

FACULTY OF SCIENCE AND TECHNOLOGY

MASTER'S THESIS

Study program/specialization:

Computer Science

Spring semester, 2016

Open Access

Author:

Janicke Falch

…………………………………………
(signature author)

Instructor:

Hein Meling

External Supervisor:

Kristin Dahle Larsen (Altibox)

Title of Master's Thesis:

OptiRun: A Platform for Optimized Test Execution in Distributed Environments

ECTS: 30

Subject headings:

Test Automation · Automated Testing ·

Software Testing · Optimization · Algorithms ·

Allocation · Constraint Programming ·

Scheduling · Python · Selenium · Django

 Pages: 95

 + Attachments

 + 2 x USB memory stick

Stavanger, 15.06/2016

 Date/year

OptiRun

A Platform for Optimized Test
Execution in Distributed Environments

Janicke Falch — June 15, 2016

Department of Electrical Engineering and Computer Science
Faculty of Science and Technology
University of Stavanger

"Things were going badly; there was something wrong in
one of the circuits of the long glass-enclosed computer.
Finally, someone located the trouble spot and, using
ordinary tweezers, removed the problem, a two-inch moth.
From then on, when anything went wrong with a computer,
we said it had bugs in it."

— Grace Hopper

Abstract

Computer systems have grown to play an essential role in our society.
Software testing is an important asset of the software development
process, as it serves to evaluate the quality of the software object be-
ing tested. Some software tests can be automated to obtain benefits
such as increased efficiency, expanded test coverage and saved time.

This thesis presents OptiRun; a platform for optimized execution
of automated tests in distributed systems. OptiRun consists of two
main elements; a controller, which is responsible for managing the
distributed system as well as for test allocation, execution and result
reporting, and a web-based user interface where users can upload and
manage test scripts, request immediate test executions and schedule
executions ahead of time as well as report failed test executions to
the issue tracking system JIRA. Tests on the user’s level can be time-
consuming, so the design and implementation of a test allocation
mechanism named OptiX represented a major objective of this the-
sis. OptiX seeks to allocate tests to machines such that the overall
execution time of test sets is attempted minimized. An alternative
allocation mechanism was implemented for benchmarking purposes
to better evaluate the performance of OptiX. An experimental evalu-
ation and comparison of the two methods, using an extensive series of
pseudo test sets, is also presented the thesis. This project is written
in the Python programming language, and is built upon frameworks
such as Selenium and Django.

OptiRun is intended to support the telecommunications company
Altibox in the procedure of efficiently incorporating test automation
as a practice in the testing process of their online web service TV
Overalt.

i

Acknowledgements

First and foremost, I would like to express my sincere gratitude
toward my instructor, Hein Meling, Professor at the Department
of Electrical Engineering and Computer Science at the University
of Stavanger, for his academic guidance and invaluable feedback
throughout my work on this project. I would also like to thank
Morten Mossige, Associate Professor at the Department of Electrical
Engineering and Computer Science, for his contributions during the
definition of the problem statement, as well as accessibility through-
out the semester.

Further, I want to thank Kristin Dahle Larsen, Senior IPTV Engi-
neer at Altibox, for her endless enthusiasm and for kindly accepting
the task of being my external supervisor. Thanks are also due to
IPTV Engineer Marius Eliassen, Head of IPTV Jarle Johnsen, and
IPTV Test Manager Thomas Folgerø.

Last, but by no means least, I would like to offer my sincere thanks
to my significant other, Samuel Trevena, for his helping hand in
times of need, and for being an excellent resource for moral support
and words of encouragement. Thank you for giving me the drive to
finish this project!

ii

Contents

1 Introduction 1
1.1 Origin . 1
1.2 Motivation . 2
1.3 Purpose . 2
1.4 Outline . 3

2 Background 4
2.1 Software Testing . 4

2.1.1 The V-Model . 5
2.1.2 Black-Box & White-Box Testing 6
2.1.3 Test Automation . 6

2.2 Constraint Programming & Optimization 7
2.3 Related Work . 8

2.3.1 TC-Sched . 9
2.3.2 Sauce Labs . 9
2.3.3 The Autograder Project 10

3 Technology 11
3.1 The Python Programming Language 11
3.2 Selenium . 11

3.2.1 Selenium WebDriver 12
3.2.2 Selenium Grid . 13

3.3 Django . 14

iii

Contents

3.4 OR-Tools . 14

4 System Overview 16
4.1 Architecture . 16
4.2 User Interface . 18

4.2.1 Home Screen . 18
4.2.2 Authentication & Authorization 18
4.2.3 Test Case Module . 18
4.2.4 Test Group Module 20
4.2.5 Scheduling Module 20
4.2.6 Execution Log . 21
4.2.7 Test Machines . 22
4.2.8 Other . 23

5 Design & Implementation 25
5.1 Selenium Grid Integration 25
5.2 Controller . 27

5.2.1 Selenium Server Listener 27
5.2.2 Test Machine Manager 28
5.2.3 Request Listener . 29
5.2.4 Schedule Listener . 29
5.2.5 Test Executor & Queue System 30

5.3 Database . 32
5.4 Web-Based User Interface 33

5.4.1 Models . 34
5.4.2 Admin . 35
5.4.3 Issue Tracker Reporting 36
5.4.4 Event Recurrence . 38

6 Test Allocation Mechanism 40
6.1 OptiX . 40

6.1.1 Preliminary Sorting 41
6.1.2 Initial Allocation . 42

iv

Contents

6.1.3 Improvement Iterations 44
6.2 ORX . 48

7 Evaluation 50
7.1 Experimental Evaluation . 50

7.1.1 Test Data . 50
7.1.2 Test Data Collection 1 54
7.1.3 Test Data Collection 2 55
7.1.4 Test Data Collection 3 56
7.1.5 Test Data Collection 4 57
7.1.6 Conclusion of Experimental Evaluation 57

7.2 Threats to Validity . 58
7.3 Discussion . 59
7.4 Return on Investment . 61

8 Further Work 64
8.1 Extended Browser & Platform Support 64
8.2 App Testing . 65
8.3 Notifications . 65
8.4 Continuous Integration . 66

9 Conclusion 67

Appendices 69

Appendix A Attachments 70
A.1 Program Files . 70
A.2 Printer-Friendly Version of Thesis Report 70

Appendix B Setup Instructions 71
B.1 Windows . 71

B.1.1 Server . 72
B.1.2 Test Machine . 73

B.2 Linux Test Machine . 73

v

Contents

B.3 OR-Tools . 74

Appendix C User Manual 75
C.1 Writing and Uploading Test Scripts 75
C.2 Executing Tests . 75
C.3 Scheduling Tests . 76
C.4 Managing Test Machines . 76
C.5 Test Results . 76
C.6 User Administration . 77
C.7 Troubleshooting Test Machines 77

Appendix D Poster 79

vi

1
Introduction

Software systems, covering enterprise products, commercial applications
and everything in between, have grown to form a fundamental position in
our society. People are becoming increasingly dependent on computers, and
wish to be in control of the digital content they consume. As a consequence
of digital content becoming progressively accessible, the importance of, and
demand for, high-quality software has become substantial. Enhanced pres-
sure on software vendors to deliver frequent releases of high-quality software
requires efficiency in every stage of the software development process.

Software testing constitutes a central aspect of the software development
process. It plays a critical role in quality assurance and defect detection,
and is important in order to ensure that the software in question behaves
as expected and according to specifications.

1.1 Origin
Altibox, a subsidiary of the Lyse Group, is a telecommunication company.
They offer a selection of services that includes broadband, Internet Protocol
Television (IPTV) and Voice over Internet Protocol, (VoIP). Since its origin,
the company has grown significantly, and at a considerably higher pace than
originally anticipated. Because of the rapid growth, the company neglected
to apply a number of established business practices in several different areas,
including the field of software testing.

1

1.2 Motivation

IPTV has long been among Altibox’ most prominent services, and has
previously been available primarily through the use of TV decoders. In
the later years, however, an important focus area of Altibox’ has been to
expand the availability of their TV and Video On Demand (VOD) content
by applying Over-The-Top (OTT) technology, which means that the content
is made accessible over the Internet. This is accomplished through the
development of TV Overalt, which is available both as a web application
for desktops and as mobile applications for mobile devices.

1.2 Motivation
Altibox currently perform all software testing manually. For quite some
time, Altibox has wanted to automate some of the tests that are conducted
manually on the web-based version of TV Overalt, but have failed to make
it a priority. Since user-level tests generally are time consuming, Altibox
needed a system that would let them execute such tests efficiently. They
also wanted the tests to be executed in a controlled environment.

This thesis presents OptiRun: a tool that will help Altibox incorporate
test automation according to their needs. The tool is not limited to TV
Overalt, however, as it can be applied as a test platform for a broad range
of web applications.

1.3 Purpose
The aim of this project was to design and create a tool that would sub-
stantiate test automation with the intent to optimize the overall time of
test runs. The tool is intended to be utilized during system or acceptance
testing, primarily by technical testers.

The main area of use is execution of test scripts for web applications.
Tests should be able to be executed remotely in a controlled distributed
environment. A major objective has been the design and implementation of
OptiX : a mechanism for allocating test cases to available machines in the
distributed environment such that the overall execution time of a test set
is attempted minimized. Further, a user interface for uploading, managing,
executing and scheduling test scripts should be included, and logs from
results of previous test runs should be made available. Upon a failed test,
an option to report this to JIRA [1], the issue tracking system used by
Altibox, should be provided.

2

1.4 Outline

1.4 Outline
The remainder of this thesis is organized as follows:

CHAPTER 2 provides a theoretical basis for the thesis by discussing some
background information relevant to this thesis.

CHAPTER 3 introduces some essential tools and technology used through-
out this project.

CHAPTER 4 presents an overview of OptiRun as well as the web-based
interface from the user’s perspective.

CHAPTER 5 describes the implementation of the system. Some features
are explained in detail.

CHAPTER 6 presents OptiX: a mechanism for optimal test allocation
designed for this project, as well as ORX: an alternative mechanism
whose performance was used for establishing benchmark values to be
used in the evaluation process of OptiX.

CHAPTER 7 presents the results from an experimental evaluation of
OptiX, and discusses the system as a whole as well as highlighting the
return on investment from a business perspective.

CHAPTER 8 provides some suggestions for further work.

CHAPTER 9 concludes this thesis.

3

2
Background

This chapter introduces software testing and explains some essential con-
cepts relevant to this thesis. Further, it presents constraint programming
and optimization as well as some existing related work.

2.1 Software Testing
A fundamental understanding of software testing is a useful prerequisite in
order to fully understand the context of this thesis. Consequently, this sec-
tion provides a short introduction to software testing. Since this is a broad
field, only a small selection of relevant concepts will thus be presented.

Software testing is the process of evaluating the quality of the application,
system or component being tested, commonly referred to as the test object
or the system under test. Software testing may involve any and all actions
oriented toward assessing the software, with the goal of determining whether
it meets the required results [2].

Software is developed by human beings who can make errors. These
errors may cause defects in the source code. Executing defected code can
lead to failure in the program [3]. One of the purposes of software testing is
to examine the test object with the intent of revealing such defects. Other
objectives include to measure and ensure quality, and to provide confidence
in the product [2].

4

2.1 Software Testing

2.1.1 The V-Model

Figure 1: The V-Model

The V-model is an important asset in software testing, behind which the
general idea is to link each development task in a software development
process to an equivalent testing task of comparable importance. The de-
velopment process is represented by the left branch of the letter V, which
shows the system being gradually developed. The right branch represents
the testing process in which progressively larger subsystems are tested [2].

Depending on the literary source, the V-model covers a varying number
of levels. The V-model shown in Figure 1 is a general version which is
created using the four levels found in [4]. The highest development level
covers gathering, specification and approval of requirements. Acceptance
testing correspondingly checks if these requirements are met. Further, high-
level design covers the functional design of the system, and corresponds
to system testing, which aims to verify if the system as a whole meets
the required results. Detailed design covers technical system design and
component specification, and integration testing correspondingly verifies
that the different components work together as specified. The lowest level
is the coding in which the specified components (modules, units and classes)
are implemented. It corresponds to unit and component testing. The tests

5

2.1 Software Testing

at this level aim to verify that system components perform as specified, by
testing them in isolation [2].

OptiRun is a tool for high-level test execution, and is intended for
the two highest test-levels of the V-model; system testing and acceptance
testing.

2.1.2 Black-Box & White-Box Testing

Software testing can be divided into black-box and white-box testing. White-
box testing is based on analysis of the internal system structure, and requires
knowledge of the source code. In black-box testing, the test object is seen as
black-box, whose behavior is watched from the outside. The inner structure
of the system is either unknown or disregarded. Test cases are determined
from the specifications of the system.

Black-box testing is predominantly used for higher levels of testing. The
test object is accessed through the user interface (UI). Tests are performed
from the perspective of an end-user, and aim to mimic a human being
interacting with the system. Black-box testing includes functional testing,
which is used to validate a particular feature for correctness according to
the requirements specifications [2].

OptiRun performs tests by using Selenium, an automation tool that
will be introduced in Section 3.2, to automate web browsers. It executes
functional UI tests on full system builds, and runs without access to or
consideration of the source code or the internal system structure. The test
method covered by OptiRun is therefore black-box testing.

2.1.3 Test Automation

As opposed to humans performing software tests manually, test automation
is the practice of writing scripts that conduct tests when executed. Automa-
tion can be applied to tests at any level. Low-level tests, such as unit and
component tests, generally run fast and are durable since they are isolated
from changes in other parts of the system. As we move up to the integra-
tion level, the tests do not run as fast, and become less durable since they
depend on multiple components working together in subsystems. OptiRun
is concerned with testing the system from the perspective of an end-user.
Such tests require the system to work as a whole, and thus generally run
slower and are more brittle [5] than tests on lower levels.

6

2.2 Constraint Programming & Optimization

There are a number of strengths to automated tests. They are superior
at verifying logical functionality. They can be executed any number of times,
and they run more quickly than a human interacting with the system, thus
saving time and reducing effort. Time saved on manual testing can be used
to increase the test coverage, which can provide reduced risk and higher
software quality. Tests and tasks that would be error-prone if done manually
and tests that are repeatedly performed are typical subjects for automation
[6]. This includes regression testing, which is used to verify that defects
have not been introduced in a new version of previously tested software [2].

Manual human testing has a number of benefits too. Human testers
can identify corner cases and check how the system responds when it is
used in manners it is not designed to be used for. They can also evaluate
aesthetics and design of the UI as well as the overall user experience. Thus,
test automation on the two highest levels in the V-model should not be a
complete replacement for manual human testing; the two should instead
complement each other.

Test automation is often incorporated in continuous integration (CI) [7]
environments. This has not been done in this project, but is presented in
8.4 as a suggestion for further work.

2.2 Constraint Programming & Optimization
As explained in the previous section, the type of tests targeted in this
project are time-consuming. This means that a large collections of test
cases, or test sets, could take unnecessarily long time to execute if the tests
were not carefully allocated among the available test machines. Minimizing
the execution time of a test run has been an important objective in this
project.

There are certain requirements that must be fulfilled upon allocating
tests in OptiRun. A test that is specified to run in a certain browser can
only be allocated to a machine with the given browser installed; this is a
constraint. Constraint programming (CP) revolves around modelling real-
world constraints by mathematical formalizations, and use them to find
feasible solutions to the problem [8].

Some problems have very large sets of possible solutions, while others
only have a few or none at all. Sometimes it is not enough to simply find
a possible solution to a CP problem, as the quality of different solutions
can vary greatly. In such cases, a specification of which solutions are more

7

2.3 Related Work

valuable should be provided to help separate the good solutions from those
of poor quality. The objective of the CP problem in this project is to
minimize the overall execution time of a test run. An optimization problem
is a CP problem in which such an objective is specified [8].

The optimization problem in this project does not exclusively revolve
around finding an optimized allocation – in situations where the problem
has a huge number of solutions, identifying the best solution can take a
vast amount of time. The time taken to find the solution must therefore
also be taken into account. Accordingly, some stop criteria for searching
must be defined; these will be presented in Chapter 5.

Formally, the optimization problem in this project considers a set of tests
T = {t1, . . . , tn} with a corresponding set of durations D = {d1, . . . , dn}
in which the values are derived from the durations of earlier executions of
each test. Further, it considers the current set of available test machines
M = {m1, . . . , mm}. A pre-processing function p identifies the subset
of machines each test can be executed on, and a function f defines the
actual allocations with the overall execution time Te. The problem seeks
to minimize the total time Tt, which consists of Te plus the searching time
it takes to find the solution Ts. Thus, the expression we wish to minimize
is Tt = Te + Ts. Additionally, all tests in the test set must, if possible, be
executed exactly once on a machine that fits any specified requirements for
browser and operating system.

Some assumptions are made. Firstly, test executions are non-preemptive,
so once a test execution has started, it will run uninterrupted until it
completes. Further, non-cumulative execution is assumed, meaning that
each test machine can only execute a single test at a time. This could
have been implemented differently, but as each test requires a great deal
of resources, this would prolong the execution of each test, as well as
make the durations more unpredictable. Additionally, machine-independent
execution time is also assumed, even though the execution times in reality
may depend on aspects such as network and machine performance.

2.3 Related Work
This section presents some existing work related to this project. It opens
by introducing TC-Sched ; a mechanism optimal test case allocation and
scheduling. The automated test platform Sauce Labs will then be intro-
duced, before the section is wrapped up by the presentation of the Auto-

8

2.3 Related Work

grader project.

2.3.1 TC-Sched

TC-Sched is a time-aware method for minimizing the execution time of test
cases within a distributed system with resource constraints, proposed by
Mossige et al. in [9]. In their paper, the authors address optimal test case
scheduling. Similarly to the test allocation mechanism of OptiRun, TC-
Sched aims to minimize the overall execution time of a test set by allocating
tests to machines. However, it also takes into account an additional aspect of
global resources. Their solution addresses situations where some tests may
need exclusive access to a resource, so that two test cases which requires
access to the same resource may not be executed simultaneously. This
means that a time-aware scheduling is required to solve the optimization
problem. Including this aspect in OptiRun would have been redundant, as
there are no such resources involved.

2.3.2 Sauce Labs

Cloud testing services use cloud environments as a means of simulating
real-life user traffic. Sauce Labs is a cloud-hosted platform for automated
testing of web and mobile applications. One of the founders, Jason Huggins,
were also the original creator of Selenium [10], which will be introduced in
Section 3.2.

Sauce Labs bears some similarities with OptiRun. Both platforms are
frameworks for automating UI tests for web applications through execution
of Selenium test scripts. They both execute tests remotely in distributed
environments using Selenium Grid. However, whereas Sauce Labs perform
test execution on virtual machines (VMs) that are created prior to each
test run and destroyed immediately after [11], OptiRun requires the use of
either real, physical machines or customized VMs that remain intact after
use. Because of the number of machines in OptiRun being limited to the
machines connected to the distributed system, an algorithm for optimizing
the overall execution time of test runs is also needed here. While Sauce
Labs executes tests in their own data centers in a remote location and
their own environments, OptiRun performs tests on the test object locally
and in an environment intended for testing of the given test object, in this
case TV Overalt. Sauce Labs is a paid service for which customers pay to
gain access to using a limited number of concurrent virtual machines for a

9

2.3 Related Work

limited amount of time each month. The optimization mechanism in this
project further distinguishes the two projects.

2.3.3 The Autograder Project

In the course of the last few years, several students at the University of
Stavanger have been involved in the development of the Autograder project
[12] during their thesis work. It is an ongoing project that is continuously
extended. Similar to OptiRun, the Autograder consists of a server back-
end and a web-based user interface. Its main intent is to improve student
learning by executing automated tests. The Autograder is used in program-
ming courses at the University of Stavanger, where it tests code written by
students and submitted to specific repositories, aiming to evaluate whether
their solutions meet the results required to pass a given programming as-
signment.

In contrast to OptiRun, the Autograder incorporates a continuous inte-
gration environment. As mentioned in Section 2.1.3, this has been suggested
as further work in Section 8.4. Another distinction between OptiRun and
the Autograder is that the latter’s main use is to execute low-level tests
that run quickly, as opposed to the heavier user-level tests intended for
OptiRun.

One of the Autograder’s most prominent strengths is its ability to give
students rapid and frequent feedback on their code at any time of the day.
Additionally, the teaching staff gets a clearer picture of the progress made
by the students.

10

3
Technology

A number of tools and technologies have been applied throughout the work
on this project. This chapter briefly introduces the most essential of these
tools and technologies.

3.1 The Python Programming Language
The Python programming language has been used in this project. Python
has efficient high-level data structures, and is known for being simple, yet
powerful. Since Python programs are executed by an interpreter, it is
considered an interpreted language [13].

Building this project in Python was a natural choice for several reasons.
Python is compatible with Selenium, which is introduced in Section 3.2.
Other reasons include offering a large set of libraries and having high-quality
documentation. Details of the implementation will be discussed in Chapter
5. Version 2.7.11 of Python was used in this project.

3.2 Selenium
Selenium is an umbrella project for automation of web browsers, consisting
of multiple tools and libraries. Selenium can be used to automate different
types of browser jobs such as web-based administration tasks, but is primar-
ily used for test automation [14]. The project is released under the Apache

11

3.2 Selenium

2.0 license, and is thus free and open-source. Selenium has language bind-
ings for several different programming languages, including Python. The
Selenium tools used in this project will be introduced subsequently.

3.2.1 Selenium WebDriver

Selenium WebDriver is a tool for browser automation, largely used for
test automation of websites. It interacts directly with browsers by sending
calls using browser-specific WebDriver implementations that provide native
support for automation [15]. There are drivers for most conventional web
browsers, including Chrome, Microsoft Edge, Firefox, Internet Explorer,
Opera and Safari.

The driver implementations differ among browsers. For instance, the
SafariDriver must be installed as a plugin in the browser. The ChromeDriver
binary and the standalone server InternetExplorerDriver must be stored
locally, and their disk locations must be specified upon instantiating the
driver in test scripts. The FirefoxDriver is automatically installed as a
browser plugin upon installation of the Selenium WebDriver package.

Selenium WebDriver uses the drivers to create a new instance of the
requested browser. It can navigate to web pages, locate UI elements and per-
form actions, such as clicking buttons, checking checkboxes, or populating
text fields.

Selenium itself does not provide a testing module, but is commonly used
with Python’s unittest module, which is also specified at the framework of
choice in the documentation of Selenium with Python Bindings [16]. Note
that despite the name of this testing module, Selenium tests implementing
this module are not considered unit tests from a software testing perspective,
as explained in Section 2.1.1.

Listing 1 shows an example of a Selenium test script implemented as
described above. When executed, this script will create a WebDriver in-
stance using the ChromeDriver binary. A Chrome window will open, and
automatically navigate to TV Overalt. It will wait for the Login button
to appear, or for at most 10 seconds. If the button appears within the
specified time-frame, it will be located and clicked. When this is done, the
test is complete, and the driver closes the browser window. If all of the
steps were conducted successfully, the test passes. Otherwise, the test fails,
and an exception is thrown [17].

12

3.2 Selenium

1 import unittest
2 from selenium import webdriver
3 from selenium.webdriver.common.by import By
4 from selenium.webdriver.support import expected_conditions
5 from selenium.webdriver.support.ui import WebDriverWait
6
7 class Example(unittest.TestCase):
8 def setUp(self):
9 cls.driver = webdriver.Chrome("path/to/chromedriver.exe")

10
11 def test_example(self):
12 self.driver.get("http://tvoveralt.altibox.no/")
13 WebDriverWait(self.driver, 10).until(
14 expected_conditions.presence_of_element_located(
15 (webdriver.common.by.By.CLASS_NAME, 'btn-login'))
16)
17 login_button = self.driver.find_element_by_class_name('btn-login')
18 login_button.click()
19
20 def tearDown(self):
21 self.driver.quit()
22
23 if __name__ == "__main__":
24 unittest.main()

Listing 1: Example Selenium Test Script

3.2.2 Selenium Grid

Selenium Grid is a tool for executing Selenium tests on remote machines in
a distributed environment, and thus allowing for parallel test executions on
multiple machines.

A Selenium Grid environment is made up of a hub (master), and one
or more nodes (slaves), all running an instance of the Selenium Standalone
Server. The hub and the nodes interact through a JSON wire protocol [18].
Upon an execution of a Selenium test script, the hub sends the WebDriver
calls specified in the test script to a node. The node then executes the
browser calls locally, using a browser driver located on the node. The
location of the driver on the node is specified upon starting a node, as
described in Section 5.1.

Listing 2 shows how the driver can be instantiated in a test script that
should be executed in Chrome on a node in the grid, as opposed to local
execution in Listing 1. The script itself is executed on the hub, which maps
the desired capabilities specified in the test script to a node with matching
capabilities, and sends WebDriver calls to the specific node.

13

3.3 Django

1 from selenium.webdriver.common.desired_capabilities import
DesiredCapabilities

2
3 driver = webdriver.Remote(
4 command_executor='http://<HubHost>:<Port>/wd/hub',
5 desired_capabilities=DesiredCapabilities.CHROME
6)

Listing 2: Selenium Test Script WebDriver Instantiation for Remote Execution

Reasons for wanting to incorporate Selenium Grid in OptiRun include
being able to run tests against multiple browsers, browser versions and
operating systems, and to reduce the execution time of test sets.

3.3 Django
Django is a high-level web development framework built on the Python
programming language. It encourages rapid development and enables effi-
ciently maintainable web applications of high quality. The framework is a
free and open-sourced project maintained by the non-profit organization the
Django Software Foundation, who describe it as fast, secure and scalable
[19]. As with Selenium, Django is also essentially a collection of Python
libraries [20]. The Django libraries can be imported and used to implement
web applications. Additional HTML, CSS and JavaScript code can be used
along with the Python code, which has been done in this project.

Aside from allowing rapid progression of development, one of the main
reasons for choosing Django rather than building the dashboard from scratch
or using a different web framework, is its powerful administrator site. An
administrator site was exactly what was needed to build the dashboard of
OptiRun. Another contributing factor was to provide consistency and the
ability to communicate seamlessly with the remaining parts of the system,
since Django builds on the same programming language as the rest of the
system. The dashboard will be presented in Section 4.2. Details concerning
the implementation will be explained in Section 5.4. Version 1.9 of Django
was used in this project.

3.4 OR-Tools
In order to measure and evaluate the performance of the test allocation
mechanism OptiX, which represented a major objective in this project,
an alternative allocation mechanism called ORX was also implemented.

14

3.4 OR-Tools

Detailed explanations of OptiX and ORX will be presented in Chapter
6, and a discussion, experimental evaluation and comparison of the two
implementations will be presented in Chapter 7.

ORX was implemented using Google’s Operations Research Tools (OR-
tools) [21], which is an open source library for combinatorial programming
and constraint optimization. The tool set is written in C++, but there are
bindings for other programming languages such as Java, C# and Python.
The OR-tools library strictly conforms to the Google coding styles, and is of
such high quality that it has been accepted for usage internally at Google.

Listing 3 shows how a simple optimization problem is solved using this
library. In this problem, a list of integers will be assigned values ranging
from 0 to 2. A constraint specifying that no two identical numbers should
be placed beside each other is added as a constraint. Maximizing the sum
of the integers is specified as the objective. The solver searches for better
and better solutions until finally arriving at an optimal solution.

1 from ortools.constraint_solver import pywrapcp
2
3 solver = pywrapcp.Solver('')
4 variables = [solver.IntVar(0, 2) for _ in range(3)]
5
6 for i in range(len(variables) - 1):
7 solver.Add(variables[i] != variables[i + 1])
8
9 db = solver.Phase(variables, solver.CHOOSE_RANDOM,

solver.ASSIGN_RANDOM_VALUE)
10 objective = solver.Maximize(solver.Sum(variables), 1)
11 solver.NewSearch(db, objective)
12
13 while solver.NextSolution():
14 result = [int(item.Value()) for item in variables]
15 print result, "Sum =", sum(result)
16
17 >>> [0, 2, 1] Sum = 3
18 >>> [2, 0, 2] Sum = 4
19 >>> [2, 1, 2] Sum = 5

Listing 3: OR-Tools Implementation Example

15

4
System Overview

This chapter aims to provide an overview of how OptiRun is assembled
by describing the design and architecture of the system, followed by a
presentation of the web-based user interface.

4.1 Architecture
OptiRun is operated through a web-based user interface, which works as a
content management system for test scripts. It also allows for sending test
execution requests for the available test scripts and for scheduling test runs
ahead of time.

Figure 2 shows the structural architecture of the system. In this case, the
web server, the controller, the database, the file storage and the Selenium
Grid hub are all located on the same machine, hence the dashed border
around these elements in the figure. Some of them could, however, be
separated if desirable, with little to no effort.

The web server uploads test scripts to a file location on the server. Meta
data about the test cases as well as other information such as test groups,
planned test executions, results and user authentication like credentials and
permissions, are also stored in the database. The web server can report
defects to JIRA, the issue tracking system used by Altibox.

The controller listens to test execution requests from the dashboard,
and checks the schedule for planned test executions. Upon a pending test

16

Figure 2: System Architecture

4.2 User Interface

run, it fetches the relevant test scripts from the file storage. Test scripts are
sent to the current instance of the Selenium Grid hub with specifications
regarding which node in the grid should execute the test. After the test has
finished, the controller stores the result in the database.

4.2 User Interface
The graphical user interface of OptiRun is web-based, and is built on the
high-level Web framework Django. The framework provides a powerful
automatic administrator interface, which has been used as a foundation for
the development of the dashboard. Working with Django thus allowed for
rapid development while retaining control of the content and functionality
of the website.

This section presents the dashboard from the user’s perspective. An in-
depth presentation of how some of the functionality has been implemented
can be found in Chapter 5.

4.2.1 Home Screen

After logging in, the home screen is the first thing that meets the eye of
the user. This screen provides navigation to all of the modules and pages
described subsequently.

4.2.2 Authentication & Authorization

The Django administrator interface provides some built-in functionality,
including a module for authentication and authorization of users. Superusers
can list, edit and create new user accounts. They can also change user
information and permissions, and add users to groups.

OptiRun is a tool that is meant to be part of a business process in which
only trusted peers should be allowed access. Thus, any person who wants
and account must request this by someone with superuser privileges.

4.2.3 Test Case Module

All registered test cases are listed in this module. The list contains meta data
about the test cases as well as some values that are retrieved or calculated
using information from other tables in the database. This includes the
number of times the test case has been executed, the average execution

18

4.2 User Interface

time, the result of the previous execution and when the test case was last
executed. It is possible to search and filter the list to narrow down the
elements listed, and to sort the list by clicking on the attribute names in
the table header. As Figure 3, shows, each list entry has a miniature bar
graph aiming to provide a summary of the overall results of executions of
each particular test.

New test cases can be created by clicking the button labeled Add Test
Case in the upper right of the view. This opens a new page with a form in
which the test script can be uploaded and corresponding details about the
test case can be filled in. Which groups the test case should be a member
of can also be specified here. Test cases can be members of multiple groups,
or none. After a test case has been created, it can be edited by clicking on
the title of the test case in the test case list.

An Actions dropdown menu is located above the list of test cases. Action

Figure 3: Test Case Module

options – Delete selected test cases and Execute selected test cases – can be
performed on selected test cases. The former is a built-in Django function
which, after the user confirms deletion in and intermediate page, removes
all meta data regarding the selected items from the database. The Execute
selected test cases action is implemented for OptiRun. The action takes the
user to an intermediate page in which they can specify the platform and
browsers the test cases should be executed on.

After an action has been attempted performed, a feedback message
stating whether the action was successful is displayed on the screen.

19

4.2 User Interface

Figure 4: Intermediate Page for Immediate Test Execution Requests

4.2.4 Test Group Module

Test groups are listed similarly to test cases as described in Section 4.2.3.
As with the test cases, group items can also be searched, filtered and sorted.
Additionally, new groups can be created, and existing groups can be edited.

However, the group model is simpler than the test case model. The
purpose of this model is to group together test cases that are often executed
in the same test run, such as tests revolving around the same functionality
in the test object.

4.2.5 Scheduling Module

The scheduling module provides an interface for planning test runs in the
future. As with the test cases and groups, schedules are also displayed in a
list can be searched, filtered and sorted. Schedule objects can be created
and changed. Additionally, the schedule list enables schedule objects to be
activated and deactivated from the action menu. Only activated schedule
objects will start test runs according to their specified time of execution.

Upon the creation or editing of a schedule object, an execution time

20

4.2 User Interface

can be specified along with any desired recurrence pattern along with the
option of providing an end time. Test groups or individual test cases that
should be included in the schedule object are also specified here.

Figure 5: Schedule List View

4.2.6 Execution Log

The layout of the execution log list is the same as the remaining list views,
but the functionality differs in that log items can not be edited. Log items
are created and inserted into the database based on the result from test
executions. Each log object corresponds to an individual execution of a
test script. As displayed in Figure 6, failed test executions can be reported
to JIRA. This is done by marking the log items that should be reported
and selecting Report to JIRA from the actions menu. When clicking on
a log item to view details about the execution, there is also an attribute

21

4.2 User Interface

Figure 6: Execution Log List View

displaying any existing JIRA issues reported by OptiRun for the specific
test, with links to the URL of the specific JIRA issues. Figure 7 shows a
cropped log detail view, and displays how JIRA issues linked to a test case
is listed in the log detail view. Note that this list does not correspond do
an individual log item, but instead to a test case. The same list of issues
will thus appear in all detail views for Log items regarding the same test
case.

The information listed in the logs include a number of attributes such
as the duration of the test execution, the IP address or hostname of the
machine on which it was executed, as well as information such as browser,
platform and test result. Additionally, the content from the standardized
data streams standard error (stderr) and standard output (stdout) are
also included. Stderr typically streams any automatically generated error
messages or diagnostics from command line programs [22], while stdout
consists of the output data from the programs themselves (if any) [23],
using the print command in Python scripts. For better human readability,
the fields are labeled Console Log and Output respectively. Figure 7 shows
a detail view of a log object.

4.2.7 Test Machines

The test machines that are currently or has previously been connected to
the system are listed in the test machine view, as shown in Figure 8. When

22

4.2 User Interface

Win81_DemoMachine1

Figure 7: Execution Log Detail View

a machine is connected for the first time, details regarding the operating
system and the available browsers are added to the list. The list also
contains two attributes stating whether the test machine in question is
currently connected to the system, and whether it has been approved for
test executions. The list can be filtered based on operating system, installed
browsers, activity status and approval status. Tests can not be executed
on disapproved test machines. Test machine objects can be approved and
disapproved either from the Actions menu or from the detail view.

4.2.8 Other

In addition to the content that has already been introduced, OptiRun also
includes the following static pages:

Download Test machine packages for Linux and Windows can be down-
loaded from this page as well as a test script template that needs to be
used with OptiRun. This page also contains setup instructions and some
hints for troubleshooting if the test machine does not connect to the
system as it should.

23

4.2 User Interface

Figure 8: Test Machine List View

Help This page contains information regarding how OptiRun works,
how to set it up and how to use it. This page can be of help to technical
testers who wants to use the tool, and otherwise to those who wants
additional insight into how it works. It includes some general information
about OptiRun, some troubleshooting steps for if something is wrong
with the system, and a user manual. Some of the information stated on
the Download page is repeated on the Help page.

About This page provides a brief presentation of what OptiRun is and
how it came to be.

24

5
Design & Implementation

This chapter aims to explain how OptiRun is designed and implemented.
It provides a description of how the system utilizes Selenium Grid. The
implementation of the controller and some important details about this part
of the system are then presented. Further, the test allocation mechanism
called OptiX is explained along with an accompanying example to illustrate
how the mechanism works step-by-step. The chapter then describes how
the database is structured and explains how it is accessed using Django’s
API for database abstraction, before finally presenting some important
implementation details about the dashboard.

5.1 Selenium Grid Integration
Selenium Grid works as the backbone of all interaction between the server
and the remaining machines in the distributed system of OptiRun. It is
used to establish connections and to send browser calls to test machines
upon test executions, as explained in Section 3.2.2.

A Selenium Grid hub can be started simply by executing the command
in Listing 4, although it is possible to assign additional configuration, such
as port and IP address, using flags. The default port number is 4444 for
hubs and 5555 for nodes, so if nothing else is specified, these ports will be
used. When the hub has started, the configuration details for the hub itself

25

5.1 Selenium Grid Integration

and any connected nodes can be viewed by opening http://<HubHost>:
4444/grid/console in a browser.

$ java -jar path/to/selenium-server-standalone-2.53.0.jar -role hub

Listing 4: Sample Shell Command for Starting Selenium Grid Hub

Starting Selenium Grid nodes, or test machines, require much longer
and heavier commands, and thus more work. Also, the command must be
customized, as it represents the configuration of the node and the distributed
system. Therefore, a script devoted to gathering all necessary information
and executing the command to start Selenium Standalone Server is included
in this project. This script identifies which browsers are installed and what
versions, as well as creating a unique identifier for each machine

Selenium Grid currently does not offer a documented method of specify-
ing which machine a test should be executed on. Instead, it maps the test to
a node whose configuration matches the desired specifications stated in the
test, in regard to operating system, browser and sometimes even browser
version. It was therefore necessary to find a way to work around this prob-
lem. This is done by utilizing a browser parameter called applicationName,
in which additional information can be added. A 128-bit unique identifier
based on the host ID, sequence number, and the current time, is created
using Python’s UUID (Universally Unique Identifier) library. By adding as
a requirement to a test that the applicationName should be equal to the
UUID of a specific node, the test can only be executed on the machine with
that UUID.

$ java -jar path/to/selenium-server-standalone-2.53.0.jar -role node -hubHost
<HubHost> -uuid 1b234276-fc02-11e5-b752-080027f8a664 -browser
"browserName=chrome, version=49.0.2623.110,
applicationName=1b234276-fc02-11e5-b752-080027f8a664"
-Dwebdriver.chrome.driver=path/to/chromedriver.exe -browser
"browserName=firefox, version=45.0,
applicationName=1b234276-fc02-11e5-b752-080027f8a664"

Listing 5: Sample Shell Command for Starting Selenium Grid Node

Listing 5 shows an example of a command that will start a Selenium Grid
Node with Chrome and Firefox installed, and with UUID 1b234276-fc02-
11e5-b752-080027f8a664. Once the node is connected to the hub, the con-
figuration can be retrieved as a JSON object from http://<HubHost>:
4444/grid/api/proxy?id=http://<NodeIP>:5555.

26

http://<HubHost>:4444/grid/console
http://<HubHost>:4444/grid/console
http://<Hub Host>:4444/grid/api/proxy?id=http://<Node IP>:5555
http://<Hub Host>:4444/grid/api/proxy?id=http://<Node IP>:5555

5.2 Controller

Along with all necessary browser drivers, the node script can be down-
loaded from the user interface of OptiRun. Since grid nodes need the IP
address of the hub, which is dependent on the computer on which the hub is
running as well as the network it is connected to, this information is added
each time the controller starts. Configuration files containing the IP address
of the hub, located in two separate directories – one for Windows and one
for Linux – are updated when the controller starts. The directories are
then automatically zipped and moved to the correct location, so that Test
Machine packages downloaded from the user interface are always updated.

If it does not already exist, the Selenium Standalone Server is down-
loaded from a URL specified in the node script upon execution. This also
happens when the controller starts.

5.2 Controller
The controller consists of multiple processes running in different threads.
Figure 9 shows the inner structure. Each of the modules in the figure will
be explained in this section.

Figure 9: Controller Structure

5.2.1 Selenium Server Listener

After starting a Selenium Grid hub as described in Section 5.1 using config-
uration details found in the configuration file, the main job of the Selenium
Server Listener is to listen to the output from the Selenium Standalone
Server. The server runs as a command line program and outputs short

27

5.2 Controller

information and warning messages. Listing 6 shows some sample output of
the server when running as a hub. The listing covers start-up output as well
as node registering, test execution and node unregistering. Each output
message is to the Test Machine Manager, which looks for strings similar to
the bold lines in the listing, to see whether a node has been registered or
marked as down.

Start-up
>>> 20:44:39.073 INFO - Launching Selenium Grid hub
>>> 20:44:41.646 INFO - Will listen on 4444
>>> 20:44:41.801 INFO - Nodes should register to

http://<HubHost>:4444/grid/register/
>>> 20:44:41.802 INFO - Selenium Grid hub is up and running
>>> 20:44:59.072 WARN - Max instance not specified. Using default = 1 instance

Node Registering
>>> 20:44:59.094 INFO - Registered a node http://<NodeIP>:5555

Test Execution
>>> 20:45:03.509 INFO - Got a request to create a new session: Capabilities

[{browserName=internet explorer,
applicationName=1b234276-fc02-11e5-b752-080027f8a664}]

>>> 20:45:03.510 INFO - Available nodes: [http://<NodeIP>:5555]
>>> 20:45:03.511 INFO - Trying to create a new session on node

http://<NodeIP>:5555
>>> 20:45:03.511 INFO - Trying to create a new session on test slot

{platform=WIN8_1, seleniumProtocol=WebDriver, browserName=internet
explorer, applicationName=1b234276-fc02-11e5-b752-080027f8a664,
version=9.11.9600.18321}

Node Unregistering
>>> 20:45:26.240 INFO - Marking the node http://<NodeIP>:5555 as down: cannot

reach the node for 2 tries
>>> 20:46:26.607 INFO - Unregistering the node http://<NodeIP>:5555 because

it\textquotesingles been down for 60367 milliseconds
>>> 20:46:26.607 WARN - Cleaning up stale test sessions on the unregistered

node http://<NodeIP>:5555

Listing 6: Sample Output from Selenium Standalone Server Running as a Hub

5.2.2 Test Machine Manager

As the name suggests, the responsibility of the Test Machine Manager is
to manage the test machines. Upon receiving a message from the Selenium
Server Listener, the Test Machine Manager checks the content of the mes-
sage to identify whether a machine has connected or disconnected from the
grid. Configuration for newly connected machines is retrieved as a JSON
object from the URL mentioned in Section 5.1. The specified UUID as well
as information regarding installed browsers and operating system are all

28

5.2 Controller

stored in the database.
There is a boolean Approved attribute in the database which is used to

manage which machines are allowed to be used for test executions. This
attribute is set to False by default for test machines that connects to the
grid without being registered through the web interface. Test machine
approval and disapproval can be managed from the dashboard.

The Test Executor can request a list of all live test machines, in which
case the Test Machine Manager queries the database for all approved test
machines, and checks whether they are connected to the grid. This is
done by checking the HTML code retrieved from http://<HubHost>:
4444/grid/console, mentioned in Section 5.1. The MIT-licensed li-
brary Beautiful Soup is then used to extract necessary information in order
to construct a list of active, connected machines, from which non-approved
machines are then removed.

5.2.3 Request Listener

All test executions managed by OptiRun are either requested for immediate
execution or scheduled ahead of time. There are two different modules in
the controller each handling one of these.

The Request Listener constantly listens to a port specified in the con-
figuration file. When a user triggers the Execute Now action from the
dashboard, all necessary information about the tests being requested for
execution is packed as a JSON object and sent to the controller using
Python’s socket library, which communicates over TCP/IP [24].

Upon receiving a request, the request listener unpacks the JSON object
and creates a list of corresponding test objects. The list is then forwarded
to the queue.

5.2.4 Schedule Listener

When the Schedule Listener first starts, it retrieves schedule objects from
the database. All schedule objects has a boolean Activated attributes which
defines whether the test cases in the schedule object should be executed
according to schedule. Only activated schedule objects are retrieved from
the database. The Schedule Listener then calculates if and when the next
occurrence of each schedule object is due. The id and next occurrence time
of all activated schedule objects with a next occurrence time are added to

29

http://<HubHost>:4444/grid/console
http://<HubHost>:4444/grid/console

5.2 Controller

a list which the Schedule Listener uses to keep track of forthcoming test
executions.

After the initial schedule retrieval, the Schedule Listener starts listening
for schedule updates. As with immediate test execution requests, updates to
schedule objects are also packed as JSON objects and sent over the network.
An update is sent from the web when a schedule object is created, changed,
or when the activation properties of a group of schedule objects are changed
from the dashboard. The Schedule Listener receives and decodes the JSON
objects, and updates the schedule list accordingly.

In an infinite while-loop in a separate thread, the Schedule Listener
constantly checks whether the next occurrence of any schedule items are
scheduled since the last check. If any schedule objects are due for execution,
the test cases of the given schedule object are retrieved from the database,
packed correctly and sent to the Test Executor. Then, the next occur-
rence of the schedule object is calculated, and the schedule list is updated
accordingly.

5.2.5 Test Executor & Queue System

As test executions are requested by the controller, each individual test case
is placed in an execution queue. The queuing system is made up of two
distinct queues with descending priorities; one for immediate execution,
which has the highest priority and is referred to as Q1, and one for planned
execution, which has the lowest priority and is referred to as Q2. Which
queue a test case is placed in is determined by which action triggered its
execution request; if the request was received by the request listener, it
is placed in Q1, and if it was the schedule listener that identified it, it is
placed in Q2.

It is possible that a planned execution and an immediate execution
of the same test case with the same browser and platform specifications
is requested simultaneously. A similar situation could occur when two
schedule objects that are due at the same time includes the same test case
with the same specifications. Scenarios such as these could potentially lead
to time and resources wasted on performing the same job more than once.
To avoid this, a duplicate check is performed each time a test case is added
to one of the queues. If there are duplicates, the test case is removed from
the queue with the lowest priority; Q2.

The test executor always checks Q1 first. If there are any test cases here,
the test executor empties it and handles the tests. Otherwise, it checks Q2,

30

5.2 Controller

and does the same if there are any test cases waiting for execution in this
queue. In other words, the test cases are not handled one by one, but in
batches where the whole content of a queue is treated at once.

Starvation is a condition in which some thread fails to make progress
for an indefinite period of time [25]. As previously explained, it has been
decided that immediate execution requests should have the highest prior-
ity. If some test cases were requested for immediate execution again and
again while there were scheduled test cases in Q2 waiting for execution,
Q2 would be blocked from making progress, as the prioritized queue, Q1,
would be populated and then emptied repeatedly. Q2 would then experience
starvation, which was an issue that needed to be addressed.

To work around the starvation problem, it was determined that on
the occasion that Q1 was emptied, any test cases currently located in Q2

would be moved to Q1. Thus in addition to avoiding starvation of Q2, the
requirement of immediate execution requests being prioritized is fulfilled, as
they will always be placed in the queue that will be handled first. Even so,
this solution may still involve that tests requested for immediate execution
can be delayed if there are a number of scheduled tests that have been
moved to the Q1.

Whenever a process is adding tests to or emptying a queue, it is impor-
tant that no other process can access the queue at the same time, otherwise
some tests might not be executed. This is avoided by incorporating locks,
which are synchronization variables that can only held by one process at a
time. Locks can be acquired and released, and provide mutual exclusion by
ensuring that the lock can not be acquired by one process while being held
by another [25]. The Test Executor requires that the lock must be acquired
before proceeding to add tests to or empty a queue, and released afterward.
A different lock is used to ensure that only one batch of tests is executed at
a time. In addition to the Test Executor, locks have also been used in the
Schedule Listener upon schedule updates, and in ORX, whose use of locks
will be explained further in Section 6.2.

After test cases have been retrieved from the queue, they are allocated
amongst the pool of available test machines using the OptiX allocation
mechanism. This process will not be explained here, as Chapter 6 is devoted
to provide a detailed presentation of OptiX as well as ORX. The execution
begins once the allocation process has finished. A thread is started for
each of the test machines. In these threads, each test case is started as a
Python subprocess using a shell command in which information regarding

31

5.3 Database

the desired test node and browser of the test execution are passed to the
test script as arguments.

If none of the test machines match the required browser/platform spec-
ification of a given test case, it will not be executed; the test will appear in
the execution log, but will be marked as Not Executed.

5.3 Database
The Relational Database Management System (RDBMS) SQLite can be
regarded as a light-weight substitute to other Structured Query Language
(SQL) based database engines. Benefits to SQLite compared to heavier
database systems include it being self-contained and serverless, and the
database being contained in a single disk file [26]. For convenience concern-
ing submission of this project, SQLite was the preferred database choice.
However, it can be replaced by a different SQL database engine if desirable.

Django data models define the database layout, and each model typically
maps to an individual table in the database. SQL statements for creating
the database itself and the tables within it are all auto-generated by Django,
based on the implementations of the models. If a many-to-many relation
between two different models are defined in the model implementations, a
separate relationship table is created in the database to cover this.

The database can be accessed either through raw SQL queries, or
through Django’s own API for database abstraction. The former approach
was first implemented in this system, but was then changed to the latter,
as it proved to be cleaner and more consistent with the implementation of
the rest of the project. It was also interesting to use a different practice of
database communications than the more commonly used raw SQL queries.
Listing 7 shows the equivalent of an insert statement as implemented con-
ducted in OptiRun, although the listing representation is simplified, as less
attributes are specified here than in reality. The implementation of the
Log model is imported and then an object of this type is created with
pseudo values for a small set of attributes. Line 5 in the listing represents
the transaction execution and commit, where an entry in the database is
created.

32

5.4 Web-Based User Interface

1 from testautomation.models import Log
2 from datetime import datetime
3
4 l = Log(title='test1', result=True, execution_time=datetime.utcnow())
5 l.save()

Listing 7: Database Communication Using Abstraction API

In addition to providing excellent readability, this abstraction greatly
decreases the required number of code lines needed to achieve the same
result as raw SQL statements. This is because the database location does
not need to be stated, connection with the database does not need to be
explicitly established before a transaction and closed when the transaction is
finished, etc. The abstraction takes care of all of this. Equivalents to other
query types such as select, update and delete are also supported through
this API.

All timestamps stored in the database are in the Coordinated Universal
Time (UTC) standard, which, as the name suggests, is universal, and
therefore independent of time zones. The time zone used in the web service
is set to Europe/Oslo in the Django settings file. Whenever a timestamp
is shown on screen, it is first converted to the specified time zone using
Django’s timezone library. If the user is located in a different time zone
than the one specified in the settings, a label explaining that the computer
time is a given number of hours ahead or behind of server time, is displayed
next to any datetime picker.

Storing timestamps according to the UTC standard rather than the cur-
rent time zone can be considered good practice for multiple reasons. Firstly,
there can be no ambiguity. Confusion and misunderstandings related to
conversion across different time zones will be avoided, which also means
that timestamp calculations are simple. Further, there can be no invalid
dates linked to daylight savings time. Moreover, if the server were to be
moved to a different time zone, timestamps would have to be converted.

5.4 Web-Based User Interface
As previously mentioned, the web-based user interface of OptiRun is built
on the Django framework. Django provides a lot of built-in functionality.
Most of these features can be customized either by adding new features or by
overriding or extending some of the existing functionality. For instance, the
administrator interface of Django projects, which is automatically generated

33

5.4 Web-Based User Interface

and will be introduced in Section 5.4.2, utilizes a standard set of CSS
styling. Instead of writing new styling from scratch, it can be customized
as desired. The OptiRun interface is a composition of automatic and
customized content. This section aims to present the code and functionality
implemented specifically for OptiRun.

Django applications are central elements in Django projects. An app in
Django context refers to a set of code and functionality that is in some way
related, and can include features such as static files and models [27], which
will be further explained subsequently. Some apps, such as the user module,
are built-in functionality in Django projects. An app called testautomation
was created specifically for OptiRun.

A directory structure conforming to Django’s guidelines is automati-
cally generated upon creating a Django project, or a new app in an exist-
ing project. The directory structure as well as some essential files of the
OptiRun project, with accompanying short descriptions, are displayed in
Listing 8.

OptiRun/ <- Project directory
manage.py <- Command-line utility for administrative tasks
db.sqlite3 <- Database
controller/ <- All program files related to the Controller
dashboard/ <- Python package for this Django project

settings.py <- Project settings
urls.py <- Global URL dispatcher

static/ <- Global static files (js, css, images)
files/ <- Downloadable files (test template, test machine pckgs)

scripts/ <- Uploaded test scripts
templates/ <- HTML-based templates
testautomation/ <- App directory for the Django app 'testautomation'

models.py <- App-specific model implementations
admin.py <- App-specific model representations in admin interface
urls.py <- App-specific URL dispatcher
migrations/ <- App-specific database migrations
static/ <- App-specific static files (js)

Listing 8: High-Level Directory Structure & Key Files of the OptiRun Project

5.4.1 Models

Data models in Django projects provide the foundation on which database
tables are created and maintained. A model implementation can be seen
as an equivalent to an SQL create table statement, but written in Python
code instead. The model implementations are automatically migrated to
the database by Django. Each model typically represents a table in the

34

5.4 Web-Based User Interface

database, and each model field represents a database field. Similar to SQL,
the data type of each field along with any other specifications such as the
maximum length of a text field, default values and help text can be passed
as field option parameters.

1 from django.db import models
2
3 class TestCase(models.Model):
4 title = models.CharField(max_length=80)
5 script = models.FileField(upload_to='scripts')
6 description = models.TextField()
7 groups = models.ManyToManyField('Group')
8 schedules = models.ManyToManyField('Schedule')

Listing 9: Model Implementation

Listing 9 shows a reduced adaption of how the test case model has been
implemented. This simplified model representation contains four model
fields. The script field is of the type FileField, and the directory that the
files should be uploaded to is passed as a parameter. The file upload itself
is taken care of by Django.

5.4.2 Admin

An important asset of Django is the automatic administrator interface.
The administrator interface reads meta data of models from the database,
based on the implementations in admin.py, where the functionality as well
as specifications regarding what content should be available, and how, is
specified.

1 from django.contrib import admin
2 from .models import TestCase
3
4 class TestCaseAdmin(admin.ModelAdmin):
5 list_display = ('title', 'execution_count')
6 search_fields = ['title',]
7 fields = ('title', 'script', 'description', 'groups', 'schedules')
8
9 def execution_count(self, obj):

10 return Log.objects.filter(
11 test_id=obj.id).exclude(result__isnull=True).count()
12
13 admin.site.register(TestCase, TestCaseAdmin)

Listing 10: Implementation of Model in Administrator Interface

Listing 10 shows a simplified interpretation of how the test case model

35

5.4 Web-Based User Interface

is represented in the administrator interface. This adaption builds on the
model implementation from Listing 9. Model administrator representations
are subclasses of ModelAdmin, and specifies how the model should be rep-
resented in the administrator interface. This interpretation specifies values
of three of the many ModelAdmin options; which fields of the model should
be displayed in the overview list of the test case module (list_display),
which fields should be searchable (search_fields) and which which fields
should be present in the creation/change form (fields). Line 9 registers the
model to the administrator interface with the specifications stated in the
TestCaseAdmin class.

In the actual implementations of the model representations in the ad-
ministrator interface, a number of additional fields and specifications are
also included. Custom form validation functionality can be integrated with
the creation/change form. This has been done with test case objects to en-
sure that only Python scripts can be uploaded. Admin actions that can be
performed on multiple model objects simultaneously are also implemented
here. The most significant admin actions in OptiRun is the Execute Now
action for test cases and the Report to JIRA action for log objects.

5.4.3 Issue Tracker Reporting

As earlier mentioned, Atlassin’s JIRA is the issue tracker software used by
Altibox. The issue tracker reporting supported by OptiRun is therefore
built on JIRA’s REST (Representational State Transfer) API.

The JIRA integration is used for two things: reporting failed test ex-
ecutions and retrieving issues linked to specific tests in the execution log.
Failed test executions can be reported to JIRA by marking them in the log
list and selecting Report to JIRA from the actions menu. Any duplicates or
log entries that did not fail are removed from the list. If the JIRA server
is unavailable, an error message will be displayed. Otherwise, the REST
API is used to search for JIRA issues linked to each log entry in the list. If
there are any existing open issues for a log entry, a comment is added to the
comment section of the issue, saying that the problem has been reproduced,
and including details about the failed execution. Otherwise, a new issue is
created. The issue descriptions are formatted programmatically with the
intent to provide helpful, readable information. Figure 10 shows an example
of how a comment or issue description created by OptiRun looks in JIRA.

36

5.4 Web-Based User Interface

Browser

Win81_DemoMachine2

Figure 10: JIRA Issue Description

1 from jira import JIRA
2
3 jira_instance = JIRA(
4 options={
5 'server': jira_server,
6 'verify': False,
7 'get_server_info': False
8 },
9 basic_auth=('<Username>', '<Password>')

10)
11
12 # JIRA Issue Search
13 issues = jira_instance.search_issues('<Search String>')
14
15 # JIRA Issue Commenting
16 jira_instance.add_comment(issues[0].id, '<Comment>')
17
18 # JIRA Issue Creation
19 jira_instance.create_issue(
20 project='NGTV',
21 summary='OptiRun: <Test Case Title> (<Test Case ID>) FAILED',
22 description='<Issue Description>',
23 issuetype={'name': 'Bug'},
24 components=[{'name': 'web'}]
25)

Listing 11: Issue search, commenting and creation using the JIRA REST API
37

5.4 Web-Based User Interface

In the log detail view, which is accessed by clicking on a log entry, there
is a field displaying a list of clickable JIRA issues linked to the given test
case, if any, and their respective statuses. As with issue reporting, an error
message is shown if contact with the JIRA server could not be established.

Listing 11 shows how issue search, commenting and creation are per-
formed using the JIRA REST API. The integration with the JIRA REST
API is located in admin.py, and is called from the methods report_to_jira
and get_jira_issues in the LogAdmin class of this file.

5.4.4 Event Recurrence

Rrule (Recurrence Rule) is a module in the Python library dateutil, which
provides an extension to Python’s datetime module [28]. It is a small
and fast library used in OptiRun to allow recurrence patterns of schedule
objects. Rrule instances can be implemented multiple ways. In this project,
it is achieved through passing a string with a specific format, containing
information about the desired recurrence constraints. This string is stored
in the database, and can be used at any point to create an rrule instance
in order to inquire when the next event should take place. An example of
such a string, how rrule instances are created in this project, and how the
next occurrence is retrieved, can be seen in Listing 12.

The string in the listing above is used to create an rrule instance in
which the first occurrence is set to the 15th of June 2016 at 3 PM, and
repeats weekly. The output shown in the listing is valid if the script was
executed before this date, otherwise it will produce a different output In
addition to the recurrence properties shown in the listing above, the library
provides an extensive number of recurrence options, including end date,
occurrence count and interval.

1 from dateutil.rrule import rrulestr
2 from datetime import datetime
3
4 rule_string = "DTSTART:20160615T150000\nRRULE:FREQ=WEEKLY"
5 rule = rrulestr(rule_string)
6
7 print rule.after(datetime.now())
8
9 >>> 2016-06-15 15:00:00

Listing 12: Recursion Rule

The rrule strings in this project are built dynamically when a schedule

38

5.4 Web-Based User Interface

object is created or edited, and then stored in the database as attributes to
entries in the schedule table. In the test case, group and schedule modules
of OptiRun, recurrence rule strings are used to create rrule instances, which
again are used to find out the time of the next planned execution for the
particular test case, group or schedule. Rrule instances are also created by
the controller to check when the next test run is scheduled.

39

6
Test Allocation Mechanism

As explained in Chapter 2, the type of tests intended for OptiRun generally
runs slowly. Therefore, the design and implementation of a mechanism
that would efficiently allocate tests to machines in an attempt to minimize
the duration taken to search for an optimal allocation and execute the
test set has been a major objective in this project. This mechanism has
been named OptiX, and will be thoroughly explained in Section 6.1. As
explained in Chapter 2, an alternative allocation mechanism has also been
implemented using Google’s OR-tools library. The alternative mechanism
has been named ORX, and will be presented in Section 6.2. ORX was used
to establish benchmark values for the evaluation process of OptiX. The
results will be presented and discussed in Section 7.1.

6.1 OptiX
The OptiX allocation mechanism consists of a sequence three steps; sorting,
initial allocation and enhancement iterations. It can be seen as an extended
greedy algorithm, and will be explained in this section.

In order to give a better understanding of how the algorithm works, a
demonstration example will be used throughout the explanation. In this
example, we assume that there are three test machines connected to the
system, as well as the test set listed in Table 1. Note that the durations
of the tests intended for OptiRun generally range between approximately

40

6.1 OptiX

30 and 120 seconds, but this example deliberately uses shorter durations to
better illustrate how the mechanism works.

Test Duration Executable on
t1 6s m1, m2, m3

t2 3s m1, m2, m3

t3 8s m1, m2, m3

t4 5s m1, m2, m3

t5 3s m1, m2, m3

t6 4s m1, m2, m3

t7 7s m1

t8 3s m2

t9 9s m3

t10 5s m1, m3

Table 1: Example Test Set

6.1.1 Preliminary Sorting

The first step is a preparation for the initial allocation. In a scenario where
toward the end of the allocation, all tests waiting to be allocated could be
executed only on one specific machine, the overall execution time could be
greatly affected. Similarly, if toward the end of the initial allocation the
last test to be allocated is estimated to have a This step seeks to avoid
such scenarios by strategically ordering the tests before the initial allocation
starts. The sorting does not play a crucial role in the allocation mechanism,
but it creates an excellent starting point as the tests are sorted in a way
that makes them well suited for the initial allocation in the next step.

There are two criteria to the sorting process: the first criteria is the
number of machines each test can be executed on, in ascending order, and
the second criteria is estimated test duration in descending order. In Python
this can be done in a single line of code, as shown in Listing 13.

1 tests.sort(key=lambda test: (len(test.executable_on), -test.duration))

Listing 13: Python Code for OptiX Sorting Step

41

6.1 OptiX

Figure 11: Sorting of Example Test Set

Figure 11 illustrates how the sorting works with the example test set
introduced earlier. Since t7, t8 and t9 can only be executed on a single
machine each, these are placed first in descending order of their duration.
Test t10, which can be executed on two machines, comes thereafter. Finally,
tests t1 through t6, which can run on all of the machines, are ordered and
added to the list of tests.

6.1.2 Initial Allocation

The initial allocation is a greedy algorithm, which means that it always
makes a locally optimal choice in the hopes that it will give the best result in
the end [29]. Greedy algorithms are powerful and work well for an extensive
spectrum of problems. Creating a greedy algorithm was a suitable choice
for this problem.

This step creates the foundation of the test allocations. After being
sorted, the list of tests is iterated through, and the tests are allocated one

42

6.1 OptiX

Algorithm 1 OptiX: Initial Allocation Step
Require: length(test.executableOn) 6= 0 for test ∈ tests
1: function INITALLOCATION(tests, numMachines)
2: allocations← ∅
3: durations←

[
0 for i ∈ 0 : numMachines− 1

]
4: for test ∈ tests do
5: selectedMachine← test.executableOn

[
0
]

6: for x ∈ test.executableOn do
7: if durations

[
x
]
< durations

[
selectedMachine

]
then

8: selectedMachine← x
9: durations

[
selectedMachine

]
← test.durations

10: allocations
[
test.id

]
← selectedMachine

11: return allocations

by one, starting with the longest of the tests that are executable on the
fewest machines. The initial allocation thus uses a slightly altered Longest
Job First (LJF) approach, which provides quite a lot more flexibility toward
the end of the allocation compared to what would be accomplished using
a Shortest Job First (SJF) approach. Each test is initially allocated to
the machine that currently has the shortest overall duration among the
machines that the test is executable on.

Algorithm 1 displays the initial allocation of OptiX represented with
pseudo code. The function requires that any tests whose desired test en-
vironment does not match with any available test machines have been
removed from the test list. It also assumes that the test elements in the list
have three attributes: an id, a duration and a list containing the indices of
the machines it can be executed on. These measures are taken care of in
the preprocessing that occurrs before the OptiX mechanism begins.

Figure 12 shows how the test set is initially allocated among the test
machines. Tests t9, t7 and t8 are first allocated to m3, m1 and m2 one by
one, as each of them can only be executed on that machine. Test t10 can be
executed on both m3 and m1, but as the latter currently has the shortest
overall execution time, this is the machine it is allocated to. The remaining
tests are allocated in the same way. After the initial allocation is finished,
the overall execution time is 19. However, the total durations among the
machines are slightly uneven, so there might be room for improvement.
This will be examined in the last step of OptiX.

43

6.1 OptiX

Figure 12: Initial Allocation of Example Test Set

6.1.3 Improvement Iterations

Greedy algorithms are simple, yet efficient, and provide adequate results
most of the time. However, they do not always yield optimal solutions. In
order to improve the result, an additional step has been included in the
OptiX. This is the most complex element in the process.

The basic idea behind the iteration step is to find subsets of tests among
the machine with the longest execution time and the other machines, and
swap the two subsets that will result in the largest reduction in duration.
The subject of each iteration is the machine that currently has the longest
execution time. In the case of the example test set, this is m1. This will be
referred to as the swapper. Each of the remaining machines are addressed
one by one, starting with m2, which is a swappee candidate. The tests
that are currently allocated to the swapper, but also can be executed on
the swappee candidate are, retrieved. In the example, these are t5 and t6.
A list of all possible subsets from this set is then created using Python’s
itertools library. The same is done the other way around, with t3 and t4 for
the swappee candidate. After this, OptiX examines how each swap would
affect the overall duration of the two machines in question. After comparing
all subsets, it is concluded that the best swap is t5 and t6 from m1 for t4
from m2, which will decrease the overall duration among the two machines
with 1 second. Since m3 can not provide any better options, this swap is
conducted. This process will repeat until there is no way to improve the
allocations, which in this case is after one swap.

Figure 13 shows how the subset swap is conducted, and how it affects
the overall duration. Although it is not guaranteed to happen, OptiX found
an optimal solution to the optimization problem in this example. ORX also
found a solution that provided 18 seconds, even though the exact allocations
differed slightly.

Upon evaluating each swappee candidate, a naive best-case duration is

44

6.1 OptiX

Figure 13: Enhancement Iteration of Example Test Set

calculated by adding the durations of all the tests from the two machines
and dividing the sum by two. If the time used to search for the best swap
exceeds the difference between the total duration of the swapper (here: 19),
and this best scenario duration (here: 19+17

2
= 18), which in this case is 1,

we will continue to the next swappee candidate. This means that we will
examine the subsets of m2 for at most 1 second.

Sometimes, however, we want to stop the searching earlier, as continuing
is no longer beneficial. For that reason, two stop criteria are introduced:

1. Prior to the first enhancement iteration, a naive best-case overall du-
ration value is calculated by dividing the sum of all test durations
by the number of machines available. Once the time difference be-
tween this value and the maximum machine duration is exceeded, the
iteration process will stop.

2. There is a timeout set to 30 seconds. If the iterations still are not fin-
ished at this point, the method will be terminated, and the allocations
found up to that point will be kept.

During the development phase, a clear problem stood out; creation of
subset lists from extremely large interchangeable test sets between two
machines could take several minutes, and sometimes even lead to memory
leaks so that the whole system crashed. This was because there was simply

45

6.1 OptiX

too many possible subsets. To work around this problem, a restriction of
the maximum size of the subsets had to be established. Through trial and
error, the following was determined, where x is the maximum size of each
subset:

f(x) =

x if x < 10

20− x if 10 ≤ x < 20

1 if 20 ≤ x

Thus, if the number of interchangeable tests are 19 or more, the subset
list will only consist of single tests in addition to the empty set. Although not
optimal, this was a compromise that helped resolve the problem effectively.
This means that for large interchangeable sets, tests can only be swapped
one against one or moved from one machine to another. It is therefore
reasonable to think that better swaps might exist, although identifying
these would take too much time and potentially lead to memory leaks.

Because of the stop criteria described earlier and the subset size restric-
tion, OptiX cannot guarantee to find an optimal solution to the allocation
problem. However, as explained in Section 2.2, the objective of the opti-
mization problem is to minimize the total time, which means that the time
used to search for the best solution is also of high importance, and should
be prioritized as such.

Another consequence of the stop criteria is that the mechanism becomes
non-deterministic. Two different executions of the same job may not take
the exact same time, which means that if OptiX is tested against the same
allocation problem twice, it might time out at different points, and thus
produce different results.

Algorithm 2 lists a high-level representation of the improvement iteration
step of Optix. Although somewhat simplified, it manages to capture the
essence of how this step is implemented. The symbols α and β represents the
swapper and the swappee candidate respectively, and are used to separate
the two whilst avoid using a profuse amount of cumbersome and similar
variable names. The subscripts refers to properties that are either implicit
or calculated in a trivial way unrelated to the core of this step, with the
exception of the GetSubsets method, which was explained earlier.

46

Algorithm 2 OptiX: Improvement Iteration Step
1: function ITERATE(tests, allocations, numMachines)
2: while True do
3: α← 〈index of machine with longest duration〉
4: αsubsets ← GETSUBSETS()
5: durlongest ← αdur

6: for i ∈ 0 : numMachines− 1 | α do
7: β ← i
8: βsubsets ← GETSUBSETS()
9: for αsubset ∈ αsubsets do
10: for βsubset ∈ βsubsets do
11: αtmpDur ← αdur − αsubsetDur + βsubsetDur

12: βtmpDur ← βdur − βsubsetDur + αsubsetDur

13: if αtmpDur < durlongest and βtmpDur < durlongest then
14: durlongest ← max(αtmpDur, βtmpDur)
15: swapperSubset← αsubset

16: swappeeSubset← βsubset
17: swapper ← α
18: swappee← β

19: if 〈stop criteria reached〉 then
20: break
21: if 〈stop criteria reached〉 then
22: break
23: if 〈improvement found〉 then
24: for test ∈ swapperSubset do
25: allocations

[
test.id

]
← swappee

26: for test ∈ swappeeSubset do
27: allocations

[
test.id

]
← swapper

28: else
29: break
30: return allocations

47

6.2 ORX

Each iteration is not guaranteed to affect the overall duration, only
reduce the duration of the two involved machines. For instance, imagine a
scenario where both machine A and machine B have a total duration of 100
seconds, and machine C only has a duration of 80 seconds. Machine A is
then identified by OptiX as one of the machines with the longest duration.
OptiX might be able to find a swap which results in machines A and C
both having a duration of 90 seconds. Even so, the overall duration of the
system is not affected, as machine B still has a duration of 100 seconds.
Another iteration is thus required to search for an improvement for machine
B.

6.2 ORX
The implementation of ORX is of the same style as the OR-tools example
shown in Listing 3 in Chapter 3, but more complex. ORX takes two lists;
one containing the durations of the tests, and another containing which
machines each test is executable on. OR-tools does not support decimal
values, so as opposed to OptiX, ORX regards all test durations as integer
values. The executable on list is nested, with one list belonging to each test.
These inner lists contain binary values representing whether or not the test
can be executed on a given machine. It is then added as a constraint that
each test should be allocated to exactly one machine, and as the objective
that the overall duration should be minimized.

However, there was one major issue upon the implementation of ORX. It
was not possible to interrupt or time out the NextSolution method. For very
small data sets, this was not a problem, but once the data sets grew slightly
bigger and the combination of possibilities grew rapidly, the method could
take hours. This meant that a set of stop criteria had to be introduced.
However, the problem could still not be solved by running the solver in a
separate thread, as there is no integrated method of terminating regular
threads in Python to the best of the author’s knowledge. The problem was
solved by introducing Python’s multiprocessing library.

The solving method is started as a Process from the multiprocessing
library. In order to allow two processes to share lists, a Manager is needed,
and to ensure synchronization, a Lock has been used. Listing 14 shows how
these multiprocessing modules are used in ORX.

ORX will be terminated if one of the following stop criteria are met:

• The search for an improvement has taken 500 times as long as it took

48

6.2 ORX

to find the previous improvement.

• The previous improvement took 50 times as long to find than the
improvement itself.

• 30 seconds have passed (timeout).

The author explored using smaller and larger values for the break con-
ditions of the two former stop criteria, but were not able to identify values
that generally provided better results.

1 from multiprocessing import Process, Manager, Lock
2
3 manager = Manager()
4 allocations = manager.dict()
5 max_durations = manager.list()
6 last_updated = manager.list()
7 lock = Lock()
8
9 # ...

10
11 p = Process(target=find_solution, args=(durations, executable_on,

allocations, max_durations, last_updated, lock))
12 p.start()
13
14 while p.is_alive():
15 if lock.acquire():
16 if <stop criteria fulfilled>:
17 p.terminate()
18 break
19 lock.release()
20
21 # ...
22
23 def find_solution(self, durations, executable_on, allocations,

max_durations, last_updated, lock):
24 # ...
25
26 while solver.NextSolution():
27 lock.acquire()
28 # Store findings in the shared lists 'allocations', 'max_durations'

and 'last_updated'
29 lock.release()

Listing 14: ORX Multiprocessing

49

7
Evaluation

This chapter opens with introducing a collection of test sets used to measure
the performance of the allocation mechanism OptiX through experiments,
and compare it to the performance of ORX on the same collection. The
results are evaluated and discussed, followed by an assessment of factors
that may threated the validity of the results obtained in the experimental
phase. OptiRun is then discussed and evaluated as a whole, before the
chapter rounds off by discussing the return on investment put into this
project.

7.1 Experimental Evaluation
In order to measure and evaluate the performance of OptiX, which repre-
sented a major objective in this project, an experimental evaluation was
performed on OptiX as well as on ORX to establish benchmark values.

7.1.1 Test Data

The test data used in the experimental evaluation is divided into four
collections, each consisting of three pseudo test sets. The test sets in each
collection all represent scenarios with a given number of tests and available
machines. What separates the test sets in the same collection is the number
of machines each test in the test set can be executed on

50

Collection Tests Machines Test Set No. of Machines Tests are Executable On

c1 1000 100
ts1 100
ts2 10
ts3 Random

c2 1000 10
ts4 10
ts5 5
ts6 Random

c3 200 50
ts7 50
ts8 10
ts9 Random

c4 200 10
ts10 10
ts11 5
ts12 Random

Table 2: Test Data Used in Experimental Evaluation on a Logarithmic Scale

51

7.1 Experimental Evaluation

Each collection contains one test set in which every test can be executed
on every machine, one where the tests can only be executed on a small
selection of the machines and one where the number of machines each test
can be executed on varies and is determined at random. This means that
there is also a varying number of combinatorial solutions to the optimization
problem.

Table 2 shows details about the test data which is randomly generated;
only the number of tests, test machines and how many machines each test
is executable on was specified upon generation. Each test was assigned a
duration between 30 and 120 seconds, and a set of machines on which they
were executable on, both generated at random. The test data is designed
to imitate realistic scenarios, although somewhat amplified. Using larger
test sets than ts1 through ts3 would not be very meaningful, as 1000 tests
and 100 test machines are very large numbers in this context, and are not
likely to be exceeded any time soon.

OptiX ORX
Test Set Ts Te Tt Ts Te Tt

ts1 1.06s 739.00s 740.06s 34.93s 1153.00s 1187.93s
ts2 1.04s 748.00s 749.39s 34.25s 1224.00s 1258.25s
ts3 22.32s 730.00s 752.32s 34.44s 1172.00s 1206.44s
ts4 0.02s 7371.00s 7371.02s 30.37s 7797.00s 7827.37s
ts5 0.04s 7496.00s 7496.04s 30.27s 7569.00s 7599.27s
ts6 0.16s 7355.00s 7355.16s 30.26s 7773.00s 7803.26s
ts7 0.20s 299.00s 299.20s 30.39s 365.00s 395.39s
ts8 0.36s 309.00s 309.36s 30.27s 338.00s 368.27s
ts9 1.17s 305.00s 306.17s 30.36s 319.00s 349.36s
ts10 0.02s 1427.00s 1427.02s 30.06s 1435.00s 1465.06s
ts11 0.61s 1495.00s 1495.61s 30.06s 1553.00s 1583.06s
ts12 0.79s 1521.00s 1521.79s 30.06s 1531.00s 1561.06s

Table 3: Experimental Test Results

Both OptiX and ORX were tested with each of these 12 pseudo test
sets. The results can be found in Table 3, which provides searching time,
execution time and total time obtained with both allocation mechanisms
for each test set. As explained in the formal definition of the optimization
problem in Chapter 2, the objective of the problem was to minimize the
Tt = Te+Ts, that is to say the searching time used to find the solution plus
the execution time used to execute the tests.

52

80
7,

04

74
9,

40

75
2,

32

73
71

,0
2

74
96

,0
4

73
55

,1
6

29
9,

20

30
9,

36

30
6,

17

14
27

,0
2

15
21

,7
9

11
87

,9
3

12
58

,2
5

12
06

,4
4

78
27

,3
7

75
99

,2
7

78
03

,2
6

39
5,

39

36
8,

27

34
9,

36

14
65

,0
6

15
83

,0
6

15
61

,0
6

1

10

100

1000

10000

ts1 ts2 ts3 ts4 ts5 ts6 ts7 ts8 ts9 ts10 ts11 ts12

Collection 1

OptiX ORX

Collection 2 Collection 3 Collection 4

74
0,

06

14
95

,6
1

Figure 14: Complete Results from Experimental Evaluation on a Logarithmic Scale

53

7.1 Experimental Evaluation

The complete results from the experimental evaluation are visualized in
Figure 14. Because of major variations in numbers, a logarithmic scale is
used in the graph. The results from each collection will subsequently be
discussed individually.

7.1.2 Test Data Collection 1

ts2

ts3

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300

ts1

OptiX ORX

Figure 15: Results from Test Data Collection 1 in Experimental Evaluation

Diff. from ORX % of ORX Iterations Initial Te

ts1 447.87s 62.30% 2 739s
ts2 508.85s 59.56% 9 776s
ts3 454.12s 62.36% 81 790s

Table 4: Details from Collection 1 in Experimental Evaluation

The first collection of test sets consisted of ts1, ts2 and ts3, with 1000 tests
and 100 test machines. This collection was designed to test the mechanisms
in situations with a large number of both tests and machines, and thus an
abundance of possible solutions.

As Figure 15 clearly indicates, OptiX provided excellent results com-
pared to ORX for these 3 test sets. Not only were the Tt values provided by
OptiX between 447.87 and 508.85 seconds faster than ORX; it also provided
better searching times. Although the searching process of ORX timed out
after 30 seconds, the whole process took just over 34 seconds in all of these
cases, which can likely be explained by the time required to extract the
results being extended as a consequence of profuse amounts of tests and
machines. This was the collection in which the results provided by OptiX
was the most prominent compared to those of ORX. All 3 test sets in this

54

7.1 Experimental Evaluation

collection have a very large number of possible solutions, which is likely
a contributing factor as to why the effectiveness of OptiX’ naive, greedy
approach was so exceptional in contrast to ORX’. However, it is noteworthy
that OptiX used 22.32 seconds to solve the allocation problem of ts3. This
is presumably due to this test set being more fluctuating than the former
two, and that a clear pattern in the data is absent. As Table 4 shows, a
confounding number of 81 iterations were performed, rather than the 2 and
9 for ts1 and ts2 respectively. In the initial allocation of this test set, OptiX’
Te was 790 seconds as opposed to 739 after the iterations, so the time used
on calculating was regained with interest.

7.1.3 Test Data Collection 2

ts5

ts6

ts4

OptiX ORX
0 1000 2000 3000 4000 5000 6000 7000 8000

Figure 16: Results from Test Data Collection 2 in Experimental Evaluation

Diff. from ORX % of ORX Iterations Initial Te

ts4 456.35s 94.17% 1 7371s
ts5 103.23s 98.64% 2 7524s
ts6 448.10s 94.26% 10 7371s

Table 5: Details from Collection 2 in Experimental Evaluation

The second collection of test sets consisted of ts4, ts5 and ts6, with 1000 tests
and 10 test machines, and was designed to measure allocation performance
in situations with a large number of tests and a small number of machines.

Figure 16 shows that even though OptiX provided better Tt values than
ORX for all of the test sets in the collection, the difference between the
two mechanisms was less prominent for this collection than for the former.
The largest difference in Tt was 456.35 seconds for ts4, and the smallest

55

7.1 Experimental Evaluation

was 103.23 seconds for ts5. These are both insignificant numbers relative
to the calculated Tt, which is more than two hours for both mechanisms on
each test set. Even so, the difference in Tt between the two mechanisms for
ts4 and ts6 were approximately the same as for ts1 and ts3 of Collection
1. OptiX’ Ts far surpassed ORX’, however, as OptiX used less than 0.2
seconds on each test set. This is a notable achievement compared to ORX,
which again timed out after 30 seconds for all test sets.

7.1.4 Test Data Collection 3

ts8

ts9

ts7

OptiX ORX
00 50 100 150 200 250 300 350 400

Figure 17: Results from Test Data Collection 3 in Experimental Evaluation

Diff. from ORX % of ORX Iterations Initial Te

ts7 96.19s 75.67% 3 300s
ts8 58.91s 84.00% 8 332s
ts9 43.19s 87.64% 21 359s

Table 6: Details from Collection 3 in Experimental Evaluation

The third collection of test sets consisted of ts7, ts8 and ts9, with 200 tests
and 50 test machines, and was designed to test the mechanisms in situations
with more realistic number of tests, and a fair number of machines.

Figure 17 shows that OptiX again provided better total results for all
test sets. OptiX’ longest searching time took 1.17 seconds, while ORX
once again was timed out after 30 seconds. The range of durations for
the test sets in Collection 3 was minuscule compared to that of Collection
2. Accordingly, the difference between the results obtained by OptiX and
those obtained by ORX represented a larger difference in percentage even
though te differences were a lot smaller.

56

7.1 Experimental Evaluation

7.1.5 Test Data Collection 4

ts11

ts12

ts10

OptiX ORX
0 200 400 600 800 1000 1200 1400 1600

Figure 18: Results from Test Data Collection 4 in Experimental Evaluation

Diff. from ORX % of ORX Iterations Initial Te

ts10 38.04s 97.40% 2 1427s
ts11 87.45s 94.48% 4 1522s
ts12 39.27s 97.48% 8 1538s

Table 7: Details from Collection 4 in Experimental Evaluation

The fourth and last collection of test sets consisted of ts10, ts11 and ts12,
with 200 tests and 10 test machines. This test set was designed to test the
mechanisms in situations with realistic numbers of both tests and machines
in terms of the context in which OptiX will be used at Altibox within the
forseeable future.

Again, OptiX produced better results for all of the test sets, which can
be seen in Figure 18. Because of a limited amount of possible solutions to
the allocation problems, as the number of test machines was small and the
number of tests moderate, the differences between the results provided by
OptiX and ORX were minor.

7.1.6 Conclusion of Experimental Evaluation

OptiX provided favorable results compared to ORX for all of the test sets
in the experimental evaluation. The objective of the optimization problem
was to minimize the total time Tt, which is the combined time used for
searching for an optimal solution and for executing the tests. Not only did
OptiX provide better Tt values for the whole group of test data; both the

57

7.2 Threats to Validity

searching time Ts and the execution time Te were superior for every test set.
However, the difference in performance were small for Collection 4, which
ultimately mimics the most realistic scenario.

OptiX excelled especially in two areas: in general searching time and in
finding outstanding solutions to allocation problems with large numbers of
both tests and test machines, and thus a great deal of possible allocations.

The searching times used by OptiX were generally exceptional, aside
from for ts3, where 22.32 seconds were needed to solve the problem.

Judging from the results obtained in the experimental evaluation, OptiX
consistently used the more time to solve the last test set in each collection
than the remaining. Whereas the two first test sets in each collection were
allocated in virtually no time, and using few iterations, a larger number of
iterations and a greater amount of time were required to allocate the last
test set in each collection. This is likely linked to the tests in these test
sets being executable on an arbitrary number of machines, and the test sets
thus being more irregular without conforming to a pattern, as opposed to
the remaining test sets.

It is a clear trend that ORX requires a lot of time to find good results,
and that the quality of the final results is poor compared those of OptiX, for
the most part. Nonetheless, the allocations made by ORX formp Collections
2 and 4 were certainly feasible.

In conclusion, OR-tools may be an excellent library for solving constraint
programming and combinatorial problems, but OptiX provided better re-
sults for this specific problem. The main contributing factor to this is
presumably that OptiX was designed and implemented specifically to solve
this exact type of problem in an efficient way, whereas OR-tools was de-
signed to provide feasible solutions to a much broader range of problems.
Mechanisms built on OR-tools are therefore not guaranteed to make the
best decisions at any point in the process, so the time needed to identify
good solutions is inclined to take more time. This is likely the reason why
ORX did not stop before the timeout of 30 seconds on any of the test sets,
whereas OptiX used less than a second on most of them.

7.2 Threats to Validity
Judging from the results obtained in Section 7.1, it is clear that OptiX
performed superiorly compared to ORX in the experiments. It is therefore
important to establish some possible contributing factors that may threaten

58

7.3 Discussion

the validity of the results.
As explained in the previous section, the test data was randomly gen-

erated. This means that there might have been some degree of chance
involved, and that if the test sets were generated again, other results may
be obtained. Additionally, there might have been some interesting situations
in which to test the performance of the allocation mechanisms, that are
not covered in the experimental evaluation. Even though the author tried
her best to come up with realistic and representative scenarios to cover the
allocation mechanism in full measure, there might have been some relevant
scenarios that were not tested. Also, there might be some scenarios that
would provide value despite being deemed pointless to test by the author.

The results may also depend on the performance of the machine that
the experiments were conducted on. Had the experiments been conducted
on a newer and faster machine with more available resources or a different
operating system, the results would likely come out slightly different. ORX
would perhaps be able to reach better solutions before being timed out, and
could thus possibly be a stronger competitor, whereas the results obtained
by OptiX would not likely be affected as much, as most of the problems
were solved in less than a second.

Another contributing factor may be the author’s knowledge of and expe-
rience with OR-tools being far from complete. With limited documentation
and general online and literary coverage, exploring every corner of the li-
brary just could not be done with a narrow time-frame and other tasks
that had to be prioritized. Although the author did invest a fair amount
of time and energy in getting acquainted with the tools and tried her best
to implement ORX to be as strong of a competitor to OptiX as possible,
it may be a very real possibility that there are ways to implement it that
would provide greater efficiency. Another possibility is that there are other
optimization libraries that could potentially accomplish better results in
this optimization problem than OR-tools.

7.3 Discussion
OptiRun is especially well-suited for minimizing the overall execution time
of large test sets in a distributed environment. The OptiX allocation mecha-
nism attempts to allocate test to machines in the system in such a way that
the overall execution time plus the time used to search for this allocation is
minimized, which represented a major objective in this project. The results

59

7.3 Discussion

obtained and discussed in Section 7.1 shows that this goal has essentially
been successfully achieved. OptiX consists of three steps: preliminary sort-
ing, initial allocation and improvement iterations. The initial allocation is a
greedy algorithm which uses a slightly altered LJF approach. With respect
to the goal that was to minimize the overall execution time, this approach
provides flexibility toward the end of the allocation. Had the goal been to
maximize the throughput in terms of number of tests per time unit, or to
minimize the average response time, a SJF approach would perhaps have
been preferable.

A downside to the works of the test execution in practice is that test
allocations are predetermined and final. If, for example, one test machine is
particularly slow, this machine could potentially require a great deal more
time to finish executing its allocated tests than the remaining machines,
without the possibility to hand over tests to other machines. As test sets
are handled in batches, and a new batch will not be handled until every
test in the previous batch has finished executing, the execution of a whole
batch of tests could thus be greatly delayed due to this one particularly
slow machine.

A different problem is that a browser can crash or stop responding to
the Selenium Standalone Server. This is an issue that occurs from time
to time, and especially frequently with Internet Explorer, in the author’s
experience. If these events were to happen, the test script would fail even
though the functionality might be correct. Thus, any problems linked to
Selenium Grid may directly affect OptiRun by extension.

Yet another noteworthy aspect is that different browsers behave differ-
ently, which means that they do not necessarily respond identically to the
browser commands in test script. This issue is out of OptiRun’s control, as
it related to the how the different browsers work.

Because a distributed environment constitutes an essential element of
OptiRun, a requirement for the system to work is that it runs in a network
without limiting restrictions. First of all, TCP/IP communication must be
permitted, and the ports used for the hub and the nodes in the grid must
be open and available. As must the ports used for communication between
the webserver and the controller. Further, HTTP traffic must be allowed
to enable the webserver to be reached from more machines than the one on
which the it is running. The ports used in OptiRun are listed in Table 8.

On a general note, there are a lot of factors that can lead to system
failure. Distributed environments may involve a number of potential error-

60

7.4 Return on Investment

Used By Port Protocol
Selenium Hub 4444 TCP/IP
Selenium Node 5555 TCP/IP
OptiRun Webserver 80 HTTP
OptiRun Controller Schedule Listener 5006 TCP/IP
OptiRun Controller Request Listener 5005 TCP/IP

Table 8: Ports Used in OptiRun

prone areas because of the amount of elements involved. Apart from network
issues, other potential areas of failure for OptiRun are, to mention a few:
aforementioned issues related to Selenium, unstable test machines, browser
versions incompatible with the Selenium drivers, and in general operating
system and browser related errors. Implementing error handling of, and
workarounds for, all possible areas of failure is a daunting task that have
not been prioritized during the work on this project.

7.4 Return on Investment
Altibox has great interest in how adopting OptiRun in their testing process
can affect their company from a business perspective. This section aims to
highlight some of these aspects.

All of the frameworks used in the development of OptiRun are open-
source. It has therefore not been necessary to pay for any licenses. OptiRun
itself is also handed to Altibox with no charges, so the associated investment
solely consists of time and resources contributed by the author and her
supervisors.

A priority during the design phase has been to create a user-friendly,
intuitive and consistent interface. Building the website on the Django
framework has rendered this an easy task. Getting to know the interface
and learning to use it is thus not expected to require excessive amounts of
time and effort. Also, a brief user manual is included both on the website
and in Appendix C of this thesis.

As with test automation in general, writing test scripts for OptiRun
requires some technical knowledge. Being acquainted with the Python pro-
gramming language and the Selenium libraries is a necessity. Writing these
scripts will also take time, and additional time associated with maintain-
ing said scripts should be expected. Furthermore, at least one computer,
preferably more, should be available solely to be used for OptiRun.

61

7.4 Return on Investment

The success of applying OptiRun partially depends on how the product is
used. As explained in Chapter 2, caution should be used upon determining
the automation coverage and which exact test should be automated. The
media content in TV Overalt is dynamic, as new movies and TV shows
are released and made available, while old content is removed after a while.
Thus, content-based tests are not likely to be durable, and will presumably
require regular maintenance.

But there are a lot of benefits to OptiRun too, if used correctly. One of
these benefits is significantly extended test coverage. Currently, TV Overalt
is available in Chrome, Edge, Firefox, Internet Explorer and Safari. During
an acceptance test, the test team often has limited amount of time, which
means that they will not be able to perform all of the tests in all browsers,
and have to select which browsers should be tested. This will most likely
no longer be a problem after incorporating OptiRun, as each test script can
be executed in all of these browsers. Once the test scripts are written and
in working order, they can be executed rapidly, precisely and repeatedly
with no additional expenses and virtually no time used by human resources,
and in all of the aforementioned browsers, except Safari, with only a few
keystrokes. The remaining time can thus be used for manually conducting
the tests unsuitable for automation. This way, it will now be possible to
cover all of the supported browsers even with a limited time frame, and thus
be able to test the test object more thoroughly and detect more defects.

Safari and general Macintosh support is excluded from OptiRun due
to the author’s lack of access to such a machine during her work on this
project. Support for this platform is suggested as further work in Section
8.1. An advantage of OptiRun is that it can be easily extended.

Detecting more defects will likely result in improved product quality,
and by extension additional time to test the product to an even greater
extent. Additional effects may be fewer customer inquiries and higher
customer satisfaction, which could lead to increased customer confidence in
the product as well as in the company.

Another strength to OptiRun is that even though developing test scripts
is a task that requires technical staff, once the scripts are written and
uploaded, no technical background is needed to execute the tests, which
would be the case without the user interface of OptiRun.

As explained in the previous section, writing Selenium tests generally
does not require advanced programming skills and is not immensely time-
consuming. The code involved is fairly simple, as it is mostly compromised

62

7.4 Return on Investment

of locating web elements based on the class or id names, or similar, of
the elements in the HTML code, and clicking buttons or filling out text
fields. The time used for test script coding and maintenance will likely take
approximately the same amount of time as a few manual executions of the
same test, and thus provide great value in the long term.

As opposed to some other cloud testing services which execute tests on
remote machines in distant locations, OptiRun can execute tests on un-
deployed versions of the test object, that are only available on the network
that the OptiRun server is connected to. In practice, this means that the
tests uploaded to OptiRun can be executed on the test object before it is
deployed, and thus be able to identify defects earlier.

OptiRun provides a JIRA integration that will enable the testers to save
a lot of time on reporting failed test executions to the issue tracking system,
which will be of great value. Locating issues linked to a specific test can
also be done without having to open the JIRA website and search for issues
with specific attribute values that comply with the specific test.

63

8
Further Work

The Altibox testing staff are planning to adopt test automation by intro-
ducing OptiRun in the testing of TV Overalt, and have already started
discussing possible extensions. The tool provides a decent foundation for
embarking on test automation, but is in its current state by no means per-
fect. This chapter presents some suggestions for further work that could
improve the value of the product in order to further satisfy Altibox’ specific
needs as well as increasing the worth of OptiRun for more general use.

8.1 Extended Browser & Platform Support
Since the author did not have access to a Macintosh computer during the
work on this project, OptiRun does not support this operating system, and
by extension, it is also not possible to run tests in the Safari browser with
OptiRun. Additionally, mobile devices are not supported as test machines
in this project, so OptiRun can not be executed in browsers on such devices.
All of the aforementioned browsers and platforms are compatible with
Selenium, and could without further ado be included in a Selenium Grid,
and therefore in OptiRun.

Safari on Mac machines and mobile Apple devices as well as Chrome
on mobile devices running the Android operating system are all supported
by TV Overalt, which means that Altibox must include these browsers and

64

8.2 App Testing

platforms in the testing process. By extending OptiRun to also support
these, the automation coverage of TV Overalt could be greatly increased.

8.2 App Testing
Appium is an open source, cross-platform test automation framework for
use with both native and hybrid mobile apps as well as mobile web apps [30].
It supports iOS, Android and FirefoxOS, and is compatible with Selenium
Grid [31]. Including Appium in the project would extend OptiRun to also
support testing of apps for mobile devices.

For Altibox, who also has app versions of TV Overalt for Android and
iOS, this would mean that TV Overalt could have some of its testing covered
by automation in all of its forms. Since the apps looks and behaves slightly
different on different screen sizes and OS versions, the apps are currently
manually tested on a large selection of devices. This involves a great deal
of work being repeated, which could be avoided if OptiRun were extended
to include app testing as well.

8.3 Notifications
Scheduling tests for future execution and then being able to forget about
them and not having to go back to the execution log to see the result, while
still being notified if something went wrong, would be highly convenient.
This is especially true for tests that are scheduled to be executed repeatedly
or if OptiRun were to be adopted in part as a monitoring service.

This could become reality by implementing a notification service in
which OptiRun on one end sent out a message upon a failed test execution,
and an application on the other end received the message and created a
notification based on the content. One way of doing this is to use Google
Cloud Messaging (GCM) [32], or its successor, Firebase Cloud Messaging
(FCM), [33], which are both cross-platform messaging services created to
deliver messages for notification purposes. They support iOS and Android
as well as the Chrome web browser, where it can be used for browser
extension notifications. This improvement requires app development, but
FCM provides instructions for incorporating the messaging solution on their
website, so implementing minimal apps made solely for notifications should
not require too much effort. Nevertheless it is also a possibility to invest
more time and effort in the mobile app development, and create apps with
some of the same functionality as the web-based user interface of OptiRun.

65

8.4 Continuous Integration

8.4 Continuous Integration
Test automation is commonly applied to continuous integration (CI) [7]
environments, which automatically builds and tests code contained in spec-
ified repositories. It can provide frequent and rapid feedback on the code
in uploaded commits, and can thus be of excellent value for software devel-
opers.

Jenkins, a widely used CI tool, offers a Selenium plugin [34] that turns
a prepared Jenkins cluster into a Selenium Grid cluster, and thus allows for
execution of Selenium tests in the Jenkins cluster. This way, executions of
Selenium tests uploaded to OptiRun could be automatically triggered by
for instance GitHub commits. This way, the developers could get instant
feedback on their committed code, which could lead increased cost-efficiency
as bugs could be identified as early as possible.

66

9
Conclusion

This thesis presented OptiRun; a platform for optimized execution of au-
tomated web tests in distributed environments. OptiRun consists of a two
main parts. The controller is designed to manage the distributed system as
well as to allocate and execute tests, and then report the test results. The
web-based user interface was created as a means to operate the system. Its
intended use is to manage test scripts, to request immediate or planned test
executions, and to view results from previous executions. An integration
with the issue tracking system JIRA is also included, to allow for effortless
reporting of failed tests. OptiRun is written in Python, and builds on
frameworks such as Selenium and Django.

OptiX, a mechanism intended for strategically allocating tests to ma-
chines in the distributed environment, was designed and implemented as
part of the thesis. The ambition of OptiX was to minimize the combined
time needed to search for an optimal solution and to perform the test exe-
cutions of a test set. An alternative allocation mechanism was implemented
for benchmarking purposes to better evaluate the performance of OptiX.
The alternative mechanism was built on OR-tools, and was named ORX.

An extensive experimental evaluation was performed, where both mech-
anisms were tested against 12 different test sets, with the aim of evaluating
their performances in situations with varying numbers of tests and machines.
OptiX provided excellent results, and surpassed the benchmark values for

67

9 Conclusion

every test set. Judging from the results obtained in the experimental eval-
uation, OptiX performs especially well for problems with large sets of both
test and machines, and thus a broad range of possible solutions to the
allocation problem. OptiX also attained superior achievements in regard
to solving allocation problems efficiently.

OptiRun was created to support Altibox in the procedure of effectively
incorporating test automation as a practice in the testing process of their
online web service TV Overalt.

68

Appendices

A
Attachments

A.1 Program Files
The complete program files involved in this project are included in the
attachments of this document.

A.2 Printer-Friendly Version of Thesis Report
A version of this thesis report which includes some additional blank pages
to make the document suitable for printing is included in the attachments of
this document. Apart from the blank pages, the number of pages specified
on the cover page and the attachments (excluded from the print-friendly
version), the two documents are identical.

70

B
Setup Instructions

Because of network requirements, OptiRun will not work on restrictive net-
works such as eduroam. It will, however work on the unix network at the
University of Stavanger.

OptiRun supports the following platforms:
Server: Windows
Test Machine: Windows & Linux

Note that since there are a lot of steps required to set up OptiRun, and
the setup process therefore may be error-prone, 3 virtual machines with the
system already set up was submitted on a USB memory stick along with
this thesis.

B.1 Windows
The following steps are required for setup of OptiRun on Windows:

1. Download and install Python 2.7.11. https://www.python.org/
downloads/release/python-2711/

2. Add Python to path:

71

https://www.python.org/downloads/release/python-2711/
https://www.python.org/downloads/release/python-2711/

B.1 Windows

(a) Open a file explorer, right click on This PC and select Prop-
erties

(b) Click Advanced system settings and open the Advanced
tab

(c) Click Environment variables...
(d) Double click the Path variable under System variables
(e) Add the following to the variable value:

C:\Python27\;
C:\Python27\Scripts\;

3. Install PIP by entering python get-pip.py in the terminal. The script
can be found here at https://bootstrap.pypa.io/get-pip.
py.

4. Download and install Java. https://java.com/en/download/

5. To set up an OptiRun server, proceed to B.1.1, and to set up an
OptiRun test machine, proceed to B.1.2.

B.1.1 Server

The BAT script called OptiRun server (located in the OptiRun project
folder) should take care of all necessary package installations, and start
OptiRun, but if something goes wrong while executing the script, the
following packages must be installed/updated using the pip install -U
command:
django
selenium
jira
virtualenv
virtualenvwrapper
python-dateutil
beautifulsoup4
urllib3

The Python script start.py must then be executed.

This will open 2 separate terminal windows; one for the webserver and
one for the controller. The webserver is ready when the following output
appears:

72

https://bootstrap.pypa.io/get-pip.py
https://bootstrap.pypa.io/get-pip.py
https://java.com/en/download/

B.2 Linux Test Machine

1 Performing system checks...
2
3 System check identified no issues (0 silenced).
4 June 13, 2016 - 14:55:18
5 Django version 1.9.7, using settings 'dashboard.settings'
6 Starting development server at http://<IP>:80/
7 Quit the server with CTRL-BREAK.

The URL on line 6 can then be entered in a browser to open the OptiRun
user interface. (username: admin, password: theadmin)

The controller is ready with the following output appears:
1 OptiRun Controller starting up...
2 Zipping Test Machine package for Linux... Done.
3 Zipping Test Machine package for Windows... Done.
4 Listening for execution requests...
5 Listening for schedule updates...
6 Selenium Grid hub is up and running.

B.1.2 Test Machine

When the server is set up, open a browser and enter the URL specified
in B.1.1. Log in (username: admin, password: theadmin), and go to the
Download page. Click Download OptiRun Test Machine package for
Windows. Unzip the downloaded archive file and run the BAT script
called OptiRun Test Machine. This should take care of installing the
Selenium package and start an the OptiRun test machine script, but if
something goes wrong while executing the script, the Selenium package
must be installed/updated using the pip install -U selenium command.
The Python script start.py must then be executed.

Remember to approve the machine in the OptiRun user interface before use.

To run tests in Internet Explorer, Protected Mode must be set to the same
value (enabled or disabled) for all zones. Click Internet Options from
Internet Explorer’s settings menu, select the Security tab, and either check
or uncheck Enable Protected Mode for all zones.

B.2 Linux Test Machine
After having set up an OptiRun server by following the instructions in B.1
and then B.1.1, Linux machines can be set up as OptiRun test machines.

73

B.3 OR-Tools

When the server is set up, open a browser and enter the URL specified
in B.1.1. Log in (username: admin, password: theadmin), and go to the
Download page. Click Download OptiRunTest Machine package for
Linux. Unzip the downloaded archive file and run the BAT script called
OptiRun Test Machine. This should take care of installing the required
packages and start an the OptiRun test machine script, but if something
goes wrong while executing the script, the following packages must be
installed/updated using the sudo apt-get install --upgrade command:
python
python2.7
java-common
default-jre
selenium

The ChromeDriver must be made executable. Enter sudo chmod +x
drivers/chromedriver in the terminal.

The Python script start.py must then be executed.

Remember to approve the machine in the OptiRun user interface before use.

B.3 OR-Tools
To be able to run ORX, OR-tools must be installed. Installation in-
structions can be found here: https://developers.google.com/
optimization/installing#python.

74

https://developers.google.com/optimization/installing#python
https://developers.google.com/optimization/installing#python

C
User Manual

C.1 Writing and Uploading Test Scripts
1. Test scripts used with OptiRun should strictly conform to the test

script template found in the Downloads page. Execute the script
locally before uploading, to verify that it works.

2. Go to the Test Case page and click Add Test Case.

3. Give the test a suitable name, upload the test script and provide a
description (optional).

4. Test cases can be added to groups.

C.2 Executing Tests
1. Go to the Test Case page. Mark the test cases you want to execute,

and select Execute Now from the Actions menu.

2. Specify the environment you wish the tests should be executed in.
You can select multiple browsers, but only one operating system for
each test. Optionally, you can select the Í symbol to allow the test
to be executed in a random browser and operating system based on
the available test machines.

3. Click Execute.

75

C.3 Scheduling Tests

C.3 Scheduling Tests
1. Go to the Schedule page and click Add Schedule.

2. Give she Schedule a suitable title and set a start time. This will be
the time of the first schedules execution.

3. Check the Repeat checkbox if you wish for the schedule to repeat
regularly. Specify recurrence pattern and whether the schedule should
continue indefinitely or until a specified date.

4. Add any test groups or individual tests you wish should be included
in the schedule.

5. Schedule items are activated upon creation, but can be deactivated
from the Actions menu. Only activated will be executed as planned.

C.4 Managing Test Machines
1. To register a new test machine, go to the Test Machine page and

click Add Test Machine. Enter the hostname of the test machine
and hit Save.

2. Test machines can be approved or disapproved from the Actions
menu. When a test machine connects to the system, details regarding
the installed browsers and the operating system are stored.

3. Test machines that connects without being registered will automat-
ically be disapproved. They must be approved before OptiRun can
execute tests on them.

C.5 Test Results
• To view the results from test executions, go to the Execution Log

page.

• Detailed information about each test execution can be found in the
detail page of every execution.

• Failed executions can be automatically reported to JIRA from the log
list. Mark the executions you want to report, and select Report to
JIRA from the Actions menu. A comment saying that the bug has
been reproduced will be left in any open JIRA issues on the selected
tests. If there are none, a new issue will be created.

76

C.6 User Administration

• A clickable list of JIRA issues linked to each test in the execution log,
as well as their statuses, is available in the log detail page.

C.6 User Administration
• Only superusers or users with special permissions can add, edit or

delete other users.

• Only users with staff status will be able to log into OptiRun

• To register a user, go to the User page and click Add User. Enter
the username and a password, and hit Save. This will lead you to
a page where more information can be added, including active, staff
and superuser status and user permissions. The password can later
be changed by the user.

• All passwords are encrypted with a strong encryption algorithm, and
it will not be possible to extract passwords from the database.

• The content of the OptiRun web interface changes according to the
permissions of the logged in user.

C.7 Troubleshooting Test Machines
• Check that Java installed.

• Check that Python 2.7.x is installed.

• The OptiRun server may have been moved to a new location since
you downloaded your Test Machine package. Open the OptiRun user
interface and download a new package.

• Your Selenium installation might be out of date. Open a command
prompt and enter pip install -U selenium (Windows) / sudo apt-
get install –upgrade selenium (Linux).

• WebDriver files may not match your installed browsers. The drivers
are located in the drivers/ directory of the archive file, and can be
replaced if necessary (but do not change their names).

• Linux: The ChromeDriver must be made executable. Enter sudo
chmod +x drivers/chromedriver in the terminal.

• Windows: To run tests in Internet Explorer, Protected Mode must
be set to the same value (enabled or disabled) for all zones. Click

77

C.7 Troubleshooting Test Machines

Internet Options from Internet Explorer’s settings menu, select
the Security tab, and either check or uncheck Enable Protected
Mode for all zones.

78

D
Poster

The poster on the following page was presented on the annual poster pre-
sentation for master’s theses in computer science and electrical engineering
at the University of Stavanger.

79

OptiRun
JANICKE FALCH

INTRODUCTION

A Platform for Optimized Test
Execution in Distributed Environments

RESULTS

CONCLUSION

METHODOLOGY

Department of Electrical Engineering and Computer Science
Faculty of Science and Technology

University of Stavanger

IPTV Department
Altibox AS

MASTER'S THESIS JUNE 2016

Our society is becoming increasingly dependent on computers and digital media.
The importance of, and demand for, high-quality software has become
substantial. Pressure on software vendors to deliver frequent releases of quality
software requires efficiency in every stage of the development process. Software
testing is an important part of this process, as it serves to provide quality
assurance and defect detection as well as ensuring that the test object meets its
requirements. With test automation, software testing can be performed rapidly,
precisely and repeatedly.
 The telecommunications company Altibox AS has long wished to incorporate
user-level test automation in the testing process of their web application TV
Overalt, but has failed to make it a priority until now.
 This thesis presents OptiRun; a platform where Altibox can run parallel tests
in a distributed system. OptiRun is operated from a web-based interface that
was developed as part of the thesis. A major objective has been to design and
implement OptiX; a mechanism for allocating tests to machines in such a way
that the overall execution time of a test set is attempted minimized.

In order to measure and evaluate the performance of the test allocation
mechanism OptiX, which represented a major objective in this project, an
alternative allocation mechanism was also implemented. This was done using
OR-tools, Google's library for combinatorial programming and constraint
optimization. This alternative version was named ORX.
 The test data used in the experimental evaluation is divided into four
collections, each consisting of three test sets. The test sets in each collection all
represent scenarios with a given number of tests and available machines. What
separates the test sets in the same collection is the number of machines each
test in the test set can be executed on. This means that there is a varying
number of combinatorial solutions to the optimization problem. The test
durations and the specific machines each test could be executed on were
determined at random. Details about the test data is displayed in the table below:

All of the test sets were run with ORX to establish benchmark values, and with
OptiX for comparison and evaluation. The results are visualized in the graph
below, which shows the combined time used for both allocation and execution.
Note that the graph uses a logarithmic scale due to major variation in numbers.
As the graph shows, OptiX obtained better results than the benchmark values
provided by ORX for all of the 12 test sets.

OptiRun consists of two main elements; a controller, which takes care of test
allocation, execution and result reporting, and a web application where users can
upload and manage test scripts, request test executions, view execution results
and report failed test executions to the issue tracking system JIRA.
 This project was written in the simple, but powerful high-level programming
language Python. Selenium, a software testing framework for web applications,
was used for test execution, and the accompanying Selenium Grid was
incorporated to enable remote execution in distributed environments.
 In order to minimize the overall execution time of a test set where the tests
have resource constraints determining which machines they can be executed on,
the tests must be carefully allocated to machines in the distributed system. An
allocation mechanism which has been named OptiX takes care of this. The tests
are first strategically sorted before being allocated using a greedy algorithm.
After the initial allocation, OptiX attempts to improve the result by identifying two
subsets of tests currently allocated to two different machines, that when
swapped will reduce the overall execution time. This improvement step is
repeated until OptiX can no longer find an improvement, or it times out. The time
used to allocate the tests is also taken into consideration. The two figures below
show the allocation state before and after the conduction of such an
improvement in a scenario with three machines and ten tests. Note that the
durations of the tests used in this example are artificially shortened compared to
what they would normally be in a realistic situation.

OptiRun’s web-based user interface was built on the Python Web framework
Django, which allows for rapid development and seamless interaction with the
rest of the system. It was mainly written in Python, but also includes elements of
jQuery as well as some HTML and CSS.

t10
m1

m3

m2

19
16
18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

t6 t5t7

t8 t3 t4

t9 t1 t2

t10
m1

m3

m2

17
18
18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

t5

t7

t8 t3

t4

t9 t1 t2

t6

This thesis presents OptiRun; a platform for optimized test execution in
distributed environments. OptiRun consists of a controller and a web-based user
interface from which the tool can be operated.
 OptiX, a mechanism intended for strategically allocating tests with resource
constraints to machines in the distributed system, was designed and
implemented as part of the thesis. The aim of OptiX is to minimize the overall
execution time of test sets. ORX was created as an alternative allocation
mechanism. It was built on OR-tools, and was implemented for benchmarking
purposes in the evaluation process of OptiX. During the experimental evaluation,
OptiX provided better results for all of the test sets.
 OptiRun was created to support Altibox in the procedure of incorporating test
automation as a practice in the testing process of their online web service TV
Overalt.

Test Cases

COLLECTION 1
COLLECTION 2
COLLECTION 3
COLLECTION 4

1000
1000
200
200

100
10
50
10

ts1:
ts4:
ts7:
ts10:

ts2:
ts5:
ts8:
ts11:

ts3:
ts6:
ts9:
ts12:

100,
10,
50,
10,

10,
5,
10,
5,

Random
Random
Random
Random

OF TESTS # OF MACHINES # OF MACHINES TESTS ARE EXECUTABLE ON

80
7,
04

74
9,

40

75
2,

32

73
71

,0
2

74
96

,0
4

73
55

,1
6

29
9,

20

30
9,

36

30
6,

17

14
27

,0
2

15
21

,7
9

11
87

,9
3

12
58

,2
5

12
06

,4
4

78
27

,3
7

75
99

,2
7

78
03

,2
6

39
5,

39

36
8,

27

34
9,

36

14
65

,0
6

15
83

,0
6

15
61

,0
6

1

10

100

1000

10000

ts1 ts2 ts3 ts4 ts5 ts6 ts7 ts8 ts9 ts10 ts11 ts12

C ol l e ct i on 1

O pt i X ORX

C ol l e ct i on 2 C ol l e ct i on 3 C ol l e ct i on 4

74
0,

06

14
95

,6
1

Figures

1 The V-Model . 5
2 System Architecture . 17
3 Test Case Module . 19
4 Intermediate Page for Immediate Test Execution Requests . 20
5 Schedule List View . 21
6 Execution Log List View . 22
7 Execution Log Detail View 23
8 Test Machine List View . 24
9 Controller Structure . 27
10 JIRA Issue Description . 37
11 Sorting of Example Test Set 42
12 Initial Allocation of Example Test Set 44
13 Enhancement Iteration of Example Test Set 45
14 Complete Results from Experimental Evaluation on a Loga-

rithmic Scale . 53
15 Results from Test Data Collection 1 in Experimental Evaluation 54
16 Results from Test Data Collection 2 in Experimental Evaluation 55
17 Results from Test Data Collection 3 in Experimental Evaluation 56
18 Results from Test Data Collection 4 in Experimental Evaluation 57

81

Tables

1 Example Test Set . 41
2 Test Data Used in Experimental Evaluation on a Logarithmic

Scale . 51
3 Experimental Test Results 52
4 Details from Collection 1 in Experimental Evaluation 54
5 Details from Collection 2 in Experimental Evaluation 55
6 Details from Collection 3 in Experimental Evaluation 56
7 Details from Collection 4 in Experimental Evaluation 57
8 Ports Used in OptiRun . 61

82

Listings

1 Example Selenium Test Script 13
2 Selenium Test Script WebDriver Instantiation for Remote

Execution . 14
3 OR-Tools Implementation Example 15
4 Sample Shell Command for Starting Selenium Grid Hub . . 26
5 Sample Shell Command for Starting Selenium Grid Node . . 26
6 Sample Output from Selenium Standalone Server Running

as a Hub . 28
7 Database Communication Using Abstraction API 33
8 High-Level Directory Structure & Key Files of the OptiRun

Project . 34
9 Model Implementation . 35
10 Implementation of Model in Administrator Interface 35
11 Issue search, commenting and creation using the JIRA REST

API . 37
12 Recursion Rule . 38
13 Python Code for OptiX Sorting Step 41
14 ORX Multiprocessing . 49

83

References

[1] Atlassian, Atlassin JIRA. URL: https://www.atlassian.com/
software/jira.

[2] Spillner, A., Linz, T. and Schaefer, H., 2011, Software Testing Foundations,
3rd Edition.

[3] Institute of Electrical and Electronics Engineers, 1044-2009 IEEE Standard
Classification for Software Anomalies, 2010.

[4] Craig, R. D. and Jaskiel, S. P., 2002, Systematic Software Testing. URL:
http://flylib.com/books/en/2.174.1.22/1/. Accessed: 2016-03-
14.

[5] Roberts, J., 2013, Automated Testing: End to End, Plural-
sight. URL: https://app.pluralsight.com/library/courses/
automated-testing-end-to-end/table-of-contents. Accessed:
2016-02-11.

[6] Mitchell, J. L. and Black, R., 2015, Advanced Software Testing - Vol. 3,
2nd Edition: Guide to the ISTQB Advanced Certification as an Advanced
Technical Test Analyst.

[7] Fowler, M., Continuous Integration. URL: http://martinfowler.com/
articles/continuousIntegration.html. Accessed: 2016-03-13.

[8] Marriott, K. and Stuckey, P. J., 1998, Programming with Constraints - An
Introduction.

[9] M. Mossige, A. Gotlieb, H. Meling, and M. Carlsson. Optimal Test Execu-
tion Scheduling on Multiple Machines with Resource Constraints. Technical
report.

[10] Sauce Labs, Sauce Labs Press Coverage. URL: https://saucelabs.com/
press-room/press-coverage/news-2, . Accessed: 2016-03-14.

[11] Sauce Labs, Sauce Labs Features. URL: https://saucelabs.com/
features, . Accessed: 2016-03-14.

84

https://www.atlassian.com/software/jira
https://www.atlassian.com/software/jira
http://flylib.com/books/en/2.174.1.22/1/
https://app.pluralsight.com/library/courses/automated-testing-end-to-end/table-of-contents
https://app.pluralsight.com/library/courses/automated-testing-end-to-end/table-of-contents
http://martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/articles/continuousIntegration.html
https://saucelabs.com/press-room/press-coverage/news-2
https://saucelabs.com/press-room/press-coverage/news-2
https://saucelabs.com/features
https://saucelabs.com/features

References

[12] H. Furubotten. The Autograder Project: Improving software engineering
skills through automated feedback on programming exercises. Technical re-
port.

[13] Swaroop, C. H., 2004, A Byte of Python. URL: http://python.
swaroopch.com/. Accessed: 2016-02-12.

[14] SeleniumHQ, Selenium – Web Browser Automation. URL: http://www.
seleniumhq.org/, .

[15] SeleniumHQ, Selenium WebDriver – Selenium Documentation. URL:
http://www.seleniumhq.org/docs/03_webdriver.jsp, . Ac-
cessed: 2016-02-02.

[16] SeleniumHQ, Selenium with Python – Selenium Python Bindings 2
Documentation. URL: http://selenium-python.readthedocs.io/
index.html, .

[17] Python, 25.3. unittest – Unit Testing Framework – Python 2.7.12rc1
Documentation. URL: https://docs.python.org/2.7/library/
unittest.html.

[18] Distributed Testing with Selenium Grid. URL: https://www.packtpub.
com/sites/default/files/downloads/Distributed_Testing_
with_Selenium_Grid.pdf, . Accessed: 2016-03-13.

[19] Django Software Foundation, Django: The Web Framework for Perfection-
ists with Deadlines. URL: https://www.djangoproject.com, . Ac-
cessed: 2016-01-31.

[20] Holovaty, A. and Kaplan-Moss, J., 2007, The Definitive Guide to Django:
Web Development Done Right. URL: http://www.djangobook.com/en/
2.0/index.html.

[21] Google, OR-Tools User’s Manual. URL: https://or-tools.
googlecode.com/svn/trunk/documentation/user_manual/
index.html. Accessed: 2016-04-19.

[22] The Linux Information Project, Standard Error Definition. URL: http:
//www.linfo.org/standard_error.html, .

[23] The Linux Information Project, Standard Output Definition. URL: http:
//www.linfo.org/standard_output.html, .

[24] Python, 17.2. socket – Low-Level Networking Interface — Python 2.7.12rc1
Documentation. URL: https://docs.python.org/2.7/library/
socket.html.

[25] Anderson, T. and Dahlin, M., 2011, Operating Systems: Principles and
Practice, Beta Edition.

[26] SQLite, About SQLite. URL: https://www.sqlite.org/about.html.

85

http://python.swaroopch.com/
http://python.swaroopch.com/
http://www.seleniumhq.org/
http://www.seleniumhq.org/
http://www.seleniumhq.org/docs/03_webdriver.jsp
http://selenium-python.readthedocs.io/index.html
http://selenium-python.readthedocs.io/index.html
https://docs.python.org/2.7/library/unittest.html
https://docs.python.org/2.7/library/unittest.html
https://www.packtpub.com/sites/default/files/downloads/Distributed_Testing_with_Selenium_Grid.pdf
https://www.packtpub.com/sites/default/files/downloads/Distributed_Testing_with_Selenium_Grid.pdf
https://www.packtpub.com/sites/default/files/downloads/Distributed_Testing_with_Selenium_Grid.pdf
https://www.djangoproject.com
http://www.djangobook.com/en/2.0/index.html
http://www.djangobook.com/en/2.0/index.html
https://or-tools.googlecode.com/svn/trunk/documentation/user_manual/index.html
https://or-tools.googlecode.com/svn/trunk/documentation/user_manual/index.html
https://or-tools.googlecode.com/svn/trunk/documentation/user_manual/index.html
http://www.linfo.org/standard_error.html
http://www.linfo.org/standard_error.html
http://www.linfo.org/standard_output.html
http://www.linfo.org/standard_output.html
https://docs.python.org/2.7/library/socket.html
https://docs.python.org/2.7/library/socket.html
https://www.sqlite.org/about.html

References

[27] Django Software Foundation, Applications – Django documentation –
Django. URL: https://docs.djangoproject.com/en/1.9/ref/
applications/, .

[28] Gustavo Niemeyer – Labix, python-dateutil – Labix. URL: https://labix.
org/python-dateutil.

[29] Cormen, T. H., Leiserson, C. E., Rivest, R. L. and Stein, C., 2009, Intro-
duction to Algorithms - Third Edition.

[30] Appium, Appium – Getting Started. URL: http://appium.io/
getting-started.html?lang=en, .

[31] Appium, Appium – API Reference. URL: http://appium.io/slate/
en/v1.2.3/, .

[32] Google, Google Cloud Messaging. URL: https://developers.google.
com/cloud-messaging/.

[33] Google, Firebase Cloud Messaging. URL: https://firebase.google.
com/docs/cloud-messaging/.

[34] Jenkins, Jenkins Wiki – Selenium Plugin. URL: https://wiki.
jenkins-ci.org/display/JENKINS/Selenium+Plugin.

86

https://docs.djangoproject.com/en/1.9/ref/applications/
https://docs.djangoproject.com/en/1.9/ref/applications/
https://labix.org/python-dateutil
https://labix.org/python-dateutil
http://appium.io/getting-started.html?lang=en
http://appium.io/getting-started.html?lang=en
http://appium.io/slate/en/v1.2.3/
http://appium.io/slate/en/v1.2.3/
https://developers.google.com/cloud-messaging/
https://developers.google.com/cloud-messaging/
https://firebase.google.com/docs/cloud-messaging/
https://firebase.google.com/docs/cloud-messaging/
https://wiki.jenkins-ci.org/display/JENKINS/Selenium+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Selenium+Plugin

	Introduction
	Origin
	Motivation
	Purpose
	Outline

	Background
	Software Testing
	The V-Model
	Black-Box & White-Box Testing
	Test Automation

	Constraint Programming & Optimization
	Related Work
	TC-Sched
	Sauce Labs
	The Autograder Project

	Technology
	The Python Programming Language
	Selenium
	Selenium WebDriver
	Selenium Grid

	Django
	OR-Tools

	System Overview
	Architecture
	User Interface
	Home Screen
	Authentication & Authorization
	Test Case Module
	Test Group Module
	Scheduling Module
	Execution Log
	Test Machines
	Other

	Design & Implementation
	Selenium Grid Integration
	Controller
	Selenium Server Listener
	Test Machine Manager
	Request Listener
	Schedule Listener
	Test Executor & Queue System

	Database
	Web-Based User Interface
	Models
	Admin
	Issue Tracker Reporting
	Event Recurrence

	Test Allocation Mechanism
	OptiX
	Preliminary Sorting
	Initial Allocation
	Improvement Iterations

	ORX

	Evaluation
	Experimental Evaluation
	Test Data
	Test Data Collection 1
	Test Data Collection 2
	Test Data Collection 3
	Test Data Collection 4
	Conclusion of Experimental Evaluation

	Threats to Validity
	Discussion
	Return on Investment

	Further Work
	Extended Browser & Platform Support
	App Testing
	Notifications
	Continuous Integration

	Conclusion
	Appendices
	Appendix Attachments
	Program Files
	Printer-Friendly Version of Thesis Report

	Appendix Setup Instructions
	Windows
	Server
	Test Machine

	Linux Test Machine
	OR-Tools

	Appendix User Manual
	Writing and Uploading Test Scripts
	Executing Tests
	Scheduling Tests
	Managing Test Machines
	Test Results
	User Administration
	Troubleshooting Test Machines

	Appendix Poster

