University of Stavanger Faculty of Science and Technology MASTER'S THESIS			
Study program/ Specialization:			
Master's Degree in Mechanical and Structural Engineering - Offshore Constructions	Spring semester, 2016		
Writer:			
Yohannes, Berhane			
Faculty supervisor: Professor S.A. Sudath C. Siriwardane-UiS			
Title of thesis:			
Critical Design Phase for Subsea Module Supporting	g Structures		
Credits (ECTS): 30			
Key words: Subsea Module, Subsea Supporting Structure, Air	Pages:59		
Lifting, Transportation, Offshore lifting,	+ Enclosure:244		
Installation, DNV 2.7-3, STAAD Analyses.	Stavanger, 14.06.2016		
	Date/year		

Abstract

This master thesis is written at the University of Stavanger in collaboration with the Department of Mechanical and Structural Engineering and Materials Science.

All subsea modules for subsea processing highly require integrated supporting frame structure that can support during lifting, transportation, installation and decommissioning. In principle the subsea module supporting structures should be designed such that it can withstand the critical design phase. Failure of the subsea module supporting structures is directly associated with the main subsea module /unit.

This work presents a literature study on lifting, transportation, installation and decommissioning phases. The project has developed different supporting structure STAAD models to study how the structural integrity will be responded to different design phases. The subsea modules for each case study are taking from Åsgard compact subsea compression system for smaller gas fields. The data for the pump module, cooler module and compressor module are based on AkerSolutions and Statoil presentations. The main objective of this thesis is to investigate the critical design phase for the subsea supporting structures and make some guide lines on how to document structural integrity during concept and final engineering stages.

Acknowledgement

First and above all, praises and thanks to the God almighty for giving me strength throughout my thesis to complete.

I owe my deepest gratitude to my main supervisor, Prof. Sudath Siriwardane, for his excellent encouragement, guidance and support from scratch to the final level of writing my master thesis.

My special thanks goes to senior structural Engineer, Teame Berhane at Aker Solutions for his valuable guidance, comments, sharing his knowledge and discussions.

Lastly, I offer my regards and blessings to my beloved wife Saba Tsahaye and children, for their love, patience, encouragement and support for all aspects until the completion of the project.

Berhane Yohannes. Stavanger, June 14, 2016.

Table of content	ts
------------------	----

Abstract	1			
Acknowledgement2				
List of Figures				
List of Tables				
List of Symbols	9			
Abbreviations	12			
1. Introduction	14			
1.1 General	14			
1.2 Objective	15			
1.3 Scope	15			
1.4 Methodology	15			
1.5 Thesis organization	16			
2. Regulations, codes and standards	17			
2.1 Statuary regulations	17			
2.2 National and international codes and standards	17			
3. Design basis	18			
3.1 Limit state design	18			
3.2 Load categories and factors	18			
3.3 Material properties	19			
3.3.1 Material strength and constants	19			
3.3.2 Material factors	19			
3.3.3 ULS usage factor and code checks	20			
4. Design phases	22			
4.1 In place phase	22			
4.2 Lifting phase	22			
4.2.1 Air lifting	23			
4.2.2 Subsea lifting	23			
4.2.3 Horizontal impact during air lift	24			
4.2.4 Horizontal impact during offshore lift	25			
4.3 Transportation phase	25			
4.4 Landing phase	26			
4.5 In-situ/Operational phase	27			
5. Structural design philosophy	27			

CRITICAL DESIGN PHASE FOR SUBSEA MODULE SUPPORTING STRUCTURES

5.1 General 27
5.2 Computer model description
5.3. Boundary conditions
5.3.1 Air and subsea lifting analyses
5.3.2 Transportation analyses
5.3.3 Landing analyses
6. Basic loads and load combinations
6.1 General
6.2 Basic loads
6.2.1 Static self-weight
6.2.2 Static subsea module weight
6.2.3 Dynamic self-weight
6.2.4 Dynamic subsea module weight
6.3 Load combinations
6.3.1 In place analyses
6.3.2 Transportation analyses
6.3.2 Lifting analyses
6.3.3 Landing analyses
6.3.4 In-situ/Operational analyses
6.3.5 Recovery analyses
7. Global analyses 40
7.1 General 40
7.2 Operational classes 40
7.3 Cross-sectional properties and classes41
7.3.1 Cross-sectional properties 41
7.3.2 Cross-section class
7.4 Case A-Pump module 42
7.4.1 Pump transportation analysis-Results43
7.4.2 Pump air lifting analysis-Results
7.4.3 Pump subsea lifting analysis-Results
7.4.4 Pump landing analysis-Results
7.5 Case B- Cooler module
7.5.1 Cooler transportation analysis-Results
7.5.2 Cooler air lifting analysis-Results 48

7.5.3 Cooler subsea lifting analysis-Results	49
7.5.4 Cooler landing analysis-Results	50
7.6 Case C- Compressor module	50
7.6.1 Compressor transportation analysis-Results	51
7.6.2 Compressor air lifting analysis-Results	52
7.6.3 Compressor subsea lifting analysis-Results	53
7.6.4 Compressor landing analysis-Results	54
8. Summary results and discussions	55
8.1 General	55
8.2 Summary results for Case A:Pump module	55
8.3 Summary results for Case B:Cooler module	55
8.4 Summary results for Case C:Compressor module	56
9. Conclusions and recommendations	57
9.1 General	57
9.2 Conclusion	57
9.3 Recommendation for further work	58
Bibliography	59
Appendix A: Impact calculation during lifting	60
Appendix A_1 : Impact calculation during air lifting-Case A: Pump module	60
Appendix A ₂ : Impact calculation during offshore lifting-Case A: Pump module	61
Appendix A ₃ : Impact calculation during air lifting-Case B: Cooler module	62
Appendix A ₄ : Impact calculation during offshore lifting-Case B: Cooler module	63
Appendix A_5 : Impact calculation during air lifting-Case C: Compressor module	64
Appendix A ₆ : Impact calculation during offshore lifting-Case C: Compressor module	65
Appendix B: Landing impact calculations during offshore lifting	66
Appendix B ₁ : Landing calculation during offshore lifting-Case A: Pump module	66
Appendix B ₂ : Landing calculation during offshore lifting-Case B: Cooler module	67
Appendix B ₃ : Landing calculation during offshore lifting-Case C: Compressor module	68
Appendix C: Von Mises yield criteria calculations	69
Appendix C_1 : Von Mises yield criteria for air lifting and horizontal impact-Case A: Pump mod	dule 69
Appendix C ₂ : Von Mises yield criteria for offshore lifting and horizontal impact-Case A: Pum module	•
Appendix C ₃ : Von Mises yield criteria for transportation-Case A: Pump module	97
Appendix C ₄ : Von Mises yield criteria for air lifting and horizontal impact-Case B:Cooler mo	dule 107

Appendix C ₅ : Von Mises yield criteria for offshore lifting and horizontal impact-Case B:Cooler module	126
Appendix C ₆ : Von Mises yield criteria for transportation-Case B:Cooler module	145
Appendix C ₇ : Von Mises yield criteria for air lifting and horizontal impact-Case C:Compressor module	159
Appendix C ₈ : Von Mises yield criteria for offshore lifting and horizontal impact- Case C:Compres module	
Appendix C ₉ : Von Mises yield criteria for transportation-Case C:Compressor module	197
Appendix C ₁₀ : Von Mises yield criteria for landing-Case A:Pump module	211
Appendix C ₁₁ : Von Mises yield criteria for landing-Case B:Cooler module	212
Appendix C ₁₂ : Von Mises yield criteria for landing-Case C:Compressor module	213
Appendix D: Colbeam EC3 calculations	214
Appendix D ₁ : Colbeam EC3 calculations for air lift Case A:Pump module	214
Appendix D ₂ : Colbeam EC3 calculations for offshore lift Case A:Pump module	219
Appendix D ₃ : Colbeam EC3 calculations for transportation Case A:Pump module	224
Appendix D ₄ : Colbeam EC3 calculations for air lift Case B:Cooler module	229
Appendix D ₅ : Colbeam EC3 calculations for offshore lift Case B:Cooler module	236
Appendix D ₆ : Colbeam EC3 calculations for transportation Case B:Cooler module	243
Appendix D ₇ : Colbeam EC3 calculations for air lift Case C:Compressor module	250
Appendix D ₈ : Colbeam EC3 calculations for offshore lift Case C:Compressor module	257
Appendix D ₉ : Colbeam EC3 calculations for transportation Case C:Compressor module	264
Appendix E: Staad.Pro input	271
Appendix E_1 : Staad.Pro input for air lifting Case A:Pump module	271
Appendix E ₂ : Staad.Pro input for offshore lifting Case A:Pump module	273
Appendix E_3 : Staad.Pro input for transportation Case A:Pump module	275
Appendix E4: Staad.Pro input for air lifting Case B: Cooler module	278
Appendix E_5 : Staad.Pro input for offshore lifting Case B: Cooler module	280
Appendix E_6 : Staad.Pro input for transportation Case B: Cooler module	282
Appendix E ₇ : Staad.Pro input for air lifting Case C: Compressor module	286
Appendix E ₈ : Staad.Pro input for offshore lifting Case C: Compressor module	289
Appendix E_9 : Staad.Pro input for transportation Case C: Compressor module	292
Appendix F: Staad.Pro output reaction forces	296
Appendix F ₁ : Air/offshore lifting reaction forces-Case A: Pump module	296
Appendix F ₂ : Transportation reaction forces-Case A: Pump module	296
Appendix F ₃ : Air/offshore lifting reaction forces-Case B: Cooler module	297

	Appendix F ₄ : Transportation reaction forces-Case B: Cooler module	297
	Appendix F ₅ : Air/offshore lifting reaction forces-Case C: Compressor module	298
	Appendix F ₆ : Transportation reaction forces-Case C: Compressor module	298
A	ppendix G: Reference drawings	299
	Appendix G ₁ : Reference drawings from Statoil presentations	299
	Appendix G ₂ : Reference drawings from AkerSolutions presentations	300

List of Figures

Figure 1: Order of precedence (Petroleum Safety Authority Norway, 2016)
Figure 2: Vessel motion at sea
Figure 3: Global coordinate system 27
Figure 4: Pump model lifting
Figure 5: Cooler model lifting
Figure 6: Compressor model lifting
Figure 7: Pump model transport
Figure 8: Cooler model transport
Figure 9: Compressor model transport
Figure 10: Pump model landing
Figure 11: Cooler model landing
Figure 12: Compressor model landing
Figure 13: Pump CAD model
Figure 14: Highly utilized members for pump-transportation analysis
Figure 15: Highly utilized members for pump-Air lifting analysis
Figure 16: Highly utilized members for pump-Offshore/subsea lifting analysis
Figure 17: Cooler CAD model
Figure 18: Highly utilized members for cooler-transportation analysis
Figure 19: Highly utilized members for cooler-Air lifting analysis
Figure 20: Highly utilized members for cooler-Offshore/subsea lifting analysis
Figure 21: Compressor CAD model
Figure 22: Highly utilized members for compressor-transportation analysis
Figure 23: Highly utilized members for compressor-Air lifting analysis
Figure 24: Highly utilized members for compressor-Offshore/subsea lifting analysis

List of Tables

Table 1: Action factors for ULS (DNV, January 1996)	18
Table 2: Steel yield strength (CEN, 2005)	19
Table 3: Design Factors, DF, (DNV, May 2011)	23
Table 4: Total test load for all point lifting test (DNV, May 2011)	25
Table 5: Case and categories based on maximum gross weight	27
Table 6: Boundary conditions for lifting analyses	29
Table 7: Boundary conditions for transportation analyses	31
Table 8: Boundary conditions for landing analyses	31
Table 9: Load combinations-Transportation analyses	
Table 10: Load combinations ULS a and ULS b- Transportation analyses	36
Table 11: SKL, DF and LF-Air lifting analyses	37
Table 12: SKL, DF and LF-Subsea lifting analyses	37
Table 13: Load combinations-Lifting analyses	38
Table 14: SKL, DF, IF and LF for landing	38
Table 15: Load combination-Landing analyses	38
Table 16: Cross-sectional properties for pump and compressor model	41
Table 17: Cross-sectional properties for cooler model	41

CRITICAL DESIGN PHASE FOR SUBSEA MODULE SUPPORTING STRUCTURES

Table 18: Tubular cross-section class	. 42
Table 19: Total weight for pump model	. 42
Table 20: Pump transportation analysis-Results UR buckling/yielding	. 43
Table 21: Pump air lifting and horizontal impact analysis-Results UR buckling/yielding	. 44
Table 22: Pump offshore lifting and horizontal impact analysis-Results UR buckling/yielding	. 45
Table 23: Pump landing analysis-Results UR buckling/yielding	. 46
Table 24: Total weight for cooler model	. 46
Table 25: Cooler transportation analysis-Results UR buckling/yielding	. 47
Table 26: Cooler air lifting analysis-Results UR buckling/yielding	. 48
Table 27: Cooler offshore lifting analysis-Results UR buckling/yielding	. 49
Table 28: Cooler landing analysis-Results UR buckling/yielding	
Table 29: Total weight for compressor model	. 50
Table 30: Compressor transportation analysis-Results UR buckling/yielding	. 51
Table 31: Compressor air lifting analysis-Results UR buckling/yielding	. 52
Table 32: Compressor offshore lifting analysis-Results UR buckling/yielding	. 53
Table 33: Compressor landing analysis-Results UR buckling/yielding	. 54
Table 34: Pump module maximum UR	. 55
Table 35: Cooler module maximum UR	. 55
Table 36: Compressor module maximum UR	. 56
Table 37: Guidelines on critical design phase/phases for subsea module supporting structures	. 57

List of Symbols

Latin symbols

 a_{χ} : Transverse acceleration due to roll and sway.

 a_{γ} : Transverse acceleration due to pitch and surge.

 a_{zmax} : Maximum transverse acceleration due to gravity and heave.

 a_{zmin} : Minimum transverse acceleration due to gravity and heave.

d : Diameter.

E : Modulus of elasticity.

F : Design load for lifting.

 F_{Air} : Lift load in air.

 F_H : Horizontal load.

 $F_{HI(air)}$: Horizontal design impact load during air lift.

 $F_{HI(sub)}$: Horizontal design impact load during subsea/offshore lift.

 $F_{HIR(air)}$: Reduced horizontal design impact load during air lift.

 $F_{HIR(sub)}$: Reduced horizontal design impact load during subsea/offshore lift.

 F_{TEST} : Test load.

 F_{Sub} : Lift load Subsea.

 $F_{V max}$: Maximum vertical load.

 $F_{V min}$: Minimum vertical load.

 F_{VI} : Vertical design impact load.

 $f_{\rm y}$: Minimum yield strength.

G : Shear modulus.

g: gravitational acceleration.

H : Height.

L : Length.

M : Mass.

 $M_{y,Ed}$: Maximum moment about y-y axis.

 $M_{\rm z, \it Ed}$: Maximum moment about z-z axis.

 $\Delta M_{y,Ed}$: Moment due to the shift of the centroidal axis about y-y axis.

 $\Delta M_{z,Ed}$: Moment due to the shift of the centroidal axis about z-z axis.

 N_{Ed} : Compression force.

t: Thickness.

W : Width.

Greek symbols

- $\chi_{\rm y}$: Reduction factor due to flexural buckling about y-y axis.
- χ_z : Reduction factor due to flexural buckling about z-z axis.
- χ_{IT} : Reduction factor due to lateral torsional buckling.
- $k_{\rm yy}$: Interaction factor about y-y axis.
- k_{yz} : Interaction factor about y-z axis.
- k_{zy} : Interaction factor about z-y axis.
- k_{zz} : Interaction factor about z-z axis.
- ho : Density.
- v: Poisson's Ratio.
- α : Coefficient of thermal expansion.
- γ_{M} : Material factor for resistance of cross-section.
- σ_x : Normal stress in X direction.
- $\sigma_{\scriptscriptstyle by}$: Bending stresses in y direction.
- $\sigma_{\scriptscriptstyle bz}$: Bending stresses in z direction.
- τ_x : Shear stress in x direction.
- τ_{y} : Shear stress in y direction.
- τ_z : Shear stress in z direction.

Abbreviations

A: Accidental loads.

- ALS: Axial limit state.
- CF : Contingency factor.
- COG: Center of gravity.
- D: Deformation loads.
- DAF: Dynamic amplification factor.
- Des: Description.
- DF: Design factor.
- Dia: Diameter.
- DNV: Det Norske Veritas.
- E: Environmental loads.
- EC3: Eurocode 3.
- FLS: Fatigue limit state.
- i.e.: That is.
- IF: Impact factor.
- kg/m³: Kilogram per cubic meter.
- kN: Kilo Newton (1000 Newton).
- kN/m: Kilo Newton per meter.
- L: Live loads.
- LC: Load combinations.
- LF: Total load factor.
- m: Meter.
- Max: Maximum.
- Min: Minimum.
- MGW: Maximum Gross Weight (mass).
- mm: Millimeter.
- N/A : Not applicable.
- University of Stavanger

No: Number.

- P: Permanent loads.
- PLS: Progressive collapse limit state.
- PO: portable offshore unit.
- PSA: Petroleum Safety Authority.
- R30: Operational class 30.
- R45: Operational class 45.
- R60: Operational class 60.
- SCS : Subsea compression system.
- SKL: Skew load factor.
- SLS: Serviceability limit state.
- Thick: Thickness.
- ULS: Ultimate limit state.
- UR: Utilization ratios.

1. Introduction

1.1 General

It has been a common practice that oil and gas industries has been using the advantage subsea technology than surface production platforms in case of deeper water. Subsea development in deeper water become a key toward cost effective with optimal oil recovery. In order to achieve the subsea production, subsea modules or products are required. All subsea modules; like subsea gas compressor, pumps, umbilical termination, control system, subsea pig launcher, power and processing unit and the like; require integrated supporting frame structure that can support during lifting, transportation, installation and decommissioning. Any failure of the subsea module supporting structures have direct impact on the main subsea module /unit and this failure can induce stress on the main subsea module. Therefore it is very important to document the structural integrity of the subsea module supporting structures before installation and operation subsea. As the above subsea module integrated supporting structures are very critical unit, normally protection structure with roof panels are provided to ensure protection against both dropped objects and trawling. Considering this situation only ULS condition will be evaluated during the analyses of the subsea module supporting structures. The protection structure shall not have any physical contact with the subsea module supporting structure and hence deformation after trawl impact or dropped object will be self-contained by the protection structure. It is unlikely event that the contained subsea module supporting structure will be damaged by accident, therefore ALS condition is required for protection structure but not for subsea module supporting structure.

It is common to utilize the advantage of tubular steel cross-section for structures exposed to hydrodynamic forces and hence the same cross-sections will be adopted to model the subsea module supporting structures.

In general the subsea module supporting structure should be designed such that it can withstand all design phases. I.e. in-place, load out, sea transportation, offshore lifting, operations and retrieval.

Different oil and gas companies have different approaches to document the above. Even though most oil and gas companies have the competence to perform analyses for all the above listed phases, some used to document part of the above. These differences could be due to the following reasons:

- Minimize engineering hours by performing analyses for only some selected phases.
- Have extensive experience on similar projects and presume critical design phase.
- No strict guidelines.

1.2 Objective

The main objective of this thesis is to study and document the critical design phase for subsea module supporting structures during concept and final engineering phases. The objective of this thesis can in brief be described as follows:

- Perform analyses for different type of subsea module supporting structures at different design phases that includes in-place, lifting in air, transportation, offshore lifting, operation and retrieval.
- Identify which one of the design phases and analyses give maximum utilization ratios.
- Summarize the results of the analyses.
- Set guidelines on critical design phase and advice how to document the structural integrity of the supporting structure during concept and detail engineering design stages.
- Draw conclusions and recommendations.

1.3 Scope

The scope of the thesis is limited to the following points:

- Even though supporting structures for some of the above mentioned subsea modules will be considered in this project, the outcome of the analyses are expected to generalize any type of subsea module supporting structures which lie on the same class of operation.
- Only ULS conditions are evaluated during the analyses of the subsea module supporting structures.
- It is not feasible to check deflection in case of lifting. It is only a matter of psychological limit. It is crucial that the deflection of primary frame structure should not affect other integrated parts like piping, lifting points, equipment which are supported to it and so on.
- SLS check is not performed for transportation phase. The main goal of this thesis is to determine the critical design phase from all design phases based on ULS.
- Analyses for only the primary frame of subsea module steel supporting structures are carried out in order to document the structural capacity at different stages of design phases.
- Impact loads may occur during lift or lowering of structure and these are document based on DNV standards and requirements.
- Only critical design phases are analyzed and documented in order to reduce the load combinations.
- Present, review and discuss on structural analyses results for each respective case.

1.4 Methodology

- The primary supporting steel frame structures are modelled by beam elements in Staad.Pro.
- Staad.Pro is mainly used for analyses and its code check is only used to identify the hot-spots and associated load combinations. Colbeam EC3 and manual calculations are used for stability and yielding check.
- Tubular steel cross-sections are used to model the frame of subsea module supporting structures.
- Different subsea module supporting structures are considered in the analyses and are categorized as small (case A), medium (case B) and large (case C) supporting structures based on total maximum weight. Refer section 5. Structural design philosophy below for details.

1.5 Thesis organization

The following are to be undertaken in this thesis work:

Chapter 1 Gives an overview of the thesis title definition, general description, objective, scope, methodology and organization of the thesis work.

Chapter 2 Discusses the regulations, codes and standards.

Chapter 3 Deals with the design basis. This includes limit state, load categories and factors and material properties.

Chapter 4 Covers the different types of design phases. These includes in place, lifting, transportation, landing and operational phase.

Chapter 5 Discusses structural design philosophy.

Chapter 6 Addresses basic loads and load combinations.

Chapter 7 Covers global analyses for different cases of subsea module supporting structures.

Chapter 8 Discusses summary results.

Chapter 9 Provides the conclusions and recommendations from the study.

2. Regulations, codes and standards

The thesis shall be executed in accordance with the codes and standards listed in this project work. According to petroleum safety authority (Petroleum Safety Authority Norway, 2016), the Norwegian regulation hierarchy is as follows:

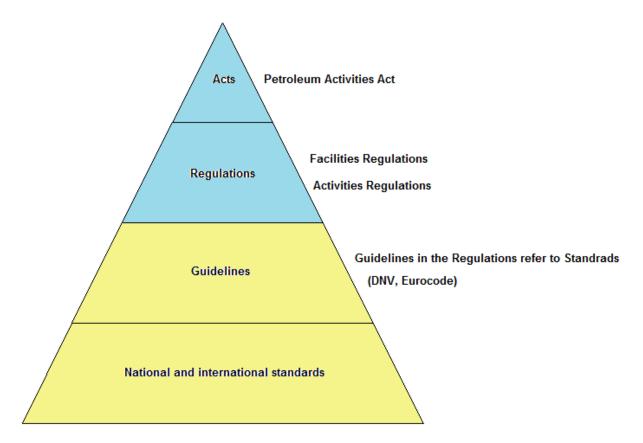


Figure 1: Order of precedence (Petroleum Safety Authority Norway, 2016).

2.1 Statuary regulations

The regulations intended for design and exploitation of petroleum resources are mentioned below (Petroleum Safety Authority Norway, 2016):

- Petroleum Safety Authority Norway (PSA) : Regulations for loads, load effects and resistance
- Petroleum Safety Authority Norway (PSA) : Regulations for structural design of load bearing structures

2.2 National and international codes and standards

Regulations are rather general and functional, in guidelines one can find references to other standards. Hence here are listed the codes and standards which are used for this project work.

- DNV standard for certification No. 2.7-3: Portable offshore structures ,2011.
- DNV Rules for Planning and Execution of Marine Operations, 1996.
- Euro code 3 EN 1993-1-1: Design of steel structures, 2005.

3. Design basis

3.1 Limit state design

In a limit state design, the design of the structure is checked for all groups of limit states to ensure that the safety margin between the maximum loads and the weakest possible resistance of the structure is large enough and that the fatigue damage is tolerable (Bai, 2015).

Limit state is categorized into four during strength verification according to part 1. chapter 4 section 3.2 (DNV, January 1996):

The Ultimate Limit State (ULS), related to the maximum load carrying capacity like yielding limit and buckling limit state.

The Serviceability Limit State (SLS), related to limits regarding structural behavior under specified conditions of service or treatment like deflection limit state, vibration limit states related to human limits.

The Progressive Collapse Limit State (PLS/ALS), related to the maximum load carrying capacity under the assumption that local damage is unavoidable, or that certain parts of the structure have been damaged or removed.

The Fatigue Limit State (FLS), related to the capacity of the structure to resist accumulated effect of repeated loading.

Only ULS condition is considered during the analyses of the subsea module supporting structures as described above in section 1.3 Scope.

3.2 Load categories and factors

The following actions shall be combined in ULS conditions.

According to part 1 chapter 4 section 3.2 (DNV, January 1996), the two load conditions for ULS a and ULS b are given in Table 1 below are considered:

	Load categories				
Load combination	Р	L	D	E	A
ULS a	1.3	1.3	N/A	0.7	N/A
ULS b	1.0	1.0	N/A	1.3	N/A

Table 1: Action factors for ULS (DNV, January 1996).

According to part 1. chapter 3 section 3.1 (DNV, January 1996), Load categories P,L,D,E and A are defined as follows:

P Permanent Loads These are static loads which will not be moved or removed during the phase considered like weight of structures, weight of permanent ballast and equipment that cannot be removed, internal/external hydrostatic pressure of permanent nature and permanent buoyancy

CRITICAL DESIGN PHASE FOR SUBSEA MODULE SUPPORTING STRUCTURES

L	Live Loads	Loads that can be moved, removed or added like operation of cranes, loads from alongside vessels, differential ballasting, operational impact loads and stored materials, equipment or liquids
D	Deformation Loads	Loads associated with deformations. Such loads may be Installation or set down tolerance, structural restraints between structures, differential settlements and temperature
E	Environmental Loads	These are all loads caused by environmental phenomena like winds, waves, current, storm surge, tide and ice
A	Accidental Loads	These are loads associated with exceptional or unexpected events or conditions like collision from vessels, dropped objects, loss of hydrostatic stability, flooding and loss of internal pressure.

3.3 Material properties

As mentioned in section 1.3 Scope, only primary frames of subsea module steel supporting structure are evaluated. These primary structural elements are made of carbon steel and are essential to the overall integrity of the subsea unit.

3.3.1 Material strength and constants

The yield strength to be applied in the structural strength analyses are according to Eurocode 3 (CEN, 2005) given below in Table 2:

 Table 2: Steel yield strength (CEN, 2005).

Standard	Steel Grade	Туре	Min. yield strength, $f_y $ [N/mm²]
EN 10210-1	S355NH	Hot finished tubular	t ≤ 40 mm: 355
			40 mm < t ≤ 80 mm: 335

The following material constant properties for structural steel design will be used in the analyses:

Modulus of elasticity:	$E = 2.1 \times 10^{11} \text{ N/m}^2$	(210 000 N/mm ²)
Shear modulus:	$G = 0.8 \times 10^{11} \text{ N/m}^2$	(80 000 N/mm ²)
Density:	$\rho = 7850 \text{ kg/m}^3$	
Poisson's Ratio:	v = 0.3	
Coefficient of thermal expansion:	α = 1.2 x 10 ⁻⁵ per ⁰ C	

3.3.2 Material factors

According to part 1 chapter 4 section 4 (DNV, January 1996), The following material partial safety factors; γ_M ; for steel structures to be applied to the characteristic values of resistance in the analyses and limit states are as follows:

ULS: Material factor for resistance of cross-section, $\gamma_M = 1.15$

3.3.3 ULS usage factor and code checks

For the main steel members of the structure covered by this thesis , the maximum allowable usage factor (utilization ratio) is 1.0.

Note that Staad.Pro code check is used only to identify "hot-spots" and the associated load combinations . Code checks are done manually with the help of colbeam EC3 (buckling) and excel sheet (vonmises).

Code checking of the steel structure are performed for both yielding and stability.

 Vonmises yield criterion for elastic verification of tubular section at 3 points is checked as follows:

$$\frac{\sqrt{\left(\left(\sigma_x + \sigma_{by} + \sigma_{bz}\right)^2 + 3\left(\tau_x + \tau_y + \tau_z\right)^2\right)}}{f_y} \times \gamma_m \le 1$$

where:

 $\sigma_{\rm x}$ = The design value of normal stress in X direction at the point of consideration

 σ_{by} , σ_{bz} = The design value of bending stresses in y and z directions at the point of consideration

 au_x , au_y , au_z = The design value of shear stresses in x, y and z directions at the point of consideration

 $f_{\rm v}$ = The minimum yield strength

 γ_{M} = Material factor for resistance of cross-section

- Buckling check for members subjected to combined bending and axial compression is evaluated according to Eurocode 3 (CEN, 2005) section 6.3.3:
- i) About y-y axis

$$\left(\frac{N_{Ed}}{\frac{\chi_y N_{Rk}}{\gamma_M}}\right) + k_{yy} \left(\frac{M_{y,Ed} + \Delta M_{y,Ed}}{\chi_{LT} \frac{M_{y,Rk}}{\gamma_M}}\right) + k_{yz} \left(\frac{M_{z,Ed} + \Delta M_{z,Ed}}{\frac{M_{z,Rk}}{\gamma_M}}\right) \le 1$$

ii) About z-z axis

$$\left(\frac{N_{Ed}}{\frac{\chi_z N_{Rk}}{\gamma_M}}\right) + k_{zy} \left(\frac{M_{y,Ed} + \Delta M_{y,Ed}}{\chi_{LT} \frac{M_{y,Rk}}{\gamma_M}}\right) + k_{zz} \left(\frac{M_{z,Ed} + \Delta M_{z,Ed}}{\frac{M_{z,Rk}}{\gamma_M}}\right) \le 1$$

where:

 $N_{\rm Ed}$, $M_{\rm y, Ed}$, $M_{\rm z, Ed}$ = The design values of the compression force and the maximum moments about y-y and z-z axis

 $\Delta M_{_{y,Ed}}$, $\Delta M_{_{z,Ed}}$ = The moments due to the shift of the centroidal axis (zero for class 1,2 and 3)

 χ_y and χ_z = The reduction factors due to flexural buckling ,given in Eurocode 3 section 6.3.1 (CEN, 2005)

 χ_{LT} = The reduction factor due to lateral torsional buckling, given in Eurocode 3 section 6.3.2 (CEN, 2005). NO LTB for closed cross-sections (i.e. χ_{LT} = 1.0)

 k_{yy} , k_{yz} , k_{zy} , k_{zz} = The interaction factors (Refer Eurocode 3 annex A or B)

4. Design phases

The particularity of subsea structures unlike onshore structures is that cannot be constructed in the final location. Generally subsea structures are constructed in a factory or quay then lifted load out to vessel, sea fastened, offshore transported, lifted off and installed at the predetermined location. Hence the integrated supporting frame structure of subsea modules shall be designed to withstand all loads from critical design phase. In order to document the critical design phase, the integrity of subsea module supporting structures shall be checked during in place, lift load out, transportation, lifting/installation and in-situ conditions.

The integrated supporting frame structures under study shall be classified as portable offshore unit. PO, which is defined as a package or unit intended for repeated or single offshore transportation and installation/lifting (DNV, May 2011).

4.1 In place phase

Subsea modules are used to be constructed and tested in a factory with favorable or sheltered conditions. All the loads associated with in place analysis are permanent in nature namely static self-weight of supporting frame structure and weight of subsea module. Therefore in place analysis is not critical compared with other types of analyses.

4.2 Lifting phase

Normally offshore lifting operations used to be carried out by vessels. Small subsea modules up to 70 tonnes can be installed through a moon pool where as large modules can be installed by crane vessels. In this project work, all lifting operations are considered to be carried out by crane vessel.

Offshore lift encompasses the stages from where a subsea structure is lifted from deck with the crane vessel , deployed through the water surface and landed on the seabed.

During lift off, it is normal to expect impact loads. These loads occur due to the relative velocities between the transport vessel deck and the hanging load. Even though it is not feasible to calculate the impact loads accurately, the horizontal impact load, during lifting off, mentioned below in section 4.2.3 Horizontal impact during air lift and section 4.2.4 Horizontal impact during offshore lift are considered to be adequate according to DNV 2.7-3 section 3.6 (DNV, May 2011).

Lifting phase covers the following:

- Lift from deck of vessel
- Lift in air
- Lift through splash zone
- Lowering
- Landing
- Recovery to deck

With deeper waters and harsh environment, offshore lifting operations are demanding and complex. For a successful operation of offshore lift, it is crucial to understand all the phases of lift and weather criteria. In this project, Portable Offshore Units with operation class R30 are designed according to criteria set by DNV 2.7-3 (DNV, May 2011).

4.2.1 Air lifting

According to DNV 2.7-3 section 3.5 (DNV, May 2011), the design load for all supporting structures in the subsea module for air lifting is as follows :

$$F_{Air} = DF \times MGW \times g$$

where :

 $F_{Air} =$ Lift load, [kN], in air

DF = Design factor

MGW = Maximum Gross Weight (mass)

g = Gravitational acceleration

The design factor, DF, is defined according to the Operational Class and MGW as shown below in Table 3 (DNV, May 2011):

Table 3: Design Factors, DF, (DNV, May 2011).

Operational Class	DF for MGW < 50 tonnes	DF for $MGW \ge 50$ tonnes
R60	$1.4 + 0.8 \times \sqrt{50/MGW}$	2.2
R45	$1.4 + 0.6 \times \sqrt{50/MGW}$	2.0
R30	$1.4 + 0.4 \times \sqrt{50/MGW}$	1.8

Note that the Operational Class for a PO unit can be selected based on the type of PO units; type A, B, C, D and E; risk and MGW as input according to DNV 2.7-3 sections 1 and 3 (DNV, May 2011).

4.2.2 Subsea lifting

Subsea lifting is critical mainly when it is through splash zone . This phase occurs when the object being lifted starts to get submerged. In this phase the module can be partly submerged during one wave period. This means that the lowest part of the object can be submerged by the wave crest, at the same time the upper part of the object be free of water. During this phase snap loads are great concern. Therefor lifting with cranes equipped with heave compensation system is beneficial as snap loads are avoided. Most offshore cranes are equipped with heave compensation system today and this system avoids heave movements being transferred from the vessel to the main wire.

The design load for all supporting structures in the subsea module for subsea lifting is set according to DNV 2.7-3 section 3.11 (DNV, May 2011).

$$F_{Sub} = 2.5 \times MGW \times g$$

where :

 $F_{Sub} = \text{Lift load, } [kN], \text{Subsea}$

MGW = Maximum Gross Weight (mass)

g = Gravitational acceleration

According to DNV 2.7-3 section 3.11 (DNV, May 2011), the total design factor is 2.5. This total factor includes a Dynamic Amplification Factor of 2.0. The above mentioned total design factor is considered to be conservative including when lifting through splash zone and further lowering. During installation, it is crucial to verify that lift should not be subjected to a DAF value higher than specified DAF during the base design.

The total design factor of 2.5 consists of the following:

- Dynamic Amplification Factor, *DAF* = 2.0
- Partly submerged weight = $0.9 \times MGW$
- General design factor = 1.4

4.2.3 Horizontal impact during air lift

According to DNV 2.7-3 (DNV, May 2011), the impact force may act in any horizontal direction on the corners of the PO unit. This can happen during lifting off or recovery phase. On all sides of the PO unit, the load is considered to act perpendicular to the surface. The primary members shall be capable of withstanding a local horizontal impact at any point. Note that the impact stress shall be combined with the lifting stress based on the *MGW* of the PO unit. The static equivalent horizontal force on the primary members in the corners of the supporting structure in any direction as given according to DNV 2.7-3 section 3.6 (DNV, May 2011) as follows:

> For operational class R30 (corner posts and bottom beams):

$$F_{HI(air)} = 0.05 \times F_{TEST}$$

> Reduced design load for end or side structure and upper edge:

$$F_{HIR(air)} = 0.6 \times F_{HI(air)}$$

where :

 $F_{HI(air)}$ = Horizontal design impact load during air lift, [kN]

 F_{TEST} =Test load, [kN], given below in Table 4

 $F_{HIR(air)}$ = Reduced horizontal design impact load during air lift, [kN]

4.2.4 Horizontal impact during offshore lift

During offshore lifting, the structure is lowered alone and considered as single transportation and hence 50% of F_{HI} and F_{HIR} are applied as follows according to DNV 2.7-3 (DNV, May 2011):

> For operational class R30 (corner posts and bottom beams) :

$$F_{HI(sub)} = 0.025 \times F_{TEST}$$

➢ For end/side structure and top beams :

$$F_{HIR(sub)} = 0.6 \times F_{HI(sub)}$$

where :

 $F_{HI(sub)}$ = Horizontal design impact load during subsea/offshore lift, [kN]

 F_{TEST} =Test load, [kN], given below in Table 4

 $F_{HIR(sub)}$ = Reduced horizontal design impact load during subsea/offshore lift, [kN]

Table 4: Total test load for all point lifting test (DNV, May 2011).

MGW	Test Load [kN]					
$MGW \leq 25$ tonnes	Minimum of F and 2.5 \times MGW \times g					
25 <mgw≤50 td="" tonnes<=""><td>$[1 - 0.01 \times (MGW - 25) \times F$</td></mgw≤50>	$[1 - 0.01 \times (MGW - 25) \times F$					
MGW > 50 tonnes	$0.75 \times F$					

Note that the $F = F_{Air}$ during air lifting and $F = F_{Sub}$ during subsea lifting

4.3 Transportation phase

The design condition is based on unrestricted (i.e. any weather) transportation in any waters on any suitable vessel. As no actual transport vessel motion data is available, conservative dynamic accelerations is adopted as described in DNV 2.7-3 (DNV, May 2011).

The horizontal and vertical loads due to vessel motions in case of sea transportation phase are as follows (DNV, May 2011):

$$F_{H} = MGW \times g$$
$$F_{V max} = 1.3 \times MGW \times g$$
$$F_{V min} = 0.7 \times MGW \times g$$

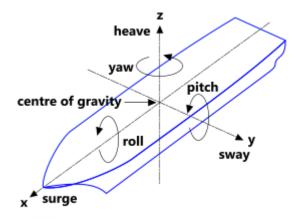
where :

 F_H = Horizontal load

 $F_{V max} = Maximum vertical load$

 $F_{V min} =$ Minimum vertical load

MGW = Maximum Gross Weight (mass)


g = Gravitational acceleration

From the above formulas, the vessel accelerations in all directions can be written as follows:

- a_x : Transverse acceleration due to roll and sway $1 \times g$
- a_{γ} : Transverse acceleration due to pitch and surge $1 \times g$

 a_{zmax} : Maximum transverse acceleration due to gravity and heave 1.3 imes g

 a_{zmin} : Minimum transverse acceleration due to gravity and heave 0.7 imes g

4.4 Landing phase

During landing or set down, the bottom outer edge of the supporting structure may hit if the subsea module is landed on a surface which is not flat. These impact loads; resulted from relative movement between the transport vessel deck and hanging load; occur randomly and are very short duration. According to DNV 2.7-3 section 3.6 (DNV, May 2011), the static equivalent vertical force acting on any point that could hit if the PO unit is set down on a not flat surface is defined as follows:

$$F_{VI} = 0.08 \times F$$

where :

 F_{VI} = Vertical design impact load, [kN]

F = Design load, [kN], for lifting. Basically this is the design load during further lowering but for conservative design the lift load during splash zone is taken. I.e. F_{Sub}

4.5 In-situ/Operational phase

The subsea module shall be protected against both dropped objects and trawling by using protection structure with roof panels .The protection structure shall not have any physical contact with the subsea module supporting structure and deformation after trawl impact or dropped object will be self-contained by the protection structure. Besides it is assumed that the subsea module experience minimum currents loads and wave loads. Therefore operational phase is not critical to consider in this project.

5. Structural design philosophy

5.1 General

The subsea module supporting frame structures are analyzed by using a design software called STAAD.Pro 2003. Colbeam EC3 and Excel sheet are used for design check i.e. buckling and yield check. Different types of global analyses, for three cases, are performed namely air lifting, transportation, subsea lifting and landing.

The following three case studies listed below in Table 5 are considered and documented in this project work:

Case	Subsea module- Maximum Gross Weight	Categories/Module name	Remarks
A	40	Small/Pump	Operation class A
В	100	Medium/Cooler	Operation class A
C	120	Large/Compressor	Operation class A

Table 5: Case and categories based on maximum gross weight.

5.2 Computer model description

The primary supporting frame structures for all modules under consideration are modeled by beam elements in STAAD Pro. Bracing elements in beams are moment released in ends where applicable. The structural configuration used during the analyses is almost similar with the CAD drawings gathered from AkerSolutions (AkerSolutions, 2016) and Statoil (Statoil, 2016). The weight of the main equipment is applied as subsea module weight and the lifting point is adjusted according to the COG of the model.

5.3. Boundary conditions

The global coordinate system adopted during the analyses of the supporting structures for all cases is as shown below in Figure 3.

Figure 3: Global coordinate system.

5.3.1 Air and subsea lifting analyses

The hook point during lifting analyses is fixed in all translational directions and free in all rotational directions. Other supports to be given in such a way that they will avoid singularity, but giving very small reaction forces. The support conditions; for pump, cooler and compressor ; during lifting analyses are as given below in Table 6:

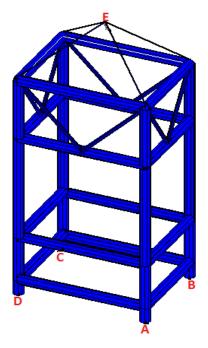


Figure 4: Pump model lifting.

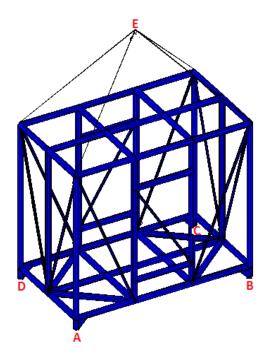


Figure 5: Cooler model lifting.

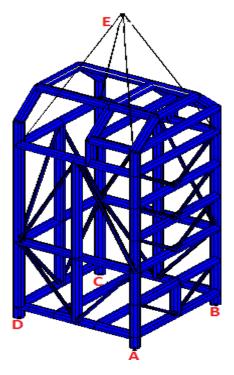


Figure 6: Compressor model lifting.

Table 6: Boundary conditions for lifting analyses

		Translation		Rotation				
Support	Х	Y	Z	Х	Y	Z		
A	10kN/m	10kN/m	Free	Free	Free	Free		
В	10kN/m	10kN/m	Free	Free	Free	Free		
С	10kN/m	10kN/m	Free	Free	Free	Free		
D	10kN/m	10kN/m	Free	Free	Free	Free		
E	Fixed	Fixed	Fixed	Free	Free	Free		

5.3.2 Transportation analyses

The frame structure of the pump, cooler and compressor rests on 4 supports on the barge. The support conditions during transportation analyses are given below in Table 7:

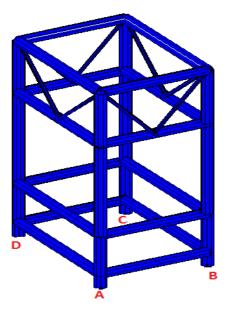


Figure 7: Pump model transport.

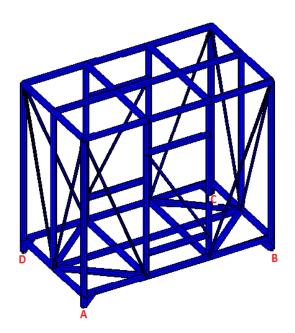


Figure 8: Cooler model transport.

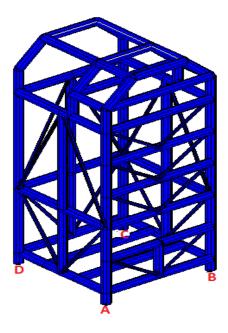


Figure 9: Compressor model transport.

Table 7: Boundary conditions for transportation analyses

		Translation		Rotation				
Support	Х	Y	Z	Х	Y	Z		
A	Fixed	Fixed	Fixed	Free	Free	Free		
В	Fixed	Fixed	Fixed	Free	Free	Free		
С	Fixed	Fixed	Fixed	Free	Free	Free		
D	Fixed	Fixed	Fixed	Free	Free	Free		

5.3.3 Landing analyses

For landing analyses, it is assumed that the bottom frame structure interfaces the bottom surface on two supports. This is conservative approach as only two instead of four supports are considered. The two supports; namely A and B; takes translational in Z direction while C and D takes all translations in x and y directions. Refer below in Table 8 for the support conditions for landing analyses of pump, cooler and compressor models:

		Translation		Rotation				
Support	Х	Y	Z	Х	Y	Z		
А	Free	Free	Fixed	Free	Free	Free		
В	Free	Free	Fixed	Free	Free	Free		
С	Fixed	Fixed	Free	Free	Free	Free		
D	Fixed	Fixed	Free	Free	Free	Free		

Table 8: Boundary conditions for landing analyses

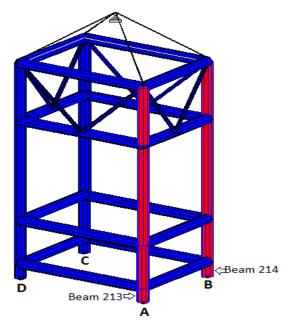


Figure 10: Pump model landing.

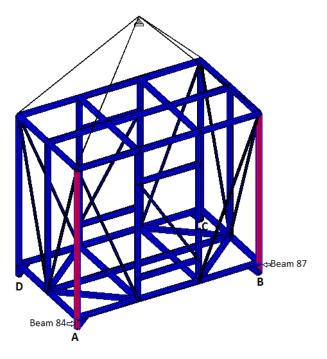


Figure 11: Cooler model landing

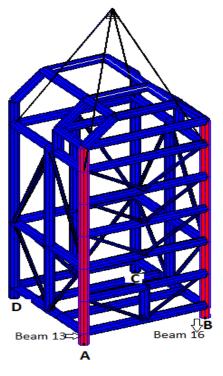


Figure 12: Compressor model landing.

6. Basic loads and load combinations

6.1 General

All basic loads which are used as an input during the analyses are under the category defined above in section 3.2 Load categories and factors. The weights of the different subsea modules under consideration are based on the reported weights from drawings of AkerSolutions (AkerSolutions, 2016) and Statoil (Statoil, 2016). Self-weight of the supporting frame structure is generated by STAAD. Pro.

6.2 Basic loads

6.2.1 Static self-weight

The static self-weights of the frame structures for different subsea modules are generated by the software as follows:

A material density, ρ , of 7850 kg/m³ is applied for generating steel mass. Contingency Factor, CF, of 10% is taken for weight inaccuracy and the gravity loads of STAAD generated structural mass , M, are F_Z and is given as below:

$$F_Z = -CF \times g \times \sum M_i = -1.10 \times M \times g$$

Note that the direction of the load is downwards.

6.2.2 Static subsea module weight

The static self-weights of the subsea modules are based on the reported weights from drawings of AkerSolutions (AkerSolutions, 2016) and Statoil (Statoil, 2016). These weights include all types of weights that are permanent in nature. The direction of the load is downwards.

6.2.3 Dynamic self-weight

The dynamic self-weight is the self-weight of the supporting frame structure in X, Y and Z directions. This dynamic self-weight is the result of the vessel motion in roll, pitch and heave that occurs during transportation phase.

6.2.4 Dynamic subsea module weight

The dynamic subsea module weight is the self-weight of the unit in X, Y and Z directions. This dynamic module self-weight is the result of the vessel motion in roll, pitch and heave that occurs during transportation phase.

6.3 Load combinations

Load combinations, based on basic loads, for different type of analyses are given below as load combinations.

6.3.1 In place analyses

As mentioned above in section 4.1 In place phase, in place analysis is not critical compared with other types of analyses as loads only associated with static weights are present.

6.3.2 Transportation analyses

During transportation analyses, the roll and pitch are assumed to pass through the center of floatation and heave is parallel to the global vertical axis. According to DNV 2.7-3 section 3.7 (DNV, May 2011), the horizontal design load due to vessel motions in any direction should be combined with both maximum and minimum vertical loads.

The most sever combinations of roll \pm heave and pitch \pm heave is also documented for ULS a and ULS b. Refer below Table 9 and Table 10 for the transportation load combinations.

Table 9: Load combinations-Transportation analyses

						Basic	loads					
Load combinations - transportation analyses	1. Static self-weight	2. Static subsea module weight	Dynamic self-weight in +X direction	 Dynamic self-weight in +Y direction 	5. Dynamic self-weight in +Z direction	6. Dynamic subsea module weight in +X direction	7. Dynamic subsea module weight in +Y direction	8. Dynamic subsea module weight in +Z direction	9. Dynamic self-weight in -X direction	10. Dynamic self-weight in -Y direction	11. Dynamic subsea module weight in -X direction	12. Dynamic subsea module weight in -Y direction
LC1. Transportation roll, max.Z	1.3	1.3	1.0			1.0						
LC2. Transportation roll, min.Z	0.7	0.7	1.0			1.0						
LC3 . Transportation pitch, max.Z	1.3	1.3		1.0			1.0					
LC4 . Transportation pitch, min. Z	0.7	0.7		1.0			1.0					
LC5. Transportation -roll, max.Z	1.3	1.3							1.0		1.0	
LC6. Transportation -roll, min.Z	0.7	0.7							1.0		1.0	
LC7 . Transportation -pitch, max.Z	1.3	1.3								1.0		1.0
LC8 . Transportation -pitch, min.Z	0.7	0.7								1.0		1.0

Table 10: Load combinations ULS a and ULS b- Transportation analyses

	Basic loads											
ULS a and ULS b- transportation analyses	1. Static self-weight	2 . Static subsea module weight	 Dynamic self-weight in +X direction 	 Dynamic self-weight in +Y direction 	 Dynamic self-weight in +Z direction 	6. Dynamic subsea module weight in +X direction	7. Dynamic subsea module weight in +Y direction	8. Dynamic subsea module weight in +Z direction	9. Dynamic self-weight in -X direction	10. Dynamic self-weight in -Y direction	11. Dynamic subsea module weight in -X direction	12. Dynamic subsea module weight in -Y direction
LC9. ULS a, roll + heave	1.3	1.3	0.7		-0.7	0.7		-0.7				
LC10. ULS a, roll - heave	1.3	1.3	0.7		0.7	0.7		0.7				
LC11. ULS a, -roll + heave	1.3	1.3			-0.7			-0.7	0.7		0.7	
LC12. ULS a, -roll - heave	1.3	1.3			0.7			0.7	0.7		0.7	
LC13. ULS a, pitch + heave	1.3	1.3		0.7	-0.7		0.7	-0.7				
LC14. ULS a, pitch - heave	1.3	1.3		0.7	0.7		0.7	0.7				
LC15. ULS a, -pitch + heave	1.3	1.3			-0.7			-0.7		0.7		0.7
LC16. ULS a, -pitch - heave	1.3	1.3			0.7			0.7		0.7		0.7
LC17. ULS b, roll + heave	1.0	1.0	1.3		-1.3	1.3		-1.3				
LC18. ULS b, roll - heave	1.0	1.0	1.3		1.3	1.3		1.3				
LC19. ULS b, -roll + heave	1.0	1.0			-1.3			-1.3	1.3		1.3	
LC20. ULS b, -roll - heave	1.0	1.0			1.3			1.3	1.3		1.3	
LC21. ULS b, pitch + heave	1.0	1.0		1.3	-1.3		1.3	-1.3				
LC22. ULS b, pitch - heave	1.0	1.0		1.3	1.3		1.3	1.3				
LC23. ULS b, -pitch + heave	1.0	1.0			-1.3			-1.3		1.3		1.3
LC24. ULS b, -pitch - heave	1.0	1.0			1.3			1.3		1.3		1.3

6.3.2 Lifting analyses

According to DNV 2.7-3 section 3.5 (DNV, May 2011), the load combination for lifting analyses is based on the static self-weight of the supporting frame structure and the subsea module. The static weights are then enhanced by the design factor (DF) and skew load factor (SKL).

- For air lifting, the design factor (DF) for different types of operational class is given in Table 3 above.
- For subsea lifting, a total design factor (DF) of 2.5 is considered to be conservative design including for lifting through splash zone and further lowering as mentioned above in section 4.2.2 Subsea lifting. Lifting through splash zone is often the most critical phase of offshore lifting operation as we often experience largest hydrodynamic loads.

The total load factor includes the design factor (DF) and skew load factor (SKL) according to DNV 2.7-3 section 3.5 (DNV, May 2011). Skew load factor (SKL), design factor (DF) and total load factor (LF) for 4 slings for air and subsea lifting are given below in Table 11 and Table 12 respectively. The load combinations for air and subsea lifting based on total load factor are given below in Table 13. For both above lifting analyses, horizontal impact force in air and subsea are accounted for as mentioned above in section 4.2.3 Horizontal impact during air lift and 4.2.4 Horizontal impact during offshore lift.

Table 11: SKL, DF and LF-Air lifting analyses

Sling sets	SKL	DF	LF	Remarks
4 leg sling	1.25	1.8	2.25	Operational Class R30

Table 12: SKL, DF and LF-Subsea lifting analyses

Sling sets	SKL	DF	LF	Remarks
4 leg sling	1.25	2.5	3.12	Lifting through splash zone and operational class R30

From good engineering practice, It is recommended to consider the following points during lifting:

- ✓ Angles less than 45 degrees with the horizontal are not recommended during lifting. Angles below 30 degrees should be avoided whenever possible.
- ✓ Lifting points should be higher than COG to avoid risk of overturning.

Table 13: Load	combinations-Lifting analyses
----------------	-------------------------------

Load combinations-		Basic loads	Remarks
Lifting analyses	1 . Static self-weight 2 . Static subsea module weight		
LC25. Air lifting	2.25	2.25	-Horizontal impact forces as mentioned above in 4.2.3 will be added to LC25
LC26. Subsea lifting	3.12	3.12	-Horizontal impact forces as mentioned above in section 4.2.4 will be added to LC26

6.3.3 Landing analyses

The frame shall be capable of withstanding an impact from landing. Landing capacity is checked according to vertical impact formula as given above in section 4.4 Landing phase. It is assumed that the analysis is elastic analysis and stress free when the structure interacts with the surface. Therefore stresses resulted from lowering (lift only) of the structure do not need to be combined with the stresses due to impact loads, but horizontal impact with the protection structure can occur during lowering of the module and this impact force is accounted during analysis.

To determine the load combination for the vertical design impact load, the design load for further lowering is required to be estimated first as shown in section 4.4 Landing phase above. A total design factor (DF) of 2.5 is considered to be conservative design even for further lowering as mentioned above in section 4.2.2 Subsea lifting. The Skew load factor (SKL), design factor (DF), vertical impact factor (IF) and total load factor (LF) for 4 sling sets are given below in Table 14. The load combination for landing based on total load factor is given below in Table 15.

Table 14: SKL, DF, IF and LF for landing

Sling sets	SKL	DF	IF	LF
4 leg sling	1.25	2.5	0.08	0.25

 Table 15: Load combination-Landing analyses

Load combinations- Landing analysis	Ва	asic loads	Remarks
Lanung analysis	13 . Static self-weight	14. Static subsea module weight	
LC27 . Landing (<i>F_{VI}</i>)	0.25	0.25	-To be applied on the corner posts of the structure -Horizontal impact forces as mentioned above in section 4.2.4 will be added to LC27

6.3.4 In-situ/Operational analyses

During operational phase the subsea module can experience currents loads, while wave loads are minimum. As mentioned in section 4.5 In-situ/Operational phase above, the unit shall be protected by protection structure with roof panels. It is assumed that operational analysis is not critical compared with other types of analyses.

6.3.5 Recovery analyses

Recovery is under category subsea lifting as mentioned above in section 4.2 Lifting phase. It is already mentioned that lifting through splash zone is critical. Therefore it is not required to document recovery analysis as lifting analysis through splash zone is already documented.

7. Global analyses

7.1 General

The Gas Booster system can be arranged with up to four parallel compressor trains on one subsea template. Åsgard Subsea Compression System (SCS) compressor trains comprises multiphase gas cooler, separator, compressor, subsea power and control units and pump according to AkerSolutions (AkerSolutions, 2016).

The subsea module supporting frame structures namely pump (case A), cooler (case B) and compressor (case C) are modelled by beam elements in Staad.Pro.

Code check is performed manually as discussed above in section 3.3.3 ULS usage factor and code checks.

7.2 Operational classes

The operational classes for a PO units can be selected based on the type of PO units; type A, B, C, D and E; risk and MGW as input according to DNV 2.7-3 sections 1.1.5 and 3.3 (DNV, May 2011).

The pump module, cooler module and compressor module have MGW > 25 tonnes and the risk is considered as high because they are main subsea units and failure of these units have great impact on overall subsea production system. According to DNV 2.7-3 section 1.1.5 (DNV, May 2011), the type of PO units (modules) are under category A. Therefore the selection of the operational class for all above mentioned units can be done according to DNV 2.7-3 section 3.3.4, table 3.3 (DNV, May 2011)

- ✓ Type of structure A
- ✓ Risk High
- \checkmark *MGW* > **25** tonnes

Based on DNV 2.7-3 table 3.3 (DNV, May 2011), the operational class suited for the pump module, cooler module and compressor module is R30. The identification **DNV 2.7-3 R30-Subsea** applies to all modules mentioned above.

7.3 Cross-sectional properties and classes

7.3.1 Cross-sectional properties

The profile and cross-sectional properties used for the pump and compressor model are given below in Table 16 and for cooler model are in Table 17 respectively.

Des.	Profile di	mensions	Section properties					
	Dia.(d)	Thick. (t)	Ax	Ay	Az	Iy/Iz	Ix	Wel, y
	mm	mm	(mm^2)	(mm^2)	(mm^2)	$(10^6 mm^4)$	$(10^6 mm^4)$	$(10^4 mm^3)$
Posts	324	16	15482	7741	7741	184.1	368.2	113.6
Beams	324	16	15482	7741	7741	184.1	368.2	113.6
Braces	114	6	2036	1018	1018	2.977	5.955	5.223

Table 16: Cross-sectional properties for pump and compressor model

Table 17: Cross-sectional properties for cooler model

Des.	Profile di	imensions	Section properties					
DC3.	Dia.(d) mm	Thick. (t) mm	Ax (mm ²)	<i>Ay</i> (<i>mm</i> ²)	Az (mm^2)	<i>ly/lz</i> (10 ⁶ mm ⁴)	<i>Ix</i> (10 ⁶ mm ⁴)	Wel, y $(10^4 mm^3)$
Posts	273	16	12918	6459	6459	107.1	214.1	78.44
Beams	273	16	12918	6459	6459	107.1	214.1	78.44
Braces	114	6	2036	1018	1018	2.977	5.955	5.223

7.3.2 Cross-section class

With reference to EC3 ,Part 1-1 – Sect. 5.6 – Table 5.2 (sheet 3 of 3) (CEN, 2005): "Tubular sections subjected to bending and/or compression" the cross-section class for all models used during the analyses are given below in Table 18:

$$\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{355}} = 0.81$$

Table 18: Tubular cross-section class

Class	Factor	Diameter to thickness ratio	Criteria for cross-section class	Remarks
	$50\varepsilon^2 = 50 \times 0.81^2 = 32.81$	$\frac{d}{t} = \frac{324}{16} = 20.25$	$\frac{d}{t} \leq 50\varepsilon^2$	All posts, beams and braces for
	$50\varepsilon^2 = 50 \times 0.81^2 = 32.81$	$\frac{d}{t} = \frac{273}{16} = 17.06$	$\frac{d}{t} \leq 50\varepsilon^2$	pump, cooler and compressor
1	$50\varepsilon^2 = 50 \times 0.81^2 = 32.81$	$\frac{d}{t} = \frac{114}{6} = 19.00$	$\frac{d}{t} \leq 50\varepsilon^2$	model are cross- section class 1

7.4 Case A-Pump module

According to the document accessed from AkerSolutions (AkerSolutions, 2016), the main dimensions of the pump module are $4(L) \times 3(W) \times 7(H)$ m and the total dry weight (static module weight) of the module is 30. The CAD model of the pump is shown below in Figure 13. Refer below in Table 19 for the weights that are used for the analyses of the pump model.

Table 19: Total weight for pump model

Description	Load [kN]	Remarks
Pump Module	294.3	Pump module weight 30 tonnes
Structural steel weight	131.9	Self-weight with 10% inaccuracy. Taken from STAAD analysis
Total weight	426	$426 \ kN \approx 40 \ tonnes \ (MGW)$

Figure 13: Pump CAD model.

7.4.1 Pump transportation analysis-Results

Highly utilized members are shown below in Figure 14. Refer in Table 20 below for the maximum utilization ratios due to buckling and yielding of posts, beams and braces during transportation analysis of pump model. Other information like detail manual code checks (Colbeam and excel checks), Staad input loads, reaction forces, reference drawings can be seen from the enclosed attachments in appendices.

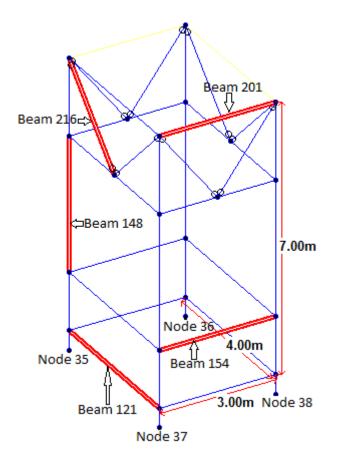


Figure 14: Highly utilized members for pump-transportation analysis

Table 20: Pump transportation analysis-Results UR buckling/yielding

Beam No.	Beam description	Beam profile (d.t)mm	UR Buckling	UR Yielding	Remarks
121	Bottom beam	Tube 324x16	0.25	0.55	Defen Annendin C
148	Corner post	Tube 324x16	0.39	0.72	Refer Appendix C and Appendix D for datail
154	Intermediate beam	Tube 324x16	0.34	0.74	for detail calculations for
201	Top beam	Tube 324x16	N/A	0.05	yielding and buckling
216	Brace	Tube 114x6	0.48	0.33	respectively

7.4.2 Pump air lifting analysis-Results

Utilization ratios for only selected critical members, as shown in Figure 15 below, are evaluated. The maximum utilization ratios are obtained from the combined stress of lifting and horizontal impact during airlifting as described in section 6.3.2 Lifting analyses. Refer Table 21 below for the maximum utilization ratios due to buckling and yielding of posts, beams and braces during air lifting analysis of pump model. Other information like horizontal impact calculations during air lift, detail manual code checks (Colbeam and excel checks), Staad input loads for air lifting and reaction forces can be seen from the enclosed attachments in appendices.

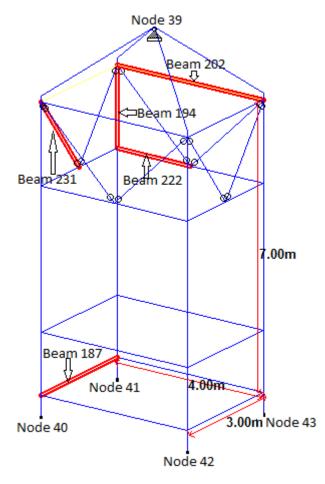


Figure 15: Highly utilized members for pump-Air lifting analysis

Beam No.	Beam description	Beam profile (d.t)mm	UR Buckling	UR Yielding	Remarks
187	Bottom beam	Tube 324x16	N/A	0.52	Refer Appendix C
194	Corner post	Tube 324x16	N/A	0.56	and Appendix D for detail
202	Top beam	Tube 324x16	0.04	0.32	calculations for
222	Intermediate beam	Tube 324x16	N/A	0.52	yielding and buckling
231	Brace	Tube 114x6	N /A	0.01	respectively

Table 21: Pump air lifting and horizontal impact analysis-Results UR buckling/yielding

7.4.3 Pump subsea lifting analysis-Results

Refer below in Table 22 for the maximum utilization ratios, for the pump subsea lifting, from the analyses and calculations:

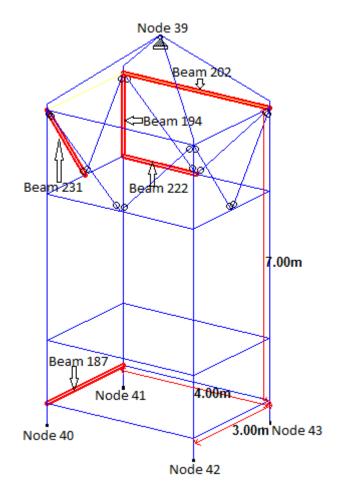


Figure 16: Highly utilized members for pump-Offshore/subsea lifting analysis

Table 22: Pump offshore lifting and horizontal impact analysis-Results UR buckling/yielding

Beam No.	Beam description	Beam profile (d.t)mm	UR Buckling	UR Yielding	Remarks
187	Bottom beam	Tube 324x16	N/A	0.36	Refer Appendix C
194	Corner post	Tube 324x16	N/A	0.43	and Appendix D for detail
202	Top beam	Tube 324x16	0.06	0.23	calculations for
222	Intermediate beam	Tube 324x16	N/A	0.37	yielding and buckling
231	Brace	Tube 114x6	N/A	0.01	respectively

7.4.4 Pump landing analysis-Results

For landing analysis, the pump structure is supported at two corners and the supporting conditions are stated above in section 5.3.3 Landing analyses. The maximum utilization factors for the critical members, specified above in Figure 10, are given below in Table 23:

Table 23: Pum	landing a	nalysis-Results	UR	buckling/yielding
---------------	-----------	-----------------	----	-------------------

Beam No.	Beam description	Beam profile (d.t)mm	UR Buckling	UR Yielding	Remarks
213	Corner post	Tube 324x16	N /A	0.36	Refer Appendix C and Appendix D for
214	Corner post	Tube 324x16	N /A	0.36	detail calculations for yielding and buckling respectively

7.5 Case B- Cooler module

The main dimensions of the cooler module are 5 $(L) \times 9(W) \times 7(H)$ m. The total dry weight (static module weight) of the module is 75 tonnes (AkerSolutions, 2016). The CAD model of the cooler is shown below in Figure 17. Refer below in Table 24 for the weights that are used for the analyses of the cooler model.

Table 24: Total weight for cooler model

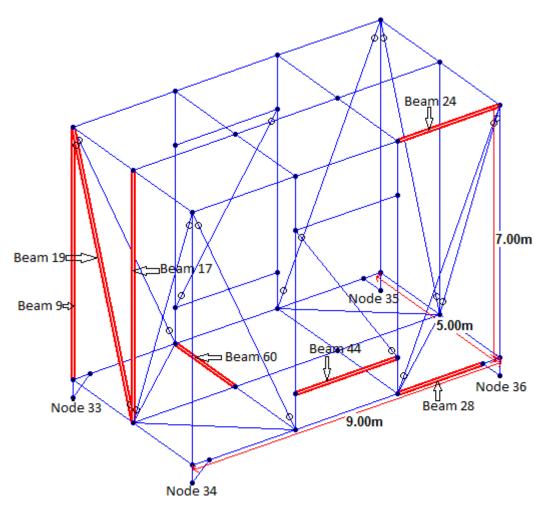

Description	Load [kN]	Remarks
Cooler Module	735.8	Cooler module weight 75 tonnes
Structural steel weight	227.9	Self-weight with 10% inaccuracy. Taken from STAAD analysis
Total weight	964	964 $kN \approx 100 \ tonnes \ (MGW)$

Figure 17: Cooler CAD model.

7.5.1 Cooler transportation analysis-Results

Refer below in Table 25 for the maximum utilization ratios, for the cooler model transportation analysis , from the analyses and calculations:

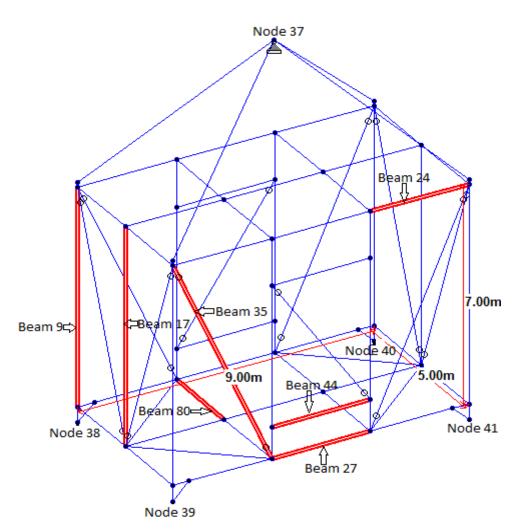


Table 25: Cooler transportation	analysis-Results UR buckling/yielding
---------------------------------	---------------------------------------

Beam No.	Beam description	Beam profile (d.t)mm	UR Buckling	UR Yielding	Remarks
9	Corner post	Tube 273x16	0.19	0.21	
17	Middle post	Tube 273x16	N/A	0.18	Refer Appendix C
19	Brace	Tube 114x6	0.42	0.06	and Appendix D for detail
24	Top beam	Tube 273x16	0.07	0.12	calculations for
28	Bottom beam	Tube 273x16	0.18	0.34	yielding and buckling
44	Intermediate beam	Tube 273x16	0.04	0.07	respectively
60	Bottom middle beam	Tube 273x16	N/A	0.38	

7.5.2 Cooler air lifting analysis-Results

The maximum utilization factors for the cooler model air lifting analysis are shown below in Table 26:

Beam No.	Beam description	Beam profile (d.t)mm	UR Buckling	UR Yielding	Remarks
9	Corner post	Tube 273x16	N/A	0.28	
17	Middle post	Tube 273x16	0.15	0.30	
24	Top beam	Tube 114x6	0.25	0.29	Refer Appendix C and Appendix D
27	Bottom beam	Tube 273x16	N/A	0.14	for detail calculations for
35	Brace	Tube 273x16	N/A	0.51	yielding and buckling
44	Intermediate beam	Tube 273x16	0.03	0.08	respectively
80	Bottom middle beam	Tube 273x16	N /A	0.65	

7.5.3 Cooler subsea lifting analysis-Results

The maximum utilization factors for the cooler model subsea/offshore lifting analysis are shown below in Table 27:

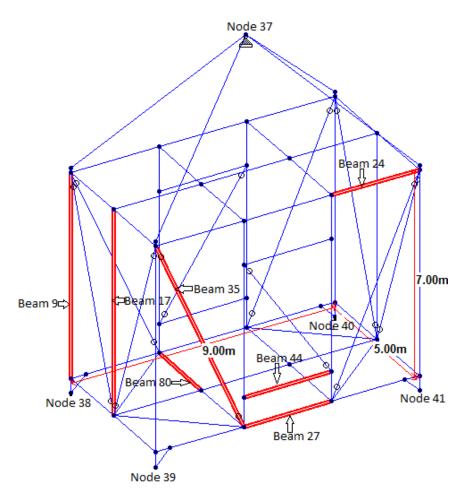


Figure 20: Highly utilized members for cooler-Offshore/subsea lifting analysis

Beam No.	Beam description	Beam profile (d.t)mm	UR Buckling	UR Yielding	Remarks
9	Corner post	Tube 273x16	N/A	0.37	
17	Middle post	Tube 273x16	0.21	0.40	
24	Top beam	Tube 114x6	0.35	0.40	Refer Appendix C and Appendix D
27	Bottom beam	Tube 273x16	N/A	0.17	for detail calculations for
35	Brace	Tube 273x16	N /A	0.71	yielding and buckling
44	Intermediate beam	Tube 273x16	0.04	0.07	respectively
80	Bottom middle beam	Tube 273x16	N /A	0.90	

Table 27: Cooler offshore lifting analysis-Results UR buckling/yielding

7.5.4 Cooler landing analysis-Results

The maximum utilization factors for landing analysis of cooler model, members specified above in Figure 11, are given below in Table 28:

Beam No.	Beam description	Beam profile (d.t)mm	UR Buckling	UR Yielding	Remarks
84	Corner post	Tube 273x16	N /A	0.06	Refer Appendix C and Appendix D for
87	Corner post	Tube 273x16	N /A	0.06	detail calculations for yielding and buckling respectively

Table 28: Coole	r landing analysis-Results	UR buckling/yielding
-----------------	----------------------------	----------------------

7.6 Case C- Compressor module

The main dimensions of the compressor module are $4(L) \times 4(W) \times 7(H)$ m. The total dry weight (static module weight) of the module is 100 tonnes (AkerSolutions, 2016). The CAD model of the compressor is shown below in Figure 21. Refer below in Table 29 for the weights that are used for the analyses of the compressor model.

Table 29: Total weight for compressor model

Description	Load [kN]	Remarks
Compressor Module	981	Compressor module weight 100 tonnes
Structural steel weight	232	Self-weight with 10% inaccuracy. Taken from STAAD analysis
Total weight	1,213	$1,213 \ kN \approx 120 \ tonnes \ (MGW)$

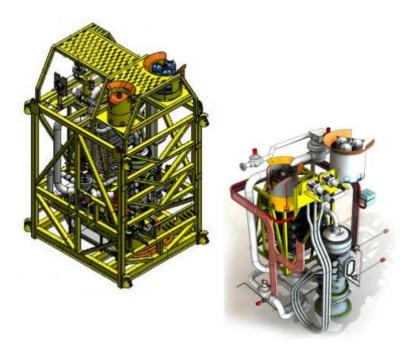


Figure 21: Compressor CAD model

7.6.1 Compressor transportation analysis-Results

The maximum utilization factors for compressor transportation analysis are given below in Table 30:

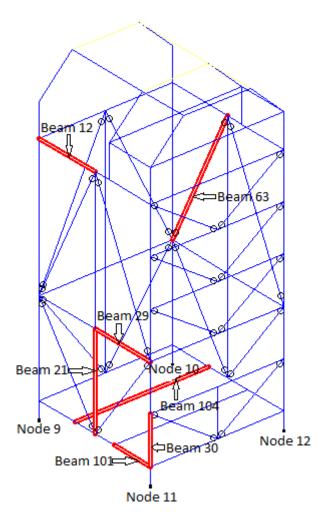


Figure 22: Highly utilized members for compressor-transportation analysis

Beam No.	Beam description	Beam profile (d.t)mm	UR Buckling	UR Yielding	Remarks
12	Top beam	Tube 324x16	N/A	0.08	
21	Middle post	Tube 324x16	N/A	0.25	Refer Appendix C
29	Intermediate beam	Tube 324x16	0.09	0.15	and Appendix D for detail
30	Corner post	Tube 324x16	0.24	0.34	calculations for
63	Brace	Tube 114x6	0.52	0.17	yielding and buckling
101	Bottom beam	Tube 324x16	0.17	0.34	respectively
104	Bottom middle beam	Tube 324x16	N /A	0.27	

Table 30: Compressor transportation analysis-Results UR buckling/yielding

University of Stavanger

7.6.2 Compressor air lifting analysis-Results

Refer below in Table 31 for the maximum utilization factors for the compressor model air lifting analysis.

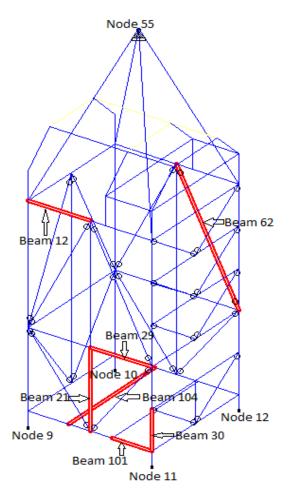


Figure 23: Highly utilized members for compressor-Air lifting analysis

Table 31: Compressor air lifting analysis-Results UR buckling/yielding

Beam No.	Beam description	Beam profile (d.t)mm	UR Buckling	UR Yielding	Remarks
12	Top beam	Tube 324x16	0.13	0.23	
21	Middle post	Tube 324x16	N/A	0.43	Refer Appendix C
29	Intermediate beam	Tube 324x16	0.11	0.22	and Appendix D for detail
30	Corner post	Tube 324x16	N/A	0.35	calculations for
62	Brace	Tube 114x6	0.34	0.11	yielding and buckling
101	Bottom beam	Tube 324x16	N/A	0.46	respectively
104	Bottom middle beam	Tube 324x16	N/A	0.46	

7.6.3 Compressor subsea lifting analysis-Results

The maximum utilization factors for the compressor model subsea/offshore lifting analysis are shown below in Table 32:

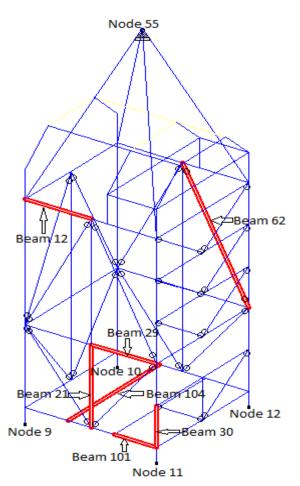


Figure 24: Highly utilized members for compressor-Offshore/subsea lifting analysis

Table 32: Compressor offshore lifting analysis-Results UR buckling/yieldi	ng
---	----

Beam No.	Beam description	Beam profile (d.t)mm	UR Buckling	UR Yielding	Remarks
12	Top beam	Tube 324x16	0.18	0.31	
21	Middle post	Tube 324x16	N/A	0.58	Refer Appendix C
29	Intermediate beam	Tube 324x16	0.15	0.28	and Appendix D for detail
30	Corner post	Tube 324x16	N/A	0.46	calculations for
62	Brace	Tube 114x6	0.47	0.16	yielding and buckling
101	Bottom beam	Tube 324x16	N /A	0.59	respectively
104	Bottom middle beam	Tube 324x16	N/A	0.89	

7.6.4 Compressor landing analysis-Results

The maximum utilization factors for landing analysis of compressor model, members specified above in Figure 12, are given below in Table 33:

Beam No.	Beam description	Beam profile (d.t)mm	UR Buckling	UR Yielding	Remarks
13	Corner post	Tube 324x16	N /A	0.06	Refer Appendix C and Appendix D for detail calculations for yielding and
16	Corner post	Tube 324x16	N /A	0.06	buckling respectively

8. Summary results and discussions

8.1 General

Analyses were conducted on each established case study and Table 34, Table 35 and Table 36 below summarizes the maximum utilization ratios.

8.2 Summary results for Case A:Pump module

Refer in Table 34 below for the maximum utilization ratios for pump module for different design phases:

Table 34: Pump module maximum UR

Subsea	Identification	Type of PO Unit	Design phase	Maximum	Ranking
module				UR	
	-		Transportation	0.74	1
(si	sea				
p tonnes)	Sub		Air lifting	0.56	2
Pump ≈ 40 <i>to</i>	R30-Subsea	A			
Puı ≈ 4	ကို	4	Subsea/offshore	0.43	3
M9W)	/ 2.7		lifting		
W)	DNV		Landing	0.36	4

8.3 Summary results for Case B:Cooler module

Refer in Table 35 below for the maximum utilization ratios for cooler module for different design phases:

Table 35: Cooler module maximum UR

Subsea	Identification	Type of PO Unit	Design phase	Maximum	Ranking
module				UR	
			Transportation	0.42	3
(sə	sea				
9uue	Sub		Air lifting	0.65	2
ooler 100 <i>tonnes</i>)	R30-Subsea	-			
Cooler ≈ 100 <i>t</i>	ကု	A	Subsea/offshore	0.90	1
**	, 2.7		lifting		
M9W)	DNV		Landing	0.06	4

8.4 Summary results for Case C:Compressor module

Refer in Table 36 below for the maximum utilization ratios for compressor module for different design phases:

Subsea	Identification	Type of PO Unit	Design phase	Maximum	Ranking
module				UR	
			Transportation	0.52	2
(<i>s</i> ¿	sea				
Dr Dnne	Sub		Air lifting	0.46	3
Compressor V ≈ 120 tonnes)	R30-Subsea	-			
mpi ≈ 11	ကု	A	Subsea/offshore	0.89	1
CO	/ 2.7		lifting		
CC (<i>MGW</i>	DNV		Landing	0.06	4

9. Conclusions and recommendations

9.1 General

The conclusions are mainly based on the three cases conducted during the analyses. The main input data during the analyses that decide the type of operational class are maximum gross weight ,type of PO unit and risk.

9.2 Conclusion

From the detail analyses conducted, It can be generally summarized that the critical design phase are transport for small subsea supporting structures and offshore lifting for medium and large subsea module supporting structures respectively. From good engineering practice, it is crucial to think about safety and economic analysis during concept phase so as to optimize engineering man-hours. Therefore from the analyses conducted with respect to three cases, it can be concluded that transport phase is the critical design phase for small structures and should be checked during concept phase and similarly offshore lifting should be evaluated for medium and large subsea module supporting structures.

During final engineering stage, it is necessary to provide detail analyses and complete design drawings with sufficient details. At this stage it important to document all the necessary critical design phases. From the analyses conducted and engineering judgments, design phases like air lifting, transport and offshore lift are critical and should be all evaluated and documented for small, medium and large subsea supporting structures. The following conclusions are summarized in Table 37 below as guidelines on which critical design phase/phases to be documented when structural integrity of subsea supporting structures are evaluated during concept and final engineering stages based on the analyses conducted for each case study :

Identification	Туре	PO weight	Categories	Concept phase	Detail engineering phase
	of			Critical design	Critical design phases
	PO			phase	
	Unit				
m		25 <mgw≤50< td=""><td>Small</td><td>Transportation</td><td>✓ Air lifting</td></mgw≤50<>	Small	Transportation	✓ Air lifting
R30-Subsea		tonnes			✓ Transportation
Sub					✓ Offshore lifting
30-0		50 <mgw≤100< td=""><td>Medium</td><td>Offshore</td><td>✓ Air lifting</td></mgw≤100<>	Medium	Offshore	✓ Air lifting
	A	tonnes		lifting	✓ Transportation
2.7-3				_	✓ Offshore lifting
		<i>100<mgw≤150< i=""></mgw≤150<></i>	Large	Offshore	✓ Air lifting
DNC		tonnes		lifting	✓ Transportation
					✓ Offshore lifting

Table 37: Guidelines on critical design phase/phases for subsea module supporting structures

9.3 Recommendation for further work

In principle, subsea module supporting structures should be designed such that they can withstand all design phases. I.e. in-place, load out, sea transportation, offshore lifting, operations and retrieval. Even though there are no simple guidelines on how to document the structural integrity of subsea supporting structures as of today, it is recommended to set such guidelines to minimize engineering hours by performing analyses for only some selected phases without breaching the goal of health, safety and environment. This Thesis recommends for further studies for subsea module supporting structures with maximum gross weight (PO weight) greater than specified above and operational classes R60, R45 type A, B, C, D, E and class R30 type B, C, D and E according to operational class classifications given by DNV 2.7-3 (DNV, May 2011).

Bibliography

AkerSolutions, 2016. AkerSolutions Subsea compression. [Online] Available at: <u>http://www.ccop.or.th/download/PETRAD/PETRAD58_2011-01/Paper10_MortenPedersen_AkerSolutions.pdf</u> [Accessed 17 03 2016].

Bai, Y. L. J. W., 2015. Marine Structural Design. 2nd ed. Oxford: Elsevier.

CEN, 2005. Eurocode 3, NS-EN1993-1-1, Brussels: CEN.

DNV, January 1996. *Rules for Planning and Execution of Marine Operations, DNV,* Høvik, Norway: DNV.

DNV, May 2011. Portable Offshore Units, DNV 2.7-3, Høvik, Norway: DNV.

Petroleum Safety Authority Norway, 2016. *Petroleum Safety Authority Norway*. [Online] Available at: <u>http://www.psa.no/?lang=en_US</u> [Accessed 09 02 2016].

Statoil, 2016. *Subsea Compression from Idea to reality*. [Online] Available at: <u>http://www.statoil.com/no/InvestorCentre/Presentations/2011/Downloads/Subsea%20Compression</u> <u>%20%E2%80%93%20from%20idea%20to%20reality.pdf</u>

[Accessed 17 03 2016].

Appendix A: Impact calculation during lifting

Appendix A1: Impact calculation during air lifting-Case A: Pump module

Total pump model weight, as given above in Table 19, is 40 tonnes.

As given in section 4.2.3 Horizontal impact during air lift -Table 4 above, test load for pump model (40 tonnes) during air lifting is as follows:

for 25</br/>MGW≤50 tonnes, test load , $F_{TEST} = [1 - 0.01 \times (MGW - 25) \times F_{Air} \rightarrow F_{Air} = 2.25 \times MGW \times g$

 $F_{Air} = 2.25 \times 426 \approx 960 \ kN$

 $\rightarrow F_{TEST} = [1 - 0.01 \times (MGW - 25) \times F_{Air}]$

 $F_{TEST} = [1 - 0.01 \times (40 - 25) \times 960 \approx 14,256 \, kN$

a) For corner posts and bottom beams :

$$\rightarrow F_{HI(air)} = 0.05 \times F_{TEST}$$

 $F_{HI(air)} = 0.05 \times 14,256 \approx 713 \ kN$

b) For end/side structure and top beams :

$$\rightarrow F_{HIR(air)} = 0.6 \times F_{HI(air)}$$

 $F_{HIR(air)} = 0.6 \times 713 \approx 428 \ kN$

 $F_{HI(air)} \approx 713 \ kN$ -To be applied on corner posts , bottom beams and intermediate beams during air lift of pump module

 $F_{HIR(air)} pprox 428 \, kN$ -To be applied on end/side structure and top beams during air lift of pump module

Appendix A₂: Impact calculation during offshore lifting-Case A: Pump module

Total pump model weight, as given above in Table 19, is 40 tonnes.

As given in section 4.2.4 Horizontal impact during offshore lift-Table 4 above, test load for pump model (40 tonnes) during offshore lifting is as follows:

for 25<MGW≤50 tonnes, test load , $F_{TEST} = [1 - 0.01 \times (MGW - 25) \times F_{Sub}]$

 $\rightarrow F_{Sub} = 3.12 \times MGW \times g$

 $F_{Sub} = 3.12 \times 426 \approx 1329 \, kN$

 $\rightarrow F_{TEST} = [1 - 0.01 \times (MGW - 25) \times F_{Sub}]$

 $F_{TEST} = [1 - 0.01 \times (40 - 25) \times 1329 \approx 19,736 \, kN$

During offshore lifting, the structure is lowered alone and considered as single transportation and hence 50% of F_{HI} and F_{HIR} are applied as follows:

a) For corner posts and bottom beams :

 $\rightarrow F_{HI(sub)} = 0.5 \times 0.05 \times F_{TEST}$

 $F_{HI(sub)} = 0.025 \times 19,736 \approx 493 \ kN$

b) For end/side structure and top beams :

$$\rightarrow F_{HIR(sub)} = 0.6 \times F_{HIsub}$$

 $F_{HIR(sub)} = 0.6 \times 493 \approx 296 kN$

 $F_{HI(sub)} \approx 493 \ kN$ -To be applied on corner posts , bottom beams and intermediate beams during offshore lift of pump module

 $F_{HIR(sub)} \approx 296 kN$ -To be applied on end/side structure and top beams during offshore lift of pump module

Appendix A₃: Impact calculation during air lifting-Case B: Cooler module

Total cooler model weight, as given above in Table 24, is 100 tonnes.

As given in section 4.2.3 Horizontal impact during air lift-Table 4 above, test load for cooler model (100 tonnes) during air lifting is as follows:

for MGW > 50 tonnes, test load , $F_{TEST} = 0.75 \times F_{Air}$

 $\rightarrow F_{Air} = 2.25 \times MGW \times g$

 $F_{Air} = 2.25 \times 964 \approx 2,169 \, kN$

 $\rightarrow F_{TEST} = 0.75 \times F_{Air}$

 $F_{TEST} = 0.75 \times 2,169 \approx 1,627 \ kN$

a) For corner posts and bottom beams :

 $\rightarrow F_{HI(air)} = 0.05 \times F_{TEST}$

 $F_{HI(air)} = 0.05 \times 1,627 \approx 81 \, kN$

b) For end/side structure and top beams :

 $\rightarrow F_{HIR(air)} = 0.6 \times F_{HI(air)}$

 $F_{HIR(air)} = 0.6 \times 81 \approx 49 \ kN$

 $F_{HI(air)} \approx 81 \ kN$ -To be applied on corner posts , bottom beams and intermediate beams during air lift of cooler module

 $F_{HIR(air)} \approx 49 \ kN$ -To be applied on end/side structure and top beams during air lift of cooler module

Appendix A₄: Impact calculation during offshore lifting-Case B: Cooler module

Total cooler model weight, as given above in Table 24, is 100 tonnes.

As given in section 4.2.4 Horizontal impact during offshore lift-Table 4 above, test load for cooler model (100 tonnes) during offshore lifting is as follows:

for MGW > 50 tonnes, test load , $F_{TEST} = 0.75 \times F_{Sub}$

 $\rightarrow F_{Sub} = 3.12 \times MGW \times g$

 $F_{Sub} = 3.12 \times 964 \approx 3,008 \ kN$

 $\rightarrow F_{TEST} = 0.75 \times F_{Sub}$

 $F_{TEST} = 0.75 \times 3,008 \approx 2,256 \ kN$

During offshore lifting, the structure is lowered alone and considered as single transportation and hence 50% of $F_{\rm HI}$ and $F_{\rm HIR}$ are applied as follows:

a) For corner posts and bottom beams :

 $\rightarrow F_{HI(sub)} = 0.5 \times 0.05 \times F_{TEST}$

 $F_{HI(sub)} = 0.025 \times 2,256 \approx 56 \, kN$

b) For end/side structure and top beams :

 $\rightarrow F_{HIR(sub)} = 0.6 \times F_{HI(sub)}$

 $F_{HIR(sub)} = 0.6 \times 56 \approx 34 \, kN$

 $F_{HI(sub)} \approx 56 \ kN$ -To be applied on corner posts , bottom beams and intermediate beams during offshore lift of cooler module

 $F_{HIR(sub)} \approx 34 \ kN$ -To be applied on end/side structure and top beams during offshore lift of cooler module

Appendix A₅: Impact calculation during air lifting-Case C: Compressor module

Total compressor model weight, as given above in Table 29, is 120 tonnes.

As given in section 4.2.3 Horizontal impact during air lift-Table 4 above, test load for compressor model (120 tonnes) during air lifting is as follows:

for MGW > 50 tonnes, test load , $F_{TEST} = 0.75 \times F_{Air}$

 $\rightarrow F_{Air} = 2.25 \times MGW \times g$

 $F_{Air} = 2.25 \times 1,213 \approx 2,729 \ kN$

 $\rightarrow F_{TEST} = 0.75 \times F_{Air}$

 $F_{TEST} = 0.75 \times 2,729 \approx 2,047 \ kN$

a) For corner posts and bottom beams :

 $\rightarrow F_{HI(air)} = 0.05 \times F_{TEST}$

 $F_{HI(air)} = 0.05 \times 2,047 \approx 102 \ kN$

b) For end/side structure and top beams :

$$\rightarrow F_{HIR(air)} = 0.6 \times F_{HI(air)}$$

 $F_{HIR(air)} = 0.6 \times 102 \approx 61 \, kN$

 $F_{HI(air)} \approx 102 \ kN$ -To be applied on corner posts , bottom beams and intermediate beams during air lift of compressor module

 $F_{HIR(air)} \approx 61 \ kN$ -To be applied on end/side structure and top beams during air lift of compressor module

Appendix A₆: Impact calculation during offshore lifting-Case C: Compressor module

Total compressor model weight, as given above in Table 29, is 120 tonnes.

As given in section 4.2.4 Horizontal impact during offshore lift-Table 4 above, test load for compressor model (120 tonnes) during offshore lifting is as follows:

for MGW > 50 tonnes, test load , $F_{TEST} = 0.75 \times F_{Sub}$

 $\rightarrow F_{Sub} = 3.12 \times MGW \times g$

 $F_{Sub} = 3.12 \times 1,213 \approx 3,785 \, kN$

 $\rightarrow F_{TEST} = 0.75 \times F_{Sub}$

 $F_{TEST} = 0.75 \times 3,785 \approx 2,839 \ kN$

During offshore lifting, the structure is lowered alone and considered as single transportation and hence 50% of $F_{\rm HI}$ and $F_{\rm HIR}$ are applied as follows:

a) For corner posts and bottom beams :

 $\rightarrow F_{HI(sub)} = 0.5 \times 0.05 \times F_{TEST}$

 $F_{HI(sub)} = 0.025 \times 2,839 \approx 71 \, kN$

b) For end/side structure and top beams :

 $\rightarrow F_{HIR(sub)} = 0.6 \times F_{HI(sub)}$

 $F_{HIR(sub)} = 0.6 \times 71 \approx 43 \ kN$

 $F_{HI(sub)} \approx 71 \ kN$ -To be applied on corner posts , bottom beams and intermediate beams during offshore lift of compressor module

 $F_{HIR(sub)} \approx 43 \ kN$ -To be applied on end/side structure and top beams during offshore lift of compressor module

Appendix B: Landing impact calculations during offshore lifting

Appendix B₁: Landing calculation during offshore lifting-Case A: Pump module

As given in section 6.3.3 Landing analyses above, the total factor for landing load combination; LC27; is 0.25.

Therefore,

LC27. Landing(F_{VI}) = 0.25 × (Static self weight pump + Static subsea module weight pump)

Total static pump model weight, as given above in Table 19, is 426kN.

 $\rightarrow F_{VI} = 0.25 \times 426$

 $F_{VI} \approx 107 kN$

According to section 5.3.3 above, the structure is modeled in such a way that the bottom of the frame structure interfaces the bottom surface on two supports. Hence the total calculated load above is divided on two supports, i.e.

 $F_{VI} \approx 54 \ kN$ -To be applied on corner post of pump model as compression force (in X direction) and horizontal impact of $F_{HI(sub)} \approx 493 \ kN$ in Y or Z direction as calculated above in Appendix A₂: Impact calculation during offshore lifting-Case A: Pump module.

Appendix B₂: Landing calculation during offshore lifting-Case B: Cooler module

As given in section 6.3.3 Landing analyses above, the total factor for landing load combination; LC27; is 0.25.

Therefore,

LC27. Landing(F_{VI}) = 0.25 × (Static self weight cooler + Static subsea module weight cooler)

Total static cooler model weight, as given above in Table 24, is 964kN.

 $\rightarrow F_{VI} = 0.25 \times 964$

 $F_{VI} \approx 241 kN$

According to section 5.3.3 above, the structure is modeled in such a way that the bottom of the frame structure interfaces the bottom surface on two supports. Hence the total calculated load above is divided on two supports, i.e.

 $F_{VI} \approx 121 \ kN$ -To be applied on corner post as compression force of cooler model (in X direction) and horizontal impact of $F_{HI(sub)} \approx 56 \ kN$ in Y or Z direction as calculated above in Appendix A₄: Impact calculation during offshore lifting-Case B: Cooler module.

Appendix B₃: Landing calculation during offshore lifting-Case C: Compressor module

As given in section 6.3.3 Landing analyses above, the total factor for landing load combination; LC27; is 0.25.

Therefore,

LC27. Landing(F_{VI}) = 0.25 × (Self weight compressor + Subsea module weight compressor)

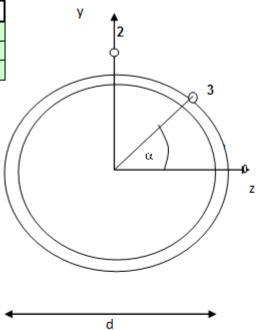
Total static compressor model weight, as given above in Table 29, is 1,213kN.

 $\rightarrow F_{VI} = 0.25 \times 1,213$

 $F_{VI} \approx 303 kN$

According to section 5.3.3 above, the structure is modeled in such a way that the bottom of the frame structure interfaces the bottom surface on two supports. Hence the total calculated load above is divided on two supports, i.e.

 $F_{VI} \approx 152 \ kN$ -To be applied on corner post as compression force of compressor model (in X direction) and horizontal impact of $F_{HI(sub)} \approx 71 \ kN$ in Y or Z direction as calculated above in Appendix A₆: Impact calculation during offshore lifting-Case C: Compressor module.


Appendix C: Von Mises yield criteria calculations

Appendix C₁: Von Mises yield criteria for air lifting and horizontal impact-Case A: Pump module

GENERAL	
Beam No.	187
Descrip.	Bottom end beam
Analysis:	Air lift and horizontal impact

SECTION I	PROPERTIES	
d	324.0	mm
t	16.0	mm
r	154	mm
α	1.570	rad
Ax	15482	mm2
Ау	7741	mm2
Az	7741	mm2
ly	1.841E+08	mm4
Iz	1.841E+08	mm4
Ix	3.682E+08	mm4

MATERIAL					
fy	355.0	N/mm2			
γm	1.15	-			

MEMBER FORCES FOR AIR LIFT						
Fx	2.5	kN				
Fy	6.5	kN				
Fz	0.0	kN				
Mx	0.0	kNm				
My	0.0	kNm				
Mz	4.9	kNm				

VON MISES YIELD CRITERION

STRE SS CALCULATION S AND UTILIZATION FOR AIR LIFTING ONLY									
	σx1	σby1	σbz1	τx1	τy1	τz1	σe1		
Point 1	0.2	0.0	0.0	0.0	8.0	0.0	1.5		
Point 2	0.2	0.0	4.1	0.0	0.0	0.0	4.3		
Point 3	0.2	4	.1	0.0	0	.8	4.5		
Utilisation:							0.01		

Von Mises: $[(\sigma x + \sigma by + \sigma bz)^2 + 3(\tau x + \tau y + \tau z)^2]^{(1/2)}$

* Apply , $F_{HI} \approx 713 \ kN$	y, $F_{HI} \approx 713 \ kN$
-------------------------------------	------------------------------

MEMBER FORCES FOR IMPACT							
Fx	0.0	kN					
Fy	0.0	kN					
Fz	713.0	kN					
Mx	0.0	kNm					
My	0.0	kNm					
Mz	0.0	kNm					

STRE SS CALCULATION S AND UTILIZATION FOR HORIZON TAL IMPACT ON LY								
	σx2	σby2	σbz2	τx2	τ y 2	τ z 2	σe2	
Point 1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Point 2	0.0	0.0	0.0	0.0	0.0	92.1	159.5	
Point 3	0.0	0	.0	0.0	92	2.1	159.5	
Utilisation	:						0.52	

STRE SS CAL	STRE SS CALCULATION S AND UTILIZATION FOR AIR LIFTING AND HORIZONTAL IMPACT								
	σx12	σby12	σbz12	τx12	τ y 12	τz12	σe		
Point 1	0.2	0.0	0.0	0.0	8.0	0.0	1.5		
Point 2	0.2	0.0	4.1	0.0	0.0	92.1	159.6		
Point 3	0.2	4	.1	0.0	93	2.9	161.0		
Utilisation	:						0.52		

* According to DNV 2.7.3 section 3.6.2 , the impact stress are combined with lifting stress

INPUT LOADS

1.0 -End forces from Staad analysis for pump module air lift

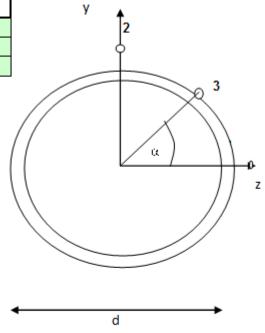
	Pump	module	air	lifting.std ·	- Beam	End	Force
--	------	--------	-----	---------------	--------	-----	-------

Beam	L/C	Node	Axial Force kN	Shear-Y kN	Shear-Z kN	Torsion kNm	Moment-Y kNm	Moment-Z kNm
187	3	1	-2.498	2.378	0.000	0.001	-0.006	-1.273
		2	2.498	6.471	-0.000	-0.001	0.005	-4.867

2.0 -Horizontal impact loads

Refer attached calcaulations for horizontal impact loads during air lifting for pump module

 $F_{HI} \approx 713 \; kN$ -To be applied on corner posts , bottom beams and intermediate beams


 $F_{HIR}\,\approx428\,\,kN$ - To be applied on end/side structure and top beams

GENERAL	
Beam No.	194
Descrip.	Corner post
Analysis:	Air lift and horizontal impact

Beam No.	194
Descrip.	Corner post
Analysis:	Air lift and horizontal impact

SECTION I	SECTION PROPERTIES						
d	324.0	mm					
t	16.0	mm					
r	154	mm					
α	0.587	rad					
Ax	15482	mm2					
Ay	7741	mm2					
Az	7741	mm2					
ly	1.841E+08	mm4					
Iz	1.841E+08	mm4					
Ix	3.682E+08	mm4					

MATERIAL					
fy	355.0	N/mm2			
γm	1.15	-			

MEMBER FORCES FOR AIR LIFT						
Fx	63.0	kN				
Fy	15.5	kN				
Fz	24.1	kN				
Mx	0.2	kNm				
My	38.3	kNm				
Mz	25.5	kNm				

University of Stavanger

STRE SS CALCULATION S AND UTILIZATION FOR AIR LIFTING ONLY							
	σx1	σx1 σby1 σbz1 τx1 τy1 τz1					σe1
Point 1	4.1	32.1	0.0	0.1	2.0	0.0	36.3
Point 2	4.1	0.0	21.3	0.1	0.0	3.1	26.0
Point 3	4.1	38	3.5	0.1	3	.7	43.1
Utilisation	:						0.14

$*$ Apply , $F_{HI} \approx$	713	kN
------------------------------	-----	----

MEMBER FORCES FOR IMPACT						
Fx	0.0	kN				
Fy	0.0	kN				
Fz	713.0	kN				
Mx	0.0	kNm				
My	0.0	kNm				
Mz	0.0	kNm				

STRE SS CALCULATION S AND UTILIZATION FOR HORIZON TAL IMPACT ON LY							
	σx2 σby2 σbz2 τx2 τy2 τz2						σe2
Point 1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Point 2	0.0	0.0	0.0	0.0	0.0	92.1	159.5
Point 3	0.0	0	.0	0.0	92	2.1	159.5
Utilisation	:						0.52

STRE SS CALCULATION S AND UTILIZATION FOR AIR LIFTING AND HORIZON TAL IMPACT							
	σx12	σx12 σby12 σbz12 τx12 τy12 τz12					
Point 1	4.1	32.1	0.0	0.1	2.0	0.0	36.3
Point 2	4.1	0.0	21.3	0.1	0.0	95.2	167.0
Point 3	4.1	4.1 38.5 0.1 95.8					171.5
Utilisation:							0.56

* According to DNV 2.7.3 section 3.6.2, the impact stress are combined with lifting stress

INPUT LOADS

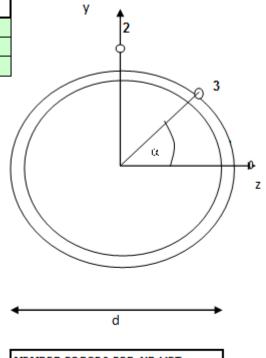
1.0 -End forces from Staad analysis for pump module air lift

	Pump	module air	lifting.std -	Beam End	Force
_					

Beam	L/C	Node	Axial Force kN	Shear-Y kN	Shear-Z kN	Torsion kNm	Moment-Y kNm	Moment-Z kNm
194	3	34	-57.121	15.477	24.097	-0.236	-9.873	5.458
		6	63.020	-15.477	-24.097	0.236	-38.321	25.496

2.0 -Horizontal impact loads

Refer attached calcaulations for horizontal impact loads during air lifting for pump module


 $F_{HI} \approx 713 \ kN$ -To be applied on corner posts , bottom beams and intermediate beams

 $F_{HIR} \, \approx 428 \; kN$ - To be applied on end/side structure and top beams

GENERAL	
Beam No.	202
Descrip.	Top beam
Analysis:	Air lift and horizontal impact

SECTION PROPERTIES				
d	324.0	mm		
t	16.0	mm		
r	154	mm		
α	1.525	rad		
Ax	15482	mm2		
Ау	7741	mm2		
Az	7741	mm2		
ly	1.841E+08	mm4		
Iz	1.841E+08	mm4		
Ix	3.682E+08	mm4		

MATERIAL				
fy	355.0	N/mm2		
γm	1.15	-		

MEMBER FORCES FOR AIR LIFT				
Fx	115.2	kN		
Fy	5.9	kN		
Fz	0.0	kN		
Mx	0.0	kNm		
My	0.4	kNm		
Mz	8.7	kNm		

STRE SS CALCULATION S AND UTILIZATION FOR AIR LIFTING ONLY							
	σx1	σby1	σbz1	τx1	τy1	τz1	σe1
Point 1	7.4	0.3	0.0	0.0	8.0	0.0	7.9
Point 2	7.4	0.0	7.3	0.0	0.0	0.0	14.7
Point 3	7.4	7	.3	0.0	0	.8	14.8
Utilis ation:					0.05		

*	Apply,	FHIR	\approx	428	kN	
---	--------	------	-----------	-----	----	--

MEMBER FORCES FOR IMPACT				
Fx	0.0	kN		
Fy	0.0	kN		
Fz	428.0	kN		
Mx	0.0	kNm		
My	0.0	kNm		
Mz	0.0	kNm		

STRE SS CALCULATION S AND UTILIZATION FOR HORIZON TAL IMPACT ON LY							
	σx2	σby2	σbz2	τx2	τ y 2	τ z 2	σe2
Point 1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Point 2	0.0	0.0	0.0	0.0	0.0	55.3	95.8
Point 3	0.0	0	.0	0.0	5	5.3	95.8
Utilis ation:					0.31		

STRE SS CAL	STRE SS CALCULATION S AND UTILIZATION FOR AIR LIFTING AND HORIZONTAL IMPACT						
	σx12	σby12	σbz12	τx12	τ y 12	τz12	σe
Point 1	7.4	0.3	0.0	0.0	8.0	0.0	7.9
Point 2	7.4	0.0	7.3	0.0	0.0	55.3	96.9
Point 3	7.4	7	.3	0.0	5	6.1	98.2
Utilisation							0.32

* According to DNV 2.7.3 section 3.6.2 , the impact stress are combined with lifting stress

INPUT LOADS

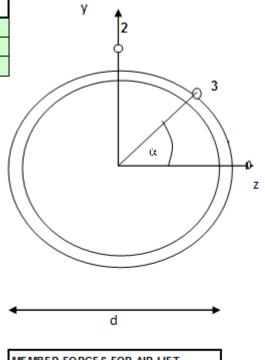
1.0 -End forces from Staad analysis for pump module air lift

🛄 Pump module air lifting.std - Beam End Force

Beam	L/C	Node	Axial Force kN	Shear-Y kN	Shear-Z kN	Torsion kNm	Moment-Y kNm	Moment-Z kNm
202	3	8	115.186	5.899	0.000	0.000	-0.404	-8.730
		6	-115.186	5.899	-0.000	-0.000	0.404	8.730

2.0 -Horizontal impact loads

Refer attached calcaulations for horizontal impact loads during air lifting for pump module


 $F_{HI} \approx 713 \text{ kN}$ -To be applied on corner posts, bottom beams and intermediate beams $F_{HIR} \approx 428 \text{ kN}$ -To be applied on end/side structure and top beams

GENERAL	
Beam No.	222
Descrip.	Intermediate beam
Analysis:	Air lift and horizontal impact

Beam No.	222
	Intermediate beam
Analysis:	Air lift and horizontal impact

SECTION I	SECTION PROPERTIES					
d	324.0	mm				
t	16.0	mm				
r	154	mm				
α	1.558	rad				
Ax	15482	mm2				
Ау	7741	mm2				
Az	7741	mm2				
ly	1.841E+08	mm4				
Iz	1.841E+08	mm4				
Ix	3.682E+08	mm4				

MATERIAL						
fy	355.0	N/mm2				
γm	1.15	-				

MEMBER FORCES FOR AIR LIFT					
Fx	24.8	kN			
Fy	7.8	kN			
Fz	0.0	kN			
Mx	0.0	kNm			
My	0.1	kNm			
Mz	7.4	kNm			

STRE SS CALCULATION S AND UTILIZATION FOR AIR LIFTING ONLY							
	σx1	σby1	σbz1	τx1	τy1	τz1	σe1
Point 1	1.6	0.1	0.0	0.0	1.0	0.0	2.4
Point 2	1.6	0.0	6.2	0.0	0.0	0.0	7.8
Point 3	1.6	6	2	0.0	1	.0	8.0
Utilis ation:							0.03

$*$ Apply , $F_{HI} \approx 713$ kN	

MEMBER FORCES FOR IMPACT						
Fx	0.0	kN				
Fy	0.0	kN				
Fz	713.0	kN				
Mx	0.0	kNm				
My	0.0	kNm				
Mz	0.0	kNm				

STRE SS CALCULATION S AND UTILIZATION FOR HORIZON TAL IMPACT ON LY							
	σx2	σby2	σbz2	τx2	τ y 2	τ z 2	σe2
Point 1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Point 2	0.0	0.0	0.0	0.0	0.0	92.1	159.5
Point 3	0.0	0	.0	0.0	92	2.1	159.5
Utilis ation:							0.52

STRE SS CALCULATION S AND UTILIZATION FOR AIR LIFTING AND HORIZONTAL IMPACT							
	σx12	σby12	σbz12	τx12	τ y 12	τz12	σe
Point 1	1.6	0.1	0.0	0.0	1.0	0.0	2.4
Point 2	1.6	0.0	6.2	0.0	0.0	92.1	159.7
Point 3	1.6	6	2	0.0	93	3.1	161.5
Utilisation	Utilis ation:						

* According to DNV 2.7.3 section 3.6.2 , the impact stress are combined with lifting stress

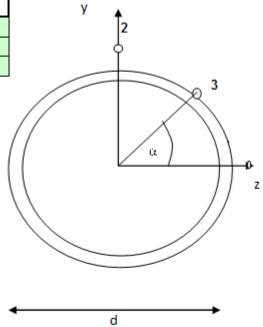
INPUT LOADS

1.0 -End forces from Staad analysis for pump module air lift

🔲 F	ump	module	air	lifting.std	- Beam	End	Force
-----	-----	--------	-----	-------------	--------	-----	-------

Beam	L/C	Node	Axial Force kN	Shear-Y kN	Shear-Z kN	Torsion kNm	Moment-Y kNm	Moment-Z kNm
222	3	46	-24.765	-1.891	-0.000	-0.000	-0.098	-2.296
		34	24.765	7.790	0.000	0.000	0.098	-7.385

2.0 -Horizontal impact loads


Refer attached calcaulations for horizontal impact loads during air lifting for pump module

 $F_{HI} \approx 713 \text{ kN}$ -To be applied on corner posts, bottom beams and intermediate beams $F_{HIR} \approx 428 \text{ kN}$ -To be applied on end/side structure and top beams

GENERAL	
Beam No.	231
Descrip.	Brace
Analysis:	Air lifting

SECTION PROPERTIES					
d	114.0	mm			
t	6.0	mm			
r	54	mm			
α	0.785	rad			
Ax	2036	mm2			
Ау	1018	mm2			
Az	1018	mm2			
ly	2.977E+06	mm4			
Iz	2.977E+06	mm4			
lx	5.955E+06	mm4			

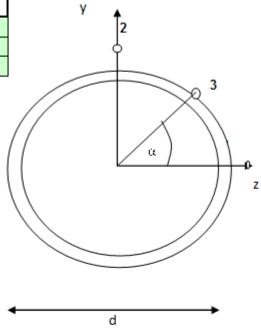
MATERIAL						
fy	355.0	N/mm2				
γm	1.15	-				

MEMBER FORCES FOR AIR LIFT					
Fx	5.4	kN			
Fy	0.3	kN			
Fz	0.0	kN			
Mx	0.0	kNm			
My	0.0	kNm			
Mz	0.0	kNm			

STRE SS CALCULATION S AND UTILIZATION FOR AIR LIFTING ON LY (Braces take no impact)							
	σx1	σby1	σbz1	τx1	τy1	τz1	σe1
Point 1	2.7	0.0	0.0	0.0	0.3	0.0	2.7
Point 2	2.7	0.0	0.0	0.0	0.0	0.0	2.7
Point 3	2.7	0	.0	0.0	0	.3	2.7
Utilisation	:						0.01

INPUT LOADS

1.0 -End forces from Staad analysis for pump module air lift


🛄 Pum	🛄 Pump module air lifting.std - Beam End Force									
Beam	L/C	Node	Axial Force kN	Shear-Y kN	Shear-Z kN	Torsion kNm	Moment-Y kNm	Moment-Z kNm		
231	3	5	4.628	0.306	-0.000	0.000	0.000	0.000		
		47	-5.443	0.306	0.000	0.000	0.000	0.000		

Appendix C₂: Von Mises yield criteria for offshore lifting and horizontal impact-Case A: Pump module

GENERAL	
Beam No.	187
Descrip.	Bottom side beam
Analysis:	Offshore lift and horizon.impact

SECTION PROPERTIES						
d	324.0	mm				
t	16.0	mm				
r	154	mm				
α	1.570	rad				
Ax	15482	mm2				
Ay	7741	mm2				
Az	7741	mm2				
ly	1.841E+08	mm4				
Iz	1.841E+08	mm4				
lx	3.682E+08	mm4				

MATERIAL						
fy	355.0	N/mm2				
γm	1.15	-				

MEMBER FO	MEMBER FORCES FOR OFF SHOR.LIFT						
Fx	3.5	kN					
Fy	9.0	kN					
Fz	0.0	kN					
Mx	0.0	kNm					
My	0.0	kNm					
Mz	6.7	kNm					

STRE SS CALCULATION S AND UTILIZATION FOR OFF SHORE LIFTING ONLY							
	σx1	σby1	σbz1	τx1	τy1	τz1	σe1
Point 1	0.2	0.0	0.0	0.0	1.2	0.0	2.0
Point 2	0.2	0.0	5.6	0.0	0.0	0.0	5.9
Point 3	0.2	5	.6	0.0	1	.2	6.2
Utilisation:	Utilisation:						0.02

* Apply , $F_{HIsub} pprox$ 493 kN

MEMBER FORCES FOR IMPACT						
Fx	0.0	kN				
Fy	0.0	kN				
Fz	493.0	kN				
Mx	0.0	kNm				
My	0.0	kNm				
Mz	0.0	kNm				

STRE SS CALCULATION S AND UTILIZATION FOR HORIZONTAL IMPACT ON LY							
	σx2	σx2 σby2 σbz2 τx2 τy2 τz2					
Point 1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Point 2	0.0	0.0	0.0	0.0	0.0	63.7	110.3
Point 3	nt3 0.0 0.0 0.0 63.7						110.3
Utilisation	Utilisation:						0.36

STRE SS CALCULATION S AND UTILIZATION FOR OFF SHORE LIFTING AND HORIZON TAL IMPACT							
	σx12 σby12 σbz12 τx12 τy12 τz12						
Point 1	0.2	0.0	0.0	0.0	1.2	0.0	2.0
Point 2	0.2	0.0	5.6	0.0	0.0	63.7	110.5
Point 3	Point 3 0.2 5.6 0.0 64.8						112.5
Utilisation	Utilisation:						0.36

* According to DNV 2.7.3 section 3.6.2 , the impact stress are combined with lifting stress

INPUT LOADS

1.0 -End forces from Staad analysis for pump module offshore lift

	Pump	module	offshore	lifting.std	I - Beam	End Force
-						

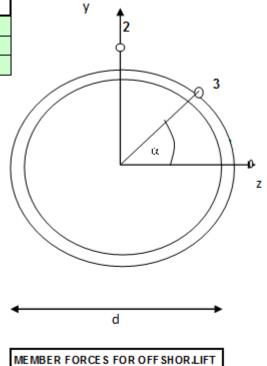
Beam	L/C	Node	Axial Force kN	Shear-Y kN	Shear-Z kN	Torsion kNm	Moment-Y kNm	Moment-Z kNm
187	3	1	-3.464	3.297	0.000	0.001	-0.008	-1.766
		2	3.464	8.973	-0.000	-0.001	0.007	-6.748

2.0 -Horizontal impact loads

Refer attached calcaulations for horizontal impact loads during offshore lifting for pump module

F_{HIsub} \approx 493 kN -*To be applied on corner posts , bottom beams and intermediate beams*

 $F_{HIRsub} \approx 296 kN$ -To be applied on end/side structure and top beams


GENERAL	
Beam No.	194
Descrip.	Corner post
Analysis:	Offshore lift and horizon.impact

SECTION PROPERTIES d 324.0 mm 16.0 mm t 154 mm r 0.587 rad o, 15482 mm2 Ах 7741 mm2 Ay 7741 mm2 Az 1.841E+08 mm4 ly Ιz 1.841E+08 mm4

MATERIAL						
fy	355.0	N/mm2				
γm	1.15	-				

3.682E+08 mm4

lх

MEMBER FORCES FOR OFF SHOR LIFT					
Fx	87.4	kN			
Fy	21.5	kN			
Fz	33.4	kN			
Mx	0.3	kNm			
My	53.1	kNm			
Mz	35.4	kNm			

STRE SS CALCULATION S AND UTILIZATION FOR OFF SHORE LIFTING ONLY							
	σx1	σby1	σbz1	τx1	τ y 1	τz1	σe1
Point 1	5.6	44.5	0.0	0.1	2.8	0.0	50.4
Point 2	5.6	0.0	29.6	0.1	0.0	4.3	36.1
Point 3	5.6	53	3.4	0.1	5	.1	59.7
Utilisation:							0.19

* Apply , $F_{HIsub} pprox$ 493 kN

MEMBER FORCES FOR IMPACT					
Fx	0.0	kN			
Fy	0.0	kN			
Fz	493.0	kN			
Mx	0.0	kNm			
My	0.0	kNm			
Mz	0.0	kNm			

STRE SS CAL	STRE SS CALCULATION S AND UTILIZATION FOR HORIZONTAL IMPACT ON LY							
	σx2	σby2	σbz2	τx2	τ y 2	τz2	σe2	
Point 1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Point 2	0.0	0.0	0.0	0.0	0.0	63.7	110.3	
Point 3	0.0	0	.0	0.0	6	3.7	110.3	
Utilisation:							0.36	

STRE SS CALCULATION S AND UTILIZATION FOR OFF SHORE LIFTING AND HORIZONTAL IMPACT							
	σx12	σby12	σbz12	τx12	τ y 12	τz12	σe
Point 1	5.6	44.5	0.0	0.1	2.8	0.0	50.4
Point 2	5.6	0.0	29.6	0.1	0.0	68.0	123.2
Point 3	5.6	53	3.4	0.1	6	8.8	133.2
Utilisation:							0.43

* According to DNV 2.7.3 section 3.6.2, the impact stress are combined with lifting stress

INPUT LOADS

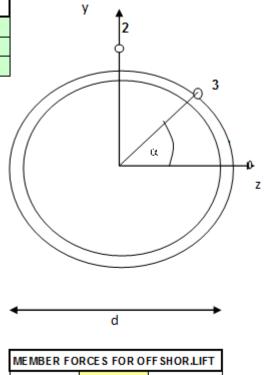
1.0 -End forces from Staad analysis for pump module offshore lift

🛄 Pump module offshore lifting.std - Beam End Force

Beam	L/C	Node	Axial Force kN	Shear-Y kN	Shear-Z kN	Torsion kNm	Moment-Y kNm	Moment-Z kNm
194	3	34	-79.208	21.461	33.414	-0.327	-13.691	7.568
		6	87.388	-21.461	-33.414	0.327	-53.138	35.354

2.0 -Horizontal impact loads

Refer attached calcaulations for horizontal impact loads during offshore lifting for pump module


 $F_{HIsub} \approx 493 \text{ kN}$ - To be applied on corner posts , bottom beams and intermediate beams

 $F_{HIRsub} \approx 296 kN$ -To be applied on end/side structure and top beams

GENERAL	
Beam No.	202
Descrip.	Top beam
Analysis:	Offshore lift and horizon.impact

SECTION PROPERTIES					
d	324.0	mm			
t	16.0	mm			
r	154	mm			
α	1.524	rad			
Ax	15482	mm2			
Ay	7741	mm2			
Az	7741	mm2			
ly	1.841E+08	mm4			
Iz	1.841E+08	mm4			
lx	3.682E+08	mm4			

MATERIAL						
fy	355.0	N/mm2				
γm	1.15	-				

MEMBER FORCES FOR OFF SHOR.LIFT					
Fx	159.7	kN			
Fy	8.2	kN			
Fz	0.0	kN			
Mx	0.0	kNm			
My	0.6	kNm			
Mz	12.1	kNm			

STRE SS CALCULATION S AND UTILIZATION FOR OFF SHORE LIFTING ONLY							
	σx1	σx1 σby1 σbz1 τx1 τy1 τz1					
Point 1	10.3	0.5	0.0	0.0	1.1	0.0	10.9
Point 2	10.3	0.0	10.1	0.0	0.0	0.0	20.4
Point 3	Point 3 10.3 10.1 0.0 1.1						20.5
Utilization							0.07

* Apply, $F_{HIRsub} \approx 296 kN$

MEMBER FORCES FOR IMPACT						
Fx	0.0	kN				
Fy	0.0	kN				
Fz	296.0	kN				
Mx	0.0	kNm				
My	0.0	kNm				
Mz	0.0	kNm				

STRE SS CALCULATION S AND UTILIZATION FOR HORIZON TAL IMPACT ON LY								
	σx2	σx2 σby2 σbz2 τx2 τy2 τz2						
Point 1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Point 2	0.0	0.0	0.0	0.0	0.0	38.2	66.2	
Point 3	Point 3 0.0 0.0 0.0 38.2						66.2	
Utilization:							0.21	

STRE SS CALCULATION S AND UTILIZATION FOR OFF SHORE LIFTING AND HORIZON TAL IMPACT							
	σx12 σby12 σbz12 τx12 τy12 τz12						σe
Point 1	10.3	0.5	0.0	0.0	1.1	0.0	10.9
Point 2	10.3	0.0	10.1	0.0	0.0	38.2	69.3
Point 3	Point 3 10.3 10.1 0.0 39.3						71.1
Utilization:							0.23

* According to DNV 2.7.3 section 3.6.2 , the impact stress are combined with lifting stress

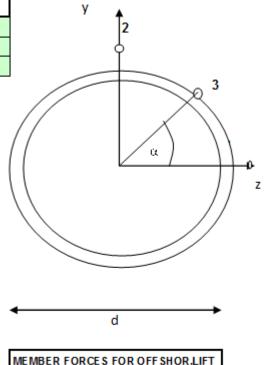
INPUT LOADS

1.0 -End forces from Staad analysis for pump module offshore lift

🛄 Pum	Pump module offshore lifting.std - Beam End Force							
Beam	L/C	Node	Axial Force kN	Shear-Y kN	Shear-Z kN	Torsion kNm	Moment-Y kNm	Moment-Z kNm
202	3	8	159.724	8.180	0.000	0.000	-0.561	-12.105
		6	-159.724	8.180	-0.000	-0.000	0.561	12.105

2.0 -Horizontal impact loads

Refer attached calcaulations for horizontal impact loads during offshore lifting for pump module


 $F_{HIsub} \approx 493 \text{ kN}$ - To be applied on corner posts , bottom beams and intermediate beams

F_{HIRsub} ≈ 296*kN-To be applied on end/side structure and top beams*

GENERAL	
Beam No.	222
Descrip.	Intermidate beam
Analysis:	Offshore lift and horizon.impact

SECTION I	SECTION PROPERTIES					
d	324.0	mm				
t	16.0	mm				
r	154	mm				
α	1.558	rad				
Ax	15482	mm2				
Ay	7741	mm2				
Az	7741	mm2				
ly	1.841E+08	mm4				
Iz	1.841E+08	mm4				
lx	3.682E+08	mm4				

MATERIAL						
fy	355.0	N/mm2				
γm	1.15	-				

MEMBER FORCES FOR OFF SHOR.LIFT					
Fx	34.3	kN			
Fy	10.8	kN			
Fz	0.0	kN			
Mx	0.0	kNm			
My	0.1	kNm			
Mz	10.2	kNm			

STRE SS CALCULATION S AND UTILIZATION FOR OFF SHORE LIFTING ONLY							
	σx1	σx1 σby1 σbz1 τx1 τy1 τz1					
Point 1	2.2	0.1	0.0	0.0	1.4	0.0	3.4
Point 2	2.2	0.0	8.6	0.0	0.0	0.0	10.8
Point 3	2.2	8	.6	0.0	1	.4	11.1
Utilization:	Utilization:					0.04	

* Apply , $F_{HIsub} pprox$ 493 kN

MEMBER FORCES FOR IMPACT						
Fx	0.0	kN				
Fy	0.0	kN				
Fz	493.0	kN				
Mx	0.0	kNm				
My	0.0	kNm				
Mz	0.0	kNm				

STRE SS CALCULATION S AND UTILIZATION FOR HORIZON TAL IMPACT ON LY							
	σx2	σby2	σbz2	τx2	τ y 2	τz2	σe2
Point 1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Point 2	0.0	0.0	0.0	0.0	0.0	63.7	110.3
Point 3	0.0	0	.0	0.0	63	3.7	110.3
Utilization	Utilization:						

STRE SS CALCULATION S AND UTILIZATION FOR OFF SHORE LIFTING AND HORIZON TAL IMPACT							
	σx12	σby12	σbz12	τx12	τ y 12	τz12	σe
Point 1	2.2	0.1	0.0	0.0	1.4	0.0	3.4
Point 2	2.2	0.0	8.6	0.0	0.0	63.7	110.8
Point 3	2.2	8	.6	0.0	6	5.1	113.2
Utilization:						0.37	

* According to DNV 2.7.3 section 3.6.2 , the impact stress are combined with lifting stress

INPUT LOADS

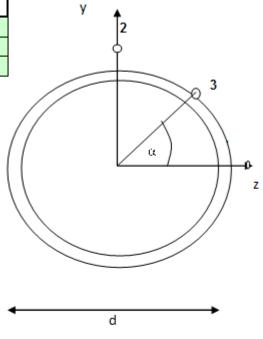
1.0 -End forces from Staad analysis for pump module offshore lift

🛄 Pump module offshore lifting.std - Beam End Force

Beam	L/C	Node	Axial Force kN	Shear-Y kN	Shear-Z kN	Torsion kNm	Moment-Y kNm	Moment-Z kNm
222	3	46	-34.340	-2.623	-0.000	-0.000	-0.136	-3.184
		34	34.340	10.803	0.000	0.000	0.136	-10.241

2.0 -Horizontal impact loads

Refer attached calcaulations for horizontal impact loads during offshore lifting for pump module


 $F_{HIsub} \approx 493 \text{ kN}$ - To be applied on corner posts , bottom beams and intermediate beams

 $F_{HIRsub} \approx 296 kN$ - To be applied on end/side structure and top beams

GENERAL	
Beam No.	231
Descrip.	Brace
Analysis:	Offshore lifting

SECTION PROPERTIES						
d	114.0	mm				
t	6.0	mm				
r	54	mm				
α	0.785	rad				
Ax	2036	mm2				
Ay	1018	mm2				
Az	1018	mm2				
ly	2.977E+06	mm4				
Iz	2.977E+06	mm4				
lx	5.955E+06	mm4				

MATERIAL						
fy	355.0	N/mm2				
γm	1.15	-				

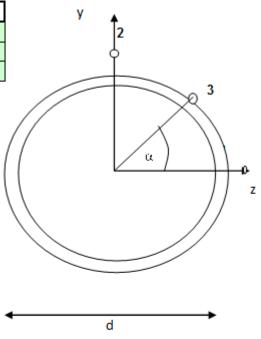
MEMBER FORCES FOR OFF SHOR.LIFT						
Fx	7.5	kN				
Fy	0.4	kN				
Fz	0.0	kN				
Mx	0.0	kNm				
My	0.0	kNm				
Mz	0.0	kNm				

STRE SS CALCULATION S AND UTILIZATION FOR OFF SHORE LIFTING ON LY (Braces take no impact)							
	σx1	σby1	σbz1	τx1	τ y 1	τz1	σe1
Point 1	3.7	0.0	0.0	0.0	0.4	0.0	3.8
Point 2	3.7	0.0	0.0	0.0	0.0	0.0	3.7
Point 3	3.7	0	.0	0.0	0	.4	3.8
Utilisation:						0.01	

INPUT LOADS

1.0 -End forces from Staad analysis for pump module offshore lift

- Pump module onshore intrigista - beam end Porce								
Beam	L/C	Node	Axial Force kN	Shear-Y kN	Shear-Z kN	Torsion kNm	Moment-Y kNm	Moment-Z kNm
231	3	5	6.418	0.424	-0.000	0.000	0.000	0.000
		47	-7.548	0.424	0.000	0.000	0.000	0.000


🔜 Pump module offshore lifting.std - Beam End Force

Appendix C₃: Von Mises yield criteria for transportation-Case A: Pump module

GENERAL	
Beam No.	121
Descrip.	Bottom beam
Analysis:	Transport analysis

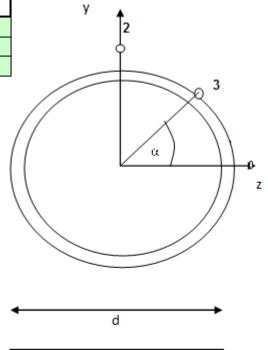
SECTION PROPERTIES						
d	324.0	mm				
t	16.0	mm				
r	154	mm				
α	1.566	rad				
Ax	15482	mm2				
Ау	7741	mm2				
Az	7741	mm2				
ly	1.841E+08	mm4				
Iz	1.841E+08	mm4				
lx	3.682E+08	mm4				

MATERIAL					
fy	355.0	N/mm2			
γm	1.15	-			

MEMBER FORCES FOR TRANSPORT					
Fx	4.4	kN			
Fy	104.7	kN			
Fz	0.4	kN			
Mx	0.0	kNm			
My	0.9	kNm			
Mz	201.2	kNm			

STRE SS CALCULATION S AND UTILIZATION FOR TRANSPORT ANALYSIS							
	σx1	σby1	σbz1	τx1	τy1	τz1	σe1
Point 1	0.3	0.7	0.0	0.0	13.5	0.0	23.5
Point 2	0.3	0.0	168.3	0.0	0.0	0.1	168.6
Point 3	0.3	16	8.3	0.0	13	3.5	170.2
Utilisation:					0.55		

INPUT LOADS


1.0 -End forces from Staad analysis for pump module transport analysis

🛄 Pun	🛄 Pump transport.std - Beam End Force							
Beam	L/C	Node	Axial Force kN	Shear-Y kN	Shear-Z kN	Torsion kNm	Moment-Y kNm	Moment-Z kNm
121	33	1	-2.408	-92.681	0.437	0.002	-0.873	-193.688
		3	-4.409	104.741	-0.437	-0.002	-0.874	-201.156

GENERAL	
Beam No.	148
Descrip.	Corner post
Analysis:	Transport analysis

SECTION PROPERTIES					
d	324.0	mm			
t	16.0	mm			
r	154	mm			
α	0.011	rad			
Ax	15482	mm2			
Ay	7741	mm2			
Az	7741	mm2			
ly	1.841E+08	mm4			
Iz	1.841E+08	mm4			
lx	3.682E+08	mm4			

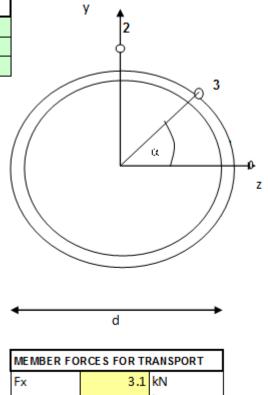
MATERIAL				
fy	355.0	N/mm2		
γm	1.15	-		

MEMBER FORCES FOR TRANSPORT				
Fx	441.6	kN		
Fy	1.1	kN		
Fz	124.0	kN		
Mx	0.0	kNm		
My	231.3	kNm		
Mz	2.5	kNm		

STRE SS CALCULATION S AND UTILIZATION FOR TRANSPORT ANALYSIS							
	σx1	σby1	σbz1	τx1	τy1	τz1	σe1
Point 1	28.5	193.5	0.0	0.0	0.1	0.0	222.0
Point 2	28.5	0.0	2.1	0.0	0.0	16.0	41.3
Point 3	28.5	193	3.5	0.0	10	6.0	223.8
Utilisation:					0.72		

INPUT LOADS

1.0 -End forces from Staad analysis for pump module transport analysis


🛄 Pum	Pump transport.std - Beam End Force							
Beam	L/C	Node	Axial Force kN	Shear-Y kN	Shear-Z kN	Torsion kNm	Moment-Y kNm	Moment-Z kNm
148	35	19	441.635	-1.105	124.044	-0.003	-192.401	-1.379
		33	-431.082	1.105	-118.080	0.003	-231.316	-2.489

GENERAL	
Beam No.	154
Descrip.	Intermidate beam
Analysis:	Transport analysis

GENERAL	
Beam No.	154
Descrip.	Intermidate beam
Analysis:	Transport analysis
-	-

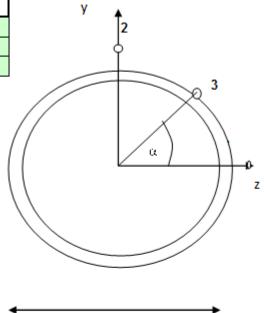
SECTION PROPERTIES				
d	324.0	mm		
t	16.0	mm		
r	154	mm		
α	1.564	rad		
Ax	15482	mm2		
Ay	7741	mm2		
Az	7741	mm2		
ly	1.841E+08	mm4		
Iz	1.841E+08	mm4		
lx	3.682E+08	mm4		

MATERIAL					
fy	355.0	N/mm2			
γm	1.15	-			

MEMBER FORCES FOR TRANSPORT					
Fx	3.1	kN			
Fy	182.5	kN			
Fz	1.2	kN			
Mx	0.1	kNm			
My	1.8	kNm			
Mz	269.0	kNm			

STRE SS CALCULATION S AND UTILIZATION FOR TRANSPORT ANALYSIS							
	σx1	σby1	σbz1	τx1	τy1	τz1	σe1
Point 1	0.2	1.5	0.0	0.0	23.6	0.0	40.9
Point 2	0.2	0.0	225.0	0.0	0.0	0.2	225.2
Point 3	0.2	22	5.0	0.0	23	3.6	228.9
Utilisation	Utilisation:					0.74	

INPUT LOADS


1.0 -End forces from Staad analysis for pump module transport analysis

🛄 Pun	🛄 Pump transport.std - Beam End Force							
Beam	L/C	Node	Axial Force kN	Shear-Y kN	Shear-Z kN	Torsion kNm	Moment-Y kNm	Moment-Z kNm
154	29	20	-2.007	-173.437	1.185	-0.051	-1.777	-264.891
		21	-3.105	182.482	-1.185	0.051	-1.776	-268.988

GENERAL	
Beam No.	201
Descrip.	Top beam
Analysis:	Transport analysis

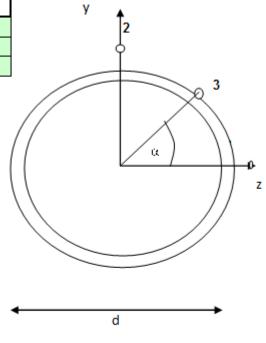
SECTION PROPERTIES				
d	324.0	mm		
t	16.0	mm		
r	154	mm		
α	1.561	rad		
Ax	15482	mm2		
Ay	7741	mm2		
Az	7741	mm2		
ly	1.841E+08	mm4		
Iz	1.841E+08	mm4		
lx	3.682E+08	mm4		

MATERIAL					
fy	355.0	N/mm2			
γm	1.15	-			

MEMBER FORCES FOR TRANSPORT					
Fx	3.7	kN			
Fy	16.1	kN			
Fz	0.1	kN			
Mx	0.1	kNm			
My	0.2	kNm			
Mz	19.4	kNm			

STRE SS CALCULATION S AND UTILIZATION FOR TRANSPORT ANALYSIS							
	σx1	σby1	σbz1	τx1	τ y 1	τz1	σe1
Point 1	0.2	0.2	0.0	0.0	2.1	0.0	3.7
Point 2	0.2	0.0	16.2	0.0	0.0	0.0	16.4
Point 3	0.2	16	.2	0.0	2	.1	16.8
Utilisation:					0.05		

INPUT LOADS


1.0 -End forces from Staad analysis for pump module transport analysis

🛄 Pum	Pump transport.std - Beam End Force							
Beam	L/C	Node	Axial Force kN	Shear-Y kN	Shear-Z kN	Torsion kNm	Moment-Y kNm	Moment-Z kNm
201	29	7	-3.660	-7.102	0.105	-0.104	-0.180	-15.514
		8	-1.452	16.147	-0.105	0.104	-0.135	-19.360

GENERAL	
Beam No.	216
Descrip.	Brace
Analysis:	Transport analysis

SECTION PROPERTIES		
d	114.0	mm
t	6.0	mm
r	54	mm
α	0.785	rad
Ах	2036	mm2
Ау	1018	mm2
Az	1018	mm2
ly	2.977E+06	mm4
Iz	2.977E+06	mm4
lx	5.955E+06	mm4

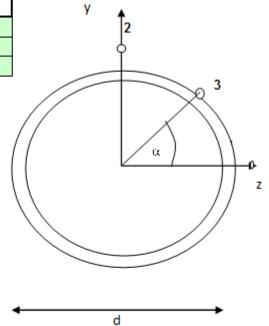
MATERIAL				
fy	355.0	N/mm2		
γm	1.15	-		

MEMBER FORCES FOR TRANSPORT			
Fx	208.0	kN	
Fy	0.3	kN	
Fz	0.0	kN	
Mx	0.0	kNm	
My	0.0	kNm	
Mz	0.0	kNm	

STRE SS CALCULATION S AND UTILIZATION FOR TRANSPORT ANALYSIS							
	σx1	σby1	σbz1	τx1	τy1	τz1	σe1
Point 1	102.2	0.0	0.0	0.0	0.3	0.0	102.2
Point 2	102.2	0.0	0.0	0.0	0.0	0.0	102.2
Point 3	102.2	0.0	0	0.0	0.	.3	102.2
Utilisation:							0.33

INPUT LOADS

1.0 -End forces from Staad analysis for pump module transport analysis


🛄 Pum	🛄 Pump transport.std - Beam End Force							
Beam	L/C	Node	Axial Force kN	Shear-Y kN	Shear-Z kN	Torsion kNm	Moment-Y kNm	Moment-Z kNm
216	34	5	207.668	-0.290	0.000	0.000	0.000	0.000
		39	-208.030	-0.290	0.000	0.000	0.000	0.000

Appendix C₄: Von Mises yield criteria for air lifting and horizontal impact-Case B:Cooler module

GENERAL	
Beam No.	9
Descrip.	Corner post
Analysis:	Air lift and horizontal impact
	•

SECTION PROPERTIES		
d	273.0	mm
t	16.0	mm
r	128.5	mm
α	1.061	rad
Ax	12918	mm2
Ay	6459	mm2
Az	6459	mm2
ly	1.071E+08	mm4
Iz	1.071E+08	mm4
lx	2.141E+08	mm4

MATERIAL			
fy	355.0	N/mm2	
γm	1.15	-	

MEMBER FORCES FOR AIR LIFT			
Fx	96.8	kN	
Fy	14.5	kN	
Fz	8.5	kN	
Mx	0.6	kNm	
My	30.0	kNm	
Mz	53.7	kNm	

STRE SS CALCULATION S AND UTILIZATION FOR AIR LIFTING ONLY								
	σx1	σby1	σbz1	τx1	τ y 1	τz1	σe1	
Point 1	7.5	36.0	0.0	0.4	2.2	0.0	43.8	
Point 2	7.5	0.0	64.5	0.4	0.0	1.3	72.0	
Point 3	7.5	73	.8	0.4	2	.6	81.5	
Utilization:	Utilization:							

*Ap	ply,	F_{HI}	\approx	81	kN	

MEMBER FORCES FOR IMPACT					
Fx	0.0	kN			
Fy	0.0	kN			
Fz	81.0	kN			
Mx	0.0	kNm			
My	0.0	kNm			
Mz	0.0	kNm			

STRE SS CALCULATION S AND UTILIZATION FOR HORIZON TAL IMPACT ON LY							
	σx2	σby2	σbz2	τx2	τ y 2	τ z 2	σe2
Point 1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Point 2	0.0	0.0	0.0	0.0	0.0	12.5	21.7
Point 3	0.0	0	.0	0.0	12	2.5	21.7
Utilization:	Utilization:						

STRE SS CAL	STRE SS CALCULATION S AND UTILIZATION FOR AIR LIFTING AND HORIZONTAL IMPACT								
	σx12	σby12	σbz12	τx12	τ y 12	τz12	σe		
Point 1	7.5	36.0	0.0	0.4	2.2	0.0	43.8		
Point 2	7.5	0.0	64.5	0.4	0.0	13.9	76.1		
Point 3	7.5	73	8.8	0.4	1!	5.1	85.7		
Utilization	Utilization:								

INPUT LOADS

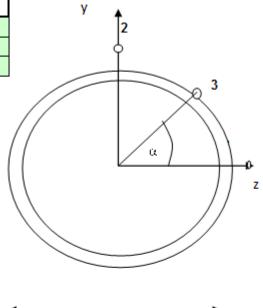
1.0 -End forces from Staad analysis for cooler module air lift

Air lift cooler.std - Beam End	Force
--------------------------------	-------

Beam	L/C	Node	Axial Force kN	Shear-Y kN	Shear-Z kN	Torsion kNm	Moment-Y kNm	Moment-Z kNm
9	3	1	-79.602	-14.506	8.519	0.633	-30.014	-47.834
		5	96.835	14.506	-8.519	-0.633	-29.622	-53.710

2.0 -Horizontal impact loads

Refer attached calcaulations for horizontal impact loads during air lifting for cooler module


 $F_{HI} \approx 81~kN$ -To be applied on corner posts , bottom beams and intermediate beams during air lift of cooler module

 $F_{HIR} \approx$ 49 kN -To be applied on end/side structure and top beams during air lift of cooler module

GENERAL	
Beam No.	17
Descrip.	Middel corner post
Analysis:	Air lift and horizontal impact

SECTION PROPERTIES					
d	273.0	mm			
t	16.0	mm			
r	128.5	mm			
α	1.571	rad			
Ax	12918	mm2			
Ay	6459	mm2			
Az	6459	mm2			
ly	1.071E+08	mm4			
Iz	1.071E+08	mm4			
lx	2.141E+08	mm4			

MATERIAL						
fy	355.0	N/mm2				
γm	1.15	-				

MEMBER FORCES FOR AIR LIFT					
Fx	15.7	kN			
Fy	16.6	kN			
Fz	0.0	kN			
Mx	0.0	kNm			
My	0.0	kNm			
Mz	72.2	kNm			

STRE SS CALCULATION S AND UTILIZATION FOR AIR LIFTING ONLY								
	σx1	σby1	σbz1	τx1	τy1	τz1	σe1	
Point 1	1.2	0.0	0.0	0.0	2.6	0.0	4.6	
Point 2	1.2	0.0	86.6	0.0	0.0	0.0	87.8	
Point 3	1.2	86	86.6		2	.6	87.9	
Utilization:	Utilization:							

$*$ Apply , $F_{HI} pprox$ 81 kN	*A	pply,	Fur	\approx	81	kN	
------------------------------------	----	-------	-----	-----------	----	----	--

MEMBER FORCES FOR IMPACT					
Fx	0.0	kN			
Fy	0.0	kN			
Fz	81.0	kN			
Mx	0.0	kNm			
My	0.0	kNm			
Mz	0.0	kNm			

STRE SS CAL	CULATION S AND	UTILIZATION I	FOR HORIZON	ITAL IMPACT	ONLY		
	σx2	σby2	σbz2	τx2	τ y 2	τ z 2	σe2
Point 1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Point 2	0.0	0.0	0.0	0.0	0.0	12.5	21.7
Point 3	0.0	0	.0	0.0	12	2.5	21.7
Utilization:							0.07

* According to DNV 2.7.3 section 3.6.2, the impact stress are combined with lifting stress

STRE SS CALCULATION S AND UTILIZATION FOR AIR LIFTING AND HORIZONTAL IMPACT							
	σx12	σby12	σbz12	τx12	τ y 12	τz12	σe
Point 1	1.2	0.0	0.0	0.0	2.6	0.0	4.6
Point 2	1.2	0.0	86.6	0.0	0.0	12.5	90.5
Point 3	1.2	86	6.6	0.0	1!	5.1	91.7
Utilization							0.30

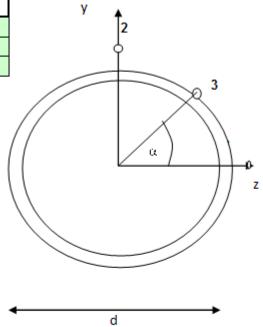
INPUT LOADS

1.0 -End forces from Staad analysis for cooler module air lift

🧰 Air lift cooler.std - Beam End Force

Beam	L/C	Node	Axial Force kN	Shear-Y kN	Shear-Z kN	Torsion kNm	Moment-Y kNm	Moment-Z kNm
17	3	10	15.730	-16.616	-0.002	0.015	0.012	-72.166
		9	1.504	16.616	0.002	-0.015	0.005	-44.145

2.0 -Horizontal impact loads


Refer attached calcaulations for horizontal impact loads during air lifting for cooler module

 $F_{HI} \approx 81 \ kN$ -To be applied on corner posts, bottom beams and intermediate beams $F_{HIR} \approx 49 \ kN$ -To be applied on end/side structure and top beams

GENERAL	
Beam No.	24
Descrip.	Top beam
Analysis:	Air lift and horizontal impact

SECTION PROPERTIES					
d	273.0	mm			
t	16.0	mm			
r	128.5	mm			
α	1.143	rad			
Ax	12918	mm2			
Ау	6459	mm2			
Az	6459	mm2			
ly	1.071E+08	mm4			
Iz	1.071E+08	mm4			
lx	2.141E+08	mm4			

MATERIAL					
fy	355.0	N/mm2			
γm	1.15	-			

MEMBER FORCES FOR AIR LIFT					
Fx	670.1	kN			
Fy	8.6	kN			
Fz	6.4	kN			
Mx	13.7	kNm			
My	11.5	kNm			
Mz	25.3	kNm			

STRE SS CAL	CULATION S AND U	JTILIZATION I	FOR AIR LIFTI	NG ONLY			
	σx1	σby1	σbz1	τx1	τy1	τz1	σe1
Point 1	51.9	13.9	0.0	8.2	1.3	0.0	67.8
Point 2	51.9	0.0	30.4	8.2	0.0	1.0	83.8
Point 3	51.9	33	.4	8.2	1	.7	87.0
Utilization:	·						0.28

		E.	\sim	40	1.37	
*A	pply,	F HIR	\sim	49	KIV	

MEMBER FORCES FOR IMPACT					
Fx	0.0	kN			
Fy	0.0	kN			
Fz	49.0	kN			
Mx	0.0	kNm			
My	0.0	kNm			
Mz	0.0	kNm			

STRE SS CALCULATION S AND UTILIZATION FOR HORIZONTAL IMPACT ON LY							
	σx2 σby2 σbz2 τx2 τy2 τz2 σe2						
Point 1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Point 2	0.0	0.0	0.0	0.0	0.0	7.6	13.1
Point 3	0.0	0	.0	0.0	7	.6	13.1
Utilization	Utilization:						0.04

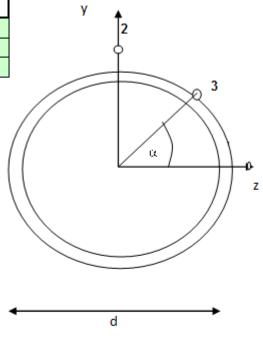
STRE SS CAL	STRE SS CALCULATION S AND UTILIZATION FOR AIR LIFTING AND HORIZONTAL IMPACT							
σx12 σby12 σbz12 τx12 τy12 τz12							σe	
Point 1	51.9	13.9	0.0	8.2	1.3	0.0	67.8	
Point 2	51.9	0.0	30.4	8.2	0.0	8.6	87.3	
Point 3 51.9 33.4 8.2 9.2						90.5		
Utilization:	Utilization:						0.29	

INPUT LOADS

1.0 -End forces from Staad analysis for cooler module air lift

Beam	L/C	Node	Axial Force kN	Shear-Y kN	Shear-Z kN	Torsion kNm	Moment-Y kNm	Moment-Z kNm
24	3	14	670.138	-1.243	6.362	13.688	-7.546	-25.324
		7	-670.138	8.629	-6.362	-13.688	-11.542	10.515

2.0 -Horizontal impact loads


Refer attached calcaulations for horizontal impact loads during air lifting for cooler module

 $F_{HI} \approx 81 \ kN$ -To be applied on corner posts, bottom beams and intermediate beams $F_{HIR} \approx 49 \ kN$ -To be applied on end/side structure and top beams

GENERAL	
Beam No.	27
Descrip.	Bottom beam
Analysis:	Air lift and horizontal impact

SECTION I	SECTION PROPERTIES				
d	273.0	mm			
t	16.0	mm			
r	128.5	mm			
α	1.547	rad			
Ax	12918	mm2			
Ау	6459	mm2			
Az	6459	mm2			
ly	1.071E+08	mm4			
Iz	1.071E+08	mm4			
lx	2.141E+08	mm4			

MATERIAL					
fy	355.0	N/mm2			
γm	1.15	-			

MEMBER FORCES FOR AIR LIFT					
Fx	184.6	kN			
Fy	44.1	kN			
Fz	0.0	kN			
Mx	0.0	kNm			
My	0.3	kNm			
Mz	12.5	kNm			

STRE SS CALCULATION S AND UTILIZATION FOR AIR LIFTING ONLY							
σx1 σby1 σbz1 τx1 τy1 τz1 σe1							
Point 1	14.3	0.4	0.0	0.0	6.8	0.0	18.8
Point 2	14.3	0.0	15.0	0.0	0.0	0.0	29.3
Point 3	14.3	15	o. 0	0.0	6	.8	31.6
Utilization	Utilization:						0.10

* A	pply	. F	\approx	81	kN	
~ ~	ppey	• * HI		U 1	n	

MEMBER FORCES FOR IMPACT					
Fx	0.0	kN			
Fy	0.0	kN			
Fz	81.0	kN			
Mx	0.0	kNm			
My	0.0	kNm			
Mz	0.0	kNm			

STRE SS CALCULATION S AND UTILIZATION FOR HORIZONTAL IMPACT ON LY								
	σx2	σby2	σbz2	τx2	τ y 2	τ z 2	σe2	
Point 1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Point 2	0.0	0.0	0.0	0.0	0.0	12.5	21.7	
Point 3	0.0	0	.0	0.0	12	2.5	21.7	
Utilization:							0.07	

STRE SS CALCULATION S AND UTILIZATION FOR AIR LIFTING AND HORIZONTAL IMPACT							
	σx12	σby12	σbz12	τx12	τ y 12	τz12	σe
Point 1	14.3	0.4	0.0	0.0	6.8	0.0	18.8
Point 2	14.3	0.0	15.0	0.0	0.0	12.5	36.5
Point 3	14.3	15	5.0	0.0	19	9.4	44.6
Utilization:	Utilization:						

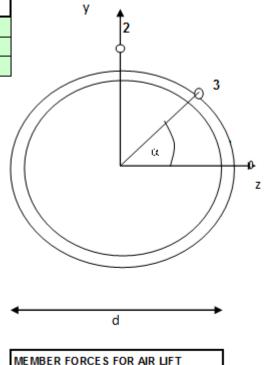
INPUT LOADS

1.0 -End forces from Staad analysis for cooler module air lift

	Air	lift	coo	ler.std	-	Beam	End	Force
--	-----	------	-----	---------	---	------	-----	-------

Beam	L/C	Node	Axial Force kN	Shear-Y kN	Shear-Z kN	Torsion kNm	Moment-Y kNm	Moment-Z kNm
27	3	17	-184.615	44.063	0.006	-0.043	-0.296	12.494
		18	184.615	43.795	-0.006	0.043	0.278	-12.091

2.0 -Horizontal impact loads


Refer attached calcaulations for horizontal impact loads during air lifting for cooler module

 $F_{HI} \approx 81 \ kN$ -To be applied on corner posts, bottom beams and intermediate beams $F_{HIR} \approx 49 \ kN$ -To be applied on end/side structure and top beams

GENERAL	
Beam No.	35
Descrip.	Brace
Analysis:	Air lifting

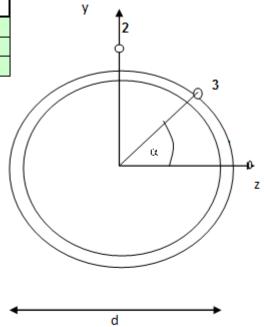
SECTION I	SECTION PROPERTIES					
d	114.0	mm				
t	6.0	mm				
r	54	mm				
α	0.785	rad				
Ax	2036	mm2				
Ау	1018	mm2				
Az	1018	mm2				
ly	2.977E+06	mm4				
Iz	2.977E+06	mm4				
lx	5.955E+06	mm4				

MATERIAL						
fy	355.0	N/mm2				
γm	1.15	-				

MEMBER FORCES FOR AIR LIFT						
Fx	319.8	kN				
Fy	0.6	kN				
Fz	0.0	kN				
Mx	0.0	kNm				
My	0.0	kNm				
Mz	0.0	kNm				

STRE SS CALCULATION S AND UTILIZATION FOR AIR LIFTING ON LY (Braces take no impact)								
	σx1	σby1	σbz1	τx1	τ y 1	τz1	σe1	
Point 1	157.1	0.0	0.0	0.0	0.6	0.0	157.1	
Point 2	157.1	0.0	0.0	0.0	0.0	0.0	157.1	
Point 3	157.1	0	0	0.0	0	.6	157.1	
Utilis ation:							0.51	

INPUT LOADS


1.0 -End forces from Staad analysis for cooler module air lift

🛄 Air I	🛄 Air lift cooler.std - Beam End Force								
Beam	L/C	Node	Axial Force kN	Shear-Y kN	Shear-Z kN	Torsion kNm	Moment-Y kNm	Moment-Z kNm	
35	3	6	-319.809	0.611	0.000	0.000	0.000	0.000	
		17	316.957	0.611	-0.000	0.000	0.000	0.000	

GENERAL	
Beam No.	44
Descrip.	Intermidate beam
Analysis:	Air lift and horizontal impact

SECTION I	SECTION PROPERTIES					
d	273.0	mm				
t	16.0	mm				
r	128.5	mm				
α	1.525	rad				
Ax	12918	mm2				
Ay	6459	mm2				
Az	6459	mm2				
ly	1.071E+08	mm4				
Iz	1.071E+08	mm4				
lx	2.141E+08	mm4				

MATERIAL		
fy	355.0	N/mm2
γm	1.15	-

MEMBER FORCES FOR AIR LIFT					
Fx	55.8	kN			
Fy	3.8	kN			
Fz	0.0	kN			
Mx	0.0	kNm			
My	0.2	kNm			
Mz	3.5	kNm			

STRE SS CALCULATION S AND UTILIZATION FOR AIR LIFTING ONLY							
	σx1	σby1	σbz1	τx1	τ y 1	τz1	σe1
Point 1	4.3	0.2	0.0	0.0	0.6	0.0	4.6
Point 2	4.3	0.0	4.1	0.0	0.0	0.0	8.5
Point 3	4.3	4	.1	0.0	0	.6	8.5
Utilization	:						0.03

*	A	ppl	lv.	, F _{HI}	\approx	81	kN	
-		PP'	· • •	• HI		~	1 a a	

MEMBER FORCES FOR IMPACT					
Fx	0.0	kN			
Fy	0.0	kN			
Fz	81.0	kN			
Mx	0.0	kNm			
My	0.0	kNm			
Mz	0.0	kNm			

STRE SS CALCULATION S AND UTILIZATION FOR HORIZONTAL IMPACT ON LY							
	σx2	σby2	σbz2	τx2	τ y 2	τ z 2	σe2
Point 1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Point 2	0.0	0.0	0.0	0.0	0.0	12.5	21.7
Point 3	0.0	0	.0	0.0	12	2.5	21.7
Utilization:						0.07	

STRE SS CALCULATION S AND UTILIZATION FOR AIR LIFTING AND HORIZONTAL IMPACT							
	σx12	σby12	σbz12	τx12	τ y 12	τz12	σe
Point 1	4.3	0.2	0.0	0.0	0.6	0.0	4.6
Point 2	4.3	0.0	4.1	0.0	0.0	12.5	23.3
Point 3	4.3	4	.1	0.0	1:	3.1	24.3
Utilization	Utilization:						0.08

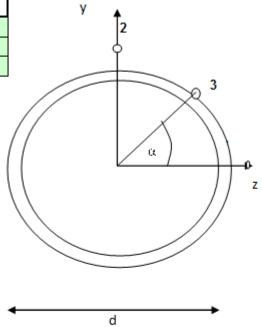
INPUT LOADS

1.0 -End forces from Staad analysis for cooler module air lift

		Air	lift	coole	er.std	- Beam	n End	Force
--	--	-----	------	-------	--------	--------	-------	-------

Beam	L/C	Node	Axial Force kN	Shear-Y kN	Shear-Z kN	Torsion kNm	Moment-Y kNm	Moment-Z kNm
44	3	23	55.789	3.842	-0.008	-0.020	-0.134	3.450
		24	-55.789	3.544	0.008	0.020	0.158	-3.002

2.0 -Horizontal impact loads


Refer attached calcaulations for horizontal impact loads during air lifting for cooler module

 $F_{HI} \approx 81 \ kN$ -To be applied on corner posts, bottom beams and intermediate beams $F_{HIR} \approx 49 \ kN$ -To be applied on end/side structure and top beams

GENERAL	
Beam No.	80
Descrip.	Bottom middel beam
Analysis:	Air lifting

SECTION PROPERTIES					
d	273.0	mm			
t	16.0	mm			
r	128.5	mm			
α	1.563	rad			
Ax	12918	mm2			
Ау	6459	mm2			
Az	6459	mm2			
ly	1.071E+08	mm4			
Iz	1.071E+08	mm4			
lx	2.141E+08	mm4			

MATERIAL						
fy	355.0	N/mm2				
γm	1.15	-				

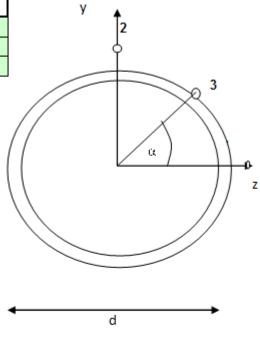
MEMBER FORCES FOR AIR LIFT							
Fx 21.7 kN							
Fy	159.1	kN					
Fz	0.9	kN					
Mx	18.9	kNm					
My	1.3	kNm					
Mz	157.5	kNm					

STRE SS CALCULATION S AND UTILIZATION FOR AIR LIFTING ONLY (Bot. mid.beam takes no impact)							
	σx1	σby1	σbz1	τx1	τy1	τz1	σe1
Point 1	1.7	1.6	0.0	11.4	24.6	0.0	62.4
Point 2	1.7	0.0	189.1	11.4	0.0	0.1	191.8
Point 3	1.7	18	9.1	11.4	24	4.6	200.7
Utilization:							0.65

INPUT LOADS

1.0 -End forces from Staad analysis for cooler module air lift

🛄 Air lift cooler.std - Beam End Force


Beam	L/C	Node	Axial Force kN	Shear-Y kN	Shear-Z kN	Torsion kNm	Moment-Y kNm	Moment-Z kNm
80	3	20	-21.661	159.099	0.908	18.930	-0.965	109.570
		31	21.661	-49.480	-0.908	-18.930	-1.306	157.541

Appendix C₅: Von Mises yield criteria for offshore lifting and horizontal impact-Case B:Cooler module

GENERAL	
Beam No.	9
Descrip.	Corner post
Analysis:	Offshore lift and horizon.impact

SECTION	SECTION PROPERTIES						
d	273.0	mm					
t	16.0	mm					
r	128.5	mm					
α	1.061	rad					
Ax	12918	mm2					
Ау	6459	mm2					
Az	6459	mm2					
ly	1.071E+08	mm4					
Iz	1.071E+08	mm4					
lx	2.141E+08	mm4					

MATERIAL							
fy	355.0	N/mm2					
γm	1.15	-					

MEMBER FO	RCES FOR OF	FF SHOR.LIFT
Fx	134.3	kN
Fy	20.1	kN
Fz	11.8	kN
Mx	0.9	kNm
My	41.6	kNm
Mz	74.5	kNm

STRE SS CALCULATION S AND UTILIZATION FOR OFF SHORE LIFTING ONLY								
	σx1 σby1 σbz1 τx1 τy1 τz1 σe							
Point 1	10.4	50.0	0.0	0.5	3.1	0.0	60.7	
Point 2	10.4	0.0	89.4	0.5	0.0	1.8	99.9	
Point 3	10.4	10	2.4	0.5	3	.6	113.0	
Utilis ation:							0.37	

* Apply , $F_{HIsub} pprox$ 56 kN

MEMBER FORCES FOR IMPACT							
Fx	0.0	kN					
Fy	0.0	kN					
Fz	56.0	kN					
Mx	0.0	kNm					
My	0.0	kNm					
Mz	0.0	kNm					

STRE SS CALCULATION S AND UTILIZATION FOR HORIZONTAL IMPACT ONLY									
	σx2	σx2 σby2 σbz2 τx2 τy2 τz2 σ							
Point 1	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Point 2	0.0	0.0	0.0	0.0	0.0	8.7	15.0		
Point 3	0.0	0	.0	0.0	8	.7	15.0		
Utilisation:	:						0.05		

STRE SS CALCULATION S AND UTILIZATION FOR OFF SHORE LIFTING AND HORIZONTAL IMPACT								
	σx12 σby12 σbz12 τx12 τy12 τz12							
Point 1	10.4	50.0	0.0	0.5	3.1	0.0	60.7	
Point 2	10.4	0.0	89.4	0.5	0.0	10.5	101.6	
Point 3	Point 3 10.4 102.4 0.5 12.3							
Utilis ation							0.37	

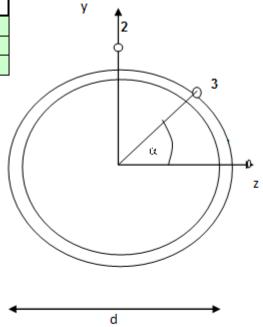
INPUT LOADS

1.0 -End forces from Staad analysis for cooler module offshore lift

Beam	L/C	Node	Axial Force kN	Shear-Y kN	Shear-Z kN	Torsion kNm	Moment-Y kNm	Moment-Z kNm
9	3	1	-110.381	-20.115	11.814	0.878	-41.619	-66.330
		5	134.278	20.115	-11.814	-0.878	-41.076	-74.477

2.0 -Horizontal impact loads

Refer attached calcaulations for horizontal impact loads during offshore lifting for cooler module


 $F_{HIsub} \approx 56 \ kN$ -To be applied on corner posts , bottom beams and intermediate beams

 $F_{HIRsub} \approx 34 \, kN$ -To be applied on end/side structure and top beams

GENERAL	
Beam No.	17
Descrip.	Middel corner post
Analysis:	Offshore lift and horizon.impact

SECTION PROPERTIES d 273.0 mm t 16.0 mm 128.5 mm r 1.571 rad α. 12918 mm2 Ax 6459 mm2 Ay Az 6459 mm2 1.071E+08 mm4 ly 1.071E+08 mm4 Ιz lх 2.141E+08 mm4

MATERIAL						
fy	355.0	N/mm2				
γm	1.15	-				

MEMBER FORCES FOR OFF SHOR.LIFT						
Fx	21.8	kN				
Fy	23.0	kN				
Fz	0.0	kN				
Mx	0.0	kNm				
My	0.0	kNm				
Mz	100.1	kNm				

STRE SS CALCULATION S AND UTILIZATION FOR OFF SHORE LIFTING ONLY							
	σx1	σby1	σbz1	τx1	τy1	τz1	σe1
Point 1	1.7	0.0	0.0	0.0	3.6	0.0	6.4
Point 2	1.7	0.0	120.1	0.0	0.0	0.0	121.8
Point 3	1.7	12	0.1	0.0	3	.6	121.9
Utilization:							0.40

* Apply, H	Furne &	56	kN

MEMBER FORCES FOR IMPACT					
Fx	0.0	kN			
Fy	0.0	kN			
Fz	56.0	kN			
Mx	0.0	kNm			
My	0.0	kNm			
Mz	0.0	kNm			

STRE SS CALCULATION S AND UTILIZATION FOR HORIZONTAL IMPACT ON LY							
	σx2	σby2	σbz2	τx2	τ y 2	τ z 2	σe2
Point 1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Point 2	0.0	0.0	0.0	0.0	0.0	8.7	15.0
Point 3	0.0	0	.0	0.0	8	.7	15.0
Utilization:	Utilization:						

STRE SS CALCULATION S AND UTILIZATION FOR OFF SHORE LIFTING AND HORIZONTAL IMPACT							
	σx12	σby12	σbz12	τx12	τ y 12	τz12	σe
Point 1	1.7	0.0	0.0	0.0	3.6	0.0	6.4
Point 2	1.7	0.0	120.1	0.0	0.0	8.7	122.7
Point 3	1.7	120.1		0.0	12.2		123.6
Utilization:	Utilization:						0.40

INPUT LOADS

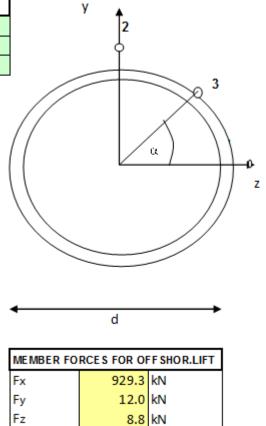
1.0 -End forces from Staad analysis for cooler module offshore lift

🔲 0	ffshore	lift	cool	ler.std	- B	eam	End	Force
-----	---------	------	------	---------	-----	-----	-----	-------

Beam	L/C	Node	Axial Force kN	Shear-Y kN	Shear-Z kN	Torsion kNm	Moment-Y kNm	Moment-Z kNm
17	3	10	21.812	-23.041	-0.003	0.021	0.017	-100.070
		9	2.085	23.041	0.003	-0.021	0.007	-61.215

2.0 -Horizontal impact loads

Refer attached calcaulations for horizontal impact loads during offshore lifting for cooler module


 $F_{HIsub} \approx 56 \, kN$ -To be applied on corner posts , bottom beams and intermediate beams

 $F_{HIRsub} \approx 34 \, kN$ -To be applied on end/side structure and top beams

GENERAL	
Beam No.	24
Descrip.	Top beam
Analysis:	Offshore lift and horizon.impact

SECTION I	SECTION PROPERTIES					
d	273.0	mm				
t	16.0	mm				
r	128.5	mm				
α	1.143	rad				
Ax	12918	mm2				
Ау	6459	mm2				
Az	6459	mm2				
ly	1.071E+08	mm4				
Iz	1.071E+08	mm4				
lx	2.141E+08	mm4				

MATERIAL						
fy	355.0	N/mm2				
γm	1.15	-				

19.0 kNm

16.0 kNm

35.1 kNm

Mx My

Mz

STRE SS CALCULATION S AND UTILIZATION FOR OFF SHORE LIFTING ONLY								
	σx1	σx1 σby1 σbz1 τx1 τy1 τz1						
Point 1	71.9	19.2	0.0	11.4	1.9	0.0	94.0	
Point 2	71.9	0.0	42.1	11.4	0.0	1.4	116.2	
Point 3	3 71.9 46.3 11.4 2.3						120.6	
Utilization	:						0.39	

 $* Apply, F_{HIRsub} \approx 34 \ kN$

MEMBER FORCES FOR IMPACT					
Fx	0.0	kN			
Fy	0.0	kN			
Fz	34.0	kN			
Mx	0.0	kNm			
My	0.0	kNm			
Mz	0.0	kNm			

STRE SS CALCULATION S AND UTILIZATION FOR HORIZON TAL IMPACT ON LY								
	σx2	σx2 σby2 σbz2 τx2 τy2 τz2						
Point 1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Point 2	0.0	0.0	0.0	0.0	0.0	5.3	9.1	
Point 3	0.0	0.0 0.0 0.0 5.3					9.1	
Utilization	:						0.03	

STRE SS CALCULATION S AND UTILIZATION FOR OFF SHORE LIFTING AND HORIZONTAL IMPACT							
	σx12 σby12 σbz12 τx12 τy12 τz12						
Point 1	71.9	19.2	0.0	11.4	1.9	0.0	94.0
Point 2	71.9	0.0	42.1	11.4	0.0	6.6	118.3
Point 3	Point 3 71.9 46.3 11.4 7.6						
Utilization:							0.40

INPUT LOADS

1.0 -End forces from Staad analysis for cooler module offshore lift

Offshore lift cooler.std - Beam End Force								
Beam	L/C	Node	Axial Force kN	Shear-Y kN	Shear-Z kN	Torsion kNm	Moment-Y kNm	
24	3	14	929.258	-1.724	8.823	18.981	-10.463	

-929.258

2.0 -Horizontal impact loads

Refer attached calcaulations for horizontal impact loads during offshore lifting for cooler module

11.966

-8.823

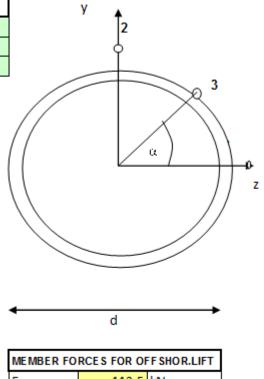
-18.981

 $F_{HIsub} pprox 56 \, kN$ -To be applied on corner posts , bottom beams and intermediate beams

 $F_{HIRsub} \approx 34 \, kN$ -To be applied on end/side structure and top beams

Moment-Z kNm

-16.004


-35.115

14.581

GENERAL	
Beam No.	35
Descrip.	Brace
Analysis:	Offshore lifting

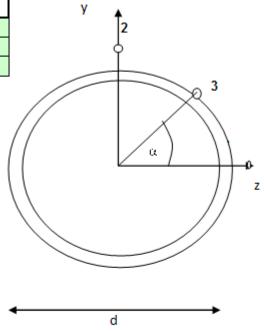
SECTION I	PROPERTIES	
d	114.0	mm
t	6.0	mm
r	54	mm
α	0.785	rad
Ax	2036	mm2
Ay	1018	mm2
Az	1018	mm2
ly	2.977E+06	mm4
Iz	2.977E+06	mm4
lx	5.955E+06	mm4

MATERIAL					
fy	355.0	N/mm2			
γm	1.15	-			

•	d					
MEMBER FORCES FOR OFF SHOR.LIFT						
Fx	443.5	kN				
Fy	0.8	kN				
Fz	0.0	kN				
Mx	0.0	kNm				
My	0.0	kNm				
Mz	0.0	kNm				

STRE SS CALCULATION S AND UTILIZATION FOR OFF SHORE LIFTING ONLY (Braces take no impact)							
	σx1	σby1	σbz1	τx1	τy1	τz1	σe1
Point 1	217.8	0.0	0.0	0.0	8.0	0.0	217.8
Point 2	217.8	0.0	0.0	0.0	0.0	0.0	217.8
Point 3	217.8	0.	0	0.0	0	.8	217.8
Utilisation:	· · · · · · · · · · · · · · · · · · ·						0.71

INPUT LOADS


1.0 -End forces from Staad analysis for cooler module offshore lift

🛄 Offs	Offshore lift cooler.std - Beam End Force							
Beam	L/C	Node	Axial Force kN	Shear-Y kN	Shear-Z kN	Torsion kNm	Moment-Y kNm	Moment-Z kNm
35	3	6	-443.468	0.847	0.000	0.000	0.000	0.000
		17	439.514	0.847	-0.000	0.000	0.000	0.000

GENERAL	
Beam No.	27
Descrip.	Bottom beam
Analysis:	Offshore lift and horizon.impact

SECTION PROPERTIES					
d	273.0	mm			
t	16.0	mm			
r	128.5	mm			
α	1.547	rad			
Ax	12918	mm2			
Ау	6459	mm2			
Az	6459	mm2			
ly	1.071E+08	mm4			
Iz	1.071E+08	mm4			
lx	2.141E+08	mm4			

MATERIAL						
fy	355.0	N/mm2				
γm	1.15	-				

MEMBER FORCES FOR OFF SHOR LIFT					
Fx	256.0	kN			
Fy	61.1	kN			
Fz	0.0	kN			
Mx	0.1	kNm			
My	0.4	kNm			
Mz	17.3	kNm			

STRE SS CALCULATION S AND UTILIZATION FOR OFF SHORE LIFTING ON LY							
	σx1	σby1	σbz1	τx1	τy1	τz1	σe1
Point 1	19.8	0.5	0.0	0.0	9.5	0.0	26.1
Point 2	19.8	0.0	20.8	0.0	0.0	0.0	40.6
Point 3	19.8	20).8	0.0	9	.5	43.8
Utilization:							0.14

* Apply , $F_{HIsub} pprox$ 56 kN

MEMBER FORCES FOR IMPACT					
Fx	0.0	kN			
Fy	0.0	kN			
Fz	56.0	kN			
Mx	0.0	kNm			
My	0.0	kNm			
Mz	0.0	kNm			

STRE SS CALCULATION S AND UTILIZATION FOR HORIZON TAL IMPACT ON LY							
	σx2	σby2	σbz2	τx2	τ y 2	τz2	σe2
Point 1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Point 2	0.0	0.0	0.0	0.0	0.0	8.7	15.0
Point 3	0.0	0	.0	0.0	8	.7	15.0
Utilization	Utilization:						

STRE SS CAL	STRE SS CALCULATION S AND UTILIZATION FOR OFF SHORE LIFTING AND HORIZONTAL IMPACT							
	σx12	σby12	σbz12	τx12	τ y 12	τz12	σe	
Point 1	19.8	0.5	0.0	0.0	9.5	0.0	26.1	
Point 2	19.8	0.0	20.8	0.0	0.0	8.7	43.3	
Point 3	19.8	20).8	0.0	1	8.1	51.4	
Utilization	Utilization:							

INPUT LOADS

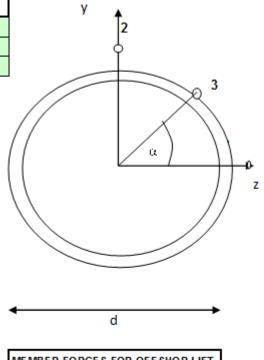
1.0 -End forces from Staad analysis for cooler module offshore lift

Offshore lift cooler.std - Beam End Force

Beam	L/C	Node	Axial Force kN	Shear-Y kN	Shear-Z kN	Torsion kNm	Moment-Y kNm	Moment-Z kNm
27	3	17	-256.000	61.101	0.008	-0.060	-0.410	17.325
		18	256.000	60.729	-0.008	0.060	0.385	-16.766

2.0 -Horizontal impact loads

Refer attached calcaulations for horizontal impact loads during offshore lifting for cooler module


 $F_{HIsub} \approx 56 \ kN$ -To be applied on corner posts , bottom beams and intermediate beams

 $F_{HIRsub} \approx 34 \, kN$ -To be applied on end/side structure and top beams

GENERAL	
Beam No.	44
Descrip.	Intermidate beam
Analysis:	Offshore lift and horizon.impact

SECTION PROPERTIES					
d	273.0	mm			
t	16.0	mm			
r	128.5	mm			
α	1.525	rad			
Ax	12918	mm2			
Ау	6459	mm2			
Az	6459	mm2			
ly	1.071E+08	mm4			
Iz	1.071E+08	mm4			
lx	2.141E+08	mm4			

MATERIAL					
fy	355.0	N/mm2			
γm	1.15	-			

MEMBER FORCES FOR OFF SHOR.LIFT				
Fx	77.4	kN		
Fy	5.3	kN		
Fz	0.0	kN		
Mx	0.0	kNm		
My	0.2	kNm		
Mz	4.8	kNm		

STRE SS CALCULATION S AND UTILIZATION FOR OFF SHORE LIFTING ONLY								
	σx1	σby1	σbz1	τx1	τy1	τz1	σe1	
Point 1	6.0	0.3	0.0	0.0	8.0	0.0	6.4	
Point 2	6.0	0.0	5.7	0.0	0.0	0.0	11.7	
Point 3	6.0	5	.7	0.0	0	.8	11.8	
Utilization:						0.04		

* Apply , F _{HIsub}	\approx	56	kN	
- PP- J / - HISUD		~ ~		

MEMBER FORCES FOR IMPACT				
Fx	0.0	kN		
Fy	0.0	kN		
Fz	56.0	kN		
Mx	0.0	kNm		
My	0.0	kNm		
Mz	0.0	kNm		

STRE SS CALCULATION S AND UTILIZATION FOR HORIZONTAL IMPACT ON LY								
	σx2	σby2	σbz2	τx2	τ y 2	τ z 2	σe2	
Point 1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Point 2	0.0	0.0	0.0	0.0	0.0	8.7	15.0	
Point 3	0.0	0	.0	0.0	8	.7	15.0	
Utilization	Utilization:						0.05	

STRE SS CALCULATION S AND UTILIZATION FOR OFF SHORE LIFTING AND HORIZONTAL IMPACT							
	σx12	σby12	σbz12	τx12	τ y 12	τz12	σe
Point 1	6.0	0.3	0.0	0.0	8.0	0.0	6.4
Point 2	6.0	0.0	5.7	0.0	0.0	8.7	19.1
Point 3	6.0	5	.7	0.0	9	.5	20.2
Utilization:						0.07	

INPUT LOADS

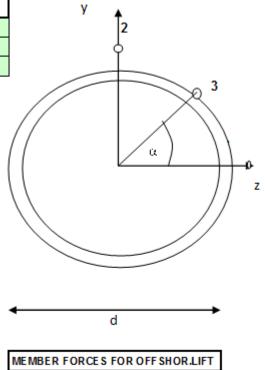
1.0 -End forces from Staad analysis for cooler module offshore lift

	Offshore	lift	cooler.std	- Beam	End	Force
--	----------	------	------------	--------	-----	-------

Beam	L/C	Node	Axial Force kN	Shear-Y kN	Shear-Z kN	Torsion kNm	Moment-Y kNm	Moment-Z kNm
44	3	23	77.360	5.328	-0.011	-0.027	-0.186	4.784
		24	-77.360	4.914	0.011	0.027	0.219	-4.163

2.0 -Horizontal impact loads

Refer attached calcaulations for horizontal impact loads during offshore lifting for cooler module


 $F_{HIsub} \approx 56 \, kN$ -To be applied on corner posts , bottom beams and intermediate beams

 $F_{HIRsub} \approx 34 \, kN$ -To be applied on end/side structure and top beams

GENERAL	
Beam No.	80
Descrip.	Bottom middel beam
Analysis:	Offshore lifting

SECTION I	PROPERTIES	
d	273.0	mm
t	16.0	mm
r	128.5	mm
α	1.563	rad
Ax	12918	mm2
Ау	6459	mm2
Az	6459	mm2
ly	1.071E+08	mm4
Iz	1.071E+08	mm4
lx	2.141E+08	mm4

MATERIAL					
fy	355.0	N/mm2			
γm	1.15	-			

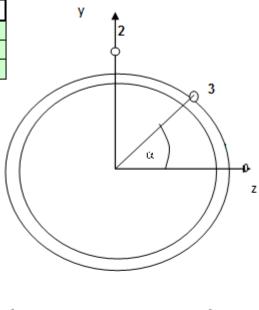
MEMBER FORCES FOR OFF SHOR.LIFT		
Fx	30.0	kN
Fy	220.6	kN
Fz	1.3	kN
Mx	26.3	kNm
My	1.8	kNm
Mz	218.5	kNm

STRE SS CALCULATION S AND UTILIZATION FOR OFF. LIFTING ONLY (Bot. mid.beam takes no impact)							
	σx1	σby1	σbz1	τx1	τy1	τz1	σe1
Point 1	2.3	2.2	0.0	15.8	34.2	0.0	86.6
Point 2	2.3	0.0	262.2	15.8	0.0	0.2	265.9
Point 3	2.3	26	2.2	15.8	34	4.2	278.3
Utilisation:					0.90		

INPUT LOADS

1.0 -End forces from Staad analysis for cooler module offshore lift

Offs	Offshore lift cooler.std - Beam End Force							
Beam	L/C	Node	Axial Force kN	Shear-Y kN	Shear-Z kN	Torsion kNm	Moment-Y kNm	Moment-Z kNm
80	3	20	-30.037	220.618	1.260	26.250	-1.338	151.937
		31	30.037	-68.612	-1.260	-26.250	-1.811	218.457


Appendix C₆: Von Mises yield criteria for transportation-Case B:Cooler module

GENERAL				У
Beam No.	9			
Descrip.	Corner post			
Analysis:	Transport analy	ysis		
			_	
SECTION	PROPERTIES			
d	273.0	mm		//
t	16.0	mm		[[
r	128.5	mm		
~	1 2 7/	rad		

VON MISES YIELD CRITERION

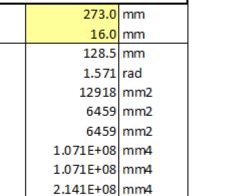
l	SECTION PROPERTIES		
I	d	273.0	mm
	t	16.0	mm
	r	128.5	mm
	α.	1.374	rad
	Ax	12918	mm2
	Ау	6459	mm2
	Az	6459	mm2
	ly	1.071E+08	mm4
	Iz	1.071E+08	mm4
	lx	2.141E+08	mm4

MATERIAL				
fy	355.0	N/mm2		
γm	1.15	-		

MEMBER FORCES FOR TRANSPORT				
Fx	286.5	kN		
Fy	12.6	kN		
Fz	2.0	kN		
Mx	0.1	kNm		
My	7.1	kNm		
Mz	35.3	kNm		

d

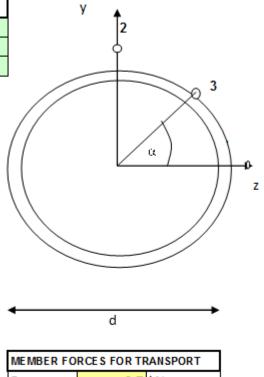
STRE SS CALCULATION S AND UTILIZATION FOR TRANSPORT ANALYSIS							
	σx1	σby1	σbz1	τx1	τ y 1	τz1	σe1
Point 1	22.2	8.5	0.0	0.1	1.9	0.0	30.9
Point 2	22.2	0.0	42.4	0.1	0.0	0.3	64.6
Point 3	22.2	43	.2	0.1	2	.0	65.5
Utilization:					0.21		


INPUT LOADS

1.0 -End forces from Staad analysis for cooler module transport analysis

I Tran	Transport cooler.std - Beam End Force							
Beam	L/C	Node	Axial Force kN	Shear-Y kN	Shear-Z kN	Torsion kNm	Moment-Y kNm	Moment-Z kNm
9	31	1	286.470	-12.582	1.964	0.148	-7.061	-35.331
		5	-268.854	2.625	-1.964	-0.148	-6.686	-17.893

GENERAL	
Beam No.	17
Descrip.	Middel post
Analysis:	Transport analysis


Analysis:	Transport analysis			
SECTION PROPERTIES				
d	273.0	mm		
t	16.0	mm		
r	128.5	mm		
α	1.571	rad		
Ax	12918	mm2		
Ay	6459	mm2		
Az	6459	mm2		

MATERIAL				
fy	355.0	N/mm2		
γm	1.15	-		

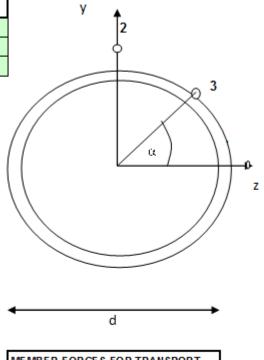
ly Ιz

lх

MEMBER FORCES FOR TRANSPORT			
Fx	9.7	kN	
Fy	13.1	kN	
Fz	0.0	kN	
Mx	0.0	kNm	
My	0.0	kNm	
Mz	45.8	kNm	

STRE SS CALCULATION S AND UTILIZATION FOR TRANSPORT ANALYSIS							
	<u>σx1</u>	σby1	σbz1	τx1	τy1	τz1	σe1
Point 1	0.7	0.0	0.0	0.0	2.0	0.0	3.6
Point 2	0.7	0.0	55.0	0.0	0.0	0.0	55.7
Point 3	0.7	55	o. 0	0.0	2	.0	55.8
Utilization							0.18

INPUT LOADS


1.0 -End forces from Staad analysis for cooler module transport analysis

III Tran	I Transport cooler.std - Beam End Force								
Beam	L/C	Node	Axial Force kN	Shear-Y kN	Shear-Z kN	Torsion kNm	Moment-Y kNm	Moment-Z kNm	
17	17	10	0.291	-13.117	0.001	0.006	-0.003	-45.817	
		9	9.666	5.458	-0.001	-0.006	-0.008	-19.197	

GENERAL	
Beam No.	19
Descrip.	Brace
Analysis:	Transport analysis

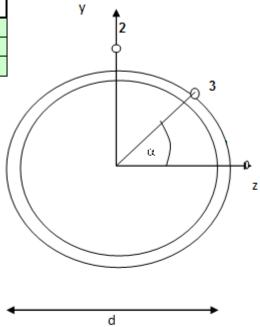
SECTION PROPERTIES						
d	114.0	mm				
t	6.0	mm				
r	54	mm				
α	0.785	rad				
Ax	2036	mm2				
Ау	1018	mm2				
Az	1018	mm2				
ly	2.977E+06	mm4				
Iz	2.977E+06	mm4				
lx	5.955E+06	mm4				

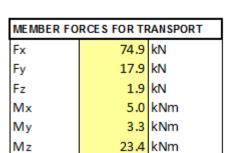
MATERIAL						
fy	355.0	N/mm2				
γm	1.15	-				

MEMBER FORCES FOR TRANSPORT					
Fx	37.6	kN			
Fy	0.9	kN			
Fz	0.0	kN			
Mx	0.0	kNm			
My	0.0	kNm			
Mz	0.0	kNm			

STRE SS CALCULATION S AND UTILIZATION FOR TRANSPORT ANALYSIS											
	σx1	σby1	σbz1	τx1	τy1	τz1	σe1				
Point 1	18.5	0.0	0.0	0.0	0.9	0.0	18.5				
Point 2	18.5	0.0	0.0	0.0	0.0	0.0	18.5				
Point 3	18.5	0.	0	0.0	0	.9	18.5				
Utilisation:	·										

INPUT LOADS


1.0 -End forces from Staad analysis for cooler module transport analysis


III Tran	Transport cooler.std - Beam End Force								
Beam	L/C	Node	Axial Force kN	Shear-Y kN	Shear-Z kN	Torsion kNm	Moment-Y kNm	Moment-Z kNm	
19	34	5	37.376	-0.892	0.000	0.000	0.000	0.000	
		10	-37.584	-0.892	-0.000	0.000	0.000	0.000	

GENERAL	
Beam No.	24
Descrip.	Top beam
Analysis:	Transport analysis

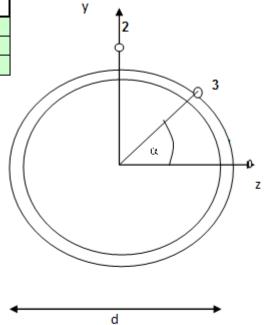
SECTION I	SECTION PROPERTIES					
d	273.0	mm				
t	16.0	mm				
r	128.5	mm				
α	1.431	rad				
Ax	12918	mm2				
Ау	6459	mm2				
Az	6459	mm2				
ly	1.071E+08	mm4				
Iz	1.071E+08	mm4				
lx	2.141E+08	mm4				

MATERIAL						
fy	355.0	N/mm2				
γm	1.15	-				

STRE SS CALCULATION S AND UTILIZATION FOR TRANSPORT ANALYSIS							
	σx1	σx1 σby1 σbz1 τx1 τy1 τz1					
Point 1	5.8	4.0	0.0	3.0	2.8	0.0	14.0
Point 2	5.8	0.0	28.1	3.0	0.0	0.3	34.4
Point 3	5.8	28	3.4	3.0	2	.8	35.6
Utilization	Utilization:						0.12

INPUT LOADS

1.0 -End forces from Staad analysis for cooler module transport analysis


Transport cooler.std - Beam End Force

Beam	L/C	Node	Axial Force kN	Shear-Y kN	Shear-Z kN	Torsion kNm	Moment-Y kNm	Moment-Z kNm
24	21	14	72.644	-11.314	1.896	4.981	-2.387	-23.423
		7	-74.942	17.879	-1.896	-4.981	-3.302	-20.366

GENERAL	
Beam No.	28
Descrip.	Bottom beam
Analysis:	Transport analysis

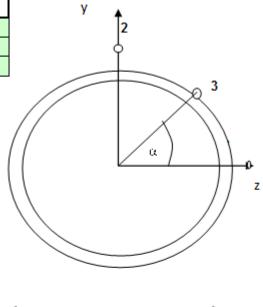
SECTION I	SECTION PROPERTIES				
d	273.0	mm			
t	16.0	mm			
r	128.5	mm			
α	1.566	rad			
Ax	12918	mm2			
Ay	6459	mm2			
Az	6459	mm2			
ly	1.071E+08	mm4			
Iz	1.071E+08	mm4			
lx	2.141E+08	mm4			

MATERIAL					
fy	355.0	N/mm2			
γm	1.15	-			

MEMBER FORCES FOR TRANSPORT					
Fx	72.6	kN			
Fy	62.3	kN			
Fz	0.2	kN			
Mx	15.7	kNm			
My	0.4	kNm			
Mz	78.8	kNm			

STRE SS CALCULATION S AND UTILIZATION FOR TRANSPORT ANALYSIS							
	σx1	σby1	σbz1	τx1	τy1	τz1	σe1
Point 1	5.6	0.5	0.0	9.4	9.6	0.0	33.6
Point 2	5.6	0.0	94.5	9.4	0.0	0.0	101.5
Point 3	5.6	94	.5	9.4	9	.6	105.5
Utilization:							0.34

INPUT LOADS


1.0 -End forces from Staad analysis for cooler module transport analysis

🛄 Tran	Transport cooler.std - Beam End Force							
Beam	L/C	Node	Axial Force kN	Shear-Y kN	Shear-Z kN	Torsion kNm	Moment-Y kNm	Moment-Z kNm
28	31	18	72.598	-37.263	-0.177	-15.711	0.052	-39.580
		38	-69.042	62.289	0.177	15.711	0.389	-78.757

GENERAL	
Beam No.	44
Descrip.	Intermidate beam
Analysis:	Transport analysis

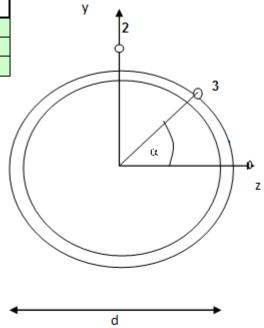
SECTION I	SECTION PROPERTIES				
d	273.0	mm			
t	16.0	mm			
r	128.5	mm			
α	1.565	rad			
Ax	12918	mm2			
Ау	6459	mm2			
Az	6459	mm2			
ly	1.071E+08	mm4			
Iz	1.071E+08	mm4			
lx	2.141E+08	mm4			

MATERIAL					
fy	355.0	N/mm2			
γm	1.15	-			

MEMBER FORCES FOR TRANSPORT					
Fx	54.9	kN			
Fy	10.3	kN			
Fz	0.0	kN			
Mx	0.2	kNm			
My	0.1	kNm			
Mz	13.3	kNm			

STRE SS CALCULATION S AND UTILIZATION FOR TRANSPORT ANALYSIS							
	σx1	σby1	σbz1	τx1	τy1	τz1	σe1
Point 1	4.3	0.1	0.0	0.1	1.6	0.0	5.3
Point 2	4.3	0.0	16.0	0.1	0.0	0.0	20.2
Point 3	4.3	16	.0	0.1	1	.6	20.4
Utilization							0.07

INPUT LOADS


1.0 -End forces from Staad analysis for cooler module transport analysis

III Tran	ITransport cooler.std - Beam End Force							
Beam	L/C	Node	Axial Force kN	Shear-Y kN	Shear-Z kN	Torsion kNm	Moment-Y kNm	Moment-Z kNm
44	31	23	54.942	10.320	0.003	0.201	-0.080	13.307
		24	-50.674	-2.770	-0.003	-0.201	0.072	6.328

GENERAL	
Beam No.	60
Descrip.	Bottom middel beam
Analysis:	Transport analysis

SECTION PROPERTIES				
d	273.0	mm		
t	16.0	mm		
r	128.5	mm		
α	1.562	rad		
Ax	12918	mm2		
Ау	6459	mm2		
Az	6459	mm2		
ly	1.071E+08	mm4		
Iz	1.071E+08	mm4		
lx	2.141E+08	mm4		

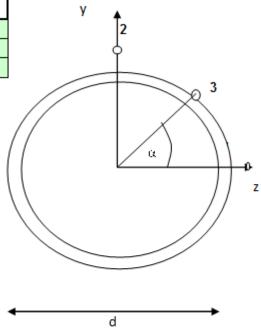
MATERIAL					
fy	355.0	N/mm2			
γm	1.15	-			

MEMBER FORCES FOR TRANSPORT				
Fx	2.2	kN		
Fy	95.7	kN		
Fz	0.6	kN		
Mx	10.1	kNm		
My	0.8	kNm		
Mz	93.6	kNm		

STRE SS CALCULATION S AND UTILIZATION FOR TRANSPORT ANALYSIS							
	σx1	σby1	σbz1	τx1	τy1	τz1	σe1
Point 1	0.2	1.0	0.0	6.1	14.8	0.0	36.2
Point 2	0.2	0.0	112.3	6.1	0.0	0.1	113.0
Point 3	0.2	11	2.3	6.1	14	4.8	118.1
Utilization							0.38

INPUT LOADS

1.0 -End forces from Staad analysis for cooler module transport analysis


🛄 Tran	Transport cooler.std - Beam End Force							
Beam	L/C	Node	Axial Force kN	Shear-Y kN	Shear-Z kN	Torsion kNm	Moment-Y kNm	Moment-Z kNm
60	27	20	-0.295	95.732	-0.574	10.133	0.826	67.903
		31	2.210	-30.482	0.574	-10.133	0.610	93.554

Appendix C₇: Von Mises yield criteria for air lifting and horizontal impact-Case C:Compressor module

GENERAL	
Beam No.	12
Descrip.	Top beam
Analysis:	Air lift and horizontal impact

SECTION PROPERTIES				
d	324.0	mm		
t	16.0	mm		
r	154	mm		
α	1.441	rad		
Ax	15482	mm2		
Ay	7741	mm2		
Az	7741	mm2		
ly	1.841E+08	mm4		
Iz	1.841E+08	mm4		
lx	3.682E+08	mm4		

MATERIAL					
fy	355.0	N/mm2			
γm	1.15	-			

MEMBER FO	MEMBER FORCES FOR AIR LIFT				
Fx	219.2	kN			
Fy	59.3	kN			
Fz	4.5	kN			
Mx	3.1	kNm			
My	8.0	kNm			
Mz	61.0	kNm			

STRE SS CALCULATION S AND UTILIZATION FOR AIR LIFTING ONLY							
	σx1	σby1	σbz1	τx1	τy1	τz1	σe1
Point 1	14.2	6.7	0.0	1.3	7.7	0.0	26.0
Point 2	14.2	0.0	51.0	1.3	0.0	0.6	65.3
Point 3	14.2	51	.5	1.3	7	.7	67.4
Utilization:	Utilization:					0.22	

MEMBER FORCES FOR IMPACT						
Fx	0.0	kN				
Fy	0.0	kN				
Fz	61.0	kN				
Mx	0.0	kNm				
My	0.0	kNm				
Mz	0.0	kNm				

STRE SS CALCULATION S AND UTILIZATION FOR HORIZON TAL IMPACT ON LY							
	σx2	σby2	σbz2	τx2	τ y 2	τz2	σe2
Point 1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Point 2	0.0	0.0	0.0	0.0	0.0	7.9	13.6
Point 3	0.0	0	.0	0.0	7	.9	13.6
Utilization:	Utilization:					0.04	

STRE SS CALCULATION S AND UTILIZATION FOR AIR LIFTING AND HORIZON TAL IMPACT							
	σx12	σby12	σbz12	τx12	τ y 12	τz12	σe
Point 1	14.2	6.7	0.0	1.3	7.7	0.0	26.0
Point 2	14.2	0.0	51.0	1.3	0.0	8.5	67.3
Point 3	14.2	51	.5	1.3	1!	5.6	71.8
Utilization:						0.23	

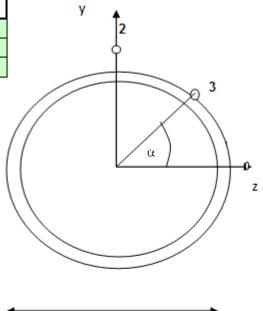
* According to DNV 2.7.3 section 3.6.2 , the impact stress are combined with lifting stress

INPUT LOADS

1.0 -End forces from Staad analysis for compressor module air lift

E	-	A 1	1104		pressor	and a	D	E a d	F
-		AIL	mt	com	pressor	.sta -	beam	Ena	rorce

Beam	L/C	Node	Axial Force kN	Shear-Y kN	Shear-Z kN	Torsion kNm	Moment-Y kNm	Moment-Z kNm
12	3	5	219.243	59.344	-4.487	-3.144	7.986	51.810
		13	-219.243	-53.445	4.487	3.144	0.989	60.979


2.0 -Horizontal impact loads

Refer attached calcaulations for horizontal impact loads during air lifting of compressor module

 $F_{HI(air)} \approx 102 \ kN$ -To be applied on corner posts , bottom beams and intermediate beams $F_{HIR(air)} \approx 61 \ kN$ -To be applied on end/side structure and top beams

GENERAL	
Beam No.	21
Descrip.	Middel post
Analysis:	Air lift and horizontal impact

SECTION PROPERTIES							
d	324.0	mm					
t	16.0	mm					
r	154	mm					
α	1.550	rad					
Ax	15482	mm2					
Ay	7741	mm2					
Az	7741	mm2					
ly	1.841E+08	mm4					

MEMBER FORCES FOR AIR LIFT						
Fx	327.0	kN				
Fy	53.1	kN				
Fz	1.8	kN				
Mx	0.1	kNm				
My	2.6	kNm				
Mz	127.0	kNm				

MATERIAL					
fy	355.0	N/mm2			
γm	1.15	-			

1.841E+08 mm4 3.682E+08 mm4

Iz

lx.

STRE SS CALCULATION S AND UTILIZATION FOR AIR LIFTING ONLY							
	σx1	σby1	σbz1	τx1	τ y 1	τz1	σe1
Point 1	21.1	2.2	0.0	0.0	6.9	0.0	26.2
Point 2	21.1	0.0	106.2	0.0	0.0	0.2	127.3
Point 3	21.1	10	6.2	0.0	6	.9	127.9
Utilization:	Utilization:						0.41

	-	~	400		
* Apply	$, F_{HI}$	\approx	102	κN	

MEMBER FORCES FOR IMPACT						
Fx	0.0 kN					
Fy	0.0	kN				
Fz	102.0	kN				
Mx	0.0	kNm				
My	0.0	kNm				
Mz	0.0	kNm				

STRE SS CALCULATION S AND UTILIZATION FOR HORIZON TAL IMPACT ON LY							
	σx2	σby2	σbz2	τx2	τ y 2	τz2	σe2
Point 1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Point 2	0.0	0.0	0.0	0.0	0.0	13.2	22.8
Point 3	0.0	0	.0	0.0	13	3.2	22.8
Utilization:	Utilization:						

STRE SS CALCULATION S AND UTILIZATION FOR AIR LIFTING AND HORIZON TAL IMPACT							
	σx12	σx12 σby12 σbz12 τx12 τy12 τz12					
Point 1	21.1	2.2	0.0	0.0	6.9	0.0	26.2
Point 2	21.1	0.0	106.2	0.0	0.0	13.4	129.5
Point 3	21.1	10	6.2	0.0	20.0		132.0
Utilization	Utilization:						0.43

* According to DNV 2.7.3 section 3.6.2 , the impact stress are combined with lifting stress

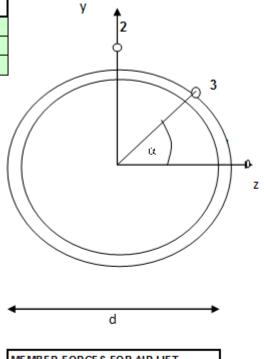
INPUT LOADS

1.0 -End forces from Staad analysis for compressor module air lift

🛄 Air I	lift com	pressor.std	-	Beam	End	Force
---------	----------	-------------	---	------	-----	-------

Beam	L/C	Node	Axial Force kN	Shear-Y kN	Shear-Z kN	Torsion kNm	Moment-Y kNm	Moment-Z kNm
21	3	16	-326.967	-53.128	1.830	0.078	-2.542	-21.791
		14	318.709	53.128	-1.830	-0.078	-2.581	-126.967

2.0 -Horizontal impact loads


Refer attached calcaulations for horizontal impact loads during air lifting of compressor module

 $F_{HI(air)} \approx 102 \ kN$ -To be applied on corner posts , bottom beams and intermediate beams $F_{HIR(air)} \approx 61 \ kN$ -To be applied on end/side structure and top beams

GENERAL	
Beam No.	29
Descrip.	Intermidate beam
Analysis:	Air lift and horizontal impact

SECTION PROPERTIES d 324.0 mm 16.0 mm t r 154 mm 0.925 rad α Ax 15482 mm2 Ay 7741 mm2 7741 mm2 Az 1.841E+08 mm4 ly 1.841E+08 mm4 Ιz 3.682E+08 mm4 lх

MATERIAL							
fy	355.0	N/mm2					
γm	1.15	-					

MEMBER FORCES FOR AIR LIFT						
Fx	77.5	kN				
Fy	48.9	kN				
Fz	27.7	kN				
Mx	6.5	kNm				
My	35.7	kNm				
Mz	47.3	kNm				

STRE SS CALCULATION S AND UTILIZATION FOR AIR LIFTING ONLY								
	σx1	σby1	σbz1	τx1	τy1	τz1	σe1	
Point 1	5.0	29.8	0.0	2.7	6.3	0.0	38.2	
Point 2	5.0	0.0	39.6	2.7	0.0	3.6	45.9	
Point 3	5.0	49.5		2.7	7	.3	57.2	
Utilization:	Utilization:							

* Apply,	Fu,	\approx	102	kN
- appey,	- HI		A 0 M	10.4

MEMBER FORCES FOR IMPACT						
Fx	0.0	kN				
Fy	0.0	kN				
Fz	102.0	kN				
Mx	0.0	kNm				
My	0.0	kNm				
Mz	0.0	kNm				

STRE SS CALCULATION S AND UTILIZATION FOR HORIZON TAL IMPACT ON LY							
	σx2 σby2 σbz2 τx2 τy2 τz2						
Point 1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Point 2	0.0	0.0	0.0	0.0	0.0	13.2	22.8
Point 3	0.0	0	.0	0.0	13	3.2	22.8
Utilization:	Utilization:						0.07

STRE SS CALCULATION S AND UTILIZATION FOR AIR LIFTING AND HORIZON TAL IMPACT								
	σx12	σx12 σby12 σbz12 τx12 τy12 τz12						
Point 1	5.0	29.8	0.0	2.7	6.3	0.0	38.2	
Point 2	5.0	0.0	39.6	2.7	0.0	16.8	55.9	
Point 3	5.0	49).5	2.7	20.4		67.7	
Utilization							0.22	

* According to DNV 2.7.3 section 3.6.2 , the impact stress are combined with lifting stress

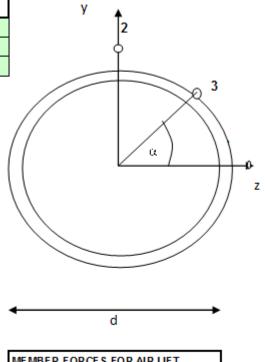
INPUT LOADS

1.0 -End forces from Staad analysis for compressor module air lift

	Air	lift	com	nresso	r.std -	Beam	End	Force
-	AIL	mt	com	presso	r.sta -	ьеат	Ena	rorce

Beam	L/C	Node	Axial Force kN	Shear-Y kN	Shear-Z kN	Torsion kNm	Moment-Y kNm	Moment-Z kNm
29	3	16	77.499	-42.952	-27.696	6.451	35.661	-47.287
		17	-77.499	48.851	27.696	-6.451	19.732	-44.517

2.0 -Horizontal impact loads


Refer attached calcaulations for horizontal impact loads during air lifting of compressor module

 $F_{HI(air)} \approx 102 \ kN$ -To be applied on corner posts , bottom beams and intermediate beams $F_{HIR(air)} \approx 61 \ kN$ -To be applied on end/side structure and top beams

GENERAL	
Beam No.	30
Descrip.	Corner post
Analysis:	Air lift and horizontal impact

SECTION I	SECTION PROPERTIES							
d	324.0	mm						
t	16.0	mm						
r	154	mm						
α	1.032	rad						
Ax	15482	mm2						
Ау	7741	mm2						
Az	7741	mm2						
ly	1.841E+08	mm4						
Iz	1.841E+08	mm4						
lx	3.682E+08	mm4						

MATERIAL							
fy	355.0	N/mm2					
γm	1.15	-					

MEMBER FORCES FOR AIR LIFT							
Fx	213.9	kN					
Fy	84.2	kN					
Fz	29.4	kN					
Mx	1.2	kNm					
My	51.1	kNm					
Mz	85.5	kNm					

STRE SS CALCULATION S AND UTILIZATION FOR AIR LIFTING ONLY									
	σx1	σby1	σbz1	τx1	τy1	τz1	σe1		
Point 1	13.8	42.8	0.0	0.5	10.9	0.0	59.9		
Point 2	13.8	0.0	71.6	0.5	0.0	3.8	85.7		
Point 3	13.8	83.4		0.5	j <u>11.5</u>		99.4		
Utilization:			Utilization:						

* Apply , F _{HI}	\approx	102	kN

MEMBER FORCES FOR IMPACT							
Fx	0.0	kN					
Fy	0.0	kN					
Fz	102.0	kN					
Mx	0.0	kNm					
My	0.0	kNm					
Mz	0.0	kNm					

STRE SS CALCULATION S AND UTILIZATION FOR HORIZON TAL IMPACT ON LY									
	σx2	σby2	σbz2	τx2	τ y 2	τz2	σe2		
Point 1	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Point 2	0.0	0.0	0.0	0.0	0.0	13.2	22.8		
Point 3	0.0	0	.0	0.0	13	3.2	22.8		
Utilization:							0.07		

STRE SS CALCULATION S AND UTILIZATION FOR AIR LIFTING AND HORIZON TAL IMPACT								
	σx12	σby12	σbz12	τx12	τ y 12	τz12	σe	
Point 1	13.8	42.8	0.0	0.5	10.9	0.0	59.9	
Point 2	13.8	0.0	71.6	0.5	0.0	17.0	90.6	
Point 3	13.8	83	3.4	0.5	24.7		106.6	
Utilization							0.35	

* According to DNV 2.7.3 section 3.6.2 , the impact stress are combined with lifting stress

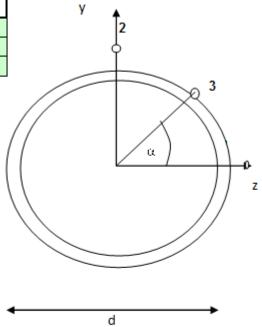
INPUT LOADS

1.0 -End forces from Staad analysis for compressor module air lift

	Air	1344	com	pressor	etd -	Ream	End	Force
	AIF	mt	com	pressor	.sta -	beam	Ena	rorce

Beam	L/C	Node	Axial Force kN	Shear-Y kN	Shear-Z kN	Torsion kNm	Moment-Y kNm	Moment-Z kNm
30	3	22	-213.885	-84.221	29.413	1.208	9.968	-32.365
		3	209.756	84.221	-29.413	-1.208	-51.145	-85.544

2.0 -Horizontal impact loads


Refer attached calcaulations for horizontal impact loads during air lifting of compressor module

 $F_{HI(air)} \approx 102 \ kN$ -To be applied on corner posts , bottom beams and intermediate beams $F_{HIR(air)} \approx 61 \ kN$ -To be applied on end/side structure and top beams

GENERAL	
Beam No.	62
Descrip.	Brace
Analysis:	Air lifting

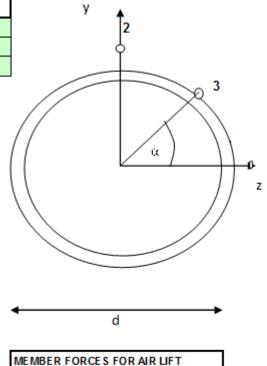
SECTION I	SECTION PROPERTIES				
d	114.0	mm			
t	6.0	mm			
r	54	mm			
α	0.785	rad			
Ax	2036	mm2			
Ay	1018	mm2			
Az	1018	mm2			
ly	2.977E+06	mm4			
Iz	2.977E+06	mm4			
lx	5.955E+06	mm4			

MATERIAL				
fy	355.0	N/mm2		
γm	1.15	-		

MEMBER FORCES FOR AIR LIFT				
Fx	71.3	kN		
Fy	0.4	kN		
Fz	0.0	kN		
Mx	0.0	kNm		
My	0.0	kNm		
Mz	0.0	kNm		

STRE SS CALCULATION S AND UTILIZATION FOR AIR LIFTING ONLY (Braces take no impact)							
	σx1	σby1	σbz1	τx1	τy1	τz1	σe1
Point 1	35.0	0.0	0.0	0.0	0.4	0.0	35.0
Point 2	35.0	0.0	0.0	0.0	0.0	0.0	35.0
Point 3	35.0	0.0	ן כ	0.0	0.	.4	35.0
Utilisation	Utilisation:						0.11

INPUT LOADS


1.0 -End forces from Staad analysis for compressor module air lift

🛄 Air I	Air lift compressor.std - Beam End Force							
Beam	L/C	Node	Axial Force kN	Shear-Y kN	Shear-Z kN	Torsion kNm	Moment-Y kNm	Moment-Z kNm
62	3	31	69.573	0.407	0.000	0.000	0.000	0.000
		20	-71.284	0.407	-0.000	0.000	0.000	0.000

GENERAL	
Beam No.	101
Descrip.	Bottom beam
Analysis:	Air lift and horizontal impact

SECTION PROPERTIES				
d	324.0	mm		
t	16.0	mm		
r	154	mm		
α	1.510	rad		
Ax	15482	mm2		
Ау	7741	mm2		
Az	7741	mm2		
ly	1.841E+08	mm4		
Iz	1.841E+08	mm4		
Ix	3.682E+08	mm4		

MATERIAL				
fy	355.0	N/mm2		
γm	1.15	-		

MEMBER FO	MEMBER FORCES FOR AIR LIFT				
Fx	24.6	kN			
Fy	148.3	kN			
Fz	2.6	kN			
Mx	84.5	kNm			
My	5.5	kNm			
Mz	90.7	kNm			

STRE SS CALCULATION S AND UTILIZATION FOR AIR LIFTING ONLY							
	σx1 σby1 σbz1 τx1 τy1 τz1 σe1						
Point 1	1.6	4.6	0.0	35.4	19.2	0.0	94.6
Point 2	1.6	0.0	75.9	35.4	0.0	0.3	99.1
Point 3	1.6	76	76.0 35.4 19.2				
Utilization:						0.40	

* Apply,	F.,	\approx	102	kN	
- appey,	* HI		A 0 M		

MEMBER FO	MEMBER FORCES FOR IMPACT					
Fx	0.0	kN				
Fy	0.0	kN				
Fz	102.0	kN				
Mx	0.0	kNm				
My	0.0	kNm				
Mz	0.0	kNm				

STRE SS CAL	STRE SS CALCULATION S AND UTILIZATION FOR HORIZON TAL IMPACT ON LY						
	σx2	σby2	σbz2	τx2	τ y 2	τz2	σe2
Point 1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Point 2	0.0	0.0	0.0	0.0	0.0	13.2	22.8
Point 3	0.0	0 0.0 0.0 13.2					22.8
Utilization	Utilization:						0.07

STRE SS CAL	STRE SS CALCULATION S AND UTILIZATION FOR AIR LIFTING AND HORIZON TAL IMPACT						
	σx12	σby12	σbz12	τx12	τ y 12	τz12	σe
Point 1	1.6	4.6	0.0	35.4	19.2	0.0	94.6
Point 2	1.6	0.0	75.9	35.4	0.0	13.5	114.7
Point 3	1.6	76	76.0 35.4 32.3				140.6
Utilization	Utilization:						0.46

* According to DNV 2.7.3 section 3.6.2 , the impact stress are combined with lifting stress

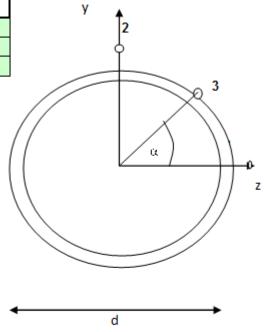
INPUT LOADS

1.0 -End forces from Staad analysis for compressor module air lift

🥅 Air lift	compressor.std	- Beam	End Force
------------	----------------	--------	-----------

Beam	L/C	Node	Axial Force kN	Shear-Y kN	Shear-Z kN	Torsion kNm	Moment-Y kNm	Moment-Z kNm
101	3	52	-24.630	-86.194	-2.606	-84.539	5.531	-90.667
		3	24.630	148.301	2.606	84.539	-2.143	-61.754

2.0 -Horizontal impact loads


Refer attached calcaulations for horizontal impact loads during air lifting of compressor module

 $F_{HI(air)} \approx 102 \ kN$ -To be applied on corner posts , bottom beams and intermediate beams $F_{HIR(air)} \approx 61 \ kN$ -To be applied on end/side structure and top beams

GENERAL	
Beam No.	104
Descrip.	Bottom middel beam
Analysis:	Air lifting

SECTION I	SECTION PROPERTIES					
d	324.0	mm				
t	16.0	mm				
r	154	mm				
α	1.561	rad				
Ax	15482	mm2				
Ay	7741	mm2				
Az	7741	mm2				
ly	1.841E+08	mm4				
Iz	1.841E+08	mm4				
lx	3.682E+08	mm4				

MATERIAL						
fy	355.0	N/mm2				
γm	1.15	-				

MEMBER FO	MEMBER FORCES FOR AIR LIFT					
Fx	23.5	kN				
Fy	315.4	kN				
Fz	0.0	kN				
Mx	0.0	kNm				
My	1.4	kNm				
Mz	147.4	kNm				

STRE SS CALCULATION S AND UTILIZATION FOR AIR LIFTING ON LY (Bot. mid.beam takes no impact)							t)
σx1 σby1 σbz1 τx1 τy1 τz1							σe1
Point 1	1.5	1.2	0.0	0.0	40.7	0.0	70.6
Point 2	1.5	0.0	123.3	0.0	0.0	0.0	124.8
Point 3	1.5	12	3.3	0.0	40	0.7	143.4
Utilization:						0.46	

INPUT LOADS

1.0 -End forces from Staad analysis for compressor module air lift

Beam	L/C	Node	Axial Force kN	Shear-Y kN	Shear-Z kN	Torsion kNm	Moment-Y kNm	Moment-Z kNm
104	3	51	-23.496	315.368	0.000	0.000	-1.380	147.387
		54	23.496	315.368	-0.000	-0.000	1.380	-147.387

Appendix C₈: Von Mises yield criteria for offshore lifting and horizontal impact- Case C:Compressor module

GENERAL	_			У	•
Beam No.	12				2
Descrip.	Top beam			4 4	
Analysis:	Offshore lift an	Offshore lift and horizon.impact			
			_		
SECTION	PROPERTIES]		
d	324.0	mm]	//	
t	16.0	mm		//	(a)
r	154	mm		[[
α	1.441	rad		((
Ax	15482	mm2		$\langle \rangle$	
Ау	7741	mm2			/
Az	7741	mm2			
ly	1.841E+08	mm4			\leq
Iz	1.841E+08	mm4			
lx	3.682E+08	mm4			
			-		d
MATERIA	L				

355.0 N/mm2

1.15 -

VON MISES YIELD CRITERION

MEMBER FORCES FOR OFF SHOR.LIFT							
Fx	304.0	kN					
Fy	82.3	kN					
Fz	6.2	kN					
Mx	4.4	kNm					
My	11.1	kNm					
Mz	84.6	kNm					

3

z

fy

γm

STRE SS CALCULATION S AND UTILIZATION FOR OFF SHORE LIFTING ONLY								
	σx1 σby1 σbz1 τx1 τy1 τz1							
Point 1	19.6	9.3	0.0	1.8	10.6	0.0	36.1	
Point 2	19.6	0.0	70.7	1.8	0.0	0.8	90.5	
Point 3	19.6	71.3 1.8 10.7					93.5	
Utilization:							0.30	

* Apply, F _{HIRsub}	≈ 43 <i>kN</i>	

MEMBER FORCES FOR IMPACT						
Fx	0.0	kN				
Fy	0.0	kN				
Fz	43.0	kN				
Mx	0.0	kNm				
My	0.0	kNm				
Mz	0.0	kNm				

STRE SS CALCULATION S AND UTILIZATION FOR HORIZONTAL IMPACT ON LY								
	σx2 σby2 σbz2 τx2 τy2 τz2							
Point 1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Point 2	0.0	0.0	0.0	0.0	0.0	5.6	9.6	
Point 3	0.0	0	.0	0.0	5	.6	9.6	
Utilization:							0.03	

STRE SS CALCULATION S AND UTILIZATION FOR OFF SHORE LIFTING AND HORIZON TAL IMPACT								
	σx12	σby12	σbz12	τx12	τ y 12	τz12	σe	
Point 1	19.6	9.3	0.0	1.8	10.6	0.0	36.1	
Point 2	19.6	0.0	70.7	1.8	0.0	6.4	91.5	
Point 3	19.6	71	.3	1.8	16.2		96.2	
Utilization							0.31	

* According to DNV 2.7.3 section 3.6.2 , the impact stress are combined with lifting stress

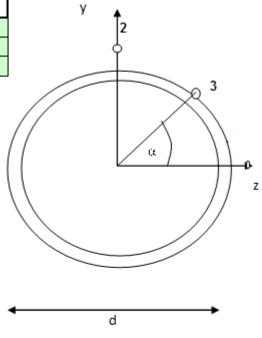
INPUT LOADS

1.0 -End forces from Staad analysis for compressor module offshore lift

🛄 offsl	🧰 offshore lift compressor.std - Beam End Force									
Beam	L/C	Node	Axial Force kN	Shear-Y kN	Shear-Z kN	Torsion kNm	Moment-Y kNm	Moment-Z kNm		
12	3	5	304.018	82.290	-6.222	-4.360	11.073	71.843		
		13	-304.018	-74.110	6.222	4.360	1.371	84.557		

2.0 -Horizontal impact loads

Refer attached calcaulations for horizontal impact loads during offshore lifting for compressor module


 $F_{HI(sub)} \approx 71 \ kN$ -To be applied on corner posts , bottom beams and intermediate

 $F_{HIR(sub)} \approx 43 \ kN$ -To be applied on end/side structure and top beams

GENERAL	
Beam No.	21
Descrip.	Middel post
Analysis:	Offshore lift and horizon.impact

SECTION I	SECTION PROPERTIES						
d	324.0	mm					
t	16.0	mm					
r	154	mm					
α	1.550	rad					
Ax	15482	mm2					
Ay	7741	mm2					
Az	7741	mm2					
ly	1.841E+08	mm4					
Iz	1.841E+08	mm4					
lx	3.682E+08	mm4					

MATERIAL							
fy	355.0	N/mm2					
γm	1.15	-					

MEMBER FORCES FOR OFF SHOR.LIFT							
Fx	453.4	kN					
Fy	73.7	kN					
Fz	2.5	kN					
Mx	0.1	kNm					
My	3.6	kNm					
Mz	176.1	kNm					

STRE SS CALCULATION S AND UTILIZATION FOR OFF SHORE LIFTING ONLY									
	σx1	σby1	σbz1	τx1	τy1	τz1	σe1		
Point 1	29.3	3.0	0.0	0.0	9.5	0.0	36.3		
Point 2	29.3	0.0	147.3	0.0	0.0	0.3	176.6		
Point 3	29.3	147.3		0.0	9.5		177 <i>.</i> 4		
Utilization	Utilization:								

* Apply	Furme	\approx 71 kN
- appey	HISUD	

MEMBER FORCES FOR IMPACT							
Fx	0.0	kN					
Fy	0.0	kN					
Fz	71.0	kN					
Mx	0.0	kNm					
My	0.0	kNm					
Mz	0.0	kNm					

STRE SS CALCULATION S AND UTILIZATION FOR HORIZON TAL IMPACT ON LY							
	σx2	σby2	σbz2	τx2	τ y 2	τz2	σe2
Point 1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Point 2	0.0	0.0	0.0	0.0	0.0	9.2	15.9
Point 3	0.0	0	.0	0.0	9	15.9	
Utilization	Utilization:						

STRE SS CALCULATION S AND UTILIZATION FOR OFF SHORE LIFTING AND HORIZONTAL IMPACT								
	σx12	σby12	σbz12	τx12	τ y 12	τz12	σe	
Point 1	29.3	3.0	0.0	0.0	9.5	0.0	36.3	
Point 2	29.3	0.0	147.3	0.0	0.0	9.5	177.4	
Point 3	29.3	14	7.3	0.0	18.7		179.6	
Utilization	Utilization:							

* According to DNV 2.7.3 section 3.6.2 , the impact stress are combined with lifting stress

INPUT LOADS

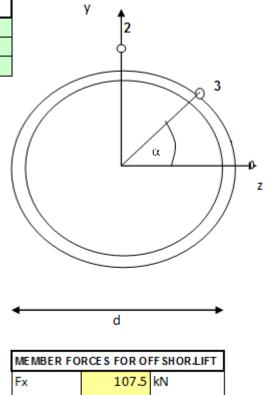
1.0 -End forces from Staad analysis for compressor module offshore lift

🥅 offshore lift compressor.std - Beam End Force

Beam	L/C	Node	Axial Force kN	Shear-Y kN	Shear-Z kN	Torsion kNm	Moment-Y kNm	Moment-Z kNm
21	3	16	-453.394	-73.671	2.537	0.108	-3.525	-30.217
		14	441.942	73.671	-2.537	-0.108	-3.579	-176.062

2.0 -Horizontal impact loads

Refer attached calcaulations for horizontal impact loads during offshore lifting for compressor module


 $F_{HI(sub)} \approx 71 \ kN$ -To be applied on corner posts , bottom beams and intermediate

 $F_{HIR(sub)} \approx 43 \ kN$ -To be applied on end/side structure and top beams

GENERAL	
Beam No.	29
Descrip.	Intermidate beam
Analysis:	Offshore lift and horizon.impact

SECTION PROPERTIES				
d	324.0	mm		
t	16.0	mm		
r	154	mm		
α	0.925	rad		
Ax	15482	mm2		
Ay	7741	mm2		
Az	7741	mm2		
ly	1.841E+08	mm4		
Iz	1.841E+08	mm4		
lx	3.682E+08	mm4		

MATERIAL						
fy	355.0	N/mm2				
γm	1.15	-				

Fx	107.5	kN				
Fy	67.7	kN				
Fz	38.4	kN				
Mx	8.9	kNm				
My	49.4	kNm				
Mz	65.6	kNm				

STRE SS CALCULATION S AND UTILIZATION FOR OFF SHORE LIFTING ONLY							
	σx1	σby1	σbz1	τx1	τ y 1	τz1	σe1
Point 1	6.9	41.4	0.0	3.7	8.8	0.0	52.9
Point 2	6.9	0.0	54.9	3.7	0.0	5.0	63.6
Point 3	6.9	68	3. 7	3.7	1	0.1	79.3
Utilization							0.26

* Apply , F _{HIsub}	≈	71	kN	

MEMBER FORCES FOR IMPACT					
Fx	0.0	kN			
Fy	0.0	kN			
Fz	71.0	kN			
Mx	0.0	kNm			
My	0.0	kNm			
Mz	0.0	kNm			

STRE SS CALCULATION S AND UTILIZATION FOR HORIZON TAL IMPACT ON LY							
	σx2	σby2	σbz2	τx2	τ y 2	τz2	σe2
Point 1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Point 2	0.0	0.0	0.0	0.0	0.0	9.2	15.9
Point 3	0.0	0	.0	0.0	9	.2	15.9
Utilization:	Utilization:					0.05	

STRE SS CALCULATION S AND UTILIZATION FOR OFF SHORE LIFTING AND HORIZONTAL IMPACT							
	σx12	σby12	obz12	τx12	τ y 12	τz12	σe
Point 1	6.9	41.4	0.0	3.7	8.8	0.0	52.9
Point 2	6.9	0.0	54.9	3.7	0.0	14.1	69.1
Point 3	6.9	68	.7	3.7	19	9.2	85.5
Utilization:					0.28		

* According to DNV 2.7.3 section 3.6.2 , the impact stress are combined with lifting stress

INPUT LOADS

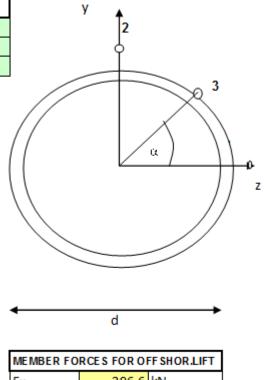
1.0 -End forces from Staad analysis for compressor module offshore lift

	offshore	lift c	ompressor	.std -	Beam	End	Force
--	----------	--------	-----------	--------	------	-----	-------

Beam	L/C	Node	Axial Force kN	Shear-Y kN	Shear-Z kN	Torsion kNm	Moment-Y kNm	Moment-Z kNm
29	3	16	107.465	-59.561	-38.405	8.946	49.449	-65.571
		17	-107.465	67.741	38.405	-8.946	27.362	-61.731

2.0 -Horizontal impact loads

Refer attached calcaulations for horizontal impact loads during offshore lifting for compressor module


 $F_{HI(sub)} \approx 71 \ kN$ -To be applied on corner posts , bottom beams and intermediate

 $F_{HIR(sub)} \approx 43 \ kN$ -To be applied on end/side structure and top beams

GENERAL	
Beam No.	30
Descrip.	Corner post
Analysis:	Offshore lift and horizon.impact

SECTION I	SECTION PROPERTIES				
d	324.0	mm			
t	16.0	mm			
r	154	mm			
α	1.032	rad			
Ax	15482	mm2			
Ay	7741	mm2			
Az	7741	mm2			
ly	1.841E+08	mm4			
Iz	1.841E+08	mm4			
lx	3.682E+08	mm4			

MATERIAL					
fy	355.0	N/mm2			
γm	1.15	-			

MEMBER FORCES FOR OFF SHOR.LIFT				
Fx	296.6	kN		
Fy	116.8	kN		
Fz	40.8	kN		
Mx	1.7	kNm		
My	70.9	kNm		
Mz	118.6	kNm		

STRE SS CALCULATION S AND UTILIZATION FOR OFF SHORE LIFTING ONLY							
	σx1	σby1	σbz1	τx1	τy1	τz1	σe1
Point 1	19.2	59.3	0.0	0.7	15.1	0.0	83.1
Point 2	19.2	0.0	99.2	0.7	0.0	5.3	118.8
Point 3	19.2	11	5.6	0.7	10	5.0	137.8
Utilization:					0.45		

* Apply , $F_{HIsub} pprox$ 71 kN

MEMBER FORCES FOR IMPACT				
Fx	0.0	kN		
Fy	0.0	kN		
Fz	71.0	kN		
Mx	0.0	kNm		
My	0.0	kNm		
Mz	0.0	kNm		

STRE SS CALCULATION S AND UTILIZATION FOR HORIZON TAL IMPACT ON LY							
	σx2	σby2	σbz2	τx2	τ y 2	τz2	σe2
Point 1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Point 2	0.0	0.0	0.0	0.0	0.0	9.2	15.9
Point 3	Point 3 0.0 0.0 0.0 9.2					15.9	
Utilization:					0.05		

STRE SS CAL	STRE SS CALCULATION S AND UTILIZATION FOR OFF SHORE LIFTING AND HORIZON TAL IMPACT						
	σx12	σby12	σbz12	τx12	τ y 12	τz12	σe
Point 1	19.2	59.3	0.0	0.7	15.1	0.0	83.1
Point 2	19.2	0.0	99.2	0.7	0.0	14.4	121.3
Point 3 19.2 115.6 0.7 25.2						142.0	
Utilization:					0.46		

* According to DNV 2.7.3 section 3.6.2 , the impact stress are combined with lifting stress

INPUT LOADS

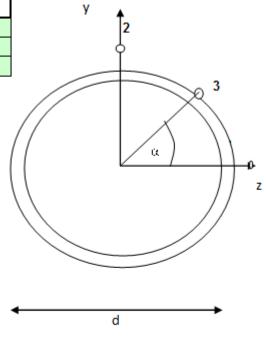
1.0 -End forces from Staad analysis for compressor module offshore lift

offshore lift compressor.std - Beam End Force

Beam	L/C	Node	Axial Force kN	Shear-Y kN	Shear-Z kN	Torsion kNm	Moment-Y kNm	Moment-Z kNm
30	3	22	-296.588	-116.786	40.785	1.675	13.822	-44.880
		3	290.862	116.786	-40.785	-1.675	-70.922	-118.621

2.0 -Horizontal impact loads

Refer attached calcaulations for horizontal impact loads during offshore lifting for compressor module


 $F_{HI(sub)} \approx 71 \ kN$ -To be applied on corner posts , bottom beams and intermediate

 $F_{HIR(sub)} \approx 43 \ kN$ -To be applied on end/side structure and top beams

GENERAL	
Beam No.	62
Descrip.	Brace
Analysis:	Offshore lifting

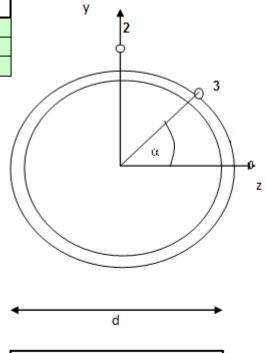
SECTION I	SECTION PROPERTIES			
d	114.0	mm		
t	6.0	mm		
r	54	mm		
α	0.785	rad		
Ax	2036	mm2		
Ay	1018	mm2		
Az	1018	mm2		
ly	2.977E+06	mm4		
Iz	2.977E+06	mm4		
lx	5.955E+06	mm4		

MATERIAL					
fy	355.0	N/mm2			
γm	1.15	-			

MEMBER FORCES FOR OFF SHOR.LIFT				
Fx	98.8	kN		
Fy	0.6	kN		
Fz	0.0	kN		
Mx	0.0	kNm		
My	0.0	kNm		
Mz	0.0	kNm		

STRE \$\$ CALCULATION \$ AND UTILIZATION FOR OFF SHORE LIFTING ONLY (Braces take no impact)									
	σx1	σby1	σbz1	τx1	τy1	τz1	σe1		
Point 1	48.6	0.0	0.0	0.0	0.6	0.0	48.6		
Point 2	48.6	0.0	0.0	0.0	0.0	0.0	48.6		
Point 3	48.6	0	.0	0.0	0	.6	48.6		
Utilisation	:						0.16		

INPUT LOADS


1.0 -End forces from Staad analysis for compressor module offshore lift

🛄 offsl	offshore lift compressor.std - Beam End Force										
Beam	L/C	Node	Axial Force kN	Shear-Y kN	Shear-Z kN	Torsion kNm	Moment-Y kNm	Moment-Z kNm			
62	3	31	96.475	0.565	0.000	0.000	0.000	0.000			
		20	-98.848	0.565	-0.000	0.000	0.000	0.000			

GENERAL	
Beam No.	101
Descrip.	Bottom beam
Analysis:	Offshore lift and horizon.impact

SECTION PROPERTIES							
d	324.0	mm					
t	16.0	mm					
r	154	mm					
α	1.510	rad					
Ax	15482	mm2					
Ay	7741	mm2					
Az	7741	mm2					
ly	1.841E+08	mm4					
Iz	1.841E+08	mm4					
lx	3.682E+08	mm4					

MATERIAL							
fy	355.0	N/mm2					
γm	1.15	-					

MEMBER FORCES FOR OFF SHOR.LIFT							
Fx	34.2	kN					
Fy	205.6	kN					
Fz	3.6	kN					
Mx	117.2	kNm					
My	7.7	kNm					
Mz	125.7	kNm					

STRE SS CALCULATION S AND UTILIZATION FOR OFF SHORE LIFTING ONLY									
	<u>σx1</u>	σby1	σbz1	τx1	τy1	τz1	σe1		
Point 1	2.2	6.4	0.0	49.0	26.6	0.0	131.2		
Point 2	2.2	0.0	105.2	49.0	0.0	0.5	137.4		
Point 3	2.2	105.4		49.0	26.6		169.5		
Utilization	:	Utilization:							

*	Apply	, F _{HIsub}	\approx	71	kN	
---	-------	----------------------	-----------	----	----	--

MEMBER FORCES FOR IMPACT							
Fx	0.0	kN					
Fy	0.0	kN					
Fz	71.0	kN					
Mx	0.0	kNm					
My	0.0	kNm					
Mz	0.0	kNm					

STRE SS CALCULATION S AND UTILIZATION FOR HORIZONTAL IMPACT ON LY								
	σx2	σby2	σbz2	τx2	τ y 2	τz2	σe2	
Point 1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Point 2	0.0	0.0	0.0	0.0	0.0	9.2	15.9	
Point 3	0.0	0	.0	0.0	9	2	15.9	
Utilization:							0.05	

STRE SS CALCULATION S AND UTILIZATION FOR OFF SHORE LIFTING AND HORIZONTAL IMPACT									
	σx12	σby12	σbz12	τx12	τ y 12	τz12	σe		
Point 1	2.2	6.4	0.0	49.0	26.6	0.0	131.2		
Point 2	2.2	0.0	105.2	49.0	0.0	9.6	147.9		
Point 3	2.2	105.4		49.0	35.7		182.0		
Utilization							0.59		

* According to DNV 2.7.3 section 3.6.2 , the impact stress are combined with lifting stress

INPUT LOADS

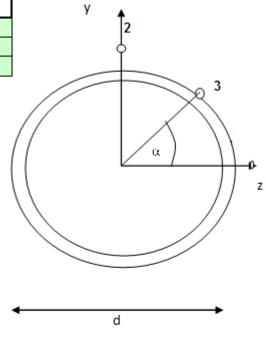
1.0 -End forces from Staad analysis for compressor module offshore lift

	offshore	lift	compressor.std	- 8	Beam	End	Force
--	----------	------	----------------	-----	------	-----	-------

Beam	L/C	Node	Axial Force kN	Shear-Y kN	Shear-Z kN	Torsion kNm	Moment-Y kNm	Moment-Z kNm
101	3	52	-34.153	-119.522	-3.614	-117.227	7.670	-125.725
		3	34.153	205.644	3.614	117.227	-2.971	-85.633

2.0 -Horizontal impact loads

Refer attached calcaulations for horizontal impact loads during offshore lifting for compressor module


 $F_{HI(sub)} \approx 71 \ kN$ -To be applied on corner posts , bottom beams and intermediate

 $F_{HIR(sub)} \approx 43 \ kN$ -To be applied on end/side structure and top beams

GENERAL	
Beam No.	104
Descrip.	Bottom middel beam
Analysis:	Offshore lifting

SECTION PROPERTIES						
d	273.0	mm				
t	16.0	mm				
r	128.5	mm				
α	1.561	rad				
Ax	12918	mm2				
Ау	6459	mm2				
Az	6459	mm2				
ly	1.071E+08	mm4				
Iz	1.071E+08	mm4				
lx	2.141E+08	mm4				

MATERIAL							
fy	355.0	N/mm2					
γm	1.15	-					

MEMBER FORCES FOR OFF SHOR LIFT							
Fx	32.6	kN					
Fy	437.3	kN					
Fz	0.0	kN					
Mx	0.0	kNm					
My	1.9	kNm					
Mz	204.4	kNm					

STRE SS CALCULATION S AND UTILIZATION FOR OFF. LIFTING ONLY (Bot. mid.beam takes no impact)								
	σx1	σby1	σby1 σbz1 τx1 τy1 τz1					
Point 1	2.5	2.3	0.0	0.0	67.7	0.0	117.4	
Point 2	2.5	0.0	245.3	0.0	0.0	0.0	247.8	
Point 3	2.5	245.3		0.0	67	7.7	274.2	
Utilisation	Utilisation:							

INPUT LOADS

1.0 -End forces from Staad analysis for compressor module offshore lift

🛄 offsl	offshore lift compressor.std - Beam End Force										
Beam	L/C	Node	Axial Force kN	Shear-Y kN	Shear-Z kN	Torsion kNm	Moment-Y kNm	Moment-Z kNm			
104	3	51	-32.582	437.311	0.000	0.000	-1.914	204.377			
		54	32.582	437.311	-0.000	-0.000	1.914	-204.377			

Appendix C₉: **Von Mises yield criteria for transportation-Case C:Compressor** module

GENERAL	-			l l	/	
Beam No.	12			2		
Descrip.	Top beam			(5	
Analysis:	Transport anal	ysis				
			_		_	
SECTION	PROPERTIE S					
d	324.0	mm		//		
t	16.0	mm		[[
r	154	mm				
α	1.379	rad				
Ax	15482	mm2				
Ay	7741	mm2				
Az	7741	mm2				
ly	1.841E+08	mm4				
Iz	1.841E+08	mm4				
Ix	3.682E+08	mm4				

VON MISES YIELD CRITERION

MATERIAL		
fy	355.0	N/mm2
γm	1.15	-

MEMBER FORCES FOR TRAN SPORT								
Fx	22.8	kN						
Fy	27.9	kN						
Fz	2.9	kN						
Mx	0.1	kNm						
My	5.2	kNm						
Mz	26.9	kNm						

d

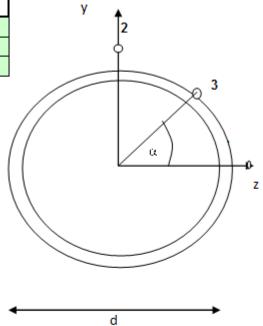
3

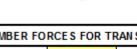
z

a

STRE SS CALCULATION S AND UTILIZATION FOR TRANSPORT ANALYSIS								
	σx1	σby1	σbz1	τx1	τy1	τz1	σe1	
Point 1	1.5	4.4	0.0	0.0	3.6	0.0	8.6	
Point 2	1.5	0.0	22.5	0.0	0.0	0.4	24.0	
Point 3	1.5	22.9		0.0	3.6		25.2	
Utilization	Utilization:						0.08	

INPUT LOADS


1.0 -End forces from Staad analysis for compressor module transport analysis


III Tran	Transport compressor.std - Beam End Force									
Beam	L/C	Node	Axial Force kN	Shear-Y kN	Shear-Z kN	Torsion kNm	Moment-Y kNm	Moment-Z kNm		
12	35	5	-19.369	27.902	-2.901	-0.061	5.226	26.929		
		13	22.777	-21.872	2.901	0.061	0.576	22.844		

GENERAL	
Beam No.	21
Descrip.	Middel post
Analysis:	Transport analysis

SECTION PROPERTIES					
d	324.0	mm			
t	16.0	mm			
r	154	mm			
α	1.557	rad			
Ax	15482	mm2			
Ау	7741	mm2			
Az	7741	mm2			
ly	1.841E+08	mm4			
Iz	1.841E+08	mm4			
lx	3.682E+08	mm4			

MATERIAL						
fy	355.0	N/mm2				
γm	1.15	-				

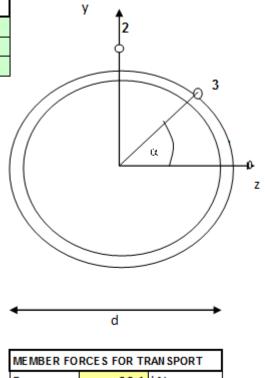
MEMBER FORCES FOR TRAN SPORT						
Fx	136.8					
Fy	34.9	kN				
Fz	0.6	kN				
Mx	1.4	kNm				
My	1.1	kNm				
Mz	81.2	kNm				

STRE SS CALCULATION S AND UTILIZATION FOR TRANSPORT ANALYSIS											
	σx1 σby1 σbz1 τx1 τy1 τz1						σe1				
Point 1	8.8	0.9	0.0	0.6	4.5	0.0	13.1				
Point 2	8.8	0.0	67.9	0.6	0.0	0.1	76.8				
Point 3	8.8	67	.9	0.6	4	.5	77.3				
Utilization:											

INPUT LOADS

1.0 -End forces from Staad analysis for compressor module transport analysis

III Tran	Transport compressor.std - Beam End Force							
Beam	L/C	Node	Axial Force kN	Shear-Y kN	Shear-Z kN	Torsion kNm	Moment-Y kNm	Moment-Z kNm
21	17	16	-136.817	-31.236	-0.619	1.358	0.637	-11.430
		14	132.046	34.907	0.619	-1.358	1.095	-81.170


GENERAL	
Beam No.	29
Descrip.	Intermidate beam
Analysis:	Transport analysis

SECTION PROPERTIES							
d	324.0	mm					
t	16.0	mm					
r	154	mm					
α	1.259	rad					
Ax	15482	mm2					
Ау	7741	mm2					
Az	7741	mm2					
ly	1.841E+08	mm4					
Iz	1.841E+08	mm4					

MATERIAL						
fy	355.0	N/mm2				
γm	1.15	-				

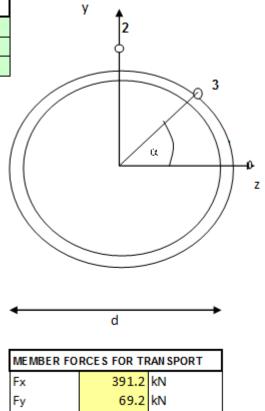
3.682E+08 mm4

Ix

MEMBER FORCES FOR TRAN SPORT						
Fx	39.1 kN					
Fy	44.0	kN				
Fz	10.7 kN					
Mx	3.2	kNm				
My	15.4	kNm				
Mz	47.7	kNm				

STRE SS CALCULATION S AND UTILIZATION FOR TRANSPORT ANALYSIS								
	σx1	σx1 σby1 σbz1 τx1 τy1 τz1						
Point 1	2.5	12.9	0.0	1.3	5.7	0.0	19.6	
Point 2	2.5	0.0	39.9	1.3	0.0	1.4	42.7	
Point 3	2.5 41.9 1.3 5.9					46.1		
Utilization:			Utilization:					

INPUT LOADS


1.0 -End forces from Staad analysis for compressor module transport analysis

🛄 Tran	Transport compressor.std - Beam End Force								
Beam	L/C	Node	Axial Force kN	Shear-Y kN	Shear-Z kN	Torsion kNm	Moment-Y kNm	Moment-Z kNm	
29	33	16	35.732	-37.973	-10.732	3.172	15.361	-34.308	
		17	-39.140	44.003	10.732	-3.172	6.102	-47.669	

GENERAL	
Beam No.	30
Descrip.	Corner post
Analysis:	Transport analysis

SECTION I	SECTION PROPERTIES						
d	324.0	mm					
t	16.0	mm					
r	154	mm					
α	1.365	rad					
Ax	15482	mm2					
Ay	7741	mm2					
Az	7741	mm2					
ly	1.841E+08	mm4					
Iz	1.841E+08	mm4					
lx	3.682E+08	mm4					

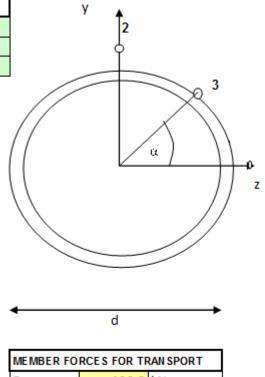
MATERIAL					
fy	355.0	N/mm2			
γm	1.15	-			

MEMBER FORCES FOR TRANSPORT					
Fx	391.2	kN			
Fy	69.2	kN			
Fz	11.3	kN			
Mx	2.7	kNm			
My	18.8	kNm			
Mz	89.9	kNm			

STRE SS CALCULATION S AND UTILIZATION FOR TRANSPORT ANALYSIS							
	σx1 σby1 σbz1 τx1 τy1 τz1						σe1
Point 1	25.3	15.7	0.0	1.1	8.9	0.0	44.5
Point 2	25.3	0.0	75.2	1.1	0.0	1.5	100.6
Point 3	25.3	76	.9	1.1	9	.1	103.6
Utilization:	·						0.34

INPUT LOADS

1.0 -End forces from Staad analysis for compressor module transport analysis


🛄 Tran	Transport compressor.std - Beam End Force							
Beam	L/C	Node	Axial Force kN	Shear-Y kN	Shear-Z kN	Torsion kNm	Moment-Y kNm	Moment-Z kNm
30	31	22	386.954	-66.863	11.334	2.651	2.941	-5.348
		3	-391.175	69.248	-11.334	-2.651	-18.809	-89.930

GENERAL	
Beam No.	63
Descrip.	Braces
Analysis:	Transport analysis

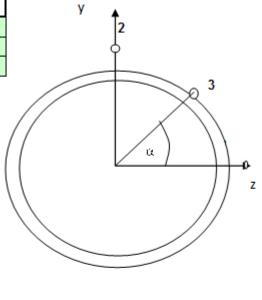
Beam No.	63				
Descrip.	Braces				
Analysis:	Transport analysis				
SECTION PROPERTIES					

SECTION PROPERTIES				
d	114.0	mm		
t	6.0	mm		
r	54	mm		
α	0.785	rad		
Ax	2036	mm2		
Ау	1018	mm2		
Az	1018	mm2		
ly	2.977E+06	mm4		
Iz	2.977E+06	mm4		
lx	5.955E+06	mm4		

MATERIAL					
fy	355.0	N/mm2			
γm	1.15	-			

MEMBER FORCES FOR TRAN SPORT					
Fx	109.8	kN			
Fy	0.1	kN			
Fz	0.0	kN			
Mx	0.0	kNm			
My	0.0	kNm			
Mz	0.0	kNm			

STRE SS CALCULATION S AND UTILIZATION FOR TRANSPORT ANALYSIS							
	σx1	σx1 σby1 σbz1 τx1 τy1 τz1					
Point 1	54.0	0.0	0.0	0.0	0.1	0.0	54.0
Point 2	54.0	0.0	0.0	0.0	0.0	0.0	54.0
Point 3	54.0	0.	0	0.0	0	.1	54.0
Utilization:							0.17


INPUT LOADS

1.0 -End forces from Staad analysis for compressor module transport analysis

🛄 Tran	Transport compressor.std - Beam End Force							
Beam	L/C	Node	Axial Force kN	Shear-Y kN	Shear-Z kN	Torsion kNm	Moment-Y kNm	Moment-Z kNm
63	35	31	107.627	-0.078	0.000	0.000	0.000	0.000
		30	-109.847	-0.078	-0.000	0.000	0.000	0.000

GENERAL	
Beam No.	101
Descrip.	Bottom beam
Analysis:	Transport analysis

Analysis:	Transport analysis					
SECTION PROPERTIES						
d	324.0	mm				
t	16.0	mm				
r	154	mm				
α	1.547	rad				
Ax	15482	mm2				
Ay	7741	mm2				
Az	7741	mm2				

MATERIAL		
fy	355.0	N/mm2
γm	1.15	-

1.841E+08 mm4 1.841E+08 mm4

3.682E+08 mm4

ly

Iz

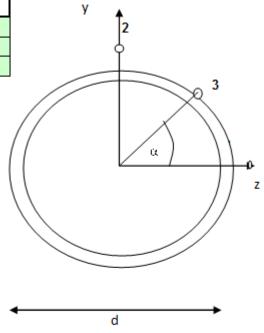
lx.

MEMBER FORCES FOR TRANSPORT					
Fx	18.9	kN			
Fy	117.8	kN			
Fz	3.7	kN			
Mx	41.2	kNm			
My	2.5	kNm			
Mz	105.7	kNm			

d

STRE SS CALCULATION S AND UTILIZATION FOR TRANSPORT ANALYSIS							
	σx1	σby1	σbz1	τx1	τy1	τz1	σe1
Point 1	1.2	2.1	0.0	17.2	15.2	0.0	56.3
Point 2	1.2	0.0	88.5	17.2	0.0	0.5	94.8
Point 3	1.2	88	3.5	17.2	1!	5.2	105.9
Utilization:							0.34

INPUT LOADS


1.0 -End forces from Staad analysis for compressor module transport analysis

🛄 Tran	Transport compressor.std - Beam End Force							
Beam	L/C	Node	Axial Force kN	Shear-Y kN	Shear-Z kN	Torsion kNm	Moment-Y kNm	Moment-Z kNm
101	35	52	18.873	-88.012	-3.716	-41.187	2.481	-28.072
		3	-16.658	117.831	3.716	41.187	2.350	-105.726

GENERAL	
Beam No.	104
Descrip.	Bottom middel beam
Analysis:	Transport analysis

SECTION I	SECTION PROPERTIES				
d	324.0	mm			
t	16.0	mm			
r	154	mm			
α	1.543	rad			
Ax	15482	mm2			
Ay	7741	mm2			
Az	7741	mm2			
ly	1.841E+08	mm4			
Iz	1.841E+08	mm4			
lx	3.682E+08	mm4			

MATERIAL					
fy	355.0	N/mm2			
γm	1.15	-			

MEMBER FORCES FOR TRANSPORT					
Fx	8.7	kN			
Fy	184.0	kN			
Fz	1.8	kN			
Mx	0.0	kNm			
My	2.5	kNm			
Mz	87.8	kNm			

STRE SS CALCULATION S AND UTILIZATION FOR TRANSPORT ANALYSIS							
	σx1	σby1	σbz1	τx1	τy1	τz1	σe1
Point 1	0.6	2.1	0.0	0.0	23.8	0.0	41.3
Point 2	0.6	0.0	73.5	0.0	0.0	0.2	74.1
Point 3	0.6	73	.5	0.0	23	3.8	84.8
Utilization:							0.27

INPUT LOADS

1.0 -End forces from Staad analysis for compressor module transport analysis

🛄 Tran	Transport compressor.std - Beam End Force							
Beam	L/C	Node	Axial Force kN	Shear-Y kN	Shear-Z kN	Torsion kNm	Moment-Y kNm	Moment-Z kNm
104	27	51	-8.697	184.048	1.835	0.000	-2.460	87.844
		54	8.697	184.048	1.835	-0.000	2.460	-87.844

Appendix C10: Von Mises yield criteria for landing-Case A:Pump module

GENERAL					У 🔺		
Beam No.	212-213-214-2	15			2		
Descrip.	Corner post			1	Ą		
Analysis:	Landing analysi	is pump mo	del]			
SECTION	PROPERTIE S		1			\sim 3	
d	324.0	mm	1	//		$X \vee$	\
t	16.0	mm		//		α)	
r	154	mm				<u>~</u> /	⊢⊢o
α	0.785	rad)	;
Ax	15482	mm2		$\langle \rangle$		/	/
Ау	7741	mm2					/
Az	7741	mm2					
ly	1.841E+08	mm4			\sim		
Iz	1.841E+08	mm4					
lx	3.682E+08	mm4					
			-		d		
MATERIAL	-						_
fy	355.0	N/mm2		MEMBER FO	RCES FOR La	ading	
γm	1.15	-		Fx	54.0	kN]
			-	Fy	493.0	kN	
				Fz	0.0	kN	
				Mx	0.0	kNm	
				My	0.0	kNm	

VON MISES YIELD CRITERION

Von Mises: $[(\sigma x + \sigma by + \sigma bz)^2 + 3(\tau x + \tau y + \tau z)^2]^{(1/2)}$

Mz

0.0 kNm

STRE SS CALCULATION S AND UTILIZATION FOR TRANSPORT ANALYSIS							
	σx1	σby1	σbz1	τx1	τ y 1	τz1	σe1
Point 1	3.5	0.0	0.0	0.0	63.7	0.0	110.4
Point 2	3.5	0.0	0.0	0.0	0.0	0.0	3.5
Point 3	3.5	0	.0	0.0	63	3.7	110.4
Utilisation	:						0.36

INPUT LOADS-Pump model

 $F_{VI} \approx 54 \ kN$ -To be applied on corner post as compression force (in X direction) and horizontal impact of $F_{HI(sub)} \approx 493 \ kN$ in Y or Z direction

Appendix C11: Von Mises yield criteria for landing-Case B:Cooler module

	1					
GENERAL					У 🔺	
Beam No.	84-85-86-87				2	
Descrip.	Corner post				- ¢	
Analysis:	Landing analys	is cooler mo	odel			_
			_			3
SECTION	PROPERTIES					
d	273.0	mm		//		$X \vee$
t	16.0	mm		//		ά)
r	128.5	mm	1			~ /
α	0.785	rad)
Ax	12918	mm2				/
Ау	6459	mm2				
Az	6459	mm2				
ly	1.071E+08	mm4			\sim	
Iz	1.071E+08	mm4				
lx	2.141E+08	mm4				
	-				d	,
MATERIA	L					
fy	355.0	N/mm2]	MEMBER FO	RCES FOR La	iding
γm	1.15	-		Fx	121.0	kN
				Fy	56.0	kN
				Fz	0.0	kN
				Mx	0.0	kNm

VON MISES YIELD CRITERION

Von Mises: $[(\sigma x + \sigma by + \sigma bz)^2 + 3(\tau x + \tau y + \tau z)^2]^{(1/2)}$

My

Mz

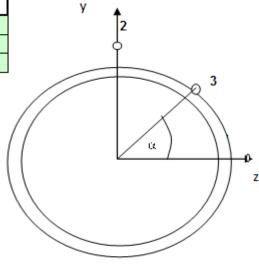
0.0 kNm

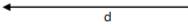
0.0 kNm

STRE SS CALCULATION S AND UTILIZATION FOR TRANSPORT ANALYSIS							
	σx1	σby1	σbz1	τx1	τ y 1	τz1	σe1
Point 1	9.4	0.0	0.0	0.0	8.7	0.0	17.7
Point 2	9.4	0.0	0.0	0.0	0.0	0.0	9.4
Point 3	9.4	0	.0	0.0	8	.7	17.7
Utilisation	:						0.06

INPUT LOADS-Cooler model

 $F_{VI} \approx 121 \ kN$ -To be applied on corner post as compression force of cooler model (in X direction) and horizontal impact of $F_{HI(sub)} \approx 56 \ kN$ in Y or Z direction


Appendix C₁₂: Von Mises yield criteria for landing-Case C:Compressor module


VON MISES YIELD CRITERION

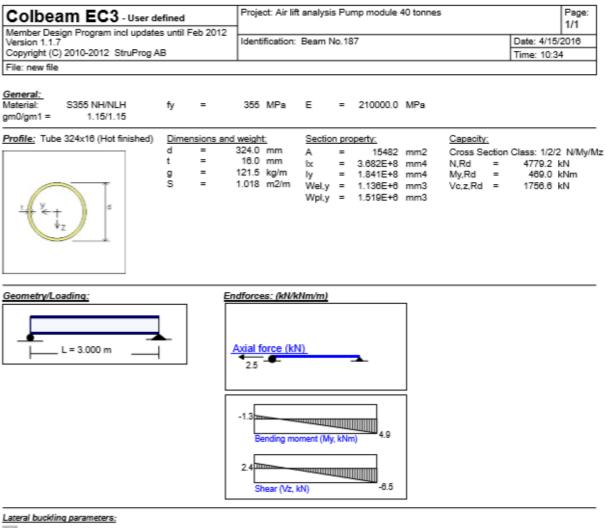
GENERAL	
Beam No.	13-14-15-16
Descrip.	Corner post
Analysis:	Landing analysis compressor mod.

SECTION PROPERTIES					
d	324.0	mm			
t	16.0	mm			
r	154	mm			
α	0.785	rad			
Ax	15482	mm2			
Ау	7741	mm2			
Az	7741	mm2			
ly	1.841E+08	mm4			
Iz	1.841E+08	mm4			
lx	3.682E+08	mm4			

MATERIAL						
fy	355.0	N/mm2				
γm	1.15	-				

MEMBER FORCES FOR Lading						
Fx	152.0	kN				
Fy	71.0	kN				
Fz	0.0	kN				
Mx	0.0	kNm				
My	0.0	kNm				
Mz	0.0	kNm				

Von Mises: $[(\sigma x + \sigma by + \sigma bz)^2 + 3(\tau x + \tau y + \tau z)^2]^{(1/2)}$


STRE SS CALCULATION S AND UTILIZATION FOR TRANSPORT ANALYSIS							
	σx1	σby1	σbz1	τx1	τy1	τz1	σe1
Point 1	9.8	0.0	0.0	0.0	9.2	0.0	18.7
Point 2	9.8	0.0	0.0	0.0	0.0	0.0	9.8
Point 3	9.8	0	.0	0.0	9	.2	18.7
Utilisation	:						0.06

INPUT LOADS-Compressor model

 $F_{VI} \approx 152 \ kN$ -To be applied on corner post as compression force of cooler model (in X direction) and horizontal impact of $F_{HI(sub)} \approx 71 \ kN$ in Y or Z direction

Appendix D: Colbeam EC3 calculations

Appendix D1: Colbeam EC3 calculations for air lift Case A:Pump module

×

Governing Loadcase: Basic loads: G + Q1 + Q2 <u>SECTION CONTROL</u>:

IR = My,EdiMy,Rd = 4.9/489.0 = 0.01 < 1.0 (1.00L; Ch 8.2.5) IR = My,EdiMN.y,Rd = 4.9/489.0 = 0.01 < 1.0 (1.00L; Ch 8.2.9) IR = Vz,Ed/Vz,Rd = 6.5/1756.8 = 0.00 < 1.0 (1.00L; Ch 8.2.6)

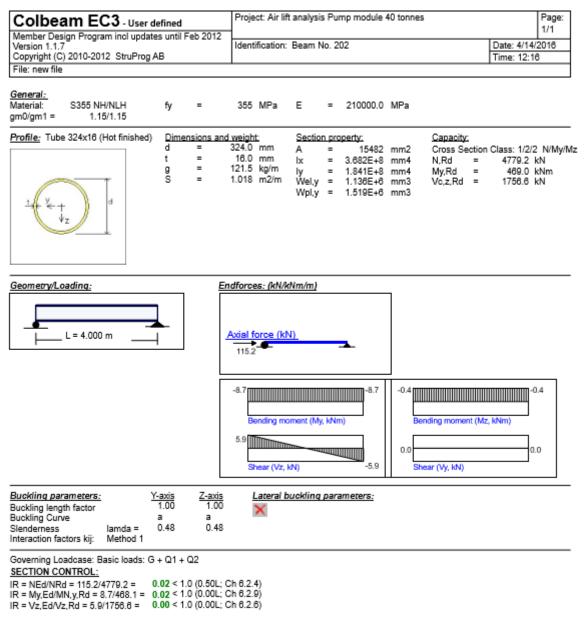
CRITICAL DESIGN PHASE FOR SUBSEA MODULE SUPPORTING STRUCTURES

Colbeam EC3 - User defined	Project: Air lift analysis Pump module 40 tonnes	Page: 1/1	
Member Design Program incl updates until Feb 2012 Version 1.1.7 Copyright (C) 2010-2012 StruProg AB	Identification: Beam No.194	Date: 4/15/2016 Time: 10:41	
File: new file			
<u>General:</u> Vaterial: S355 NH/NLH fy = ym0/gm1 = 1.15/1.15	355 MPa E = 210000.0 MPa		
÷	324.0 mm A = 15482 mm2 Cross Section 16.0 mm Ix = 3.682E+8 mm4 N.Rd = 121.5 kg/m Iy = 1.841E+8 mm4 My.Rd =	n Class: 1/2/2 N/My/ 4779.2 kN 469.0 kNm 1756.6 kN	
	Axial force (kN)		
	5.5 Bending moment (My, kNm) 15.5 15.5		
Lateral buckling parameters: Soverning Loadcase: Basic loads: G + Q1 + Q2	Shear (Vz, kN) Shear (Vy, kN)		

 Governing Loadcase: Basic loads: G + Q1 + Q2

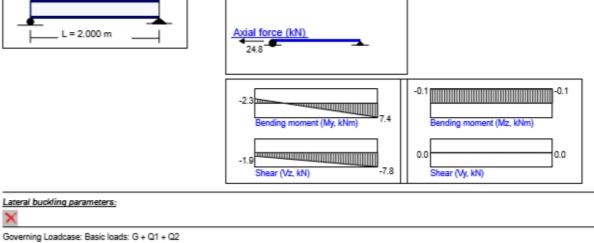
 <u>SECTION CONTROL:</u>

 IR = Mz,Ed/Mz,Rd = 38.3/469.0 =

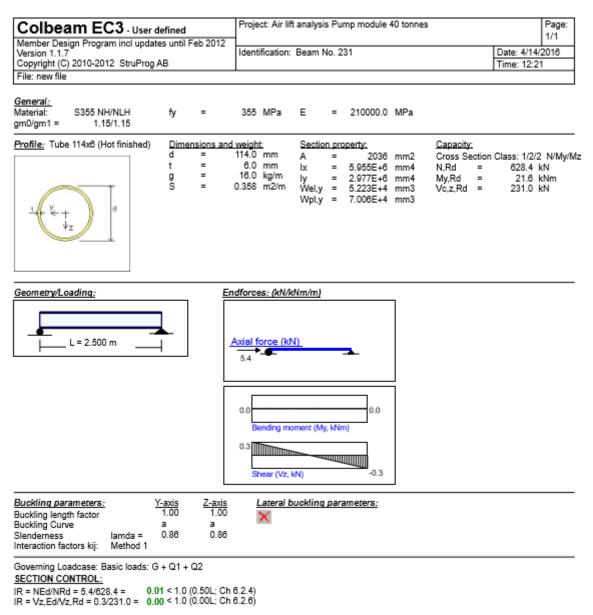

 0.08 < 1.0 (1.00L; Ch 6.2.5)</td>

 IR = Mz,Ed/MN,z,Rd = 38.3/468.7 =

 0.08 < 1.0 (1.00L; Ch 6.2.9)</td>


 IR = Vy,Ed/Vy,Rd = 24.1/1756.6 =

 0.01 < 1.0 (0.00L; Ch 6.2.6)</td>


BUCKLING CONTROL: IR = NEd/Nb,y,Rd + kyy*My,Ed/(xLT*My,Rd) + kyz*Mz,Ed/Mz,Rd = 115.2/4448.2+1.00*8.7/(1.00*469.0)+0.60*0.4/469.0 = 0.04 < 1.0 (Ch 6.3.3) IR = NEd/Nb,z,Rd + kzy*My,Ed/(xLT*My,Rd) + kzz*Mz,Ed/Mz,Rd = 115.2/4448.2+0.60*8.7/(1.00*469.0)+1.00*0.4/469.0 = 0.04 < 1.0 (Ch 6.3.3)

	Colbeam EC3 - User defined				Project: Air lift analysis Pump module 40 tonnes								
Member Design Program incl update Version 1.1.7 Copyright (C) 2010-2012 StruProg A	Identification:	: Beam N	o.22	2			Date: 4/15 Time: 10:3						
File: new file													
<u>General:</u> Material: S355 NH/NLH gm0/gm1 = 1.15/1.15	fy =	355 MPa	Е	-	210000.0	MPa							
Profile: Tube 324x18 (Hot finished)	Dimensions a	nd weight:	Section	pro	perty:		Capacity:						
± vert vert vz	d = t = g = S =	324.0 mm 18.0 mm 121.5 kg/m 1.018 m2/m	A Ix Iy Wel.y	= = =	15482 3.682E+8 1.841E+8	mm4 mm3	Cross Section N,Rd =	4779.2 489.0	kN kNm				
Geometry/Loading:		Endforces: (kW/	kNm/m)]							

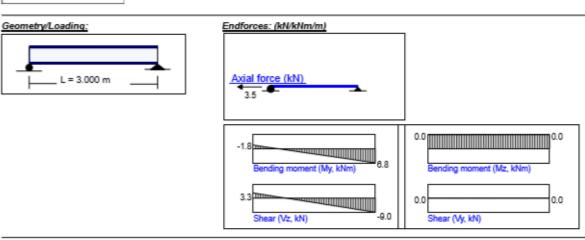
SECTION CONTROL:

IR = My,EdiMy,Rd = 7.4/488.9 = 0.02 < 1.0 (1.00L; Ch 8.2.5) IR = My,EdiMN,y,Rd = 7.4/488.9 = 0.02 < 1.0 (1.00L; Ch 8.2.9) IR = Vz,Ed/Vz,Rd = 7.8/1756.8 = 0.00 < 1.0 (1.00L; Ch 8.2.6)

BUCKLING CONTROL:

No Buckling, ref ch 6.3.1.2 (4); lamdaby/lamdabz<=0.2 or Ned/Ncry<=0.04; Ned/Ncry<=0.04 = =

fy =

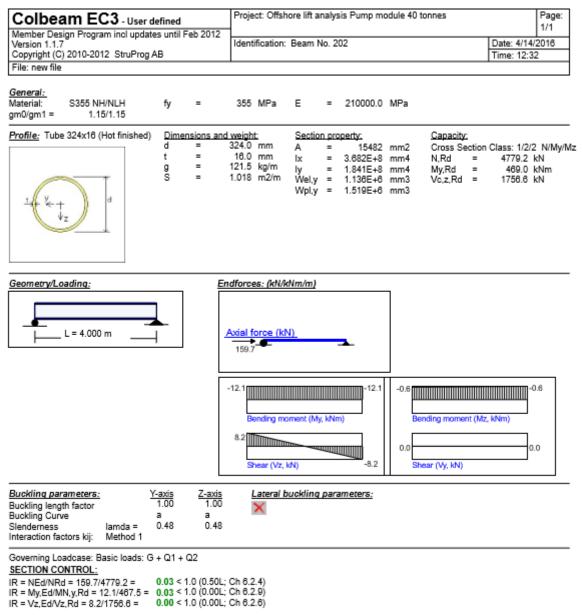

Appendix D₂: Colbeam EC3 calculations for offshore lift Case A:Pump module

Colbeam EC3 - User defined	Project: Offshore lift analysis Pump module 40 tonnes		Page: 1/1
Member Design Program incl updates until Feb 2012 Version 1.1.7	Identification: Beam No.187	Date: 4/15/	
Copyright (C) 2010-2012 StruProg AB		Time: 10:43	3
File: new file			

<u>General:</u> Material: S355 NH/NLH gm0/gm1 = 1.15/1.15

355 MPa E = 210000.0 MPa

Profile: Tube 324x18 (Hot finished)	Dime	nsions a	nd weight	<u>t.</u>	Section	n pro	operty:		Capacity.	_	
	d t S	= = =	121.5	mm	A lx ly Wel,y Wpl,y	=	15482 3.682E+8 1.841E+8 1.136E+6 1.519E+6	mm4 mm4 mm3	Cross Se N,Rd My,Rd Vc,z,Rd	= =	Class: 1/2/2 N/My/Mz 4779.2 kN 489.0 kNm 1756.6 kN

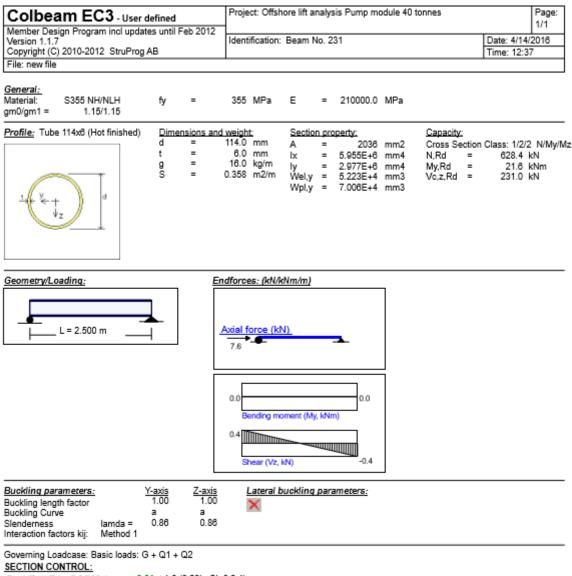

Lateral buckling parameters:

×

Governing Loadcase: Basic loads: G + Q1 + Q2 SECTION CONTROL: $\label{eq:rescaled_rescale} \begin{array}{ll} R = My_{c} EdiMy_{c} Rd = 6.8/469.0 = & 0.01 < 1.0 \ (1.00L; Ch \ 6.2.5) \\ IR = My_{c} EdiMN_{.y}, Rd = 6.8/469.0 = & 0.01 < 1.0 \ (1.00L; Ch \ 6.2.9) \\ IR = Vz_{c} EdiVz_{c}, Rd = 9.0/1756.8 = & 0.01 < 1.0 \ (1.00L; Ch \ 6.2.6) \end{array}$

Colbeam EC3 - User de		Project: Offsh	ore lift ar	alys	is Pump mo	odule 40 f	tonnes		Page: 1/1
Member Design Program incl update Version 1.1.7	s until Feb 2012	Identification:	Beam N	o.19	4			Date: 4/15	/2016
Copyright (C) 2010-2012 StruProg A	в							Time: 10:4	
File: new file									-
<u>General:</u> Material: S355 NH/NLH gm0/gm1 = 1.15/1.15	fy =	355 MPa	Е	=	210000.0	MPa			
Profile: Tube 324x18 (Hot finished)	Dimensions ar	nd weight:	Section	pro	perty:		Capacity:		
	d =	324.0 mm	A	=	15482	mm2	Cross Section	Class: 1/2/2	2 N/Mv/M
	t =	16.0 mm	lx.	=			N.Rd =	4779.2	
	g =	121.5 kg/m	ly	=	1.841E+8	mm4	My.Rd =	469.0	
	S =	1.018 m2/m	Wel.y	=	1.136E+6	mm3	Vc,z,Rd =	1756.6	kN
t v v t v t v t v t v t v t v t v t v t			Wpl,y	-	1.519E+8	mm3			
Geometry/Loading:		Endforces: (kN/k	Nm/m)			_			
L = 2.000 m		Axial force (kt	<u>v)</u>	-	▶.				
		7.8 Bending mo	oment (My.			-13.7 == Be 33.4	nding moment (M2	, kNm) 5	3.1 3.4
		Shear (Vz,			21.5		ear (Vy. kN)		0.4

Lateral buckling parameters:		
×		
Governing Loadcase: Basic loads: G + Q1 + Q2		
SECTION CONTROL:		
IR = Mz,Ed/Mz,Rd = 53.1/469.0 = 0.11 < 1.0 (1.00L; Ch		
IR = Mz,Ed/MN,z,Rd = 53.1/468.4 = 0.11 < 1.0 (1.00L; Ch	6.2.9)	
IR = Vy,Ed/Vy,Rd = 33.4/1758.6 = 0.02 < 1.0 (1.00L; Ch	8.2.6)	


BUCKLING CONTROL:

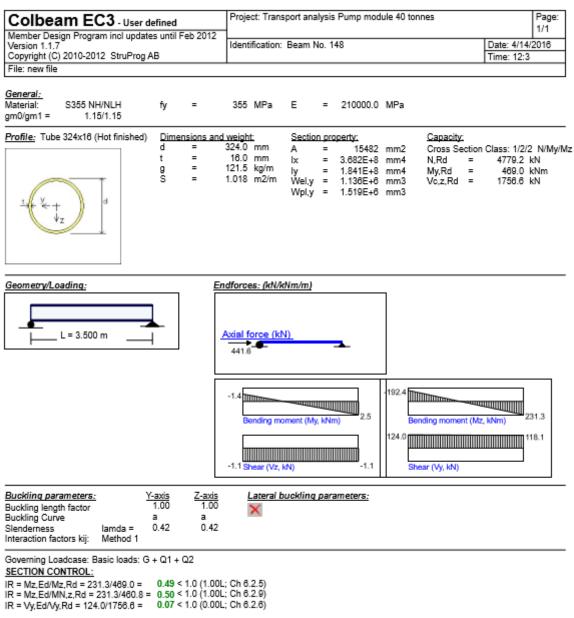
IR = NEd/Nb,y,Rd + kyy*My,Ed/(xLT*My,Rd) + kyz*Mz,Ed/Mz,Rd = 159.7/4446.2+1.00*12.1/(1.00*469.0)+0.59*0.6/469.0 = 0.06 < 1.0 (Ch 6.3.3) IR = NEd/Nb,z,Rd + kzy*My,Ed/(xLT*My,Rd) + kzz*Mz,Ed/Mz,Rd = 159.7/4446.2+0.60*12.1/(1.00*469.0)+0.98*0.6/469.0 = 0.05 < 1.0 (Ch 6.3.3)

	Colbeam EC3 - User defined ember Design Program incl updates until Feb 2012					Project: Offshore lift analysis Pump module 40 tonnes							
Version 1.1.7	5 UNUI PED 2012	Identification:		Date: 4/15/2016									
Copyright (C) 2010-2012 StruProg A	в		Time: 10:45										
File: new file													
<u>General:</u> Material: S355 NH/NLH gm0/gm1 = 1.15/1.15	fy =	355 MPa	Е	=	210000.0	MPa							
Profile: Tube 324x18 (Hot finished)	Dimensions and		Sectio	n pro	perty:		Capacity:						
	d = t =	324.0 mm 16.0 mm	A	=		mm2			-				
			lx .		3.682E+8			4779.2					
	g = S =	121.5 kg/m 1.018 m2/m	· /		1.841E+8		My,Rd = Vc,z,Rd =						
			Wpl.y	-	1.519E+8	mm3							
Geometry/Loading:		ndforces: (kN/k	Nm/m)										
L = 2.000 m		Axial force (k)	<u>1)</u>		a .								

	-3.2 Bending moment (My, kNm) 10.2 -2.6 Shear (Vz, kN) -10.8	-0.1 Bending moment (Mz, kNm) 0.0 Shear (Vy, kN)
Lateral buckling parameters:		
×		
Governing Loadcase: Basic loads: G + Q1 + Q2		
SECTION CONTROL:		
IR = My,Ed/My,Rd = 10.2/469.0 = 0.02 < 1.0 (1.00L; Ch 6	.2.5)	

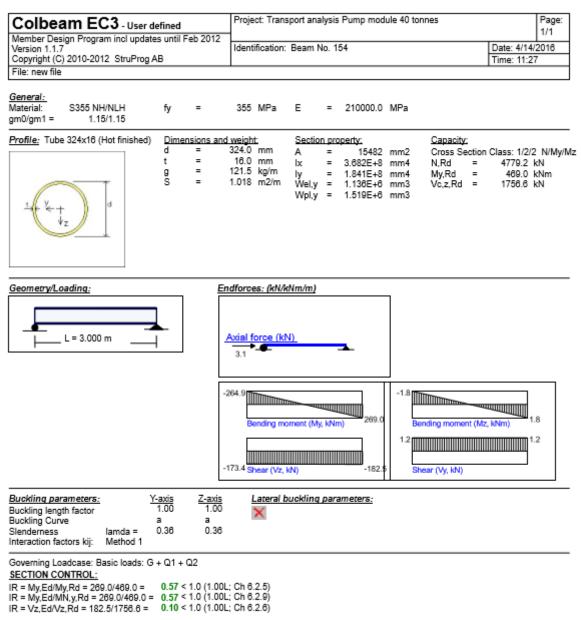
IR = My,EdMN,y,Rd = 10.2/488.9 = 0.02 < 1.0 (1.00L; Ch 0.2.3) IR = My,EdMN,y,Rd = 10.2/488.9 = 0.02 < 1.0 (1.00L; Ch 0.2.9) IR = Vz,Ed/Vz,Rd = 10.8/1758.6 = 0.01 < 1.0 (1.00L; Ch 0.2.6)

IR = NEd/NRd = 7.6/828.4 = 0.01 < 1.0 (0.50L; Ch 6.2.4) IR = Vz,Ed/Vz,Rd = 0.4/231.0 = 0.00 < 1.0 (0.00L; Ch 6.2.6)


BUCKLING CONTROL:

No Buckling, ref ch 6.3.1.2 (4); lamdaby/lamdabz<=0.2 or Ned/Nory<=0.04; Ned/Nory<=0.04 = =

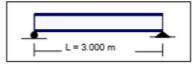
Appendix D₃: Colbeam EC3 calculations for transportation Case A:Pump module

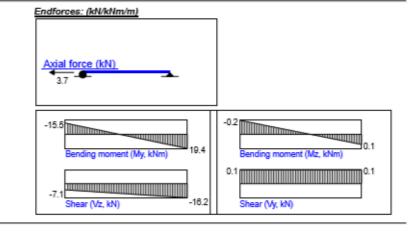

Colbeam			Project	t: Trans	port ana	ysis	Pump mod	ule 40 to	nnes		Page: 1/1
Member Design Pr Version 1.1.7 Copyright (C) 2010 File: new file			Identifi	Date: 4/14/2016 Time: 11:3							
<u>General:</u> Material: S35 gm0/gm1 =	5 NH/NLH 1.15/1.15	fy =	355 M	MPa	E	=	210000.0	MPa			
Profile: Tube 324x	d	Dimensions and d = t = g = S =	<u>i weight</u> 324.0 r 18.0 r 121.5 k 1.018 r	nm kg/m	Section A Ix Iy Wel.y Wpl.y	= = =	perty: 15482 3.682E+8 1.841E+8 1.136E+6 1.519E+6	mm4 mm4 mm3	Capacity: Cross Section N,Rd = My,Rd = Ve,z,Rd =	4779.2 469.0	kN kNm
	<u>1:</u> .000 m		Axial for				•				
				ding mor	ment (My		201.2 n) -104.7	0.4	inding moment (Ma	t, kNm)	.9 .4
Buckling paramete Buckling length fact Buckling Curve Slenderness Interaction factors k	lamda =	<u>axis Z-axis</u> 1.00 1.00 a a 0.48 0.48	<u>La</u>	teral bu	uckling	para	ameters:				
Governing Loadcas SECTION CONTRO IR = My.Ed/My.Rd = IR = My.Ed/MN.y.Rd IR = Vz.Ed/Vz.Rd =	<u>DL:</u> = 201.2/469.0 = d = 201.2/469.0 =	0.43 < 1.0 (1.00L	.; Ch 6.2.	.9)							

 $\begin{array}{l} \underline{\text{BUCKLING CONTROL:}} \\ \text{IR} = \text{NEd/Nb,y,Rd} + kyy^*\text{My,Ed/(xLT^*\text{My,Rd})} + kyz^*\text{Mz,Ed/Mz,Rd} = 4.4/4446.2 + 0.59*201.2/(1.00^*469.0) + 0.35^*0.9/469.0 = 0.25 < 1.0 (Ch 6.3.3) \\ \text{IR} = \text{NEd/Nb,z,Rd} + kzy^*\text{My,Ed/(xLT^*\text{My,Rd})} + kzz^*\text{Mz,Ed/Mz,Rd} = 4.4/4446.2 + 0.35*201.2/(1.00^*469.0) + 0.59*0.9/469.0 = 0.15 < 1.0 (Ch 6.3.3) \\ \text{IR} = \text{NEd/Nb,z,Rd} + kzy^*\text{My,Ed/(xLT^*\text{My,Rd})} + kzz^*\text{Mz,Ed/Mz,Rd} = 4.4/4446.2 + 0.35*201.2/(1.00^*469.0) + 0.59^*0.9/469.0 = 0.15 < 1.0 (Ch 6.3.3) \\ \text{IR} = \text{NEd/Nb,z,Rd} + kzy^*\text{My,Ed/(xLT^*\text{My,Rd})} + kzz^*\text{Mz,Ed/Mz,Rd} = 4.4/4446.2 + 0.35*201.2/(1.00^*469.0) + 0.59^*0.9/469.0 = 0.15 < 1.0 (Ch 6.3.3) \\ \text{IR} = \text{NEd/Nb,z,Rd} + kzy^*\text{My,Ed/(xLT^*\text{My,Rd})} + kzz^*\text{Mz,Ed/Mz,Rd} = 4.4/4446.2 + 0.35*201.2/(1.00^*469.0) + 0.59^*0.9/469.0 = 0.15 < 1.0 (Ch 6.3.3) \\ \text{IR} = \text{NEd/Nb,z,Rd} + kzy^*\text{My,Ed/(xLT^*\text{My,Rd})} + kzz^*\text{Mz,Ed/Mz,Rd} = 4.4/4446.2 + 0.35*201.2/(1.00^*469.0) + 0.59^*0.9/469.0 = 0.15 < 1.0 (Ch 6.3.3) \\ \text{IR} = \text{NEd/Nb,z,Rd} + kzy^*\text{My,Ed/(xLT^*\text{My,Rd})} + kzz^*\text{Mz,Ed/Mz,Rd} = 4.4/4446.2 + 0.35*201.2/(1.00^*469.0) + 0.59^*0.9/469.0 = 0.15 < 1.0 (Ch 6.3.3) \\ \text{IR} = \text{NEd/Nb,z,Rd} + kzy^*\text{Mz,Ed/(xLT^*\text{My,Rd})} + kzz^*\text{Mz,Ed/Mz,Rd} = 4.4/4446.2 + 0.35*201.2/(1.00^*469.0) + 0.59^*0.9/469.0 = 0.15 < 1.0 (Ch 6.3.3) \\ \text{IR} = \text{NEd/Nb,z,Rd} + kzy^*\text{Mz,Ed/(xLT^*\text{My,Rd})} + kzz^*\text{Mz,Ed/Mz,Rd} = 4.4/4446.2 + 0.35*201.2/(1.00^*469.0) + 0.59^*0.9/469.0 = 0.15 < 1.0 (Ch 6.3.3) \\ \text{IR} = \text{NEd/Nb,z,Rd} + kzy^*\text{Mz,Ed/(xLT^*\text{My,Rd})} + kzz^*\text{Mz,Ed/Mz,Rd} = 4.4/4446.2 + 0.35*201.2/(1.00^*469.0) + 0.59^*0.9/469.0 = 0.15 < 1.0 (Ch 6.3.3) \\ \text{IR} = \text{NEd/Nb,z,Rd} + kzy^*\text{Mz,Ed/(xLT^*\text{My,Rd})} + kzz^*\text{Mz,Ed/(xLT^*\text{Mz,Rd})} = 0.5^*0.9/469.0 = 0.15 < 1.0 (Ch 6.3.3) \\ \text{IR} = \text{NEd/Nb,z,Rd} + kzy^*\text{Mz,Ed/(xLT^*\text{Mz,Rd})} = 0.5^*0.9/469.0 = 0.15 < 1.0 (Ch 6.3.3) \\ \text{IR} = 0.5^*0.9/469.0 = 0.5^*0.0 (Ch 6.3.3) \\ \text{IR} =$

BUCKLING CONTROL:

IR = NEd/Nb,y,Rd + kzy*My,Ed/(xLT*My,Rd) + kyz*Mz,Ed/Mz,Rd = 441.6/4527.9+0.64*2.5/(1.00*469.0)+0.35*231.3/469.0 = 0.27 < 1.0 (Ch 8.3.3) IR = NEd/Nb,z,Rd + kzy*My,Ed/(xLT*My,Rd) + kzz*Mz,Ed/Mz,Rd = 441.6/4527.9+0.39*2.5/(1.00*469.0)+0.59*231.3/469.0 = 0.39 < 1.0 (Ch 8.3.3)


BUCKLING CONTROL:


IR = NEd/Nb.y.Rd + kyy*My.Ed/(xLT*My.Rd) + kyz*Mz.Ed/Mz.Rd = 3.1/4802.4+0.58*289.0/(1.00*469.0)+0.35*1.8/489.0 = 0.34 < 1.0 (Ch 6.3.3) IR = NEd/Nb.z.Rd + kzy*My.Ed/(xLT*My.Rd) + kzz*Mz.Ed/Mz.Rd = 3.1/4602.4+0.35*269.0/(1.00*469.0)+0.58*1.8/469.0 = 0.20 < 1.0 (Ch 6.3.3)

Colbeam EC3 - User defined			Proje	Project: Transport analysis Pump module 40 tonnes								
Version 1.1.7	ign Program incl upd 7) 2010-2012 StruPro		Feb 2012	Identi	fication	Beam	No.2	01		Date: 4/15 Time: 10:2		
File: new file												
<u>General:</u> Material: gm0/gm1 =	S355 NH/NLH 1.15/1.15	fy	=	355	MPa	Е	=	210000.0	MPa			

Profile: Tube 324x18 (Hot finished)	Dimensions a	nd weight:	Section p	roperty:	Capacity:		
	d = t = g = S =	324.0 mm 16.0 mm 121.5 kg/m 1.018 m2/m			Cross Section Class: 1/2/2 N/My/M N,Rd = 4779.2 kN My,Rd = 469.0 kNm Vc,z,Rd = 1756.6 kN		

Geometry/Loading:

Lateral buckling parameters:

×

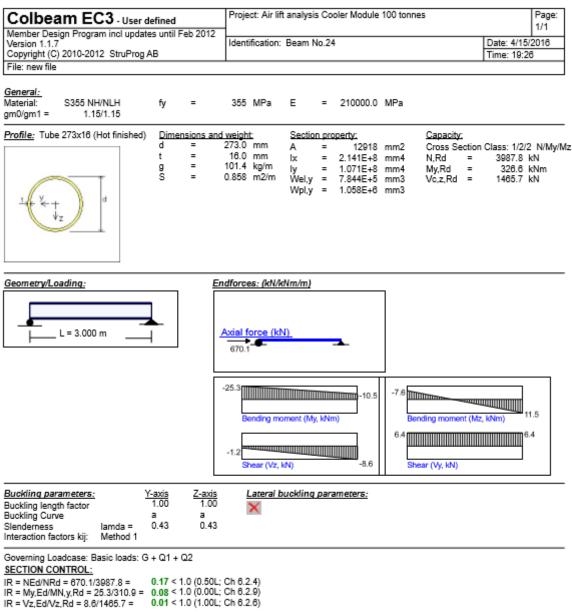
Governing Loadcase: Basic loads: G + Q1 + Q2 SECTION CONTROL: IR = My,Ed/My,Rd = 19.4/469.0 = 0.04 < 1.0 (1.00L; Ch 6.2.5)

ne myear nye	
IR = My,Ed/MN,y,Rd = 19.4/469.0 =	0.04 < 1.0 (1.00L; Ch 6.2.9)
IR = Vz,Ed/Vz,Rd = 18.2/1758.8 =	

Colbeam EC3 - User det		Project: Trans	sport analysi	s Pump mod	ule 40 tonr	165	Page: 1/1
Member Design Program incl updates Version 1.1.7 Copyright (C) 2010-2012 StruProg AB File: new file		Identification:	Beam No. 3	216			Date: 4/14/2016 Time: 12:6
<u>General:</u> Material: S355 NH/NLH gm0/gm1 = 1.15/1.15	fy =	355 MPa	E =	210000.0	MPa		
Profile: Tube 114x8 (Hot finished)	Dimensions and d = t = g = S =	<u>Iweight:</u> 114.0 mm 6.0 mm 16.0 kg/m 0.358 m2/m	Ŵel,y =	2036	mm4 mm3	<u>Capacity:</u> Cross Sectior N,Rd = My,Rd = Vc,z,Rd =	21.6 kNm
Geometry/Loading:		Axial force (kl		•			
		0.0 Bending ma -0.3 Shear (Vz,		0.0 m)			
Buckling length factor 1 Buckling Curve a	0015 <u>Z-axis</u> .00 1.00 a .97 0.97	Lateral b	ouckling pa	rameters:			
Governing Loadcase: Basic loads: G + SECTION CONTROL: R = NEd/NRd = 208.0/628.4 = 0.33 R = Vz,Ed/Vz,Rd = 0.3/231.0 = BUCKLING CONTROL:	< 1.0 (0.50L; Ch	6.2.4) 6.2.6)					

IR = NEd/Nb.y.Rd = 208.0/432.1 = 0.48 < 1.0 (Ch 6.3.1) IR = NEd/Nb.z.Rd = 208.0/432.1 = 0.48 < 1.0 (Ch 6.3.1)

Appendix D₄: Colbeam EC3 calculations for air lift Case B:Cooler module


Colbeam EC3 - User de		Project: Air lift	t analysis Co	oler module	100 tonnes		Page: 1/1
Member Design Program incl update Version 1.1.7	s until Feb 2012	Identification:	Beam No 9			Date: 4/15	2016
Copyright (C) 2010-2012 StruProg A	в		202011110.0			Time: 14:1	
File: new file						100.00	
General: Vaterial: S355 NH/NLH gm0/gm1 = 1.15/1.15	fy =	355 MPa	E =	210000.0	MPa		
Profile: Tube 273x18 (Hot finished)	Dimensions and	d weight:	Section pr	onertv:	Capacity:		
rune. rube 273k to (Flot infished)	d =	273.0 mm	A =	12918		on Closer 1/2/	N/MA-/M
	t =	16.0 mm		12918 2.141E+8		on Class: 1/2/2 3987.8	
	g =	101.4 kg/m		2.141E+8 1.071E+8			
	š =	0.858 m2/m		7.844E+5			
t v + ↓ ↓ v + ↓ ↓ z			Wpl.y =	1.058E+8	mm3		
Geometry/Loading:	E	ndforces: (kN/k	Nm/m)		_		
L = 7.000 m		Axial force (kl)	<u>4)</u>	-			
		-47.8	oment (My, kNr	50.7	-30.0 Bending moment (Mz, kNm)	9.6

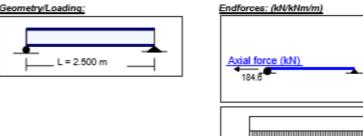
Lateral buckling parameters:

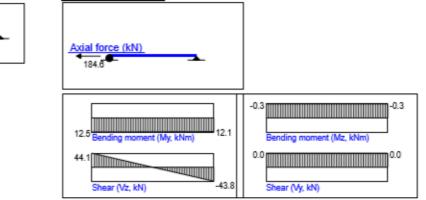
×

Member Design Program inclupdates until Feb 2012 Laterificition: Beam No.17 Date: 4/15/2016 Copyright (C) 2010-2012_StruProg AB File: new file Time: 14:13 File: new file S355 NH/NLH fy = 355 MPa E = 210000.0 MPa General: S355 NH/NLH fy = 355 MPa E = 210000.0 MPa File: Tube 273x16 (Hot finished) Dimensions and weight: d = 273 0 mm A = 12218 mm2 f = 101.4 kg/m kg = 1071E-8 mm4 S = 0.858 m2/m Cross Section Class: 1/2/2 NIM My,Rd = 3867.5 kN GeomeryLoading: 1 = 101 M kg/m kg/m S = 0.858 m2/m Vely = 7.844E-8 mm3 Wply = 1.038E+8 mm3 Vely = 1465.7 kN GeomeryLoading: -72.2 Dending moment (My, Nm) -72.2 Dending moment (My, Nm) -72.2 Dending moment (My, Nm) -72.2 Dending moment (My, Nm) -16.6 Sheer (V2, NM) -16.6 Sheer (V2, NM) -16.6 Sheer (V2, NM) -16.6 Sheer (V2, NM) Buckling parameters: Yeaks Zeaks 1.01 1.01 Eateral buckling parameters: a a a -16.6 Sheer (V2, NM) Buckling Loadcase: Basic loads: G + Q1 + Q2 Section Science: G+ Q1 + Q2 Section Class: G+ Q1 + Q2 Section Class: G+ Q1 + Q2	Colbeam EC3 - User de	efined	Project: Air lif	t analysis Co	oler module	100 tonnes			Page: 1/1
$\frac{\text{leareral:}}{\text{molign1} = 1.151.15} \text{fy} = 355 \text{ MPa} \text{ E} = 210000.0 \text{ MPa}$ $\frac{\text{bareral:}}{\text{total errors}} = 273.16 (\text{Hot finished})$ $\frac{\text{d}}{\text{t}} = 16.0 \text{ mm} \text{k} = 12218 \text{ mm2} \text{Cross Section Class: 1/2/2 N/My} \text{k} = 3287.8 \text{ kN} \text{k/Rd} = 3287.8 \text{ kN} \text{NRd} = 3287.8 \text{ kN} \text{NRd} = 3287.8 \text{ kN} \text{M} \text{K} = 0.858 \text{ m2/m} \text{Wely} = 1.0715 \text{ mm4} \text{My,Rd} = 3286 \text{ k/M} \text{Wolly} = 1.0585 \text{ He} \text{mm3} \text{Wolly} = 3268 \text{ k/M} \text{Wolly} = 1.0585 \text{ He} \text{mm3} \text{Wolly} = 1.0585 \text{ He} \text{m3} \text{Wolly} = 1.0585 \text{ He} \text{m3} \text{Wolly} = 1.0585 \text{ He} \text{m} \text{M} \text{M} \text{Wolly} = 1.0585 \text{ He} \text{m} \text{M} \text{M} \text{M} \text{M} \text{M} \text{M} = 1.0585 \text{ He} \text{M} \text{M} \text{M} \text{M} \text{M} = 1.0585 \text{ He} \text{M} \text{M} \text{M} \text{M} \text{M} = 1.0585 \text{ He} \text{M} \text{M} \text{M} \text{M} \text{M} = 1.0585 \text{ He} \text{M} \text{M} \text{M} \text{M} \text{M} \text{M} = 1.0585 \text{ He} \text{M} \text{M} \text{M} \text{M} \text{M} = 1.0585 \text{ He} \text{M} \text{M} \text{M} \text{M} \text{M} = 1.0585 \text{ He} \text{M} \text{M} \text{M} \text{M} \text{M} = 1.01 \text{ He} \text{M} \text{M} \text{M} \text{M} \text{M} \text{M} \text{M} M$	Version 1.1.7		Identification:	Beam No.17	r				2016
$\frac{ \operatorname{aterial:}}{1.15'1.15} \frac{3365 \text{ NH}NLH}{1.15'1.15} \text{fy} = 355 \text{ MPa} \text{E} = 21000.0 \text{ MPa}$ $\frac{\operatorname{rodile:}}{1.15'1.15} \frac{\operatorname{Dimensions and weight}}{d} = 273.0 \text{ mm} A = 12918 \text{ mm2}} \frac{\operatorname{Capacity:}}{\text{NRd}} \frac{\operatorname{Capacity:}}{\text{NRd}} = 3987.8 \text{ kN}}{\text{NRd}} 12000000000000000000000000000000000000$	File: new file							· · · ·	
$\frac{d}{d} = 273.0 \text{ mm} \text{ A} = 12918 \text{ mm}^2 \text{ Cross Section Class: } 1/22 \text{ WMy} \\ g = 101.4 \text{ kg/m} \text{ by } = 2.141\text{ E+8 mm}^4 \text{ N,Rd} = 3987.8 \text{ kN} \\ g = 101.4 \text{ kg/m} \text{ by } = 1.071\text{ E+8 mm}^4 \text{ W,Rd} = 328.6 \text{ kNm} \\ 0.858 \text{ m2/m} \text{ Wely} = 7.844\text{ E+5 mm}^3 \text{ W/Rd} = 328.6 \text{ kNm} \\ \text{Wp,Rd} = 1232.6 \text{ kNm} \\ \text{Vo.z,Rd} = 1465.7 \text{ kN} \\ \text{Wp,V} = 1.058\text{ E+6 mm}^3 \text{ Wo.z,Rd} = 1465.7 \text{ kN} \\ \text{Wp,V} = 1.058\text{ E+6 mm}^3 \text{ Wo.z,Rd} = 1465.7 \text{ kN} \\ \text{Wp,V} = 1.058\text{ E+6 mm}^3 \text{ Wo.z,Rd} = 1465.7 \text{ kN} \\ \text{Wp,V} = 1.058\text{ E+6 mm}^3 \text{ Wo.z,Rd} = 1465.7 \text{ kN} \\ \text{Wp,V} = 1.058\text{ E+6 mm}^3 \text{ Wo.z,Rd} = 1465.7 \text{ kN} \\ \text{Wp,V} = 1.058\text{ E+6 mm}^3 \text{ Wo.z,Rd} = 1465.7 \text{ kN} \\ \text{Wp,V} = 1.058\text{ E+6 mm}^3 \text{ Wo.z,Rd} = 1465.7 \text{ kN} \\ \text{Wp,V} = 1.058\text{ E+6 mm}^3 \text{ Wo.z,Rd} = 1465.7 \text{ kN} \\ \text{Wp,V} = 1.058\text{ E+6 mm}^3 \text{ Wo.z,Rd} = 1465.7 \text{ kN} \\ \text{Wp,V} = 1.058\text{ E+6 mm}^3 \text{ Wo.z,Rd} = 1465.7 \text{ kN} \\ \text{Wp,V} = 1.058\text{ E+6 mm}^3 \text{ Wo.z,Rd} = 1465.7 \text{ kN} \\ \text{Wp,V} = 1.058\text{ E+6 mm}^3 \text{ Wo.z,Rd} = 1465.7 \text{ kN} \\ \text{Wp,V} = 1.058\text{ E+6 mm}^3 \text{ Wp,V} = 1.058\text{ E+6 mm}^3 $	Aaterial: S355 NH/NLH	fy =	355 MPa	E =	210000.0	MPa			
Axial force (kN) 15.7 -72.2 -72.2 Bending moment (My, kNm) -16.6 Shear (Vz, kN) -16.6 Shear (Vz,	Profile: Tube 273x18 (Hot finished)	d = t = g =	273.0 mm 16.0 mm 101.4 kg/m	A = lx = ly = Wel,y =	12918 2.141E+8 1.071E+8 7.844E+5	mm2 mm4 mm4 mm3	Cross Section N,Rd = My,Rd =	3987.8 326.6	kN kNm
15.7 -72.2 Bending moment (My, kNm) -16.6 Shear (Vz, kN) -16.6 S	eometry/Loading:	<u></u>	ndforces: (kN/k	Nm/m)					
Bending moment (My, kNm) Bending moment (My, kNm) -16.6 Shear (Vz, kN) Section control: <	L = 7.000 m		Axial force (k)	<u>4)</u>	•				
-16.6 Shear (Vz, kN) -16.6 Buckling parameters: Y-axis Z-axis Lateral buckling parameters: Buckling Curve a a a Slenderness lamda = 1.01 1.01 I.01 Interaction factors kij: Method 1 Boverning Loadcase: Basic loads: G + Q1 + Q2 SECTION CONTROL:					44.2				
Buckling length factor 1.00 1.00 Buckling Curve a a Slenderness lamda = 1.01 1.01 Interaction factors kij: Method 1 Boverning Loadcase: Basic loads: G + Q1 + Q2 SECTION CONTROL:					-16.6				
SECTION CONTROL:	Buckling length factor Buckling Curve Slenderness lamda =	1.00 1.00 a a		uckling para	meters:				
R = My,Ed/My,Rd = 72.2/328.6 = 0.22 < 1.0 (0.00L; Ch 6.2.5) R = My,Ed/MN,y,Rd = 72.2/328.6 = 0.22 < 1.0 (0.00L; Ch 6.2.9) R = Vz,Ed/Vz,Rd = 16.6/1465.7 = 0.01 < 1.0 (0.00L; Ch 6.2.6) BUCKLING CONTROL:	<u>SECTION CONTROL:</u> R = My,Ed/My,Rd = 72.2/328.6 = R = My,Ed/MN,y,Rd = 72.2/328.6 = R = Vz,Ed/Vz,Rd = 18.6/1465.7 =	0.22 < 1.0 (0.00L; 0.22 < 1.0 (0.00L;	Ch 6.2.9)						

IR = NEd/Nb,y,Rd + kyy*My,Ed/(xLT*My,Rd) = 15.7/2636.7+0.66*72.2/(1.00*326.6) = 0.15 < 1.0 (Ch 6.3.3) IR = NEd/Nb,z,Rd + kzy*My,Ed/(xLT*My,Rd) = 15.7/2636.7+0.40*72.2/(1.00*326.6) = 0.09 < 1.0 (Ch 6.3.3)

BUCKLING CONTROL:


IR = NEd/Nb,y,Rd + kyy*My,Ed/(xLT*My,Rd) + kyz*Mz,Ed/Mz,Rd = 670.1/3765.9+0.83*25.3/(1.00*326.6)+0.36*11.5/326.6 = 0.25 < 1.0 (Ch 8.3.3) IR = NEd/Nb,z,Rd + kzy*My,Ed/(xLT*My,Rd) + kzz*Mz,Ed/Mz,Rd = 670.1/3765.9+0.50*25.3/(1.00*326.6)+0.60*11.5/326.6 = 0.24 < 1.0 (Ch 8.3.3)


Colbeam EC3 - User defined			Proje	Project: Air lift analysis Cooler module 100 tonnes								
Member Design Program incl updates until Feb 2012 Version 1.1.7 Copyright (C) 2010-2012 StruProg AB			Ident	Identification: Beam No.27 Date: 4								
File: new file	1											
<u>General:</u> Material: gm0/gm1 =	S355 NH/NLH 1.15/1.15	fy	-	355	MPa	Е	=	210000.0	MPa			

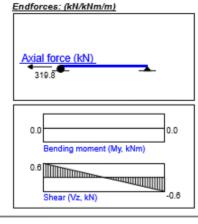
Profile: Tube 273x18 (Hot finished)	Dime	ensions	and weight:	Sectio	n pre	operty:		Capacity		
	d g S	= = =	273.0 mm 16.0 mm 101.4 kg/m 0.858 m2/m		= =	12918 2.141E+8 1.071E+8 7.844E+5 1.058E+6	mm4 mm3		=	Class: 1/2/2 N/My/Mz 3987.8 kN 328.6 kNm 1465.7 kN

Geometry/Loading:

Ψz J

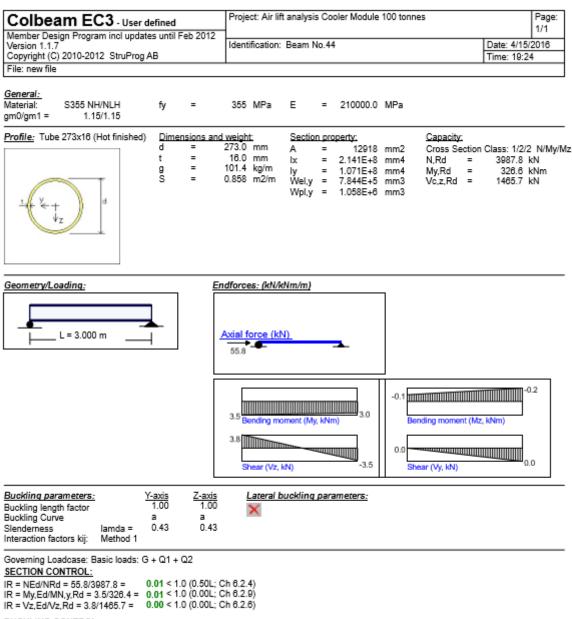
Lateral buckling parameters:


×

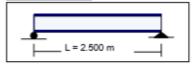

Governing Loadcase: Basic loads: G + Q1 + Q2 SECTION CONTROL: IR = NEd/NRd = -184.0/3987.8 = 0.05 < 1.0 (0.50L; Ch 8.2.3) IR = My.Ed/MN.y.Rd = 12.5/324.9 = 0.04 < 1.0 (0.00L; Ch 8.2.9) IR = Vz.Ed/Vz.Rd = 44.1/1485.7 = 0.03 < 1.0 (0.00L; Ch 8.2.6)

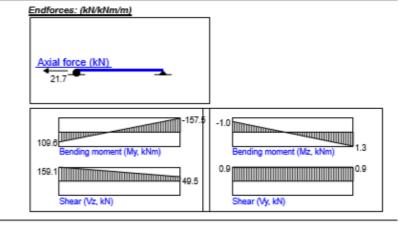
Colbeam EC3 - User d	efined		Proje	ct: Air lif	t analysis	s Co	oler Module	100 tonn	ies		Page: 1/1
ember Design Program incl updates until Feb 2012 ersion 1.1.7 opyright (C) 2010-2012 StruProg AB		Ident	ification:	Date: 4/15 Time: 19:2	/2016						
File: new file											
<u>General:</u> Material: S355 NH/NLH gm0/gm1 = 1.15/1.15	fy	=	355	MPa	E	=	210000.0	MPa			
Profile: Tube 114x8 (Hot finished)	Dim	ensions and	l weigh	<u>t:</u>	Section	n pro	operty:		Capacity:		
	d	=	114.0		А	=	2036	mm2	Cross Section	n Class: 1/2/	2 N/My/N
	t	=		mm	lx.	=	5.955E+6	mm4	N,Rd =	628.4	kN
	g	=		kg/m	ly	=	2.977E+6	mm4	My,Rd =	21.6	kNm
T	s	=	0.358	m2/m	Wel,y	=	5.223E+4	mm3	Vc,z,Rd =	231.0	kN

Wpl,y = 7.008E+4 mm3



Lateral	buckling	parameters:
×		


Governing Loadcase: Basic loads: G + Q1 + Q2 <u>SECTION CONTROL:</u> IR = NEd/NRd = -319.8/628.4 = 0.51 < 1.0 (0.50L; Ch 8.2.3) IR = Vz,Ed/Vz,Rd = 0.6/231.0 = 0.00 < 1.0 (0.00L; Ch 8.2.6)



BUCKLING CONTROL: IR = NEd/Nb,y,Rd + kyy*My,Ed/(xLT*My,Rd) + kyz*Mz,Ed/Mz,Rd = 55.8/3765.9+0.97*3.5/(1.00*326.6)+0.53*0.2/326.6 = 0.03 < 1.0 (Ch 6.3.3) IR = NEd/Nb,z,Rd + kzy*My,Ed/(xLT*My,Rd) + kzz*Mz,Ed/Mz,Rd = 55.8/3765.9+0.58*3.5/(1.00*326.6)+0.89*0.2/326.6 = 0.02 < 1.0 (Ch 6.3.3)

	Colbeam EC3 - User defined lember Design Program incl updates until Feb 2012			Project: Air lift analysis Cooler module 100 tonnes							
Version 1.1.7 Copyright (C) 2010-2012 StruProg A	Identification:	Identification: Beam No.80									
File: new file											
<u>General:</u> Material: S355 NH/NLH gm0/gm1 = 1.15/1.15	fy =	355 MPa	E	=	210000.0	MPa					
Profile: Tube 273x18 (Hot finished)	Dimensions ar d = t = g = S =	<u>ed weight:</u> 273.0 mm 18.0 mm 101.4 kg/m 0.858 m2/m	lx :	= = = =		mm4 mm3	<u>Capacity:</u> Cross Sectior N,Rd = My,Rd = Vc,z,Rd =	3987.8 326.6	kN kNm		

Geometry/Loading:

Lateral buckling parameters:

×

Governing Loadcase: Basic loads: G + Q1 + Q2 SECTION CONTROL:

IR = My,Ed/My,Rd = 157.5/328.8 = 0.48 < 1.0 (1.00L; Ch 8.2.5) IR = My,Ed/MN,y,Rd = 157.5/328.8 = 0.48 < 1.0 (1.00L; Ch 8.2.9) IR = Vz,Ed/Vz,Rd = 159.1/1465.7 = 0.11 < 1.0 (0.00L; Ch 8.2.6)

Appendix D₅: Colbeam EC3 calculations for offshore lift Case B:Cooler module

Colbeam EC3 - User de Member Design Program incl update		Project: Offsho es	ore lift ar	alys	is Cooler M	odule 100) tonn		Page: 1/1
Version 1.1.7		Identification:	Beam N	o.9				Date: 4/15	5/2016
Copyright (C) 2010-2012 StruProg A	в							Time: 20:1	14
File: new file									
General: Material: S355 NH/NLH gm0/gm1 = 1.15/1.15	fy =	355 MPa	E	=	210000.0	MPa			
Profile: Tube 273x18 (Hot finished)	rofile: Tube 273x18 (Hot finished) Dimensions and			n pro	perty:		Capacity:		
	273.0 mm	A	=	12918	mm2	Cross Sectio	n Class: 1/2/	2 N/My/N	
	t =	16.0 mm	lx		2.141E+8		N,Rd =		
	g =	101.4 kg/m	ly		1.071E+8		My,Rd =		
y t	S =	0.858 m2/m			7.844E+5 1.058E+6		Vc,z,Rd =	1485.7	kΝ
Geometry/Loading:	<u>E</u>	ndforces: (kN/ki	Nm/m)						
L = 7.000 m		Axial force (kN	<u>n</u>	-	•				
		-86.3 Bending mo			74.5	Ве	nding moment (N	lz, kinn)	41.1
		-20.1 Shear (Vz, k	N)		-20.1	11.8 Sh	ear (Vy, kN)		
Lateral buckling parameters:									

×

 Governing Loadcase: Basic loads: G + Q1 + Q2

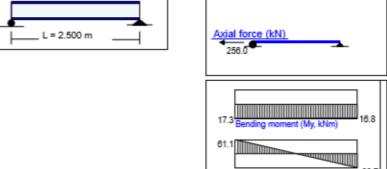
 <u>SECTION CONTROL:</u>

 IR = My.Ed/My.Rd = 74.5/326.6 =
 0.23 < 1.0 (1.00L; Ch 6.2.5)</td>

 IR = My.Ed/MN.y.Rd = 74.5/325.6 =
 0.23 < 1.0 (1.00L; Ch 6.2.9)</td>

 IR = Vz,Ed/Vz,Rd = 20.1/1465.7 =
 0.01 < 1.0 (0.00L; Ch 6.2.6)</td>

Colbeam EC3 - User de	fined	Proj		nore lift a	nalys	is Cooler M	odule 10	0 tonn			Page:
Member Design Program incl updates	until Feb 20	12	es								1/1
Version 1.1.7 Copyright (C) 2010-2012 StruProg AB		Ider	tification:	Beam N	10.17				-	Date: 4/15 Time: 20:1	
File: new file	2									Time: 20:1	18
rile. New lile											
<u>General:</u> Material: S355 NH/NLH m0/gm1 = 1.15/1.15	fy =	355	5 MPa	Е	=	210000.0	MPa				
rofile: Tube 273x16 (Hot finished)	Dimensions	and weid	ht	Sectio	n pro	perty:		Capacity:			
	d =		mm	A	=	12918		Cross Sec	tion C		
	t = a =) mm	Ix	=				=	3987.8	
	g = S =		4 kg/m 3 m2/m	ly Mol v		1.071E+8 7.844E+5		My,Rd Vc.z.Rd	=	326.6 1465.7	
the yer + yz	_					1.058E+6		00,2,110	_	1400.7	R.N.
eometry/Loading:		Endford	es: (kNA	d\m/m)]				
L = 7.000 m			force (kl	<u>N)</u>		A .					
		1 1	Bending m			61.2 n)	0.0 Be	nding moment	: (Mz, k	(Nm)	0.0
		-23.0	Shear (Vz,	kN)		-23.0	0.0 Sh	ear (Vy, kN)			0.0
Buckling length factor 1 Buckling Curve a	а	<u>kis</u> 00	Lateral t	buckling	para	meters:					
overning Loadcase: Basic loads: G +	Q1 + Q2										
R = My,Ed/My,Rd = 100.1/326.6 = R = My,Ed/MN,y,Rd = 100.1/326.6 =	0.31 < 1.0 (0 0.31 < 1.0 (0 0.02 < 1.0 (0	00L; Ch (8.2.9)								


IR = NEd/Nb,y,Rd + kyy*My,Ed/(xLT*My,Rd) + kyz*Mz,Ed/Mz,Rd = 21.8/2636.7+0.66*100.1/(1.00*326.6)+0.41*0.0/326.6 = 0.21 < 1.0 (Ch 6.3.3) IR = NEd/Nb,z,Rd + kzy*My,Ed/(xLT*My,Rd) + kzz*Mz,Ed/Mz,Rd = 21.8/2636.7+0.40*100.1/(1.00*326.6)+0.68*0.0/326.6 = 0.13 < 1.0 (Ch 6.3.3)

	am EC3 - User d		Project: Offsh es	nore lift ar	nalys	is Cooler M	odule 10	0 tonn		Page: 1/1
Version 1.1.7		es until Feb 2012	Identification:	Beam N	o.24	ł			Date: 4/15	/2016
) 2010-2012 StruProg A	ЪB							Time: 20:2	24
File: new file										
<u>General:</u> Material: gm0/gm1 =	S355 NH/NLH 1.15/1.15	fy =	355 MPa	E	=	210000.0	MPa			
Profile: Tube	e 273x16 (Hot finished)	Dimensions and	d weight:	Section	n pro	perty:		Capacity:		
1 (Ve++	d d	d = t = g = S =	273.0 mm 16.0 mm 101.4 kg/m 0.858 m2/m	A lx ly Wel,y	= = =	12918 2.141E+8 1.071E+8 7.844E+5 1.058E+6	mm4 mm4 mm3	Cross Section N,Rd = My,Rd = Vc,z,Rd =	3987.8 326.6	kN kNm
Geometry/Lo			ndforces: (kN/)]			
	L = 3.000 m		Axial force (kl	<u>N)</u>		•				
			Bending m		kNn			ending moment (M	z, kinim)	16.0 1.8
			Shear (Vz,			-12.0	St	near (Vy, kN)		
Buckling par Buckling lengt Buckling Curv Slenderness Interaction fac	th factor /e lamda =	<u>-axis Z-axis</u> 1.00 1.00 a a 0.43 0.43	×	buckling	para	ameters:				
SECTION CO IR = NEd/NRd IR = My,Ed/M		0.23 < 1.0 (0.50L 0.12 < 1.0 (0.00L	; Ch 6.2.9)							

BUCKLING CONTROL: IR = NEd/Nb,y,Rd + kyy*My,Ed/(xLT*My,Rd) + kyz*Mz,Ed/Mz,Rd = 929.3/3765.9+0.82*35.1/(1.00*326.6)+0.35*16.0/326.6 = 0.35 < 1.0 (Ch 6.3.3) IR = NEd/Nb,z,Rd + kzy*My,Ed/(xLT*My,Rd) + kzz*Mz,Ed/Mz,Rd = 929.3/3765.9+0.49*35.1/(1.00*326.6)+0.58*16.0/326.6 = 0.33 < 1.0 (Ch 6.3.3)

Colbeam EC3 - User de Member Design Program incl update		Project: Offsh	nore lift ar	alys	sis Cooler M	odule 1(00 tonn		Page: 1/1	
Version 1.1.7		Identification:	Beam N	o.27	7			Date: 4/15	2016	
Copyright (C) 2010-2012 StruProg A	В									
File: new file										
<u>General:</u> Material: S355 NH/NLH gm0/gm1 = 1.15/1.15	fy =	355 MPa	Е	=	210000.0	MPa				
Profile: Tube 273x16 (Hot finished)	Dimensions ar	nd weight:	Section	n pro	operty:		Capacity:			
yert a	d = t = g = S =	273.0 mm 18.0 mm 101.4 kg/m 0.858 m2/m		=	12918 2.141E+8 1.071E+8 7.844E+5 1.058E+6	mm4 mm4 mm3	N,Rd = My,Rd =	3987.8 326.6	kN kNm	
Geometry/Loading:	E	Endforces: (kN/k	dNm/m)							
L = 2.500 m		Axial force (kt	<u>N)</u>		•					
	ĺ					-0.4			0.4	

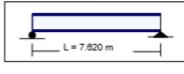
Shear (Vz, kN)

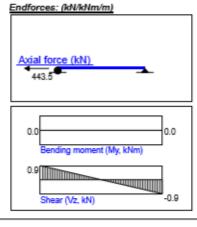
Governing Loadcase: Basic loads: G + Q1 + Q2 SECTION CONTROL:

IR = NEd/NRd = -256.0/3987.8 =	0.06 < 1.0 (0.50L; Ch 6.2.3)
IR = My,Ed/MN,y,Rd = 17.3/323.6 =	0.05 < 1.0 (0.00L; Ch 6.2.9)
IR = Vz.Ed/Vz.Rd = 81.1/1485.7 =	

ent (Mz, kNm

0.0


Shear (Vy, kN)


-60.7

0.0

Colbeam EC3 - User de Member Design Program incl update	es	Project: Offshore lift analysis Cooler Module 100 tonn es							
Version 1.1.7	s undi Feo 2012	Identification:	Identification: Beam No.35						/2016
Copyright (C) 2010-2012 StruProg A	AB							Time: 20:2	26
File: new file									
<u>General:</u> Material: S355 NH/NLH gm0/gm1 = 1.15/1.15	fy =	355 MPa	E	=	210000.0	MPa			
Profile: Tube 114x8 (Hot finished)	Dimensions an	d weight:	Section	pro	perty:		Capacity:		
	d =	114.0 mm	Α :	=	2038	mm2	Cross Section	n Class: 1/2/	2 N/My/M
	t =	6.0 mm	100	=	5.955E+6		N,Rd =	628.4	
	g = S =	16.0 kg/m 0.358 m2/m	-7		2.977E+6		My,Rd =		
	5 =	0.308 m2/m	Wel.y = Wpl.y =		5.223E+4 7.008E+4		Vc,z,Rd =	231.0	κΝ

Geometry/Loading:

Lateral buckling parameters:

Governing Loadcase: Basic loads: G + Q1 + Q2 <u>SECTION CONTROL:</u> IR = NEANIBH = .443.5829.4 = .071 < 1.0.0501 · Cb

IR = NEd/NRd = -443.5/828.4 = 0.71 < 1.0 (0.50L; Ch 8.2.3) IR = Vz,Ed/Vz,Rd = 0.9/231.0 = 0.00 < 1.0 (0.00L; Ch 8.2.6)

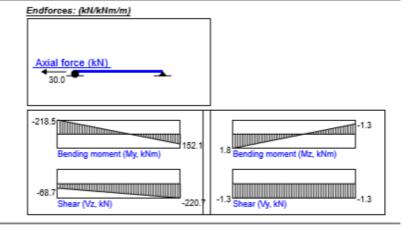
Colbeam EC3 - User d Member Design Program incl update		Project: Offsh es	iore lift an	alys	is Cooler M	odule 10	0 tonn		Page: 1/1
Version 1.1.7	s until Feb 2012	Identification:	Beam N	o.44				Date: 4/1:	5/2016
Copyright (C) 2010-2012 StruProg A	B							Time: 20:	22
File: new file									
<u>Seneral:</u> Aaterial: S355 NH/NLH µm0/gm1 = 1.15/1.15	fy =	355 MPa	E	=	210000.0	MPa			
Profile: Tube 273x18 (Hot finished)	Dimensions and		Section	pro	perty:		Capacity:		
	d =	273.0 mm	A	=	12918		Cross Sectio		
	t = g =	16.0 mm 101.4 kg/m	lx.		2.141E+8		N,Rd =	3987.8	
± ve-+ ↓z	8 = S =	0.858 m2/m	ly Wel,y Wpl,y	=	1.071E+8 7.844E+5 1.058E+6	mm3	My,Rd = Vc,z,Rd =	326.6 1465.7	
*									
Geometry/Loading:	<u>F</u>	ndforces: (kN/	(Nm/m)			-			
L = 3.000 m		Axial force (kl	<u>v)</u>		•				
		4.8 Bending m	Time and	kNп		Be	inding moment (N	tz, kNm)	-0.2
	L	Shear (Vz,	kN)		-4.9	Star St	ear (Vy, kN)		
Buckling parameters: Y Buckling length factor Buckling Curve Slenderness lamda = nteraction factors kij: Method 1	- <u>axis Z-axis</u> 1.00 1.00 a a 0.43 0.43	Lateral I	ouckling j	bara	meters:				
Governing Loadcase: Basic loads: G SECTION CONTROL:	+ Q1 + Q2								
R = NEd/NRd = 77.4/3987.8 = 0 R = My,Ed/MN,y,Rd = 4.8/326.2 = 0 R = Vz,Ed/Vz,Rd = 5.3/1465.7 = 0		Ch 6.2.9)							

BUCKLING CONTROL: IR = NEd/Nb,y,Rd + kyy*My,Ed/(xLT*My,Rd) + kyz*Mz,Ed/Mz,Rd = 77.4/3765.9+0.97*4.8/(1.00*326.6)+0.60*0.2/326.6 = 0.04 < 1.0 (Ch 6.3.3) IR = NEd/Nb,z,Rd + kzy*My,Ed/(xLT*My,Rd) + kzz*Mz,Ed/Mz,Rd = 77.4/3765.9+0.58*4.8/(1.00*326.6)+1.00*0.2/326.6 = 0.03 < 1.0 (Ch 6.3.3)

fy

=

Colbeam EC3 - User defined	Project: Offshore lift analysis Cooler Module 100 tonn		Page: 1/1
Member Design Program incl updates until Feb 2012 Version 1.1.7	Identification: Beam No.80	Date: 4/15/	
Copyright (C) 2010-2012 StruProg AB		Time: 20:8	
File: new file			


General:

S355 NH/NLH Material: gm0/gm1 = 1.15/1.15 355 MPa E = 210000.0 MPa

rofile: Tube 273x16 (Hot finished)	Dime	ensions a	nd weigh	t	Section	n pro	operty:		Capacity:			
t V + Vz	d t g S	= = =	101.4	mm	A lx ly Wel,y Wpl,y	=	12918 2.141E+8 1.071E+8 7.844E+5 1.058E+6	mm4 mm3	Cross Se N,Rd My,Rd Vc,z,Rd	= =	Class: 1/2 3987.8 326.6 1465.7	kNm

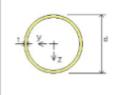
Geometry/Loading:

Lateral buckling parameters:

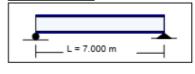
×

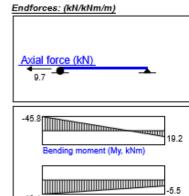
Governing Loadcase: Basic loads: G + Q1 + Q2 SECTION CONTROL: IR = My,Ed/My,Rd = 218.5/326.6 = 0.67 < 1.0 (0.00L; Ch 6.2.5) IR = My,Ed/MN,y,Rd = 218.5/326.6 = 0.67 < 1.0 (0.00L; Ch 6.2.9) IR = Vz,Ed/Vz,Rd = 220.7/1465.7 = 0.15 < 1.0 (1.00L; Ch 6.2.6)

Appendix D₆: Colbeam EC3 calculations for transportation Case B:Cooler module


Colbeam EC3 - User de		Project: Trans	port analys	is Cooler mo	dule 100 tonnes	Page 1/1
Member Design Program incl update: Version 1.1.7 Copyright (C) 2010-2012 StruProg A File: new file		Identification:		Date: 4/15/2016 Time: 12:45		
General:	fy =	355 MPa	E =	210000.0	MPa	
Profile: Tube 273x18 (Hot finished)	Dimensions and d = t = g = S =	Lweight: 273.0 mm 16.0 mm 101.4 kg/m 0.858 m2/m	Section p A = lx = ly = Wel.y = Wpl.y =	12918 2.141E+8 1.071E+8 7.844E+5	mm4 N,Rd = mm4 My,Rd = mm3 Vc,z,Rd =	326.6 kNm
eometry/Loading:	<u>Er</u>	ndforces: (kN/k	Nm/m)			
L = 7.000 m	<u> </u>	Axial force (k)	<u>1)</u>	-		
			ment (My, kl		-7.1 Bending moment (M	6.7 (z, kNm)
		-12.6 Shear (Vz, I	sn)	-2.6	Shear (Vy, kN)	
uckling length factor uckling Curve	<u>axis Z-axis</u> 1.00 1.00 a a 1.01 1.01	Lateral b	uckling pa	rameters:		
R = My,Ed/MN,y,Rd = 35.3/322.9 = (0.11 < 1.0 (0.00L;	Ch 6.2.9)				

BUCKLING CONTROL: IR = NEd/Nb,y,Rd + kyy*My,Ed/(xLT*My,Rd) + kyz*Mz,Ed/Mz,Rd = 288.5/2636.7+0.68*35.3/(1.00*326.6)+0.34*7.1/326.6 = 0.19 < 1.0 (Ch 6.3.3) IR = NEd/Nb,z,Rd + kzy*My,Ed/(xLT*My,Rd) + kzz*Mz,Ed/Mz,Rd = 286.5/2636.7+0.41*35.3/(1.00*326.6)+0.57*7.1/326.6 = 0.17 < 1.0 (Ch 6.3.3)


Colbeam EC3 - User de	Olbeam EC3 - User defined			Project: Transport analysis Cooler module 100 tonnes							
Member Design Program incl updates until Feb 2012 Version 1.1.7 Copyright (C) 2010-2012 StruProg AB		Identi	Identification: Beam No.17							1/1 /2016 /8	
File: new file											
<u>General:</u> Material: S355 NH/NLH gm0/gm1 = 1.15/1.15	fy	=	355	MPa	E	=	210000.0	MPa			
Profile: Tube 273x18 (Hot finished)	Dim	ensions and	d weight	<u>:</u>	Section	n pro	operty:		Capacity:		
	d t g	= = =	273.0 16.0 101.4 0.858	mm	A Ix Iy Wel.y	= = =	12918 2.141E+8 1.071E+8 7.844E+5	mm4 mm4	Cross Sectio N,Rd = My,Rd = Vc.z.Rd =	n Class: 1/2/ 3987.8 326.6 1465.7	kN kNm


Wpl.y =

1.058E+6 mm3

Geometry/Loading:

-13.1 Shear (Vz, kN)

```
Lateral buckling parameters:
```

×

Governing Loadcase: Basic loads: G + Q1 + Q2 SECTION CONTROL:

```
\begin{array}{l} \label{eq:result} $$ IR = My,Ed/My,Rd = 45.8/320.8 = $$ 0.14 < 1.0 (0.00L; Ch 8.2.5)$ \\ \begin{tabular}{l} IR = My,Ed/MN,y,Rd = 45.8/320.8 = $$ 0.14 < 1.0 (0.00L; Ch 6.2.9)$ \\ \end{tabular} $$ IR = Vz,Ed/Vz,Rd = 13.1/1465.7 = $$ 0.01 < 1.0 (0.00L; Ch 6.2.6)$ \\ \end{tabular}
```

ember Design Program incl updates until Feb 201 ersion 1.1.7 opyright (C) 2010-2012 StruProg AB le: new file eneral: eterial: S355 NH/NLH fy = 10/gm1 = 1.15/1.15	Identification: Beam No.19 355 MPa E = 210000.0 MPa	Date: 4/15/2016 Time: 12:55
meral: sterial: S355 NH/NLH fy = i0/gm1 = 1.15/1.15	355 MPa E = 210000.0 MPa	
$\frac{ofile: \text{ Tube 114x6 (Hot finished)}}{d} = $ $\frac{1}{\sqrt{y_{+} + \frac{y_{Z}}{y_{-} + \frac{y_{Z}}{$		ection Class: 1/2/2 N/My/N = 628.4 kN = 21.6 kNm
L = 7.430 m	Axial force (kN)	
	0.0 Bending moment (My, kNm) 0.9 -0.9 Shear (Vz, kN)	
Ickling parameters: Y-axis Z-ax ckling length factor 1.00 1.0 ckling Curve a a enderness lamda = 2.54 2.5 eraction factors kij: Method 1	×	
werning Loadcase: Basic loads: G + Q1 + Q2 <u>CTION CONTROL:</u> = NEd/NRd = 37.6/628.4 = 0.06 < 1.0 (0.50L; = Vz,Ed/Vz,Rd = 0.9/231.0 = 0.00 < 1.0 (0.00L; <u>ICKLING CONTROL:</u>		

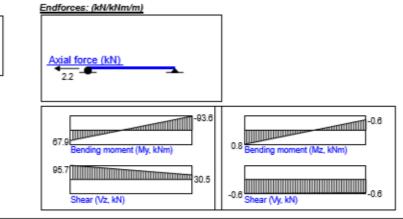
IR = NEd/Nb,y,Rd = 37.6/89.3 = 0.42 < 1.0 (Ch 6.3.1) IR = NEd/Nb,z,Rd = 37.6/89.3 = 0.42 < 1.0 (Ch 6.3.1)

	am EC3 - User d		Project: Trans	sport analys	is Cooler mo	dule 100 tonnes		Page: 1/1
Version 1.1.) 2010-2012 StruProg A		Identification:	Beam No.2	24		Date: 4/15 Time: 12:5	/2016
<u>General:</u> Naterial: m0/gm1 =	S355 NH/NLH 1.15/1.15	fy =	355 MPa	E =	210000.0	MPa		
Profile: Tub	e 273x18 (Hot finished)	Dimensions and d = t = g = S =	<u>i weight:</u> 273.0 mm 16.0 mm 101.4 kg/m 0.858 m2/m	Section p A = Ix = Iy = Wel.y = Wpl.y =	12918 2.141E+8 1.071E+8	mm4 N,Rd mm4 My,Rd mm3 Vc,z,Rd	tion Class: 1/2/ = 3987.8 = 326.6 = 1465.7	kN kNm
	<u>.</u> L = 3.000 m		Axial force (kl 74.9		-			
				oment (My, kN	20.4 -17.9	-2.4 Bending moment 1.9 Shear (Vy, kN)	(MZ, KNITI)	1.3 1.9
Buckling pa Buckling leng Buckling Cur Blenderness Interaction fa	th factor ve lamda =	-axis <u>Z-axis</u> 1.00 1.00 a a 0.43 0.43	Lateral b	ouckling pa	rameters:			
R = My,Ed/N R = My,Ed/N R = My,Ed/N R = Vz,Ed/V	oadcase: Basic loads: G DNTROL: ly.Rd = 23.4/328.6 = lw.y.Rd = 23.4/328.3 = lz.Rd = 17.9/1465.7 = CONTROL:	0.07 < 1.0 (0.00L; 0.07 < 1.0 (0.00L;	Ch 6.2.9)					

BUCKLING CONTROL: IR = NEd/Nb,y,Rd + kyy*My,Ed/(xLT*My,Rd) + kyz*Mz,Ed/Mz,Rd = 74.9/3765.9+0.60*23.4/(1.00*326.6)+0.38*3.3/326.6 = 0.07 < 1.0 (Ch 6.3.3) IR = NEd/Nb,z,Rd + kzy*My,Ed/(xLT*My,Rd) + kzz*Mz,Ed/Mz,Rd = 74.9/3765.9+0.36*23.4/(1.00*326.6)+0.63*3.3/326.6 = 0.05 < 1.0 (Ch 6.3.3)

Colbeam EC3 - User defined	Project: Transport analysis Cooler module 100 tonnes	Page: 1/1
Member Design Program incl updates until Feb 2012 Version 1.1.7 Copyright (C) 2010-2012 StruProg AB		te: 4/15/2016 ne: 12:42
File: new file		
G <u>eneral:</u> laterial: S355 NH/NLH fy = m0/gm1 = 1.15/1.15	355 MPa E = 210000.0 MPa	
Profile: Tube 273x16 (Hot finished) d = t = g = S = S =	273.0 mm A = 12918 mm2 Cross Section Cla 16.0 mm lx = 2.141E+8 mm4 N,Rd = 3 101.4 kg/m ly = 1.071E+8 mm4 My,Rd =	ss: 1/2/2 N/My, 3987.8 kN 328.6 kNm 1465.7 kN
eometry/Loading: E	ndforces: (kN/kNm/m)	
L = 2.500 m	Axial force (kN)	
	-39.6	m)
Buckling parameters: Y-axis Z-axis Buckling length factor 1.00 1.00 Buckling Curve a a Sienderness lamda = 0.36 0.36 Interaction factors kij: Method 1	Lateral buckling parameters:	
Boverning Loadcase: Basic loads: G + Q1 + Q2 SECTION CONTROL: R = My,Ed/My,Rd = 78.8/326.6 = 0.24 < 1.0 (1.00L	; Ch 6.2.9)	


IR = NEd/Nb,y,Rd + kyy*My,Ed/(xLT*My,Rd) + kyz*Mz,Ed/Mz,Rd = 72.6/3841.0+0.68*78.8/(1.00*326.6)+0.45*0.4/326.6 = 0.18 < 1.0 (Ch 6.3.3) IR = NEd/Nb,z,Rd + kzy*My,Ed/(xLT*My,Rd) + kzz*Mz,Ed/Mz,Rd = 72.6/3841.0+0.41*78.8/(1.00*326.6)+0.76*0.4/326.6 = 0.12 < 1.0 (Ch 6.3.3)


Colbeam EC3 - User defined	Project: Transport analysis Cooler module 100 tonnes	Page 1/1
Member Design Program incl updates until Feb 2012 Version 1.1.7 Copyright (C) 2010-2012 StruProg AB File: new file	Identification: Beam No.44	Date: 4/15/2016 Time: 12:50
ne. new ne		
i <u>eneral:</u> laterial: S355 NH/NLH fy = m0/gm1 = 1.15/1.15	355 MPa E = 210000.0 MPa	
rofile: Tube 273x16 (Hot finished) d = d d = d t = d g = d S = d	273.0 mm A = 12918 mm2 Cros 16.0 mm Ix = 2.141E+8 mm4 N,Ro 101.4 kg/m Iy = 1.071E+8 mm4 My,F	
eometry/Loading:	ndforces: (kN/kNm/m)	
L = 3.000 m	Axial force (kN)	
		-0.1 noment (Mz, kNm) 0.0 kN)
uckling parameters: <u>Y-axis Z-axi</u> uckling length factor 1.00 1.01 uckling Curve a a lenderness lamda = 0.43 0.43 teraction factors kij: Method 1	Lateral buckling parameters:	
overning Loadcase: Basic loads: G + Q1 + Q2 ECTION CONTROL: R = My,Ed/My,Rd = 13.3/326.6 = 0.04 < 1.0 (0.00	; Ch 6.2.9)	

IR = NEd/Nb,y,Rd + kyy*My,Ed/(xLT*My,Rd) + kyz*Mz,Ed/Mz,Rd = 54.9/3765.9+0.69*13.3/(1.00*326.6)+0.56*0.1/326.6 = 0.04 < 1.0 (Ch 6.3.3) IR = NEd/Nb,z,Rd + kzy*My,Ed/(xLT*My,Rd) + kzz*Mz,Ed/Mz,Rd = 54.9/3765.9+0.41*13.3/(1.00*326.6)+0.93*0.1/326.6 = 0.03 < 1.0 (Ch 6.3.3)

Colbeam EC3 - User de	Project: Trans	Project: Transport analysis Cooler module 100 tonnes							
Member Design Program incl updates until Feb 2012 Version 1.1.7 Copyright (C) 2010-2012 StruProg AB		2 Identification:	Beam N	0.60)			Date: 4/15/2016 Time: 12:39	
File: new file								[Time. 12.3	18
<u>General:</u> Material: S355 NH/NLH gm0/gm1 = 1.15/1.15	fy =	355 MPa	Е	=	210000.0	MPa			
Profile: Tube 273x16 (Hot finished)	Dimensions a d = t = g = S =	<u>nd weight</u> 273.0 mm 18.0 mm 101.4 kg/m 0.858 m2/m		= = = =	perty: 12918 2.141E+8 1.071E+8 7.844E+5 1.058E+6	mm4 mm4 mm3	<u>Capacity:</u> Cross Section N,Rd = My,Rd = Vc,z,Rd =	3987.8	kN kNm

Geometry/Loading:

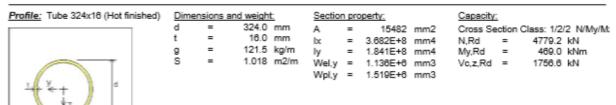
Lateral buckling parameters:

×

Governing Loadcase: Basic loads: G + Q1 + Q2 SECTION CONTROL: IR = My,Ed/My,Rd = 93.6/326.6 = 0.29 < 1.0 (1.00L; Ch 6.2.5) IR = My,Ed/MN,y,Rd = 93.6/326.6 = 0.29 < 1.0 (1.00L; Ch 6.2.9) IR = Vz,Ed/Vz,Rd = 95.7/1465.7 = 0.07 < 1.0 (0.00L; Ch 6.2.6)

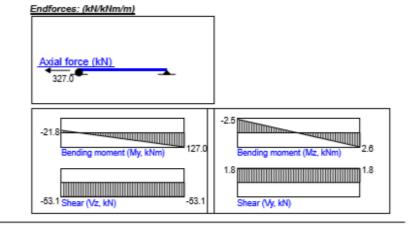
Appendix D₇: Colbeam EC3 calculations for air lift Case C:Compressor module

Colbeam EC3 - User of		Project: Air lif	t analysis C	ompressor m	odule 120 tonne		Page: 1/1
Member Design Program incl updat	es until Feb 2012	S S	Den No. 4			0.000	
Version 1.1.7 Copyright (C) 2010-2012 StruProg.	AB	Identification:	Beam No.1	2		Date: 4/17 Time: 17:1	
File: new file						[10me. 17.	
Seneral: Aaterial: S355 NH/NLH m0/gm1 = 1.15/1.15	fy =	355 MPa	E =	210000.0	MPa		
Profile: Tube 324x18 (Hot finished)	Dimensions and	l weight:	Section p	roperty:	Capacity:		
	d =	324.0 mm	A =			tion Class: 1/2/	2 N/My/
	t = a =	16.0 mm 121.5 kg/m	lx =			= 4779.2	
L Vert	g = S =	121.5 kg/m 1.018 m2/m	ly = Wel,y = Wpl,y =	1.136E+6	mm3 Vc,z,Rd	= 489.0 = 1758.6	
eometry/Loading:	E	ndforces: (kN/k	Nm/m)		_		
L = 2.000 m		Axial force (k)	<u>1)</u>	•			
		51.8 Bending mo	ment (My, kN	-61.0 Im)	8.0 Bending moment		1.0
		59.3 Shear (Vz, I		53.4	-4.5 Shear (Vy, kN)		4.5
Buckling parameters: Buckling length factor Buckling Curve Slenderness lamda = Interaction factors kij: Method 1	<u>7-axis Z-axis</u> 1.00 1.00 a a 0.24 0.24	Lateral b	uckling pa	rameters:			
overning Loadcase: Basic loads: G	i + Q1 + Q2						
R = My,Ed/My,Rd = 61.0/469.0 = R = My,Ed/My,y,Rd = 61.0/469.5 =	0.13 < 1.0 (1.00L; 0.13 < 1.0 (1.00L;	Ch 6.2.9)					


IR = Vz,Ed/Vz,Rd = 59.3/1756.6 = 0.03 < 1.0 (0.00L; Ch 6.2.6)

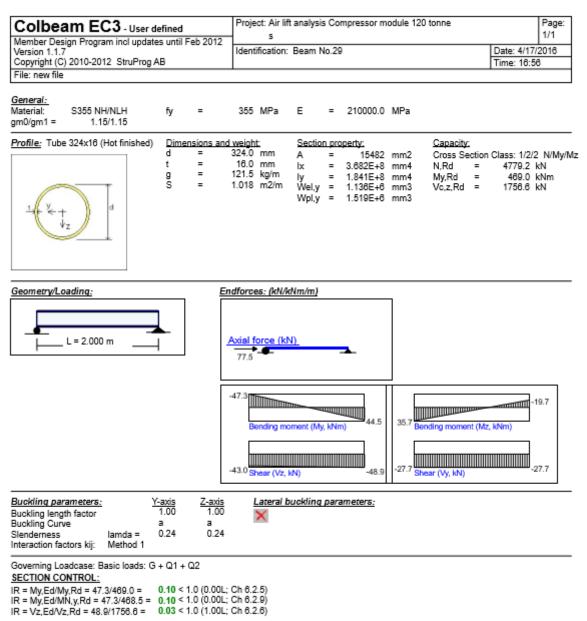
BUCKLING CONTROL:

IR = NEd/Nb,y,Rd + kyy*My,Ed/(xLT*My,Rd) + kyz*Mz,Ed/Mz,Rd = 219.2/4736.9+0.59*61.0/(1.00*469.0)+0.45*8.0/469.0 = 0.13 < 1.0 (Ch 6.3.3) IR = NEd/Nb,z,Rd + kzy*My,Ed/(xLT*My,Rd) + kzz*Mz,Ed/Mz,Rd = 219.2/4736.9+0.36*61.0/(1.00*469.0)+0.74*8.0/469.0 = 0.11 < 1.0 (Ch 6.3.3)


-		1/1	
		/2016	
d		-	

355 MPa E = 210000.0 MPa Material: S355 NH/NLH fy = gm0/gm1 = 1.15/1.15

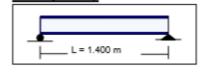
Geometry/Loading:

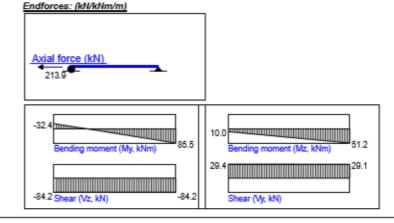


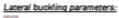
Lateral buckling parameters:

×

Governing Loadcase: Basic loads: G + Q1 + Q2 SECTION CONTROL:


- IR = My,Ed/My,Rd = 127.0/489.0 = 0.27 < 1.0 (1.00L; Ch 8.2.5) IR = My,Ed/MN,y,Rd = 127,0/464,1 = 0.27 < 1.0 (1.00L; Ch 8.2.9) IR = Vz,Ed/Vz,Rd = 53.1/1756.6 = 0.03 < 1.0 (0.00L; Ch 8.2.6)




BUCKLING CONTROL:

IR = NEd/Nb,y,Rd + kzy*My,Ed/(xLT*My,Rd) + kyz*Mz,Ed/Mz,Rd = 77.5/4736.9+0.59*47.3/(1.00*469.0)+0.40*35.7/469.0 = 0.11 < 1.0 (Ch 6.3.3) IR = NEd/Nb,z,Rd + kzy*My,Ed/(xLT*My,Rd) + kzz*Mz,Ed/Mz,Rd = 77.5/4736.9+0.35*47.3/(1.00*469.0)+0.67*35.7/469.0 = 0.10 < 1.0 (Ch 6.3.3)

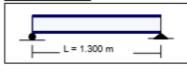
	Colbeam EC3 - User defined Member Design Program incl updates until Feb 2012					Project: Air lift analysis Compressor module 120 tonne s						
Version 1.1.7			Ident	ification:	Date: 4/17/2016							
Copyright (C) 2010-2012 StruProg A	B									Time: 16:5	2	
File: new file												
<u>General:</u> Material: S355 NH/NLH gm0/gm1 = 1.15/1.15	fy	=	355	MPa	E	=	210000.0	MPa				
Profile: Tube 324x18 (Hot finished)	Dimer	nsions and	l weigh	<u>t</u>	Section	n pro	perty:		Capacity:			
	d		324.0		Α	=	15482	mm2	Cross Sectio	n Class: 1/2/2	2 N/My/N	
	t	=		mm	lx.	=	3.682E+8			4779.2		
	g S	=		kg/m m2/m	ly		1.841E+8			489.0		
y + d	5	-	1.016	mzm	Wel,y Wpl,y		1.136E+6 1.519E+6		Vc,z,Rd =	1/56.0	KN	
Geometry/Loading:		Er	ndforce	es: (kN/k	d\m∕m)							

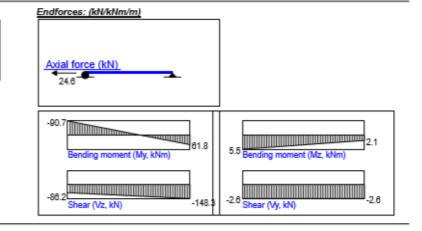
×

Governing Loadcase: Basic loads: G + Q1 + Q2 <u>SECTION CONTROL:</u> IR = My EdMy Rd = 85 5/489.0 = 0.18 < 1.0 (1.00L; Ch 6.2.5)

IR = My,Ed/My,Rd = 80.0/408.0 =	0.10 < 1.0 (1.00L, 0110.2.3)
IR = My,Ed/MN,y,Rd = 85.5/466.6 =	0.18 < 1.0 (1.00L; Ch 6.2.9)
	0.05 < 1.0 (0.00L; Ch 6.2.6)

Colbeam EC3 - User d Member Design Program incl update	Project: Air lift analysis Compressor module 120 tonne Page: s 1/1							
Version 1.1.7 Copyright (C) 2010-2012 StruProg A File: new file		Identification:	Beam No.6	2			Date: 4/17 Time: 17:3	
<u>General:</u> Material: S355 NH/NLH gm0/gm1 = 1.15/1.15	fy =	355 MPa	E =	210000.0	MPa			
Profile: Tube 114x8 (Hot finished)	Dimensions and		Section pr			Capacity:		
1 v + ↓ d	d = t = g = S =	114.0 mm 6.0 mm 16.0 kg/m 0.358 m2/m		5.955E+6	mm4 mm3	Cross Sectior N,Rd = My,Rd = Vc,z,Rd =	628.4 21.6	kN kNm
Geometry/Loading:	Er	ndforces: (kN/A	dNm/m)					
L = 4.650 m		Axial force (kl	<u>N).</u>	-				
			oment (My, kN	0.0 m)				
		0.4 Shear (Vz,		-0.4				
Buckling parameters: Y Buckling length factor Buckling Curve Slenderness lamda = Interaction factors kij: Method 1	- <u>axis Z-axis</u> 1.00 1.00 a a 1.59 1.59	Lateral L X	ouckling par	ameters:				
Governing Loadcase: Basic loads: G <u>SECTION CONTROL:</u> IR = NEd/NRd = 71.3/628.4 = 0.1' IR = Vz,Ed/Vz,Rd = 0.4/231.0 = 0.0' BUCKLING CONTROL:	1 < 1.0 (0.50L; Ch	6.2.4) 6.2.6)						

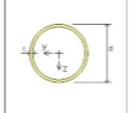

BUCKLING CONTROL: IR = NEd/Nb.y.Rd = 71.3/211.4 = 0.34 < 1.0 (Ch 6.3.1) IR = NEd/Nb.z.Rd = 71.3/211.4 = 0.34 < 1.0 (Ch 6.3.1)

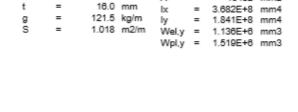

Colbea	l .	Project: Air lift analysis Compressor module 120 tonne									
Member Design Program incl updates until Feb 2012 Version 1.1.7 Copyright (C) 2010-2012 StruProg AB			ldentification	1/1 Date: 4/17/2016 Time: 16:49							
File: new file	1										
<u>General:</u> Material: gm0/gm1 =	S355 NH/NLH 1.15/1.15	fy	-	355 MPa	Е	=	210000.0) MPa			

Profile: Tube 324x18 (Hot finished)	Dimensions and weight:			Section	n pro	operty:	Capacity:			
	d t g	= = =	324.0 mm 16.0 mm 121.5 kg/m	A Ix Iv		15482 mm2 3.682E+8 mm4 1.841E+8 mm4	N,Rd = 4779.2 kN			
	ŝ	=	1.018 m2/m	Wel,y Wpl,y	=	1.138E+8 mm3 1.519E+8 mm3	Vc,z,Rd = 1756.6 kN			

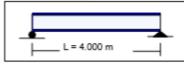
Geometry/Loading:

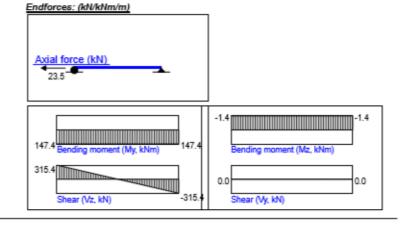
*z /


Lateral	buckling	parameters:


×

Governing Loadcase: Basic loads: G + Q1 + Q2 SECTION CONTROL:


IR = My,Ed/My,Rd = 90.7/469.0 =	0.19 < 1.0 (0.00L; Ch 6.2.5)
IR = My,Ed/MN,y,Rd = 90.7/468.9 =	0.19 < 1.0 (0.00L; Ch 6.2.9)
IR = Vz,Ed/Vz,Rd = 148.3/1758.6 =	


Colbeam EC3 - User de	Olbeam EC3 - User defined					Project: Air lift analysis Compressor module 120 tonne							
lember Design Program incl updates until Feb 2012 ersion 1.1.7 opyright (C) 2010-2012 StruProg AB		Identi	s fication:	E E	1/1 Date: 4/17/2016 Time: 18:43								
File: new file													
<u>General:</u> Material: S355 NH/NLH gm0/gm1 = 1.15/1.15	fy	-	355	MPa	Е	=	210000.0	MPa					
Profile: Tube 324x18 (Hot finished)	Dime	nsions and	weight	-	Section	n pro	operty:	Capacity:					
	d t g	= = =	324.0 16.0 121.5	mm	A Ix Iy	= = =	15482 3.682E+8 1.841E+8	mm4	Cross Section C N,Rd = My,Rd =	Class: 1/2/2 N/My/1 4779.2 kN 469.0 kNm			

Geometry/Loading:

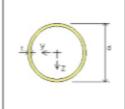
Vc,z,Rd =

1756.6 kN

Lateral buckling parameters:

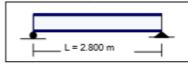
×

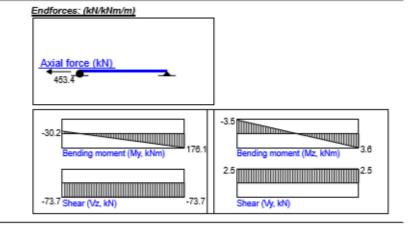
Governing Loadcase: Basic loads: G + Q1 + Q2 <u>SECTION CONTROL:</u> IR = Mx ENMx Rd = 147.4(460.0 = 0.31 < 1.0.(0.001 · Cb.8.2.5)


111 - INY, CUINY, INU - 147.41408.0-	area
IR = My,Ed/MN,y,Rd = 147.4/468.9 =	0.31 < 1.0 (0.00L; Ch 8.2.9)
	0.18 < 1.0 (0.00L; Ch 6.2.6)

Appendix D₈: Colbeam EC3 calculations for offshore lift Case C:Compressor module

	am EC3 - User d		Project: Offshore lift analysis Compressor module 120 tonnes								
	ign Program incl update	s until Feb 2012			I	1/1					
Version 1.1.7		B	Identification	: Beam M	NO. 12	2			Date: 4/17		
) 2010-2012 StruProg A	10							Time: 17:4	18	
File: new file											
<u>General:</u> Material: gm0/gm1 =	S355 NH/NLH 1.15/1.15	fy =	355 MPa	E	=	210000.0	MPa				
Profile: Tube	e 324x18 (Hot finished)	Dimensions and	weight:	Sectio	n pro	perty:		Capacity:			
	· · ·	d =	324.0 mm	A	=	15482	mm2	Cross Section	Class: 1/2/	2 N/My/N	
		t =	16.0 mm	Ix	=	3.682E+8	mm4	N,Rd =	4779.2		
		g =	121.5 kg/m	ly	=	1.841E+8		My,Rd =	469.0		
Lever de la	d	S =	1.018 m2/m	Wel.y Wpl.y		1.136E+6 1.519E+6		Vć,z,Rd =	1758.6	kΝ	
Geometry/Lo	L = 2.000 m		Axial force ()			•]				
			71.8 Bending n 82.3 Shear (Vz	noment (My	, kNr	n) 74.4	11.1 Be	nding moment (Mz ear (Vy, kN)	, kNm)	1.4 6.2	
Buckling par Buckling leng Buckling Cun Slenderness Interaction fac	th factor /e lamda =	- <u>axis Z-axis</u> 1.00 1.00 a a 0.24 0.24	<u>Lateral</u>	buckling	para	ameters:					
SECTION CO R = My,Ed/M R = My,Ed/M		0.18 < 1.0 (1.00L; 0.18 < 1.0 (1.00L;	Ch 6.2.9)								


BUCKLING CONTROL: IR = NEd/Nb,y,Rd + kyy*My,Ed/(xLT*My,Rd) + kyz*Mz,Ed/Mz,Rd = 304.0/4736.9+0.59*84.6/(1.00*469.0)+0.44*11.1/469.0 = 0.18 < 1.0 (Ch 6.3.3) IR = NEd/Nb,z,Rd + kzy*My,Ed/(xLT*My,Rd) + kzz*Mz,Ed/Mz,Rd = 304.0/4736.9+0.35*84.6/(1.00*469.0)+0.74*11.1/469.0 = 0.15 < 1.0 (Ch 6.3.3)


Colbeam EC3 - User d	olbeam EC3 - User defined			Project: Offshore lift analysis Compressor module 120 tonnes								
Member Design Program incl update Version 1.1.7 Copyright (C) 2010-2012 StruProg A				Identification: Beam No.21								
File: new file												
<u>General:</u> Material: S355 NH/NLH gm0/gm1 = 1.15/1.15	fy	=	355 MPa	Е	=	210000.0	MPa					
Profile: Tube 324x18 (Hot finished)	Dime	Dimensions and weight:			on pro	operty:	Capacity:					
	d t g	=	324.0 mm 16.0 mm 121.5 kg/m	A Ix Iy		15482 3.682E+8 1.841E+8	mm4	Cross Section N,Rd = My,Rd =	Class: 1/2/2 4779.2 489.0	kN		

Geometry/Loading:

Lateral buckling parameters:

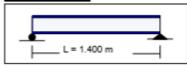
×

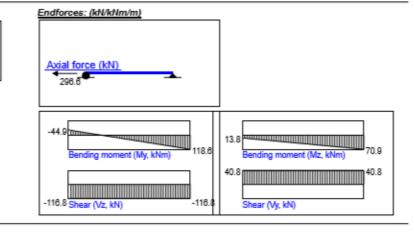
Governing Loadcase: Basic loads: G + Q1 + Q2 SECTION CONTROL: IR = My EdMy Rd = 178 1/489 0 = 0.38 < 1.0 (1.00L: Ch 8.2.5)

IR = My,Ed/My,Rd = 176.1/469.0 =	0.38 < 1.0 (1.00L; Ch 0.2.5)
IR = My,Ed/MN,y,Rd = 178.1/480.4 =	0.38 < 1.0 (1.00L; Ch 6.2.9)
IR = Vz,Ed/Vz,Rd = 73.7/1756.6 =	0.04 < 1.0 (0.00L; Ch 8.2.6)

1756.6 kN

Vc,z,Rd =


Colbea	am EC3 - User d	efined	Project: Offsh		ysis Compres	sor modu	ile 120		Page: 1/1
	ign Program incl update	es until Feb 2012	- tonne						
Version 1.1.7 Convright (C)	/) 2010-2012 StruProg /	18	Identification:	Beam No.	29			Date: 4/17 Time: 17:4	
File: new file	· •	-0						Time. 17.4	+0
ne. new me									
<u>General:</u> Aaterial: m0/gm1 =	S355 NH/NLH 1.15/1.15	fy =	355 MPa	E =	210000.0	MPa			
Profile: Tube	e 324x18 (Hot finished)	Dimensions and		Section p	roperty:		Capacity:		
		d =	324.0 mm	A =				on Class: 1/2/	
		t = g = S =	16.0 mm 121.5 kg/m 1.018 m2/m	lx = ly =	1.841E+8	mm4	N,Rd = My,Rd =	469.0	kNm
1 × + +	d	5 -	1.010 112/11	Wel,y = Wpl,y =	1.136E+6 1.519E+6		Vc,z,Rd =	1758.6	ĸN
ieometry/Lo	ading:	<u>E</u>	ndforces: (kN/	(Nm/m)					
-	L = 2.000 m		Axial force (kl	<u>4)</u>	-				
			-65.6 Bending m	oment (My, kl		49.5 <mark>Be</mark>	nding moment (Mz, kNm)	27.4
			-59.6 Shear (Vz,	kN)	-67.7	-38.4 Sh	ear (Vy, kN)		38.4
Buckling par Buckling lengt Buckling Curv Blenderness Interaction fac	th factor /e lamda =	<u>-axis Z-axis</u> 1.00 1.00 a a 0.24 0.24	Lateral E	ouckling pa	rameters:				
R = My,Ed/M R = My,Ed/M R = My,Ed/M	y,Rd = 65.6/469.0 = N,y,Rd = 65.6/468.3 =	0.14 < 1.0 (0.00L;	Ch 6.2.9)						


BUCKLING CONTROL: IR = NEd/Nb,y,Rd + kyy*My,Ed/(xLT*My,Rd) + kyz*Mz,Ed/Mz,Rd = 104.5/4736.9+0.58*65.6/(1.00*469.0)+0.40*49.5/469.0 = 0.15 < 1.0 (Ch 6.3.3) IR = NEd/Nb,z,Rd + kzy*My,Ed/(xLT*My,Rd) + kzz*Mz,Ed/Mz,Rd = 104.5/4736.9+0.35*65.6/(1.00*469.0)+0.67*49.5/469.0 = 0.14 < 1.0 (Ch 6.3.3)

	Colbeam EC3 - User defined					sis Compres	sor moo	dule 120		Page: 1/1
Member Design Program incl update Version 1.1.7	Identificat	ion: Beam N	lo.30	0			Date: 4/17/2016			
Copyright (C) 2010-2012 StruProg A	B								Time: 17:4	0
File: new file										
<u>General:</u> Material: S355 NH/NLH gm0/gm1 = 1.15/1.15	fy	=	355 MP	B E	=	210000.0	MPa			
Profile: Tube 324x18 (Hot finished)	Dime	ensions and	weight:	Sectio	n pro	operty:		Capacity:		
	d g S	= = =	324.0 mm 16.0 mm 121.5 kg/r 1.018 m2/	n lx	= = = =	15482 3.682E+8 1.841E+8 1.136E+6 1.519E+6	mm4 mm3	Cross Section N,Rd = My,Rd = Vc,z,Rd =	4779.2	kN kNm

Geometry/Loading:

+z

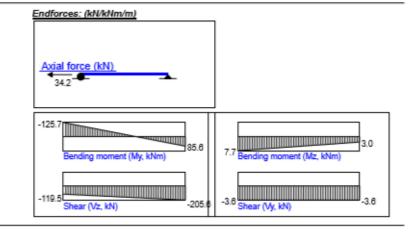

```
Lateral buckling parameters:
```

×

Governing Loadcase: Basic loads: G + Q1 + Q2 <u>SECTION CONTROL:</u> IR = My,Ed/My,Rd = 118.8/489.0 = 0.25 < 1.0 (1.00L; Ch 8.2.5)

in the second	· · · · · · · · · · · · · · · · · · ·
IR = My,Ed/MN,y,Rd = 118.6/464.8 =	0 26 < 1.0 (1.00L: Ch 8.2.9)
IN - My,Carmin, y, No - 110.01404.0 -	o
IR = Vz,Ed/Vz,Rd = 116.8/1756.6 =	0.07 < 1.0 (0.00L; Ch 8.2.6)

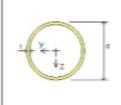
Colbeam EC3 - User defined	Project: Offshore lift analysis Compressor module 120	Page: 1/1		
Member Design Program incl updates until Feb 20 Version 1.1.7	Identification: Beam No.62	Date: 4/17/2016		
Copyright (C) 2010-2012 StruProg AB	Identification: Deam No.02	Time: 17:50		
File: new file		rine. rr.ee		
<u>General:</u> Material: S355 NH/NLH fy = gm0/gm1 = 1.15/1.15	355 MPa E = 210000.0 MPa			
Profile: Tube 114x6 (Hot finished) Dimensions				
d =		n Class: 1/2/2 N/My/N		
t = g =	6.0 mm lx = 5.955E+6 mm4 N,Rd = 18.0 kp/m lv = 2.077E+8 mm4 MvRd =	628.4 kN		
	16.0 kg/m ly = 2.977E+6 mm4 My,Rd = 0.358 m2/m Wel,y = 5.223E+4 mm3 Vc,z,Rd =	21.6 kNm 231.0 kN		
	Wpl.y = 7.006E+4 mm3			
Geometry/Loading:	Endforces: (kN/kNm/m)			
L = 4.650 m	Axial force (kN) 98.9			
	0.0			
	Bending moment (My, kNm)			
	0.6			
	Shear (Vz, kN) -0.6			
Buckling parameters: Y-axis Z-a Buckling length factor 1.00 1.	kis Lateral buckling parameters:			
Buckling Curve a a	^			
	59			
Interaction factors kij: Method 1				
Governing Loadcase: Basic loads: G + Q1 + Q2				
SECTION CONTROL:	01 8 3 M			
IR = NEd/NRd = 98.9/628.4 = 0.16 < 1.0 (0.50L; IR = Vz,Ed/Vz,Rd = 0.6/231.0 = 0.00 < 1.0 (0.00L;	Ch 6.2.8)			
BUCKLING CONTROL:				

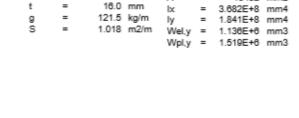

IR = NEd/Nb,y,Rd = 98.9/211.4 = 0.47 < 1.0 (Ch 6.3.1) IR = NEd/Nb,z,Rd = 98.9/211.4 = 0.47 < 1.0 (Ch 6.3.1)

Colbeam EC3 - User de	Colbeam EC3 - User defined					Project: Offshore lift analysis Compressor module 120 tonnes							
Member Design Program incl update Version 1.1.7 Copyright (C) 2010-2012 StruProg A	Identi	Identification: Beam No.101							Date: 4/17/2016 Time: 17:37				
File: new file													
<u>General:</u> Material: S355 NH/NLH gm0/gm1 = 1.15/1.15	fy	=	355	MPa	Е	=	210000.0	MPa					
Profile: Tube 324x18 (Hot finished)	Dime	ensions and	l weight	_	Section	n pro	operty:		Capacity:				
	d t S	=	324.0 16.0 121.5 1.018	mm kg/m	A lx ly Wel.y Wpl.y		15482 3.682E+8 1.841E+8 1.136E+6 1.519E+6	mm4 mm4 mm3		=	4779.2 4779.2 489.0 1756.6	kN kNm	

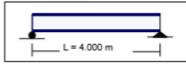
Geometry/Loading:

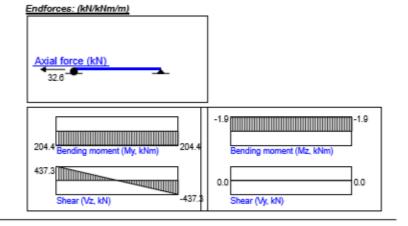
Ψz




×

Governing Loadcase: Basic loads: G + Q1 + Q2 SECTION CONTROL:


- IR = My,Ed/My,Rd = 125.7/489.0 = 0.27 < 1.0 (0.00L; Ch 8.2.5) IR = My,Ed/MN,y,Rd = 125.7/488.9 = 0.27 < 1.0 (0.00L; Ch 8.2.9) IR = Vz,Ed/Vz,Rd = 205.6/1756.6 = 0.12 < 1.0 (1.00L; Ch 8.2.6)


Colbeam EC3 - User defined Member Design Program incl updates until Feb 2012 Version 1.1.7 Copyright (C) 2010-2012 StruProg AB					Project: Offshore lift analysis Compressor module 120							
					Identification: Beam No.104							
=	355 MPa	Е	=	210000.0	MPa							
mensions an	d weight:	Sectio	n pro	operty:		Capacity:						
= = =	324.0 mm 16.0 mm 121.5 kg/m	A Ix Iy		3.682E+8	mm4	N,Rd = 4779.2	kN					
	= = = = =	= 355 MPa <u>mensions and weight:</u> = 324.0 mm = 18.0 mm = 121.5 kg/m	= 355 MPa E = 355 MPa E <u>mensions and weight: Sectio</u> = 324.0 mm A = 16.0 mm Ix = 121.5 kg/m Iy	= 355 MPa E = <u>mensions and weight:</u> Section pro = 324.0 mm A = = 18.0 mm Ix = = 121.5 kg/m Iy =	Elementation Beam No.104 = 355 MPa E = 210000.0 mensions and weight: Section property: = 15482 = 324.0 mm A = 15482 = 18.0 mm Ix = 3.682E+8 = 121.5 kg/m Iy = 1.841E+8	til Feb 2012 Identification: Beam No.104 = 355 MPa E = 210000.0 MPa mensions and weight: Section property: = 324.0 mm A = 15482 mm2 = 16.0 mm Ix = 3.682E+8 mm4	til Feb 2012 Identification: Beam No.104 Date: 4/17 Time: 17:3 = 355 MPa E = 210000.0 MPa mensions and weight: Section property: Capacity: = 324.0 mm A = 15482 mm2 Cross Section Class: 1/2/ Cross Section Class: 1/2/ = 18.0 mm Ix = 3.882E+8 mm4 N.Rd = 4779.2 489.0					

Geometry/Loading:

Vc,z,Rd =

1756.6 kN

Lateral buckling parameters:

×

Governing Loadcase: Basic loads: G + Q1 + Q2 <u>SECTION CONTROL</u>: IR = My.Ed/My.Rd = 204.4/489.0 = 0.44 < 1.0 (0.00L; Ch 8.2.5)

IR = My,Ed/MN,y,Rd = 204.4/468.9 =	0.44 < 1.0 (0.00L; Ch 8.2.9)
	0.25 < 1.0 (0.00L; Ch 8.2.6)

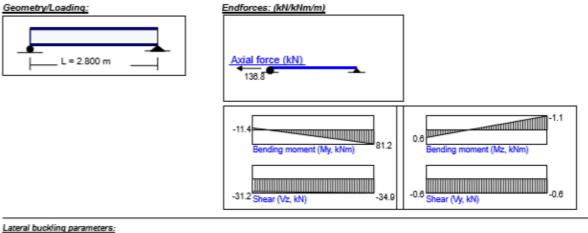
Appendix D₉: Colbeam EC3 calculations for transportation Case C:Compressor module

Colbeam EC3 - User defined fember Design Program incl updates until Feb 2012 (ersion 1.1.7)					Project: Transport analysis Compressor module 120 tonn es							
	Identification	Identification: Beam No.12										
AB							Time: 18:	36				
fy =	355 MPa	Е	=	210000.0	MPa							
Dimensions	and weight:	Sectio	n pro	perty:		Capacity:						
d =	324.0 mm	A	=	15482	mm2		on Class: 1/2	/2 N/My/N				
t =	16.0 mm	lx.	=	3.682E+8	mm4							
g =	-	- 2	=	1.841E+8	mm4	My,Rd =	469.0	kNm				
S =	1.018 m2/m	**ei, j				Vc,z,Rd =	1756.6	kN				
	Endforces: (kN/	kNm/m)										
	Axial force (k	<u>N)</u>		•								
	28 0				5.2 B	ending moment (Mz, kNm)	-0.6				
	27.9 Shear (Vz,	kN)		21.9	-2.9	hear (Vy, kN)		-2.9				
	tes until Feb 201: AB fy = Dimensions a d = t = g = S = S =	es es AB Identification fy = 355 MPa Dimensions and weight: d = d = 324.0 mm t = 16.0 mm g = 121.5 kg/m S = 1.018 m2/m Axial force (k 22.8 28.9 Bending m 27.9 Image: State states	es until Feb 2012 AB fy = 355 MPa E <u>Dimensions and weight:</u> Section d = 324.0 mm A t = 16.0 mm Ix g = 121.5 kg/m Iy S = 1.018 m2/m Wel.y Wpl.y <u>Endforces: (kt/kt/lm/m)</u> <u>Axial force (kN)</u> 28.9 <u>Bending moment (My</u>	es es AB Identification: Beam No.12 fy = 355 MPa E = p Dimensions and weight: d = 324.0 mm A = d = 324.0 mm A = t = 100 mm L = = 100 mm L = = 100 mm L = = 100 mm L = Wpl.y = 20.9 mm E = 100 mm 100 mm </td <td>es Identification: Beam No.12 AB Identification: Beam No.12 fy = 355 MPa E = 210000.0 Dimensions and weight: d 324.0 mm A = 15482 t = 16.0 mm k = 3.682E+8 g = 121.5 Kg/m Iy = 3.682E+8 g = 121.5 Kg/m Iy = 1.841E+8 S = 1.018 m2/m Wel,y = 1.38E+8 Wpl.y = 1.519E+8 Wpl.y = 1.519E+8</td> <td>es Identification: Beam No.12 AB Identification: Beam No.12 fy = 355 MPa E = 210000.0 MPa p Dimensions and weight: d Section property: d 3682E+8 mm4 t = 16.0 mm kx = 3.082E+8 mm4 g = 121.5 kg/m ly = 1.841E+8 mm4 S = 1.018 m2/m Wel,y = 1.38E+8 mm3 Endforces: (kl/kh/m/m) Q </td> <td>es Identification: Beam No.12 AB Identification: Beam No.12 fy = 355 MPa E = 210000.0 MPa Dimensions and weight: Section property: Capacity: d = 324.0 mm A = 15482 mm2 Cross Section t = 16.0 mm Ix = 3.682E+8 mm4 N,Rd = g = 12.15 kg/m ly = 3.682E+8 mm4 MyRd = S = 1.018 m2/m Wel,y = 1.841E+8 mm4 MyRd = S = 1.018 m2/m Wel,y = 1.519E+6 mm3 Vc.z.Rd = Q differces: (kW/k/lm/m) Q </td> <td>es Identification: Beam No.12 Date: 4/1 AB Date: 4/1 fy a 355 MPa E 210000.0 MPa fy a 355 MPa E 210000.0 MPa Dimensions and weight: Section property: Capacity: Cross Section Class: 1/2 d = 324.0 mm A = 15482 mm2 Cross Section Class: 1/2 g = 121.5 kg/m kg = 3.882E+8 mm4 My.Rd = 4779.2 g = 1.018 m2/m Wel.y = 1.38E+6 mm3 Vo.z.Rd = 1756.6 S - Axial force (kN) 22.8 - 22.8 28.9 Bending moment (My, kNm) 27.9 - 2.18 5.2 Bending moment (MZ, kNm) 2.18</td>	es Identification: Beam No.12 AB Identification: Beam No.12 fy = 355 MPa E = 210000.0 Dimensions and weight: d 324.0 mm A = 15482 t = 16.0 mm k = 3.682E+8 g = 121.5 Kg/m Iy = 3.682E+8 g = 121.5 Kg/m Iy = 1.841E+8 S = 1.018 m2/m Wel,y = 1.38E+8 Wpl.y = 1.519E+8 Wpl.y = 1.519E+8	es Identification: Beam No.12 AB Identification: Beam No.12 fy = 355 MPa E = 210000.0 MPa p Dimensions and weight: d Section property: d 3682E+8 mm4 t = 16.0 mm kx = 3.082E+8 mm4 g = 121.5 kg/m ly = 1.841E+8 mm4 S = 1.018 m2/m Wel,y = 1.38E+8 mm3 Endforces: (kl/kh/m/m) Q	es Identification: Beam No.12 AB Identification: Beam No.12 fy = 355 MPa E = 210000.0 MPa Dimensions and weight: Section property: Capacity: d = 324.0 mm A = 15482 mm2 Cross Section t = 16.0 mm Ix = 3.682E+8 mm4 N,Rd = g = 12.15 kg/m ly = 3.682E+8 mm4 MyRd = S = 1.018 m2/m Wel,y = 1.841E+8 mm4 MyRd = S = 1.018 m2/m Wel,y = 1.519E+6 mm3 Vc.z.Rd = Q differces: (kW/k/lm/m) Q	es Identification: Beam No.12 Date: 4/1 AB Date: 4/1 fy a 355 MPa E 210000.0 MPa fy a 355 MPa E 210000.0 MPa Dimensions and weight: Section property: Capacity: Cross Section Class: 1/2 d = 324.0 mm A = 15482 mm2 Cross Section Class: 1/2 g = 121.5 kg/m kg = 3.882E+8 mm4 My.Rd = 4779.2 g = 1.018 m2/m Wel.y = 1.38E+6 mm3 Vo.z.Rd = 1756.6 S - Axial force (kN) 22.8 - 22.8 28.9 Bending moment (My, kNm) 27.9 - 2.18 5.2 Bending moment (MZ, kNm) 2.18				

 Governing Loadcase: Basic loads: G + Q1 + Q2

 SECTION CONTROL:

 IR = My,Ed/My,Rd = 28.9/488.0 =
 0.06 < 1.0 (0.00L; Ch 8.2.5)</td>


 IR = My,Ed/MN,yRd = 28.9/488.9 =
 0.06 < 1.0 (0.00L; Ch 8.2.9)</td>

 IR = Vz,Ed/Vz,Rd = 27.9/1758.6 =
 0.02 < 1.0 (0.00L; Ch 6.2.6)</td>

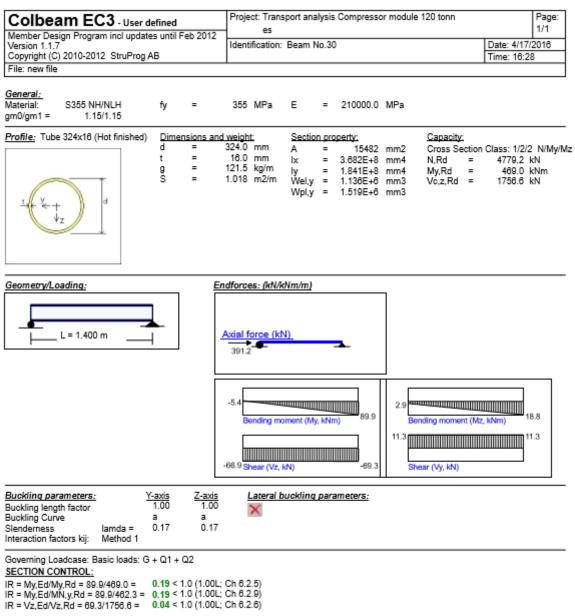
Colbeam EC3 - User de	Project: Trans	sport ana	lysis	Compresso	r modul	e 120 tonn		Page: 1/1		
Member Design Program incl update Version 1.1.7 Copyright (C) 2010-2012 StruProg A		Identification: Beam No.21								
File: new file										
<u>General:</u> Material: S355 NH/NLH gm0/gm1 = 1.15/1.15	fy	-	355 MPa	Е	=	210000.0	MPa			
Profile: Tube 324x18 (Hot finished)	Dime	nsions an	d weight:	Sectio	n pro	operty:		Capacity:		
	d t S	= = =	324.0 mm 18.0 mm 121.5 kg/m 1.018 m2/m	A lx ly Wel,y Wpl,y	=	15482 3.682E+8 1.841E+8 1.136E+6 1.519E+6	mm4 mm4 mm3	Cross Sectio N,Rd = My,Rd = Vc,z,Rd =	4779.2	kN kNm

ļ

×

Governing Loadcase: Basic loads: G + Q1 + Q2

```
SECTION CONTROL:


        IR = My,Ed/My,Rd = 81.2/489.0
        0.17 < 1.0 (1.00L; Ch 8.2.5)</td>

        IR = My,Ed/MN,y,Rd = 81.2/487.9
        0.17 < 1.0 (1.00L; Ch 8.2.9)</td>

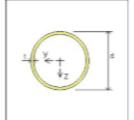
        IR = Vz,Ed/Vz,Rd = 34.9/1758.6
        0.02 < 1.0 (1.00L; Ch 6.2.6)</td>
```

	m EC3 - User d			Transport a es	nalysis	Compresso	or module	2 120 tonn		Page: 1/1		
Version 1.1.7			Identific	Identification: Beam No.29 Date: 4								
	2010-2012 StruProg A	AB							Time: 16:	34		
File: new file												
General <u>:</u> Material: gm0/gm1 =	S355 NH/NLH 1.15/1.15	fy =	355 N	(Pa E	=	210000.0	MPa					
Profile: Tube	324x18 (Hot finished)	Dimensions	and weight:	Sec	tion pr	poerty:		Capacity:				
		d =	324.0 n	nm A	=	15482	mm2	Cross Section	n Class: 1/2	/2 N/My/M		
		t =	16.0 n	-/	=	3.682E+8		N,Rd =	4779.2	kN		
		g = S =	121.5 k 1.018 n	iy	=	1.841E+8		My,Rd =	469.0 1756.6			
14 V + +	z d	-				1.136E+6 1.519E+6		Vc,z,Rd =	1730.0	KIN .		
Geometry/Loa	ading:		Endforces:	: (kN/kNm/m	1		7					
-	L = 2.000 m	1	Axial for	ce (kN)		•						
			-34.3			47.7		anding moment (M		-6.1		
			Den	ding moment (NTY, KINI	ny -	De	anding moment (M	z, www.			
			-38.0 She	ar (Vz, kN)		-44.0	-10.7 St	vear (Vy, kN)		-10.7		
Buckling para	ameters: Y	-axis Z-a		teral bucklir	iq par	ameters:						
Buckling lengt Buckling Curve Slenderness nteraction fac	e lamda =	a a	00 🗙 24	1								
	idcase: Basic loads: G	+ 01 + 02										
SECTION COL	NTROL:											
	/,Rd = 47.7/469.0 = N,y,Rd = 47.7/468.8 =	0.10 < 1.0 (1.0 0.10 < 1.0 (1.0										

BUCKLING CONTROL: IR = NEd/Nb,y,Rd + kyy*My,Ed/(xLT*My,Rd) + kyz*Mz,Ed/Mz,Rd = 39.1/4736.9+0.64*47.7/(1.00*469.0)+0.42*15.4/469.0 = 0.09 < 1.0 (Ch 6.3.3) IR = NEd/Nb,z,Rd + kzy*My,Ed/(xLT*My,Rd) + kzz*Mz,Ed/Mz,Rd = 39.1/4736.9+0.38*47.7/(1.00*469.0)+0.70*15.4/469.0 = 0.07 < 1.0 (Ch 6.3.3)

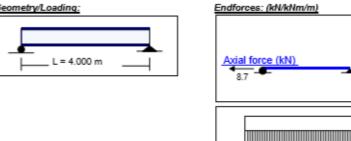
BUCKLING CONTROL:

IR = NEd/Nb,y,Rd + kzy*My,Ed/(xLT*My,Rd) + kyz*Mz,Ed/Mz,Rd = 391.2/4779.2+0.74*89.9/(1.00*469.0)+0.47*18.8/469.0 = 0.24 < 1.0 (Ch 6.3.3) IR = NEd/Nb,z,Rd + kzy*My,Ed/(xLT*My,Rd) + kzz*Mz,Ed/Mz,Rd = 391.2/4779.2+0.44*89.9/(1.00*469.0)+0.78*18.8/469.0 = 0.20 < 1.0 (Ch 6.3.3)

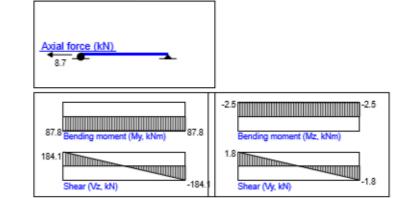

Colbeam EC3 - User d Member Design Program incl update		Project: Trans es	sport ana	ysis	Compresso	or module	120 tonn		Page: 1/1
Version 1.1.7		Identification:	Date: 4/17						
Copyright (C) 2010-2012 StruProg A File: new file	4D							Time: 16:3	9
The new me									
<u>General:</u> Material: S355 NH/NLH gm0/gm1 = 1.15/1.15	fy =	355 MPa	Е	=	210000.0	MPa			
Profile: Tube 114x6 (Hot finished)	Dimensions and	weight:	Section	pro	perty:		Capacity:		
y + d	d = t = g = S =	114.0 mm 6.0 mm 16.0 kg/m 0.358 m2/m		=		mm4 mm3	Cross Sectio N,Rd = My,Rd = Vc,z,Rd =	n Class: 1/2/ 628.4 21.6 231.0	kN kNm
Geometry/Loading:		ndforces: (kN/k	: <u>Nm/m)</u>						
L = 4.650 m		Axial force (kt	<u>4)</u>	-	▶.				
Buckling parameters: Y Buckling length factor Buckling Curve Buckling Curve Iamda = Slenderness Iamda = Interaction factors kij: Method 1	<u>-axis Z-axis</u> 1.00 1.00 a a 1.59 1.59	<u>Lateral b</u>	ouckling	para	meters:				
Governing Loadcase: Basic loads: G <u>SECTION CONTROL:</u> IR = NEd/NRd = 109.9/628.4 = 0.17		.2.4)							

IR = NEd/Nb,y,Rd = 109.9/211.4 = 0.52 < 1.0 (Ch 6.3.1) IR = NEd/Nb,z,Rd = 109.9/211.4 = 0.52 < 1.0 (Ch 6.3.1)

Colbeam EC3 - User defined Member Design Program incl updates until Feb 2012	Project: Transport analysis Compressor module 120 tonn	Page: 1/1
Version 1.1.7 Copyright (C) 2010-2012 StruProg AB File: new file		Date: 4/17/2016 Time: 16:25
<u>General:</u> Material: S355 NH/NLH fy = gm0/gm1 = 1.15/1.15	355 MPa E = 210000.0 MPa	
Profile: Tube 324x18 (Hot finished) d = t = g = g = S = S		lass: 1/2/2 N/My/N 4779.2 kN 469.0 kNm 1756.6 kN
Geometry/Loading:	Axial force (kN)	
	-28.1 Bending moment (My, kNm) -88.0 Shear (Vz, kN) -117.8 -3.7 Shear (Vy, kN)	Nm)
Buckling parameters: Y-axis Z-axis Buckling length factor 1.00 1.0 Buckling Curve a a Slenderness Iamda = 0.16 0.1		
Governing Loadcase: Basic loads: G + Q1 + Q2 SECTION CONTROL: IR = My,Ed/My,Rd = 105.7/468.0 = 0.23 < 1.0 (1.0	0L; Ch 6.2.9)	


BUCKLING CONTROL: IR = NEd/Nb.y.Rd + kyy*My.Ed/(xLT*My.Rd) + kyz*Mz.Ed/Mz.Rd = 18.9/4779.2+0.73*105.7/(1.00*469.0)+0.36*2.5/469.0 = 0.17 < 1.0 (Ch 6.3.3) IR = NEd/Nb.z.Rd + kzy*My.Ed/(xLT*My.Rd) + kzz*Mz.Ed/Mz.Rd = 18.9/4779.2+0.44*105.7/(1.00*469.0)+0.59*2.5/469.0 = 0.11 < 1.0 (Ch 6.3.3)

Colbeam EC3 - User de						Page: 1/1	
Member Design Program incl update Version 1.1.7 Copyright (C) 2010-2012 StruProg A						Date: 4/17/2016 Time: 16:23	
File: new file							
<u>General:</u> Material: S355 NH/NLH gm0/gm1 = 1.15/1.15	fy =	355 MPa	E	= 210000.0	MPa		
Profile: Tube 324x18 (Hot finished)	Dimensions and d =	<u>d weight:</u> 324.0 mm 18.0 mm	<u>Section</u> A	<u>property:</u> = 15482	mm2	Capacity: Cross Section Class: 1/2	/2 N/My/I



=	324.0	mm	A	=	15482	mm2	Cross Se	ctior
=	16.0	mm	lx	=	3.682E+8	mm4	N.Rd	=
=	121.5	kg/m	ly	=	1.841E+8	mm4	My,Rd	=
=	1.018	m2/m	Wel.y	=	1.138E+8	mm3	Vc,z,Rd	=
			Wpl,y	=	1.519E+6	mm3		

Geometry/Loading:

g S

1756.6 kN

489.0 kNm

Lateral buckling parameters:

×

Governing Loadcase: Basic loads: G + Q1 + Q2 SECTION CONTROL: IR = My,Ed/My,Rd = 87.8/489.0 = 0.19 < 1.0 (0.00L; Ch 8.2.5) IR = My,Ed/MN,y,Rd = 87.8/489.0 = 0.19 < 1.0 (0.00L; Ch 8.2.9) IR = Vz,Ed/Vz,Rd = 184.1/1756.8 = 0.10 < 1.0 (0.00L; Ch 8.2.6)

Appendix E: Staad.Pro input

```
Appendix E<sub>1</sub>: Staad.Pro input for air lifting Case A:Pump module
STAAD SPACE
START JOB INFORMATION
JOB NAME PUMP MODULE 40 tonnes
ENGINEER NAME Yohannes
ENGINEER DATE 19-03-16
END JOB INFORMATION
INPUT WIDTH 79
UNIT METER KN
JOINT COORDINATES
1 0 0 0; 2 3 0 0; 3 0 0 4; 4 3 0 4; 5 0 7 0; 6 3 7 0; 7 0 7 4; 8 3 7 4;
19 0 1.5 0; 20 0 1.5 4; 21 3 1.5 4; 22 3 1.5 0; 27 0 5 4; 28 3 5 4; 33 0 5 0;
34 3 5 0; 35 0 7.15 0; 36 3 7.15 0; 37 0 7.15 4; 38 3 7.15 4; 39 1.58 8.73 2;
40 0 -0.5 0; 41 3 -0.5 0; 42 0 -0.5 4; 43 3 -0.5 4; 44 0 5 2; 45 1.5 5 4;
46 3 5 2; 47 1.5 5 0;
MEMBER INCIDENCES
121 1 3; 122 2 4; 147 1 19; 148 19 33; 149 20 3; 150 21 4; 151 22 2; 152 19 20;
153 22 21; 154 20 21; 155 19 22; 156 22 34; 163 20 27; 164 21 28; 165 27 7;
166 28 8; 187 1 2; 188 3 4; 189 33 5; 194 34 6; 200 5 7; 201 7 8; 202 8 6;
203 6 5; 204 35 5; 205 36 6; 206 38 8; 207 37 7; 208 36 39; 209 38 39;
210 35 39; 211 37 39; 212 1 40; 213 3 42; 214 4 43; 215 2 41; 216 33 44;
217 27 45; 218 28 46; 219 34 47; 220 44 27; 221 45 28; 222 46 34; 223 47 33;
224 5 44; 225 7 44; 226 7 45; 227 8 45; 228 8 46; 229 6 46; 230 6 47; 231 5 47;
ELEMENT INCIDENCES SHELL
31 5 7 8 6;
ELEMENT PROPERTY
*Cover and side steel plate thickness. Steel plate design is not performed
31 THICKNESS 0.015
* Material constant properties set according to section 3.3.1 of project work
DEFINE MATERIAL START
ISOTROPIC STEEL
E 2.1e+008
POISSON 0.3
DENSITY 77
ALPHA 1.2e-005
DAMP 0.03
```

ISOTROPIC SLINGS E 2.1e+008 POISSON 0.3 DENSITY 0.0001 ALPHA 1.2e-005 DAMP 0.03 END DEFINE MATERIAL ************** *Hollow section steel property MEMBER PROPERTY EUROPEAN 224 TO 231 TABLE ST PIPE OD 0.1143 ID 0.1017 121 122 147 TO 156 163 TO 166 187 TO 189 194 200 TO 203 212 TO 222 -223 TABLE ST PIPE OD 0.3239 ID 0.2919 MEMBER PROPERTY EUROPEAN 208 TO 211 TABLE ST PIPE OD 0.02 ID 0 MEMBER PROPERTY EUROPEAN 204 TO 207 PRIS YD 0.02 ZD 0.01 CONSTANTS BETA 45 MEMB 204 206 BETA 315 MEMB 205 207 MATERIAL STEEL ALL MATERIAL SLINGS MEMB 208 TO 211 SUPPORTS *Boundary conditions for air lifting analysis set according to section 5.3.1 39 PINNED 40 TO 43 FIXED BUT FY MX MY MZ KFX 10 KFZ 10 *BASIC LOADS MEMBER TENSION 208 TO 211 MEMBER RELEASE *Braces released for moment 224 TO 231 START MX MY MZ 224 TO 231 END MX MY MZ LOAD 1 STATIC SELFWEIGHT * Static selfweight with 10% weight inaccuracy SELFWEIGHT Y -1.1 LOAD 2 STATIC SUBSEA MODULE WEIGHT *Total static pump module weight 30 tonnes (294.3kN) *Applied on plate 4*3 (294.3/(4*3)) = 24.525kN/m2 ELEMENT LOAD 31 PR GY -24.525 -2 -1.5 2 1.5 *LOAD COMBINATIONS-AIR LIFTING ANALYSIS LOAD COMB 3 LC25.AIR LIFTING 1 2.25 2 2.25 PERFORM ANALYSIS LOAD LIST 3 PRINT MEMBER FORCES PRINT SUPPORT REACTION PRINT CG FINISH

```
Appendix E<sub>2</sub>: Staad.Pro input for offshore lifting Case A:Pump module
STAAD SPACE
START JOB INFORMATION
JOB NAME PUMP MODULE 40 tonnes
ENGINEER NAME Yohannes
ENGINEER DATE 19-03-16
END JOB INFORMATION
INPUT WIDTH 79
UNIT METER KN
JOINT COORDINATES
1 0 0 0; 2 3 0 0; 3 0 0 4; 4 3 0 4; 5 0 7 0; 6 3 7 0; 7 0 7 4; 8 3 7 4;
19 0 1.5 0; 20 0 1.5 4; 21 3 1.5 4; 22 3 1.5 0; 27 0 5 4; 28 3 5 4; 33 0 5 0;
34 3 5 0; 35 0 7.15 0; 36 3 7.15 0; 37 0 7.15 4; 38 3 7.15 4; 39 1.58 8.73 2;
40 0 -0.5 0; 41 3 -0.5 0; 42 0 -0.5 4; 43 3 -0.5 4; 44 0 5 2; 45 1.5 5 4;
46 3 5 2; 47 1.5 5 0;
MEMBER INCIDENCES
121 1 3; 122 2 4; 147 1 19; 148 19 33; 149 20 3; 150 21 4; 151 22 2; 152 19 20;
153 22 21; 154 20 21; 155 19 22; 156 22 34; 163 20 27; 164 21 28; 165 27 7;
166 28 8; 187 1 2; 188 3 4; 189 33 5; 194 34 6; 200 5 7; 201 7 8; 202 8 6;
203 6 5; 204 35 5; 205 36 6; 206 38 8; 207 37 7; 208 36 39; 209 38 39;
210 35 39; 211 37 39; 212 1 40; 213 3 42; 214 4 43; 215 2 41; 216 33 44;
217 27 45; 218 28 46; 219 34 47; 220 44 27; 221 45 28; 222 46 34; 223 47 33;
224 5 44; 225 7 44; 226 7 45; 227 8 45; 228 8 46; 229 6 46; 230 6 47; 231 5 47;
ELEMENT INCIDENCES SHELL
31 5 7 8 6;
ELEMENT PROPERTY
*Cover and side steel plate thickness. Steel plate design is not performed
31 THICKNESS 0.015
* Material constant properties set according to section 3.3.1 of project work
DEFINE MATERIAL START
ISOTROPIC STEEL
E 2.1e+008
POISSON 0.3
DENSITY 77
ALPHA 1.2e-005
DAMP 0.03
```

**************** ISOTROPIC SLINGS E 2.1e+008 POISSON 0.3 DENSITY 0.0001 ALPHA 1.2e-005 DAMP 0.03 END DEFINE MATERIAL ************** *Hollow section steel property MEMBER PROPERTY EUROPEAN 224 TO 231 TABLE ST PIPE OD 0.1143 ID 0.1017 121 122 147 TO 156 163 TO 166 187 TO 189 194 200 TO 207 212 TO 222 -223 TABLE ST PIPE OD 0.3239 ID 0.2919 MEMBER PROPERTY EUROPEAN 208 TO 211 TABLE ST PIPE OD 0.02 ID 0 MEMBER PROPERTY EUROPEAN 204 TO 207 PRIS YD 0.02 ZD 0.01 CONSTANTS BETA 45 MEMB 204 206 BETA 315 MEMB 205 207 MATERIAL STEEL ALL MATERIAL SLINGS MEMB 208 TO 211 SUPPORTS *Boundary conditions for offshore lifting analysis set according to section 5.3.1 39 PINNED 40 TO 43 FIXED BUT FY MX MY MZ KFX 10 KFZ 10 *BASIC LOADS MEMBER TENSION 208 TO 211 MEMBER RELEASE *Braces released for moment 224 TO 231 START MX MY MZ 224 TO 231 END MX MY MZ LOAD 1 STATIC SELFWEIGHT * Static selfweight with 10% weight inaccuracy SELFWEIGHT Y -1.1 LOAD 2 STATIC SUBSEA MODULE WEIGHT *Total static pump module weight 30 tonnes (294.3kN) *Applied on plate 4*3 (294.3/(4*3)) = 24.525kN/m2 *********** ELEMENT LOAD 31 PR GY -24.525 -2 -1.5 2 1.5 *LOAD COMBINATIONS-OFFSHORE/SUBSEA LIFTING ANALYSIS LOAD COME 3 LC26.SUBSEA LIFTING 1 3.12 2 3.12 PERFORM ANALYSTS LOAD LIST 3 PRINT MEMBER FORCES PRINT SUPPORT REACTION PRINT CG FINISH

University of Stavanger

Appendix E₃: Staad.Pro input for transportation Case A:Pump module STAAD SPACE START JOB INFORMATION JOB NAME PUMP MODULE 40 tonnes ENGINEER NAME Yohannes ENGINEER DATE 19-0316 END JOB INFORMATION INPUT WIDTH 79 UNIT METER KN JOINT COORDINATES 1 0 0 0; 2 3 0 0; 3 0 0 4; 4 3 0 4; 5 0 7 0; 6 3 7 0; 7 0 7 4; 8 3 7 4; 19 0 1.5 0; 20 0 1.5 4; 21 3 1.5 4; 22 3 1.5 0; 27 0 5 4; 28 3 5 4; 33 0 5 0; 34 3 5 0; 35 0 -0.5 0; 36 3 -0.5 0; 37 0 -0.5 4; 38 3 -0.5 4; 39 0 5 2; 40 1.5 5 4; 41 3 5 2; 42 1.5 5 0; MEMBER INCIDENCES 121 1 3; 122 2 4; 147 1 19; 148 19 33; 149 20 3; 150 21 4; 151 22 2; 152 19 20; 153 22 21; 154 20 21; 155 19 22; 156 22 34; 163 20 27; 164 21 28; 165 27 7; 166 28 8; 187 1 2; 188 3 4; 189 33 5; 194 34 6; 200 5 7; 201 7 8; 202 8 6; 203 6 5; 204 1 35; 205 3 37; 206 4 38; 207 2 36; 208 33 39; 209 27 40; 210 28 41; 211 34 42; 212 39 27; 213 40 28; 214 41 34; 215 42 33; 216 5 39; 217 7 39; 218 7 40; 219 8 40; 220 8 41; 221 6 41; 222 6 42; 223 5 42; ELEMENT INCIDENCES SHELL 31 5 7 8 6; ELEMENT PROPERTY *Cover and side steel plate thickness. Steel plate design is not performed 31 THICKNESS 0.015 * Material constant properties set according to section 3.3.1 of project work DEFINE MATERIAL START ISOTROPIC STEEL E 2.1e+008 POISSON 0.3 DENSITY 77 ALPHA 6.5e-006 DAMP 0.03

END DEFINE MATERIAL

```
*Hollow section steel property
MEMBER PROPERTY EUROPEAN
216 TO 223 TABLE ST PIPE OD 0.1143 ID 0.1017
121 122 147 TO 156 163 TO 166 187 TO 189 194 200 TO 214 -
215 TABLE ST PIPE OD 0.3239 ID 0.2919
CONSTANTS
MATERIAL STEEL ALL
SUPPORTS
*Boundary conditions for transportaion analysis set according to section 5.3.2
******
35 TO 38 FIXED BUT MX MY MZ
*BASIC LOADS
MEMBER RELEASE
*Braces released for moment
216 TO 223 START MX MY MZ
216 TO 223 END MX MY MZ
LOAD 1 STATIC SELFWEIGHT
* Static selfweight with 10% weight inaccuracy
SELFWEIGHT Y -1.1
LOAD 2 STATIC SUBSEA MODULE WEIGHT
```

```
LOAD 2 STATIC SUBSEA MODULE WEIGHT
          *Total static pump module weight 30 tonnes (294.3kN)
*Applied on plate 4*3 (294.3/(4*3)) = 24.525kN/m2
            . . . . . . . .
                          .
La ala ala ala
                              ELEMENT LOAD
31 PR GY -24.525 -2 -1.5 2 1.5
LOAD 3 DYNAMIC SELFWEIGHT IN +X DIRECTION
SELFWEIGHT X 1.1
LOAD 4 DYNAMIC SELFWEIGHT IN +Z DIRECTION
SELFWEIGHT Z 1.1
LOAD 5 DYNAMIC SELFWEIGHT IN +Y DIRECTION
SELFWEIGHT Y 1.1
LOAD 6 DYNAMIC SUBSEA MODULE WEIGHT IN +X DIRECTION
                                         *********************************
    *********************
                      *****
                              ***********
*Total pump module weight 30 tonnes =294.3kN
ELEMENT LOAD
31 PR GX 294.3 0 0
LOAD 7 DYNAMIC SUBSEA MODULE WEIGHT IN +Z DIRECTION
ELEMENT LOAD
31 PR GZ 294.3 0 0
LOAD 8 DYNAMIC SUBSEA MODULE WEIGHT IN +Y DIRECTION
ELEMENT LOAD
31 PR GY 294.3 0 0
LOAD 9 DYNAMIC SELFWEIGHT IN -X DIRECTION
SELFWEIGHT X -1.1
LOAD 10 DYNAMIC SELFWEIGHT IN -Z DIRECTION
SELFWEIGHT Z -1.1
LOAD 11 DYNAMIC SUBSEA MODULE WEIGHT IN -X DIRECTION
                                          ------
*Total pump module weight 30 tonnes =294.3kN
ELEMENT LOAD
31 PR GX -294.3 0 0
LOAD 12 DYNAMIC SUBSEA MODULE WEIGHT IN -Z DIRECTION
ELEMENT LOAD
31 PR GZ -294.3 0 0
```

University of Stavanger

```
*LOAD COMBINATIONS-TRANSPORTATION ANALYSIS
LOAD COMB 13 LC1.TRANSPORTATION ROLL, MAX.Z
1 1.3 2 1.3 3 1.0 6 1.0
LOAD COMB 14 LC2.TRANSPORTATION ROLL, MIN.Z
1 0.7 2 0.7 3 1.0 6 1.0
LOAD COMB 15 LC3.TRANSPORTATION PITCH, MAX.Z
1 1.3 2 1.3 4 1.0 7 1.0
LOAD COMB 16 LC4.TRANSPORTATION PITCH, MIN.Z
1 0.7 2 0.7 4 1.0 7 1.0
LOAD COMB 17 LC5.TRANSPORTATION -ROLL, MAX.Z
1 1.3 2 1.3 9 1.0 11 1.0
LOAD COMB 18 LC6.TRANSPORTATION -ROLL, MIN.Z
1 0.7 2 0.7 9 1.0 11 1.0
LOAD COMB 19 LC7.TRANSPORTATION -PITCH, MAX.Z
1 1.3 2 1.3 10 1.0 12 1.0
LOAD COMB 20 LC8.TRANSPORTATION -PITCH, MIN.Z
1 0.7 2 0.7 10 1.0 12 1.0
*LOAD COMBINATIONS-ULSa TRANSPORTATION ANALYSIS
LOAD COMB 21 LC9.ULS A, ROLL+HEAVE
1 1.3 2 1.3 3 0.7 5 -0.7 6 0.7 8 -0.7
LOAD COMB 22 LC10.ULS A, ROLL-HEAVE
1 1.3 2 1.3 3 0.7 5 0.7 6 0.7 8 0.7
LOAD COMB 23 LC11.ULS A, -ROLL+HEAVE
1 1.3 2 1.3 5 -0.7 8 -0.7 9 0.7 11 0.7
LOAD COMB 24 LC12.ULS A, -ROLL-HEAVE
1 1.3 2 1.3 5 0.7 8 0.7 9 0.7 11 0.7
LOAD COMB 25 LC13.ULS A, PITCH+HEAVE
1 1.3 2 1.3 4 0.7 5 -0.7 7 0.7 8 -0.7
LOAD COMB 26 LC14.ULS A, PITCH-HEAVE
1 1.3 2 1.3 4 0.7 5 0.7 7 0.7 8 0.7
LOAD COMB 27 LC15.ULS A, -PITCH+HEAVE
1 1.3 2 1.3 5 -0.7 8 -0.7 10 0.7 12 0.7
LOAD COMB 28 LC16.ULS A, -PITCH-HEAVE
1 1.3 2 1.3 5 0.7 8 0.7 10 0.7 12 0.7
*LOAD COMBINATIONS-ULSb TRANSPORTATION ANALYSIS
                                         *******
LOAD COME 29 LC17.ULS B, ROLL+HEAVE
1 1.0 2 1.0 3 1.3 5 -1.3 6 1.3 8 -1.3
LOAD COME 30 LC18.ULS B, ROLL-HEAVE
1 1.0 2 1.0 3 1.3 5 1.3 6 1.3 8 1.3
LOAD COMB 31 LC19.ULS B, -ROLL+HEAVE
1 1.0 2 1.0 5 -1.3 8 -1.3 9 1.3 11 1.3
LOAD COMB 32 LC20.ULS B, -ROLL-HEAVE
1 1.0 2 1.0 5 1.3 8 1.3 9 1.3 11 1.3
LOAD COMB 33 LC21.ULS B, PITCH+HEAVE
1 1.0 2 1.0 4 1.3 5 -1.3 7 1.3 8 -1.3
LOAD COMB 34 LC22.ULS B, PITCH-HEAVE
1 1.0 2 1.0 4 1.3 5 1.3 7 1.3 8 1.3
LOAD COMB 35 LC23.ULS B, -PITCH+HEAVE
1 1.0 2 1.0 5 -1.3 8 -1.3 10 1.3 12 1.3
LOAD COMB 36 LC24.ULS B, -PITCH-HEAVE
1 1.0 2 1.0 5 1.3 8 1.3 10 1.3 12 1.3
PERFORM ANALYSIS
LOAD LIST 13 TO 36
PRINT MEMBER FORCES
PRINT SUPPORT REACTION
FINISH
```

University of Stavanger

STAAD SPACE START JOB INFORMATION JOB NAME COOLER MODULE 100 tonnes ENGINEER NAME Yohannes ENGINEER DATE 04-Apr-16 END JOB INFORMATION INPUT WIDTH 79 UNIT METER KN JOINT COORDINATES 1 0 0 0; 2 0 0 5; 3 9 0 0; 4 9 0 5; 5 0 7 0; 6 0 7 5; 7 9 7 5; 8 9 7 0; 9 0 7 2.5; 10 0 0 2.5; 11 9 0 2.5; 12 9 7 2.5; 13 3 7 5; 14 6 7 5; 15 6 7 0; 16 3 7 0; 17 3 0 5; 18 6 0 5; 19 6 0 0; 20 3 0 0; 21 3 5.5 5; 22 6 5.5 5; 23 3 1 5; 24 6 1 5; 25 6 5.5 0; 26 3 5.5 0; 27 6 1 0; 28 3 1 0; 29 3 7 2.5; 30 6 7 2.5; 31 3 0 2.5; 32 6 0 2.5; 33 0 7.15 0; 34 0 7.15 5; 35 9 7.15 5; 36 9 7.15 0; 37 4.5 11.65 2.5; 38 0 -0.5 0; 39 0 -0.5 5; 40 9 -0.5 0; 41 9 -0.5 5; 42 0.5 0 5; 43 8.5 0 5; 44 8.5 0 0; 45 0.5 0 0; ********************* MEMBER INCIDENCES 1 1 10; 2 2 42; 3 4 11; 4 3 44; 5 5 9; 6 6 13; 7 7 12; 8 8 15; 9 1 5; 10 2 6; 11 3 8; 12 4 7; 13 9 6; 14 10 2; 15 11 3; 16 12 8; 17 10 9; 18 11 12; 19 5 10; 20 6 10; 21 8 11; 22 7 11; 23 13 14; 24 14 7; 25 15 16; 26 16 5; 27 17 18; 28 18 43; 29 19 20; 30 20 45; 31 16 26; 32 15 25; 33 13 21; 34 14 22; 35 6 17; 36 7 18; 37 8 19; 38 5 20; 39 21 23; 40 22 24; 41 21 22; 42 23 17; 43 24 18; 44 23 24; 45 21 24; 46 25 27; 47 26 28; 48 25 26; 49 27 19; 50 28 20; 51 27 28; 52 25 28; 53 16 29; 54 15 30; 55 29 13; 56 30 14; 57 9 29; 58 29 30; 59 30 12; 64 10 31; 65 31 32; 66 32 11; 67 10 17; 68 10 20; 70 11 18; 71 11 19; 72 34 6; 73 33 5; 74 36 8; 75 35 7; 76 33 37; 77 34 37; 78 36 37; 79 35 37; 80 20 31; 81 31 17; 82 19 32; 83 32 18; 84 2 39; 85 1 38; 86 3 40; 87 4 41; 88 42 17; 89 42 39; 90 43 4; 91 43 41; 92 44 19; 93 44 40; 94 45 1; 95 45 38; ********* * Material constant properties set according to section 3.3.1 of project work DEFINE MATERIAL START ISOTROPIC STEEL E 2.1e+008 POISSON 0.3 DENSITY 77 ALPHA 6.5e-006 DAMP 0.03

Appendix E₄: Staad.Pro input for air lifting Case B: Cooler module

```
* Dummy slings for lifting with density 0
ISOTROPIC SLINGS
E 2.1e+008
POISSON 0.3
DENSITY 0.0001
ALPHA 1.2e-005
DAMP 0.03
END DEFINE MATERIAL
*Hollow section steel property
MEMBER PROPERTY EUROPEAN
1 TO 18 23 TO 34 39 TO 44 46 TO 51 53 TO 59 64 TO 68 70 71 80 TO 94 -
95 TABLE ST PIPE OD 0.273 ID 0.241
19 TO 22 35 TO 38 45 52 TABLE ST PIPE OD 0.1143 ID 0.1017
MEMBER PROPERTY EUROPEAN
76 TO 79 TABLE ST PIPE OD 0.02 ID 0
MEMBER PROPERTY EUROPEAN
72 TO 75 PRIS YD 0.02 ZD 0.1
CONSTANTS
BETA 45 MEMB 73 75
BETA 315 MEMB 72 74
MATERIAL STEEL ALL
MATERIAL SLINGS MEMB 76 TO 79
*Braces released for moment
MEMBER RELEASE
19 TO 22 35 TO 38 45 52 START MX MY MZ
19 TO 22 35 TO 38 45 52 END MX MY MZ
SUPPORTS
*Boundary conditions for air lifting analysis set according to section 5.3.1
37 PINNED
38 TO 41 FIXED BUT FY MX MY MZ KFX 10 KFZ 10
*BASIC LOADS
LOAD 1 STATIC SELFWEIGHT
   * Static selfweight with 10% weight inaccuracy
********************
SELFWEIGHT Y -1.1
LOAD 2 STATIC SUBSEA MODULE WEIGHT
   *Total static cooler module weight 75 tonnes (735.75kN)
*This load is distributed on Area 5 x 9, hence (735.75/(5x9)) = 16.35kN/m2
........
                                    ..........
FLOOR LOAD
YRANGE 0 0 FLOAD -16.35 XRANGE 0 9 ZRANGE 0 5
*LOAD COMBINATIONS-AIR LIFTING ANALYSIS
LOAD COMB 3 LC25.AIR LIFTING
1 2.25 2 2.25
PERFORM ANALYSIS
LOAD LIST 3
PRINT MEMBER FORCES
PRINT SUPPORT REACTION
PRINT CG
FINISH
```

Appendix E5: Staad.Pro input for offshore lifting Case B: Cooler module

STAAD SPACE START JOB INFORMATION JOB NAME COOLER MODULE 100 tonnes ENGINEER NAME Yohannes ENGINEER DATE 04-Apr-16 END JOB INFORMATION INPUT WIDTH 79 UNIT METER KN JOINT COORDINATES 1 0 0 0; 2 0 0 5; 3 9 0 0; 4 9 0 5; 5 0 7 0; 6 0 7 5; 7 9 7 5; 8 9 7 0; 9 0 7 2.5; 10 0 0 2.5; 11 9 0 2.5; 12 9 7 2.5; 13 3 7 5; 14 6 7 5; 15 6 7 0; 16 3 7 0; 17 3 0 5; 18 6 0 5; 19 6 0 0; 20 3 0 0; 21 3 5.5 5; 22 6 5.5 5; 23 3 1 5; 24 6 1 5; 25 6 5.5 0; 26 3 5.5 0; 27 6 1 0; 28 3 1 0; 29 3 7 2.5; 30 6 7 2.5; 31 3 0 2.5; 32 6 0 2.5; 33 0 7.15 0; 34 0 7.15 5; 35 9 7.15 5; 36 9 7.15 0; 37 4.5 11.65 2.5; 38 0 -0.5 0; 39 0 -0.5 5; 40 9 -0.5 0; 41 9 -0.5 5; 42 0.5 0 5; 43 8.5 0 5; 44 8.5 0 0; 45 0.5 0 0; ********* *********************************** MEMBER INCIDENCES 1 1 10; 2 2 42; 3 4 11; 4 3 44; 5 5 9; 6 6 13; 7 7 12; 8 8 15; 9 1 5; 10 2 6; 11 3 8; 12 4 7; 13 9 6; 14 10 2; 15 11 3; 16 12 8; 17 10 9; 18 11 12; 19 5 10; 20 6 10; 21 8 11; 22 7 11; 23 13 14; 24 14 7; 25 15 16; 26 16 5; 27 17 18; 28 18 43; 29 19 20; 30 20 45; 31 16 26; 32 15 25; 33 13 21; 34 14 22; 35 6 17; 36 7 18; 37 8 19; 38 5 20; 39 21 23; 40 22 24; 41 21 22; 42 23 17; 43 24 18; 44 23 24; 45 21 24; 46 25 27; 47 26 28; 48 25 26; 49 27 19; 50 28 20; 51 27 28; 52 25 28; 53 16 29; 54 15 30; 55 29 13; 56 30 14; 57 9 29; 58 29 30; 59 30 12; 64 10 31; 65 31 32; 66 32 11; 67 10 17; 68 10 20; 70 11 18; 71 11 19; 72 34 6; 73 33 5; 74 36 8; 75 35 7; 76 33 37; 77 34 37; 78 36 37; 79 35 37; 80 20 31; 81 31 17; 82 19 32; 83 32 18; 84 2 39; 85 1 38; 86 3 40; 87 4 41; 88 42 17; 89 42 39; 90 43 4; 91 43 41; 92 44 19; 93 44 40; 94 45 1; 95 45 38; ********************* * Material constant properties set according to section 3.3.1 of project work ********************* DEFINE MATERIAL START ISOTROPIC STEEL E 2.1e+008 POISSON 0.3 DENSITY 77 ALPHA 6.5e-006 DAMP 0.03

```
* Dummy slings for lifting with density 0
*****
ISOTROPIC SLINGS
E 2.1e+008
POISSON 0.3
DENSITY 0.0001
ALPHA 1.2e-005
DAMP 0.03
END DEFINE MATERIAL
*Hollow section steel property
MEMBER PROPERTY EUROPEAN
1 TO 18 23 TO 34 39 TO 44 46 TO 51 53 TO 59 64 TO 68 70 71 80 TO 94 -
95 TABLE ST PIPE OD 0.273 ID 0.241
19 TO 22 35 TO 38 45 52 TABLE ST PIPE OD 0.1143 ID 0.1017
MEMBER PROPERTY EUROPEAN
76 TO 79 TABLE ST PIPE OD 0.02 ID 0
MEMBER PROPERTY EUROPEAN
72 TO 75 PRIS YD 0.02 ZD 0.1
CONSTANTS
BETA 45 MEMB 73 75
BETA 315 MEMB 72 74
MATERIAL STEEL ALL
MATERIAL SLINGS MEMB 76 TO 79
************
                  *Braces released for moment
MEMBER RELEASE
19 TO 22 35 TO 38 45 52 START MX MY MZ
19 TO 22 35 TO 38 45 52 END MX MY MZ
SUPPORTS
*Boundary conditions for lifting analysis set according to section 5.3.1
37 PINNED
38 TO 41 FIXED BUT FY MX MY MZ KFX 10 KFZ 10
*BASIC LOADS
LOAD 1 STATIC SELFWEIGHT
* Static selfweight with 10% weight inaccuracy
SELFWEIGHT Y -1.1
LOAD 2 STATIC SUBSEA MODULE WEIGHT
******************
*Total static cooler module weight 75 tonnes (735.75kN)
*This load is distributed on Area 5 x 9, hence (735.75/(5x9))= 16.35kN/m2
*******************************
                             FLOOR LOAD
YRANGE 0 0 FLOAD -16.35 XRANGE 0 9 ZRANGE 0 5
*LOAD COMBINATIONS-SUBSEA LIFTING ANALYSIS
LOAD COME 3 LC26.SUBSEA LIFTING
1 3.12 2 3.12
PERFORM ANALYSIS
LOAD LIST 3
PRINT MEMBER FORCES
PRINT SUPPORT REACTION
PRINT CG
FINISH
```

University of Stavanger

Appendix E6: Staad.Pro input for transportation Case B: Cooler module

STAAD SPACE START JOB INFORMATION JOB NAME COOLER MODULE 100 tonnes ENGINEER NAME Yohannes ENGINEER DATE 04-Apr-16 END JOB INFORMATION INPUT WIDTH 79 UNIT METER KN JOINT COORDINATES 1 0 0 0; 2 0 0 5; 3 9 0 0; 4 9 0 5; 5 0 7 0; 6 0 7 5; 7 9 7 5; 8 9 7 0; 9 0 7 2.5; 10 0 0 2.5; 11 9 0 2.5; 12 9 7 2.5; 13 3 7 5; 14 6 7 5; 15 6 7 0; 16 3 7 0; 17 3 0 5; 18 6 0 5; 19 6 0 0; 20 3 0 0; 21 3 5.5 5; 22 6 5.5 5; 23 3 1 5; 24 6 1 5; 25 6 5.5 0; 26 3 5.5 0; 27 6 1 0; 28 3 1 0; 29 3 7 2.5; 30 6 7 2.5; 31 3 0 2.5; 32 6 0 2.5; 33 0 -0.5 0; 34 0 -0.5 5; 35 9 -0.5 0; 36 9 -0.5 5; 37 0.5 0 5; 38 8.5 0 5; 39 8.5 0 0; 40 0.5 0 0; ***** MEMBER INCIDENCES 1 1 10; 2 2 37; 3 4 11; 4 3 39; 5 5 9; 6 6 13; 7 7 12; 8 8 15; 9 1 5; 10 2 6; 11 3 8; 12 4 7; 13 9 6; 14 10 2; 15 11 3; 16 12 8; 17 10 9; 18 11 12; 19 5 10; 20 6 10; 21 8 11; 22 7 11; 23 13 14; 24 14 7; 25 15 16; 26 16 5; 27 17 18; 28 18 38; 29 19 20; 30 20 40; 31 16 26; 32 15 25; 33 13 21; 34 14 22; 35 6 17; 36 7 18; 37 8 19; 38 5 20; 39 21 23; 40 22 24; 41 21 22; 42 23 17; 43 24 18; 44 23 24; 45 21 24; 46 25 27; 47 26 28; 48 25 26; 49 27 19; 50 28 20; 51 27 28; 52 25 28; 53 16 29; 54 15 30; 55 29 13; 56 30 14; 57 9 29; 58 29 30; 59 30 12; 60 20 31; 61 19 32; 62 31 17; 63 32 18; 64 10 31; 65 31 32; 66 32 11; 67 10 17; 68 10 20; 70 11 18; 71 11 19; 72 1 33; 73 2 34; 74 4 36; 75 3 35; 76 37 17; 77 38 4; 78 39 19; 79 40 1; 80 37 34; 81 38 36; 82 39 35; 83 40 33; ********* * Material constant properties set according to section 3.3.1 of project work DEFINE MATERIAL START ISOTROPIC STEEL E 2.1e+008 POISSON 0.3 DENSITY 77 ALPHA 6.5e-006 DAMP 0.03

END DEFINE MATERIAL

```
*Hollow section steel property
CONSTANTS
MATERIAL STEEL MEMB 1 TO 68 70 TO 83
MEMBER PROPERTY EUROPEAN
1 TO 18 23 TO 34 39 TO 44 46 TO 51 53 TO 68 70 TO 82 -
83 TABLE ST PIPE OD 0.273 ID 0.241
19 TO 22 35 TO 38 45 52 TABLE ST PIPE OD 0.1143 ID 0.1017
*Braces released for moment
**********
MEMBER RELEASE
19 TO 22 35 TO 38 45 52 START MX MY MZ
19 TO 22 35 TO 38 45 52 END MX MY MZ
SUPPORTS
*Boundary conditions for transportaion analysis set according to section 5.3.2
**************
33 TO 36 FIXED BUT MX MY MZ
*BASIC LOADS
LOAD 1 STATIC SELFWEIGHT
SELFWEIGHT Y -1.1
LOAD 2 STATIC SUBSEA MODULE WEIGHT
*Total static cooler module weight 75 tonnes (735.75kN)
*This load is distributed on Area 5 x 9, hence (735.75/(5x9))= 16.35kN/m2
FLOOR LOAD
YRANGE 0 0 FLOAD -16.35 XRANGE 0 9 ZRANGE 0 5
LOAD 3 DYNAMIC SELFWEIGHT IN +X DIRECTION
SELFWEIGHT X 1.1
LOAD 4 DYNAMIC SELFWEIGHT IN +Z DIRECTION
SELFWEIGHT Z 1.1
LOAD 5 DYNAMIC SELFWEIGHT IN +Y DIRECTION
SELFWEIGHT Y 1.1
LOAD 6 DYNAMIC SUBSEA MODULE WEIGHT IN +X DIRECTION
JOINT LOAD
1 TO 4 FX -183.94
```

LOAD 7 DYNAMIC SUBSEA MODULE WEIGHT IN +Z DIRECTION JOINT LOAD 1 TO 4 FZ -183.94 LOAD 8 DYNAMIC SUBSEA MODULE WEIGHT IN +Y DIRECTION JOINT LOAD 1 TO 4 FY -183.94 LOAD 9 DYNAMIC SELFWEIGHT IN -X DIRECTION SELFWEIGHT X -1.1 LOAD 10 DYNAMIC SELFWEIGHT IN -Z DIRECTION SELFWEIGHT Z -1.1 LOAD 11 DYNAMIC SUBSEA MODULE WEIGHT IN -X DIRECTION JOINT LOAD 1 TO 4 FX 183.94 LOAD 12 DYNAMIC SUBSEA MODULE WEIGHT IN -Z DIRECTION JOINT LOAD 1 TO 4 FZ 183.94 ************** *LOAD COMBINATIONS-TRANSPORTATION ANALYSIS LOAD COMB 13 LC1.TRANSPORTATION ROLL, MAX.Z 1 1.3 2 1.3 3 1.0 6 1.0 LOAD COMB 14 LC2.TRANSPORTATION ROLL, MIN.Z 1 0.7 2 0.7 3 1.0 6 1.0 LOAD COMB 15 LC3.TRANSPORTATION PITCH, MAX.Z 1 1.3 2 1.3 4 1.0 7 1.0 LOAD COMB 16 LC4.TRANSPORTATION PITCH, MIN.Z 1 0.7 2 0.7 4 1.0 7 1.0 LOAD COMB 17 LC5.TRANSPORTATION -ROLL, MAX.Z 1 1.3 2 1.3 9 1.0 11 1.0 LOAD COMB 18 LC6.TRANSPORTATION -ROLL, MIN.Z 1 0.7 2 0.7 9 1.0 11 1.0 LOAD COMB 19 LC7.TRANSPORTATION -PITCH, MAX.Z 1 1.3 2 1.3 10 1.0 12 1.0 LOAD COMB 20 LC8.TRANSPORTATION -PITCH, MIN.Z 1 0.7 2 0.7 10 1.0 12 1.0

*LOAD COMBINATIONS-ULSa TRANSPORTATION ANALYSIS ********* LOAD COMB 21 LC9.ULS A, ROLL+HEAVE 1 1.3 2 1.3 3 0.7 5 -0.7 6 0.7 8 -0.7 LOAD COMB 22 LC10.ULS A, ROLL-HEAVE 1 1.3 2 1.3 3 0.7 5 0.7 6 0.7 8 0.7 LOAD COMB 23 LC11.ULS A, -ROLL+HEAVE 1 1.3 2 1.3 5 -0.7 8 -0.7 9 0.7 11 0.7 LOAD COMB 24 LC12.ULS A, -ROLL-HEAVE 1 1.3 2 1.3 5 0.7 8 0.7 9 0.7 11 0.7 LOAD COMB 25 LC13.ULS A, PITCH+HEAVE 1 1.3 2 1.3 4 0.7 5 -0.7 7 0.7 8 -0.7 LOAD COMB 26 LC14.ULS A, PITCH-HEAVE 1 1.3 2 1.3 4 0.7 5 0.7 7 0.7 8 0.7 LOAD COMB 27 LC15.ULS A, -PITCH+HEAVE 1 1.3 2 1.3 5 -0.7 8 -0.7 10 0.7 12 0.7 LOAD COMB 28 LC16.ULS A, -PITCH-HEAVE 1 1.3 2 1.3 5 0.7 8 0.7 10 0.7 12 0.7 *LOAD COMBINATIONS-ULSb TRANSPORTATION ANALYSIS ********** LOAD COMB 29 LC17.ULS B, ROLL+HEAVE 1 1.0 2 1.0 3 1.3 5 -1.3 6 1.3 8 -1.3 LOAD COMB 30 LC18.ULS B, ROLL-HEAVE 1 1.0 2 1.0 3 1.3 5 1.3 6 1.3 8 1.3 LOAD COMB 31 LC19.ULS B, -ROLL+HEAVE 1 1.0 2 1.0 5 -1.3 8 -1.3 9 1.3 11 1.3 LOAD COMB 32 LC20.ULS B, -ROLL-HEAVE 1 1.0 2 1.0 5 1.3 8 1.3 9 1.3 11 1.3 LOAD COMB 33 LC21.ULS B, PITCH+HEAVE 1 1.0 2 1.0 4 1.3 5 -1.3 7 1.3 8 -1.3 LOAD COMB 34 LC22.ULS B, PITCH-HEAVE 1 1.0 2 1.0 4 1.3 5 1.3 7 1.3 8 1.3 LOAD COMB 35 LC23.ULS B, -PITCH+HEAVE 1 1.0 2 1.0 5 -1.3 8 -1.3 10 1.3 12 1.3 LOAD COMB 36 LC24.ULS B, -PITCH-HEAVE 1 1.0 2 1.0 5 1.3 8 1.3 10 1.3 12 1.3 PERFORM ANALYSIS LOAD LIST 13 TO 36 PRINT MEMBER FORCES

PRINT SUPPORT REACTION

FINISH

Appendix E7: Staad.Pro input for air lifting Case C: Compressor module

STAAD SPACE START JOB INFORMATION JOB NAME COMPRESSOR MODULE 120 tonnes ENGINEER NAME Yohannes ENGINEER DATE 07-Apr-16 END JOB INFORMATION INPUT WIDTH 79 UNIT METER KN JOINT COORDINATES 1 0 0 0; 2 4 0 0; 3 0 0 4; 4 4 0 4; 5 0 7 0; 6 4 7 0; 7 0 7 4; 8 4 7 4; 9 0 -0.5 0; 10 4 -0.5 0; 11 0 -0.5 4; 12 4 -0.5 4; 13 0 7 2; 14 0 0 2; 15 0 2.8 0; 16 0 2.8 2; 17 0 2.8 4; 18 4 5.6 4; 19 4 4.2 4; 20 4 2.8 4; 21 4 1.4 4; 22 0 1.4 4; 23 0 5.6 4; 24 0 4.2 4; 25 2 0 4; 26 2 1.4 4; 27 2 2.8 4; 28 2 4.2 4; 29 2 5.6 4; 30 4 2.8 0; 31 4 7 2; 32 4 0 2; 33 4 2.8 2; 34 2 0 0; 35 2 2.8 0; 36 2 7 0; 37 0 8 0; 38 4 8 0; 39 0 8 4; 40 4 8 4; 41 1 9 4; 42 3 9 4; 43 0 7 2.5; 44 4 7 2.5; 45 0 8 2.5; 46 4 8 2.5; 47 1 9 2.5; 48 3 9 2.5; 49 1 9 0; 50 3 9 0; 51 0 0 1.3; 52 0 0 2.7; 53 4 0 2.7; 54 4 0 1.3; 55 2 12.5 2.17; MEMBER INCIDENCES 1 3 25; 2 4 53; 3 2 34; 4 1 51; 5 7 23; 6 5 15; 7 8 18; 8 6 30; 9 7 8; 10 8 44; 11 6 36; 12 5 13; 13 3 11; 14 1 9; 15 2 10; 16 4 12; 17 13 43; 18 14 52; 19 13 16; 20 15 1; 21 16 14; 23 17 22; 24 18 19; 25 19 20; 26 20 21; 27 21 4; 28 15 16; 29 16 17; 30 22 3; 31 23 24; 32 24 17; 33 21 26; 34 20 27; 35 19 28; 36 18 29; 37 13 15; 38 13 17; 39 15 14; 40 17 14; 41 25 4; 42 26 22; 43 26 25; 44 21 25; 45 22 25; 46 27 17; 47 19 27; 48 24 27; 49 28 24; 50 18 28; 51 23 28; 52 29 23; 53 8 29; 54 7 29; 55 30 2; 56 20 33; 57 31 6; 58 32 54; 59 33 30; 60 31 33; 61 33 32; 62 31 20; 63 31 30; 64 30 32; 65 20 32; 66 30 35; 67 34 1; 68 35 15; 69 36 5; 70 15 34; 71 30 34; 72 36 30; 73 36 15; 74 39 7; 75 40 8;

76 38 6; 77 37 5; 78 39 40; 79 41 42; 80 43 7; 81 44 31; 82 45 43; 83 46 44; 84 45 46; 85 47 48; 87 49 50; 88 49 37; 89 50 38; 90 41 39; 91 42 40; 92 47 45;

93 48 46; 94 45 39; 95 49 47; 96 47 41; 97 50 48; 98 48 42; 99 46 40; 100 51 14; 101 52 3; 102 53 32; 103 54 2; 104 51 54; 105 52 53; 108 34 35;

109 35 36; 110 5 55; 111 6 55; 112 7 55; 113 8 55;

ELEMENT INCIDENCES SHELL

106 49 47 48 50; 107 47 41 42 48;

```
ELEMENT PROPERTY
*15 mm Cover steel plate.Steel plate design is not performed
106 107 THICKNESS 0.015
* Material constant properties set according to section 3.3.1 of project work
DEFINE MATERIAL START
ISOTROPIC STEEL
E 2.1e+008
POISSON 0.3
DENSITY 77
ALPHA 6.5e-006
DAMP 0.03
* Dummy slings for lifting with density 0
ISOTROPIC SLINGS
E 2.1e+008
POISSON 0.3
DENSITY 0.0001
ALPHA 1.2e-005
DAMP 0.03
END DEFINE MATERIAL
*Hollow section steel property
MEMBER PROPERTY EUROPEAN
1 TO 21 23 TO 36 41 TO 43 46 49 52 55 TO 61 66 TO 69 74 TO 85 87 TO 105 108 -
109 TABLE ST PIPE OD 0.3239 ID 0.2919
37 TO 40 44 45 47 48 50 51 53 54 62 TO 65 70 TO 72 -
73 TABLE ST PIPE OD 0.1143 ID 0.1017
MEMBER PROPERTY EUROPEAN
110 TO 113 TABLE ST PIPE OD 0.02 ID 0
CONSTANTS
MATERIAL STEEL ALL
MATERIAL SLINGS MEMB 110 TO 113
```

CRITICAL DESIGN PHASE FOR SUBSEA MODULE SUPPORTING STRUCTURES

*Braces released for moment MEMBER RELEASE 37 TO 40 44 45 47 48 50 51 53 54 62 TO 65 70 TO 73 START MX MY MZ 37 TO 40 44 45 47 48 50 51 53 54 62 TO 65 70 TO 73 END MX MY MZ SUPPORTS *Boundary conditions for air lifting analysis set according to section 5.3.1 9 TO 12 FIXED BUT FY MX MY MZ KFX 10 KFZ 10 55 PINNED *BASIC LOADS LOAD 1 STATIC SELFWEIGHT * Static selfweight with 10% weight inaccuracy SELFWEIGHT Y -1.1 LOAD 2 STATIC SUBSEA MODULE WEIGHT *Total static compressor module weight 100 tonnes (981kN) *This load is distributed on Area 4 x 4, hence (981/(4x4))= 61.3kN/m2 FLOOR LOAD YRANGE 0 0 FLOAD -61.3 XRANGE 0 4 ZRANGE 0 4 *LOAD COMBINATIONS-AIR LIFTING ANALYSIS LOAD COMB 3 LC25.AIR LIFTING 1 2.25 2 2.25 PERFORM ANALYSIS LOAD LIST 3 PRINT MEMBER FORCES PRINT SUPPORT REACTION PRINT CG FINISH

Appendix E₈: Staad.Pro input for offshore lifting Case C: Compressor module

STAAD SPACE START JOB INFORMATION JOB NAME COMPRESSOR MODULE 120 tonnes ENGINEER NAME Yohannes ENGINEER DATE 07-Apr-16 END JOB INFORMATION INPUT WIDTH 79 UNIT METER KN JOINT COORDINATES 1 0 0 0; 2 4 0 0; 3 0 0 4; 4 4 0 4; 5 0 7 0; 6 4 7 0; 7 0 7 4; 8 4 7 4; 9 0 -0.5 0; 10 4 -0.5 0; 11 0 -0.5 4; 12 4 -0.5 4; 13 0 7 2; 14 0 0 2; 15 0 2.8 0; 16 0 2.8 2; 17 0 2.8 4; 18 4 5.6 4; 19 4 4.2 4; 20 4 2.8 4; 21 4 1.4 4; 22 0 1.4 4; 23 0 5.6 4; 24 0 4.2 4; 25 2 0 4; 26 2 1.4 4; 27 2 2.8 4; 28 2 4.2 4; 29 2 5.6 4; 30 4 2.8 0; 31 4 7 2; 32 4 0 2; 33 4 2.8 2; 34 2 0 0; 35 2 2.8 0; 36 2 7 0; 37 0 8 0; 38 4 8 0; 39 0 8 4; 40 4 8 4; 41 1 9 4; 42 3 9 4; 43 0 7 2.5; 44 4 7 2.5; 45 0 8 2.5; 46 4 8 2.5; 47 1 9 2.5; 48 3 9 2.5; 49 1 9 0; 50 3 9 0; 51 0 0 1.3; 52 0 0 2.7; 53 4 0 2.7; 54 4 0 1.3; 55 2 12.5 2.17; MEMBER INCIDENCES 1 3 25; 2 4 53; 3 2 34; 4 1 51; 5 7 23; 6 5 15; 7 8 18; 8 6 30; 9 7 8; 10 8 44; 11 6 36; 12 5 13; 13 3 11; 14 1 9; 15 2 10; 16 4 12; 17 13 43; 18 14 52; 19 13 16; 20 15 1; 21 16 14; 23 17 22; 24 18 19; 25 19 20; 26 20 21; 27 21 4; 28 15 16; 29 16 17; 30 22 3; 31 23 24; 32 24 17; 33 21 26; 34 20 27; 35 19 28; 36 18 29; 37 13 15; 38 13 17; 39 15 14; 40 17 14; 41 25 4; 42 26 22; 43 26 25; 44 21 25; 45 22 25; 46 27 17; 47 19 27; 48 24 27; 49 28 24; 50 18 28; 51 23 28; 52 29 23; 53 8 29; 54 7 29; 55 30 2; 56 20 33; 57 31 6; 58 32 54; 59 33 30; 60 31 33; 61 33 32; 62 31 20; 63 31 30; 64 30 32; 65 20 32; 66 30 35; 67 34 1; 68 35 15; 69 36 5; 70 15 34; 71 30 34; 72 36 30; 73 36 15; 74 39 7; 75 40 8; 76 38 6; 77 37 5; 78 39 40; 79 41 42; 80 43 7; 81 44 31; 82 45 43; 83 46 44; 84 45 46; 85 47 48; 87 49 50; 88 49 37; 89 50 38; 90 41 39; 91 42 40; 92 47 45; 93 48 46; 94 45 39; 95 49 47; 96 47 41; 97 50 48; 98 48 42; 99 46 40; 100 51 14; 101 52 3; 102 53 32; 103 54 2; 104 51 54; 105 52 53; 108 34 35; 109 35 36; 110 5 55; 111 6 55; 112 7 55; 113 8 55; ELEMENT INCIDENCES SHELL 106 49 47 48 50; 107 47 41 42 48;

```
ELEMENT PROPERTY
*15 mm Cover steel plate.Steel plate design is not performed
106 107 THICKNESS 0.015
* Material constant properties set according to section 3.3.1 of project work
********
DEFINE MATERIAL START
ISOTROPIC STEEL
E 2.1e+008
POISSON 0.3
DENSITY 77
ALPHA 6.5e-006
DAMP 0.03
* Dummy slings for lifting with density 0
ISOTROPIC SLINGS
E 2.1e+008
POISSON 0.3
DENSITY 0.0001
ALPHA 1.2e-005
DAMP 0.03
END DEFINE MATERIAL
*Hollow section steel property
MEMBER PROPERTY EUROPEAN
1 TO 21 23 TO 36 41 TO 43 46 49 52 55 TO 61 66 TO 69 74 TO 85 87 TO 105 108 -
109 TABLE ST PIPE OD 0.3239 ID 0.2919
37 TO 40 44 45 47 48 50 51 53 54 62 TO 65 70 TO 72 -
73 TABLE ST PIPE OD 0.1143 ID 0.1017
MEMBER PROPERTY EUROPEAN
110 TO 113 TABLE ST PIPE OD 0.02 ID 0
CONSTANTS
MATERIAL STEEL ALL
MATERIAL SLINGS MEMB 110 TO 113
```

*Braces released for moment MEMBER RELEASE 37 TO 40 44 45 47 48 50 51 53 54 62 TO 65 70 TO 73 START MX MY MZ 37 TO 40 44 45 47 48 50 51 53 54 62 TO 65 70 TO 73 END MX MY MZ SUPPORTS *Boundary conditions for air lifting analysis set according to section 5.3.1 9 TO 12 FIXED BUT FY MX MY MZ KFX 10 KFZ 10 55 PINNED *BASIC LOADS LOAD 1 STATIC SELFWEIGHT * Static selfweight with 10% weight inaccuracy SELFWEIGHT Y -1.1 LOAD 2 STATIC SUBSEA MODULE WEIGHT *Total static compressor module weight 100 tonnes (981kN) *This load is distributed on Area 4 x 4, hence (981/(4x4))= 61.3kN/m2 FLOOR LOAD YRANGE 0 0 FLOAD -61.3 XRANGE 0 4 ZRANGE 0 4 *LOAD COMBINATIONS-SUBSEA LIFTING ANALYSIS ********** LOAD COME 3 LC26.SUBSEA LIFTING 1 3.12 2 3.12 PERFORM ANALYSIS LOAD LIST 3 PRINT MEMBER FORCES PRINT SUPPORT REACTION PRINT CG FINISH

Appendix E₉: Staad.Pro input for transportation Case C: Compressor module

CRITICAL DESIGN PHASE FOR SUBSEA MODULE SUPPORTING STRUCTURES

```
* Material constant properties set according to section 3.3.1 of project work
DEFINE MATERIAL START
ISOTROPIC STEEL
E 2.1e+008
POISSON 0.3
DENSITY 77
ALPHA 6.5e-006
DAMP 0.03
END DEFINE MATERIAL
*Hollow section steel property
CONSTANTS
MATERIAL STEEL MEMB 1 TO 21 23 TO 85 87 TO 109
MEMBER PROPERTY EUROPEAN
1 TO 21 23 TO 36 41 TO 43 46 49 52 55 TO 61 66 TO 69 74 TO 85 87 TO 105 108 -
109 TABLE ST PIPE OD 0.3239 ID 0.2919
37 TO 40 44 45 47 48 50 51 53 54 62 TO 65 70 TO 72 -
73 TABLE ST PIPE OD 0.1143 ID 0.1017
*Braces released for moment
MEMBER RELEASE
37 TO 40 44 45 47 48 50 51 53 54 62 TO 65 70 TO 73 START MX MY MZ
37 TO 40 44 45 47 48 50 51 53 54 62 TO 65 70 TO 73 END MX MY MZ
SUPPORTS
*Boundary conditions for transportaion analysis set according to section 5.3.2
9 TO 12 FIXED BUT MX MY MZ
```

CRITICAL DESIGN PHASE FOR SUBSEA MODULE SUPPORTING STRUCTURES

```
*BASIC LOADS
*********
LOAD 1 STATIC SELFWEIGHT
**********
* Static selfweight with 10% weight inaccuracy
**********
SELFWEIGHT Y -1.1
LOAD 2 STATIC SUBSEA MODULE WEIGHT
******
*Total static compressor module weight 100 tonnes (981kN)
*This load is distributed on Area 4 x 4, hence (981/(4x4))= 61.3kN/m2
******
FLOOR LOAD
YRANGE 0 0 FLOAD -61.3 XRANGE 0 4 ZRANGE 0 4
LOAD 3 DYNAMIC SELFWEIGHT IN +X DIRECTION
SELFWEIGHT X 1.1
LOAD 4 DYNAMIC SELFWEIGHT IN +Z DIRECTION
SELFWEIGHT Z 1.1
LOAD 5 DYNAMIC SELFWEIGHT IN +Y DIRECTION
SELFWEIGHT Y 1.1
LOAD 6 DYNAMIC SUBSEA MODULE WEIGHT IN +X DIRECTION
JOINT LOAD
1 TO 4 FX -245.3
LOAD 7 DYNAMIC SUBSEA MODULE WEIGHT IN +Z DIRECTION
JOINT LOAD
1 TO 4 FZ -245.3
LOAD 8 DYNAMIC SUBSEA MODULE WEIGHT IN +Y DIRECTION
JOINT LOAD
1 TO 4 FY -245.3
LOAD 9 DYNAMIC SELFWEIGHT IN -X DIRECTION
SELFWEIGHT X -1.1
LOAD 10 DYNAMIC SELFWEIGHT IN -Z DIRECTION
SELFWEIGHT Z -1.1
LOAD 11 DYNAMIC SUBSEA MODULE WEIGHT IN -X DIRECTION
JOINT LOAD
1 TO 4 FX 245.3
LOAD 12 DYNAMIC SUBSEA MODULE WEIGHT IN -Z DIRECTION
JOINT LOAD
1 TO 4 FZ 245.3
```

```
*LOAD COMBINATIONS-TRANSPORTATION ANALYSIS
LOAD COMB 13 LC1.TRANSPORTATION ROLL, MAX.Z
1 1.3 2 1.3 3 1.0 6 1.0
LOAD COMB 14 LC2.TRANSPORTATION ROLL, MIN.Z
1 0.7 2 0.7 3 1.0 6 1.0
LOAD COMB 15 LC3.TRANSPORTATION PITCH, MAX.Z
1 1.3 2 1.3 4 1.0 7 1.0
LOAD COMB 16 LC4.TRANSPORTATION PITCH, MIN.Z
1 0.7 2 0.7 4 1.0 7 1.0
LOAD COMB 17 LC5.TRANSPORTATION -ROLL, MAX.Z
1 1.3 2 1.3 9 1.0 11 1.0
LOAD COME 18 LC6.TRANSPORTATION -ROLL, MIN.Z
1 0.7 2 0.7 9 1.0 11 1.0
LOAD COMB 19 LC7.TRANSPORTATION -PITCH, MAX.Z
1 1.3 2 1.3 10 1.0 12 1.0
LOAD COMB 20 LC8.TRANSPORTATION -PITCH, MIN.Z
1 0.7 2 0.7 10 1.0 12 1.0
*LOAD COMBINATIONS-ULSa TRANSPORTATION ANALYSIS
LOAD COMB 21 LC9.ULS A, ROLL+HEAVE
1 1.3 2 1.3 3 0.7 5 -0.7 6 0.7 8 -0.7
LOAD COMB 22 LC10.ULS A, ROLL-HEAVE
1 1.3 2 1.3 3 0.7 5 0.7 6 0.7 8 0.7
LOAD COMB 23 LC11.ULS A, -ROLL+HEAVE
1 1.3 2 1.3 5 -0.7 8 -0.7 9 0.7 11 0.7
LOAD COMB 24 LC12.ULS A, -ROLL-HEAVE
1 1.3 2 1.3 5 0.7 8 0.7 9 0.7 11 0.7
LOAD COMB 25 LC13.ULS A, PITCH+HEAVE
1 1.3 2 1.3 4 0.7 5 -0.7 7 0.7 8 -0.7
LOAD COMB 26 LC14.ULS A, PITCH-HEAVE
1 1.3 2 1.3 4 0.7 5 0.7 7 0.7 8 0.7
LOAD COMB 27 LC15.ULS A, -PITCH+HEAVE
1 1.3 2 1.3 5 -0.7 8 -0.7 10 0.7 12 0.7
LOAD COMB 28 LC16.ULS A, -PITCH-HEAVE
1 1.3 2 1.3 5 0.7 8 0.7 10 0.7 12 0.7
*LOAD COMBINATIONS-ULSb TRANSPORTATION ANALYSIS
LOAD COMB 29 LC17.ULS B, ROLL+HEAVE
1 1.0 2 1.0 3 1.3 5 -1.3 6 1.3 8 -1.3
LOAD COMB 30 LC18.ULS B, ROLL-HEAVE
1 1.0 2 1.0 3 1.3 5 1.3 6 1.3 8 1.3
LOAD COMB 31 LC19.ULS B, -ROLL+HEAVE
1 1.0 2 1.0 5 -1.3 8 -1.3 9 1.3 11 1.3
LOAD COMB 32 LC20.ULS B, -ROLL-HEAVE
1 1.0 2 1.0 5 1.3 8 1.3 9 1.3 11 1.3
LOAD COMB 33 LC21.ULS B, PITCH+HEAVE
1 1.0 2 1.0 4 1.3 5 -1.3 7 1.3 8 -1.3
LOAD COMB 34 LC22.ULS B, PITCH-HEAVE
1 1.0 2 1.0 4 1.3 5 1.3 7 1.3 8 1.3
LOAD COMB 35 LC23.ULS B, -PITCH+HEAVE
1 1.0 2 1.0 5 -1.3 8 -1.3 10 1.3 12 1.3
LOAD COMB 36 LC24.ULS B, -PITCH-HEAVE
1 1.0 2 1.0 5 1.3 8 1.3 10 1.3 12 1.3
PERFORM ANALYSIS
LOAD LIST 13 TO 36
PRINT MEMBER FORCES
PRINT SUPPORT REACTION
FINISH
```

Appendix F: Staad.Pro output reaction forces

Appendix F₁: Air/offshore lifting reaction forces-Case A: Pump module

Load	Node	Force -X (kN)	Force-Y(kN)	Force-Z(kN)	Remarks
eight	39	1.143	131.851	0.000	above for node numbers.
	40	-0.286	0.000	0.000	
self-w	41	-0.286	0.000	0.000	iode r
Static self-weight	42	-0.286	0.000	0.000	e for n
	43	-0.286	0.000	0.000	abov
Static subsea module weight	39	2.551	294.300	0.000	/Figure 16
	40	-0.638	0.000	0.000	
	41	-0.638	0.000	0.000	re 15
	42	-0.638	0.000	0.000	Refer Figure 15
Sti	43	-0.638	0.000	0.000	Refu

Appendix F₂: Transportation reaction forces-Case A: Pump module

Load	Node	Force -X (kN)	Force-Y(kN)	Force-Z(kN)	Remarks
Static self-weight	35	0.882	32.960	1.587	ers.
	36	-0.882	32.960	1.587	qunr
	37	0.882	32.960	-1.587	for node numbers.
	38	-0.882	32.960	-1.587	
Static subsea module weight	35	0.031	73.575	0.022	above
	36	-0.031	73.575	0.022	14
	37	0.031	73.575	-0.022	Refer Figure
	38	-0.031	73.575	-0.022	Refe

Load	Node	Force -X (kN)	Force-Y(kN)	Force-Z(kN)	Remarks
eight	37	0.000	227.908	0.000	above for node numbers.
	38	0.001	0.000	0.000	
self-w	39	0.001	0.000	0.000	iode r
Static self-weight	40	-0.001	0.000	0.000	e for r
	41	-0.001	0.000	0.000	abov
Static subsea module weight	37	0.000	735.750	0.000	re 20
	38	0.005	0.000	0.004	/Figu
	39	0.005	0.000	-0.004	ure 19
	40	-0.005	0.000	0.004	Refer Figure 19/Figure
	41	-0.005	0.000	-0.004	Refi

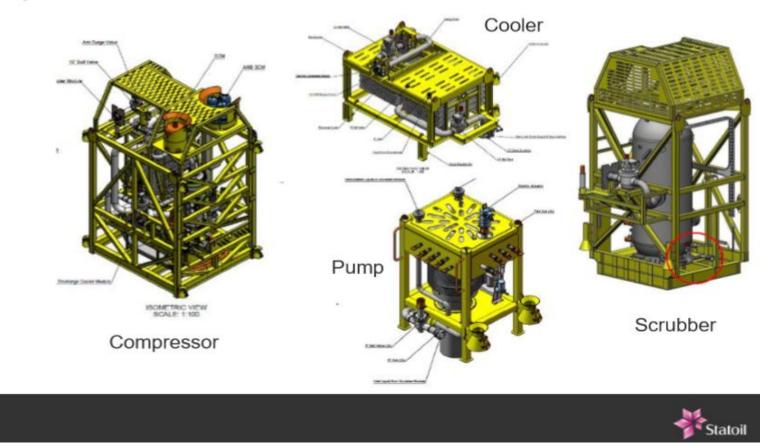
Appendix F₃: Air/offshore lifting reaction forces-Case B: Cooler module

Appendix F₄: Transportation reaction forces-Case B: Cooler module

Load	Node	Force -X (kN)	Force-Y(kN)	Force-Z(kN)	Remarks
Static self-weight	33	19.447	57.161	7.387	ers.
	34	19.297	56.742	-7.303	dmur
	35	-19.297	56.742	7.303	re 18 above for node numbers.
	36	-19.447	57.161	-7.387	
Static subsea module weight	33	91.379	183.882	51.936	
	34	91.418	183.993	-51.959	
	35	-91.418	183.993	51.959	Refer Figure
	36	-91.379	183.882	-51.936	Refe

Load	Node	Force -X (kN)	Force-Y(kN)	Force-Z(kN)	Remarks
eight	9	0.000	0.000	0.020	umbers.
	10	0.000	0.000	0.020	
self-w	11	0.000	0.000	0.020	ode r
Static self-weight	12	0.000	0.000	0.020	Refer Figure 23/Figure 24 above for node numbers.
	55	0.000	232.082	-0.080	
Static subsea module weight	9	0.002	0.000	-3.204	
	10	-0.003	0.000	-3.204	
	11	0.003	0.000	-3.209	
	12	-0.003	0.000	-3.209	
	55	0.001	980.800	12.826	Refu

Appendix F₅: Air/offshore lifting reaction forces-Case C: Compressor module


Appendix F₆: Transportation reaction forces-Case C: Compressor module

Load	Node	Force -X (kN)	Force-Y(kN)	Force-Z(kN)	Remarks
ht	9	3.626	52.959	4.472	ers.
f-weig	10	-3.626	52.959	4.472	dmur
Static self-weight	11	2.656	63.082	-4.472	re 22 above for node numbers.
Stat	12	-2.656	63.082	-4.472	
Static subsea module weight	9	61.931	245.200	53.071	
	10	-61.931	245.200	53.071	
	11	59.111	245.200	-53.071	Refer Figure
	12	-59.111	245.200	-53.071	Refe

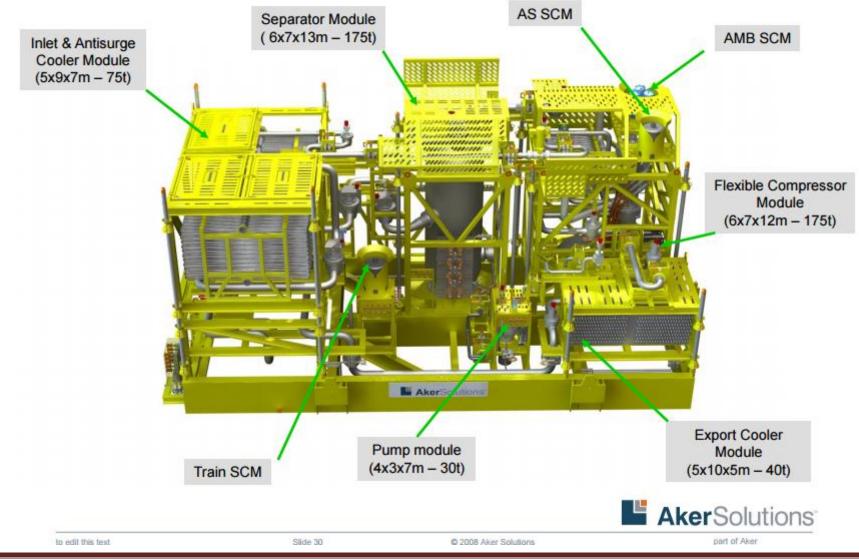
Appendix G: Reference drawings

Appendix G1: Reference drawings from Statoil presentations

Åsgard Subsea Compression System modules

University of Stavanger

Appendix G₂: Reference drawings from AkerSolutions presentations


Subsea modules and equipment Subsea control Compressor Pump module Separator module system module **Circuit breaker UPS modules VSD** module **Cooler module** module Main suppliers: Aker Solutions (Aberdeen, Tranby), Converteam, GE Oil&Gas, Aker Midsund, Poseidon, Ifokus, ConSepT,

[31] [among Coulds (21)] [among Could and C

ABB, Deutsch, Tronic, Ifokus

AkerSolutions[®]


2 + 1 spare Compressor trains

University of Stavanger

- Compressor unit ready tested from Compressor vendor including AMB electronic
- AMBCM assembled and tested from Aker Solutions
- HV Connection system, valves, actuators, instruments, jumpers etc. from qualified and nominated subvendors
- Integration, assebly, module FAT at Egersund -> ready for SIT
- Option:
 - 1 compressor unit directly to testing in K-Lab ("Pilot unit")

Integration and assembly under controlled environment in new Hall

to edit this text

Slide 32

© 2008 Aker Solutions

part of Aker

AkerSolutions

Compact Compression Aker Solutions Subsea GasBooster

- 6 MW unit
- Minimised number of mechanical and electrical connections

Side 34

- Separately retrievable control module and actuators
- Compact and low weight

Footprint:	4 m x 4 m
Height:	7 m
Weight:	100 tonnes

© 2008 Aker Solutions

University of Stavanger

to edit this text