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Abstract 

A fixed platform in shallow waters is supported on a Jacket structure with a heavy Topside over it. 

The Jacket design is designed for various limit states including the ultimate limit state (ULS), 

serviceability limit state (SLS) and the fatigue limit state (FLS). The loading on a Jacket is generally 

the environmental loading and gravity loads. The environmental loads are wind, wave and current 

loading. The wave loading is generally governing and wave theory used in analysis need to be 

chosen carefully. The gravity loads are from the overhead Topside in addition to self-weight of the 

Jacket. It is observed in some cases that while the Jacket design is completed, the Topsides work 

including some part on the design is not completed. Also many a times the Topside and Jacket 

design contracts are given out to separate engineering contractors depending on their expertise and 

specialized experience. For Jacket contractors, it becomes not only impractical but also 

uneconomical to spend hundreds of hours on modelling the Topside in minute detail. In such cases 

it is very important to represent the Topside mass precisely for the Jacket design. 

However, not many guidelines are available on the mass modelling approaches to be adopted for 

Topside modelling in cases where limited information and time is available. Various approaches 

of modelling the Topside mass are formulated and discussed in this thesis. These approaches are 

first demonstrated on a simple structure. The approaches are then used for a case study on one of 

the heaviest offshore structure in the Norwegian Continental Shelfs (NCS). The Topside has a 

weight of 28000 tons in this case. The results using various approaches are presented and 

conclusions are drawn. In the end, recommendations are made for practicing engineers on adopting 

suitable approach for modelling the Topside in case of lack of detailed information or lack of time. 

A case study on the effect of wave theory on the structural response of the Jacket structure is also 

performed and results are presented. 
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1. Introduction 

1.1. Background 
The oil and gas industry has developed well over the last few decades. The offshore exploration 

began in the United States when Henry Williams began extracting oil from the Summerland field 

of the Californian coast near Santa Barbara in the 1890’s. This platform is shown in Figure 1-1. 

 
Figure 1-1 First installed oil platform in the Gulf of Mexico [1] 

Since the installation of the first platform in the Gulf of Mexico, the offshore industry has seen 

many innovative structures placed in deeper waters and more hostile environment. Slowly and 

gradually by 1975, structures were installed in water depths until 475 ft (144m). By 1980s, the 

water depths increased significantly to more than 300m. The progress of platform development 

into deeper water is shown in Figure 1-2. 

 
Figure 1-2 Offshore platform development [2] 
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Since 1947, more than 10000 offshore structures have been constructed and installed worldwide. 

A majority of these platforms are made of steel and are anchored to the sea floor using piles. These 

platforms are called fixed Jacket type platforms and will be the main focus for this thesis. 

The above discussed fixed platforms are generally installed in shallow waters. Shallow water 

depths are generally until 300 to 400 meters. Beyond this depth, it is technically not possible to 

install fixed type platforms due to stability issues. Also, the oil reserves in deeper waters need to 

be extracted to meet rising energy demands. To counteract deeper waters, floating type structures 

were developed. Such floating structures can be jack-ups, floating ships, spars or semi-

submersibles which are tied to the seabed using moorings. 

A typical fixed platform has two main parts namely the Topsides and the supporting Jacket. While 

designing the Jacket for various limit states (SLS, ULS, FLS), it is important to consider all the 

possible loading on the structure. These loading are generally the gravity loads along with the 

environmental loading. The gravity loads are from the overhead Topside in addition to self-weight 

of the Jacket. The environmental loads are wind, wave and current loading.  

The deadweight of the Topside is one of the governing criteria for the Jacket design. However, 

sometimes the Topside information is not fully available to the practicing engineers. This might be 

due to several reasons such as design contract only for the Jacket or lack of time to model the 

Topside in very detailed manner. This might also be due to the lack of complete Topside 

information from the second contractor designing the Topside. In such cases, it is very important 

to model the Topside in an approximate but correct manner without compromising on the precision 

of Jacket design. There can be various approaches to model the Topside mass.  

Various approaches of modelling the Topside are formulated and discussed in this thesis. This is 

done through a case study on one of the heaviest offshore structure in the Norwegian Continental 

Shelfs (NCS). The Topside has a weight of 28000 tons in this case. The results using various 

approaches are presented and conclusions are drawn. In the end, recommendations are made for 

practicing engineers on adopting suitable approach for modelling the Topside in case of lack of 

detailed information or lack of time. More details about the considered offshore platform is 

presented in the next section. 
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1.2. Martin Linge platform  
Martin Linge is a Norwegian off-shore project, developed by TOTAL E&P Norway (51%) acting 

as operator with Petoro (30%) and Statoil (19%) as partners. Martin Linge is located in a field 

called Hild field and are in the North West part of the Norwegian Continetal Shelfs (NCS) 

approximately 170 km west of Bergen as shown in Figure 1-3. The field contains gas, condensate 

and oil discoveries at around 190 million barrels of oil equivalent. The conceptual design is shown 

in Figure 1-4. 

 
Figure 1-3 Location of Hild field in NCS region 

 
Figure 1-4 Conceptual image for Martin Linge platform in the Hild oil field 

The Jacket is a fixed installation that consists of 8 main legs and mainly X-bracing between the six 

horizontal elevations. The Jacket is at a depth of 114 meters and will be supported to the seabed 

with the use of pile clusters that are located at the four bottom corners of the Jacket. These piles 
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have a dimension of 96 inches and the pile clusters contains 4 piles each with a total of 16 piles 

and a length of 65m each. The Jacket was transported on a barge and was launched and upended 

in the North Sea in 2014. Some of the images from the installation phase are shown in Figure 1-5 

and Figure 1-6. 

 
Figure 1-5 Martin Linge Jacket transportation offshore 

 
Figure 1-6 Martin Linge Jacket installation on the site 

The Topside was planned to be installed in 2016. However, the project is running behind schedule 

due to unforeseen delays. The Topside is currently under design and fabrication stage and is now 

expected to be installed in 2018. 

1.3. Motivation and objectives 
 The motivation for this thesis came from the Martin Linge project. The platform has a Topside 

weighting 28000 ton and Jacket weighing 10000 tons. This is one of the heaviest in the NCS region. 

It is seen that while the Jacket is already been installed, the Topsides work including some part on 

design is still ongoing. In such cases it is very important to represent the Topside mass precisely 

for the Jacket design even when the Topside (and its modules) mass information is not available in 

detail. Also many a times the Topside and Jacket design contracts are given out to separate 
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engineering contractors depending on their expertise. In such cases, for the engineering contractor 

designing the Jacket, it becomes not only impractical but also uneconomical to spend many hours 

on modelling the Topside in minute detail. But at the same time it is important to represent the 

Topside mass as precise as possible to capture the structural response of the Jacket accurately. It is 

found that the currently available guidelines do not mention any procedures for modelling the 

Topside mass approximately without modelling each of its modules in detail. The motivation of 

this thesis is to consider various possible approaches of modelling a Topside mass given limited 

information and limited time. 

A number of objectives are identified for this thesis. The first objective is to investigate the effect 

of various wave theories on the structural response of the Jacket structure. Analysis is performed 

for both linear and nonlinear wave theories. The study is first performed on a simple beam structure 

and results are compared with manual calculations to gain a good understanding. The study is then 

extended to the big Jacket structure and results are presented. The results are compared and 

conclusions are drawn. This study will be referred to as the first part of case study in future sections. 

The second and main objective of this thesis is to investigate various approaches of modelling the 

Topsides mass over the Jacket. The need of such approaches is generally required in the industry 

due to lack of information on the Topsides data as well as due to lack of time. Various approaches 

are formulated and results are presented. In the end, conclusions are drawn and recommendations 

are made for practicing engineers on the selection of suitable approach for modelling the Topside 

mass. Again, the study is first conducted on a simple beam structure and results are verified with 

manual and analytical solution before moving ahead with the complex Jacket structure. This part 

of the study will be referred to as the second part of the case study in future sections. 

1.4. Organization of the report 
The thesis is organized in 6 chapters. Various wave theories and their underlying assumptions are 

discussed in chapter 2. Chapter 3 discusses about the FE modelling and analysis in FE software 

SAP 2000. The theory behind modal analysis and limit states analysis (SLS, ULS) is also presented. 

The first part of the case study is presented in Chapter 4 and it investigate the effect of various 

wave theories on the structural response of the Jacket. The second part of the case study is presented 

in Chapter 5 and various approaches of modeling the Topside mass is discussed in this chapter. 

Discussion, conclusion and scope of future work is presented in Chapter 6.  
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2. Wave theories and underlying assumptions 

Historically wave models have been dealt with by means of different theories each having certain 

specific assumptions. It started with the linear wave theory developed by Airy (1895) which 

considered a simple sinusoidal wave travelling in space and varying with time. It also assumes 

potential theory for the calculation of the velocity field i.e. no friction losses and linearize the free 

surface boundary conditions and the differential equation itself [3]. 

This first approximation is valid for infinite depths, that is, when the wave is unaffected by the 

presence of the bottom –d /L > 0.5 and for cases when the steepness e = H/L, is sufficiently small 

and the linearization is acceptable i.e. very smooth waveforms. Those are the reasons why this first 

theory is called the linear theory or the small amplitude theory. 

From here, other theories will take into account some of the non linearities by including a series 

approximation of the free surface in terms of the steepness η = f (e), in order to consider the non 

linearities due to the surface kinematic and dynamic boundary conditions, allowing to model 

steeper waves. Other sources of non linearities like breaking waves or velocity skewness and 

asymmetries, are not accounted for in most theories and none of them considers friction losses. The 

term nonlinear is a complex concept that includes a whole spectrum of behavior that differ from 

the linear theory, but none of the wave theories captures those fully. 

2.1. Assumptions, basic equations and boundary conditions 
There are some common assumptions included the linear wave theory that strongly influences its 

accuracy and applicability. The main assumption of incompressibility is very convenient when 

dealing with water, and no drawbacks can be pointed out here. This assumption will lead to a very 

compact equation for the velocity [4]: 

.׏ ሬܷሬԦ ൌ 0               (2-1) 

Another assumption is the existence of a potential function f– associated to a conservative scalar 

field such as the gravitational field – that governs the velocity relies on the irrotationality: 

ሬ߱ሬԦ ൌ x׏ ሬܷሬԦ ൌ 0               (2-2) 
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Furthermore, the potential theory provides an elegant relation to obtain the velocities from the 

potential function φ: 

ሬܷሬԦ ൌ
డథ

డ௫
. ଓԦ൅

డథ

డ௬
. ଔԦ൅

డథ

డ௭
. ሬ݇Ԧ            (2-3) 

Both equations 2-1 and 2-3 combined together lead to the Laplace equation [4], known to be a 

linear differential operator, which is very convenient: 

ଶ׏ ߶ ൌ 0                  (2-4) 

The main drawbacks of the potential theory are related to i) neglecting the friction losses, which 

can be relevant for long domains and shallow waters and/or for breaking conditions, and ii) the 

implied irrotationality, which keeps the model from modelling rotating flows, like eddies or swirls. 

This, though, is quite assumable condition in waves if they are non-breaking that is why all relevant 

theoretical studies in wave hydrodynamics are formulated by means of irrotational flow. One of 

the consequences of irrotationality is that the waves are symmetrical about the wave crest. In steep 

waves, though, where the wave is close to breaking, this assumption is on its limit and the theory 

needs some adjustments to account for the inaccuracies arisen from some rotationality. 

The boundary conditions for the potential theory can be classified as linear and nonlinear: 

1. Linear boundary conditions: Linear boundary conditions are those having just linear differential 

operators in their definitions, for instance, a Dirichlet boundary condition for the velocity, such as 

normal velocity to a wall vn = 0, this, in terms of potential variable, leads to: 

డథ

డ௡
ൌ 0               (2-5) 

2. Nonlinear boundary conditions: These are defined in terms of nonlinear differential operators or 

coupled variables– i.e. a definition of the boundary condition that is referring to the solution η(x,t). 

Nonlinear boundary conditions can be kinematic or dynamic. 

The kinematic boundary condition states that the flow cannot trespass certain boundaries or walls, 

which in a flat bottom leads to equation 2-5, but when dealing with the moving and irregular free 

surface, and the material derivative concept is used – DF/Dt along a moving particle – the 

expression obtained is: 
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డథ

డ௬
ൌ

డఎ

డ௧
൅ ݑ

డఎ

డ௫
൅ ݒ

డఎ

డ௭
, ݕ ൌ ,ݔሺߟ ,ݖ  ሻ           (2-6)ݐ

which is highly nonlinear since it refers to the solution η(x,z,t). 

The dynamic boundary condition states that the pressure at the free surface is the same as the 

atmospheric, i.e. the atmospheric pressure outside the fluid is constant.  

ߩ
డథ

డ௧
൅ ߩ5. ቂሺ

డథ

డ௫
ሻଶ ൅ ሺ

డథ

డ௬
ሻଶ ൅ ሺ

డథ

డ௭
ሻଶቃ ൅ ߟ݃ߩ ൌ ݂ሺݐሻ,					ݕ ൌ ,ݔሺߟ ,ݖ  ሻ      (2-7)ݐ

Therefore, both the dynamic and kinematic boundary condition are sources of non linearities in the 

problem. Note the mixed terms in both expressions where the potential φ is together with the free 

surface elevation η, being both coupled unknowns. 

2.2. Airy’s linear theory  
The linear theory implies a full linearization of the dynamic and kinematic boundary conditions 

[5]. 

ଶ׏ ߶ ൌ 0               (2-8) 

డఎ

డ௧
ൌ

డథ

డ௬
, ݕ ൌ 0              (2-9) 

డథ

డ௧
ൌ െ݃,ߟ					ݕ ൌ 0           (2-10) 

డథ

డ௬
ൌ 0, ݕ ൌ െ݀            (2-11) 

The Airy wave has the following form: 

ߟ ൌ
ு

ଶ
cosሺ݇. ݔ െ .ݓ ݐ ൅  ሻ          (2-12)ߠ

where H is the wave height, ݇ ൌ
ଶ௽

௅
 is the wave number, ω is the angular frequency, x is the spatial 

variable in one dimension, t is the time variable and θ is initial phase angle. This wave is fully 

linear and symmetric from the still water level. 

The potential function can be derived using above equations as  
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߶ ൌ
ு

ଶ
.
௚

ఠ
.
ୡ୭ୱ୦൫௞ሺௗା௬ሻ൯

ୡ୭ୱ୦ሺ௞ௗሻ
ሺk. x െ ω. tሻ         (2-13) 

From this expression, the other relevant parameters such as velocities and accelerations can be 

derived. 

2.3. Stokes nonlinear wave theory 
A generalization of the linear theory is made in the higher order theories. As it has been already 

mentioned, there are different theories depending on the approach to solve equation 2-4 and the 

kinetic and dynamic boundary conditions [3]. 

A step forward from the Airy wave is that of the Stokes higher order waves. Higher order Stokes 

theory is basically a generalization of the linear theory by including n harmonics when defining the 

free surface η: 

ߟ ൌ ∑ ݊௜ ൌ ∑ .௜ܣ ௡ିଵߝ cos൫݅ሺ݇. ݔ െ ߱. ሻ൯ݐ ൅ ௡ሻ௡ߝሺ߆
௜ୀଵ

௡
௜ୀଵ             (2-14) 

where n is the order of the Stokes wave and ߆ሺߝ௡ሻ is a truncation error of order	ሺߝ௡ሻ. 

Each of the components of the Stokes wave ηi has double the frequency from the one with lower 

order, and their amplitudes Ai can be obtained by applying the kinematic and dynamic boundary 

conditions expressing the nonlinear contributions by the Taylor expansion series of order n – the 

Stokes expansion. 

Stokes waves break with the horizontal symmetry of the wave form in respect to the still water 

level, creating higher crests and shallower through as can be observed in Figure 2-1. This produces 

steeper crests and more impact-like forces than linear waves. 

In addition to the Stoke’s theory, there are several other nonlinear wave theories such as Cnoidal 

wave theory, Stream function theory and others. However, these theories are not discussed in this 

thesis. 

2.4. Validity regions of various wave theories 
It is important to understand which of the various wave theories need to be applied to a particular 

problem, where the wave characteristics and water depth are specified. The validity of various 
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wave theories must be known. This validation is composed of two parts namely mathematical 

validation and the physical validation. 

 
Figure 2-1 Qualitative representation of a linear wave form (dashed) vs Stokes wave (dotted) 

The mathematical validation is the ability of a given wave theory to satisfy the mathematically 

posed boundary value problem. It is seen that while most of the wave theories satisfy the bottom 

boundary condition exactly, some wave theories only approximately satisfy the Laplace equation 

within the fluid. It is also seen that while all the theories satisfy the dynamic free surface boundary 

approximately, the kinematic free surface boundary condition is satisfied by the stream function 

theory [6]). 

The physical validity refers to how well the prediction of the various theories agrees with actual 

measurements. This part of the validation is generally difficult to obtain due to the problems of 

water wave tank design and measurement requirements [7]. 

The analytical validity of many wave theories has been examined by many researchers including 

[8]. Figure 2-2 shows the results of the comparison of the theories, denoting the regions for which 

each theory provides the best fit to the dynamic free surface boundary condition.  
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Figure 2-2 Validity range of various wave theories 

As, it can be seen, the cnoidal wave theory does well in shallow water, while in deep water, the 

Stokes 5th order wave theory proves to be more applicable. It is also noted that the linear wave 

theory does well for intermediate water depths. However, as per literature, when high order stream 

function wave theory is used, it provides the best fit of all the theories including the shallow waters 

[6]. 
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3. FEM modelling and analysis 
3.1. General  

The Jacket have been designed by using detailed elevations and plans provided from Total. The 

Topside is massive and are set to have a maximum operational weight of 28000 tons. Basic sketches 

have been provided by Total and have been modeled in different manners based on the individual 

load cases.  

 The program used to analyze and do the design is the structural engineering program called 

SAP2000 (Structural Analysis Program). The manual calculations have been done in Mathlab and 

excel. The origin of the coordinate system is set to the south-west corner of the highest Jacket plan 

located at ݖ ൌ 22݉ for the x and y coordinates and at mean sea level for the z-coordinate. The 

modeling of beams and columns in SAP2000 are done from the centroid of the assigned 

sections/profiles.  

3.2. SAP2000  

SAP2000 is a powerful analysis & design program that was introduced for over 30 years ago by 

CSI (Computers and Structures INC). SAP2000 can be used to handle simple 2D exercises too 

complex 3D structures. The goal when making the program was too simplify the engineer’s 

calculation process in form of modeling, design and optimization with help from a powerful 

analysis “engine” and a versatile user interface [9]. 

SAP2000 is known for its flexibility between international borders, multiple sets of standards, 

sectional dimensions and material qualities can be used.  

The program can also perform different loading analysis such as: static linear/nonlinear analysis, 

buckling analysis, influence lines analysis, pdelta analysis, accidental load analysis and vibration 

analysis. All the capacity checks are based on the given standard and the program compares the 

acting analysis forces to the sectional capacities [10] 

3.3. Design parameters  

The information following was provided by total and the approximations used for SAP2000 have 

the following assumptions: 
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- 100 year return period for both wave/current. 

- Maximum individual wave height for all directions. 

- The largest current velocity for any given directions. 

3.3.1. Waves  

The extreme design wave to be used in the analysis is defined by maximum wave height associated 

with average time period. The values for different return period is shown in Table 3-1. It is noted 

that 100 year return period wave is used for SLS and ULS analysis. Hmax is maximum individual 

wave height, Tp is peak wave period for Hmax, Crmax is maximum wave-crest-elevation relative to 

MSL, Hs is significant wave-height (3 hours). 

Table 3-1 Wave parameters 

Return Period (years) Hmax Tp Cr max Hs 

1 19.8 13.2 12.4 10.3

10 24.5 14.7 15.3 12.6

100 28.8 15.9 18.1 14.8

10 000 37.0 17.9 23.4 18.8

3.3.2. Current  

The surface current for 100 year are given in Table 3-2. Generation of the vertical current profile 

based upon the surface current is given in Table 3-3. Current blockage factor is in accordance with 

NORSOK N-003 [11]. The blockage factor is taken as 0.85 for Jacket with more than 3 legs. 

Table 3-2 Surface current for 100 year return period 

Analysis angle Geographical 
Direction 

Return period 
100 year [m/s] 

0 West 0.78 

45 South West 1.03 

90 South 1.08 

135 South East 1.02 

180 East 1.05 
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Table 3-3 Vertical current profile for 100 year return period 

Distance from mudline up to 
water surface [m] 

Current profile  
[Ratio of surface current speed] 

0.0 0.65 

7.0 0.68 

39.0 0.69 

64.0 0.69 

74.0 0.68 

84.0 0.71 

94.0 0.77 

105.0 0.88 

114.0 1.00 

3.4. Modal Analysis 

3.4.1. Eigenvector analysis  

Eigenvector analysis determines the undamped free-vibration mode shapes and frequencies of the 

system. These natural modes provide an excellent insight into the behavior of the structure. They 

can also be used as the basis for response- spectrum or time-history analyses [12] 

SAP2000 uses the following formula to solve for generalized eigenvalue problems [10]: 

ሾܭ െΩଶ	ܯ	ሿ߶ ൌ 0              (3-1) 

Where ܭ is the stiffness matrix, Ω and ܯ are diagonal matrices which represents eigenvalues and 

mass. ߶ is the corresponding eigenvectors (mode shapes).  

For a system with forced damping the equation of motion becomes [13]: 

ሻݐሺܨ ൌ ܯ ∙ ᇱᇱݔ ൅ ܥ ∙ ᇱݔ ൅ ܭ ∙  (2-3)              ݔ

For a system with free undamped vibration the equation of motion becomes: 

ܯ	 ∙ ᇱᇱݔ ൅ ܭ ∙  (3-3)                             0 = ݔ

The system will in this case not have an external force applied as it vibrates, although it will need 

at least one initial conditions such as a initial force or a displacement in order to start vibrating.  
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As specified in the introduction of this section SAP2000 works with an undamped free-vibration 

system so equation 3-3 becomes relevant. The following assumptions is made for such a system: 

No damping in the system. 

No external forces as the system is moving. 

For an undamped free vibrational system with harmonic motion at the same frequency ሺ߱ሻ	 and 

phase angle (ߠሻ, the deflection can be written as [12]. 

ሻݐሺݔ ൌ ߶ ∙ cosሺ߱ݐ െ  ሻ                 (3-4)ߠ

The derivations of the displacements based on ݐ becomes: 

ሻݐᇱሺݔ ൌ െ߱ ∙ ߶ ∙ sinሺ߱ݐ െ  ሻ                           (3-5)ߠ

ሻݐᇱ′ሺݔ ൌ െ߱ଶ ∙ ߶ ∙ cosሺ߱ݐ െ                                              (3-6)	ሻߠ

Next step will be to input equation 3-5 and 3-6 into equation 3-3: 

0 ൌ ܯ ∙ ሺെ߱ଶ ∙ ߶ ∙ cosሺ߱ݐ െ ሻሻߠ ൅ ܭ ∙ ሺ߶ ∙ cosሺ߱ݐ െ  ሻሻ                   (3-7)ߠ

0 ൌ ሺെ߱ଶ ∙ ܯ ൅ ሻܭ ∙ 	߶ ∙ cosሺ߱ݐ െ  ሻ                     (3-8)ߠ

In order for equation 3-8 to be true one of the contributions needs to be zero and as cosሺ߱ݐ െ  ሻߠ

can only be zero for some cases: 

cosሺ߱ݐ െ ሻߠ ൌ ݊ ∙ ߨ ൌ 0, where ݊ ൌ 1,2,3… 

Thus, the other contribution needs to be zero and the equation becomes is the same formula as 

SAP2000 in equation 3-1: 

0 ൌ ሺെ߱ଶ ∙ ܯ ൅ ሻܭ ∙ 	߶		                        (3-9) 

Because equation 3-9 is based on matrices, we need to find a value that corresponds to be zero. To 

find the value of a matrix we need to base it on the determinant of matrices ܯ and ܭ which converts 

the matrix into a value. 

|െ߱ଶ ∙ ܯ ൅ |ܭ ൌ 0                      (3-10) 
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For a 2D beam element, the stiffness element matrix and the mass matrix may be defined as shown 

in equation 3-11 [14]. 

ሾܭሿ ൌ
ாூ

௅య
൦

12 ܮ6 െ12 ܮ6
ܮ6 ଶܮ4 െ6ܮ ଶܮ2

െ12 െ6ܮ 12 െ6ܮ
ܮ6 ଶܮ2 െ6ܮ ଶܮ4

൪   ሾܯሿ ൌ
ఘ஺௅

ସଶ଴
൦

156 ܮ22 54 െ13ܮ
ܮ22 ଶܮ4 ܮ13 െ3ܮଶ

54 ܮ13 156 െ22ܮ
െ13ܮ െ3ܮଶ െ22ܮ ଶܮ4

൪  (3-11) 

The above equations can be written for each 2 node element and combined together to form global 

mass and stiffness matrices, M and K respectively. The natural frequencies can be obtained using 

these matrices and equation 3-10    

3.5. ULS and SLS analysis 

3.5.1. Ultimate limit state (ULS)  

This limit state takes into account that all foreseen loads can be resisted with sufficient margin. 

ULS is also varying the material factor depending on which of the load cases that are governing. 

The load cases are divided into two groups where either a) permanent or variable actions are 

governing or b) the environmental actions are governing. 

3.5.2. Serviceability limit state (SLS) 

SLS is to make sure that the deformation does not interrupt the functionality of normal operations 

of the structure. Normally the requirements for serviceability is chosen by the operator. Usually 

the material factor is set to 1 for all load actions acting on the structure. 

 The limit states are shown in Table 3-4 according to NORSOK N-001 [15]:  

Table 3-4 Limit states and corresponding factors 

Limit 
state 

Action 
combinations  

Permanent 
actions 

Variable 
actions  

Environmental 
actions 

ULS  A  1.3  1.3  0.7 

ULS  B  1.0  1.0  1.3 

SLS    1.0  1.0  1.0 
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4. Case study part 1: Effect of wave theory on analysis 

Environmental loading plays an important role when it comes to offshore structures. These include 

wave loading along with wind and the current. Various wave theories are available in the literature 

and it is interesting the see the effect of various wave theories on the structural response of the 

structure. To investigate this, a study is first performed on a simple beam. Linear Airy’s wave 

theory is applied and results are compared with manual calculations. This is done in order to both 

understand the wave theories as well as to verify the FE software results with manual calculations 

at-least for the linear wave theory. In the end, these wave theories are applied to the complex big 

Jacket and results are compared. 

4.1. Analysis on a simple column 
The following sub-section are based on comparing results found from wave loading in SAP2000 

against manual calculations. The purpose of this is to get a confidence that the applied wave loading 

in SAP2000 for the Martin Linge Jacket are used correctly. The example consist of a single tubular 

cantilever column and have an applied wave load acting at zero degrees on the column.. Also, the 

current and wind load is neglected for this study. The section and material properties of the column 

is shown in Table 4-1. 

Table 4-1 Section and material properties of column 

Section property Value 

Length 150m 

Diameter 1.5m 

Material S355 

4.1.1. Analysis in SAP2000 using linear Airy’s wave theory 

The member is modelled in the FE software and linear wave theory is used to generate the particle 

velocities and accelerations. A wave height of 28.8m and wave period of 15.5 seconds is 

considered. The wave profile and horizontal wave particle velocities along a section of the length 

of the member is generated in SAP2000 and shown in Figure 4-1. The drag and inertia coefficients 

are taken as per API by the software. These are shown in Table 4-2. 
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Figure 4-1 Wave profile and horizontal particle velocity from SAP2000 

Table 4-2 Drag and inertia coefficients are taken as per API 

Location Drag coefficient Inertia Coefficient 

Above High Tide Eleveation 0.65 1.6 

Below or at High  

tide Eleveation 

1.05  1.2 

The wave loads on the member is dervied using the morison’s equation and loading is generated 

automatically on the member as shown in Figure. The total wave load acting on the member is 

found out from the base reaction for the wave load case. The total wave load is 1291.45 kN. 

4.1.2. Manual calculations using linear wave Theory 

It is intended to check the above obtained wave particle velocity as well as wave loading from the 

FE software with manual calculations. This is done to gain deeper understanding of the wave 

theories. For this study, only the linear Airy theory is considered and results are compared with 

those obtained from SAP2000. 

Natural frequency: 

߱ ൌ
ଶగ

೛்
 ;    ω = 0.3952 rad/s   
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Estimation using iteration process 

Table 4-3 Water depth relation with frequency 

Water depth ࣓૛ value 

Intermediate water ݃ ∙ ݇ ∙ tanhሺ݇݀ሻ 

Deep water ݃ ∙ ݇ 

The natural frequency of the wave is dependent on the wave number for intermediate water in two 

separate occasions in one equation. An iteration process [4] is used to find k for intermediate water 

based on dispersion relation from deep water. It is possible to find an estimate to the wave number 

factor for intermediate water when initial deep water wave number is equal to intermediate water: 

߱ଶ

݃
ൌ ݇ௗ௪ ൌ ݇௡௘௪ ∙ tanh	ሺ݇௡௘௪ ∙ ݀ሻ 

݇ௗ௪ ൌ 0,015918293
݀ܽݎ
ଶݏ

 

Table 4-4 Iteration for calculation for k 

New guess of wave number  ࢑ ∗  ሻࢊሺ࢑ࢎ࢔ࢇ࢚

0.01661 0.015873861 

0.01662 0.015885058 

0.01663 0.015896254 

0.01664 0.015907448 

0.01665 0.01591864 

0.01666 0.015929831 

From the Table 4-4 it shows that when k=0,01665 we get approximately the same value as for 

k_dw=0,015918293, thus we will use the given wave number k=0,01665 for intermediate water to 

calculate horizontal velocity. 

Horizontal wave velocity in intermediate water: 

ݑ ൌ
଴ߟ ∙ ݇ ∙ ݃

߱
∙
cosh݇ሺݖ ൅ ݀ሻ

coshሺ݇݀ሻ
∙ sin	ሺ߱ݐ െ  ሻݔ݇

In the worst case scenario, the velocity need to be at its largest.  
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Therefore, 

 sinሺ߱ݐ െ ሻݔ݇ ൌ 1 

At SWL, ݖ ൌ 0݉ :  

ݖሺݑ ൌ 0ሻ ൌ
14,4 ∙ 0,01665 ∙ 9,81

0,3952
∙
cosh 0,01665ሺ0 ൅ 114ሻ
coshሺ0,01665 ∗ 114ሻ

	

 

ݖሺݑ ൌ 0ሻ ൌ 5,952
݉
ݏ
	 

For specified depths (z): 

Table 4-5 Calculation of horizontal particle velocity 

Elevation  (z) Horizontal velocity  (m/s) 

14.4 7.501374191 

0 5.952000971 

-14.4 4.746419859 

-28.8 3.814995572 

-43.2 3.103928335 

-57.6 2.572146362 

-71.8 2.193347753 

-86.2 1.934930648 

-100.6 1.788276612 

-114 1.744672958 

Wave length, intermediate water: 

ܮ ൌ
݃ ∙ ௣ܶ

ଶ

ߨ2
∙ tanhሺ݇݀ሻ; ܮ								 ൌ

9,81 ∙ 15,9
ߨ2

∙ tanhሺ0,01665 ∙ 114ሻ; ܮ													 ൌ 377,38݉;	

  

 

Keulegan-Carpenter Number: 
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௄ܰ஼ ൌ
	௠௔௫ݑ 	 ∙ 	 ௣ܶ

ܦ
;															 ௄ܰ஼ ൌ

7,501374191
݉
ݏ 	 ∙ ݏ15,9	

1,5݉
; 																							 ௄ܰ஼ ൌ 79,52;	 

We have a drag dominant force acting if ௄ܰ஼ ൐ 30, meaning we can neglect the inertia force [4].  

Drag force per unit length 

It is assumed that the members under the wave crest are rough members and members above wave 

crest are smooth members giving drag coefficient as ܥ஽ ൌ 1,05 for members below high tide 

elevation and ܥ஽ ൌ 0,65 for members above hightide elevation. 

஽݂ሺݖ, ሻݐ ൌ
1
2
ߩ ∙ ஽ܥ ∙ ܦ ∙ ,ݖሺݑ ሻݐ ∙ ,ݖሺݑ|  |ሻݐ

Wave force without interaction from current and wind 

௧௢௧ܨ ൌ ஽ܨ ൌ න ஽݂,௦௠௢௢௧௛ሺݖሻ݀ݖ ൅
௪௔௩௘	௖௥௘௦௧

଴
න ஽݂,௥௢௨௚௛ሺݖሻ݀ݖ
଴

ିௗ
 

஽ܨ ൌ න
1

2
∙ 1025 ∙ 0,65 ∙ 1,5 ∙ ቆ

14,4 ∙ 0,01665 ∙ 9,81
0,39516889

	∙	
cosh݇ሺݖ ൅ ݀ሻ

coshሺ0,01665 ∙ 114ሻ
∙ 1ቇ

2

ݖ݀
14,4

0
		 

				൅න
1
2
∙ 1025 ∙ 1,05 ∙ 1,5 ∙ ቆ

14,4 ∙ 0,01665 ∙ 9,81
0,39516889

	∙	
cosh݇ሺݖ ൅ ݀ሻ

coshሺ0,01665 ∙ 114ሻ
∙ 1ቇ

଴

ିଵଵସ

ଶ

 ݖ݀

஽ܨ ൌ න 1521 ∙ ሺ	 cosh 0,01665 ሺݖ ൅ 114ሻሻ2݀ݖ
14,4

െ114
	൅ න 2457

0

െ114
∙ cosh 0,01665 ሺݖ ൅ 114ሻ	݀ݖ 

஽ܨ  ൌ 1521 ∙ 212,972N	 ൅ 2457 ∙ 391,153N  

஽ܨ  ൌ 1284,99݇ܰ  

4.1.1. Comparison of SAP2000 and manual calculations 

The results from the FE software SAP2000 are found to be in good agreement with the manual 

calculations for the linear wave theory. This study is now expanded further to the complex big 

Jacket structure with Topside on it. It is intended to observe the Jacket response under different 

wave theories and compare these results. Both linear Airy’s wave theory and nonlinear 5th order 

Stoke’s wave theory is used. 
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4.2. Analysis of complex Jacket structure 
The understanding gained in the earlier part of this case study is extended further on a real offshore 

structure. The chosen structure is Martin Linge platform which is a fixed Jacket type platform with 

Topside on it. This is one of the heaviest platforms in the NCS region. 

4.2.1. Structural model 

The structural details of the Jacket were provided by Total and are used to make a complete Jacket 

model in SAP2000. The model is shown in Figure 4-2 to Figure 4-5. 

 
 

Figure 4-2 3D  Jacket model in SAP2000  Figure 4-3 line model of Jacket in SAP2000 
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Figure 4-4 Jacket model in XZ plane Figure 4-5 Jacket model in YZ plane 

It is noted that only limited information was made available for the Topside. This includes a rough 

estimate of Topside weight along with some sketches of the module dimensions. The module wise 

weight distribution and CoG locations are also not known. However, the Topsides information 

from a similar platform were available (referred here as platform x) and this information is use to 

make logical assumptions of the weight of the Martin Linge Topside modules. The weight of 

platform x is 24774 tons. The flare boom, cranes, live load areas and helideck are not included in 

the Topside model. 

The Martin Linge Topside is divided into several deck levels and a weight factor of 1.13 is obtained 

for each module. The weight factor is obtained using the weight information of the platform x and 

comparing it with Martin Linge Topside weight as shown in Table 4-6. 
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ݎ݋ݐ݂ܿܽ	ݐ݄ܹ݃݅݁ ൌ
݊݋ݐ28000
݊݋ݐ24774,4

ൌ 1,1302 

௪௘௜௚௛௧݁݃݊݅ܮ	݊݅ݐݎܽܯ ൌ ݎ݋ݐ݂ܿܽ	ݐ݄ܹ݃݅݁ ∗  ݏ݈݁ݑ݀݋݉	ݔ	݉ݎ݋݂ݐ݈ܽ݌	݂݋	ݐ݄ܹ݃݅݁

Table 4-6 Weight comparison between platform x Topside and Martin Linge Topside 

ܕܚܗ܎ܜ܉ܔ۾ ܛܔ܍ܞ܍ۺ ܠ  

ሾܖܗܜሿ 

࢔࢏࢚࢘ࢇࡹ  	࢚ࢎࢍ࢏ࢋ࢝ࢋࢍ࢔࢏ࡸ

ሾ࢚࢔࢕ሿ 

Cellar	deck 7400,8 8364,4 

Modul	deck 10979,6 12409,1 

Modul	1 െ 6 3937 4449,6 

Living	quarters 2457 2776,9 

Total 24774,4 28000 

From Table 4-6 a rough estimation of the Topside modules is obtained for Martin Linge. The 

dimensions of the modules is obtained using some of the sketches provided. These are shown in 

Figure 4-6 and Figure 4-7. 

 
Figure 4-6 Topside drawing received from TOTAL 



25 
 

 
Figure 4-7 Topside drawing received from TOTAL 

The modules are modelled in SAP2000 with corresponding weight and dimensions. These are 

shown in Figure 4-8. The entire platform model is shown in Figure 4-9. 

 

Figure 4-8 Topside model in SAP2000 
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Figure 4-9 Topside and Jacket model in SAP2000 

The Topside modules are developed using I-sections and S355 material having steel density of 

7850 kg/m3. The target weight for each module is obtained by increasing the density of the 

sections. The density factor is obtained by dividing the target weight with model weight for each 

module and shown in Table 4-7. 

ݎ݋ݐ݂ܿܽ	ݕݐ݅ݏ݊݁ܦ ൌ
ݐ݄݃݅݁ݓ	݈݁ݑ݀݋݉	݁݃݊݅ܮ	݊݅ݐݎܽܯ
2000ܲܣܵ	݊݅	ݐ݄݃݅݁ݓ	݈݁݀݋ܯ
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Table 4-7 Density factor for various modules of Martin Linge Topside 

 	ܜܐ܏ܑ܍ܟ	ܜ܍܏ܚ܉܂ ܛܔ܍ܞ܍ۺ
	ሾܖܗܜሿ	

ܔ܍܌ܗۻ  ܜܐ܏ܑ܍ܟ
ሾܖܗܜሿ

	nsity factor܍۲ ሾ	ܡܜܑܛܖ܍۲
ܖܗܜ
૜ܕ ሿ

Cellar	deck 8364,4	 5876 1,423 11,171 

Modul	deck 12409,1	 3982 3,116 24,458 

Modul	1 െ 6 4449,6	 1509 2,949 23,150 

Living	quarters 2776,9	 2005 1,3846 10,868 

Total 28000	  

4.2.2. Structural analysis – Natural frequencies, SLS and ULS 

Nonlinear static analysis as well as Eigenvalue analysis has been performed. The non-linearity 

considered are mainly the force nonlinearity (nonlinear wave loading). The free vibration natural 

frequencies and corresponding mode shapes are calculated from the Eigenvalue analysis. Code 

check for Jacket members is performed as per NORSOK-004 standard [16]. Analysis is also 

performed using linear Airy’s wave theory and results are compared with those obtained using non-

linear Stokes 5th order wave theory. 

4.2.3.  Loading conditions – Load cases and combinations 

The loading considered in the static analysis is the dead load, wave load and the current load. Dead 

load is permanent actions. It is the structural mass and include all fixed items on the decks and 

Jacket. Wave loads are the metocean actions. Wave loading is applied using both linear Airy’s 

wave theory as well as nonlinear Stokes 5th order theory and results are compared. The wave 

particle velocities and accelerations are calculated using these theories. Morison’s equation is used 

to calculate the wave load on Jacket members. The hydrodynamic drag and mass coefficients (Cd 

and Cm) are taken as per API code. The use of API code is due to software restrictions.  

For SLS and ULS assessment, a 100 year return wave with a wave height of 28,8 meters and time 

period of 15,5 seconds is used. The wave load is defined in 5 directions at an angle of 0deg, 45deg, 

90deg, 135deg and 180deg and corresponding load case is generated for each direction. The current 

is applied in the direction of wave in the respective load case. All the above defined load cases are 

combined as per the ultimate limit state (ULS) criteria given in standard code NORSOK N-001 

[15]. The load combinations and load factors for ULS and SLS analysis are shown in Table 4-8 

and Table 4-9.  
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Table 4-8 Load combinations considered in the ULS analysis  

Load  
case 

Permanent 
 actions 

Variable 
 actions 

Environmental 
 actions 

Direction  
wave 

Direction 
current 

ULSA1 1.3 1.3 0.7 00 00 

ULSA2 1.3 1.3 0.7 450 450 

ULSA3 1.3 1.3 0.7 900 900 

ULSA4 1.3 1.3 0.7 1350 1350 

ULSA5 1.3 1.3 0.7 1800 1800 

ULSB1 1.0 1.0 1.3 00 00 

ULSB2 1.0 1.0 1.3 450 450 

ULSB3 1.0 1.0 1.3 900 900 

ULSB4 1.0 1.0 1.3 1350 1350 

ULSB5 1.0 1.0 1.3 1800 1800 

 

Table 4-9 Load combinations considered in the SLS analysis  

Load  
case 

Permanent 
 actions 

Variable 
 actions 

Environmental 
 actions 

Direction  
wave 

Direction 
current 

SLS 1.0 1.0 1.0 00 00 

SLS 1.0 1.0 1.0 450 450 

SLS 1.0 1.0 1.0 900 900 

SLS 1.0 1.0 1.0 1350 1350 

SLS 1.0 1.0 1.0 1800 1800 

4.2.4. Analysis results – Natural frequencies 

The free vibration natural time period and vibration modes for the model are shown in Table 4-10. 

The first and second modes are sway modes in the two transverse directions. The third mode 

corresponds to the torsional vibration mode. It is to be noted that these modal parameters only 

depend on the mass and stiffness of the structure and are independent of the external loading. 

Therefore, for both the cases of linear and nonlinear wave theory, these values remains the same. 
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Table 4-10 Natural periods and vibration modes for the Jacket model 

Modes 1st  2nd 3rd 

Time period 2.22  3.00  1.61 

Vibration mode Sway‐X  Sway‐Y  Torsion

4.2.5. Analysis results – Leg displacements (SLS) 

The nonlinear static response of the Jacket is observed in terms of displacement of one of the main 

legs (leg A shown in Figure 4-10). Displacement of the leg along its height is obtained for various 

load combinations. The leg displacement U1 in x-direction is obtained using both linear and 

nonlinear wave theory and values are shown in Figure 4-11and Figure 4-12. The comparison of the 

results is shown in Figure 4-13. The displacement U2 in y-direction obtained using linear and 

nonlinear wave theory is shown in Figure 4-14and Figure 4-15 respectively. The comparison is 

shown in Figure 4-16. 

 
Figure 4-10 Considered leg A of the Jacket 



30 
 

  
Figure 4-11 Leg A displacement U1 (x-
direction) using nonlinear wave theory 

Figure 4-12 Leg A displacement U1 (x-direction) 
using linear Airy’s wave theory 

 
Figure 4-13  Leg A displacement U1 comparison between linear and nonlinear wave theory 
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Figure 4-14 Leg A displacement U2 (y-
direction) using nonlinear wave theory 

Figure 4-15 Leg A displacement U2 (y-direction) 
using linear Airy’s wave theory 

 

 
Figure 4-16 Leg A displacement U1 comparison between linear and nonlinear wave theory 
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4.2.6. Analysis results – Member capacity check (ULS) 

Code check for Jacket members is performed as per NORSOK-004 standard [16]. The analysis is 

performed using both linear and nonlinear wave theory. The utilization values of three most critical 

members in both the cases is shown in Table 4-11. The UC plots are shown in Figure 4-17and 

Figure 4-18. 

Table 4-11 Unity check values of critical members of Jacket 

Member UClinear wave  UCnonlinear wave Difference (%)

Bracing .824  0.837  1.57767 

Bracing .869  .872  0.34522 

Bracing .814  .833  2.33415 

Leg A .816  .817  0.1255 

 

    

     

Figure 4-17 Utilization ratio in members using 
nonlinear 5th order Stokes wave theory 

Figure 4-18 Utilization ratio in members using 
linear Airy’s wave theory 
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5. Case study – Part 2: Mass modelling approaches 

The second and main objective of this thesis is to investigate various approaches of modelling 

Topside mass over the Jacket. This is generally required when the main focus of design is the Jacket 

structure with limited information and limited time is available for the Topside modelling. However 

not many guidelines are available on the approach to be used while modelling the Topside mass. 

Several approaches of modelling Topside mass are discussed in this section. The results for these 

approaches are compared and recommendations are made to the practicing engineers on the 

selection of best suited approach. All the approaches are first discussed and applied to a simple 

cantilever beam before applying to the complex Jacket structure. 

5.1. Mass modelling approaches 
This section presents the various approaches formulated to represent the mass of a structure. The 

structure can be as simple as a beam or can be complex as Topside. Three approaches are mainly 

formulated and discussed below. 

Approach 1 – Density Approach   

 In this approach, the mass is modelled as structural elements with defined material density. 

The density can be increased for the material in order to achieve the targeted weight. The material 

density is converted to mass and assigned proportionally at the nearby nodes as masses in each of 

the three translational degrees of freedom. 

Approach 2 – Point Loads as Mass Approach 

The mass is modeled as point loads and these point loads are converted to masses in each of the 

three translational degrees of freedom. This means the point loads are contributing directly to the 

mass matrix of the considered system. 

Approach 3 – Lumped Mass Approach  

In this approach, the mass is modelled a lumped mass at the nodes. The lumped mass is assigned 

in all three translational degrees of freedom in order to capture the dynamic behavior more 

precisely. It is however worth mentioning here that the lumped mass approach is applicable only 

for the dynamic analysis and do not contribute to the static loading. 
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5.2. Mass modelling approaches demonstration on simple beam 
The above mentioned approaches of modelling the mass are first applied to a simple beam before 

moving further to the complex Topside structure. The beam dimensions and material properties are 

shown below. These approaches of mass distribution are shown for 2 node, 4 node and 6 node 

beam. The beam is modelled in finite element software SAP2000 and natural frequencies of are 

obtained and compared for these approaches. Natural frequencies are also found out by doing 

manual calculations and also by using theoretical solutions for 6 node beam. Results are compared 

and conclusions are drawn in the end. 

5.2.1. Section and material properties 

The section chosen for this part of the case study is shown in Error! Reference source not found. 

and Figure 5-2. The section and material properties are shown in Table 5-1. 

  
Figure 5-1 Considered cantilever beam Figure 5-2 Considered cantilever beam 

 

Table 5-1 Section and material properties of beam 

Section property Value 

Height , h  0.003 m 

Width, b 0.02 m 

Length , l 0.45 m 

Material S 355 

5.2.2. Mass modelling approaches and analysis in SAP2000 - 2 nodes 

The three approaches used for mass modelling is applied to the simple beam structure as shown in 

Table 5-2. It is to be noted that for approach 2 i.e. point loads, the point load at each node is 

converted to equivalent mass in all three translational degrees of freedom by the software. Also for 
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approach 3, lumped mass defined at each node is assigned in all three translational degrees of 

freedom. 

Table 5-2 Mass modelling approaches demonstrated on a simple 2 node beam element 

Approach 1 Approach 2 Approach 3 

   

mass modelled as density 
density = 7850 kg/m3 

mass of beam, m =0,212 kg 

mass modelled as loads 
density = 0 
P ൌ m ∙ g ൌ 2,08N 

Mass modelled as point masses 
density = 0 
m = 0,212 kg 

Results of static analysis in SAP2000-2 node case 

Table 5-3 shows the static results for the three mass approaches on 2 node beam. The deflection at 

the tip of the cantilever is shown. The analytical solution for tip displacement is 2.50 mm and 

calculation is shown in Appendix A. It is seen that the analytical solution is matching with the 

approach 1. This is due to the fact that density is uniformly distributed throughout the length of the 

beam. However, displacement in approach 2 is on higher side since mass (converted from loads) 

is only acting at the end nodes. It is expected to get better results from approach 2 on discretizing 

the beam further into more number of finite elements as will be shown later. 

It is also worth mentioning that the lumped mass approach doesn’t yield any results for the static 

analysis results. This is possibly do due the fact that the lumped masses at the nodes are entering 

directly into the mass matrix and contribute only towards the dynamic behavior of the structure.  

Table 5-3 Static displacement results for various approaches for 2 nodes case 

Mass modelling approach Tip displacement (SAP2000) Analytical solution 

Approach 1 

(density as mass) 
-2.50 mm 

-2.50 mm 
Approach 2 

(point loads as mass) 
-3.33 mm 

Approach 3 

(lumped mass) 
0 mm 
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Results of Eigenvalue analysis in SAP2000- 2 node case 

The results for Eigen value analysis from FE analysis is shown in Table 5-4. It is found that all the 

three approaches are giving same results. This is due to the fact that the mass distribution at the 

nodes in all degrees of freedom is similar in all the three approaches. However, the results are far 

away from the analytical solution due to less discretization of the beam section. It is expected to 

get better comparison of FE results with analytical solution on discretizing the section into more 

number of finite elements as is shown in later sections. 

Table 5-4 Natural frequency comparison for 2 node element (vertical plane only) 

2 node element Mode shape SAP2000 result Analytical solution 

Approach 1 

(density as mass) 

1  8.624 12.38 

Approach 2 

(point loads as mass) 

1 8.624 12.38 

Approach 3 

(lumped mass) 

1  8.624 12.38 

Note 1: Eigenvalue results from SAP2000 are found same for three mass modelling approaches 
Note 2: SAP2000 results are deviating from analytical solution due to less discretization of section 

5.2.3. Mass modelling approaches and analysis in SAP2000 - 6 nodes 

The mass modelling approaches are now applied to 6 node beam as shown in Table 5-5.  

Table 5-5 Mass modelling approaches demonstrated on a simple 6 node beam element 

   

mass modelled as density 
density = 7850 kg/m3 

mass of beam, m =0.212 kg 

mass modelled as loads 
density = 0 
P ൌ m ∙ g ൌ 2.08N 

Mass modelled as point 
masses 
density = 0 
m = 0.212 kg 
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Results of static analysis-6 node case  

The results for static displacement is shown in Table 5-6. It is seen that the SAP2000 results 

matches more closely with the analytical solution due to better discretization in this case.  

Table 5-6 Static displacement results for various approaches for 6 nodes case 

Mass modelling approach Tip displacement (SAP2000) Analytical solution 

Approach 1 

(density as mass) 
-2.50 mm  

-2.50 mm 
Approach 2 

(point loads as mass) 
-2.539 mm 

Approach 3 

(lumped mass) 
0 mm 

Results of Eigenvalue analysis from SAP2000- 6 node case 

The results for Eigen value analysis from SAP analysis is shown in Table 5-7 for 6 node case. 

Similar to 2 node case, all three mass modelling approaches are giving same results.  

Table 5-7 Natural frequency comparison for 6 node element (vertical plane only) 

Mass modelling approach Mode  SAP2000 result Analytical solution 

Approach 1 

(density as mass) 

 

1  12.155 12.38 

2  72.983 78.18 

3  196.902 217.16 

Approach 2 

(point loads as mass) 

1 12.154 12.38 

2  72.975 78.18 

3  196.879 217.16 

Approach 3 

(lumped mass) 

1  12.154 12.38 

2  72.975 78.18 

3  196.879 217.16 

Note 1: Eigenvalue results from SAP2000 are found same for three mass modelling approaches 
Note 2: Results are matching well (at-least for lower modes) from analytical solution due to more discretization 
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5.2.4. SAP2000 results comparison with numerical and analytical solution 

The earlier sections (section 5.2.2 and 5.2.3) discussed the demonstration of mass modelling 

approaches on 2 node and 6 node beam section. It is concluded that the lumped mass approach 

(approach 3) does not contribute to static results and contributes directly to the mass matrix for the 

dynamic analysis. It is also concluded that the three approaches yields same results for Eigenvalue 

analysis. The results matches well with analytical solution at-least for the first few modes.  

It is interesting to compare the SAP2000 results with numerical and analytical solutions. The 

SAP2000 results are found using the approach 1 (since all 3 approaches yields same results).  The 

numerical calculation is based on FEM theory. The calculation is done in MATLAB software 

wherein the stiffness and mass matrices are formulated for each element and then assembled 

together to derive the global mass and the stiffness matrix. The natural frequencies of the beam 

section is then obtained using the Eigen value equation. The MATLAB code for 6 node beam can 

be found in Appendix B. The analytical solution is based on empirical relations and can be found 

in Appendix A. It is noted that only the vertical modes are compared in this study and comparison 

is made in Table 5-8 . It is seen that the values matches well for lower modes. The illustration of 

these modes is shown in Figure 5-3. The comparison of natural frequencies is shown in Figure 5-4 

and Figure 5-5. The percentage error is shown in Figure 5-6. 

Table 5-8 Frequency comparison of SAP2000 results with numerical and analytical solution 

Mode SAP 6 node SAP 256 node MATLAB 6 node Analytical Solution 

1st  12.15 12.37 - 12.38 

2nd  72.98 77.56 78.80 78.18 

3rd  196.90 217.11 217.81 217.16 

4th  367.33 425.28 429.74 425.63 

5th  537.90 702.66 710.61 703.60 

6th  - 1049.0 1169.4 1051.1 

7th  - 1464.0 1683.5 1468.0 

8th  - 1947.5 2401.3 1954.4 

9th - 2499.1 3395.5 2510.4 

10th  - 3118.4 5124.0 3135.8 
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Figure 5-3 Mode shapes for the considered cantilever beam 

 
Figure 5-4 First 5 natural frequencies comparison  
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Figure 5-5 Mode 5 to mode 10 natural frequencies comparison 

 

 
Figure 5-6 Error percentage in various approaches 

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6th mode 7th mode 8th mode 9th mode 10th mode

Natural frequencies comparison

SAP- 6 node SAP- 250 node

0

10

20

30

40

50

60

70

1st
mode

2nd
mode

3rd
mode

4th
mode

5th
mode

6th
mode

7th
mode

8th
mode

9th
mode

10th
mode

E
rr

or
 %

SAP- 6 node SAP- 250 node Matlab- 6 node



41 
 

5.3. Mass modelling approaches demonstration on Martin Linge Topside 
The Topside for Martin Linge platform is one of the heaviest in the NCS region. For the 

Engineering contractor designing only the Jacket it becomes not only impractical but also 

uneconomical to spend many hours on modelling the Topside in detail. Also the currently available 

guidelines do not mention any procedures for modelling the Topside mass approximately without 

modelling each of its modules in detail. It is therefore intended to apply above discussed mass 

modelling approaches to the Martin Linge Topside and observe the structural response of the Jacket 

for various cases. In the end, results are discussed and recommendations are made to the practicing 

engineers on the selection of suitable mass modelling approach. 

5.3.1. Topside models developed using mass modelling approaches 

The three mass modelling approaches explained earlier on a simple beam is extended to the 

complex Martin Linge Topside structure. The main focus of this study is to investigate the effect 

of Topside modelling approach on the Jacket response. The Topside models are developed using 

the above discussed modelling approaches namely density increment, point loads as masses and 

lumped mass approach. For the lumped mass approach two cases are considered and is discussed 

later in detail. This section explains the Topside models developed using  

Approach 1 – Density increment  

The density increment mass modelling approach is applied to the Martin Linge Topside. This is 

the same model as explained earlier in Section 4.2.1. The complete model of the platform is shown 

in Figure 5-7. 
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Figure 5-7 Topside model for density increment approach 

Approach 2 – Point loads as masses  

The Topside mass of 28000 tons is applied as point loads to the Jacket legs as shown in Figure 5-8 

and Figure 5-9. The point loads are derived based on the module wise distribution of Topside mass 

and calculations are shown in Appendix C. 
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Figure 5-8 Topside mass representation 
for approach 2 

Figure 5-9 Topside mass representation for approach 2 

Approach 3 – Lumped masses  

In this approach, the Topside mass is modelled as lumped masses at the CoG locations of each 

module. The lumped mass is then connected to the support points of the module using rigid beam 

sections so as to make a pyramid kind of structure with lumped mass at the top. Two cases are 

made for this lumped mass approach.  

Case 1: In this case, the lumped masses are defined at the CoG location of each module. The mass 

assigned is equivalent to the module weight. The mass is supported on the pyramids connected to 

the supports of respective module. The detailed calculations of the masses and CoG locations is 

shown in Appendix C. The Topside model is shown in Figure 5-10. The complete model is shown 

in Figure 5-11and Figure 5-12. 
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Figure 5-10 Topside model for lumped mass approach case 1 

 

 

 

Figure 5-11 Complete model for lumped mass 
approach case 1 
 

Figure 5-12 Complete model for lumped mass 
approach case 1 
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Case 2: In this case, the Topside mass is represented by just 3 big lumped masses. The motivation 

is to compare the results of this case as well as Topside modelling efforts are very less for this 

approach. The lumped mass and CoG calculations are shown in Appendix C. The Topside model 

is shown in Figure 5-13. The complete model is shown in Figure 5-14. 

 
Figure 5-13 Topside model for lumped mass approach case 2 

 
Figure 5-14 Complete model for lumped mass approach case 2 
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5.3.2. Results – Eigenvalue analysis 

The eigenvalue analysis is performed on the 3 approaches and results for the time periods is shown 

in Table 5-9 and Figure 5-15. 

Table 5-9 Natural time period of structure in various approaches 

Mass modelling approach Mode  SAP2000 result Direction

Approach 1 – D I 

(density as mass) 

 

1 3.00194 Sway - Y 

2 2.22642 Sway - X 

3 1.61245 Torsion 

Approach 2 – P L 

(point loads as mass) 

1 2.48813 Sway - Y 

2 2.14406 Sway - X 

3 1.57742 Torsion 

Approach 3 – L M 1 

(lumped mass – casa 1) 

1 3.17588 Sway - Y 

2 2.97827 Sway - X 

3 1.45694 Torsion 

Approach 3 – L M 2 

(lumped mass – casa 2) 

1 2.73803 Sway - Y 

2 1.94277 Sway - X 

3 1.23281 Torsion 

 
Figure 5-15 Natural time period for various mass modelling approaches – global modes 
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5.3.3. Results – Serviceability limit state (SLS) 

The displacement for leg A of the Jacket is obtained for each of the mass modelling approaches 

and results are shown in Figure 5-16 and Figure 5-17  

Figure 5-16 Leg A displacement U1 for various 
approaches – worst load combination 

Figure 5-17 Leg A displacement U2 for various 
approaches – for worst load combination 

5.3.4. Results – Ultimate limit state (ULS) 

The utilization ratio in the leg A is found out for the various mass modelling approaches. The unity 

check values for each of the ULS load combination and mass modelling approach is shown in  

Table 5-10. The complete unity check plots for all members of the Jacket is shown in Figure 5-18 

to Figure 5-21. 

Table 5-10 UC values for leg A in various approaches 

   ULSA     ULSB 

1 2 3 4 5 1 2 3 4 5 
DI  0.796 0.799 0.817 0.818 0.807 0.610 0.613 0.643 0.649 0.630 
PL 0.600 0.601 0.618 0.627 0.611 0.459 0.462 0.594 0.608 0.541 
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Lump 1 0.153 0.135 0.227 0.231 0.200 0.269 0.216 0.321 0.310 0.247 
Lump 2 0.157 0.138 0.227 0.233 0.205 0.279 0.223 0.320 0.312 0.253 

Approach 1 - Density increment  

 

Figure 5-18 UC plot for Jacket – density increment approach  
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Approach 2 – Point loads as masses 

 

Figure 5-19 UC plot for Jacket – point loads approach  
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Approach 3 – Lumped mass case 1  

 

Figure 5-20 UC plot for Jacket – lumped mass approach case 1 
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Approach 3 – Lumped mass case 2  

 

Figure 5-21 UC plot for Jacket – lumped mass approach case 2 
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6. Discussion and Conclusions 

6.1. Discussion and Conclusions 
In this thesis, the effect of the using linear and nonlinear wave theories on the structural response 

of an offshore structure is discussed. Also, the significance of modelling the Topside mass using 

various mass modelling approaches is highlighted.  

The hydrodynamic loading is among the major loading when it comes to offshore structures. These 

loadings are derived from several available linear as well as nonlinear wave theories. All these 

wave theories have some underlying assumptions and it becomes very important for researchers 

and engineers to understand these assumptions carefully before applying any theory to a structure. 

Various assumptions behind the linear Airy’s and nonlinear 5th order Stoke’s theory are discussed 

in detail. The effect of these wave theories on the structural response of the structure is studied. 

The study is first done on a simple column structure and then extended to a big complex offshore 

platform. The platform chosen for the case study is Martin Linge platform and is one of the heaviest 

platforms in the Norwegian Continental Shelf. The platform weighs 38000 tons in total having a 

Topside of 28000 tons and a Jacket of 10000 tons. Both linear and nonlinear wave theory are used 

for the SLS and ULS analysis of the Jacket structure for a 100 year return period wave. The 

nonlinear Stoke’s theory gives slightly higher values of the leg displacement for SLS analysis. 

Also, the unity check values in the members of the Jackets are higher when using the Stoke’s theory 

for ULS analysis. This is probably because of the loading nonlinearities captured by the 5th order 

Stoke’s theory. These nonlinearities are present due to the nonlinear drag force term and results in 

higher member forces, higher displacements and higher utilization values. The selection of a 

particular wave theory also depends on the water depth levels at the location of the structure as 

well as the wave parameters. 

In case of heavy offshore structures like Martin Linge platform, the dead weight of the heavy 

Topside is also one of the governing factors for the Jacket design. It is seen in case of Martin Linge 

platform, that the Jacket design is completed even before the Topside design is finalized. In such 

cases it is very important to represent the Topside mass precisely for Jacket design even when the 

Topside weight details are not available in detail. Also often the Topside and Jacket are designed 

by separate design consultants. For the design consultant responsible for Jacket design, it becomes 

not only impractical but also uneconomical to spend hundreds of hours in modelling the Topsides 
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even when the details are available. The Topside mass in such cases is generally modelling in a 

approximate way. However, it is found that not many guidelines are available in the codes and 

standards on modelling the Topsides mass approximately without compromising on the precision 

of the Jacket response. It is due to this fact that practicing engineers doing the Jacket design face 

problems while representing the Topside mass. This is identified as one of the major problems for 

this thesis work. To overcome this problem, an attempt is made to formulate various approaches 

and methodologies of modelling the Topside mass. These approaches are first demonstrated on a 

simple structure before extending the study to Martin Linge Topside. 

Three mass modelling approaches are formulated and discussed in this thesis. The first approach 

is the density increment approach. In this approach, it is recommended to model only the primary 

and secondary members of modules without modelling any tertiary members. Also, the equipment 

and other weight on the module decks can be ignored. To account for the equipment and other dead 

weight loading on the module floor, it is recommended to increase the density of the primary and 

secondary members of the deck member in order to attain actual targeted mass. 

The second mass modelling approach discussed is the point load approach wherein the point loads 

are applied as masses directly on the top of Jacket legs. This approach can be useful when very 

limited information is available for the Topside or very limited number of engineering hours is 

assigned to Topside mass modelling. 

The third approach discussed is the lumped mass approach wherein the modules are represented 

by lumped masses at the CoG and are connected to the support points with rigid elements. 

The three mass modelling approaches are applied on the heavy Martin Linge Topside. Eigenvalue 

and Static analysis is performed and Jacket response is observed. It is observed that the density 

increment approach gives fairly good results where the natural time periods are well separated for 

the first three global modes. This is probably because the mass representation is fairly accurate 

since the deck loading is represented by the increased density. Also, since primary and secondary 

members are modelled for the Topside, the stiffness is captured more precisely compared to all 

other approaches. 
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The point load approach is a very simplified approach. The natural periods for this approach are 

found to be lower especially for the first mode. This might be due to the Topside stiffness which is 

not represented correctly in this approach.  

The lumped mass approach case one, wherein each module is represented overestimates the natural 

time periods by around 5% for mode 1 (sway Y) and 25% for mode 2 (sway Y). The overestimate 

is more for Y direction since the Jacket is slender in that direction. Also, since lumped mass is 

connected to the support points using pyramid rigid elements, the stiffness contribution is missing 

from the columns and deck elements. However, this approach can be useful to give an initial 

estimation of the structural response in event of lack of Topside data or number of engineering 

hours for modelling. 

6.2. Scope of future work 
The scope for future research is also identified. It is recommended to investigate the effect of other 

nonlinear linear wave theories on the structural response especially for Cnoidal and Stream 

function wave theory.  

It is also recommended to verify the various proposed mass modelling approaches on couple of 

other case studies as well. This will not only reconfirm the conclusions but can also be very useful 

for upcoming standards and guidelines. The consideration of the Topside stiffness more precisely 

is also identified as future work. The point load case approach i.e. approach 2 can be tried by putting 

the point loads on the cellar deck support points rather than on the Jacket legs. This will take into 

account for Topside stiffness at-least to some extent if not completely. 
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Appendix A – Analytical calculations for simple beam 

Illustration of cantilever rectangular beam 

 

Dimensions  Lengths 

L 0.45m 

b 0.02m 

h 0.003m 

 

Calculation of tip displacement for a simple cantilever beam 

Mass per meter 

ݔ݉ ൌ ௦௧௘௘௟ߩ ∙ ܾ ∙ ݄ ݉ ൌ 7850
௞௚

௠య ∙ 0.02݉ ∙ 0.003݉ ݉ ൌ 0.471
௞௚

௠
 

Mass converted to newton 

ݍ ൌ ݉ ∙ ݍ  ݃ ൌ 0.471
௞௚

௠
∙ 9.81

௠

௦మ
ݍ    ൌ 4.62051

ே

௠
 

Moment of inertia for a rectangular element 

ܫ ൌ ௕∙௛య

ଵଶ
ܫ   ൌ ଴.଴ଶ௠∙ሺ଴.଴଴ଷ௠ሻయ

ଵଶ
ܫ   	 ൌ 4.5 ∙ 10ିଵଵ݉ସ 

Tip displacement 

௠௔௫ߜ ൌ
௤∙௅ర

଼∙ாூ
௠௔௫ߜ   ൌ

ସ.଺ଶ଴ହଵ	ಿ
೘
	∙	ሺ଴.ସହ௠ሻర

଼	∙	ଶ.ଵ	∙	ଵ଴భభ	
ಿ
೘మ	∙	ସ.ହ∙ଵ଴

షభభ௠ర	
࢞ࢇ࢓ࢾ 		 ൌ ૙. ૙૙૛૞࢓ 

࢞ࢇ࢓ࢾ         ൌ ૛. ૞૙૟࢓࢓ 

Material 

properties 

Density 

[kg/m^3] 

Young’s 

Modulus 

[N/m^2] 

Steel 7850  2.1*1011   
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Analytical frequency solutions for a undamped 2D cantilever beam  

 

Mode shape 1  - Global mode           Analytical natural frequency, ࣓  

	߱ଵ ൌ ሺ1.875ሻଶ ∙ ඨ
ܧ ∙ ܫ
݉ ∙ ସܮ

	 

 

 

Mode shape 2  - Local mode   
   

߱ଶ ൌ ሺ4.694ሻଶ ∙ ඨ
ܧ ∙ ܫ
݉ ∙ ସܮ

	 

 

Mode shape 3 – Local mode     

    

						߱ଷ ൌ ሺ7.855ሻଶ ∙ ඨ
ܧ ∙ ܫ
݉ ∙ ସܮ

	 

 

 

Analytical frequency solution for first three modes 

 

Natural frequency       Frequency 

߱ଵ ൌ ሺ1.875ሻଶ ∙ ඨ
ଶ.ଵ∙ଵ଴భభ

ಿ
೘మ∙ସ.ହ∙ଵ଴

షభభ௠ర

଴.ସ଻ଵ
ೖ೒
೘
∙ሺ଴.ସହ௠ሻర

	 ൌ 77,77 ௥௔ௗ

௦
   ଵ݂ ൌ  ݖܪ12.37

߱ଶ ൌ ሺ4.694ሻଶ ∙ ඨ
ଶ.ଵ∙ଵ଴భభ

ಿ
೘మ∙ସ.ହ∙ଵ଴

షభభ௠ర

଴.ସ଻ଵೖ೒
೘
∙ሺ଴.ସହ௠ሻర

	 ൌ 489.28
௥௔ௗ

௦
  ଶ݂ ൌ  ݖܪ77.53

߱ଷ ൌ ሺ7.855ሻଶ ∙ ඨ
ଶ.ଵ∙ଵ଴భభ ಿ

೘మ∙ସ.ହ∙ଵ଴
షభభ௠ర

଴.ସ଻ଵ
ೖ೒
೘
∙ሺ଴.ସହ௠ሻర

	 ൌ 1364.81
௥௔ௗ

௦
   ଷ݂ ൌ  ݖܪ217.20
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Appendix B -MATLAB code for 6 node beam (2D element) 
nodal beam element 
 %The frequencies are only developed for the x-z-plane as there are only 2 nodes 
acting in each node (translational and z direction). 
 
 
 
E=2.1e11        %Youngs modulus in N/m^2 
b=0.02          %Width of c/s in m 
h=0.003         %Height of c/s in m 
I=(b*h^3)/12    %Moment of inertia in m^4  
L=0.45          %Total length of the beam in m 
L1=L/5          %Length of beam element 1,2,3,4,5 
rho=7850        %density of the beam in kg/m^3 
m=rho*b*h*L     %Total mass of the beam in kg 
  
 
 
%MASS MATRICES 
%Here the constant in front of the mass matrix is calculated which is constant 
%for all the local beams 
 
 
mConst=(rho*b*h*L1)/420  
 
%Local mass matrix of element 1 
m1=mConst*[156    22*L1   54     -13*L1  0 0 0 0 0 0 0 0;  
           22*L1  4*L1^2  13*L1  -3*L1^2 0 0 0 0 0 0 0 0; 
           54     13*L1   156    -22*L1  0 0 0 0 0 0 0 0; 
           -13*L1 -3*L1^2 -22*L1 4*L1^2  0 0 0 0 0 0 0 0; 
           0      0       0      0       0 0 0 0 0 0 0 0;  
           0      0       0      0       0 0 0 0 0 0 0 0;  
           0      0       0      0       0 0 0 0 0 0 0 0;  
           0      0       0      0       0 0 0 0 0 0 0 0; 
           0      0       0      0       0 0 0 0 0 0 0 0; 
           0      0       0      0       0 0 0 0 0 0 0 0; 
           0      0       0      0       0 0 0 0 0 0 0 0; 
           0      0       0      0       0 0 0 0 0 0 0 0;]  
  
 
%Local mass matrix of element 2 
m2=mConst*[0 0 0      0       0      0       0 0 0 0 0 0; 
           0 0 0      0       0      0       0 0 0 0 0 0; 
           0 0 156    22*L1   54     -13*L1  0 0 0 0 0 0; 
           0 0 22*L1  4*L1^2  13*L1  -3*L1^2 0 0 0 0 0 0; 
           0 0 54     13*L1   156    -22*L1  0 0 0 0 0 0; 
           0 0 -13*L1 -3*L1^2 -22*L1 4*L1^2  0 0 0 0 0 0; 
           0 0 0      0       0      0       0 0 0 0 0 0; 
           0 0 0      0       0      0       0 0 0 0 0 0; 
           0 0 0      0       0      0       0 0 0 0 0 0; 
           0 0 0      0       0      0       0 0 0 0 0 0; 
           0 0 0      0       0      0       0 0 0 0 0 0; 
           0 0 0      0       0      0       0 0 0 0 0 0;] 
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%Local mass matrix of element 3 
m3=mConst*[0 0 0 0 0      0       0     0       0 0 0 0; 
           0 0 0 0 0      0       0     0       0 0 0 0; 
           0 0 0 0 0      0       0     0       0 0 0 0; 
           0 0 0 0 0      0       0     0       0 0 0 0; 
           0 0 0 0 156    22*L1   54    -13*L1  0 0 0 0; 
           0 0 0 0 22*L1  4*L1^2  13*L1 -3*L1^2 0 0 0 0; 
           0 0 0 0 54     13*L1   156    -22*L1 0 0 0 0; 
           0 0 0 0 -13*L1 -3*L1^2 -22*L1 4*L1^2 0 0 0 0; 
           0 0 0 0 0      0       0     0       0 0 0 0; 
           0 0 0 0 0      0       0     0       0 0 0 0; 
           0 0 0 0 0      0       0     0       0 0 0 0; 
           0 0 0 0 0      0       0     0       0 0 0 0;] 
 
 
 
%Local mass matrix of element 4 
m4=mConst*[0 0 0 0 0 0 0      0       0     0       0 0; 
           0 0 0 0 0 0 0      0       0     0       0 0;       
           0 0 0 0 0 0 0      0       0     0       0 0; 
           0 0 0 0 0 0 0      0       0     0       0 0; 
           0 0 0 0 0 0 0      0       0     0       0 0; 
           0 0 0 0 0 0 0      0       0     0       0 0; 
           0 0 0 0 0 0 156    22*L1   54    -13*L1  0 0; 
           0 0 0 0 0 0 22*L1  4*L1^2  13*L1 -3*L1^2 0 0; 
           0 0 0 0 0 0 54     13*L1   156    -22*L1 0 0; 
           0 0 0 0 0 0 -13*L1 -3*L1^2 -22*L1 4*L1^2 0 0; 
           0 0 0 0 0 0 0      0       0     0       0 0; 
           0 0 0 0 0 0 0      0       0     0       0 0;] 
 
 
 
%Local mass matrix of element 5 
m5=mConst*[0 0 0 0 0 0 0 0 0      0       0     0; 
           0 0 0 0 0 0 0 0 0      0       0     0; 
           0 0 0 0 0 0 0 0 0      0       0     0; 
           0 0 0 0 0 0 0 0 0      0       0     0;      
           0 0 0 0 0 0 0 0 0      0       0     0; 
           0 0 0 0 0 0 0 0 0      0       0     0; 
           0 0 0 0 0 0 0 0 0      0       0     0; 
           0 0 0 0 0 0 0 0 0      0       0     0; 
           0 0 0 0 0 0 0 0 156    22*L1   54    -13*L1; 
           0 0 0 0 0 0 0 0 22*L1  4*L1^2  13*L1 -3*L1^2; 
           0 0 0 0 0 0 0 0 54     13*L1   156    -22*L1; 
           0 0 0 0 0 0 0 0 -13*L1 -3*L1^2 -22*L1 4*L1^2;] 
        
 
 
 
%Global mass matrix  
%Combining the local stiffnesses into a global mass matrix 
M=m1+m2+m3+m4+m5 



60 
 

  
 %STIFFNESS MATRICES 
%Here the constant in front of the stiffness matrix is calculated which is 
%constant %for all the local beams 
kConst=(E*I)/(L1^3); 
  
 
 
 
 
%Local stiffnes matrix of element 1 
k1=kConst*[12   6*L1   -12   6*L1   0 0 0 0 0 0 0 0;  
           6*L1 4*L1^2 -6*L1 2*L1^2 0 0 0 0 0 0 0 0; 
           -12  -6*L1  12    -6*L1  0 0 0 0 0 0 0 0; 
           6*L1 2*L1^2 -6*L1 4*L1^2 0 0 0 0 0 0 0 0; 
           0    0      0     0      0 0 0 0 0 0 0 0;  
           0    0      0     0      0 0 0 0 0 0 0 0;  
           0    0      0     0      0 0 0 0 0 0 0 0;  
           0    0      0     0      0 0 0 0 0 0 0 0; 
           0    0      0     0      0 0 0 0 0 0 0 0;  
           0    0      0     0      0 0 0 0 0 0 0 0; 
           0    0      0     0      0 0 0 0 0 0 0 0;  
           0    0      0     0      0 0 0 0 0 0 0 0;]  
 
 
%Local stiffnes matrix of element 2 
k2=kConst*[0 0 0    0      0     0      0 0 0 0 0 0; 
           0 0 0    0      0     0      0 0 0 0 0 0; 
           0 0 12   6*L1   -12   6*L1   0 0 0 0 0 0; 
           0 0 6*L1 4*L1^2 -6*L1 2*L1^2 0 0 0 0 0 0; 
           0 0 -12  -6*L1  12    -6*L1  0 0 0 0 0 0;  
           0 0 6*L1 2*L1^2 -6*L1 4*L1^2 0 0 0 0 0 0; 
           0 0 0    0      0     0      0 0 0 0 0 0; 
           0 0 0    0      0     0      0 0 0 0 0 0; 
           0 0 0    0      0     0      0 0 0 0 0 0; 
           0 0 0    0      0     0      0 0 0 0 0 0; 
           0 0 0    0      0     0      0 0 0 0 0 0; 
           0 0 0    0      0     0      0 0 0 0 0 0;] 
 
%Local stiffnes matrix of element 3 
k3=kConst*[0 0 0 0 0    0      0     0      0 0 0 0; 
           0 0 0 0 0    0      0     0      0 0 0 0; 
           0 0 0 0 0    0      0     0      0 0 0 0; 
           0 0 0 0 0    0      0     0      0 0 0 0; 
           0 0 0 0 12   6*L1   -12   6*L1   0 0 0 0;  
           0 0 0 0 6*L1 4*L1^2 -6*L1 2*L1^2 0 0 0 0; 
           0 0 0 0 -12  -6*L1  12    -6*L1  0 0 0 0; 
           0 0 0 0 6*L1 2*L1^2 -6*L1 4*L1^2 0 0 0 0; 
           0 0 0 0 0    0      0     0      0 0 0 0; 
           0 0 0 0 0    0      0     0      0 0 0 0; 
           0 0 0 0 0    0      0     0      0 0 0 0; 
           0 0 0 0 0    0      0     0      0 0 0 0;] 
 
 
 
 
 



61 
 

%Local Stiffness matrix of element 4 
       k4=kConst*[0 0 0 0 0 0 0    0       0    0      0 0; 
                  0 0 0 0 0 0 0    0       0    0      0 0;       
                  0 0 0 0 0 0 0    0       0    0      0 0; 
                  0 0 0 0 0 0 0    0       0    0      0 0; 
                  0 0 0 0 0 0 0    0       0    0      0 0; 
                  0 0 0 0 0 0 0    0       0    0      0 0; 
                  0 0 0 0 0 0 12   6*L1   -12   6*L1   0 0;  
                  0 0 0 0 0 0 6*L1 4*L1^2 -6*L1 2*L1^2 0 0; 
                  0 0 0 0 0 0 -12  -6*L1  12    -6*L1  0 0; 
                  0 0 0 0 0 0 6*L1 2*L1^2 -6*L1 4*L1^2 0 0; 
                  0 0 0 0 0 0 0    0       0    0      0 0; 
                  0 0 0 0 0 0 0    0       0    0      0 0;] 
 
 
 
%Local stiffness matrix element 5 
       k5=kConst*[0 0 0 0 0 0 0 0 0    0      0     0;  
                  0 0 0 0 0 0 0 0 0    0      0     0;       
                  0 0 0 0 0 0 0 0 0    0      0     0;  
                  0 0 0 0 0 0 0 0 0    0      0     0; 
                  0 0 0 0 0 0 0 0 0    0      0     0;  
                  0 0 0 0 0 0 0 0 0    0      0     0; 
                  0 0 0 0 0 0 0 0 0    0      0     0;  
                  0 0 0 0 0 0 0 0 0    0      0     0; 
                  0 0 0 0 0 0 0 0 12   6*L1   -12   6*L1; 
                  0 0 0 0 0 0 0 0 6*L1 4*L1^2 -6*L1 2*L1^2; 
                  0 0 0 0 0 0 0 0 -12  -6*L1  12    -6*L1; 
                  0 0 0 0 0 0 0 0 6*L1 2*L1^2 -6*L1 4*L1^2;] 
 
%Combining the local stiffnesses into a global stiffness matrix 
 
 
K=k1+k2+k3+k4+k5 
 
 
%Solving the eigen values for the beam for  [M''+K]*x=0 where 
%{x}''=-omega^2*{x}. This gives -[M]*{x}*omega^2=-K*{x} => omega^2=[M^-1]*[K], 
%where omega^2=lambda 
 
 
M_inv=inv(M) 
lambda=K*M_inv 
[D]=eig(lambda) 
  
 
 
%f=omega/(2*PI), only the first 10 values are giving good estimations. The 
%global frequency in z-direction is not coming out as a result.   
for i=1:1:10 
    omega(i,1)=sqrt(D(i,1))       
    frequency(i,1)=(1/(2*pi))*omega(i,1) 
end 
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Appendix C - CoG calculations for the Topside modules 
Approach 3 Lumped mass case 

The lump masses is divided into three different masses. The masses are assumed to be uniformly 

distributed as it is in approach – 1 resulting in CoG’s for each section module to be in the center. 

Local coordinates are defined at the left bottom corner of each lump mass. The figures display all 

platform modules considerered and how its divided into different lump masses.  

 
Figure 1 Topside modules 

 

 
Figure 2 Topside modules 
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CoG formulas: 

x-direction: ݔ ൌ ∑௠೔∙௫೔
௠೟೚೟

 

y-direction: ݕ ൌ ∑௠೔∙௬೔
௠೟೚೟

 

z-direction: ݖ ൌ ∑௠೔∙௭೔
௠೟೚೟

 

A few abbrevations: 

݉௖ - lump mass contribution of cellar deck 

݉௠௢ௗ - lump mass contribution of module deck 

݉௅ொ     - lump mass contribution of living quarters 

݉ଵି଺   - Total lump mass contribution of module 1-6 

Lump mass 1 calculations  

Local coordinate defined at the far tip of the platform (Living quarters side). 

Lump Mass 1 Cellar deck Module deck Living	Quarters 

Lump	mass	area	ሾmଶሿ 1175 925 980,5 

Total	areaሾmଶሿ 4975 4325 980,5 

Ratio ቈ
mଶ

mଶ቉ 
0,23618 0,21387 1,00 

Total	mass ሾtonሿ 8364,4 12409,1 2776,9 

,ሿ ૚ૢૠ૞ܖܗܜሾ	ܜܐ܏ܑ܍ܟ	ܛܛ܉ܕ	ܘܕܝۺ ૞ ૛૟૞૝, ૙ ૛ૠૠ૟, ૢ 

 

ܠ ൌ
ሺ܋ܕ ∙ ܋ܠ ൅ ܌ܗܕܕ ∙ ܌ܗܕܠ ൅ۿۺܕ ∙ ሻۿۺܠ

܋ܕ ൅܌ܗܕܕ ൅ۿۺܕ
		 

ܠ ൌ ૚૜, ૞ૡ૜ܕ 
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ܡ ൌ
ሺ܋ܕ ∙ ܋ܡ ൅ ܌ܗܕܕ ∙ ܌ܗܕܡ ൅ۿۺܕ ∙ ሻۿۺܡ

܋ܕ ൅܌ܗܕܕ ൅ۿۺܕ
 

ܡ ൌ ૛૝, ૝૜ૡܕ 

ܢ ൌ
ሺ܋ܕ ∙ ܋ܢ ൅ ܌ܗܕܕ ∙ ܌ܗܕܢ ൅ۿۺܕ ∙ ሻܙۺܢ

܋ܕ ൅܌ܗܕܕ ൅ۿۺܕ
 

ܢ ൌ ૚૟, ૡ૙૛ܕ 

Lump mass 2 calculations 

Local coordinate at support point S1 shown in figure 2. 

Lump Mass 2 Cellar deck Module deck Module	1 െ 6 

Lump	mass	area	ሾmଶሿ 2550 2550 14688 

Total	areaሾmଶሿ 4975 4325 14688 

Ratio ቈ
mଶ

mଶ቉ 
0,51256 0,58960 1,00 

Total	mass	ሾtonሿ 8364,4 12409,1 4449,6 

ܜܐ܏ܑ܍ܟ	ܛܛ܉ܕ	ܘܕܝۺ ሾܖܗܜሿ ૝૛ૡૠ, ૜ ૠ૜૚૟, ૝ ૝૝૝ૢ, ૟ 

 

ܠ ൌ
ሺ܋ܕ ∙ ܋ܠ ൅ ܌ܗܕܕ ∙ ܌ܗܕܠ ൅ܕ૚ି૟ ∙ ૚ି૟ሻܠ

܋ܕ ൅܌ܗܕܕ ൅ܕ૚ି૟
		 

ܠ ൌ ૛૞, ૞m 

ܡ ൌ
ሺ܋ܕ ∙ ܋ܢ ൅܌ܗܕܕ ∙ ܌ܗܕܢ ൅ܕ૚ି૟ ∙ ૚ି૟ሻܢ

܋ܕ ൅܌ܗܕܕ ൅ܕ૚ି૟
 

ܡ ൌ ૛૜, ૡૢ૚૛ૢܕ 

ܢ ൌ
ሺ܋ܕ ∙ ܋ܢ ൅ ܌ܗܕܕ ∙ ܌ܗܕܢ ൅ܕ૚ି૟ ∙ ૚ି૟ሻܢ

܋ܕ ൅܌ܗܕܕ ൅ܕ૚ି૟
 

ܢ ൌ ૚૝, ૛ૢૡ૜ܕ 


