying the width of the flange and height of the 

web has on flexural buckling resistance, some calculations must be performed. As mentioned in 

Chapter 5, this will be a worst-case scenario where both deviations of the width and deviations of the 

height occurs simultaneously.  

 

 

Figure 49: H-400 cross-section 

The calculations will be carried out for a H-400 cross-section. With changes being done to the cross-

section, it is necessary to perform the classification calculations again. With class 4 components, a 

thickness reduction factor must be determined and implemented into the relevant thickness. This 

will create a new effective area that is to be used in the resistance calculations. A new moment of 

inertia must also be determined. The moment of inertia for both axes is determined with regards to 

the gross cross-section geometry.    

The classification calculations and moment of inertia calculations are done in the same manner as in 

Appendix A.2. 

The resistance calculations are done in the same manner as in Appendix B.2. 
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The results have been tabulated: 

 

Table 22: Classification and thickness reduction, H-400 

Change 

Geometry Classification 
Thickness reduction 

factor 

Width Height Thickness 
flange 

Thickness 
web 

Flange Web Flange Web 

- 5 mm 195 mm 395 mm 16 mm 10 mm Class 3 Class 4 - 0.715 

- 3 mm 197 mm 397 mm 16 mm 10 mm Class 3 Class 4 - 0.712 

  0 mm 200 mm 400 mm 16 mm 10 mm Class 3 Class 4 - 0.707 

+ 3 mm 203 mm 403 mm 16 mm 10 mm Class 4 Class 4 0.998 0.703 

+ 5 mm 205 mm 405 mm 16 mm 10 mm Class 4 Class 4 0.995 0.700 

 

 

Table 23: Moment of inertia, H-400 

Change 
Effective thickness Area Moment of inertia 

Flange Web Gross Effective 𝐼𝑥  𝐼𝑦  

- 5 mm 16.00 7.146 9870.0 8833.9 19803250.0 264073202.5 

- 3 mm 16.00 7.116 9954.0 8901.3 20418078.0 269430825.5 

  0 mm 16.00 7.070 10080.0 9002.2 21364000.0 277596160.0 

+ 3 mm 15.97 7.027 10206.0 9091.7 22338722.0 285917446.5 

+ 5 mm 15.91 7.000 10290.0 9135.5 23004750.0 291552317.5 

 

For the resistance calculations the column is assumed to be 3000 mm long with pinned end supports. 

Table 24: Compression and flexural buckling resistance, H-400 

Change Compression resistance 
Flexural buckling resistance 

x-axis y-axis 

- 5 mm 2007.7 1058.7 1910.8 

- 3 mm 2023.0 1083.9 1926.3 

  0 mm 2045.9 1121.8 1949.6 

+ 3 mm 2066.3 1159.4 1970.4 

+ 5 mm 2076.3 1186.8 1981.1 

 

It can be determined from these results that the resistances increases with the larger cross-sections. 

Therefore it can be concluded that the positive effects from a larger cross-section is overall 

beneficial, even with the added negative effect from local buckling.    
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E.2. H-200 Cross-section with varying geometry 
 

Since the production tolerances listed in NS-EN 1090-3 states an actual measurement for the 

permitted deviation of flange width and web height and not an expression, as is the case with many 

other tolerances, the effect should prove more influential in a smaller cross-section. 

To test this a new cross-section will be presented, the H-200. This cross-section will be half the size of 

the H-400 cross-section 

 

Figure 50: H-200 cross-section 

The calculations are done in the same manner as for the H-400 cross-section. This cross-section is 

exactly half the size of the H-400 cross-section and so the slenderness ratio for the different cross-

section components remains unaltered. This will lead to the same required thickness reductions for 

the various changes in the geometry. 

The results have been tabulated: 

Table 25: Classification and thickness reduction, H-200 

Change 

Geometry Classification 
Thickness reduction 

factor 

Width Height Thickness 
flange 

Thickness 
web 

Flange Web Flange Web 

- 5 mm 95 mm 195 mm 8 mm 5 mm Class 3 Class 4 - 0.722 

- 3 mm 97 mm 197 mm 8 mm 5 mm Class 3 Class 4 - 0.716 

  0 mm 100 mm 200 mm 8 mm 5 mm Class 3 Class 4 - 7.070 

+ 3 mm 103 mm 203 mm 8 mm 5 mm Class 4 Class 4 0.993 0.698 

+ 5 mm 105 mm 205 mm 8 mm 5 mm Class 4 Class 4 0.986 0.693 
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Table 26: Moment of inertia, H-200 

Change 
Effective thickness Area Moment of inertia 

Flange Web Gross Effective 𝐼𝑥  𝐼𝑦  

- 5 mm 8.00 3.61 2415.0 2166.4 1145031.25 15686051.25 

- 3 mm 8.00 3.58 2457.0 2200.1 1218782.75 16338750.75 

  0 mm 8.00 3.54 2520.0 2250.5 1335250.00 17349760.00 

+ 3 mm 7.94 3.49 2583.0 2289.3 1458917.25 18399787.25 

+ 5 mm 7.89 3.46 2625.0 2310.3 1545468.75 19121768.75 

 

For the resistance calculations the column is assumed to be 1000 mm long with pinned end supports. 

Table 27: Compression and flexural buckling resistance, H-200 

Change Compression resistance 
Flexural buckling resistance 

x-axis y-axis 

- 5 mm 492.4 378.7 480.1 

- 3 mm 500.0 389.9 487.8 

  0 mm 511.5 406.4 499.4 

+ 3 mm 520.3 420.7 508.5 

+ 5 mm 525.1 429.2 513.5 
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