

FACULTY OF SCIENCE AND TECHNOLOGY

MASTER'S THESIS

Study program/specialization:

Master’s in Computer Science

Spring semester, 2016

Open

Author: Emil Haaland

…………………………………………
(signature author)

Faculty supervisor:

Reggie Davidrajuh, UIS

External supervisor:

Derek Göbel, Avito LOOPS

Title of Master's Thesis:

Data Quality Indication for User Awareness and Automated Decision Making

ECTS: 30

Subject headings:

Data Quality Indicators

Machine Learning

Support Vector Machines

 Pages: 50

 + attachments/other: code as a zipped file

 Stavanger, 15 June 2016

Data Quality Indication for
User Awareness and

Automated Decision Making

Emil Haaland

Faculty of Science and Technology
Department of Electrical Enginerring and Computer Science

University of Stavanger

June 2016

Abstract

Enterprise Resource Planning(ERP) systems help organizations with adminis-
trating and planning various business related tasks and give insight with Key
Performance Indicators. These mechanisms are highly dependent on being able
to interpret the data in order to make the right decisions. This thesis defines a set
of Data Quality Indicators(DQI) to calculate and visualize the quality of a large
variety of spreadsheet data, used in ERP systems. The DQIs are used to comple-
ment a Machine Learning Classifier for automatic quality decision making. With
a Support Vector Machine(SVM) approach, the system is able to correctly clas-
sify some spreadsheets. But data noise and some quality indicators not directly
indicating real quality issues made it difficult for the SVM to clearly distinguish
good spreadsheets from bad.

2

Acknowledgments

I would like to thank my external supervisor Derek Göbel who gave invaluable
support, insight, and guidance throughout my work on this thesis.

I would like to thank my faculty supervisor Reggie Davidrajuh for help and
guidance with the thesis report.

I would also like to thank Paolo Predonzani for giving feedback and helpful sug-
gestion in regards to Machine Learning.

3

Contents

1 Introduction 6

2 Challenges and Previous Work 8
2.1 Problem Definition . 8
2.2 Previous work . 9

3 Background 10
3.1 Data Quality . 10
3.2 Data Quality Assessment . 10

3.2.1 Data Profiling . 11
3.2.2 Quality Dimensions . 11

3.3 Machine Learning . 12
3.3.1 Classification . 12

4 Method and Design 13
4.1 Data Quality Indicators . 13

4.1.1 Chosen Dimensions . 13
4.1.2 Predicting value types . 17
4.1.3 DQI representation . 18
4.1.4 Outlier Detection methods 19

4.2 Classification . 19
4.2.1 Support Vector Machine 19

5 Implementation 20
5.1 Data preparation and analysis . 20

5.1.1 Parsing Data . 20
5.1.2 Gathering metadata . 21
5.1.3 Data type prediction . 23

5.2 Quality Metrics . 24
5.2.1 Utility and Measuring methods 24
5.2.2 Structural Coherence . 24
5.2.3 Completeness . 25
5.2.4 General Consistency . 25
5.2.5 Special Consistency . 27
5.2.6 Validity . 28
5.2.7 Row Integrity . 30

5.3 Indicator scores . 31

4

5.3.1 DQI Visualization . 31
5.4 SVM Classifier . 31

6 Testing, Analysis and Results 33
6.1 Data Quality Indicators . 33
6.2 Classification . 34

6.2.1 Data process and setup . 34
6.2.2 Running the tests . 34
6.2.3 Data . 35
6.2.4 Classification results . 35
6.2.5 Feature selection . 36
6.2.6 Dimension score and label comparison 37

7 Conclusion and Further Work 40
7.1 Conclusion . 40
7.2 Further Work . 41

7.2.1 Pattern dictionaries . 41
7.2.2 Table detection . 41
7.2.3 Extending Validity and Consistency constraints 41

Appendices 42

A Program 43
A.1 Installation Guide . 43
A.2 User Manual . 43
A.3 File overview . 44

B Spreadsheet examples 45

5

Chapter 1

Introduction

A building can only be as sturdy as what the building materials allow. In the
same way, the output of a computer algorithm can only be as precise as the input
data provided. Every day, operations are set in motion to solve tasks and issues to
make life easier for both large organizations and everyday people. Some systems
provide users with search results based on their interests, others might manage
warehouses or keep track of every car owner in the region. The applications are
endless, but one thing they all have in common, is data handling. The decisions a
system makes is based on the data input it has to work with, and if the data input
is faulty, then the system is prone to be faulty. Even the smallest of errors can
have a butterfly effect, capable of messing up complex enterprise systems. Such
incomplete or erroneous data are examples of what we call bad quality data. In
the business world, many protocols and algorithms work with a large amount of
data on a daily basis. The result of algorithms and formulas, whether it’s for de-
cision making, statistical analysis or general storage, is heavily based on the data
provided. In a perfect world, all data is correct, consistent, well formatted and
clean. However, this is never the case with real world data. Data can be provided
in large variety. Many systems handle data received from several sources, in many
different formats, merged and stored with often little supervision. Such data is
exposed to many types of errors. Sensor based or Computer generated data can
render faulty data records from overlooked or unspecified situations. Humans
are also prone to make errors, such as miss spelling names, miss placing records,
overlooking faults or just entering wrong data. All these type of faults can have
a huge impact on the operations of an organization. Whether it’s for decision
making, scheduling, customer statistics or system reliability, poor quality data
will affect efficiency, progress and ultimately, revenue.

To handle the problem of bad data quality, we can implement data analysis
and procedures to assess the quality and combat errors having an effect on the
system. Such measures and algorithms expressing data quality are called Data
Quality Indicators(DQI). With Data Quality Indicators, data can be monitored,
analysed and cleaned on a regular basis. Though this is not always prioritized.
The issue of bad data quality has been a known subject for many years, but it can
often be overlooked or not get as much attention as it probably should. There are
several reasons for this. For many business executives and project leaders, the

6

issue and impact of bad data quality is simply unknown and overlooked. Another
reason is, on a limited budget, resources are more likely to be used on develop-
ing and expanding the business product rather than spending time implementing
monitoring procedures and fault checks on data. Monitoring and cleansing data
can also be expensive, it is not uncommon to hire third party experts or have
dedicated analysers to monitor and clean data. This process could be both very
time consuming with arbitrary large datasets, but also produce system down time
as altering database records may require halting the system.

In Enterprise Resource Planning systems (ERP), spreadsheets can often be pro-
vided as complimentary data. These spreadsheets are usually not meant for
computers, but for people to process. And what visual aids helps readability for
people, are usually not very helpful for a computer. Spreadsheets can vary in all
shapes and sizes, an contain all sorts of information about equipment, location,
resources, licenses, etc. To cover all aspects of large projects and schedules. For
the purpose of this thesis we will be working with spreadsheets provided to such
an ERP system. These spreadsheets can often be unstructured, noisy or lack
useful content. Such spreadsheets can be very difficult and complex for a com-
puter to make sense of, and in many cases not useful for the system at all. I will
in this thesis explore different aspects of data quality and define and implement
a set of Data Quality Indicators to give insight on spreadsheet quality issues.
The indicators are to give a quality score and visualised in an innovative way for
system users. I will also investigate the use of Machine Learning to automatic
classify data quality. The DQI scores will be used as data features to the classifier
algorithm to ultimately determine if a spreadsheet is of good enough quality to
keep, or if it should be denied.

7

Chapter 2

Challenges and Previous Work

This chapter describes the model for this project takes place. It describes the
challenges involved with the task and what work has previously been done on the
subject.

2.1 Problem Definition

The problem with measuring quality in undefined data structures, is the lack of
data semantics. We know that data is provided in tabular form, and that each
column contains data of a specific definition. To the human eye, this definition is
usually easy to recognize. By recognizing the content of the column as for example
city names, we can quickly read through the list and mark the entries that aren’t
city names. City names is a quite simple example, sometimes columns contain
data that most people are unfamiliar with. In these situations, we humans are
equipped with a strong sense of pattern recognition, that makes the most clueless
of us capable of spotting anomalies in most lists of data. These are traits humans
possess, but computers lack. To a computer the columns are seen as lists of
strings, with no definition other than that. A column of peoples first names
would be completely indistinguishable to a list of city names, as a computer has
no idea to what compositions of letters constitutes as one or the other.
Because of the lack of data semantics, we need to be able to classify data quality in
a general manner. The Data Quality Indicators must be able to figure out what
values constitutes as wrong values, without knowing what the data describes.
They must be able to handle data of any type, whether its numbers, dates,
names or comments, and indicate the quality of the data as close to what human
analysts would do. This is important as the goal of an automated quality classifier
is to be proficient enough to replace human supervision
A functioning system like this could potentially be highly attractive as it would
provide completely unbiased quality assessment independent of data semantics,
based purely on intelligent measurements and hard data calculations.

8

2.2 Previous work

There’s much literature to be found on the topic of Data Quality Assessment as
the topic has been around for many decades. Much literature revolves around
the subject of introducing the business world into the world of Data Quality,
and how organizations can benefit from implementing Data Quality Assessment
practices. Reasons for this being of such high focus could be for one, just creating
awareness around Data Quality. As quality issues is often something people have
to deal with on a daily basis, but most are unaware an entire subject on solving
those types of issues exists. The other reason is that Data Quality Assessment is
prominently the subject of expert analysts, and most would want to avoid the ex-
penses that follows hiring third party analysts to assess data quality. Books and
papers introducing data quality assessment, often introduces different concepts
of quality measures and examples of how to find erroneous data. The methods
presented often require tools to analyze and extract the data to be examined,
and most importantly require business rules and constraints to be applied to the
data by analysts. These business rules and constraints can be provided by the
data specifications, documentation, the organization or the analyst himself. As
mentioned in previous sections, the ability to apply business rules is based on in-
formation derived by expert analysis, a luxury we won’t have in an autonomous
system. What we want is an unsupervised algorithm that can measure quality
and determine business rules on its own based on statistics, metadata and previ-
ous learning. Some papers and technologies have been introduced on this subject.
The paper Unsupervised assessment of microarray data quality using a Gaussian
mixture model [5] presents a method of assessing data quality of DNA Micro-
arrays by calculating a set of quality indicators using statistical measures on
microarray metadata along with a Naive Bayes classifier to assess data quality.
Using Machine Learning for automated quality assessment has also been been dis-
cussed in Automated data quality assessment in the intelligent archive [6]. This
paper explores various Machine Learning techniques and describe how they can
be applied for the use of anomaly detection. They discuss both supervised and
unsupervised algorithms, which bases the classification of errors on previous ex-
periences or clustering of data.
Many tools for data visualisation and assisting with error detection exists like
CluePoints[10], Talend[12], Pentaho[11] or Profiler[8]. These tools help with vi-
sualizing data as plots or charts, to detect anomalies and potential errors. Some
tools assist with automatic detection, like Profiler [8], which uses outlier detec-
tion techniques through statistical and Data Mining methods to suggest potential
errors.

9

Chapter 3

Background

This chapter introduces the different concepts and workings of Data Quality
Indicators and Machine Learning Classification.

3.1 Data Quality

Data is in a sense another term for information, gathering data is gathering infor-
mation. When relying decisions and findings on gathered information, you would
want the information to be as correct and reliable as possible. Data Quality(DQ)
defines to what degree we can trust the data to be correct and reliable. It’s our
level of confidence in that the data meets the requirements of its intended pur-
pose. Data quality is a broad term in general, and will always be subjective to the
information it provides and its usage. For a hospital it’s important that patient
data is timely and precise, so that patients can get the treatment they need, when
they need. A post office needs consistent and valid data to be able to distribute
letters and packages to their correct destinations. Though good quality on all
levels are never a bad thing, what features weighs heavier than others changes
from purpose to purpose. Bad DQ is data with high error rate. A data error is an
instance of wrong data, inconsistent data or the lack of data where it’s expected.
In a set of weather data, a wrong value could occur from a sensor giving wrong
output, or a person writing down the wrong value. Inconsistent data could be
data that is derived from the same event, but gives wildly different values. Or
data received from several sources but all of different formats. The subject of
data quality helps us understand how reliable our data is.

3.2 Data Quality Assessment

Data Quality Assessment(DQA)[1] is the process of evaluating the quality of data
through analysis and measures. DQA determines the overall quality of a data
set. DQA can assess quality issues found in both the dataset structure or value
by value. The DQA process contains mostly of assigning rules and constraints to
sets of data, and detecting data records violating these rules. A DQA rule could
for example be only allowing values within a certain range, no empty values,
percentages has to add up to 100, names must start with capital letters, etc. All

10

these rules and constraints finds errors, which again counts up to a total sum of
errors. These errors is then used to give an overall assessment of the quality of
the data set.

3.2.1 Data Profiling

To be able to apply business rules to assess data quality, we have to have the
information we need to apply the correct assessment rules. Gathering this type
of statistics and information about data is called Data Profiling[2]. Data Profil-
ing is analysing data, deriving metadata and figuring out semantics of the data.
To profile data, we use statistical methods and counts to give a general infor-
mal overview of the data at hand. From the profiling, we gather metadata like
data types, ranges, dependencies, patterns, counts, etc. This metadata indicates
special traits in the datasets which we ultimately can use to build business rules
upon. For example in a column of car registration plates, we would derive that
a large majority of the values follows a specific pattern of number and letters,
and that the majority has the same number of letters and characters. From this
information we can say that all plates that does not follow this pattern of letters
and numbers are in fact erroneous.

3.2.2 Quality Dimensions

It is common to separate different quality measures into a set of specified quality
definitions. These definitions are called Quality Dimensions. Quality Dimensions
describes a specific domain on which a set of measures operates on. The reason
for using quality dimensions is so that we can group different measures together
and put a description label on them. When the measures gives a quality score,
we can use these labels to distinguish what area of quality was measured and
what errors found tells us about the data. Ultimately the quality measures has
to mean something for the reader of a quality report, and the dimensions balances
on the line of giving an intuitive output, but also specific enough to provide the
information needed.
There are many varieties of dimensions, some more common than others [3].
Though Quality Dimensions being a common term in data quality, there’s no
universally agreed upon standard for quality dimensions, and they are often sub-
ject for overlapping or changing definitions. It’s therefor important for a DQ
systems to have well documented dimensions to eliminate confusion. As each
dimension describes a set of measures, its also important that the dimensions
are isolated from each other and don’t overlap, so we don’t have two or more
dimensions measuring the same errors. An example of this could be one dimen-
sion measuring amount of empty values, and another dimension measuring invalid
values. If the last dimension counts empty values as invalid, we would get double
the count of empty values.

11

3.3 Machine Learning

3.3.1 Classification

Classification is the process of assigning an observation to a category. The ability
to identify what surrounds us is an essential part of our everyday life. We take
in incredible amounts of sensory input, hearing and vision, and use these inputs
to categorize every day occurrences like sounds an objects. We can distinguish
between a house and a car, as we know a car has wheels, is made of metal and
is mobile, where a house on the other hand is stationary, larger than a car and
usually made of wood. These characteristics are called features, and it is by
these features we are able to categorize objects based on previous experiences.
In computer science, classification is often a subject of Machine Learning. Ma-
chine Learning is the subject of algorithms that can learn from data, and are
able to make decisions and predictions based on that data. In many ways Ma-
chine Learning algorithms simulates how our brain works. By taking in large
amounts of observations, the algorithm learns how to distinguish between differ-
ent observations, and then classify new observations based on previously acquired
knowledge.
Machine Learning presents many ways of classification, but they all share the
same basic principle: To classify an observation you have to be able to pinpoint
the features that distinguish observations of one category to observations of other
categories. By defining each category by a set of feature specifications, we can
look at the features of an observation, and assign that observation to the category
that has the most similar features. Though easy to describe, the classification
problem’s complexity increases as the number of features increase. Real life data
is never perfect and anomalies are expected, there will also be many instances
where the same set of features describe two different categories. It is for this
reason the science of Machine Learning has been of an increasing interest these
last decades. With Machine Learning, scientists and engineers are able to analyze
relations and make predictions in large amount of data.

12

Chapter 4

Method and Design

To be able to classify the quality of a spreadsheet, we need a robust set of quality
measures. The measures must be able to indicate quality on a large variety of
spreadsheets and represent the quality of the data as accurately as possible. The
algorithm must also be effective enough, so that it’s worth running large amount
of data through it without it being a bottleneck in the overall system. We will in
this chapter describe the methods used, the process of how the algorithm works,
and explain the design choices made in measuring quality and classifying the
sheets.

4.1 Data Quality Indicators

The first step of the algorithm is to give a set of quality scores to the spreadsheets
which we can later use as features in a classifier. This set of quality scores are
given by what we call Data Quality Indicators(DQI). Data Quality Indicators are
the term we use for measuring and exposing data quality. The output of the DQIs
can be any form of indication of the data quality, but is often given by a score.
We say indicators in plural because we want to have a set of scores instead of just
one overall quality score. Though one overall score might be a good exposure of
the general quality, we want a more specific indication, where we can tell what
type of quality is lacking in the document. These types of data qualities are what
we call Quality Dimensions, described in 3.2.2. Each dimension contains a set of
measures, and with these measures we can calculate a set of quality scores.

4.1.1 Chosen Dimensions

In this system, we are working on spreadsheets represented as comma separated
files (CSVs). A CSV file contains nothing more than the values found in the
spreadsheet and how the values are structured in a tabular form. This means that
we have no metadata of the spreadsheet like font styling, charts, colors or other
details about the overall look of the spreadsheet. The CSV tells us nothing about
the values, each value is separated by a comma, where a comma is a separator
of values between two columns. The computer initially reads the values as a list
of strings, row by row. It’s these list’s of strings we are measuring quality upon,

13

we therefor have to choose measures that are able to find quality issues where
not details or semantics about the data is present. With this in mind, I chose to
measure the quality on five dimensions, specified in table 4.1. A system usually
has a defined structure to which it will try to read data from. If the data doesn’t
follow this structure, most systems are unable to derive anything useful. It is
with this in mind the five dimensions were chosen.

Table 4.1: Chosen DQI dimensions

Completeness Is the dataset complete? Or does it contain many
records of NULL values?

Validity Is the data from the records logical? Does the data
fall within logical boundaries; A person being nega-
tive years old.

Consistency Is the value format consistent?

Structural coherence Are the data structured in a good manner.

Integrity Row Integrity: A row starts with a primary key.
Column Integrity. Referential Integrity.

The dimensions are separated into two groups, general and special. In one
group the dimensions measures quality on a completely general basis, where all
the values are analysed for their string composition and not the value they actual
represent. In the other group the dimensions tries to measure quality based on
what the values represents.

General measures

Completeness

The completeness dimension measures how complete the dataset is. How com-
plete a dataset is, is determined by the amount of missing values. A spreadsheet
with perfect completeness is a spreadsheet where all the cells within the table con-
tains a value. An empty cell is one form of missing value, but not the only one.
Many data structures has rules that prohibits leaving a cell empty, to deal with
this a substitute/default value is often inserted instead; like ”Null”, ”Missing”
or just a single special character like ”-” or ”#”. Many cells are also generated
by formulas and functions, and when these automated methods encounter issues,
they often leave a cell with an error value. All these forms of missing values are
counted and weighed against the amount of meaningful values. The end result of
the dimension is the percentage of missing values in the document.

14

Row Integrity

Row Integrity is a measure based on the reason of thought that a dataset should
contain a unique identifier for each data record. This means that for a spreadsheet
to get a perfect Row Integrity score, the spreadsheet must contain a column of
unique values, so that each row in the table is given a unique identifier. This is
done by finding the column in the table that is closest to contain a unique value
for each row in the table. The end result is the percentage of unique values that
this column is able to provide to the total amount of rows.

Structural coherence

The structural coherence dimension measures the overall structure of the spread-
sheet and how the values are arranged. Spreadsheets comes in all shapes and sizes,
though inherently meant for data to be organized in tables, this isn’t always the
case. A spreadsheet can contain values scattered in all directions, contain mul-
tiple tables or sometimes almost no values at all or be completely empty. For a
system to read and make sense of unstructured data can be extremely demanding
and if not, almost impossible. What we want is well organized and structured
data. Perfect spreadsheet structure is data arranged in a single table in a perfect
rectangle. This dimension measures how well a spreadsheet suits the ideal model
of containing only one table of data with no rows or columns fluctuating in length
from the others. It also considers the amount of values found in the spreadsheet.
A spreadsheet with just a few cells filled are usually of no real use.

General Consistency

The consistency dimension is divided into two separate measures, general and
special. The general consistency measure sees only the values for their string
composition, and how consistent the strings are to the rest of the strings in the
dataset. This dimension measures column by column and compares the compo-
sition of each string to the general string composition of the rest of the strings in
the column. You can call this the internal consistency of a column. The dimen-
sion collects metadata statistics on the strings in the column and count values
that deviate from the general metadata found in the column as a whole. Four
sets of statistics are collected, shown in table 4.2
For each statistic, an outlier detection method is applied to find deviations/out-
liers. The methods used, are explained in section 5.2.1. The outliers are then
counted, and an overall consistency score is given to the column from the amount
of outlier strings.

15

Table 4.2: String consistency measures

Statistic Description Outlier method
Word count Count number of words in each

string and compare to rest of col-
umn.

Tukey’s range

Value Length Get the length/character count of
each string.

Tukey’s range

Character types Divide character into three types:
”Letters”, ”Numbers” and ”Spe-
cial characters”. And count
how many instances of each type
strings contain.

Tukey’s range

Character frequencies Find which characters are used
and their frequency for each
string, and compare if they are
similar to the most common char-
acters used in the column as a
whole.

Cosine distance

Special measures

The dimensions that measures on special cases of quality are Validity and the Spe-
cial Consistency. These two dimensions has special cases of measures dependant
on the value type. The value types are:

- Text/Strings
- Person Names
- Numbers
- Dates
- Codes
- Acronyms
- Prices

These column types are chosen as they are common to the type of spreadsheets
used in ERP systems in the oil and gas industry. How the algorithm predicts the
value type is further described in 4.1.2.

Validity

Validity is a special case only dimension because it is a measure on finding invalid
values based on value context. Invalid values are values that are not correct, they
are not within the logical boundaries of the column. For example in a column of
person names, a number would not be a valid value. Nor would a negative value
be valid in a column of people’s age. The reason we are able to apply constraints
like this to a set of values are because we have knowledge about what values are
logical in that specific context. If the only context we have is that the values

16

are a list of strings, then all values are valid. Therefor we have to figure out the
column type to get the context we need to apply constraints.

Table 4.3: Validity constraints

Value type Constraints
Text/Strings All pass
Names Title case, number of words, Only letters (+ a special charac-

ter), Names only.
Numbers Positive/Negative values, Numbers only.
Dates Dates only
Codes Codes only
Acronyms All caps, Acronyms only.
Prices Extreme values, Positive/Negative, Prices only.

Table 4.3 lists which constraints are applied to which value types. More specifics
on how the constraints are measured is explained in later section 5.2.6. The
invalid values are then counted and used give a score to the dimension.

Special Consistency

The special consistency dimension in the same way as validity, measures consis-
tency based on value context. Though instead of applying predefined constraints,
it uses statistical methods to detect outliers in the same way as for general con-
sistency.

Table 4.4: Special consistency constraints

Value type Measures
Text/Strings All pass
Names All pass
Numbers Value range
Dates Date pattern
Codes Code pattern
Acronyms All Pass
Prices Value Range

4.1.2 Predicting value types

For the dimensions to be able to apply measures on special value type cases, we
need to be able to predict the value type and provide it to the dimensions. This
is done by collecting metadata on the values of a column and use these metadata
values to place the values to a specific data type. After each value in the column
is assigned a value type, the majority vote will decide the value type of the column.

17

The control statements are arranged in a tree based structure. The feature splits
directing the value type decision is based on the typical features associated with
those value types. Like codes being in one word or names being title cased.

4.1.3 DQI representation

When all the dimension have completed their measures, we collect the measuring
results and calculate a set of indicator scores. The scores are generated to give
the spreadsheet an overall quality score for each dimension. These scores are used
for the automated decision making, but are also meant to provide the user with
information about the state of the spreadsheet quality. The best way to present
information in a quick and useful manner is to visualise the quality. A goal of
this thesis was to develop a new way to display a data quality indicator chart to
be used as a visual aid to the user. We found out that the best way to display
the data quality would be a chart that could show the overall quality score for
each spreadsheet tested, and at the same time show how the internal dimension
scores ranged within each sheet. The end result became a customized box plot
of the spreadsheet scores, with the score of each dimension placed on the box
to show how the dimensions dictate the position and length of the box. The
internal dimension scores are shown as a colored dot, with the dot representing
the dimension.

Figure 4.1: Example of a box in the customized box plot

In figure 4.1 we see an example of how a box ends up looking. The colored
dots green(Row Integrity) and yellow(Structural Coherence) give a perfect score of
100. Teal(validity) and blue(consistency) a little lower, and purple(completeness)
lengthening the box with the lowest score. A long box indicates a wide spread
in dimension scores, while a small box indicates shows that the dimensions score
similar results. A perfect score would be a small box lying close to the top score
line. An example of the box plot in its entirety can be seen in section 6.1.

18

4.1.4 Outlier Detection methods

The two main methods for detecting outliers used by the measures are the Tukeys
Method and the similarity measure Cosine Similarity.

• Tukey methods relies around detecting outliers that deviates from the main
portion of values by using quartiles and the Inter Quartile Range(IQR),
this makes the method applicable to most value sets as the method is not
dependent on the value distribution. The method works by calculating
IQR = Q3 − Q1, where Q3 and Q1 are the third and first quartiles. a
range is then calculated to range from Q1 − 1.5 · IQR to Q3 + 1.5 · IQR.
All values found outside this range are determined outliers.

• Cosine Similarity is a way to measure the angle between two vectors. The
result is given as the cosine of the angle. Cosine of 0◦ is 1.0 and less for
all other angles. The cosine similarity between two vectors V1 and V2 is
calculated as:

Similarity =
V 1 · V 2

||V 1|| · ||V 2||

4.2 Classification

The last step of the algorithm is the automatic decision making. We run the DQI
scores through data a classification model that will decide whether a spreadsheet
is of good enough quality to be used, or not.

4.2.1 Support Vector Machine

We chose the Support Vector Machine (SVM) method [4] to be used for the
automated decision making. Support Vector Machines are Machine Learning
methods for supervised learning that can be used for regression and classification.
SVM suits our purpose well as it’s efficient, versatile and excellent as a binary
classifier. With SVM the DQI scores are placed as points in a hyper plane, where
each point is a vector of the dimension scores. Based on these points, SVM
draws a hyper plane that separates the points of one class from the points of the
other class and maximizes the margin between the two classes. The beauty with
SVM however, is that in cases where it is not possible to linearly separate the
data points, we can transform the data into a higher dimensional space where
it is possible to separate the data. This is done using kernel functions. And
this is where the versatility of SVMs comes from, as there exist several kernel
functions that suits different data purposes [7]. The most common kernels are
the Linear kernel, and the non-linear Polynomial, Radial basis function (RBF)
and Sigmoid kernels. Each kernel separates the data in their own way, and how
well they perform is highly dependent on the data we use. With Support Vector
Machines and the right kernel choices, we should be able to train a classifier to
make automated decisions on spreadsheet quality.

19

Chapter 5

Implementation

In this chapter we will take a closer look at the implementation of the different
modules in the system. All the parts of the algorithm is implemented in Java. The
algorithm mainly consist of four modules: The data preparation and statistics
gathering, Quality Dimension Measures, indicator scoring, and lastly the SVM
classifier. Installation and how to run the code is described in Appendix A.
Running and setting up tests is described in 6

5.1 Data preparation and analysis

The first step of the algorithm is the preparation step. In this step data is loaded
from the files and parsed into sets of columns. We then gather statistics and
metadata on those columns of data to be used later by other modules.

5.1.1 Parsing Data

The code for parsing data from source to algorithm can be found in the package
csv in CSV.java. The source data we are working with is given as spreadsheets
converted to .csv format. To parse these csv files into Java, I use the open source
library OpenCSV[13]. OpenCSV reads files row by row, as Cp1252 encoded text.
where the rows are stored in String Arrays with each element being a value of a
column. This is a easy and well structured way of parsing the tables, but for my
purpose it would be more efficient to store the data column by column instead
of row by row. This is because the measures mainly operates on a column by
column basis, and we would eliminate a lot of operations by changing the data
storage in this manner. This is completed by iterating over the String Array rows
and appending the values over to a set of ArrayLists.
When converting Excel spreadsheets to .csv format, there’s often an issue where
a large amount of empty rows and columns are included in CSV file. These extra
rows and columns occur because formulas in excel may extend further than the
actual content. These types of cells are often called ghost cells. We deal with
these ghost cells by iterating over the columns and rows and pinpointing the last
cell containing a value. All the cells that follows are then determined as ghost
cells and removed from the data structures.

20

We then have a set of data presented in columns, which we can start measuring
quality upon.

5.1.2 Gathering metadata

The dimensions will one after the other run measures on the columns. In an effort
to keep the algorithm as efficient as possible, I try to limit the number of times
the dimensions have to iterate over the values of a column.
Instead I try to collect as much metadata from the columns as possible before
the dimensions start measuring, so that the measures can use this metadata in-
stead of having to collect it themselves. The code for the collection of metadata
and statistics is found in the analyze package, in ColumnData.java and Value-
Data.java. The ColumnData represents the metadata for the column as a whole,
while ValueData collects data about single values.
We start out by providing ColumnData with a list of string values. Each string
in the list is passed to a ValueData object which contains methods for gathering
string value metadata. The string metadata is then stored in arrays in Column-
Data which are used by the measures later. ColumnData also makes a value map
of all the strings in the column, which can be used for checking the value variety
in the column.
The metadata we collect from the string values are: The number of words in the
string, character types it contains, character frequencies, casing of the words, and
lastly a check if the string follows a certain pattern.

Listing 5.1: findCasing() method

1 private St r ing f indCas ing (S t r ing value) {
2 i f (va lue . equa l s (va lue . toUpperCase ())) {
3 return ”Upper” ;
4 }
5 St r ing [] s p l i t = value . s p l i t (”\\ s+”) ;
6 for (int j = 0 ; j < s p l i t . l ength ; j++){
7 i f (! Character . isUpperCase (s p l i t [j] . charAt (0))) {
8 break ;
9 }

10 i f (! s p l i t [j] . s ub s t r i ng (1) . equa l s ((s p l i t [j] . s ub s t r i ng (1) .
toLowerCase ()))) {

11 break ;
12 }
13 i f (j == s p l i t . length −1){
14 return ” T i t l e ” ;
15 }
16 }
17

18 return ”Unknown cas ing ” ;
19 }

Most of the methods are simple counting measures, except for findCasing() and
findPattern(), shown in listings 5.1 and 5.2, which tries to categories the pattern
and casing type of the values. These categories are used later when trying to
detect the data type.

21

Table 5.1: Patterns

Pattern name Regex/Symbol
pricePatterns ”.+\d+[,]\d+$”

”.+[,]+\d+[.]\d+$”
”\d d+[,]\d+$”

currencyCharacters ”kr”, ”$”, ”£”, ”e”, ”NOK”, ”EUR”
numberPatterns ”\d+[.]\d+$”

”\d+”

datePatterns ”\̂d{1,2}[\/.]\d{1,2}[\/.]\d{2,4}.+”

Table 5.1 show the different regular expression representations of patterns
tested upon.

Listing 5.2: findPattern() method

1 private St r ing f indPat te rn (S t r ing value) {
2 for (S t r ing pattern : p r i c ePa t t e rn s) {
3 i f (va lue . matches (pattern)) {
4 return ” Pr i c e s ” ;
5 }
6 }
7 for (S t r ing currency : currencyCharacters) {
8 i f (va lue . conta in s (currency)) {
9 return ” Pr i c e s ” ;

10 }
11 }
12 for (S t r ing pattern : datePatterns) {
13 i f (va lue . matches (pattern)) {
14 return ”Dates” ;
15 }
16 }
17 for (S t r ing pattern : numberPatterns) {
18 i f (va lue . matches (pattern)) {
19 return ”Numbers” ;
20 }
21 }
22

23 return ”No Pattern ” ;
24 }

Table 5.1 shows which patterns and symbols are looked for when trying to cate-
gorize the pattern. It uses regular expression to see if the patterns of the string
value matches one of the patterns in the list, or if the value contain one of the
symbols. If able to match a pattern, then it’s very likely that the data type is
also set to that data type later on.

22

5.1.3 Data type prediction

Predicting data type is done with a set of control statements laid in a decision
tree/forest structure. The code can be found in the method DataTypeDetection
in the analyze package. The method in this class tries to decide which type of
data a column contains, using the metadata from ColumnData. ColumnData has
a method called getColumnStatistics, which provides the mean metadata values
of a column. It returns the average values of the numerical data, and a category
for casing, character types and pattern if a category in one of these has over 50%
presence in the column.

Listing 5.3: decideType() method tree one

1 i f (charType . equa l s (”Numbers+Spe c i a l ”) | | charType . equa l s (”Al l ”
)) {

2 i f (pattern . equa l s (” Pr i c e s ”)) {
3 return PRICES ;
4 } else i f (pattern . equa l s (”Dates”)) {
5 return DATES;
6 } else i f (pattern . equa l s (”Numbers”)) {
7 return NUMBERS;
8 }
9 }

Listing 5.4: decideType() method tree two

1 i f (nrOfWords > 5) {
2 return TEXT;
3 }
4 else i f (nrOfWords > 1 . 5) {
5 i f (ca s ing . equa l s (” T i t l e ”)) {
6 return NAMES;
7 } else {
8 return TEXT;
9 }

10 }
11 else {
12 i f (charType . equa l s (”Numbers”)) {
13 return NUMBERS;
14 } else i f (charType . equa l s (” Le t t e r s ”)) {
15 i f (ca s ing . equa l s (”Upper”)) {
16 return ACRONYMS;
17 } else {
18 return TEXT;
19 }
20 } else i f (charType . equa l s (”Numbers+Spe c i a l ”)) {
21 return PRICES ;
22 } else {
23 i f (pattern . equa l s (”Dates”)) {
24 return DATES;
25 } else {
26 return CODES;
27 }
28 }
29 }

23

Listings 5.3 and 5.4 shows the two trees that decides a data type. Tree One runs
first, if no values are decided, then tree Two runs. The control statements are
based upon common traits of the types they decide. Though simple, it provides
sufficient results for the dimensions that need a data type to measure on.

5.2 Quality Metrics

The main part of the algorithm is the quality measurements. The measuring
forgoes in five different classes, found in the metric package. One file for each
dimension. Structural Coherence and Row Integrity measures on the spreadsheet
as a whole, while consistency and validity measures and scores column by column.

5.2.1 Utility and Measuring methods

• Tukeys Range
The metrics package contains a class Utils which has two methods findOut-
liers() and formatToNumbers() used in different measures. findOutliers()
takes a list of numbers and calculates a range with Tukeys method, de-
scribed in 4.1.4. All values outside this range is determined outliers. The
method then returns a list of the positions of the found outliers.

• Number formatter
Also in Utils is the method formatToNumbers(). This method takes a list
of string and converts the strings into doubles. If the method is not able
to convert a string, a null value is put in the list instead. The method is
primarily of use when encountering numbers that uses both commas and
periods in the same string.

• Pattern Recogition
Special Consistency uses a pattern recognition algorithm, developed by
Morten Wærsland [9], to derive regular expression patterns on the values
in a column. These patterns are then used to count how many values are
using the same pattern. The pattern recognition methods are found in the
pattern.jar library file.

5.2.2 Structural Coherence

Structural Coherence, found in class Structure.java is the first dimension mea-
sured. The class is given a set of columns as a nested list of strings in a list
of columns. The method then apply a set of measures to this data. The end
result is an overall score on the data’s structure, this score is measured in two
different ways. The first, measure the amount of content in the spreadsheet. If
the spreadsheet contains under ten values, then the measure returns a percentage
of how many values the spreadsheet contains, up to ten. If a spreadsheet had five
values, then the measure would give it a 50 out of a top score of 100, based on
the amount of content.
The next measure in this class is a measure on how much the column heights

24

vary. The optimum spreadsheet would have a perfectly rectangle shaped table,
this measure gives us an indication of how closely this aspiration is met. It starts
of by finding the length of each column. The length is determined by how far
down actual values reach, not counting in trailing empty cells. Then we apply
Tukey’s method of finding outliers to these lengths, and count those that deviate
to much from the average length. The score is then given by the squared per-
centage of columns that are inside the length range.
When the measures are completed, the class returns the lowest of the measured
scores as the overall Structural Coherence score for that spreadsheet.

5.2.3 Completeness

Completeness, found in Completeness.java is the first of the column based di-
mension scores, described in 4.1.1. The measure iterates over the values of the
column, removes white space and sets the values to lower case. By doing this we
can easily check if a value is empty or match one of the null values described in
4.1.1. The completeness score is given as the percentage of complete values in the
column. The algorithm then puts all the complete values in a new list of strings,
which will be used by the dimensions so they won’t consider empty or null values
in their measures.

5.2.4 General Consistency

General Consistency, found in GeneralConsistency.java, contains a set of methods
for measuring string consistency. The method scoreMetric() is given a Colum-
nData object, which contains the column metadata needed for the dimension’s
measures. The method measures consistency in four different ways, as described
in 4.1.1, and returns a score of the columns internal string consistency based on
these measures. The measures finds string anomalies/outliers in the column and
the dimension score is given as the percentage of non-outlier strings.

• Word Count
The word count outliers of the column is found by firstly calling getWord-
Counts() from ColumnData. getWordCounts() returns a list of all the
strings’ word counts. From this list we find the strings that have a signif-
icantly different word count compared to the other strings in the column,
and count them as outliers. We use the Tukey method to find outliers by
calling findOutliers(). The method returns a list of column positions that
contain word count outliers.

• String length
The string length outliers are found in exactly the same way as for the
word counts. The lengths are received from getTotalLengths() and given to
findOutliers which returns a list of outlier positions.

25

• Character Types
Character type outliers are string values that have a different amount of
letters, numbers and special characters, compared to the other values in
the column. The outliers are found by making two vectors representing the
number of different character types, and comparing the similarity of the
two. One of the vectors contains the average number of letters, numbers
and special characters in the column. This vector is then used to compare
against individual value’s vectors. The vectors are compared with Cosine
Similarity. If a value has under 0.8 similarity with the average values, the
value is determined an outlier. The code for finding character type outliers
is found in findCharacterOutliers(), snippet of the code shown in Listing
5.5.

Listing 5.5: findCharacterTypeOutliers() snippet

1 ArrayList<Integer> o u t l i e r s = new ArrayList<Integer >() ;
2 for (int i = 0 ; i < va lue s . l ength ; i++){
3 Vector<Double> vec = new Vector<Double>() ;
4 vec . add (va lue s [i] [0]) ;
5 vec . add (va lue s [i] [1]) ;
6 vec . add (va lue s [i] [2]) ;
7

8 i f (c o s i n e S im i l a r i t y (avgVector , vec) <= 0 . 8) {
9 o u t l i e r s . add (i) ;

10 }
11 }
12

13 return o u t l i e r s ;
14 }

• Character Frequency
The last string measure of General Consistency is finding the character
frequency outliers. The code for this is found in the method findCharacter-
FrequencyOutliers(). The method takes a list of hash maps from Colum-
nData’s getCharacterCounts(), the maps contain frequencies of each char-
acter found in a string value. The method starts of by combining all the
character frequency maps into one large map containing all the column’s
character frequencies. We want the characters of the map to be sorted from
highest frequency to lowest. We do this by making a character array listing
the characters in order. With a map of all the character frequencies and
their frequency order, we can make two vectors of the columns character
frequencies and the individual values’ frequencies. The first vector is made
by adding all the frequencies ordered from highest to lowest. The second
vector, which is the frequency vector of a value, is made in the same way.
But has a ’0’ frequency added for the characters it doesn’t contain. Now we
have two vectors we can compare using Cosine similarity. As an example,
the procedure of two values in a column would go as shown in algorithm 1.
Values with cosine similarity less then 0.4 is determined outliers.

26

Algorithm 1 Character frequency example

Column values :
V alue 1← ”Ola Nordmann”
V alue 2← ”Uncle Sam”

Character frequency maps :
Map 1← {N : 3, A : 2, O : 2, D : 1, L : 1,M : 1, R : 1}
Map 2← {A : 1, C : 1, E : 1, L : 1,M : 1, N : 1, S : 1, U : 1}
Maps Combined← {A : 3, N : 3, L : 2,M : 2O : 2, C : 1D : 1, E : 1, R : 1, S :
1, U : 1}

Frequency vectors :
V ector Combined← {3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1}
V ector 1← {2, 3, 1, 1, 2, 0, 1, 0, 1, 0, 0}
V ector 2← {1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1}

Comparison :
Cosine Similarity(Maps Combined, V ector 1) = 0, 91
Cosine Similarity(Maps Combined, V ector 2) = 0, 82

When all the outliers are detected, we are left with a long list of column positions
where outliers are. Some outlier are counted twice, we therefore remove all the
duplicate outliers and count the ones that are left. The General consistency score
is returned as the percentage of the column’s non outlier values.

5.2.5 Special Consistency

Special Consistency, described in 4.1.1, measures consistency on values of a spe-
cific type. The code is found in the class SpecialConsistency.java. The class takes
three parameters; A ColumnData object, a number representing the column type
and a list of the column’s values. To get the Special Consistency score of a col-
umn, we call scoreMetric(), which runs the correct scoring method, based on the
column type. Not all column types has special consistency measures, as shown
in Table 4.4. If a column has a type without a special consistency measure, then
a perfect score would be returned and not be considered by the end results as
described in later sections. The column types with special consistency measures
are Numbers, Dates, Codes, Acronyms and Prices, each type’s measure is found
in separate methods:

• scoreNumberConsistency()
For numbers we have two consistency measures, a measure on the number
format and a measure on the value range.
The value range of the numbers is a measure for detecting outlier values,
numbers that are far off from the rest of the numbers. But before we can
start measuring on the actual values of the numbers, we have to convert
the numbers from strings into a data type Java can understand. Numbers
that are written without dots or commas can be directly converted from

27

string to double, but often numbers in spreadsheets vary in how they are
formatted. The number 1000 can be written as ”1000”, ”1000.0”, ”1000,0”
or ”1.000,0”. In these cases we cannot just convert the strings into numbers
with Java’s built in methods. I therefor made a simple converter method;
formatToNumbers(), described in section 5.2.1, that converts a variety of
number formats into formats Java can understand. When the strings are
converted into numbers, we use Tukey’s Range to find outliers. The score
is then given as the percentage of non-outlier values.
The other number consistency measure is a measure on the consistency
of the number formatting used. Using the pattern recognition algorithm
described in section 5.2.1. The algorithm returns the number of values in
the column that followed the same number format. The score is then given
by the percentage of values in the column that all use the most common
number format.
After these scores are measured, the method returns a map of the score
name and the score. Which score is chosen for the indicators later on is
explained in section 5.3.

• scoreDateConsistency()
Date consistency is measured in the same way as the number formatting
measure. Dates in the same way as numbers can be written in several
different ways. By using the pattern recognition algorithm from 5.2.1 we
get a number of how many dates follow the same date format. The score
is then returned as the percentage of dates in the column that follows the
same format.

• scoreCodeConsistency()
Code consistency is also measured in the same way as date consistency, as
we also want codes to follow the same consistent pattern throughout the
column. The measuring and scoring is done in the same way as for dates.

• scoreAcronymConsistency()
For Acronyms we measure the consistency by how many of the values are
all upper case. By getting the word casing from ColumnData we count
how many values are written as upper case. The score is then given by the
percentage of upper case values in the column.

• scorePriceConsistency()
Lastly the price column type consistency is measured in the same way as
numbers. We find and measure the amount of value outliers and measure
the price format consistency. The scoring is then returned in the same way
as for numbers.

5.2.6 Validity

The validity measure, described in section 4.1.1, is found in the file Validity.java.
Validity operates in the same way as Special Consistency in that it has a method
for each data type that measures quality and gives a score. Different from Special

28

Consistency however, is that it counts values that does not conform to a set
of constraints, and ends up with one score, the percentage of values that are
within the constraints. This is more like how general consistency scores a column.
Special Consistency’s methods however, are not able to return the index of outlier
values, and we can therefor not combine the different measures into one score.
As shown in 4.3, not all data types have validity constraints, and some have
the same constraints. The ones that have the same constraints are measured in
scoreDefaultValidity().

• scoreDefaultValidity()
Most of the validity constraints are based on the same principles as the
Data Type Detection from the analysis step. All the validity measures
for the different data types share one constraint, that a value that is not
classified as the same data type as the column’s data type, is determined
invalid. Acronyms, Codes and Dates have no other constraints than this,
and are all measured in scoreDefaultValidity(). This method calls a method
called findWrongValueTypes(), this method is called by all the data type
measures in validity. The method uses ColumnData for each value in the
column and runs it through the data type detector. If the detector returns
another data type than the column’s data type, then the index of this value
is set as a wrong value. When the method has been through all the values,
it returns a list of all the wrong-value indexes. The validity score for this
data type is then given by the percentage of correct values in the column.

• scoreNameValidity()
The ”name” data type is the data type with the most constraints. The
constraints check for correct word casing, the number of words, which char-
acter types are used, and lastly the data type of the values.
The casing constraint is based on that names should be title cased. The
measure uses the list of word casings from ColumnData, and lists all the
column indexes that contains a value with the wrong casing.
The number of words constraints gets a list of the word count for each value
from ColumnData. It then lists all the values that has a word count lower
than two or higher than five.
For the character type constraints, we check that the names only consists
of letters, as no names should contain numbers. We also allow one special
character as some lists of names divide first and last names with a special
character. We get the character types from ColumnData and lists the in-
dexes of values that are not within the constraints.
Lastly we check for wrong value types with findWrongValueTypes(), which
returns a list of indexes. From all the values that are now determined as
invalid, we can give a score given by the percentage of the column consisting
of valid values.

• scorePriceValidity()
Price column validity is measured on three constraints, data type, ex-
treme values and a positive/negative value check. The data type constraint
is the same as described for the previous measures. The extreme value

29

contraint however, checks for prices that exceed certain extreme values.
The constraint checks if a price is less than -1.000.000.000 or more than
1.000.000.000, if it is, then it’s marked invalid. To check the value of a price,
we convert the price string into a number using Utlis.formatToNumbers().
The positive/negative value check is found in method posNegCheck(). The
method checks if 90% of the column consists of either positive numbers or
negative numbers. If it it does, the method determines the numbers in the
10% or less, as invalid. The method then returns a list of indexes of the
invalid values. All the invalid values are then combined and a score is given
by the percentage of valid price values.

• scoreNumberValidity()
The last of the data types in the validity measure is the number type. The
numbers are scored in exactly the same way as the prices, except for the
extreme value constraint. Numbers are only score on the data type and
positive/Negative constraints.

5.2.7 Row Integrity

The Row Integrity as described in section 4.1.1, scores a spreadsheets on it’s
ability to provide unique identifiers for each row in the spreadsheet. The code
for this measure is found in RowIntegrity.java. The measure iterates over and
measures the amount of unique values in each column in the spreadsheet. The
uniqueness score of a column is measured in Uniqueness.java found in the same
package as the other measures. Other than the uniqueness scores, it also finds the
columns with the most values. The length of that column is then used together
with the uniqueness score to find the column that is closest to cover the longest
column with unique values. A snippet of how the method finds the best column
is shown in Listing 5.6. The Row Integrity score is then returned as the chosen
column’s percentage of unique values to the length of the longest column.

Listing 5.6: RowIntegrity snippet

1 for (int i = 0 ; i < columns . s i z e () ; i++){
2 Column column = columns . get (i) ;
3 double uni = column . getUniquenessScore () ;
4

5 //Converts the uniqueness s co r e to s co r e uniqueness
compared to the l ong e s t column in the spreadsheet ,
i n s t ead o f

6 // the l ength o f the column i t s e l f .
7 double convertedScore = (uni ∗column . getColStat () . getRows ())

/maxRowCount ;
8 i f (convertedScore > maxUniScore) {
9 maxUniScore = convertedScore ;

10 primaryKeyColumn = i ;
11 }
12 }

30

5.3 Indicator scores

When all the dimension measures are completed, we are left with several column
scores and two spreadsheet scores. These scores needs to be collected and merged
into a set of DQI scores, with one score for each dimension. The code for this
is found in the file Spreadsheet.java in the dqi package. The Spreadsheet object
contains the basic spreadsheet information needed in later stages along with the
spreadsheet’s DQI scores. The class is given the spreadsheet file name, the two
spreadsheet scores from Structural Coherence and Row Integrity and a list of Col-
umn objects, which contains the column scores given by the consistency measures
and validity. The Column object is found in Column.java in the same package.
The DQI scores are calculated by leaving the spreadsheet scores Row Integrity
and Structural Coherence as is, while the final score for the column measures are
given by the average column score for each dimension. As consistency gives a
special and general score, the lowest of the two are chosen for each column. The
scores are initially between 0 and 1, but we multiply them by 100 so that they
range between 0 and 100 instead. We then end up with five dimension scores for
the spreadsheet; Completeness, Validity, Consistency, Structural Coherence and
Row Integrity.

5.3.1 DQI Visualization

As the rest of the system is implemented in Java, I ended up implementing the
chart in Java also. There exist several libraries for graphical charts and statistics
in Java, but as I needed to change and override code to make the chart look
as I wanted, I figured it would be easier to implement the chart from scratch.
The code for the box chart is found in the visualization package in the three files
ChartFrame.java, BasicChart.java and BoxChart.java. ChartFrame.java initial-
izes the chart graphics using the graphical user interface package Java.Swing.
It initializes the BoxChart code which extends BasicChart. BasicChart draws
the basics of a chart; the axis, spreadsheet names and color descriptions for the
dimensions. BoxChart draws the content of the chart, boxes, whiskers and the
dimension dots. The chart content is drawn with the Java library awt. The the
length and position of the boxes is decided by the five dimension scores. From
these five scores we calculate the first and third quartile which is then the bot-
tom and top of a box. The length of the box’s whiskers is set by the 1 and 99
percentile values, which is the same as the lowest and the highest scores as we
only use five values.
The box chart can be seen in chapter 6, Testing, Analysis and Results.

5.4 SVM Classifier

The classification part of the algorithm is found in the classification package.
The code is divided into five files. SVMTestSuite is the main file that runs all the
classification parts. It loads the dataset, sets up parameters, trains and tests the
SVM with cross validation. The testing in SVMTestSuite is described in more

31

detail in section 6.2.2. The labeled dataset used is structured to comply with the
data parser code. The file can be generated from the scores stored to file from
the Data Quality Indicators, and combining these scores with the quality labels
running CombineLablesAndScores.java. The classification model is trained and
built in SVMTrainer.java using the Support Vector Machine Library LibSVM,
[15]. LibSVM provides a set of tools and abstractions making it easy to test
different SVM kernels and parameters without having to struggle setting it up
with dependencies like many other Java SVM libraries. in SVMTrainer we set the
kernel and parameter specifications and train the SVM model which is returned
to the test suite. The test suite then provides SVMPredictor the trained model
and a test set, which is used to predict classes to the test data. The classes is
then compared with the true classes, and scores are then generated based on the
results. The classifier model can be serialized, if needed to be stored to file. This
would be the next step after a sufficient model is found. As you would only want
to train the model once, and use it to classify thereafter.

32

Chapter 6

Testing, Analysis and Results

6.1 Data Quality Indicators

Figure 6.1 shows an example of how the Data Quality Indicator box plot looks.
This is the result of running the DQI algorithm on four small example spread-
sheets, Missing, Perfect, Terrible and Various. The example spreadsheets are
listed in Appendix B. Table 6.1 shows the dimension scores for the same spread-
sheets.

Figure 6.1: DQI Boxplot example

33

Table 6.1: Score data from DQI run in figure 6.1

Spreadsheet Row Int. Structure Completeness Consistency Validity
Missing 100 100 86 100 100
Perfect 100 100 100 100 100
Terrible 71 56 34 57 54
Various 75 100 91 64 65

6.2 Classification

6.2.1 Data process and setup

We start of with a large number of spreadsheets, and a file containing those
files pre-classified quality labels. The first step is to give quality scores to all
the spreadsheets, we do this by running QualityIndicator.java, which runs all
the spreadsheets through the quality measures and writes the DQI scores to file.
The spreadsheet scores are stored in a text file one spreadsheet per row. Each
row starts with the spreadsheet name followed by the spreadsheet’s scores. To
build and test the classifier, we need the spreadsheet scores together with the
pre-classified labels. We map the labels to the scores by running CombineLabel-
sAndScores.java. This class combines the pre-classified labels and the scores, by
taking the spreadsheet name and label from one file and mapping the label to a
score set with the same spreadsheet name. It’s important that no two spread-
sheets share the same name, so that the labels are placed with the correct scores.
The combined result is written to a new file, where each row consists of a label
followed by DQI scores.

6.2.2 Running the tests

With the labels and scores combined, we now have a dataset which we can build
and test classifiers on. To run a test, you run SVMTestSuite.java, loads the data,
trains a model, tests its performance and prints the results. The classifiers are
tested with 4-fold cross validation. 4-fold cross validation divides the data set
into four sections, one section is chosen to be test set, and the three others are
chosen as training set. The training set is used to train/build a classifier model
and the test set is used to validate the performance of the model. The cross
validation rotates the test and training sets until all the sections have been used
as test set. When all the sections have been tested upon, the classifier’s score is
given by the average score from the cross validation rotations. Cross Validation
helps us reduce the risk of picking a test set that could give a biased score, and
wrongfully represent the classifiers performance.
When testing we want to test the performance of different SVM kernels. And each
kernel has a set of parameters that have to be specified explicitly. The parameters
have an effect on how the model performs and will vary from dataset to dataset.

34

SVMTestSuite tests the classifiers with several different parameters by running
cross validation for each parameter combination, and ultimately choosing the
parameter combination with the best performance.
The performance is measured on four scores:

Accuracy =
TruePositive + TrueNegative

TruePositive + TrueNegative + FalsePositive + FalseNegative

Precision =
TruePositive

TruePositive + FalsePositive

Recall =
TruePositive

TruePositive + FalseNegative

F1− score = 2 · precision · recall
precision + recall

True Positive = correctly classified ”good” quality.
True Negative = correctly classified ”bad” quality.

6.2.3 Data

We use 443 real world spreadsheets gathered from several different sources within
the Oil & Gas industry. The spreadsheets were made for many different purposes,
have a large variety in content, and they represent exactly which type of spread-
sheets the the system is meant for. The spreadsheet qualities were labeled by
students and employees at Avito LOOPS. From classifying the 443 spreadsheets,
we have 355 sheets labeled as usable (good quality) this is roughly 80% of the
spreadsheets. The rest were labeled not usable. The test results in this chapter
are given by training and testing the classifier on these spreadsheets and labels.

6.2.4 Classification results

Table 6.2 shows the scores from a ”dumb” classifier, which classifies all the spread-
sheets as usable. These results will be used as baseline scores. As you can see
the scores are not particularly low, as such a high percentage of the labels are in
the ”good quality” class.

Table 6.2: Results simple classifier

Classifier Accuracy Precision Recall F-Score
Baseline 0.800 0.800 1.000 0.887

35

Table 6.3, shows the best kernel results I got from testing the four kernels
RBF, Linear, Polynomial and Sigmoid. The results are based on tests finding
the parameters that provided the best F-Score for each kernel. They all show a
little bit of an improvement on the baseline. RBF and Polynomial provides the
best F-Score with 0.895, but as the RBF kernel builds significantly faster than
the polynomial kernel. RBF is chosen as the best suited one.

Table 6.3: Results SVM kernels

Kernel Accuracy Precision Recall F-Score
RBF 0.823 0.838 0.963 0.895
Linear 0.795 0.811 0.883 0.883
Polynomial 0.823 0.840 0.960 0.895
Sigmoid 0.802 0.804 0.998 0.888

In table 6.4 we see the variation of scores between sections. The results in this
table are given with the RBF kernel with the same parameters used in RBF in
table 6.3.

Table 6.4: RBF section varitaton

Section Accuracy Precision Recall F-Score
Section 1 0.818 0.814 0.988 0.892
Section 2 0.909 0.933 0.970 0.951
Section 3 0.827 0.812 1.000 0.896
Section 4 0.764 0.786 0.953 0.862
Average 0.823 0.838 0.963 0.895

6.2.5 Feature selection

With the results from classifying on all the dimensions at the same time. It would
be interesting to know what effect the individual dimensions have on the results.
We analyse this with selecting different feature combinations (dimension scores
to classify on) and see how the results are effected. All the results below were
produced with cross validation and finding the optimal parameter combination
for each test case. Table 6.5 show the results when testing the RBF classifier with
only one dimension feature. Interestingly, all dimensions give the same score as
the baseline classifier, except Completeness, which provides a better score than
when we classify on all dimensions.

36

Table 6.5: RBF with a single feature

Dimension F-Score
Row Integrity 0.887
Structural Coherence 0.887
Completeness 0.902
Consistency 0.887
Validity 0.887

Tables 6.6 and 6.7 shows different feature combinations together with complete-
ness. Other than Structural Coherence and Validity, the other dimensions actu-
ally have a negative effect on the result. While Validity together with Complete-
ness produced the best results. No other combination of dimensions were able to
produce a better score than this.

Table 6.6: RBF with two features

Dimension F-Score
Completeness & Row Integrity 0.878
Completeness & Structural Coherence 0.902
Completeness & Consistency 0.894
Completeness & Validity 0.903

Table 6.7: RBF with three features

Dimension F-Score
Completeness & Structual Coherence & Validity 0.903

6.2.6 Dimension score and label comparison

Figure 6.2 shows how the data quality dimension scores are distributed and how
they line up with the spreadsheet labels. The charts are lined up in two dimen-
sional scatter plots, the red dots are spreadsheets labeled ”usable” and the blue
dots are the ones labeled ”not usable”. From the scatter plots we get an indication
of how a support vector machine would potentially place a divider to separate the
two classes. But as seen from the plots, there’s a lack of distinction between class
labels and the dimension scores, with the only exception being completeness.

37

Figure 6.2: Dimension scatterplots

0

20

40

60

80

100

120

0 50 100 150 200 250 300 350 400 450 500

V
a

li
d

it
y

Consistency

Validity & Consistency

0

20

40

60

80

100

120

0 20 40 60 80 100 120

S
tr

u
ct

u
ra

l
C

o
h

e
re

n
ce

Row Integrity

Structural Coherence & Row Integrity

0

20

40

60

80

100

120

0 20 40 60 80 100 120

V
a

li
d

it
y

Completeness

Completeness & Validity

In figure 6.3 we see how the completeness score compares to the labels, where we
can see a clearer parting between the two classes than the the other dimension
scores.

38

Figure 6.3: Completeness scatterplot

0

20

40

60

80

100

120

0 50 100 150 200 250 300 350 400 450 500

C
o
m
p
le
te
n
e
ss

Spreadsheets

Completeness

39

Chapter 7

Conclusion and Further Work

7.1 Conclusion

This thesis presents the design and implementation of a set of Data Quality Indi-
cators to be used with a Support Vector Machine classifier, to decide whether a
spreadsheet’s quality is sufficient enough to be used in an ERP system. The Data
Quality Indicators are to be used for visualising data quality as well as provide
data for the Support Vector Machine. The Data Quality Indicators measure qual-
ity on a set of dimensions which represent different aspects of data quality. The
dimensions should be able to cover the main quality issues that are prominent
in spreadsheet data, to inform the user on where quality can be improved. The
DQI dimension scores are evaluated on how well they are able to inform users
on quality issues, and how they provide sufficient data for the automatic quality
classification.
Section 6.1 shows how the Quality Indicator scores are visualised to the user. The
box plot makes it easy for the user to analyze the quality of the spreadsheets in
an efficient manner, and compare how the quality ranges and differs between each
spreadsheet. From the information given by this chart, the user should be able
to conclude why some aspects of the ERP system may not perform as expected,
and suggest what parts of the spreadsheets could be improved.
In section 6.2.4 we find the Support Vector Machine results for automated deci-
sion making. The results show how the different SVM algorithms perform using
the scores provided by Data Quality Indicators and a set of expert labeled spread-
sheets. The results show limited improvement on the baseline accuracy. The RBF
kernel showed the most improvement with an accuracy improvement by a little
over 2%. But this also result in a reduced Recall score, which means some usable
data would be discarded along with the unusable. This can always be expected
as real life data will always present anomalies, but we have to consider if the
improvement is significant enough to justify discarding good spreadsheets.
There’s a number of possibilities for the classifier not being able to predict more
spreadsheet qualities. For one, the spreadsheet labels were manually classified by
several people. This could produce varying and subjective labels, which would
ultimately create noise and confusion when training the classifier. Table 6.4 could
be an indication of this to be true, as there’s a big variation in scores between sec-

40

tions. Another possibility is that the quality indicator scores may not represent
the quality of the spreadsheets clear enough, or that they are not significant when
deciding the usability of a spreadsheet. The results show that the most repre-
sentative quality indicator is the completeness indicator, this is probably because
completeness is the most recognizable factor from a human perspective when
classifying a spreadsheet. I would expect the classifier to perform better with
a more thoroughly evaluated and consistent labeled dataset. The results show
that there’s a large potential of improvement on the quality measures, and that
it would be reasonable to test other Machine Learning classifiers to potentially
eliminate certain suspicions for bad performance.

7.2 Further Work

This section presents suggestions on what optimizations could be implemented
in the Data Quality Indicators in further work to improve results.

7.2.1 Pattern dictionaries

A lot of the measures are based around having some sort of understanding of
what the data is about, to apply measures. With a dictionary of number, price
and date patterns, we would be able to better distinguish and recognize data
types. With this we could apply the correct measures and design a more robust
method for converting string into comparable dates, numbers and prices.

7.2.2 Table detection

Maybe the biggest factor of spreadsheet readability is the amount of tables it
contains. Most spreadsheet readers assume the spreadsheet to be read as one big
table, but this results in issues when a spreadsheet contain multiple tables. This
structure based spreadsheet quality would be of valuable use and improve the
overall Data Quality indicator performance.

7.2.3 Extending Validity and Consistency constraints

With testing and analysis of real world data examples we could investigate in
which statistics are found in different data types, and use this to apply a more
complete and accurate list of data type constraints.

41

Appendices

42

Appendix A

Program

A.1 Installation Guide

The system for this thesis is implemented in Java 8.To run it you would need
to apply the java source file to a project and include the correct libraries to the
build path. The code is dependent on four different libraries: OpenCSV [13],
Apache Commons-Math [14], libSVM [15] for the classifier, and lastly pattern.jar
[9], which should be provided with the code, as it is not currently available to
download.

A.2 User Manual

The main method for running the DQI is found in QualityIndicator.java. To make
it work you would have to alter the variables in the main method to point to a
folder with .csv files and a file path to write scores to. To store store output in
file, set storeOutputToFile = true. To show box chart set showBoxChart = true
The classification part is found in the classification package. To run tests on the
classifier, specify which paramaters you want to test in the SVMTestSuite.java
class and run it. You would need a file with correctly structured labeles and
features for the file to run.

43

A.3 File overview

Table A.1: Package and files overview

Package Files
ColumnData.java

analyze DataTypeDetection.java
ValueData.java
CombineLabelsAndScores.java
LoadDataset.java

classification SVMPredictor.java
SVMTestSuite.java
SVMTrainer.java

csv CSV.java
Column.java

dqi QualityIndicator.java
Spreadsheet.java
Completeness.java
GeneralConsistency.java
RowIntegrity.java
SpecialConsistency.java

metrics Structure.java
Uniqueness.java
Utils.java
Validity.java

output OutputScore.java
BasicChart.java

visualization BoxChart.java
ChartFrame.java

44

Appendix B

Spreadsheet examples

Figure B.1: Spreadsheet: missing

Numbers Names Codes Prices

1 Kjell Petterson #MISSING 10$

2 Arne Lindmo #MISSING 11$

3 Svein Harbo #MISSING 16$

4 - #MISSING 10$

5 #MISSING

6 #MISSING

7 #MISSING

8 Arne Lindmo #MISSING 11$

9 Svein Harbo #MISSING 16$

10 Heisman Haa #MISSING 10$

11 Alfred Siggurd #MISSING 11$

12 Ting Skrottnes #MISSING 16$

Kjell Petterson #MISSING 10$

Arne Lindmo #MISSING 11$

Svein Harbo #MISSING 16$

16 Heisman Haa #MISSING 10$

17 Alfred Siggurd #MISSING 11$

45

Figure B.2: Spreadsheet: perfect

Numbers Names Codes Prices

1 Kjell Petterson AS-1245 10$

2 Arne Lindmo AS-1246 11$

3 Svein Harbo AS-1247 16$

4 Heisman Haa AS-1248 10$

5 Alfred Siggurd AS-1249 11$

6 Ting Skrottnes AS-1250 16$

7 Kjell Petterson AS-1251 10$

8 Arne Lindmo AS-1252 11$

9 Svein Harbo AS-1253 16$

10 Heisman Haa AS-1254 10$

11 Alfred Siggurd AS-1255 11$

12 Ting Skrottnes AS-1256 16$

13 Kjell Petterson AS-1257 10$

14 Arne Lindmo AS-1258 11$

15 Svein Harbo AS-1259 16$

16 Heisman Haa AS-1260 10$

17 Alfred Siggurd AS-1261 11$

46

Figure B.3: Spreadsheet: terrible

Numbers Names Codes Prices #

#ERROR Kjell Petterson AS-1245 10$ Extra Extra Extra Extra

#ERROR null AS-1246 11$ #

#ERROR null #VERDI! 16$ Extra Extra Extra Extra

#ERROR null #VERDI! null #

#ERROR null AS-1249 11$ Extra Extra Extra Extra

#ERROR null AS-1250 16$ #

#ERROR null AS-1251 10$ Extra Extra Extra Extra

#ERROR null AS-1252 11$ #

#ERROR Ola Nordmann #

#ERROR Ola Nordmann Numbers Names Codes Prices

#ERROR Ola Nordmann 1 null AB_B_2 #

#ERROR 12 Ola Nordmann 2 null AB_B_3 16$

#ERROR 13 Ola Nordmann 3 null AB_B_4 10$

#ERROR 14 Ola Nordmann 4 null AB_B_5 11$

#ERROR 15 Ola Nordmann 5 null AB_B_6 16$

#ERROR 16 Ola Nordmann 6 null AB_B_7 10$

#ERROR 17 Ola Nordmann 7 null AB_B_8 11$

#ERROR 18 Ola Nordmann 8 AB_B_9 #

Ola Nordmann #

#

#

#

#

#

#

#

#

#

#

#

#

47

Figure B.4: Caption: various

Numbers Names Codes Prices

1 Kjell Petterson AS-1245 10$

2 Arne Lindmo AS-1246 11$

3 Svein Harbo #VERDI! 16$

4 null #VERDI! null

5 AS-1249

6 AS-1250 16$

7 Kjell Petterson AS-1251 10$

8 Arne Lindmo AS-1252 11$

Numbers Names Codes Prices

10 Heisman Haa 13-1AAB 10$

10 Alfred 13-2AAB

10

10 Kjell Petterson 13-4AAB 10$

10 Arne 13-5AAB 11$

10 Svein Harbo 13-6AAB 16$

Numbers Numbers Numbers Numbers

10 13 14 0

10 13 14 0

10 13 1 0

10 13 14 0

48

Bibliography

[1] Arkady Maydanchik. Data Quality Assessment.

[2] Felix Naumann Data Profiling Revisited Qatar Computing Research Institute
(QCRI), Doha, Qatar

[3] DAMA UK Working Group. Defining Data Quality Dimensions: The six
primary dimensions for data quality assessment October 2013

[4] Asa Ben-Hur, Jason Weston A Users Guide to Support Vector Machines
2010

[5] Brian E Howard, Beate Sick and Steffen Heber Unsupervised assessment of
microarray data quality using a Gaussian mixture model http://www.ncbi.
nlm.nih.gov/pmc/articles/PMC2717951/

[6] David Isaac and Christopher Lynnes. Automated data quality assessment
in the intelligent archive http://disc.sci.gsfc.nasa.gov/intelligent_

archive/AutoQualityAssessment.pdf

[7] R. Sangeetha, B. Kalpana Performance Evaluation of Kernels in Multiclass
Support Vector Machines International Journal of Soft Computing and En-
gineering (IJSCE) ISSN: 2231-2307, Volume-1, Issue-5, November 2011

[8] Sean Kandel, Ravi Parikh, Andreas Paepcke, Joseph M. Hellerstein, Jef-
frey Heer. Profiler: Integrated Statistical Analysis andVisualization for Data
Quality Assessment Stanford University, University of California and Berke-
ley http://vis.stanford.edu/files/2012-Profiler-AVI.pdf

[9] Morten Wærsland
Text pattern discovery and extraction
University Of Stavanger, June 15. 2016

[10] Clue Points.
http://cluepoints.com/risk-based-monitoring/

[11] Roland Bouman, Jos van Dongen Pentaho Solutions: Business Intelligence
and Data Warehousing with Pentaho and MySQL Wiley Publishing 2009
http://www.pentaho.com/

[12] Bahaaldine Azarmi Talend for Big Data Packt Publishing 2014 https://

www.talend.com/products/data-preparation

49

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2717951/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2717951/
http://disc.sci.gsfc.nasa.gov/intelligent_archive/AutoQualityAssessment.pdf
http://disc.sci.gsfc.nasa.gov/intelligent_archive/AutoQualityAssessment.pdf
http://vis.stanford.edu/files/2012-Profiler-AVI.pdf
http://cluepoints.com/risk-based-monitoring/
http://www.pentaho.com/
https://www.talend.com/products/data-preparation
https://www.talend.com/products/data-preparation

[13] OpenCSV V3.7 http://opencsv.sourceforge.net/

[14] Commons Math3 V3.6.1
http://commons.apache.org/proper/commons-math/

[15] Chang, Chih-Chung and Lin, Chih-Jen
LIBSVM: A library for support vector machines
ACM Transactions on Intelligent Systems and Technology, volume 2, issue
3, 2011 http://www.csie.ntu.edu.tw/~cjlin/libsvm

50

http://opencsv.sourceforge.net/
http://commons.apache.org/proper/commons-math/
http://www.csie.ntu.edu.tw/~cjlin/libsvm

	Introduction
	Challenges and Previous Work
	Problem Definition
	Previous work

	Background
	Data Quality
	Data Quality Assessment
	Data Profiling
	Quality Dimensions

	Machine Learning
	Classification

	Method and Design
	Data Quality Indicators
	Chosen Dimensions
	Predicting value types
	DQI representation
	Outlier Detection methods

	Classification
	Support Vector Machine

	Implementation
	Data preparation and analysis
	Parsing Data
	Gathering metadata
	Data type prediction

	Quality Metrics
	Utility and Measuring methods
	Structural Coherence
	Completeness
	General Consistency
	Special Consistency
	Validity
	Row Integrity

	Indicator scores
	DQI Visualization

	SVM Classifier

	Testing, Analysis and Results
	Data Quality Indicators
	Classification
	Data process and setup
	Running the tests
	Data
	Classification results
	Feature selection
	Dimension score and label comparison

	Conclusion and Further Work
	Conclusion
	Further Work
	Pattern dictionaries
	Table detection
	Extending Validity and Consistency constraints

	Appendices
	Program
	Installation Guide
	User Manual
	File overview

	Spreadsheet examples

