
Front page for master thesis

Faculty of Science and Technology

Decision made by the Dean October 30th 2009

Faculty of Science and Technology

MASTER’S THESIS

Study program/ Specialization:

Master of Science in Computer Science

Spring semester, 2016

Open

Writer: Dongjing Liu

…………………………………………
(Writer’s signature)

Faculty supervisor:

Morten Mossige

Thesis title:

Fully Automated Graphical User Interface (GUI) Testing With Virtual Machines

Credits (ECTS): 30

Key words:

Fully automation

GUI testing

Virtual machines

Test case scheduling

Test case prioritization

 Pages: 93

 Enclosure: A zip attachment

 Stavanger, 15 June 2016

Fully Automated Graphical User Interface(GUI)
Testing with Virtual Machines

a dissertation presented
by

Dongjing Liu
to

The Department of Computer Science

in partial fulfillment of the requirements
for the degree of

Master of Computer Science
With supervisor
Morten Mossige

University of Stavanger
Stavanger, Norway

June 2016

acknowledgments

Here and now, I would like to express my sincere thanks to all who have helped me make this thesis

possible and better. Firstly, I am deeply grateful to my honorable supervisor, Morten Mossige, who

has checked through my thesis with patience and has given me instructive suggestions.

Then special thanks also goes to the staff in ABB Bryne, especially, Andreas Skaar, who is very kind

and generous in offering advice, as well as to the teachers and professors who have taughtme over the

past two years of study in University of Stavanger.

Finally, I am very grateful to my lovely friends and families who have offered selfless support to me.

Abstract
An approach, entitled fully automated GUI testing with virtual machines is proposed in the thesis.

Currently, GUI testing relies a lot on human involvement due to its unique properties. The thesis

tries to address the problem by locatingGUI testing in virtual machines. Through automating virtual

machines, the operations involve in testing are automated. Two virtual machine applications, respec-

tively VMWareworkstation andHyper-V, are studied in the thesis. Based on both theoretical analysis

and practical use, VMWare workstation is proven to be more suitable for GUI testing.

The result of the implementation shows obviously that the performance of fully automatedGUI test-

ing with virtual machines is much more efficient than manual tests. Especially, when multiple test

cases are performed in parallel, the efficiency can be enhanced significantly.

An optimized solution is proposed to further shorten the round trip time, which is named prioritized

test case scheduling. The optimized solution aims to detect all underlying faults in the shortest time.

With both duration and priority introduced to a test case, the weights of all test cases over final goal

is calculated by Analytic Hierarchy Process (AHP)method. Through a simple example study, the re-

sult of the optimized solution is proven to be more positive than only test cases duration scheduling

and only test cases prioritization.

Contents

1 Introduction 6
1.1 Background and Motivation . 6
1.2 Contributions and Outline . 7

2 Virtual Machine Technology 9
2.1 Virtual Machine Introduction . 9
2.2 Testing in Virtual Machines . 10
2.3 Principle of VMWare workstation . 11
2.4 Principle of Hyper-V . 13
2.5 Simple Comparison of VMWare and Hyper-V . 14

3 Automating Virtual Machines 18
3.1 Principle of Fully Automated GUI Testing . 18
3.2 Automating VMWare Workstation . 20
3.3 Automating Hyper-V . 29
3.4 Comparison of VMWare and Hyper-V . 40

4 Automated GUI Testing 43
4.1 Graphical User Interface (GUI) . 43
4.2 Automated GUI testing . 47
4.3 Coded User Interface test (CUIT) . 50
4.4 Evaluation of Coded UI test . 54
4.5 Evaluation of Fully automated GUI testing with virtual machines 59
4.6 Failure Analysis . 63

5 Test Cases Scheduling in Virtual Machines 67

1

CONTENTS

5.1 Introduction of Test Cases Scheduling . 67
5.2 Test cases prioritization . 74
5.3 Prioritized Test Cases Scheduling in Multiple Virtual Machines 77

6 Conclusion and Further Work 85
6.1 Conclusion . 85
6.2 Further Work . 86

References 89

2

Listing of figures

1.1.1 GUI testing with notepad as example . 7

2.3.1 Architecture of hosted hypervisor. 13
2.4.1 Architecture of hosted hypervisor. 14
2.5.1 Performance of host machine for VMWare and Hyper-V 16

3.1.1 Diagram of fully automated solution . 19
3.1.2 Workflow of fully automated solution . 20
3.2.1 Code map for VMWare automation class . 22
3.2.2 Variables and methods of VMWare automation class 26
3.2.3 A brief overview of multithreading . 27
3.3.1 Code map of Hyper-V automation class . 30
3.3.2 Remote connection diagram in Windows OS . 36
3.3.3 Variables and methods in Hyper-v automation class 39

4.1.1 Graphical User Interface of notepad application 44
4.1.2 Hierarchy structure of GUI objects in untiled notepad 45
4.2.1 Brief overview of automated GUI testing methods 48
4.3.1 Architecture of record and replay engine in Coded UI test 52
4.3.2 Workflow of Coded UI test . 53
4.4.1 Installation/Uninstallation GUI testing workflow 56
4.4.2 GUI of SimpleAPP and Robview 5 for GUI functional test 58
4.5.1 Test duration for different set of tests in different manner 61
4.5.2 Round trip time for different sets of GUI testing with different solutions 62
4.6.1 Action failure in Move User File application . 65

5.1.1 ”Almost” optimal solution for test case scheduling with greedy algorithm 70

3

LISTINGOF FIGURES

5.1.2 Round trip time for tests with different number of simultaneous manipulation vir-
tual machines . 73

5.2.1 Rate of fault detections with two different test cases sequence 74
5.2.2 A simple case to illustrate 2-way interactions criteria 76
5.3.1 AHP layers for solving prioritized test case scheduling problem 80
5.3.2 Solution for prioritized test cases scheduling with AHP 83
5.3.3 solution with only test prioritization and only test duration scheduling 83

4

List of Tables

2.5.1 The configuration of host and virtual machine in VMWare workstation 15
2.5.2 The configuration of host and virtual machine in Hyper-V 15
2.5.3 Comparison of two type hypervisors. 17

3.4.1 Comparison of VMWare and Hyper-V . 42

4.3.1 Comparison of different record/replay tools . 51
4.4.1 Execution time of Insatllation&Uninstallation test for TestAPP and RobView 5 . . 57
4.4.2 Execution time of functional test for SimpleAPP & RobView 5 59
4.5.1 Execution time of sets of GUI tests in various virtual machines 60

5.1.1 A simple case for test case scheduling . 69
5.1.2 Assumed duration of each test case in GUI testing for RobView 72
5.3.1 Test cases with different priority and duration . 78
5.3.2 Criteria for building judgement matrix . 80

5

1
Introduction

This chapter will give a brief description of the thesis, starting with essential background informa-
tion to the motivation for this thesis. Also basic concepts concerning this thesis are explained, The
structure of entire thesis is presented at the end of this chapter .

1.1 Background andMotivation

To date, there are numerous Graphical User Interface (GUI) applications emerging in both individ-
uals’ daily lives and various industrial fields. Undoubtedly, the existence of GUI applications bring
great convenience tousers’ operations. However, the complexity also increases difficulties to software
testing. As forGUI testing, how to guarantee thoseGUI applications performproperly as expected is
critical in software development life cycle. A simple example of GUI testing is shown as figure 1.1.1,
the outcome of a click onOpen under Filemenu should be theOpenwindows as the picture shows,
any other outcome indicates that the GUI application does not behave as expected, thus fault exists
in the application.

6

1.2. CONTRIBUTIONS ANDOUTLINE

Figure 1.1.1: GUI testing with notepad as example

From the example studied above, GUI testing is critical in guaranteeing the functionalities of GUI
applications. As a consequence, it has given rise to academic and industrial interest and concern.
Unlike traditional software testing, GUI testing is more complicated and time-consuming to cover
all functions provided by the application, which is the reason why current GUI testing relies a lot on
manual assistance.

An efficient GUI testing solution can not only improve the performance of application under test
but also free human beings from tedious and repeated testing work. Therefore automating GUI test-
ing is important. So far, researchers have proposed some effectivemethods to realizeGUI testing, e.g.
Visual GUI testing by Eimil et.all [9], where pattern recognition technology is used in testing process
to help find specific GUI elements. While Finite State Machines are implemented in GUI testing by
Hu[16] through modeling testing process in mathematic way, similar with Markvove chain adopted
in GUI testing process[7] by Yin . Nevertheless, all approaches proposed focus on generating test
cases, while some manual assistance is still required in those approaches, e.g. configuring system
where GUI tests are located, to certain states before testing, or shutting down system after tests are
complete. Thus human beings are still involved in repeated and redundant work. The motivation
of the thesis is to provide an automated solution to decrease human intervention as much as possi-
ble in the testing process. The solution proposed in this thesis seeks to address the problem with an
approach known as fully automated GUI testing.

1.2 Contributions andOutline

The thesis contributes a novel fully automated GUI testing solution. Essentially, the solution takes
virtualmachines as carrier to executeGUI testing so that all operations involved in testing process are
automated. Multiple test cases execution is proposed in this thesis, which optimizes fully automated

7

1.2. CONTRIBUTIONS ANDOUTLINE

solution greatly. The evaluation of fully solution is presented in this thesis. Furthermore, a novel test
schedulingmethodwith greedy algorithm adopted is illustrated. Moreover, detailed comparison and
analysis about two virtual machine applications, VMWare workstation andHyper-V respectively, are
shown so that the better one is selected to implement fully automated GUI testing. The remaining of
the thesis is organized as below�

Chapter 2 : studies the basic principle of virtual machine technology. The advantages of locat-
ing tests in virtual machines are listed, following with the introduction of VMWare workstation and
Hyper-V. And a simple performance comparison is given at the end.

Chapter 3 : describes detailed implementation with regard to automating VMWare workstation
and Hyper-V. Besides, comparison of VMWare and Hyper-V in terms of practical use is presented.

Chapter 4 : focuses on implementation of fully GUI testing with a tool provided by Visual studio.
Theory concerning GUI testing is studied in chapter 4 as well. The final results of implementation of
fully automated solution are analyzed too.

Chapter 5 : proposes a novel test cases scheduling solution for the fully automated approach. Fur-
thermore, priority is introduced to each test case, a combination of test cases execution duration and
priority leads to a new method to improve the efficiency with Analytic Hierarchy Process (AHP)
used. A simple case is evaluated with the novel solution.

Chapter 6 : draws a conclusion of the entire thesis. Also further work about the solution in indus-
trial evaluation is discussed.

8

2
VirtualMachine Technology

Since the fully automated GUI testing is implemented in virtual machines, it is essential to study the
basic technology of virtual machines. Furthermore, the advantages of performing testing in virtual
machine will be listed in this chapter, following with the principle and architecture of the most com-
mon virtual machine application, VMWare and Hyper-V respectively. At last a comparison of these
two applications are made in a simple manner.

2.1 VirtualMachine Introduction

Virtualization technology iswidelyused in computing. It refers to creating virtual version (not actual)
of a certain item, which can be computer hardware platforms, operating systems, storage devices and
so on, In the field of computer science, virtualization, in general sense, is considered as a method of
logically dividing the system resources provided bymainframe computers into different applications.
For example, in some cases, the memory needed by users may be much larger than the memory size
of a physical machine. With virtualization technology, part of the hard disk space can be turned into
memory space. Another example of virtualization technology is Virtual Private Network (VPN), a
“private” network is virtualized from public network, hence, a secure and stable VPN can be used by
users. The virtual machine technology can be traced back to 1960s when IBM divided a powerful

9

2.2. TESTING IN VIRTUALMACHINES

machine into several small “pieces” so that system and resources management can be done in a piece
level for different purposes.

A virtual machine is, in essence, an application environment or operating system (OS) that is in-
stalled on software which emulates dedicated hardware. For users, a virtual machine is identical to a
physical machine, for it has identical functions as a physical machine.

Virtual machines are typically created through software, and one or more virtual machines can
be generated on the same host machine. Those virtual machines works normally as real physical
machines, and users can install application or get access to internet in virtual machines. From the
perspectiveof hostmachine, they areonly processes. However for the application in virtualmachines,
they are real computers. Before further discussion, the concepts below should be illustrated carefully
because they will appear frequently in the thesis.

Virtualmachine (VM) is a virtualizedmachine emulated by software (e.g. VMWare orHyper-V),
logically, it is a physical machine.

Hostmachine is the existing physical machine with specific hardware details.
HostOperating system (hostOS) is the operating system that runs on host machine. For a host

machine, there is only one host OS.
GuestOperating system (guestOS) is the operating system that runs on virtual machines. Each

virtual machine can be equipped with an unique guest OS.

2.2 Testing in VirtualMachines

Considering the situation that there are several virtual machines existing in a single host machine,
these virtualmachineswork independentlywithout interference to each other. In this case, a physical
machine can be deemed as being able to runmultiple operating systems simultaneously, which brings
out the inspiration of fully automated GUI testing in this thesis.

Locating tests in virtual machine is not a novel concept,With regard to the benefits of testing GUI
application in virtual machines, the following items illustrate them well

1. Typically, for software testing, developers tend to test applicationwith different configurations
in various environments so that the robustness can be enhanced. However, in this thesis, for
a physical machine without an embedded system adopted, the best way to test application in
different environments is to install multiple operating systems. Generally, there are two ways
to construct multiple OSes in a physical machine. Firstly, installing multiple hard disks,with
each storing an operating system. Obviously the approach is not secure enough, becauseMain
Bootable Record (MBR) is vulnerable to get attacked, and in worst case, all operating systems

10

2.3. PRINCIPLE OF VMWAREWORKSTATION

can be damaged. The second approach is to adopt the virtual machine software. As long as the
hostmachine is powerful enough, multiple virtual machines canwork properly. Besides, using
virtual machines is also an economic and secure solution.

2. One of the most attractive points of using virtual machines for testing is that the processes
in host machine will not be affected by any operations on application under test. Vice versa,
the system or applications running on host machine will not influence the testing in virtual
machine. Isolation is built between host machine and virtual machines.

3. Under some circumstances in which operating system is attacked via a host machine, damage
may require a complete system reinstallation. This is very expensive when considering the
files or application inside the host machine. Nevertheless, for a virtual machine, it is cost-free
to reinstall , and virtual machine programs generally provide function for users to revert to
certain state of guest OS, which makes reinstalling system unnecessary.

4. With snapshot, some repeated and tedious steps involved in testing process (e.g. some config-
uration to systems) can be avoided through taking snapshot and reverting to the state, which
improves the efficiency and avoids manual assistance involved.

The advantages presented abovemake virtual machine a good approach to execute testing. Virtual
machines can provide testing of a diverse environments in an inexpensive and secure way. The iso-
lation from host machine system also make an independent testing environment possible. Last but
not least, some practical functions provided by virtual machine software bring convenience for guest
OS management, which facilitates testing to some extent.

To install virtual machines in a host computer, a virtual machine software is a prerequisite. How-
ever, there existmanydifferent virtualmachine applications on themarket, e.g. VMWare byVMWare
company, Hyper-V provided by Microsoft, or Xen designed by Oracle. They all have their respective
pros and cons. Finding a proper one for GUI testing is one of the targets in this thesis. Considering
that VMWare and Hyper-V are widely used for Windows operating systems, and Windows OSes are
chosen as the platforms for GUI testing in this thesis. Consequently, a detailed study and analysis
about VMWare and Hyper-V will be presented in the following section.

2.3 Principle of VMWareworkstation

VMWare is a company established in 1998. It provides the world-renowned virtualization infras-
tructure solutions and cloud infrastructure solutions provided are world famous. Among all the so-
lutions, virtual machine applications it designed are popular both in industrial filed and academic

11

2.3. PRINCIPLE OF VMWAREWORKSTATION

areas. The release of VMWare workstation, VMWare VSphere and Fusionmake applying virtual ma-
chines more easier. Concerning the features of each product, Fusion is designed mainly for Mac OS
X, while VSphere is set for enterprise use, and as a result many complicated function included, e.g.
VCenter, database and active directory domain and so on , these functions are unnecessary for this
thesis. VMWare workstation therefore is an appropriate application.

VMware Workstation Pro takes advantage of the latest hardware to replicate server, desktop and
tablet environments in a virtual machine. Thus Running applications on a breadth of operating sys-
tems including Linux, Windows and more at the same time on the same PC without rebooting is
possible. VMware Workstation Pro makes it really easy to evaluate new operating systems like Win-
dows 10, and to test software applications and patches. Reference architectures are in an isolated
and safe environment. The core technology of virtual machine is hypervisor, also known as virtual
machine monitor (VMM). Logically, hypervisor is a platform between host machine hardware and
software, it enables one or more operating systems to run on a host machine in parallel. From the
definition, it is apparent that hypervisor can get access to all the hardware resources, including hard
disk, memory etc. it schedules the resources allocation to each virtual machine, while preventing vir-
tual machines from interfering with each other. There exists two types of hypervisor.Though each of
them has its’ advantages and disadvantages, it is worthwhile to study and analyze the similarities and
differences between them.

Hosted hypervisor (Type 2 hypervisor)

Hosted hypervisor, also called type 2 hypervisor, is a virtual machine monitor that is installed as
an application on the host operating system. It is what VMWare workstation is built with.

As figure 2.3.1 shows, hosted hypervisor relies on host operating system for its operations. Hosted
hypervisor locates on top of host OS together with other processes in host machine, and virtual ma-
chines are built on top of hypervisor. In the background, hosted hypervisor schedules virtual ma-
chines by coordinating calls for memory, CPU, hard disk, network and other resources through the
host operating system. Theworking pattern of hosted hypervisormake it easy for an enduse to imple-
ment virtual machines on a personal computing device. The typical application of type 2 hypervisor
is VMWare workstation.

One of the greatest benefits of a type 2 hypervisor is that it can take advantage of any hardware the
host OS has driven for. Alsomonitoring or backing up from the host OS ismuch easier with a hosted
hypervisor due to its architecture. Last but not least, the penalty of this type hypervisor is consider-
ably low, which makes it suitable for development. VMWare workstation adopts hosted hypervisor,

12

2.4. PRINCIPLE OFHYPER-V

Figure 2.3.1: Architecture of hosted hypervisor.

the advantages mentioned above make it appropriate for implementing GUI testing solution.

2.4 Principle ofHyper-V

Hyper-V is a product designed by Microsoft, which was released firstly in 2008 as a part of Windows
Server 2008. It adopts the architecture of bare-meta hypervisor. There are two ways to create virtual
machines with Hyper-V, para-virtualization and full-virtualization respectively. The former can be
used when guest operation system is the same with host OS, and generally, they are same version of
windowsOS. Best performance can be gained for virtual machines in para-virtualization. While full-
virtualization requires that the CPU supports virtualization (inter-VT or AMD-V) so that different
guest operation systems from host one can be created. In order to use hyper-V, some demands to-
wards hardware must be satisfied, i.e CPU architecture must be x86 compatible, and that only ones
that meets the requirements are from intel or AMD64. the CPU must have Data Execution Protec-
tion (DEP). Minimum 2GB memory is necessary, Windows Server 2008 or later and Windows 8 or
later operation system are required too. The hypervisor of Hyper-V is bare-metal hypervisor, also
known as type 1 hypervisor.

Bare-metal hypervisor (Type 1 hypervisor)

Bare-metal hypervisor, which has gained more popularity in recent years, runs directly on host
machine hardware, not relying on any operation system. It realizes resource allocation, hardware
control and virtual machine monitor by taking resources in host machine directly instead of through

13

2.5. SIMPLE COMPARISONOF VMWARE ANDHYPER-V

host OS. Obviously, high-performing can be achieved with this working pattern. Typical products
are hyper-V and VMWare vSphere. Compared with a hosted hypervisor, it takes little RAM and is
relatively faster to reinstall if needed.

Windows Server 2008 must be run in ”Parent” partitions as shown in figure 2.4.1 . A virtualiza-
tion stack is included in ”Parent” partition, where management tools and some automation tools are
located. Also in each child virtual machine, all operation systems are run in partitions. In addition,
VMBus ,which is a high performance architecture included in Hyper-v , is designed to realize com-
munication between parent partition and child partition, which means Server 2008, Windows Vista,
Winders Server 2003, andXen-enabledLinux are able to pass hardware requests along a newmemory
pipeline.

Figure 2.4.1: Architecture of hosted hypervisor.

2.5 Simple Comparison of VMWare andHyper-V

Basic information concerning various virtual machine programs is presented in the previous section.
However, whichof these virtualmachine applications, is better ormoreproper forGUI testing iswhat
this thesis tries to find out. Considering that GUI testing in this thesis is set to run on Windows OS.
Two excellent virtual machine applications both with superior performance on Windows platform
namely VMWare Workstation and Hyper-V , are chosen as candidates for GUI testing in this thesis.
The following part aims to compare these two applications in a simple manner.

14

2.5. SIMPLE COMPARISONOF VMWARE ANDHYPER-V

2.5.1 VMWare performance VS Hyper-V performance

Apparently, the most straightforward criteria of comparing VMWare and Hyper-V is to evaluate the
host machine performance when a virtual machine is starting, because in the starting process, both
hypervisors will work to schedule the hardware resources to guarantee virtual machines booting suc-
cessfully. Therefore the host machine performance in the virtual machine starting process can reflect
the quality of the software effectively. The performance of a host machine for VMWare workstation
and Hyper-v is shown as figure 2.5.1 (a) and (b) separately. The configurations of the host machine
and the virtual machines for VMWare workstation andHyper-v are listed in table 2.5.1 and 2.5.2 sep-
arately:

Table 2.5.1: The configuration of host and virtual machine in VMWare workstation

Parameters Hostmachine Virtual machine

Processor Intel Core i7, CPU @2.00 GHz 1

Memory 8.00 GB Installed 1GB

HardDisk 932 GB memory 40 GB

Operating System Windows 8 Pro Windows 7

Table 2.5.2: The configuration of host and virtual machine in Hyper-V

Parameters Hostmachine Virtual machine

Processor Intel Core i7, CPU @2.40 GHz 1

Memory 16.00 GB Installed 1GB

HardDisk 119 GB memory 40 GB

Operating System Windows 10 Windows 7

The reason why VMWare workstation and Hyper-v are not installed in the same host machine is
that they are not compatible to each other. The two different host machines have different hardware
settings, which make quantitative analysis impossible, However the performance for two softwares
can still be qualitatively reflected. Thus a rough comparison can be made.

Figure 2.5.1 (a) shows the performance of host machine when a virtual machine with guest OS
Windows 7 installed in VMWare workstation is powering on. Figure 2.5.1 (b) illustrates the perfor-
mance of host machine when a virtual machine installed in Hyper-V is starting. Due to the different

15

2.5. SIMPLE COMPARISONOF VMWARE ANDHYPER-V

(a) (b)

Figure 2.5.1: Performance of host machine for VMWare and Hyper-V

settings with host machines, precise discrepancy is impossible to obtain. However, from figure 2.5.1,
it is still easy to tell that Hyper-v consumes less host machine resources, especially in terms of mem-
ory and disk usage. It also proves that VMWare workstation occupies more host OS resources due
to the principle of a hosted hypervisor, according to which VMWare is considered as a process in the
host machine, resources will be scheduled through host OS. While for Hyper-V, it is independent
from the host OS, and resources are coordinated directly from host machine hardware.

2.5.2 Hosted Hypervisor VS Bare-metal Hypervisor

Hypervisor, which in essential is a set of code, is the core component of virtual machines. It enables
various guest operation systems to share a single host machines’ hardware resources, like processor,
memoryand soon. Inotherwords,Hypervisor controls thehostmachine resourcesby allocatingpro-
cessor or memory to virtual machines upon requests, and ensures that different virtual machines do
notdisturb eachother,which is the reasonwhyhypervisor is calledVirtualMachineMonitor(VMM).
According to the architecture, hypervisors are classified into two types, bare-metal or native hyper-
visors , also known as type-1 hypervisors, and hosted hypervisors, which is called type-2 hypervisors
too.

1. Nativeorbare-metal hypervisor, also called type 1 hypervisor. This hypervisor runs directly
on host machine hardware. It realizes resources allocation, hardware control and virtual ma-
chine monitor by emulating directly from host machine hardware. A strict requirement on
hardware is unavoidable for the usage of type 1 hypervisor. However, an excellent virtual ma-
chine performance is possible with type 1 hypervisor.

16

2.5. SIMPLE COMPARISONOF VMWARE ANDHYPER-V

2. Hosted hypervisor, requires a host operation system. This hypervisor emulates hardware
resources in the host operation system instead of directly from host machine hardware, In this
way, type-2 hypervisor is an application in host OS . Although it can monitor and allocate
resources, it is limited by the resources in host OS. Nevertheless, easy use and management is
the reason why it is still well received.

From the analysis mentioned above, we know that both hosted and bare-metal hypervisors have
their own advantages and disadvantages, e.g. It is easy for hosted hypervisor to manage virtual ma-
chines in host OS with a low cost, while bare-metal hypervisor takes little hardware resources from
host machine, and therefore a virtual machine runs fast with it. But it is picky concerning hardwares,
whichmeans not all machine can implement bare-metal hypervisors. Similarities and differences lies
with many other aspects too, the table below shows detailed comparisons in a theoretical way.

Table 2.5.3: Comparison of two type hypervisors.

Parameters Bare-metal hypervisor Hosted hypervisor

Performance High-performance,low cost Low-performance, high cost

Compatibility Specific hardware of OS required No specific hardware requirement

Easy to use Easy to install, complicated configura-
tion

Easy to install, configure and use

Availability Available if host machine is out of order Not available

Reliability High reliability due to quality-assurance No QA

Management Batch VMs management available Single VM management required

Cost Expensive to extend advanced features Free, or low-cost

Extensibility High, hundreds of VMs supported Limited

Products Microsoft Hyper-V, Oral VM, Linux
KVM etc.

VMWare workstation, Microsoft
Virtual PC

The differences mentioned in the table are actually the differences lying behind VMWare and
Hyper-V. From the table 2.5.1 we can tell that, the bare-metal hypervisor, which Hyper-v relies on,
has a better performance and lower cost with regard to occupying host OS resources. However, it
a has strict requirement on host machine’s hardware, while VMWare workstation is very easy to use
andmanage. In summary,Hyper-v is suitable for large-scale implementation of virtualmachineswith
a low hardware cost and management achieved. If there are only a small number of virtual machines
to be used, VMWare is a better choice due to its convenience to use.

17

3
Automating VirtualMachines

Basic knowledge about virtual machines is studied in previous chapter, and a simple comparison
about VMWareworkstation andHyper-V is presented. In this chapter, the principle andwork flowof
fully-automatedGUI testingwith virtualmachineswill be given. Besides, the corresponding automa-
tion implementation involved with virtual machines is demonstrated for both VMWare workstation
and Hyper-V. A detailed comparison in terms of practical use is shown finally, and virtual machine
software for fully automated GUI testing is chosen according to the comparison.

3.1 Principle of Fully AutomatedGUI Testing

Currently, for GUI testing, most of research work has put the weight on proposing new approaches
to generate GUI test cases, e.g. Marlon et al, proposed a test case generation based on Unified Mod-
eling Language (UML)[37], while Emil et al[9] introduced a new technology using image recogni-
tion to identify the GUI objects. While a Finite State Machine is implemented in GUI testing by
Hu[16] through modeling testing process in mathematic way. However, all of these work focus on
the approaches to generate GUI test cases, considering the entire testing process, the system where
GUI testing is executed on has to be turned on manually before performing testing. Therefore, ad-
ditional manual assistance, which can be turning on systems, installing pre-requested applications

18

3.1. PRINCIPLE OF FULLY AUTOMATEDGUI TESTING

or switching off system after all tests are finished, has to be available so that theses test cases can to
executed successfully. To some extent, the approaches in currently existing research work are only
half-automatic GUI testing in terms of the entire testing process. In this thesis, a fully automated
solution is proposed to avoid manual assistance as much as possible.

For the sake of improving the robustness of testing, different testing environments are needed, vir-
tual machines with different language settings will be used in the thesis to achieve the goal. Figure
3.1.1 demonstrates the basic diagram of the project. A pool of guest operation systems with different
language options are installed, which are probably located in a remote host or cloudmachine consid-
ering the remarkable compatibility and outstanding flexibility, or it can be located in a local machine
like in this thesis. While in localmachine a script is designed to control the virtualmachines automat-
ically with Application Programming Interface (API) provided by virtual machine software. Taking
the efficiency into account, multiple virtual machines are controlled in parallel.

Figure 3.1.1: Diagram of fully automated solution

How a virtual machine can be programmatically controlled by a script to execute a GUI test is
critical in this thesis. The typical scenario is shown as figure 3.1.2. Firstly, a guest OS should be pow-
ered on automatically by a script, noticeably, guest OS with different language settings are designed
to start concurrently, which means that all operations in the workflow are executed simultaneously
in multiple guest OSes. Snapshots, which enables the client to get back to any certain state of guest
OS, should be created before any operations in guest OS. Thus a clean state of guest OS is available.
The program under test is installed automatically via the control of script, following with running the
GUI testing, which is the most important part in the project. The outcome of test will be collected
by a script on host machine to verify the functionality of program. Last but not least, the program

19

3.2. AUTOMATING VMWAREWORKSTATION

installed should be removed from the guest OS, and the guest OS should be restored to the root
snapshot, which means going back to the initial state. The workflow shows basically each operation
involved in fully automated solution. It is worthwhile to mention that all the steps involved should
be executed automatically and in parallel.

Figure 3.1.2: Workflow of fully automated solution

From the description of the project above, one of the most significant parts of the thesis is to au-
tomate virtual machines programmatically. Specifically, the automation includes powering on op-
erating systems, installing programs, running tests, managing snapshots and copying files between
host and virtual machines. One possible approach to realize automatic management is to use API
provided by virtual machine software, and the other way is to try to control the hardware (e.g. mouse
click, keyboard input) in virtual machines. The feasibility and efficiency of these two approaches
will be discussed in the following chapter. Furthermore, the implementation of automatic control on
both VMWare workstation and Hyper-V will be presented too. A comparison of these two products
will be given so that the one works better for fully automated solution will be chosen.

3.2 Automating VMWareWorkstation

For automatingoperating in guestOS, controlling the low-level hardware in virtualmachines is always
one possible solution. In this way, the specific position of elements under control (e.g. the directory
of an executable file) is required. Hardcoding the position of executable file in scripts tends to cause
failure if the element moves even slightly. Another possible method is hardcoding the name of the
element, however, it is still easy to result in failure if thenameof the executablefile changes. Obviously
the hardware control is possible, but it is neither efficient, nor reliable.

TheVMWare company has released virtual infrastructure extension (VIX)API, which enables de-
velopers to automate virtual machines programmatically with an asynchronous, job-based program-
ming model.

20

3.2. AUTOMATING VMWAREWORKSTATION

There are two types of VMWare APIs provided.

• VMWare Virtual Infrastructure SDK: a set of tools and APIs to manage the VMWare Infras-
tructure environment. A toolkit that containsmanagedwrappers on top of the SOAP interface
provided by a VMWare deployed. The toolkit is mainly applied on VMWare ESX or Virtual
Center management , which will not be discussed in this thesis.

• VMWare VIX API. The VIX API allows developers to write programs and scripts aiming to
automate virtualmachineoperations, aswell asmanipulating guestswithin virtualmachines. It
runs on bothWindows and Linux and supports management of VMware Server,Workstation,
player, fusion and Virtual Infrastructure. Bindings are provided for C, Perl, and COM (Visual
Basic, VBscript, C#). Considering the compatibility of windows systems, .Net technology
language (C#) is adopted to implement automation in this thesis.

Before automationwithVixAPI, some concepts concerning implementation should be illustrated,
as is shown as follows:

Objects: the Vix API is object oriented. It either creates objects or modifies the properties of
existing objects for the majority of functions provided by Vix API.

Handles: Handles are opaque identifiers (actually integers) that can be passed as parameters to
functions. Most functions provided by Vix API take a handle as an input parameter.

There are several handle types,and the ones used in this thesis are:

• Virtual Machine handles, it represents a single virtual machine, the virtual machine might or
might not be powered on.

• Host handles represent a single host computer, either the local host or a remote host.

• Job handles, through which asynchronous operations are implemented.

• Snapshot handles, which indicate a snapshot of a virtual machine, which can be reverted or
deleted.

Considering the compatibility with Windows systems, .Net technology programming language
(C#) is adopted to realize remote control through test script. The brief code map is shown in figure
3.2.1, it is noted that only part of the methods in the automation class are shown in the map, the
relation of methods and handles are illustrated with arrows, the detailed method description and
implementation will be presented in the following part.

21

3.2. AUTOMATING VMWAREWORKSTATION

Figure 3.2.1: Code map for VMWare automation class

3.2.1 Connecting to Virtual Machine in VMWare Workstation

To work with virtual machine, a connection between host machine and virtual machine should be
established. If the virtual machine is stored on a host running workstation, a local connection is re-
quired. And if virtual machine is installed on a remote ESX, a credential should be supplied. With
connection between twomachines, automation can be realized through various handles. The snippet
below shows how a local connection is achieved. Specifically, a Connect function provided by Vix
API is utilized. Thehost type ,which describes theVMware software running on the host , is specified
by second parameter, no matter where the client is running. It is
VIX_SERVICEPROVIDER_VMWARE_WORKSTATION in this thesis, which indicates that the soft-
ware is VMWare workstation.

Listing 3.1: Connection function with Vix API

public void Connect()
{

jobHanlde = vix.Connect(Constants.VIX_API_VERSION,
Constants.VIX_SERVICEPROVIDER_VMWARE_WORKSTATION, null, 0, null,
null, 0, null, null);

int[] propertyIds = new int[1] {
VixCOM.Constants.VIX_PROPERTY_JOB_RESULT_HANDLE };

err = jobHanlde.Wait(propertyIds, ref results);
object[] hostArray = (object[])results;
hostHandle = (IHost)hostArray[0];

}

It is noticeable that the Connect() function is an asynchronous function, which means that the
function either implements time-consuming operations or interacts with persistent virtual machine

22

3.2. AUTOMATING VMWAREWORKSTATION

state. In this case, the asynchronous function allocates and returns a job handle.The job handle is
a Vix object that represents the execution of the asynchronous operation. It can be used to indicate
when the asynchronoushas finished, andalso, it canbeutilized to retrieve the results of the completed
asynchronous function. Furthermore, the returned job handlemay have several result properties that
are set when the job has completed. Information returned by a finished job is included in the result
properties.

A new job object will be always created by an asynchronous function, and the created job object
tracks the status of corresponding asynchronous function, so results of running asynchronous func-
tion can be retrieved after the call completes. Hence it is reasonable to wait until the call finishes
so as to get results. Currently, there are three approaches to detect when an asynchronous call has
finished, namely, pooling the job object for completion, using job object to block calls and using a
call back function. Among all the approaches, the second one, which is using job object to block
calls, is the most commonly used one. A function calledWait() provided by Vix API helps to realize
blocking. Moreover, results can be retrieved directly fromWait() function, otherwise, an additional
GetProperties() should be invoked on the job object to get the results back.

In the Connect() function above, a result property is retrieved when the Connect() has com-
pleted namely Constants.VIX_PROPERTY_JOB_RESULT_HANDLE , and the Wait() function is
used to both signal the completion of the asynchronous call and retrieve the final results. It is worth
tomention here that the returned result of aConnect() function is the host handle, which represents
a host machine. Next step after obtaining the host handle in the automation process is to power on
certain virtual machines , which will be described in the following section.

3.2.2 Identifying a Virtual Machine

According the principle of Vix API, a handle is used to identify different Vix objects, and there are
different types of handles. In the previous work, a host handle is obtained by connecting host ma-
chine with virtual machine software. Considering the operation in virtual machines, a similar handle
namely virtual machine handle is needed to realize guest operations, which can be exploited to iden-
tify or represent a virtual machine.

Mechanism provided by Vix API to obtain a virtual machine handle is converting a virtual ma-
chine path to a handle by aOpenVM () function, same withConnect() function,OpenVM () is an
asynchronous function called on the host handle. The result of such asynchronous call is therefore a
virtual machine handle. Wait() is adopted here to obtain the result as inConnect function.

23

3.2. AUTOMATING VMWAREWORKSTATION

3.2.3 Changing State of Virtual Machines

With virtual machine handle obtained, a virtual machine is represented by the handle. In general,
automatic management of virtual machines includes booting or shutting down guest OS, In order
to start up or shut down virtual machines through script using Vix API, the following steps must be
obeyed in the script:

1. Connecting to the host machine on which virtual machine is installed.

2. Getting the handle of host machine.

3. Using host machine handle to convert virtual machine file path to a virtual handle.

4. Utilizing virtual machine handle to call a functionPowerOn() to start up the virtual machine.

Noticeably, PowerOn() function can be used in two ways�

• To start up a virtual machine in a previously power-off state.

• To resume execution of a guest operating system in a suspended virtual machine.

For the sake of powering off or suspending a virtualmachine, similar with powering on, the first three
steps in the above numbered list should be followed, and only difference lies with the last step, using
PowerOff() or Suspend() depends on purpose , instead of using PowerOn().

3.2.4 Snapshot Management

Snapshot is one of the most important functions provided by virtual machine software,and plays a
critical role in fully automated GUI testing with virtual machines, for snapshot enables guest OS to
restore to any certain state. As a consequence, some repeated and tedious testingwork can be avoided
by reverting to snapshot with system configured directly. Also backing up of testing environment can
be obtained easily with snapshot.

With regard to snapshotmanagement, creating snapshot and reverting to certain snapshot is taken
into account in this paper. In terms of taking snapshot, a CreateSnapshot() function is available
to save a copy of virtual machine state as a snapshot object. It is noted that a snapshot with differ-
ent configurations can be taken with different inputs to the function. Concretely speaking, 0 and
VIX_SNAPSHOT_INCLUDE_MEMORY can be passed to the function, indicating taking snapshot
without memory and with memory respectively.

When considering reverting to a specific snapshot,RevertToSnapshot() helps reach the target. It
is utilized to restore virtual machine to the state when certain snapshot is created. A snapshot handle

24

3.2. AUTOMATING VMWAREWORKSTATION

is used here to represent a certain snapshot, which can be acquired byGetRootSnapshot() function.
The parameter in RevertToSnapshot() decides how a snapshot will be reverted specifically. If a
virtual machine is powered onwhen the snapshot was created, the parameter will determine how the
virtual machine is powered back on.

3.2.5 Automating Guest Operations

The fully automated solution relies a lot on whether the guest operations can be automated. The op-
erationswhich are necessary for fully automated solution include copying files betweenhostmachine
and virtual machine, running programs in the virtual machines automatically, creating folder and so
on. With the functions provided by Vix API, it is possible to realize all these operations by Copy-
FileFromGuestToHost(),CopyFileFromHostToGuest(),CreateDirectoryInGuest() and so on.
Among all these operations, running programs in guest OS is the most relevant to the GUI testing.
Therefore, it is worthwhile to take a further look into the implementation of the operation.

It is noticeable that there are two prerequisite functions before any operations in guest OS. Specif-
ically, users must log in as a VMWare user, which means that user will be granted the permission of
guest operations after logging in as a VMWare user. LoginInGuest() is the method provided by Vix
API to realize log in function,This function establishes a guest operating system authentication con-
text that can be usedwith guest functions for the given virtualmachine handle. In addition to logging
in, a collection of Vix services must be ready before all most all guest operations. The waiting time
can be specified byWaitForToolsInGuest() function.

Running programs in guestOS can be achieved through the function of RunProgramInGuest().
As shown in the codes below, the first parameter for the method is the absolute path where the pro-
gram stored in the file system in the absolute directory for the program . The second parameter is
command line argument, which provides users to run the program in their desirableway (e.g. passing
“VERYSILENT” as the command line arguments can automate installation of an applicationwithout
manually clicking next or accept terms). For Windows guest operating systems, user must pass
VIX_RUNPROGRAM_ACTIVATE_WINDOW as the value for the third parameter when running
a program with a graphical user interface. This value will ensure that the application’s window is vis-
ible and not minimized on the guest’s screen. The value is very important to GUI testing, because an
active desktop is required forGUI testing, if the application under test runs in the background, which
means it is invisible to users, and therefore performing GUI testing is impossible.

25

3.2. AUTOMATING VMWAREWORKSTATION

Listing 3.2: Running program in guest OSwith Vix API

int[] propertyId = new int[] {
Constants.VIX_PROPERTY_JOB_RESULT_GUEST_PROGRAM_EXIT_CODE };

IJob jobHandle = vmHandle.RunProgramInGuest(programPath, command,
Constants.VIX_RUNPROGRAM_ACTIVATE_WINDOW, null, null);

Being similar with other asynchronous functions, RunProgramInGuest() requires verifying the
completion of the call, and the result of calling such function can be obtained by Wait() function.
The returned results, which are the properties of the created job handle, can be set as following:

• VIX_PROPERTY_JOB_RESULT_PROCESS_ID: the process ID of the application which
has finish execution.

• VIX_PROPERTY_JOB_RESULT_GUEST_PROGRAM_ELAPSED_TIME: the elapsed time
of the process in seconds.

• VIX_PROPERTY_JOB_RESULT_GUEST_PROGRAM_EXIT_CODE: exit codeof thepro-
cess. it is necessary to obtain value that the application returned.

Figure 3.2.2: Variables and methods of VMWare automation class

26

3.2. AUTOMATING VMWAREWORKSTATION

The RunProgramInGuest() function together with other methods shown in the figure 3.2.2 en-
sure automating virtual machines in VMWare workstation possible, thus the fully automated GUI
testing with virtual machines is guaranteed to be applicable .

3.2.6 Manipulating Multiple Virtual Machine Simultaneously

Considering the principle of fully automatedGUI testingwith virtualmachines described in previous
chapter, a pool of guestOSeswithdifferent settings are installed for different virtualmachines. If there
exists an approach to perform test cases simultaneously, the performance will be enhanced to a very
great extent. Under this circumstance, performingmultiple test cases canbe equivalent to automating
several virtualmachines at the same time. However, VixAPI does not provide any function to achieve
concurrent automation. Fortunately, .net technology does supply method to perform multitasks in
parallel, namely multithreading.

A thread is defined as an execution path of a program, also every single thread can be deemed as
a unique flow of control. Multithreading indicates that user can have multiple threads of execution
inside a single program. When multiple threads are executed, it is likely to have multiple CPUs exe-
cution within the same program. As illustrated in figure 3.2.3, the first executed thread is known as
main thread, and another three threads can be started simultaneously. Between any pair of threads,
thread may switch and exchange data/ results.

Figure 3.2.3: A brief overview of multithreading

The benefits of using multithreading can be listed as follows:

• Multithreading canbe utilized to set isolation betweendifferent codes, therefore, the reliability
of applications can be improved.

27

3.2. AUTOMATING VMWAREWORKSTATION

• In most cases, codes can be simplified with multithreading.

• Concurrent execution can be achieved easily. Hence the efficiency of program is increased
greatly.

In C#, the System.Threading.Thread class is designed for working with threads. Creating and
accessing individual threads in a multithreaded application is allowed. When C# program starts ex-
ecution, the main thread is created automatically, a new thread can be created like normal variable.
The following codes realize multithreading in C#.

Listing 3.3: Multithreading implementation

for (int j = 0; j < groupNo; j++)
{

Thread[] testThread = new Thread[groupLength];
for (int i = 0; i < groupLength; i++)
{

testThread[i] = new Thread(tws.TEST);
testThread[i].Start();

foreach (Thread thread in testThread)
{

thread.Join();
}

}

The snippet above divides all virtual machines into several groups named groupNo, and in each
group there are certain number of virtualmachines namely groupLength. By default , virtualmachines
in a same group will be automated simultaneously, and the next group will start when all virtual ma-
chines in current groupfinish allwork. Thereason for classifying virtualmachine intodifferent groups
is that both host and guest OS may be extremely slow-responding if all virtual machines (6 in this
thesis) are set to run at the same time. Therefore it will be expensive for the host machine hardware
to perform simultaneous automation for all virtual machines. It is reasonable to make compromise
between cost and efficiency. Setting different groups for virtual machines is a considerable way to
increase the efficiency and decrease the cost at the same time.

Thedescriptionof various functions in the above section canbriefly illustrate howvirtualmachines
installed by VMWare workstation can be automated, and why Vix API is critical to achieve the goal.
Moreover, user experience towards Vix API can be generated in the course of automation. Roughly
speaking , Vix API is easy to use and the efficiency of various functions provided is quite high. As a

28

3.3. AUTOMATINGHYPER-V

consequence, simultaneous automation of virtual machines installed through VMWare workstation
is uncomplicated to achieve. the following section will discuss the automation for virtual machines
stored through Hyper-V, and a comparison toward automation for VMWare and Hyper-V will be
presented at the end.

3.3 AutomatingHyper-V

There are plenty of tools users can utilize to manage Hyper-V, e.g. Windows PowerShell acts as a
commandmanagement tool to automate operation inHyper-V. HoweverWindowsManagement In-
strumentation (WMI) API providesmore classes tomanage both hardware and software of host and
virtual machine in a programming way, which is the reason why it is adopted in the thesis.

3.3.1 Windows Management Instrumentation (WMI) Technology

Windows Management Instrumentation is a core management technology for Windows. It is based
on Common Information Model Object Manager (CIMOM). Visiting, managing and monitoring
Windows resources is easy with WMI. WMI allows managing in both local and remote computers.
For example, users can start a process in a remote computer and acquire any system information
throughWMI. Besides,WMI provides a common interface forMMCand scripts tomanage different
OS component without using different API. Different components ofOS are represented by a collec-
tion of objects with unique method and properties inWMI. All these objects are stores in a database
called CIM repository, user can adopt WMI query language (WQL) to query specific objects and
create different classes to represent network switchers, applications and so on. Developer can man-
age different component of OS through making change to CIM classed by methods and properties
provided . The possibility of use WMI in different language is taken into consideration when WMI
is designed, programming language like C/C++, Visual Basic, scripting languages (such as VBScript
or JScript) .NET family (C# for example) are supported. Therefore, users can choose their preferred
language to programmatically manage Hyper-V.

3.3.2 WMI Objects Description for Hyper-V Management by Operations

Similar to operations required for GUI testing in VMWare workstation, guest operations in Hyper-V
also consists of some basic operations, which can be shown figure 3.3.1. The code map of Hyper-V
automation class illustrates the relation between necessary methods and variables (part of them). It
is apparent that the method of RunPrograminGuest() has no association with other functions or

29

3.3. AUTOMATINGHYPER-V

variable. The reason will be presented in the following section together with the detailed implemen-
tation of various methods.

Figure 3.3.1: Code map of Hyper-V automation class

3.3.3 Connecting to Virtual Machine

Unlike VMWare workstation, where connecting virtual machine to host requires obtain the han-
dles of both host machine and virtual machine due to its hosted hypervisor architecture. Connect-
ing to virtual machine in Hyper-V simply means getting the object of certain Virtual Machine. The
Msvm_ComputerSystem class is designed for developers to get the information of both host ma-
chine and virtual machines. The class has some properties andmethod is used in the thesis, as shown
below:

• Caption is the properties describing the object, it is set to “Virtual Machine” if the instance
represents a VM, if the instances is host machine, it will equal to “Host Computer System”

• ElementName is the name user set to virtual machine, for example “win7” in the project. Or it
is name for host machine if host machine is represented.

• EnabledState is the states of virtualmachine representingby an integer, indicatesVM is running
or turned off and so on, it can be changed by the method of RequestChangeState, which is
used to power on or power off a virtual machine.

• Name is a unique symbol of certain virtual machine. It is recognized by system and is useful
when creating instance of system data.

By obtaining the Msvm_ComputerSystem class, basic information about both host and virtual
machine can be acquired. Noticeably, no matter Powershell or script, administrator right is needed
to list all the virtual machine information, otherwise, only host information is obtained. The code

30

3.3. AUTOMATINGHYPER-V

below shows how WMI class is used for listing virtual machine information. Before using any WMI
class, scope must be set to “\root\virtualization\V2”, which is the namespace where Hyper-V lo-
cates. Similarly, if users aims at controlling remotemachine usingWMI, a scope is required to set “IP
address\root\cimv2”,which is the remote WMI located.

Listing 3.4: Get virtual machine function withWMIAPI

ManagementScope mainscope = new
ManagementScope(@"\\.\root\virtualization\V2");

mainscope.Connect();
ObjectQuery vmquery = new ObjectQuery(query);
ManagementObjectSearcher vmsearcher = new

ManagementObjectSearcher(mainscope, vmquery);
ManagementObjectCollection vmCollection = vmsearcher.Get();
foreach (ManagementObject instance in vmCollection)
{

vm = instance;
return vm;

}

3.3.4 Changing State of Virtual Machines

Since virtualmachines information canbe acquired, launching/shuttingdownvirtualmachines is the
function to be realized in the next step. In the previous chapter, we know that EnabledState property
of Msvm_ComputerSystem class indicates the state of virtual machine, however, it is impossible
to change the virtual machine state from this property, because of the read-only limitation. Alter-
natively,Msvm_ComputerSystem class has a method of RequestStateChange, which enables de-
velopers to launch or shut down any virtual machines. The states of a virtual machine, which are
represented by different integers, can be changed by modifying an integer to another one. (e.g. 2 in
the method represents power on state). The following snippet demonstrates the workflow of change
state of virtual machines.

Listing 3.5: Change state of virtual machine withWMIAPI

if (operation.ToLower() == "poweron")
{
inparam["RequestedState"] = 2;
}

31

3.3. AUTOMATINGHYPER-V

if (operation.ToLower() == "poweroff")
{
inparam["RequestedState"] = 3;
}

ManagementBaseObject outParams =
vmObject.InvokeMethod("RequestStateChange",inparam,null);

Comparing to VMWare, Hyper-V WMI API provides more efficient function than VMWare be-
cause virtual machines’ states are represented by an integer, and modification of integer can change
the current state of virtual machines. Besides ,the integration of changing states also makes it much
easier. while in VIX API, user has to write individual functions for every single state change.

3.3.5 Snapshot Management

Snapshots play an important role in software testing. Essentially, they are the disk, configurations
and state of virtual machine in specific time. With snapshots, efficiency can be improved signifi-
cantly when different computer environments and various conditions in those environment need
to be recreated or reproduced many times. Consequently, snapshot management is fundamental
in terms of testing in virtual machines, Hyper-V snapshot management therefore is required. Fortu-
nately,WMIprovides classes tomanage snapshots, namelyMsvm_VirtualSystemSnapshotService
class. It represents the services to create, delete and apply snapshots in virtual machines, and some of
its’ read-only class can help to gain better understanding of the service. The property and methods
are demonstrated as follows:

• Description is the very basic property of all class, forMsvm_VirtualSystemSnapshotService
class, the description is read only and is set to “Service for creating, destroying, and applying
virtual machine snapshots”

• SystemCreationClassName is a string value read-only property, inferring the name of the class,
which is able to hold this servicer, and the value is always set to be
Msvm_ComputerSystem, which indicates a virtual machine or host machine.

• InstallDate indicates thedate and timea virtualmachine configuration is created, and it is useful
to check validity of a snapshot when snapshot tree is adopted.

Generally, the snapshot management follows the procedures below, which is also the basic steps
for most of operations using WMI classes:

32

3.3. AUTOMATINGHYPER-V

1. Getting the service object, which means searching the namespace in specific scope.

2. Obtaining method provided by the class usingGetMethodParametersmethod provided by
the management object type

3. Setting the input parameters, for example,CreateSnapshotmethod has parameters of Affect-
edSystem , and therefore is required to set as the virtual machine path under control.

4. Invoking method with certain parameters and receiving an object representing the output pa-
rameters of the method.

5. Reading the value of corresponding properties of output parameters to check status of the
method implementation.

In general, virtual machines are required to revert to an initial state after all testing is finished. An
initial state can be created by taking snapshot once the guest OS is installed. When it comes to re-
verting to initial state, ApplySnapshotmethod is provided by the class of
Msvm_VirtualSystemSnapshotService inWMI . Slightly differentwithCreateSnapshot, a param-
eter named Snapshot representing the snapshot to be applied must be provided. In addition to spec-
ifying the snapshot, the virtual machine which the snapshot is created should be provided as well.

GetRelatedmethod is employed toobtain instanceof snapshot of certain virtualmachine. Specifi-
cally,Msvm_ComputerSystem represents a virtual system,whileMsvm_VirtualSystemSettingData
stands for a snapshot. The relationship between these two classes is described as Antecedent andDe-
pendent. GetRelated method connects these two classes. Therefore, a snapshot for certain virtual
machine is returned. Being alike to creating snapshot, applying snapshot requires only setting the pa-
rameter of Snapshot as snapshot related to the virtual machine, which is the return value of function
GetSnapshot .

3.3.6 Copying Files Between Host and Virtual Machine

Unlike copying files between host machine and virtual machines installed through VMWare, where
files can be copied and pasted directly between two machines, it is more complicated in Hyper-V
due to the architecture of type1 hypervisor. The reason behind is that virtual machines constructed
throughHyper-v are deemed as independent “physical machines”. Therefore it is reasonable that files
cannot be copied/pasted directly between two physical machines. Nevertheless, there are existing
approaches to share files between host machine and virtual machine. To be specific, sharing files
through virtual disk, network and integration service are provided by Hyper-V.

33

3.3. AUTOMATINGHYPER-V

For the first approach, adding a virtual disk to virtual machine is necessary if files are chosen to
share through virtual disk. Virtual disk can be considered as a mutual disk between host machine
and virtual machine, through copying file to the disk in host machine, files can be found in virtual
machine too. The method seems to be proper and efficient. However, it involves in complicated
configurations of virtual disks in both host machine and virtual machine. Moreover, virtual machine
must be powered off when user is desired to share files.

Second approach, which is more common, is sharing files through network. It is obvious that
the basis of this approach is that virtual machine must be able to get access to network, the principle
behind is easy to understand. Due to the sharing network betweenhostmachine and virtualmachine,
a sharingdirectory is needed to realize file communication. Theapproach is comparatively easier than
virtual disk. However, it still requires frequent directory configuration if multiple files are design to
be shared.

Evidently, the above twomethods presented are not automated solution, whichmeans sharing files
is not programmatically controlled but manually set. Therefore a new efficient approach is needed.
Fortunately, inHyper-VWMIV2 version, an integration service is available to copy file automatically.
By default, backup option is excluded by integration service, therefore, backup should be selected so
as to enable sharing file function in the setting integration service dialog. In Hyper-V WMI provider
(V2), an integration service class, which can be used to solve problems that arises from the high level
of isolation from virtual machines, is added. Msvm_GuestFileService class is designed to enable
copies a file to a virtual machine from the Hyper-V host. The necessary properties and methods to
copy file is illustrated as below.

• SystemName is one of the properties inMsvm_GuestFileService class representing the ma-
chine name, which can hold the service. In other words, it infers the machine to which files
will copy. As a consequence, the value of SystemName is set to be the name of virtual machine.

• Msvm_CopyFileToGuestSettingData is a class representingparameters for copyingfile from
the host to guest OS

• SourcePath is one of the necessary properties in Msvm_CopyFileToGuestSettingData, and
it indicates the path of source files to be copied, noting that the source path has to be accessible
by Hyper-V host OS.

• DestionationPath is the corresponding destination path in virtual machine, and the path must
be accessible by guest OS.Moreover , the destination file is generated in this path. In this case,
the file name fromSourcePath should be used as destination file name.

34

3.3. AUTOMATINGHYPER-V

• CreateFullPath indicates thatmissing directories in the destination file’s pathmust be generated
before copying file.

• OverWritingExisting implies that whether overwrite destination file if there is a file already ex-
isted.

The method adopted for copying files isCopyFileToGuest, an input parameter of this method is
CopyFileToGuestSettings, which shouldbe set to the instanceof Msvm_CopyFileToGuestSettingData.
The snippet below shows how does the class work to realize copying files to virtual machine.

Listing 3.6: Copy files to virtual machine withWMIAPI

ManagementPath setPath = new
ManagementPath("Msvm_CopyFileToGuestSettingData");

ManagementClass setDataClass = new ManagementClass(mainscope, setPath, null);
ManagementObject copySetting = setDataClass.CreateInstance();
copySetting["SourcePath"] = SourcePath;
copySetting["DestinationPath"] = DestinationPath;
copySetting["OverWriteExisting"] = false;
settingData[0] = copySetting.GetText(TextFormat.WmiDtd20);

3.3.7 Running ProgramS in Virtual Machine

So far, the automated management of Hyper-V is done through the Hyper-V WMI provider (V2),
however, in order to runprograms automatically in virtualmachines. WMIAPI v2 is not enough. The
virtual machines created by Hyper-V are regarded as building on top of hardware directly instead of
host operating system, as a result virtualmachines are isolated fromhostmachine, which is the reason
why copy/paste does not work in Hyper-V. The isolation also makes running program automatically
in virtual machine complicated. Besides in Hyper-V WMI provider (V2) classes, there is no class
designed to start a process in virtual machines. In order to execute applications in virtual machines
automatically, treating virtual machine as remote machine is essential because controlling a machine
remotely is possible to achieve.

Connect to a virtual machine’sWMI classes
In order to manage guest operating system, connection between host machine and remote ma-

chine’s (Virtual machine installed) WMI should be established so that management can be achieved
byWMI provided in remotemachine. Regrading connecting to a remoteWMI, the principle is illus-
trated as Figure 3.3.2. It is clear from the diagram that two connections are needed if an asynchronous

35

3.3. AUTOMATINGHYPER-V

call ismade, to illustrate. Connection 1 ismade by client or script to obtain data fromWMI in remote
machine, while connection 2 is designed to deliver the result of asynchronous call back. However for
synchronous and semi-synchronous call, only connection 1 is required. We can know from figure
3.3.2 that remote connection in WMI is affected by firewall and DCOM, configuration on the fire-
wall and DCOM security must be done properly before remote WMI connection is achieved. The
configurations will be presented carefully in the following section.

Figure 3.3.2: Remote connection diagram in Windows OS

Firewall configuration
To successfully connect to remote machine, the same username and password credentials iden-

tify an account on remote machine. User account used in local machine must ensure that it is a local
administrator or domain account in the Administrators group on remote machine. In normal case,
firewall plays an important role in filtering untrusted data. By default, data request from remote ma-
chine will be blocked by firewall. In order to establish remote WMI connection , either firewall has
to be shut down, which is not recommend due to security issue, or firewall is set properly. For con-
nection 1, firewall setting on remote machine must be done locally. In detail, remote administration
must be enabled either by firewall user interface or by using NETSH command as below:

netsh firewall set service RemoteAdmin enable

Or if only WMI connection are needed, an exception in the firewall for WMI on the remote ma-
chine must be set. Similarly, choice can be made between firewall UI and command prompt using
WMI rule group like :

netsh advfirewall firewall set rule group=”windows management instrumentation (wmi)” new enable=yes

So far, the firewall setting on remote machine for connection 1 is described above. Some configu-
ration is required for connection 2, which allows delivery the result of asynchronous call back to local

36

3.3. AUTOMATINGHYPER-V

host . Firstly, remote administration exception should be enabled same as for connection 1. Specifi-
cally , DCOM port TCP 135 must be open. If not , error of 0x800706ba will occur , which indicates
that the remote procedure call (PRC) is unavailable. The reason for the error is that the PRC port
used by DCOM is closed. DCOM port can be opened by the command prompt as:

netsh firewall add portopening protocol=tcp port=135 name=DCOM_TCP135

Also, unsecapp.exe should be added to theWindows Firewall application exception list so that the
result can be delivered back to client. Commandprompt is useful to achieve it, which is shownbelow:

netsh firewall add allowedprogram program=%windir%\system32\wbem\unsecapp.exe
name=UNSECAPP

Lastly, for connection 2, itmay be an anonymous connection if the remotemachine is in a different
domain, which will be untrusted by local machine. Therefore, DCOM remote access permission to
anonymous connection should be granted on local machine as described in next section.

DCOM security configuration
Distributed Component Object Model (DCOM), a set of concepts and interfaces provided by

Microsoft, is an extension of Component Object Model (COM) which enables clients and servers
to communicate within the same computer. Traditional COM makes inter-process communica-
tion possible, while DCOM enables COM component to communicate across networks. WMI uses
DCOM to handle remote calls, which infers that DCOM should be configured correctly to establish
remoteWMI connection. Typical error of 0x80070005 (Access is denied)will occur if DCOM is not
set properly.

In windows, DCOM config utility is designed for configuration DCOM for WMI use, DCOMc-
nfg.exe can be found with administrative tools through control panel. With the utility, certain user
can be granted the permission to connect the computer remotely. By default only administrator or
members of administrator group can connect to the remote computer. If the current user is not ad-
ministrator, activation and launch permissions should be given by adding the user to group or user
name lists. Detained setting is available on Microsoft website “Securing a remote WMI connection”

Although Microsoft has provided detailed configuration documentation, sometimes, it still can-
not get work done when DCOM has configured correctly, and 0x80070005 still occur. The error
obviously shows that problem lies with permission, In this thesis, network service permission is the
reason, this probably due to the fact that somenetwork settings are changedby some software silently,
the following steps can solve 0x80070005:

37

3.3. AUTOMATINGHYPER-V

1. Right clickMyComputer, and then chooseManagement.

2. In the folder of Local Users andGroups, open the folder of Groups

3. Double click the Administrators listed, Administrators Properties dialog box will appear

4. Click Add button, in the selectUsers dialog box, click Advanced

5. Click FindNow button, chooseNetwork Service, and clickOK

Theabove setting guarantees a administrator have the permission for network service so thatWMI
can start normally. Configuration of remote WMI connection is trivial. It is error-prone and hard to
figure out reasonswhen theoretic configurations have been applied correctly. For example, in the reg-
istry, the valueof forceguest underHKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Lsa
should be 0. Also, the user should be granted the permission in the namespace of remoteWMI. Gen-
erally, if firewall is not set correctly, the error of “PRC servicer is unavailable” will occur, “Access is
denied” error is usually caused by DCOM security setting or no permission issue.

Executing application automatically

The configuration mentioned above guarantees that host machine is connected with virtual ma-
chine’s WMI, however, for controlling virtual machine with WMI classes, either WMIC, which is a
command tool provided in windows operating systems, or a script is needed to reach the goal. With
regard to the consistency of automation Hyper-V, programs in C# is adopted in the thesis to realize
automated management of virtual machine.

For the sakeof connectinghostmachinewith virtualmachine, except the configurationmentioned
above, the IP address orDomain/User name and password of virtual machine is required to establish
connection. In order to connect to the WMI classes in virtual machine, the namespace is required
set to \ROOT\cimv2, which is default namespace containing the majority useful classes for WMI
queries.

With connection between client and the remote WMI (e.g. WMI in virtual machines stored in
Hyper-V)established,Win32_Process class representing aprocess in anoperating system, is aproper
option to execute application automatically in virtual machines. It has various methods concerning
a process (e.g. Create, which creates a new process, Terminate, which terminates a process and all
its’ threads). The following code demonstrates how an application in virtual machine is executed.

38

3.3. AUTOMATINGHYPER-V

Listing 3.7: Start a process with remoteWMI

ManagementPath settingpath = new ManagementPath("Win32_ProcessStartup");
ManagementClass startupObject = new ManagementClass(scope, settingpath,null);
ManagementObject startup = startupObject.CreateInstance();
ManagementPath path = new ManagementPath("Win32_Process");
ManagementClass processClass = new ManagementClass(scope,path,null);
ManagementBaseObject inparam = processClass.GetMethodParameters("Create");
inparam["CommandLine"] = prgramPath;
inparam["CurrentDirectory"] = null;
inparam["ProcessStartupInformation"] = startup;
ManagementBaseObject outparam =

processClass.InvokeMethod("Create",inparam,null);

Noticeably, aWin32_ProcessStartup object is created to pass information to theCreatemethod
of Win32_Process. To use the Create method, some input parameters has to be set. Specifically,
CommandLine property indicates the command line arguments of the application under execution
(e.g. notepad.exe). CurrentDirectory is provided primarily for shells that must start a program and
specify the program’s initial drive and working directory, if the value is set to be NULL, the new pro-
cess createdwill have the samepath as the callingprocess. ProcessStartupInformation is one0f required
input parameter, which is usually the instance ofWin32_ProcessStartup class. By invokingCreate
method with specified parameters, a new process can be created as specified in virtual machines. All
variables and methods in Hyper-V automation class are shown as figure 3.3.3

Figure 3.3.3: Variables and methods in Hyper-v automation class

From the principle of starting a process in a virtualmachine , we know thatRunProgrmInGuest is
independent from other functions (as shown in previous code map) because variables and methods

39

3.4. COMPARISONOF VMWARE ANDHYPER-V

concerning the function is provided by a remote WMI in virtual machine instead of by a local WMI
in host machine.

AlthoughWMI class in remotemachine (i.e. virtualmachine in this thesis) provides valid and effi-
cient approach to start a process from localmachine, For security reasons theWin32_Process.Create
method cannot be used to start an interactive process remotely [2], which means that the process
created in virtual machines will run in the background, and will only be visible to task manager. The
limitation of Win32_Process.Create brings huge disadvantages forGUI testing in virtualmachines,
undoubtedly, GUI testing requires application runs as a windows on the desktop (i.e. active desktop
) . However , without assistance of third-party tool, it is impossible to run application in the fore-
ground. To the best of author’s knowledge, with both test controller set to run with test manager
and test agent set to run as interactive process , GUI testing in virtual machine is possible. Never-
theless introducing test controller is not expected in this thesis, because it makes automation more
complicated, especially compared to the simple solution available in VMWare.

3.4 Comparison of VMWare andHyper-V

One of the purposes of this thesis is obtaining the detailed differences of hyper-V and VMWare so
that best solution for GUI testing with virtual machines can be found. In addition to the theoretical
analysis about the architecture and principle in previous chapter, more detailed comparisons in term
of practical use in various aspects are listed below.

• Being consistent to theoretical analysis, VMWare is easier to configure thanhyper-V. For exam-
ple, by default host IP address is shared with virtual machines in VMWare, while for Hyper-V,
user is required to build new virtual adapter if network access is needed. Also, copy/paste is
supported in VMWare but not in hyper-V.

• For virtual machines in Hyper-V, restarting guest OS is required as long as the guest OS is
modified, for example in case of Windows updates, or turning off windows firewall and so on.
But, changing system setting does not result in the restart of guest OS in VMWare.

• Virtual machines residing in Hyper-V can be run in the background with the start of host OS,
while the ones in VMWare must be powered on either manually or by script.

• By contrast with theoretical analysis, a virtual machine in hyper-V runs slower than the one in
VMWare with the same configuration of 1GB memory and 1 virtual processor. However the
conclusion may be incorrect because the version of host OS is different, specifically, Widows
10 professional for Hyper-V and Windows 8 professional for VMWare.

40

3.4. COMPARISONOF VMWARE ANDHYPER-V

• For automated test usage, Application Program Interface (API) is important to achieve the
goal, both products provide APIs to programmatically controll virtual machines, VIX API for
VMWare, andWMI forHyper-V. As for the resources available online (fromofficial documen-
tation to open source community), WMI API for Hyper-V is more abundant.

• In a view of the functionalities provided by VIXAPI andWMI,WMI puts more weight on the
management of virtual machines, like programmatically resizing virtual hard disk, modifying
resources pool settings and so on, while VIX API focuses more on guest operation manage-
ment. To illustrate, listing file information in guest operation system and running programs
are easy to realize with a few lines in Vix API. And automated test in virtual machines de-
mands more operations in guest OS instead of management on virtual machines’ configura-
tions, which makes VIX API more preferable.

• Taking accessibility ofAPIs into consideration, VIXAPI is easier to use ifC# is adopted. But, in
order to useWMI, users has to adopt the format ofWindowsQuery Language (WQL), which
is similar to Structured Query Language (SQL) and probably is not friendly for users who is
accustomed to C#.

• WithWMI, automaticmouse click and keyboard input are easy to achieve in virtual machines,
however it is not provided by VIX API. With consideration of the way host machine connects
to virtual machines, VIX API and WMI works in totally different way. Due to Hyper-V ar-
chitecture, which is designed directly on hardware, it is necessary to take virtual machines in
Hyper-V as remote physical machines. Consequently, connecting to them requires network.
As for VMWare, network is unnecessary due to the fact that virtual machines are built as a part
of host OS.

• As for guestOSmanagement, it is impossible to create interactive processwith remoteWMI in
guest OS, process can only run silently, and can only be visible to taskmanagement. However,
for VIX API, interactive process is totally possible.

• Due to the limitation of remote WMI, GUI test with in virtual machine stored in Hyper-V are
theoretically impossible with only test agent installed in guest OS, because active desktop is
a big challenge for remote WMI. However, with test controller installed , GUI testing can be
realized.

The table 3.4.1 demonstrates briefly the differences and similarities in termof practical use forGUI
test.

41

3.4. COMPARISONOF VMWARE ANDHYPER-V

Table 3.4.1: Comparison of VMWare and Hyper-V

Parameters Hyper-v VMWare

Configuration Complicated Easy

Automatic power on VM Possible Impossible

Guest OSmodification Require restart Restart not required

VMperformance A little Slow Fast

API resources Resourceful Official documentation

Accessibility of API WQL required User-Friendly

API functions Mainly on VM management mainly on guest OS manage-
ment

Low-level control Possible Impossible

Remote control Network required No specific requirement

Interactive process Impossible Possible

GUI test Test controller and agent Only test agent

Snapshotmanagement Easy Easy

Automatic log in guest OS Impossible Impossible

WMI and VIX API have their respective pros and cons. They are similar at some points, e.g snap-
shots management can be doe easily with both APIs, and automatic logging in guest OS is unachiev-
able for both. However, for GUI testing, VMWare is preferable. The greatest weakness of Hyper-V
is that GUI of applications is invisible when the application is executed automatically. Furthermore,
the easy use of Vix API and its efficiency makes VMWare suitable.

It is well known that in theory, Hyper-V has a better performance than VMWare. As discussed in
previous chapter, Hyper-V has great advantage over VMWarewhen large amount of virtual machines
are installed. Considering the case in this thesis where only limited number of virtual machines are
needed, Hyper-v does not have greater advantage than VMWare, especially taking the cost of hard-
ware required by Hyper-V into account. To sum up , VMWare is selected as the virtual machine
software due to its high accessibility and resourceful guest OS management methods provided.

42

4
AutomatedGUI Testing

In previous chapter, automating virtualmachines in bothVMWare andHyper-V is presented, and de-
cision aboutwhich suits better forGUI testing ismadebasedon thedifferences in theory andpractical
use. In this chapter Necessary knowledge about GUI testing will be introduced , including the basic
concepts and various methods and tools available at current stage. A comparison of different tools is
given, according to which CodedUI test is chosen for this thesis, following with the implementation
of the solution proposed in the thesis namely fully automated GUI testing with machines.In the last
section,evaluation of the solution is presented.

4.1 Graphical User Interface (GUI)

Graphical User Interface (GUI), which is the user interface displaying computer operation environ-
ment with graphs, plays an important role in modern applications. Compared with the commands
adopted by early computer systems (e.g. Disk Operation System), GUI brings significant conve-
nience to users. Nowadays, users interact with programwith GUI, and the output of users input (e.g.
click button or keyboard input) can be visible immediately in the format of graph.

Nowadays, most of operation systems have provided graphical user interface, like Windows pro-
vided by Microsoft or Mac designed by Apple. Programs with GUI is always easy to use by freeings

43

4.1. GRAPHICAL USER INTERFACE (GUI)

people form complicated command language. Formajority of applications at present, they are always
installed with GUI applied, which makes GUI testing vital in development cycle.

4.1.1 GUI Objects and Events

GUI is constituting by a collection objects that are placed inside one ormore panes/windows, which
can be buttons, menus or windows. Generally, a GUI object represents a screen element that is used
to display information or enable users to interact with software in a certain way. Each user interaction
with the graphical environment, like button clicking or keyboard input causes an event and it is event
that manipulates GUI object. Event changes the state of software, which is reflected by the change of
appearance of one or more objects. Naturally, GUI is hierarchy, that is to say, a GUI object has its’
own parent, siblings and children.

Figure 4.1.1: Graphical User Interface of notepad application

The GUI objects of notepad are shown in figure 4.1.1, they are bordered with different colors.
Typically all GUI objects reside in a container, which is known as windows object. As the example
indicates. Windows object highlighted with red with the name of Untitled-Notepad holds all GUI
components. As a consequence, windows object is the ancestor of all objects in notepad. In detail,
windows object has three children, title bar object with name of untitled notepad colored with in-
digo, green menu bar which has five menu items as children, and lastly document object with gray
blue. All these objects have unique set of properties, which usually are identified with discrete value.
At any time of execution, the set of value may change, which indicates different states of software.
For example, the name of Document object, can be modified from none to anything input form the
keyboard, which represents that the text file is no longer empty. Detailed information about untitled
notepad GUI hierarchy structure is demonstrated in figure 4.1.2.

44

4.1. GRAPHICAL USER INTERFACE (GUI)

Figure 4.1.2: Hierarchy structure of GUI objects in untiled notepad

As the figure illustrates, theWindows object has three children, title bar, document andmenu bar.
Each of children has their own properties indicating the state of application, e.g. the name of docu-
ment is none in the figure which means that the notepad file has no content. The hierarchy structure
tells the children of each objects by different colors. It is worth to study the hierarchy structure of
GUI application due to the way certain object is searched in testing process. For example, if develop-
ers tend to find the menu item file, first step is to find windows object, next object to find is its’ child
menu bar, and finally menu item file is presented.

For developers, the hierarchy structure of GUI can be exploited to identify GUI events, which is
the basis in testing. According to the paper [6] , events are divided into different groups due to the
corresponding objects they are related to. They are itemized as :

• Restricted –focus event: apparently, user is restricted to operate for this type of event. For
example, in the notepad, when the user perform set font event, a window namedFont appears
and users choose font from the lists. Finally, user terminates the interaction by either click ok
or cancel. In this case, set Font is restricted-force event. Termination must be performed in
these classifications.

• Unrestricted-focus events: is opposite from restricted-force event. For example in notepad,
performing event Find opens a window named Find ,and user can input anything they want
to Find

45

4.1. GRAPHICAL USER INTERFACE (GUI)

• Termination event: typically, click ok andCancel appears termination event.

• Menu-Open event: is used to openmenus. Typically, File and Edit is menu-open event. This
type of event does not interact with software.

• System-interaction event : interacts with underlying software to execute some action. For
example copy event.

4.1.2 Characteristics of GUI Application

Being aware of characteristics of GUI application is instrumental to execute test. From the previous
introduction, it is reasonable to draw summary for the characteristics shown below:

• Accessing to features and functions of software or systems is provided via variousGUI objects,
likemenu bars, buttons, and keyboard shortcut. GUI applications set the low-level logic of the
software apart from users, which makes the software efficient to output expected results, and
therefore is convenient to correct errors if any occurs.

• Objects ofGUI are diverse and in hierarchic architecture. Anobjectsmay contain several other
objects, and these objects probably contain various types of other objects too, which forms the
hierarchy of GUI.

• GUI applications allow multiple windows to be displayed at the same time.

• The state of GUI applications is event-driven, users interact with applications through certain
events likemouse click, keyboard input. Consequently, the valueof properties of certainobject
changes. and therefore the state of application is modified.

• The output of GUI applications execution is not decided only by the event at present, also the
initial state and event performance history influence the output.

• GUI applications rely a lot on operating systems. In some cases, operating system functions
are called byGUI applications so that the applications behave correctly. As a consequence, the
state of external device and operation system have a significant impact on GUI applications,
especially, in the circumstance that GUI applications’ functions are realized by the interaction
between system API and the codes it holds.

46

4.2. AUTOMATEDGUI TESTING

4.2 AutomatedGUI testing

The existence of GUI applications brings huge convenience to users, at the same time the popularity
also makes GUI application more and more complicated and hence, difficult to execute GUI test.
Literally, GUI testing represents the process of testing an application that adopts graphical user in-
terfaces to make sure that it meets the required specifications. From a technical point of view, GUI
testing is mainly about verifying whether GUI objects act as expected and the state of application is
changed as expected after certain event is performed. Generally, it is about verifying the function of
GUI components, and verification on all states of application is included.

4.2.1 Challenges of automated GUI testing

It is clear that GUI testing differs from traditional testing in various ways. E.g. as for traditional tests,
the input of testing is a set of data. However, for GUI application, as mentioned before, is event-
driven, the input of GUI application is no longer conventional data set, but a series of event flow.
An event may be trigged by another event. Furthermore, there is no distinct output from running
GUI applications. Failure of certain event may make the rest of events fail to perform. Therefore,
verification of states change should be performance after every single event execution, instead of after
completion entire tests. GUI testing brings challenges in this ways. There are also other aspects listed
below shown the challenges:

1. As the characteristics of GUI applications indicate, the output of GUI application execution
not only rely on the current input but also on the historic performed events and initial state.
The feature adds complexity to GUI testing.

2. There exists great amount of state changes in GUI applications, which should be all included
in test. This requires that the states and architecture of GUI applications should be monitored
at any moment.

3. A test path is essentially a event sequence , it can be generated from permutation and combi-
nation of GUI objects and events. Due to the large number of GUI objects and events, the
number of test paths, which work as input to the application therefore, are tremendous.

4. The changes of GUI applications state are caused by events, for example a simple click button
can change the graphical interface. However, commands or messages from system can also
change states of the application. Therefore, uncertainty exists in GUI testing.

47

4.2. AUTOMATEDGUI TESTING

The challenges listed above make automated GUI testing difficult, especially when compared to
conventional testingmethodologies. Currently, GUI testing still relies a lot onmanual tests, inwhich,
testers click buttons or input keyboard physically and verification of states is also done in the same
way. Apparently, manual test has a great amount of disadvantages, for example, it is very time con-
suming and testers may easily ignore some test paths. Automated GUI testing is needed especially in
industrial area.

4.2.2 GUI Testing Approaches

The importance of GUI application and its’ unique challenges has raised concern in both academic
and industrial area. A lot of work and researches has been done to propose automaticmethodologies.
At the current stage , the most common and popular way is to use capture/replay mechanism, in
which human actions on GUI application is recorded by certain tools, GUI testing is done by the
automatic playback of the previously script recorded. Also , there are some other methods to realize
automated GUI testing, e.g. employing the Finite State Machine (FSM) to simulate the interaction
made between user and application. FSM model overcomes the defects in capture/replay to some
extent. However, it is usually complicated to construct models. There are also other solutions in
addition to the two mentioned above. In general, the majority of automated GUI testing methods
can be characterized [5] in the figure 4.2.1 below.

Figure 4.2.1: Brief overview of automated GUI testing methods

48

4.2. AUTOMATEDGUI TESTING

The graph in figure 4.2.1 demonstrates briefly the GUI testing process. There are two types of
elements in the graph respectively elliptical representing activities, and rectangular denoting the data
collections. Each edge connects an activity and adata collection. An important purpose in automated
GUI testing is to eliminate the need for a human user during testing , which means running the GUI
applications automatically. In other words, running the interactive application (play activity) with a
certain event sequence (event sequence data collection in the graph).

Taking the most common capture/replay (also known as record/replay) into account, the ap-
proach includes a record and replay process (record andpaly activity respectively). The former aims at
recording users’ behavior when users interact with applications. As a consequence, event sequence
is generated. Alternatively, there are other automated GUI testing approaches focusing on models,
which represents a set of possible event sequences. In these approaches, specific event sequences can
be created through a model by generating instances of a model. A model may include various data
collections. To illustrate, event sequence abstraction can be a part of models, Finite State Machine
[16], event flow graph[24], or Markov model [7] can be adopted to build event sequence abstrac-
tion. Besides, a model may contain information about GUI structure, like the hierarchy structure
of notepad mentioned before. In addition, event types is also instrumental in building an event se-
quence, frequency holding the information about which components are most used or most signif-
icant in practice. At last, input data is included in models too.

In termsof creating amodel, there are various options. Onepossibleway is to abstractmodels form
one or more specific event sequences (abstract activity). Alternatively, extracting information from
GUI applications is another choice (extract activity), e.g the GUI hierarchy structure of notepad can
be obtained through analysis the graphical interface. Hence, searching for certain objects and gener-
ating event sequence is possible. Last but not least, manual creating models is also one of important
approaches. It is efficient especially for small or medium sized GUI application, where test paths are
limited.

Apart from creatingmodels, maintainingmodels or event sequences to gain better performance is
also necessary in automatedGUI testing. Generally, themaintaining strategy is basedon the results of
previous playback, which canbe both pass and failure. As for conventional record/replay approaches,
results can be also used to fix the event sequences. Besides, the information from a model can be
utilized to fix a specific event sequence, like the GUI structure change information.

Among all automated GUI testing approaches, each method has respective pros and cros. As for
model based approaches, although they overcome the defects of record/replay and have high test
coverage, most of them require long development cycle and testers are required to be equipped with
good programming ability. Moreover, models are typically time consuming to maintain and update.
From development’s view, testers need to develop different models for different applications, which

49

4.3. CODEDUSER INTERFACE TEST (CUIT)

is inefficient and expensive to maintain, particularly, in industry area, where efficiency and feasibility
for implementation is emphasized. Alternatively. Record/replay technique gains popularity due to
high efficiency and feasibility.

4.3 CodedUser Interface test (CUIT)

Currently, there are many record/replay tools on the market, e.g.Selenium, QTP, and Coded ui test .
Coded UI test is a record/replay test tool provided by visual studio for automating GUI tests . Users
can verify that the whole application, including its user interface, is functioning correctly. Coded UI
Tests are particularly useful if there is validation or other logic in the user interface.

4.3.1 Advantages of Coded UI Test

Similar with other record/replay tools, performing automated GUI testing with coded UI test con-
sists of two steps. First comes the recording , in which user inputs low-level system interaction to the
application under test. Automated test is performed in second step, which is automatically playback
the recorded script in first step. Among all tools, coded UI test is chosen due to its huge advantages
compared to other tools. The strength can be listed below:

• Because CUIT is designed by visual studio, it is easy and efficient to writes script and debug-
ging due to all features of Visual Studio are applicable.

• CUIT can either be executed with Visual Studio or by usingMicrosoftTestManager (MTM).
With MTM various settings are provided for the test case execution so as to gather a lot of in-
formation while executing the test case behind the scene. CUIT provides various test settings
to perform test cases in order to capture different data when a bug is created

• For CUIT users can write the script with Visual Studio, making all object programming con-
cepts applicable if required.

• CUIT supports Windows Applications, web applications, WPF applications, SharePoint, Of-
fice Client applications and dynamics CRM Web Client applications.

• Coded UI Test supports any data source supported by .NET framework which can be in the
forms of a .CSV file, XML file or any other data source like SQL Server table, Access table etc.

• Coded UI Test includes a rich API library to code against and a resilient record and playback
tool. It can be extended to support custom controls as well.

50

4.3. CODEDUSER INTERFACE TEST (CUIT)

• ForCUITandMTM,users can be provided all theApplicationLifecycleManagement (ALM)
support Team Foundation Server provides. It supports work item tracking, source control or
version control and build automation. The support is in-built;

Table 4.3.1: Comparison of different record/replay tools

Category Selenium QTP CUIT

Record/playback supported supported supported

Ease of IDE Not sufficient Not sufficient Completely
supported

Ease of execution Supported Supported supported

Language Supported Supported supported

Object supported No No Supported

Application Only web Almost all Almost all

ALM supported Partially Partially Supported

The table above compares CUIT with other popular tools, QTP and Selenium respectively . The
comparison ismade in various aspects, from ease of IDE and features to the object-oriented language
support. It is apparent that CUIT is more powerful and more comprehensive than other GUI tools
, In particularly, third-party plug-in and Application Lifecycle Management is supported by CUIT,
which makes it suitable for industrial use.

4.3.2 Principle of CUIT

Obviously, the most significant part of record/replay technique is the record and play back engine.
Figure 4.3.1 illustrates the high-level architecture of record/replay engine. In general, the architecture
is constructed by three levels colored differently in the figure. Specifically, the recorder is designed
to listen and capture UI actions.Playback & API component aims at replaying the actions recorded
through interpreting codes generated. In order to simplify the way to call detailed UI technologies,
technology abstracting layer is set to provide a consistent interface to call into different UI technolo-
gies. Hence different plug-ins components used to identify different types UI controls, are designed
under technology abstracting layer. In the figure 4.3.1, web plug-in will be picked up for web ap-
plications. Rich client plug-ins includes UI Automation (UIA) and Microsoft Active Accessibility
(MSAA), the former plug-in is picked up when the GUI application isWindows Presentation Foun-
dation (WPF), while for other applications, e.g. Windows Forms applications, win32 applications,

51

4.3. CODEDUSER INTERFACE TEST (CUIT)

andMicrosoft Foundation Class (MFC) applications. MSAA plug-in is used to identify UI controls.
Generally speaking,MSAAworks for any controls which is not specified in web plug-in or UIA plug-
in, which is the reason why MSAA is default plug-in. Third party plug-ins is supported by the engine
too.

Figure 4.3.1: Architecture of record and replay engine in Coded UI test

RecordingUIactions is thebasis ofCUIT, a simple example is shown to illustratehowthe record/re-
play engine works. A simple mouse click on aWPF applications provokes the following steps at high
level for the recorder:

1. Recorder listens to Mouse Event.

2. X and Y coordinates will be acquired when the mouse button is clicked.

3. Recorder will call specific API to get the Control (e.g. button) at location of X, Y (for WPF
applica-tion, and MSAA plug-in will be called to identify the button.)

4. Recorder will get the properties and the hierarchy of the button.

5. Information about technology type of plug-in, control hierarchy and control properties will be
generated, which is used to search the button in playback process.

6. Capturing the actions, which means mouse click

7. Generating an XML file to represent the recording

Replaying step is one of the most important part in CUIT. Playback engine can be invoked through
automation API in CUIT, and playback engine involves the following steps at high level:

52

4.3. CODEDUSER INTERFACE TEST (CUIT)

1. In order to find the specific control, like a button in previous example, the information gener-
ated in step 5 during recording process is adopted to search for the control. Breath first search
(BFS) algorithm is used in searching process.

2. When the specific control is found, the playback engine will ensure the control is visible by
performing some actions.

3. Before interacting with the control, playback engine needs make sure that the control is ready
for specific action, like clicking on a button, some smart algorithms are employed to achieve
this goal.

4. Playback tries to ensure that the control that was supposed to have received an action has ac-
tually received it.

5. The playback finally performs the UI action on the control.

4.3.3 Workflow of Coded UI test

The playback logic is described clearly in previous section, how CUIT performs GUI testing is im-
portant for testers to analyze failures, figure 4.3.2 demonstrates the general workflow of GUI testing
with CUIT.

Figure 4.3.2: Workflow of Coded UI test

In figure 4.3.2, rectangulars colored in grey represent activities, while diamond indicates the out-
comeofGUI testing, either pass or fail. In general, CUITwill performFind first, which is responsible
for finding the specific controls (or finding next control) according to the recorded information (e.g.
controls’ name, type, hierarchy etc). If the control is not found, then test will end up with “cannot

53

4.4. EVALUATIONOF CODEDUI TEST

find control with search properties” error, otherwise CUITwill continue to execute Perform activity.
If the action cannot be performed, CUIT will fail with “action cannot be executed”, the reason be-
hind may varies a lot for different tests. If the action can be performed successfully, CUIT will verify
whether the expected state reached , if not, testing will fail too. Apparently, failure information is in-
strumental in fixing the test script, and therefore failure analysis is also one of themost important step
in the entire workflow. Noticeably, the testing will not quit unless there are failures or in the preform
activity , some termination events are performed ,like clicking finish or cancel button

4.3.4 Approaches for GUI test in virtual machines

For GUI test using the virtual machines, there are basically two approaches. Firstly, hardcoding the
mouse click and keyboard through API, which requires that testers know the absolute position of
variousGUI components, and failures are prone to appear if the positionof programunder testmoves
even a slightly bit. Or in another way, click the name of certain component, similarly, if the name is
changed, failure will occur. Another choice is to implementGUI test in virtualmachines by dropping
test script to guest operation system.

VMWare provides several different software development kit (SDK) products, and each is de-
signed for different community and platforms. To illustrate, VMware HTML Console SDK can be
only used for vSphere 5.1 and later, which is a JavaScript library implemented on a basis ofWebMKS,
provides mouse , keyboard processing and handle as well as cursor changes. While VMWare VIX
API is designed for users to control VMWare guest OS programmatically. The advantage of the pat-
tern is that it is easy to download and get what you need for developments clearly. However, when a
developer targets at some comprehensive functions, it usually requires extra product. For example,
VMWare workstation is only designed for virtual machines which are installed on the exactly same
host, and controlling mouse click and keyboard is impossible. This is the reason why dropping test
script to guest OS is adopted in this thesis.

Coded UI test provided by visual studio is automated test, which drives application under test
through its user interface (UI), and can realize functional test of UI controls and verify the func-
tionality of applications. It is very easy to use in terms of record and playback. Consequently. It is
employed in this thesis as automated GUI test tool.

4.4 Evaluation of CodedUI test

Currently, most of currently existing research work has put the weight on proposing new approaches
to perform GUI testing, e.g. Marlon et al[37],proposed a test case generation approach based on

54

4.4. EVALUATIONOF CODEDUI TEST

Unified Modeling Language (UML), while Emil et al[3] introduced a new technology using image
recognition to identify the GUI objects. However, all of these works focus on the approaches to
generate GUI testing, the system where GUI testing is executed on has to be turned on manually.
Therefore, additional manual assistance, which can be turning on systems, installing pre-requisite
applications or switching off system when all tests finished, has to be available for theses test cases to
beexecuted successfully. To someextent, the approaches that current researchproposedareonlyhalf-
automatic GUI testing in terms of the entire testing process. To address this problem to some extent,
a fully-automatic GUI testing solution is presented by locating tests in virtual machines. Through
automating virtual machines, all the procedures involved in testing process are automated. Besides,
multiple virtual machines can be automated concurrently, which means the efficiency of testing can
be improved significantly. In addition, evaluation of the on Coded UI Test is given in this paper
since no work evaluated the tool especially in industrial cases. The following chapter shows details of
evaluation related to CUIT in both host machine and virtual machines

4.4.1 Installation/Uninstallation Test

Installation of an applications is the premise of using the software, at the same time brings changes
to the system. In some scenarios, a failure installation may cause severe damage to users’ system,
leading to a reinstallation of the entire operating systembeing necessary . Fromuser experience point
of view, installation is the first step of using certain software. If installation fails, it will leave a bad
impression to the customers. All the circumstances mentioned above indicate that installation test is
critical in testing process. Additionally, installation in different systems and configurations should be
implemented to guarantee the robustness of the application under test.

For uninstallation, it should be emphasized that successful uninstallation removes the application
from a system completely, which means that all files relevant with the application should be deleted,
otherwise the installation of new version of application may be influenced significantly. Typically,
uninstallation of an application can be done through either uninstall.exe (in some cases uninstall.exe
is integrated in the setup file) or uninstall function available in control pane. However considering
the circumstance that control panemay have different forms of names in different operating systems,
e.g. in Norwegian operating system, control panel is “kontrollpanel” , it is efficient to hide the differ-
ence in GUI testing process, which is sensitive to UI properties. Thus uninstallation is done through
uninstall.exe in this paper,.

Figure 4.4.1 (a) and (b) illustrates the workflow for installation and uninstallation respectively,
notice that both tests are done through executing the setup file. The difference lies with that uninstal-
lation is achieved through Remove function provided by setup file and this function is only available

55

4.4. EVALUATIONOF CODEDUI TEST

when application is installed successfully.

(a) (b)

Figure 4.4.1: Installation/Uninstallation GUI testing workflow

As for installation test work flow shown in figure 4.4.1 (a), test starts with running the setup file for
the application, and if a previous installation is detected, all the files related to the application from
previous installation will be removed. If there is no previous installation found, installation test will
start the ordinary install procedure, including choosing installation option or selecting install path.
Notice that in this paper, the install path is set tobedefault directory. The test doesnot endupwith the
completion of installation, a followed validation of application installed is necessary. The validation
can be about the size and version or any other properties of application installed. The pass or failure
of test will be available from the outcome of validation.

Uninstallation test demonstrated in figure 4.4.1 (b) starts with check whether the application is
already installed. If not the test will fail with no application installed. Otherwise, uninstallation will
start normally from running setup file and choosing Remove function. Similar with installation test,
uninstallation test completes with validation whether all files are removed from specified directory.
Thus the outcome of uninstallation test can be generated.

In order to illustrate the efficiency of automatic GUI testing for installation and uninstallation, a

56

4.4. EVALUATIONOF CODEDUI TEST

small sized application called TestApp together with an industrial software named ABBRobView 5,
which is designed and released by ABB Robotics AS, is adopted for GUI testing in the thesis. These
two software varies in many aspects. One of the most influential sides with regard to completion
time taken, is the size of the setup file and application itself. As a consequence, the value of setup file
and application is obtained. Furthermore, GUI application is event-driven. The number of events in-
volved in installation/uninstallation testing process also affects the execution time. Table 4.4.1 below
shows the time taken to complete testing both manually and by script in host machine.

Table 4.4.1: Execution time of Insatllation&Uninstallation test for TestAPP and RobView 5

Test No.
events

setup
size

App size Manual test
duration

Automatic
test duration

Installation
TestApp

3 268K 276K 6s 6s

Uninstallation
TestApp

4 268K 276K 7s 6s

Installation Rob-
View

3 43.8M 103M 12s 8s

Uninstallation
RobView

4 43.8M 103M 20s 17s

Table 4.4.1 shows clearly the completion time for both manual test and automatic test with CUIT
for applications with different size. As for the application with small size, like TestApp in the table
with size of 276k, automatic test does not have apparent superiority over manual test. While for ap-
plication with a medium size, CUIT shows great superiority. To illustrate, the time taken to finish
manual test for installation of RobView is 12s, while the duration is 8s for automatic test with CUIT.
The performance in terms of completion time improved by around 33%, and for uninstallation test,
the value is 15%. Remarkably, the number of events is introduced in the table, which is the number
of actions involved in testing, e.g. for installation, testing includes click accept checkbox, click install
button and click finish button. Number of events for installation and uninstallation test is 3 and 4
respectively, and both are very small. One of significant reasons for automatic test having no obvious
advantage over manual test is that too few events are involved in testing process. Nevertheless, auto-
matic GUI test with CUIT adopted is still superior over manual test especially for medium and large
scale of programs.

57

4.4. EVALUATIONOF CODEDUI TEST

4.4.2 GUI Functional Testing

As the term indicated, functional testing aims at verifying whether an application or system under
test behaviors as expected. In traditional testing, functional testing takes data as input, and verifies
whether the actual output is consistent with expected outcome, which is usually written in script.
However, for GUI testing, there is no data as input since GUI application is event-driven. Sequence
of events can be considered as input in some content. The changes of state caused by each event
will be compared to expected change. GUI application functional testing is more complicated than
conventional ones in terms of input data and verification part.

Similarwith installation/uninstallation test,GUI functional testing forboth small-sizedandmedium
size applications is shown in this pape. SimpleAPP has a single function as shown in figure 4.4.2 (a)
. The application is made of 4 components, and once start button is clicked, the progress bar will
start working. When progress bar finishes, check box will be enabled, (before progress bar finishes,
check box is always disable, colored with grey) . EXIT button will be clicked after clicking check box
,which closes the application. The whole testing process can be summarized as: click start-wait for
progress bar-click check box-click exit. The number of event is 3.

(a) (b)

Figure 4.4.2: GUI of SimpleAPP and Robview 5 for GUI functional test

With regard to functional testing of RobView 5, it is much more complicated. The number of test
cases can be up to 67 if all functions are set to be covered. In order to illustrate the performance of
CULT, a test on the function of administration setting is chosen. Specifically, the tests is designed to
verify the function of logging in RobView with a certain account. As shown in figur4.4.2 (b), notice
that by default, User Account Setting (UAS) is disabled, a restart of RobView is required. Another
restart of the application is required after theusernameandpassword is verified so that the application
can startwith the specifiedaccount. To sumup, thenumberofGUIevents involved inUAS functional

58

4.5. EVALUATIONOF FULLY AUTOMATEDGUI TESTINGWITH VIRTUALMACHINES

test is 18. Obviously, functional testing on RobView is muchmore complicated and time consuming
than SimpleAPP

Table 4.4.2 below demonstrates the time taken to execute functional tests manually and by script
in host machine(windows 7 OS). Due to the difference of number of events, time taken varies sig-
nificantly for SimpleAPP and Robview 5. With regard to manual test, duration for Robview 5 is 2
minutes and 20 seconds, while for SimpleAPP , it is much less, only 6 seconds. Similar with instal-
lation/uninstallation test, for small-sized GUI applications, CULT does not bring much superiority.
For functional test, performance of UAS functional test for Robview 5 improves by 11.4 % . Notice
that, for installation/uninstallation test, the value can be up to 33%. The difference results from the
fact that in functional testing, it takes longer for CULT to find certain GUI component in a compli-
cated hierarchy structure, which is one of the disadvantages in CUIT. However compared to manual
test, CUIT is still faster and more advanced.

Table 4.4.2: Execution time of functional test for SimpleAPP & RobView 5

Test No. events Manual test dura-
tion

Automatic test du-
ration

SimpleApp 3 7s 6s

RobView 5 18 2min 20 s 2 min 04 s

4.5 Evaluation of Fully automatedGUI testingwith virtual machines

Virtual machines have brought huge advantages to users. Especially for software testing, with virtual
machines, various systems can be built in an inexpensive way, which is instrumental in testing the
robustness of application. Moreover, considering the circumstance that ”malware”may attack system
where application is installed in the testing process, damage may be brought to the system. With
executing tests in virtual machines instead of host machine, it is cost free to fix the problem, either
by reverting to snapshot or reinstalling the virtual machines. While for fixing the damage in host
machine, it is costly to reinstall the entire operating system.

Automating virtual machines is comparatively easy to achieve in an inexpensive cost with the ef-
ficient API provided. As a consequence, virtual machines are excellent candidate to solve fully auto-
mated testing issue, whichmeans that all the procedures involved in testing canbedone automatically
in virtual machine and the test results can be copied back to any directory in host machine. Evalu-
ating GUI testing in virtual machines is therefore critical. If the tests executed in virtual machines

59

4.5. EVALUATIONOF FULLY AUTOMATEDGUI TESTINGWITH VIRTUALMACHINES

take extremely long or guest OS responses extremely slow, then virtual machines are not an efficient
solution for fully automated testing. Table 4.5.1 shows different execution time of tests mentioned
above in different virtual machines. Notice that test in virtual machines is automated by playback
codedUI test script, and command prompt and visual studio test agent (MSTest.exe) is employed to
automated testing in virtual machines.

Table 4.5.1: Execution time of sets of GUI tests in various virtual machines

Guest
OS

TestApp
Instal-
lation
test

TestApp
uninstal-
lation
test

RobView
Instal-
lation
test

RobView
Uninstalla-
tion test

SimpleAPP
function test

Robview
function
test

Win7EN 20s 11s 44s 29s 9s 3 min09s

Win7CH 18s 11s 40s 25s 10s 3min02s

Win7NO 22s 13s 42s 28s 7s 3min01s

Win10EN 25s 22s 1min 04s 57s 22s —

Win10CH 19s 20s 51s 48s 13s —-

Win10NO 23s 18s 1min13s 1min02s 16s —-

Average 21s 15s 52s 41s 12s 3min04s

Skimming through table 4.5.1, it can be seen that duration varies a lot in different virtual machines
for different tests. Notice that, for windows 10, the duration for RobView UAS setting test is not
available because RobView is only designed for windows 7. If it is run in other operating systems,
CULT cannot find “start menu” due to accessibility of GUI object is not supported in the OS except
for windows 7 . In general, it takes longer to complete tests in windows 10 than windows 7, which
is due to the slow response in resources-consuming and high latencyWindows 10. Furthermore, the
more events involved in test, the longer the duration is. However, there is no linear relation between
them.

It is worthmentioning that the duration for a test in a certain virtual machinemay correlate signif-
icantly with the resource-usage situation in host operating system, if the virtual machine is installed
in the same machine with host machine like in this thesis. Taking the principle of hypervisor into
account, A virtual machine is regarded as a process in host OS. Consequently, the busier a host ma-
chine is, the slower a virtual machine will be. Therefore, to make duration data more representative,
an average of duration is computed to provide a more concise description. It is very clear from the

60

4.5. EVALUATIONOF FULLY AUTOMATEDGUI TESTINGWITH VIRTUALMACHINES

average value that installation test takes longer than uninstallation test and applications with smaller
size finish testing in shorter time.

Figure 4.5.1: Test duration for different set of tests in different manner

Figure 4.5.1 demonstrates the differences of test performance in manual test in host machine, au-
tomated test in host machine and automated test in virtual machines (with second as time unite).
Obviously, test in virtual machines always takes longer time to finish compared to manual test and
local automated test. The reason behind the fact is that time taken to start execution (i.e. start test
agentMSTest.exe) is by default included in completion time, while there is no starting test agent time
taken into account performing automated test from script in host machine. The greater test duration
in virtual machines is also partially because of slow response guest operating system in virtual ma-
chines, especially operating system like windows 10, which has a high requirement on host machine
hardware resources. Considering the reasons described above, although duration in virtualmachines
is greater than ones in other two ways, it can still be deemed as an efficient approach judging by the
benefits it brought.

4.5.1 Results of Executing Multiple Tests Concurrently

So far, no matter manual test or automated test, all test are executed individually, which means at
any point of time, only one test is allowed to be performed due to the non-cumulative property of

61

4.5. EVALUATIONOF FULLY AUTOMATEDGUI TESTINGWITH VIRTUALMACHINES

testing[27]. Apparently, if in some way, multiple tests can be executed simultaneously, the efficiency
will be enhanced dramatically. No solution is proposed so far to solve it in a host machine. However,
with virtualmachines, the problem can be addressed properly. Non-cumulative property also applies
to virtualmachines, which implies that two ormore tests execution at the same time in a single virtual
machine is not possible. It is conceivable that running multiple virtual machines should be able to
solve the problem.

In theory, any number of virtualmachines can bemanipulated in parallel. Nevertheless, it typically
has a strict requirement on the host machine hardware if many virtual machines are running simulta-
neously. Otherwise guest OSwill response extremely slow. As a consequence, compromise between
efficiency and cost should be made. In this thesis, a host machine with Intel Core-i7 4510U CPU
2.0GHz processor and 8 G installed memory is used to implementation. if 3 virtual machines with
Windows 10 installed, are set to run simultaneously, both host and virtual machines are extremely
slow. Therefore, in this thesis , only 2 virtual machines are set to run concurrently, and 3 groups with
2 virtual machines in each are formed.

Figure 4.5.2: Round trip time for different sets of GUI testing with different solutions

Figure 4.5.2 illustrates the different round trip time for manual test execution,single test execution
andmultiple tests execution respectively (withminute as time unit) . Round trip time is the duration

62

4.6. FAILURE ANALYSIS

between committing a source code change and the reporting test results reported back to developer.
Notice that, the round trip time includes time taken to automate virtual machines for both single
execution and multiple execution.(i.e. power on a virtual machine –run tests –copy results back to
hostmachine – power off a virtual machine etc). We can tell from the graph that single test execution
has a similar performance with the manual test, as explained in above section. The reason is that test
agent starting time is included in round trip time in single execution. However, It is clear from the
graph that multiple tests execution is always more efficient than single tests execution and manual
test. Specifically, for installation and uninstallation test of TestApp, time taken to automate tests in
all 6 virtualmachines one by one is around 18minutes, while the round trip time for executing 2 tests
simultaneously for 3 times (i.e. run test in all 6 virtual machines) is around 10 min, the performance
improved by around 40%. While compared tomanual test, performance improved by 11%. Comple-
tion time for installation and uninstallation test of RobView in single andmultiple execution is 28min
and 25min. performance enhances by around 11%. While for simple function test, there is around
40% performance boosted.

Although, the figure above does show some advantages of multiple test case executing over single
test case execution and manual test. In theory, the round trip time for multiple test case execution
should be twice less than single execution in this case. However, in fact, multiple test case execution
is not efficient as expected, the reason behind is that running multiple virtual machines at the same
time make both host OS and guest OSes extremely slow-responding, which increases the round trip
time greatly. Considering the circumstance that virtual machines are stored in a remote server or
cloudmachine, there will be no load introduced, and the number of virtual machines that run simul-
taneously can be up to 10 or even more, the efficiency of testing will improve greatly.

From the analysis of figure 4.5.2, efficiency of simultaneous multiple tests execution is consider-
able. Apparently, the more tests executed in parallel, the less round trip time is. However, if the host
machine is not powerful enough, more virtual machines will make not only virtual machines but also
host machine extremely slow, which results in long round trip time. As a result, trade-off between
cost and efficiency should be taken into account.

4.6 Failure Analysis

Coded UI test is an impactful tool for GUI testing in various aspects as results shown in previous
section. It is easy to use, efficient to maintenance and can fix codes. Nevertheless, failure is prone to
appearing in testing process, some of which is due to the disadvantages of CUIT, while part of which
is resulted from application under test. It is worth of analyzing the failure not only for fixing the error
in application under test, but also for gaining a further understanding of CUIT. Form the work flow

63

4.6. FAILURE ANALYSIS

of GUI testing described above, failures can be classified into three classes, searching GUI objects
failure, performing action failure, and lastly, verification of states failure. For the sake of analyzing
various failures in an explicit and concise manner, failures will be demonstrated in category fashion.

4.6.1 Searching GUI Object Failure

Searching failure is the most common one in testing process, however the reasons behind may be
various a lot mainly depending on specific circumstance.

• Problem: in installation/uninstallation test, the last step is generally click finish button, how-
ever in some cases, tests fail with error “cannot find finish button”.

Reason: Due to the searching mechanism of CUIT, GUI objects should be visible before any
action is performed. In this problem, finish button is not visible before time out, because in-
stall/uninstall progress bar always takes some time to finish.

Solution: Add WaitControlExists () method before click finish button in test script, which
suspends current thread until target control (GUI object) is visible. Hence existence of GUI
control can be guaranteed.

• Problem: test script generated in English version (e.g. windows 7 English), does not perform
clickWindows system close button, which is built in for every application. Test fails with can-
not find close button

Reason: for different operating system language version, the name for system button may be
various in different language system, for example close button in English operating system is
“button close”, while inNorwegian it is “knapp lukk”. Since theGUI control is found according
to it’s name, it is reasonable that close button cannot be detected in other language version.

Solution: instead of hardcoding clicking systembutton, exiting application from function pro-
vided by application itself like cancel button.

• Problem: in installation test, by default, when an application is installed, user account control
dialog will appear warning that modification on the machine will be done. Generally, clicking
OK buttonwill make application installation step into further procedure. However, for CUIT,
it is possible to capture the User Account Control dialog.

Reason: the event of UAC is semantic, which represents that it will not put into event queue
of GUI application. Therefore, CUIT will not capture the UAC dialog.

64

4.6. FAILURE ANALYSIS

Solution: modifying the setting of User Account Control to ignore the change ofmodification
onmachine. As a consequence, theUACdialog will not appear when new application is about
to install.

• Problem: As mentioned before, start menu of RobView is not visible in Windows 8 and Win-
dow 10.

Reason: the problem is probably caused by accessibility support of UIA element (i.e. start
menu) is not set for windows 8 and windows 10 considering the application is designed for
windows 7 only.

Solution: modifying the RobView application source code to enable the accessibility support.
However, the solution is not verified to be effective yet.

4.6.2 Action failures

Sometimes test cases fail with error like “certain action cannot perform on the control”, like the prob-
lem shown below.

• Problem : as illustrated in figure 4.6.1, the highlighted rectangle represents the Next button
found by the test script, and when click Next button is executed, the test will fail with error
“cannot perform click on next button”

Reason: the problemmay caused by the existence of cache control, the cache control may not
be deleted completely when the application is developed.

Solution: change the application source code to remove cache control, or in the case of Rob-
View, removing the Move User files dialog directly.

Figure 4.6.1: Action failure in Move User File application

65

4.6. FAILURE ANALYSIS

4.6.3 Application Error

• Problem: in the uninstallation test for TestApp, although the test can pass, which means files
in certain directory is deleted, it does not actually uninstall the application, and can still find
in control panel.

Reason: probably, the problem is due to the property of setup file, in which duplicated instal-
lation is enabled, which means more than two same application installation is allowed. Unin-
stallation test removes only one of the installations.

Solution: fixing the setup file to forbid duplicated installation may solve the problem.

4.6.4 System Problem

• Problem: for tests in virtual machines, when previous tests complete, immediate start of next
test sometimes lead to fail, especially when the OS responses slowly.

Reason: the cause of the problem is evidently due to the slow responding system. Previous test
probably has not finished in the background, and two or more test executions simultaneously
in a single machine is not allowed according to non-cumulative property.

Solution: Slowing down the system by adding sleep time before executing next test.

66

5
TestCases Scheduling in VirtualMachines

The performance of the solution proposed is proven to be considerable in previous chapter. For the
purpose of covering all the test paths and verifying every single function of a software, the number of
test cases canbe enormous amount asmentionedbefore, as a result completion timewill be extremely
great. The importance of decreasing the round-trip time, that is, the duration between committing a
source code change and the reporting test results reported back to developer, raises concern of testers.
As a consequence, scheduling test cases so that the round trip time isminimal is critical to improve the
effectiveness in the software testing process. In this thesis, tests can be distributed to different virtual
machines instead of performing all test cases in every virtual machine. In this way, the performance
of fully automated GUI testing can be optimized.

5.1 Introduction of Test Cases Scheduling

It is apparent that test case scheduling aims to reduce the round trip timeasmuchaspossible. Thesim-
plest and most straightforward approach is to perform test cases in as many machines as the number
of test cases concurrently. However, it is impractical considering the cost. Taking virtual machines in
this thesis as an example, running hundreds of virtual machines simultaneously will slow down the
hostmachine and guest operating systems significantly if the virtualmachine is stored on a same host

67

5.1. INTRODUCTIONOF TEST CASES SCHEDULING

machine. Therefore test cases takes longer time to finish. Obviously , the simplest approach is very
costly. As a result, test cases scheduling is one proper and inexpensive approach to achieve minimal
round trip time.

5.1.1 Description of Test Cases Scheduling

Test cases scheduling in virtualmachines simplymeans ordering the test cases under perform inmul-
tiple virtualmachines so that the time taken tofinish all tests isminimized to the greatest extent. From
a mathematical point of view, considering a set of test cases denoted as T, which has elements as {t ,
t · · · tn}. These test cases have corresponding execution duration D,it can be expressed as {d , d
· · · dn}. Furthermore, a set of virtual machines is described as VM, which has virtual machines as
elements shownwith {vm , vm · · · vmm} . Noticeably , these virtual machinesmay differ in various
aspect, e.g. operation systems , or the allocated hardware resources from host machine. Therefore,
the execution duration for each test case may slightly over-estimated to result in a small variation in
different virtual machines. Nevertheless, compared to the duration , the variation is too small, so it is
reasonable to ignore the changes.

The purpose of test cases scheduling in virtualmachines is to find a function f, so that S= f (M,T).
S is the targeted new sequence of test cases.The overall test execution time Te can beminimized with
the new sequence. The function f assigns test cases to different virtual machines. It is clear that the
time taken to find the best sequence set S is not negligible. Assume that the time required to find best
solution is denoted as Ts,, and the time taken to finish all tests can be represented as Te. Therefore,
the total time taken in testing process Tt is defined as: Tt= Ts+ Te. Minimizing Tt is the final goal of
test cases scheduling.

However, for test cases scheduling in virtual machines, the following constraints should be strictly
forced:

• No-cumulative scheduling : at any time , a single virtual machine can only executes one test
cases. Two or more test cases performing in the same virtual machine at the same time is not
allowed.

• No-preemptive scheduling: at any time, a test case running on a virtual machine cannot be
interrupted in order to execute another test case instead.

• Machine independent: it is hypothesized that the execution time of a test case is irrelevant
with any specific virtual machines, even though the virtual machines vary in terms of proces-
sors allocated, or memory assigned form the host machine.

68

5.1. INTRODUCTIONOF TEST CASES SCHEDULING

The optimization problem can be described by a time-discretized table. As table 5.1.1 shown, the
table contains a set of test cases ,duration for each test case and its assignment to given virtual ma-
chines.

Table 5.1.1: A simple case for test case scheduling

Test Duration Executable on

t 10 vm , vm , vm

t 3 vm , vm , vm

t 5 vm , vm , vm

t 6 vm , vm , vm

t 14 vm , vm , vm

t 15 vm , vm , vm

t 11 vm , vm , vm

t 20 vm , vm , vm

t 18 vm , vm , vm

A small test case scheduling problem is presented as table 5.1.1, let T be the set of test cases and
set to {t , t · · · t }, and the durationD here is set to {10,3,5,6,14,15,11,20, 18}. Note that the time
unit is not specified here, it can be minute or second. From reality view, the value can be gained by
empirical running test cases. The last column in table 5.1.1 indicates the virtual machines these test
cases can execute on. In this example, all tests can be performed in all machines. However, in some
cases, certain tests can only be executed on certain virtualmachine to test the specified function. But,
all virtualmachines are identical in this example, so test cases can be performed in all virtualmachines
available, e.g. vm , vm , vm , in the example.
From an algorithm point of view, test cases scheduling can bemapped as ”multiple-CPU scheduling”
[43] problem, the definition is given as:

Def 5.1.1. A set S = {a ,a , ..., an} of n proposed activities that compete to use common resources ,which
is a set of CPUs denoted as {m ,m ,· · · mm}. Each activity ai has a start time si and a finish time fi, where
si ≤ fi <∞ . If activity ai is selected, ai takes place during the half-open time interval [si, fi). Activities ai
and aj are compatible if the intervals [si, fi) and [sj, fj) do not overlap (i.e., ai and aj are compatible if si ≥
fj or sj ≥ fi). The target is to find the minimal completion time

It is clear that ”multiple-CPU scheduling” is a NP-complete problem, whichmeans that best solu-
tion can not be obtained quickly in polynomial time. Obviously, a naive approach is to use brutal-

69

5.1. INTRODUCTIONOF TEST CASES SCHEDULING

force, where all possible solutions are executed so that best one can be found out. There is no doubt
that brutal force can always find an optimal solution, but taking the time taken into consideration ,es-
pecially in cases with a great amount of solutions, it is an expensive approach. Some other methods
are proposed by researchers in last decades, including heuristic algorithm [2], the solution emulates
the behavior in biogenetics way so that a search approach is constructed. Simulate Anneal Arith-
metic(SAA) [19] is another approach, SAA interprets slow cooling as a slow decrease in the proba-
bility of acceptingworse solutionswhen it searches the solution space. Andneural network algorithm
31 is one of the options as well. In those algorithms, randomness is used to get a faster average run-
ning time. Furthermore , there is no evidence shown that these are faster and always produce a best
solution. Typically, the compromise between time taken and the optimal extent of final solution,
should bemade. Alternatively, greedy algorithm is proposed to solve the problem in an efficient way.
Noticeably, with greedy algorithm adopted, the solution found is not optimal , but “almost” optimal.

One possible best solution for the simple example is shown in figure 5.1.1 with greedy algorithm
adopted. The completion time is : 18 + 11 + 6 = 35

Figure 5.1.1: ”Almost” optimal solution for test case scheduling with greedy algorithm

5.1.2 Test Case Scheduling With Greedy Algorithm

From previous analysis, it is clear that greedy algorithm is capable of solving “multiple-CPU schedul-
ing” problem in an effective way. It finds the as optimal as possible solution in a short time. In all
the algorithms mentioned, search strategy is always the most critical part to solve problems. Differ-
ent strategy results in different performance, e.g. search approach in heuristic algorithm is based on
the theory in biogenetics. However randomness reduces algorithm’s performance to some extent.

70

5.1. INTRODUCTIONOF TEST CASES SCHEDULING

While for greedy algorithm, there exists various strategies too. For example searching can start with
test cases with shortest time first, or in contrast , always choose tests with longest completion time.
It is obvious from figure 5.1.1 that search strategy is based on longest competed time. To make the
algorithm clear, mathematical description is employed. For mathematical problems, there is always
input and output parameters, in this case, these parameters are illustrated as follows:
Input : As mentioned before, test cases , duration and virtual machines are denoted as T {t , t · · ·
tn}, VM {vm , vm · · · vmm} , D {d , d · · · dn} respectively. For duration , information about the
starting execution time si and finish execution time fi can be added to input set . Therefore, each test
case can be labeled as stating time , finish time , duration and virtual machines they can be executed
on . Among the input parameters, starting time and finishing time are variables to be assigned values.
mi is a variable indicating the virtual machine a certain test case will be assigned to. The value lies in a
finite domain [1,2,· · · m] adn m is the number of virtual machines. For the simple example in table
5.1.1, the value of mi can be set as [1,2,3]. In general, a test case can be expressed as {si, fi, di, vmi}
Output : S{s , s sn}, is the starting time set for corresponding test cases. M{m ,m · · · mn} is the
numeric value indicating corresponding test case assignment. Thegreedy algorithmcanbe illustrated
briefly as below:

Algorithm 1Greedy algorithm for test case scheduling
1: Starting time : si←
2: Finish time : fi←
3: Sort :D
4: for each element i inD do
5: Find : Maximun value : dm
6: Find : Virtual Machine : j
7: with shortest finishing time : fj
8: si← mj

9: mi ← j
10: end for
11: Return S,M

With greedy algorithm descripted above, the output of test scheduling for the example in table
5.1.1 is shown as :

S ={20,30,29,29,15,0,18,0,0} , M={3,3,1,2,1,12,3,2}; total completion time is 35.
In general, greedy algorithm in test scheduling aims at assigning test cases with longest- running

time to the virtualmachines that finishes current job firstly. Asmentioned above , greedy algorithm is
unable to guarantee the final solution to be optimal. But the algorithm ensures that it is approximate
optimal. Thereforewe can say that greedy algorithm is still effective, especially considering the cost in

71

5.1. INTRODUCTIONOF TEST CASES SCHEDULING

both space and time, which isO(1) andO(n*logn) respectively. For small ormedium scale problems,
the cost can be ignorable, which makes it suitable to solve the problem of test cases scheduling in
virtual machines.

5.1.3 Theoretic Implementation

In this section, applying test case scheduling in multiple virtual machines will be presented. In short
, implementing scheduling strategy discussed above in a realistic set of tests, which are designed to
verify the function “RobView” in ABB. Round trip time of scheduling will be given.

According to the information from testers in ABB, duration for an individual test to execute varies
from 1 minute to 5 minutes (depending on the test steps). In order to cover all functions in “Rob-
View”, there are 67 automated test cases in total. To execute the entire suite, it takes around 1.30
Hours. In this case, for each test cases, the average duration is 1.3 minutes, which means most of the
test cases take around 1 minute to complete. However the detailed duration for each test case is not
provided, a reasonable assumption ismade in this thesis to illustrate the test case scheduling solution.
The duration for each test case is assumed as listed in the table.

In table 5.1.2, the correspondingnumber of test cases is given for each test case duration . Thevalue
of duration for each test case are set to be integer so as to simplify the assumption. Being consistent
to the information from testers, the value of duration lies between 1minute to 5minutes. The overall
time is 90 minutes, and the overall number of test cases is 67. The sum of time and number of test
cases comfort to the information from tester, therefore, we can say that the assumption is reasonable.

Table 5.1.2: Assumed duration of each test case in GUI testing for RobView

Duration (minute) Number of test case Sum of duration (minute)
5 1 5
4 2 8
3 3 9
2 7 14
1 54 54

67 (Sum) 90(Sum)

The assumed duration for each test case is listed in the above table. According to the test schedul-
ing solution (with greedy algorithm adopted) , the round trip time is demonstrated as the following
graph. Notice that, in previous work, only 2 virtual machines are manipulated concurrently because

72

5.1. INTRODUCTIONOF TEST CASES SCHEDULING

the hostmachinewhere virtualmachine stored is not powerful enough. More than 2 virtualmachines
manipulation at the same time will make host and guest OS extremely slow-responding . However,
considering some situation that host machine is power enough to run 10 or more virtual machines
. In order to illustrate the efficiency of test case scheduling, graph 5.1.2 below shows the round trip
time with different number of virtual machine executed simultaneously.

Figure 5.1.2: Round trip time for tests with different number of simultaneous manipulation
virtual machines

As show in figure 5.1.2, the more virtual machines are manipulated, the less round trip time is.
Specifically, when no test case scheduling involved, the overall time to perform all test cases is 90
minutes as provided from tester. While it takes 46 minutes to complete all testing when 2 virtual
machines are executed simultaneously with greedy test case scheduling adopted. Compared with no
test case scheduling, the performance improves by around 48%. The corresponding round trip times
for 3 and 4 virtual machines simultaneous manipulation are 29 minutes and 15 minutes respectively.
As trend line indicates, the round trip time decreased dramatically. Thus the efficiency is enhanced to
a great extent. The industrial case studied above illustrates clearly that test case scheduling can reduce
the round trip time and increase testing efficiency significantly, although it is a theoretic evaluation.
However, for testing, the round trip time is just one of the parameter which affects the performance.

As is known universally, the goal of software testing is to find potential faults, and therefore the
detecting faults ability of test cases should be evaluated. The following part discusses how to improve

73

5.2. TEST CASES PRIORITIZATION

testing performance regarding faults detecting ability of test cases.

5.2 Test cases prioritization

Test cases prioritization is not a novel concept, literally, it means developers may prioritize test cases
so thatmore important ones, according to a certain criteria, will be executed earlier in testing process.
One of the potential and common goal is to increase the ability of test cases to detect faults earlier.
Rate of fault detection is adopted to indicate the ability, it indicates how fast a test suit detects faults
during the testing process. Earlier faults detection bring huge benefits to testing process, an improved
rate of detection can provided earlier feedback on the application under test , and therefore, earlier
debugging is possible. Moreover, if application under test is suspended due to some reasons, those
tests, whichhas the greatest fault detection ability, will be executedbefore application is halted. Figure
5.1.2, illustrates briefly the differences of testing with and without prioritization [34].

(a) T -T -T -T -T -T -T -T -T -T (b) T -T -T -T -T -T -T -T -T -T

Figure 5.2.1: Rate of fault detections with two different test cases sequence

Considering 10 test cases T1...T10, and 8 faults contained in the application under test. All faults
can be revealed by those 10 test cases. Two different test case execution sequences are proposed
to illustrate the effect of prioritization. Namely, test case order 1 : T -T -T -T -T -T -T -T -T -
T , order 2 : T -T -T -T -T -T -T -T -T -T . In figure 5.2.1 (a) and (b), the area under the curve
represents the weighted percentage of faults revealed with the corresponding test cases used.

For the first test order, T1 is executed first, and no faults are detected, following with performing
T2 and 2 faults are revealed. Therefore, the corresponding percentage of faults detected is 25% (2
out of 8 in total). After running test case T3, one more fault is detected, thus the detected faults

74

5.2. TEST CASES PRIORITIZATION

percentage increases up to 37.5 % (3 out of 8). All faults are revealed when all test cases complete.
In contrast, figure 2 (b) is apparently faster in detecting faults. Specifically, when first test case T9 is
executed, 5 faults is discovered, making the detected faults percentage to be 62.5%. Being different
form test order 1, test order 2 reveals all faults when the third test cases T5 is executed . Conclusion
can be easily drawn that faults can be detected much faster with test case prioritization , thus round
trip time can decrease since not all test cases are necessary for revealing all faults

5.2.1 Description of Test Case Prioritization Problem

In previous work [34], Rothermel et al, defines the test cases prioritization problem, and several so-
lutions are also illustrated. The test case prioritization problem is defined as follow:

Def 5.2.1. Given : T, a set of test case. PT, the set of permutations of T. f, a function from PT to real
number. Problem : Find T′ (T′ ∈ PT), such that for all T′′(T′′ ∈ PT,T′! = T′′), f(T′) > f(T′′)

Here, PT represents the set of all possible prioritizations, which is essentially the sequence of test
case execution. And f is a function applied to any such ordering. The selection of f may differ accord-
ing to the desired performance, it can be code coverage, rate of fault detection or fault likelihood.
Many previous works have proposed various solutions to target certain goal. To illustrate, Rothermel
et al [34] proposed strategy based on both function and statement levels. And Lee et al [23] reduce
test suits by adopting test cases that provide coverage of requirements. Offutt et al.[1] employees
coverage criteria to decrease prioritization test cases. However, none of the approaches mentioned
above can be applied to GUI testing, which is targeting at event-driven application.

5.2.2 Test Case Prioritization For GUI testing

GUI application, as described above, is event-driven, which means that the input is a sequence of
event and the change of state caused by each event should be verified inGUI testing. Therefore, a test
case prioritization solution to event-driven system is needed. A.M.Memon et al 30 proposed a new
approach forGUI test case prioritization. In their work some new concepts are presented to illustrate
the prioritization problem as shown in the following:

Parameter: is the GUI application widgets, e.g a checkbox. Parameters can be deemed as the
component of GUI application.

Value: is the setting for parameters, e.g. if the checkbox is clicked, then the value for the checkbox
parameter is true, otherwise it is false.

Parameter-value: is thepair of parameter andcorrespondingvalue, e.g. inprevious case, a parameter-
value can be <checkbox, true>.

75

5.2. TEST CASES PRIORITIZATION

Action: occurs when users set values to one ormore parameters on awindows before visiting next
window.

Different test case prioritization solutions are studied in their work, including parameter-value
interaction-based criteria, which is based on the interactions between multiple parameter-values.
Count-based criteria, solution is built according to the number of actions or windows a test case
covers. And frequency-based criteria, top priority is given by the number of most frequently visited
windows a test case covers.

Based on the experiments running on various solutions, the best solution to GUI tests prioritiza-
tion is parameter-value interaction criteria. Specifically, it is 2-way interaction solution. 2-way criteria
is a one of the solution proposed in the category of parameter-value interaction. It will be carefully
demonstrated in the following section.

The 2-way criteria is built on the assumption that faults are easily exposed when interactions of
parameters set values on different windows. Therefore, a next test case is chosen to maximize the
number of 2-way parameter-value interactions between windows. A simple example [30] illustrating
2-way solution is given in the table below:

(a) All 2 way interactions (b) 2-way interactions after T4 is selected

Figure 5.2.2: A simple case to illustrate 2-way interactions criteria

Table 5.2.2 lists 2-way interactions of parameter-values, the numeric value pairs in the interaction
indicate the parameter-value on different windows. For example 1-5 represents the possible value
of parameters in windows 1, 6-11 indicates the possible value of parameters in windows 2 and so
forth. Essentially, the interaction implies the communication of parameters on different windows.
According to 2-way criteria, T4 will be firstly selected due to the most interactions it includes. After
T4 is selected, the table will change due to the interactions in T4 will be excluded in rest of test cases

76

5.3. PRIORITIZED TEST CASES SCHEDULING INMULTIPLE VIRTUALMACHINES

because they are already excluded. Table 5.2.2 (b) shows the remaining interactions after T4 is se-
lected. Apparently, T5 is the next test case to perform because it contains most interactions untested
previously in T4. The final sequence is T4-T5-T3-T1-T2.

Based on the experiments running on all solutionsmentioned above, 2-way detects 100% of faults
in the fewest test cases. Average proportion of test cases used to reveal all faults is 54%, which means
that with only around half of all test cases, all faults can be detected. Therefore, another half of test
cases can be cut off. Obviously the 2-way solution improved the performance significantly, it reduces
the number of test cases and ensures all faults to be detected. The superior performance of 2-way
interaction solution makes it proper for the prioritized test cases scheduling, which will be carefully
presented in the following section.

5.3 Prioritized Test Cases Scheduling inMultiple VirtualMachines

As discussed above, test case scheduling ensures round trip time to be minimal, while test case pri-
oritization guarantees that all faults can be revealed as quick as possible. If testers desire to achieve
both minimal round trip time and high rate of fault detection, a novel approach should be proposed
to combine two properties of a test case together.

The problem of prioritized test cases scheduling in multiple machines can be defined as: given a
set of test cases with two properties, completion time and priority number respectively. A function f
should be found so that the overall round trip time and rate of fault detection is bothoptimal. It is very
obvious that the problem is NP-complete problem. No optimal solution can be find in polynomial
time, and there is few researches propose optimal solutions for this problem.

It is reasonable to taking the problem as ”rectangle packing”[22] problem, which is a problem
targeting at minimizing the area of rectangle. In detail, there is a bunch of rectangle pieces, and the
goal is to arrange them in a rectangle surface so that they don’t overlap while keeping the rectangle
area as small as possible. In this case, test case with different duration and priority can be deemed as
rectangle with different dimensions. For optimal solutions, pre-selecting ”interesting” place to locate
next rectangle is themost important part in the problem. Various solutions have been built, including
[11] ,it implements the bottom-left heuristic for two-diemnsion bin-packing, the time complexity is
O(N). And in paper[28], the solution is made based on limitation on the rectangles’ coordinates
and bounding box dimensions to the set of subset sums of the rectangles’ dimensions. However,
since the optimization problem isNP-hard, while the problemof decidingwhether a set of rectangles
which can be packed in a given bounding box is NP-complete. The solution to the problem is quiet
complicated, and there is no solution recognized as the best one so far. Considering the problem in
this thesis, a complicated algorithmmay increase takes time to findbest solution, therefore, the round

77

5.3. PRIORITIZED TEST CASES SCHEDULING INMULTIPLE VIRTUALMACHINES

trip time may increase.
Essentially, the basic idea to address the issue is that ordering test cases execution sequence with

consideration both it’s duration and priority. Hence a criteria of deciding the most ”important” test
case should be made. The method to weight different test cases is, therefore, critical in this problem.

5.3.1 Analytic Hierarchy Process Solution with Small Example

In order to illustrate the prioritized test cases scheduling solution, a small example is given below. 6
test cases with different time and priority are listed in the table.

Table 5.3.1: Test cases with different priority and duration

Test case Duration Priority

T 2 6 (highest priority)

T 1 2

T 5 4

T 3 1(lowest priority)

T 6 3

T 4 5

In the example in table 5.3.1, 6 test cases with corresponding duration and priority are shown.
Note that, discrete value is used here to demonstrate the difference in duration or time, the time unit
can beminute or hour. As for priority, the larger a numeric number is, themore important a test case
is. Therefore, from the table we can tell that test caste T1 has the highest priority, which is denoted
as 6. By recalling the algorithms we discussed before, for test case scheduling with multiple virtual
machines, test cases with longest duration will be always selected at first place, while in test case pri-
oritization approach, test cases with highest priority will be chosen to perform firstly. However, for
the prioritized test case scheduling withmultiple virtual machines, a test case may has a high priority
and short duration, like T1 in the example, should it be chosen to perform therefore the final round
trip time is minimal? Fortunately, analytic hierarchy process provided a “best decision” approach to
solve the issue.
Analytic hierarchy process (AHP) [33] is a structured technique for organizing and analyzing com-
plex decisions based on mathematics and psychology. It was developed by Thomas L. Saaty in the
1970s andhas been extensively studied and refined since then. APHhas a great range of use in various
aspects, where best decision is desired.

78

5.3. PRIORITIZED TEST CASES SCHEDULING INMULTIPLE VIRTUALMACHINES

Instead of prescribing a “correct” decision, AHP achieves final “optimal decision” that best suiting
users’ goal and their understanding of the problem. A comprehensive and rationalmodel for structur-
ing a problem is the basis of AHP.Moreover, AHPprovides an effectiveway to represent and quantify
the elements, and combine these elements with final goal, also evaluates alternative solutions.

To make a decision in an organized way, solution can be decomposed into the following steps:
[33].

1. Define the problem and determine the type of knowledge sought.

2. Structure the decision hierarchy from the top with the goal of the decision, then the objec-
tives from a broad perspective, through the intermediate levels (criteria on which subsequent
elements depend) to the lowest level (which usually is a set of the alternatives).

3. Construct a set of pairwise comparison matrices. Each element in an upper level is used to
compare the elements in the level immediately below with respect to it.

4. Use the priorities obtained from the comparisons to weigh the priorities in the level imme-
diately below. Do this for every element. Then for each element in the level below add its
weighed values and obtain its overall or global priority. Continue this process of weighing and
adding until the final priorities of the alternatives in the bottom most level are obtained.

According to the procedures defined above, the following steps are executed in order:

Constructing hierarchymodel
One of the most important concept in AHP is hierarchy model, problems can be analyzed in a

comprehensive way with the model. Typically, problems can be mapped into 3 layer as shown in
5.3.1, goal layer, criteria layer and alternative layer respectively. As depicted below, the goal layer is
the target of scheduling, which is to minimize round trip time and improve rate of fault detection.
There are two parameters in the second layer, namely duration and priority, which will affect the final
goal. In the third layer, there are 6 alternatives, each has unique duration and priority value.

Constructing judgementmatrix
According toAHP ,theweight of two alternatives over a criteria can be analyzed by comparing two

elements, e.g. comparing T and T in terms of duration, T is more important. Therefore, judgment
matrix is generated by comparison every two alternatives over a criteria. In order to illustrate the
weight of two alternatives in a precise way, 1-9 absolute number is introduced to denote how better

79

5.3. PRIORITIZED TEST CASES SCHEDULING INMULTIPLE VIRTUALMACHINES

Figure 5.3.1: AHP layers for solving prioritized test case scheduling problem

an alternative is over the others. For example, the duration time of T is 6, while the value for T is 1
, thus, T is extremely better than T , so D will be labeled as 9, while D is denoted as 1/9. Table
5.3.2 shows the detailed information about how judgment matrix is built, the rule applied for both
duration and priority criteria. In addition to constructing the judgmentmatrix between criteria layer
and alternative layer, the weights of criteria over goal layer is critical too. In this case, the weights of
duration and priority should be decided according to their importance for achieving the goal . For
the simple example, it is assumed that duration andpriority is equally important, whichmeansweight
put on each criteria is both 0.5, shown as w {0.5, 0.5}

Table 5.3.2: Criteria for building judgement matrix

Di- Dj or Pi-Pj Dij or Pij

1 or -1 2 or 1/2 (Ti is a little better/worse than Tj)

2 or -2 3 or 1/3 (Ti is somewhat better/worse than Tj)

3 or -3 5 or 1/5 (Ti is obviously better/worse than Tj)

4 or -4 7 or 1/7 (Ti is strongly better/worse than Tj)

5 or -5 9 or 1/9 (Ti is extremely better/worse than Tj)

Consequently, judgment matrices over duration and priority denoted as D and P respectively are
demonstrated as below:

80

5.3. PRIORITIZED TEST CASES SCHEDULING INMULTIPLE VIRTUALMACHINES

D=



/ / / /

/ / / / /

/

/ / /

/ /


, P=



/ / / /

/ /

/ / / / /

/ / /

/


Validation consistency of judgementmatrix

With the judgement matrix , it is still rash to make the final decision, because the quality of the
matrix should be evaluate so that rationality can be verified. In order to evaluate the consistency of
the matrix, consistency ration is utilized As defined as below:

CR =
CI
RI

(5.1)

where, CI is the consistency index , which is formulated as :

CI =
λmax − n
n−

(5.2)

λmax is the maximal eigenvalue of matrix .
RI is the random index, which is a constant value for the matrix with a fixed size of n. The value

of CI cannot exceed 0.1, otherwise the matrix is considered as inconsistent. In this simple example,
it is not difficult to get the value of λmax, which is 6.058 for both matrix, and RI= 1.24, when n=6,
therefore:

CI= λmax−n
n− = 0.016

CI= 0.013< 0.1;

The consistency of both matrix is proven,therefore, they can be used to make final decision. In
addition to the judgmentmatrix, the eigenvector corresponding to themaximal eigenvalue, is utilized
to represent the weight for alternatives over certain criteria. In the simple example, eigenvector for
duration matrix D can be computed as:

Wd= {0.055, 0.035, 0.26, 0.09, 0.41, 0.15}

while for priority matrix P, corresponding eigenvector is:

Wp= {0.41, 0.055, 0.15, 0.035, 0.09, 0.26}

81

5.3. PRIORITIZED TEST CASES SCHEDULING INMULTIPLE VIRTUALMACHINES

From the eigenvectors, we can tell that for duration parameter,T1 with weight of 0.055 is less im-
portant than T5 with weight of 0.41. Same applies for priority eigenvector.

Computation weight of alternatives over goal
Thefinal step ofAHP is to evaluate how important of every single alternative over the goal, i.e. eval-

uating test cases to find out which one is themost important to achieveminimal round trip timewith
high rate of faults detection in this thesis. Since alternatives’ weights over criteria can be computed
withAHP rules, andweights of criteria over final goal canbedecidedby empirical experience or refer-
ence in relevant research. However, in this thesis, it is assumed. Wci is adopted to denote the weights
of alternatives over criteria, and W , represents the weight of criteria over final goal. Therefore, the
final weightsW of alternatives over final goal can be formulated as :

W =

c.legth∑
i=

w ∗ wci (5.3)

For the simple example the final test cases’ weight is :

W=
[

. .
]
*



.

.

.

.

.

.


+
[

. .
]
*



.

.

.

.

.

.


W = {0.23, 0.04, 0.21, 0.06, 0.25, 0.21}

5.3.2 Evaluation of Prioritized Test Case Scheduling in Virtual Machines

With help of AHP, the weights of each test cases over the targeting goal is achieved. By default, the
higher a test case weight is, themore important it is for accomplishing the goal. For the simple exam-
ple, the final weight can be calculated: W= {0.23, 0.04, 0.21, 0.06, 0.25, 0.21} as shown in previous
section. Among all, w is maximal, and therefore T5 with duration of 6 and priority of 3 is the most
important. T1 with duration of 2 and priority of 6 is followed. T and T have an identical weight,
which is 0.21, In this situation, test case with longer duration ismore important according the results.

The optimized test case execution sequence, consequently, can be generated. For the small exam-
ple, the sequence is T —T —T —T —T —T , .According to greedy algorithm , selector always
chooses the most significant test cases first in testing process, and same with test case scheduling.

82

5.3. PRIORITIZED TEST CASES SCHEDULING INMULTIPLE VIRTUALMACHINES

Virtual machines with the shortest finishing time is always selected to run test case first. Therefore,
the solution for the prioritized test cases scheduling for multiple virtual machines can be shown as
figure 5.3.2 (assume that only two virtual machines available for 6 test cases).

Figure 5.3.2: Solution for prioritized test cases scheduling with AHP

(a) (b)

Figure 5.3.3: solution with only test prioritization and only test duration scheduling

The round trip time is 11 time unit for only test case scheduling in two virtual machines as shown
in figure 5.3.3(b). Considering test cases to be execute are prioritized, and assuming that 2-way in-
teraction mentioned in previous section is adopted. Thus all faults can be revealed when the 4th test
cases is performed. For the simple example, the solution shown in figure 5.3.2 finishes testingwith all
faults detected in a total round trip time of 10. It is apparent that the prioritized test cases scheduling
ensures the result to be better than only duration scheduling and only test case prioritization, which
is 17 and 11 time unit as shown in figure 5.3.3(a) and(b).

With the simple example studied, AHP is proven to be efficient in addressing the prioritized test
case scheduling problem when 2-way criteria prioritizition is adopted . In the simple example, test
case are labeled exactly one priority number using idea 2-way interaction approach . However, in
an industrial case, many test case may be at the same priority level, which is a little different from the
solution proposed in this thesis. Thus an industrial casewithmore test casesmaybeneeded to further

83

5.3. PRIORITIZED TEST CASES SCHEDULING INMULTIPLE VIRTUALMACHINES

verify the efficiency of the prioritized test case scheduling solution. In addition, the way of deciding
weight of criteria over final goal should be further discussed tomake the AHP solutionmore precise.

84

6
Conclusion and FurtherWork

6.1 Conclusion

The thesis proposes an approach, namely fully automated GUI testing with virtual machines. Cur-
rently, GUI testing relies a lot on human involvement. The input of GUI application is a sequence of
events and the changeof state causedby every event shouldbe verified. Thushardcoding the expected
outcome in program as traditional testing is difficult. That is why current GUI testing needs human
assistance a lot. This thesis aims to address the problem by locating GUI testing in virtual machines.
Through automating virtual machines, the tests performed in guest OS are automated. Two virtual
machine programs, respectively VMWare workstation andHyper-V, are studied in the thesis tomake
a better decision for GUI testing. Based on both theoretic analysis and practical use, VMWare work-
station is proven to be better suited forGUI testing, because its easy to configuration and the efficient
programming Vix API provided .

Result of implementation shows obviously that the performance of fully automated GUI testing
with virtual machines is much better than manual tests. Especially when multiple test cases are per-
formed in parallel. However with multiple virtual machines automated simultaneously, the compro-
mise of efficiency and cost should be taken into account in this thesis. If all virtual machines are
installed in remote server or cloud machine instead of stored in host machine, the performance of

85

6.2. FURTHERWORK

fully automated solution will be improved to a great extent.
Moreover, an optimized solution is proposed to further shorten the round trip time, namely prior-

itized test case scheduling. The optimized solution aims to detect all underlying faults in the shortest
time. With both duration and priority introduced to a test case, the weights of all test cases over final
goal is calculated by Analytic Hierarchy Process (AHP) method. Through a simple example stud-
ied, the result of the optimized solution is proven to be more efficient than only test cases duration
scheduling and only test cases prioritization.

6.2 FurtherWork

Although the solution proposed in the thesis proven to be efficient, some further work can be done
to make it more persuasive and precise as listed below:

1. Applying the solution to a bigger scale of test suits. Current work only focuses on a limited set
of test cases from ABB. However, with more test cases applied, the solution proposed can be
evaluated more accurately.

2. The weight of duration and priority over final goal for the optimized solution is simply set to
be equal in this thesis, although the final result shows superior performance. But the weight
can be designed in a more scientific way.

3. An industrial case implementedwith optimized solution should be studied to further illustrate
the efficiency of prioritized test cases scheduling.

4. Virtual machines in this thesis are installed on host machine directly, which will affect the per-
formance of testing. Considering automating virtual machines stored on a remote server, the
performance will be enhanced greatly. This should be verified in the future.

86

References

[1] J. Offutt A. Andrews and R. Alexander. Testing web applications by modeling with fsms. Soft-
ware and Systems Modeling, 4(3):326–345, 2005.

[2] MichelMittazAlainHertz. Heuristic algorithms. Theory, Solutions andApplications, pages 327–
386, 2000.

[3] Emil Alégroth. Transitioningmanual system test suites to automated testing: An industrial case
study. 2013 IEEE Sixth International Conference on Software Testing, Verification and Validation,
pages 56 – 65, 2013.

[4] Paul Ammann and Jeff Offutt. Introduction to software testing. Cambridge University Press,
2008.

[5] Milan Jovic Matthias Hauswirth Andrea Adamoli, Dmitrijs Zaparanuks. Automated gui per-
formance testing. Software Quality Journal, 19(4):801–839, 2011.

[6] M.L.Soffa AtifM.Memon,M.E.Pollaek. Coverage criteria for gui testing. 8th European software
engineering conference, pages 256–267, 2001.

[7] Bei bei Yin. A case study for invalidating themarkovian property of gui software structural pro-
file. 30th Annual International Computer Software and Applications Conference (COMPSAC’06),
1:447 – 454, 2006.

[8] Boris Beizer. Software testing techniques. Dreamtech Press, 2003.

[9] EmilBorjesson. Automated systemtestingusing visual gui testing tools: Acomparative study in
industry. 2012 IEEEFifth InternationalConference onSoftwareTesting, VerificationandValidation,
pages 350–359, 2012.

[10] Renee C Bryce, Sreedevi Sampath, and Atif M Memon. Developing a single model and test
prioritization strategies for event-driven software. Software Engineering, IEEE Transactions on,
37(1):48–64, 2011.

[11] B. Chazelle. The bottomn-left bin-packing heuristic: An efficient implementation. IEEETrans-
actions on Computers, page 697–707, 1983.

[12] Robert P Goldberg. Survey of virtual machine research. Computer, 7(6):34–45, 1974.

87

REFERENCES

[13] Brian R Gruttadauria, Andreas L Bauer, Gregory W Lazar, and Munish T Desai. Common in-
formationmodel (cim) translation to and fromwindowsmanagement interface (wmi) in client
server environment, November 29 2005. US Patent 6,971,090.

[14] Wenqi Huang, Duanbing Chen, and Ruchu Xu. A new heuristic algorithm for rectangle pack-
ing. Computers & Operations Research, 34(11):3270–3280, 2007.

[15] Takayuki Itoh, Yumi Yamaguchi, Yuko Ikehata, and Yasumasa Kajinaga. Hierarchical data visu-
alization using a fast rectangle-packing algorithm. Visualization and Computer Graphics, IEEE
Transactions on, 10(3):302–313, 2004.

[16] Hu Jin. Finite state machine for automatic gui testing. Computational Intelligence and Software
Engineering, 2009. CiSE 2009. International Conference on, pages 1 – 4, 2009.

[17] David S Johnson. The np-completeness column: An ongoing guide. Journal of Algorithms, 7
(4):584–601, 1986.

[18] Jung-Min Kim and Adam Porter. A history-based test prioritization technique for regression
testing in resource constrained environments, 2002.

[19] C. D. Vecchi M. P Kirkpatrick, S. Gelatt Jr. Optimization by simulated annealing. Science, page
671–680, 1983.

[20] D Richard Kuhn, Dolores R Wallace, and Albert M Gallo Jr. Software fault interactions and
implications for software testing. Software Engineering, IEEE Transactions on, 30(6):418–421,
2004.

[21] IBRAHIMS Kurtulus and EW Davis. Multi-project scheduling: Categorization of heuristic
rules performance. Management Science, 28(2):161–172, 1982.

[22] Martello S. Monaci M. Lodi, A. Two-dimensional packing problems: A survey. European
Journal of Operational Research (Elsevier), 141:241–252, 2002.

[23] M. Song M. Yoon, E. Lee and B. Choi. A test case prioritization through correlation of re-
quirement and risk. journal of software engineering and applications. Software Engineering and
Applications, 5(10):823–835, 2012.

[24] Atif M. Memon. An event-flow model of gui-based applications for testing. software testing,
verificatin and reliability, 17:137–157, 2007.

[25] Atif MMemon,Mary Lou Soffa, andMartha E Pollack. Coverage criteria for gui testing, 2001.

[26] Morten Mossige, Arnaud Gotlieb, and Hein Meling. Test generation for robotized paint sys-
tems using constraint programming in a continuous integration environment, 2013.

[27] MortenMossige, ArnaudGotlieb, andHeinMeling. Testing robotized paint system using con-
straint programming: an industrial case study. In Testing Software and Systems, pages 145–160.
Springer, 2014.

88

REFERENCES

[28] Hiroshi Murata, Kunihiro Fujiyoshi, Shigetoshi Nakatake, and Yoji Kajitani. Rectangle-
packing-based module placement, 1995.

[29] Ana CR Paiva, João CP Faria, Nikolai Tillmann, and Raul AM Vidal. A model-to-
implementation mapping tool for automated model-based gui testing. In Formal Methods and
Software Engineering, pages 450–464. Springer, 2005.

[30] AtifM.MemonRenéeC. Test suite prioritizationby interaction coverage.Workshop onDomain
specific approaches to software test automation, pages 1–7, 2007.

[31] F Rosenblatt. The perceptron: A probabilistic model for information storage and organization
in the brain. Psychological Review, 65(6):386–408, 1958.

[32] ThomasL. Saaty. Relativemeasurement and its generalization in decisionmakingwhy pairwise
comparisons are central in mathematics for the measurement of intangible factors the analytic
hierarchy/network process. Review of the Royal Academy of Exact, Physical andNatural Sciences,
Series A: Mathematics (RACSAM), 102:251–318, 2008.

[33] Thomas L. Saaty. Decision making with the analytic hierarchy process. Services Sciences, 1(1),
2012.

[34] Gregg Rothermel Sebastian Elbaum, Alexey G. Malishevsky. Test case prioritization: A family
of empirical studies. IEEE Transactions on Software Engineering, 28(2):159–182, 2002.

[35] Jeremy Sugerman, Ganesh Venkitachalam, and Beng-Hong Lim. Virtualizing i/o devices on
vmware workstation’s hosted virtual machine monitor., 2001.

[36] Tommi Takala, Mika Katara, and Julian Harty. Experiences of system-level model-based gui
testing of an android application, 2011.

[37] Marlon Vieira. A uml-based approach to system testing. Innovations in Systems and Software
Engineering, 1:12–24, 2005.

[38] LeeWhite, Husain Almezen, andNasser Alzeidi. User-based testing of gui sequences and their
interactions, 2001.

[39] Lee J White. Regression testing of gui event interactions, 1996.

[40] Yu-Liang Wu, Wenqi Huang, Siu-chung Lau, CK Wong, and Gilbert H Young. An effective
quasi-human based heuristic for solving the rectangle packing problem. European Journal of
Operational Research, 141(2):341–358, 2002.

[41] Qing Xie. Developing cost-effective model-based techniques for gui testing, 2006.

[42] Xun Yuan and Atif M Memon. Iterative execution-feedback model-directed gui testing. Infor-
mation and Software Technology, 52(5):559–575, 2010.

[43] Sergey Zhuravlev, Sergey Blagodurov, and Alexandra Fedorova. Addressing shared resource
contention in multicore processors via scheduling, 2010.

89

	Introduction
	Background and Motivation
	Contributions and Outline

	Virtual Machine Technology
	Virtual Machine Introduction
	Testing in Virtual Machines
	Principle of VMWare workstation
	Principle of Hyper-V
	Simple Comparison of VMWare and Hyper-V

	Automating Virtual Machines
	Principle of Fully Automated GUI Testing
	Automating VMWare Workstation
	Automating Hyper-V
	Comparison of VMWare and Hyper-V

	Automated GUI Testing
	Graphical User Interface (GUI)
	Automated GUI testing
	Coded User Interface test (CUIT)
	Evaluation of Coded UI test
	Evaluation of Fully automated GUI testing with virtual machines
	Failure Analysis

	Test Cases Scheduling in Virtual Machines
	Introduction of Test Cases Scheduling
	Test cases prioritization
	Prioritized Test Cases Scheduling in Multiple Virtual Machines

	Conclusion and Further Work
	Conclusion
	Further Work

	References

Front page for master thesis

Faculty of Science and Technology

Decision made by the Dean October 30th 2009

Faculty of Science and Technology

MASTER’S THESIS

Study program/ Specialization:

Master of Science in Computer Science

Spring semester, 2016

Open

Writer: Dongjing Liu

…………………………………………
(Writer’s signature)

Faculty supervisor:

Morten Mossige

Thesis title:

Fully Automated Graphical User Interface (GUI) Testing With Virtual Machines

Credits (ECTS): 30

Key words:

Fully automation

GUI testing

Virtual machines

Test case scheduling

Test case prioritization

 Pages: 93

 Enclosure: A zip attachment

 Stavanger, 15 June 2016

Fully Automated Graphical User Interface(GUI)
Testing with Virtual Machines

a dissertation presented
by

Dongjing Liu
to

The Department of Computer Science

in partial fulfillment of the requirements
for the degree of

Master of Computer Science
With supervisor
Morten Mossige

University of Stavanger
Stavanger, Norway

June 2016

acknowledgments

Here and now, I would like to express my sincere thanks to all who have helped me make this thesis

possible and better. Firstly, I am deeply grateful to my honorable supervisor, Morten Mossige, who

has checked through my thesis with patience and has given me instructive suggestions.

Then special thanks also goes to the staff in ABB Bryne, especially, Andreas Skaar, who is very kind

and generous in offering advice, as well as to the teachers and professors who have taughtme over the

past two years of study in University of Stavanger.

Finally, I am very grateful to my lovely friends and families who have offered selfless support to me.

Abstract
An approach, entitled fully automated GUI testing with virtual machines is proposed in the thesis.

Currently, GUI testing relies a lot on human involvement due to its unique properties. The thesis

tries to address the problem by locatingGUI testing in virtual machines. Through automating virtual

machines, the operations involve in testing are automated. Two virtual machine applications, respec-

tively VMWareworkstation andHyper-V, are studied in the thesis. Based on both theoretical analysis

and practical use, VMWare workstation is proven to be more suitable for GUI testing.

The result of the implementation shows obviously that the performance of fully automatedGUI test-

ing with virtual machines is much more efficient than manual tests. Especially, when multiple test

cases are performed in parallel, the efficiency can be enhanced significantly.

An optimized solution is proposed to further shorten the round trip time, which is named prioritized

test case scheduling. The optimized solution aims to detect all underlying faults in the shortest time.

With both duration and priority introduced to a test case, the weights of all test cases over final goal

is calculated by Analytic Hierarchy Process (AHP)method. Through a simple example study, the re-

sult of the optimized solution is proven to be more positive than only test cases duration scheduling

and only test cases prioritization.

Contents

1 Introduction 6
1.1 Background and Motivation . 6
1.2 Contributions and Outline . 7

2 Virtual Machine Technology 9
2.1 Virtual Machine Introduction . 9
2.2 Testing in Virtual Machines . 10
2.3 Principle of VMWare workstation . 11
2.4 Principle of Hyper-V . 13
2.5 Simple Comparison of VMWare and Hyper-V . 14

3 Automating Virtual Machines 18
3.1 Principle of Fully Automated GUI Testing . 18
3.2 Automating VMWare Workstation . 20
3.3 Automating Hyper-V . 29
3.4 Comparison of VMWare and Hyper-V . 40

4 Automated GUI Testing 43
4.1 Graphical User Interface (GUI) . 43
4.2 Automated GUI testing . 47
4.3 Coded User Interface test (CUIT) . 50
4.4 Evaluation of Coded UI test . 54
4.5 Evaluation of Fully automated GUI testing with virtual machines 59
4.6 Failure Analysis . 63

5 Test Cases Scheduling in Virtual Machines 67

1

CONTENTS

5.1 Introduction of Test Cases Scheduling . 67
5.2 Test cases prioritization . 74
5.3 Prioritized Test Cases Scheduling in Multiple Virtual Machines 77

6 Conclusion and Further Work 85
6.1 Conclusion . 85
6.2 Further Work . 86

References 89

2

Listing of figures

1.1.1 GUI testing with notepad as example . 7

2.3.1 Architecture of hosted hypervisor. 13
2.4.1 Architecture of hosted hypervisor. 14
2.5.1 Performance of host machine for VMWare and Hyper-V 16

3.1.1 Diagram of fully automated solution . 19
3.1.2 Workflow of fully automated solution . 20
3.2.1 Code map for VMWare automation class . 22
3.2.2 Variables and methods of VMWare automation class 26
3.2.3 A brief overview of multithreading . 27
3.3.1 Code map of Hyper-V automation class . 30
3.3.2 Remote connection diagram in Windows OS . 36
3.3.3 Variables and methods in Hyper-v automation class 39

4.1.1 Graphical User Interface of notepad application 44
4.1.2 Hierarchy structure of GUI objects in untiled notepad 45
4.2.1 Brief overview of automated GUI testing methods 48
4.3.1 Architecture of record and replay engine in Coded UI test 52
4.3.2 Workflow of Coded UI test . 53
4.4.1 Installation/Uninstallation GUI testing workflow 56
4.4.2 GUI of SimpleAPP and Robview 5 for GUI functional test 58
4.5.1 Test duration for different set of tests in different manner 61
4.5.2 Round trip time for different sets of GUI testing with different solutions 62
4.6.1 Action failure in Move User File application . 65

5.1.1 ”Almost” optimal solution for test case scheduling with greedy algorithm 70

3

LISTINGOF FIGURES

5.1.2 Round trip time for tests with different number of simultaneous manipulation vir-
tual machines . 73

5.2.1 Rate of fault detections with two different test cases sequence 74
5.2.2 A simple case to illustrate 2-way interactions criteria 76
5.3.1 AHP layers for solving prioritized test case scheduling problem 80
5.3.2 Solution for prioritized test cases scheduling with AHP 83
5.3.3 solution with only test prioritization and only test duration scheduling 83

4

List of Tables

2.5.1 The configuration of host and virtual machine in VMWare workstation 15
2.5.2 The configuration of host and virtual machine in Hyper-V 15
2.5.3 Comparison of two type hypervisors. 17

3.4.1 Comparison of VMWare and Hyper-V . 42

4.3.1 Comparison of different record/replay tools . 51
4.4.1 Execution time of Insatllation&Uninstallation test for TestAPP and RobView 5 . . 57
4.4.2 Execution time of functional test for SimpleAPP & RobView 5 59
4.5.1 Execution time of sets of GUI tests in various virtual machines 60

5.1.1 A simple case for test case scheduling . 69
5.1.2 Assumed duration of each test case in GUI testing for RobView 72
5.3.1 Test cases with different priority and duration . 78
5.3.2 Criteria for building judgement matrix . 80

5

1
Introduction

This chapter will give a brief description of the thesis, starting with essential background informa-
tion to the motivation for this thesis. Also basic concepts concerning this thesis are explained, The
structure of entire thesis is presented at the end of this chapter .

1.1 Background andMotivation

To date, there are numerous Graphical User Interface (GUI) applications emerging in both individ-
uals’ daily lives and various industrial fields. Undoubtedly, the existence of GUI applications bring
great convenience tousers’ operations. However, the complexity also increases difficulties to software
testing. As forGUI testing, how to guarantee thoseGUI applications performproperly as expected is
critical in software development life cycle. A simple example of GUI testing is shown as figure 1.1.1,
the outcome of a click onOpen under Filemenu should be theOpenwindows as the picture shows,
any other outcome indicates that the GUI application does not behave as expected, thus fault exists
in the application.

6

1.2. CONTRIBUTIONS ANDOUTLINE

Figure 1.1.1: GUI testing with notepad as example

From the example studied above, GUI testing is critical in guaranteeing the functionalities of GUI
applications. As a consequence, it has given rise to academic and industrial interest and concern.
Unlike traditional software testing, GUI testing is more complicated and time-consuming to cover
all functions provided by the application, which is the reason why current GUI testing relies a lot on
manual assistance.

An efficient GUI testing solution can not only improve the performance of application under test
but also free human beings from tedious and repeated testing work. Therefore automating GUI test-
ing is important. So far, researchers have proposed some effectivemethods to realizeGUI testing, e.g.
Visual GUI testing by Eimil et.all [9], where pattern recognition technology is used in testing process
to help find specific GUI elements. While Finite State Machines are implemented in GUI testing by
Hu[16] through modeling testing process in mathematic way, similar with Markvove chain adopted
in GUI testing process[7] by Yin . Nevertheless, all approaches proposed focus on generating test
cases, while some manual assistance is still required in those approaches, e.g. configuring system
where GUI tests are located, to certain states before testing, or shutting down system after tests are
complete. Thus human beings are still involved in repeated and redundant work. The motivation
of the thesis is to provide an automated solution to decrease human intervention as much as possi-
ble in the testing process. The solution proposed in this thesis seeks to address the problem with an
approach known as fully automated GUI testing.

1.2 Contributions andOutline

The thesis contributes a novel fully automated GUI testing solution. Essentially, the solution takes
virtualmachines as carrier to executeGUI testing so that all operations involved in testing process are
automated. Multiple test cases execution is proposed in this thesis, which optimizes fully automated

7

1.2. CONTRIBUTIONS ANDOUTLINE

solution greatly. The evaluation of fully solution is presented in this thesis. Furthermore, a novel test
schedulingmethodwith greedy algorithm adopted is illustrated. Moreover, detailed comparison and
analysis about two virtual machine applications, VMWare workstation andHyper-V respectively, are
shown so that the better one is selected to implement fully automated GUI testing. The remaining of
the thesis is organized as below�

Chapter 2 : studies the basic principle of virtual machine technology. The advantages of locat-
ing tests in virtual machines are listed, following with the introduction of VMWare workstation and
Hyper-V. And a simple performance comparison is given at the end.

Chapter 3 : describes detailed implementation with regard to automating VMWare workstation
and Hyper-V. Besides, comparison of VMWare and Hyper-V in terms of practical use is presented.

Chapter 4 : focuses on implementation of fully GUI testing with a tool provided by Visual studio.
Theory concerning GUI testing is studied in chapter 4 as well. The final results of implementation of
fully automated solution are analyzed too.

Chapter 5 : proposes a novel test cases scheduling solution for the fully automated approach. Fur-
thermore, priority is introduced to each test case, a combination of test cases execution duration and
priority leads to a new method to improve the efficiency with Analytic Hierarchy Process (AHP)
used. A simple case is evaluated with the novel solution.

Chapter 6 : draws a conclusion of the entire thesis. Also further work about the solution in indus-
trial evaluation is discussed.

8

2
VirtualMachine Technology

Since the fully automated GUI testing is implemented in virtual machines, it is essential to study the
basic technology of virtual machines. Furthermore, the advantages of performing testing in virtual
machine will be listed in this chapter, following with the principle and architecture of the most com-
mon virtual machine application, VMWare and Hyper-V respectively. At last a comparison of these
two applications are made in a simple manner.

2.1 VirtualMachine Introduction

Virtualization technology iswidelyused in computing. It refers to creating virtual version (not actual)
of a certain item, which can be computer hardware platforms, operating systems, storage devices and
so on, In the field of computer science, virtualization, in general sense, is considered as a method of
logically dividing the system resources provided bymainframe computers into different applications.
For example, in some cases, the memory needed by users may be much larger than the memory size
of a physical machine. With virtualization technology, part of the hard disk space can be turned into
memory space. Another example of virtualization technology is Virtual Private Network (VPN), a
“private” network is virtualized from public network, hence, a secure and stable VPN can be used by
users. The virtual machine technology can be traced back to 1960s when IBM divided a powerful

9

2.2. TESTING IN VIRTUALMACHINES

machine into several small “pieces” so that system and resources management can be done in a piece
level for different purposes.

A virtual machine is, in essence, an application environment or operating system (OS) that is in-
stalled on software which emulates dedicated hardware. For users, a virtual machine is identical to a
physical machine, for it has identical functions as a physical machine.

Virtual machines are typically created through software, and one or more virtual machines can
be generated on the same host machine. Those virtual machines works normally as real physical
machines, and users can install application or get access to internet in virtual machines. From the
perspectiveof hostmachine, they areonly processes. However for the application in virtualmachines,
they are real computers. Before further discussion, the concepts below should be illustrated carefully
because they will appear frequently in the thesis.

Virtualmachine (VM) is a virtualizedmachine emulated by software (e.g. VMWare orHyper-V),
logically, it is a physical machine.

Hostmachine is the existing physical machine with specific hardware details.
HostOperating system (hostOS) is the operating system that runs on host machine. For a host

machine, there is only one host OS.
GuestOperating system (guestOS) is the operating system that runs on virtual machines. Each

virtual machine can be equipped with an unique guest OS.

2.2 Testing in VirtualMachines

Considering the situation that there are several virtual machines existing in a single host machine,
these virtualmachineswork independentlywithout interference to each other. In this case, a physical
machine can be deemed as being able to runmultiple operating systems simultaneously, which brings
out the inspiration of fully automated GUI testing in this thesis.

Locating tests in virtual machine is not a novel concept,With regard to the benefits of testing GUI
application in virtual machines, the following items illustrate them well

1. Typically, for software testing, developers tend to test applicationwith different configurations
in various environments so that the robustness can be enhanced. However, in this thesis, for
a physical machine without an embedded system adopted, the best way to test application in
different environments is to install multiple operating systems. Generally, there are two ways
to construct multiple OSes in a physical machine. Firstly, installing multiple hard disks,with
each storing an operating system. Obviously the approach is not secure enough, becauseMain
Bootable Record (MBR) is vulnerable to get attacked, and in worst case, all operating systems

10

2.3. PRINCIPLE OF VMWAREWORKSTATION

can be damaged. The second approach is to adopt the virtual machine software. As long as the
hostmachine is powerful enough, multiple virtual machines canwork properly. Besides, using
virtual machines is also an economic and secure solution.

2. One of the most attractive points of using virtual machines for testing is that the processes
in host machine will not be affected by any operations on application under test. Vice versa,
the system or applications running on host machine will not influence the testing in virtual
machine. Isolation is built between host machine and virtual machines.

3. Under some circumstances in which operating system is attacked via a host machine, damage
may require a complete system reinstallation. This is very expensive when considering the
files or application inside the host machine. Nevertheless, for a virtual machine, it is cost-free
to reinstall , and virtual machine programs generally provide function for users to revert to
certain state of guest OS, which makes reinstalling system unnecessary.

4. With snapshot, some repeated and tedious steps involved in testing process (e.g. some config-
uration to systems) can be avoided through taking snapshot and reverting to the state, which
improves the efficiency and avoids manual assistance involved.

The advantages presented abovemake virtual machine a good approach to execute testing. Virtual
machines can provide testing of a diverse environments in an inexpensive and secure way. The iso-
lation from host machine system also make an independent testing environment possible. Last but
not least, some practical functions provided by virtual machine software bring convenience for guest
OS management, which facilitates testing to some extent.

To install virtual machines in a host computer, a virtual machine software is a prerequisite. How-
ever, there existmanydifferent virtualmachine applications on themarket, e.g. VMWare byVMWare
company, Hyper-V provided by Microsoft, or Xen designed by Oracle. They all have their respective
pros and cons. Finding a proper one for GUI testing is one of the targets in this thesis. Considering
that VMWare and Hyper-V are widely used for Windows operating systems, and Windows OSes are
chosen as the platforms for GUI testing in this thesis. Consequently, a detailed study and analysis
about VMWare and Hyper-V will be presented in the following section.

2.3 Principle of VMWareworkstation

VMWare is a company established in 1998. It provides the world-renowned virtualization infras-
tructure solutions and cloud infrastructure solutions provided are world famous. Among all the so-
lutions, virtual machine applications it designed are popular both in industrial filed and academic

11

2.3. PRINCIPLE OF VMWAREWORKSTATION

areas. The release of VMWare workstation, VMWare VSphere and Fusionmake applying virtual ma-
chines more easier. Concerning the features of each product, Fusion is designed mainly for Mac OS
X, while VSphere is set for enterprise use, and as a result many complicated function included, e.g.
VCenter, database and active directory domain and so on , these functions are unnecessary for this
thesis. VMWare workstation therefore is an appropriate application.

VMware Workstation Pro takes advantage of the latest hardware to replicate server, desktop and
tablet environments in a virtual machine. Thus Running applications on a breadth of operating sys-
tems including Linux, Windows and more at the same time on the same PC without rebooting is
possible. VMware Workstation Pro makes it really easy to evaluate new operating systems like Win-
dows 10, and to test software applications and patches. Reference architectures are in an isolated
and safe environment. The core technology of virtual machine is hypervisor, also known as virtual
machine monitor (VMM). Logically, hypervisor is a platform between host machine hardware and
software, it enables one or more operating systems to run on a host machine in parallel. From the
definition, it is apparent that hypervisor can get access to all the hardware resources, including hard
disk, memory etc. it schedules the resources allocation to each virtual machine, while preventing vir-
tual machines from interfering with each other. There exists two types of hypervisor.Though each of
them has its’ advantages and disadvantages, it is worthwhile to study and analyze the similarities and
differences between them.

Hosted hypervisor (Type 2 hypervisor)

Hosted hypervisor, also called type 2 hypervisor, is a virtual machine monitor that is installed as
an application on the host operating system. It is what VMWare workstation is built with.

As figure 2.3.1 shows, hosted hypervisor relies on host operating system for its operations. Hosted
hypervisor locates on top of host OS together with other processes in host machine, and virtual ma-
chines are built on top of hypervisor. In the background, hosted hypervisor schedules virtual ma-
chines by coordinating calls for memory, CPU, hard disk, network and other resources through the
host operating system. Theworking pattern of hosted hypervisormake it easy for an enduse to imple-
ment virtual machines on a personal computing device. The typical application of type 2 hypervisor
is VMWare workstation.

One of the greatest benefits of a type 2 hypervisor is that it can take advantage of any hardware the
host OS has driven for. Alsomonitoring or backing up from the host OS ismuch easier with a hosted
hypervisor due to its architecture. Last but not least, the penalty of this type hypervisor is consider-
ably low, which makes it suitable for development. VMWare workstation adopts hosted hypervisor,

12

2.4. PRINCIPLE OFHYPER-V

Figure 2.3.1: Architecture of hosted hypervisor.

the advantages mentioned above make it appropriate for implementing GUI testing solution.

2.4 Principle ofHyper-V

Hyper-V is a product designed by Microsoft, which was released firstly in 2008 as a part of Windows
Server 2008. It adopts the architecture of bare-meta hypervisor. There are two ways to create virtual
machines with Hyper-V, para-virtualization and full-virtualization respectively. The former can be
used when guest operation system is the same with host OS, and generally, they are same version of
windowsOS. Best performance can be gained for virtual machines in para-virtualization. While full-
virtualization requires that the CPU supports virtualization (inter-VT or AMD-V) so that different
guest operation systems from host one can be created. In order to use hyper-V, some demands to-
wards hardware must be satisfied, i.e CPU architecture must be x86 compatible, and that only ones
that meets the requirements are from intel or AMD64. the CPU must have Data Execution Protec-
tion (DEP). Minimum 2GB memory is necessary, Windows Server 2008 or later and Windows 8 or
later operation system are required too. The hypervisor of Hyper-V is bare-metal hypervisor, also
known as type 1 hypervisor.

Bare-metal hypervisor (Type 1 hypervisor)

Bare-metal hypervisor, which has gained more popularity in recent years, runs directly on host
machine hardware, not relying on any operation system. It realizes resource allocation, hardware
control and virtual machine monitor by taking resources in host machine directly instead of through

13

2.5. SIMPLE COMPARISONOF VMWARE ANDHYPER-V

host OS. Obviously, high-performing can be achieved with this working pattern. Typical products
are hyper-V and VMWare vSphere. Compared with a hosted hypervisor, it takes little RAM and is
relatively faster to reinstall if needed.

Windows Server 2008 must be run in ”Parent” partitions as shown in figure 2.4.1 . A virtualiza-
tion stack is included in ”Parent” partition, where management tools and some automation tools are
located. Also in each child virtual machine, all operation systems are run in partitions. In addition,
VMBus ,which is a high performance architecture included in Hyper-v , is designed to realize com-
munication between parent partition and child partition, which means Server 2008, Windows Vista,
Winders Server 2003, andXen-enabledLinux are able to pass hardware requests along a newmemory
pipeline.

Figure 2.4.1: Architecture of hosted hypervisor.

2.5 Simple Comparison of VMWare andHyper-V

Basic information concerning various virtual machine programs is presented in the previous section.
However, whichof these virtualmachine applications, is better ormoreproper forGUI testing iswhat
this thesis tries to find out. Considering that GUI testing in this thesis is set to run on Windows OS.
Two excellent virtual machine applications both with superior performance on Windows platform
namely VMWare Workstation and Hyper-V , are chosen as candidates for GUI testing in this thesis.
The following part aims to compare these two applications in a simple manner.

14

2.5. SIMPLE COMPARISONOF VMWARE ANDHYPER-V

2.5.1 VMWare performance VS Hyper-V performance

Apparently, the most straightforward criteria of comparing VMWare and Hyper-V is to evaluate the
host machine performance when a virtual machine is starting, because in the starting process, both
hypervisors will work to schedule the hardware resources to guarantee virtual machines booting suc-
cessfully. Therefore the host machine performance in the virtual machine starting process can reflect
the quality of the software effectively. The performance of a host machine for VMWare workstation
and Hyper-v is shown as figure 2.5.1 (a) and (b) separately. The configurations of the host machine
and the virtual machines for VMWare workstation andHyper-v are listed in table 2.5.1 and 2.5.2 sep-
arately:

Table 2.5.1: The configuration of host and virtual machine in VMWare workstation

Parameters Hostmachine Virtual machine

Processor Intel Core i7, CPU @2.00 GHz 1

Memory 8.00 GB Installed 1GB

HardDisk 932 GB memory 40 GB

Operating System Windows 8 Pro Windows 7

Table 2.5.2: The configuration of host and virtual machine in Hyper-V

Parameters Hostmachine Virtual machine

Processor Intel Core i7, CPU @2.40 GHz 1

Memory 16.00 GB Installed 1GB

HardDisk 119 GB memory 40 GB

Operating System Windows 10 Windows 7

The reason why VMWare workstation and Hyper-v are not installed in the same host machine is
that they are not compatible to each other. The two different host machines have different hardware
settings, which make quantitative analysis impossible, However the performance for two softwares
can still be qualitatively reflected. Thus a rough comparison can be made.

Figure 2.5.1 (a) shows the performance of host machine when a virtual machine with guest OS
Windows 7 installed in VMWare workstation is powering on. Figure 2.5.1 (b) illustrates the perfor-
mance of host machine when a virtual machine installed in Hyper-V is starting. Due to the different

15

2.5. SIMPLE COMPARISONOF VMWARE ANDHYPER-V

(a) (b)

Figure 2.5.1: Performance of host machine for VMWare and Hyper-V

settings with host machines, precise discrepancy is impossible to obtain. However, from figure 2.5.1,
it is still easy to tell that Hyper-v consumes less host machine resources, especially in terms of mem-
ory and disk usage. It also proves that VMWare workstation occupies more host OS resources due
to the principle of a hosted hypervisor, according to which VMWare is considered as a process in the
host machine, resources will be scheduled through host OS. While for Hyper-V, it is independent
from the host OS, and resources are coordinated directly from host machine hardware.

2.5.2 Hosted Hypervisor VS Bare-metal Hypervisor

Hypervisor, which in essential is a set of code, is the core component of virtual machines. It enables
various guest operation systems to share a single host machines’ hardware resources, like processor,
memoryand soon. Inotherwords,Hypervisor controls thehostmachine resourcesby allocatingpro-
cessor or memory to virtual machines upon requests, and ensures that different virtual machines do
notdisturb eachother,which is the reasonwhyhypervisor is calledVirtualMachineMonitor(VMM).
According to the architecture, hypervisors are classified into two types, bare-metal or native hyper-
visors , also known as type-1 hypervisors, and hosted hypervisors, which is called type-2 hypervisors
too.

1. Nativeorbare-metal hypervisor, also called type 1 hypervisor. This hypervisor runs directly
on host machine hardware. It realizes resources allocation, hardware control and virtual ma-
chine monitor by emulating directly from host machine hardware. A strict requirement on
hardware is unavoidable for the usage of type 1 hypervisor. However, an excellent virtual ma-
chine performance is possible with type 1 hypervisor.

16

2.5. SIMPLE COMPARISONOF VMWARE ANDHYPER-V

2. Hosted hypervisor, requires a host operation system. This hypervisor emulates hardware
resources in the host operation system instead of directly from host machine hardware, In this
way, type-2 hypervisor is an application in host OS . Although it can monitor and allocate
resources, it is limited by the resources in host OS. Nevertheless, easy use and management is
the reason why it is still well received.

From the analysis mentioned above, we know that both hosted and bare-metal hypervisors have
their own advantages and disadvantages, e.g. It is easy for hosted hypervisor to manage virtual ma-
chines in host OS with a low cost, while bare-metal hypervisor takes little hardware resources from
host machine, and therefore a virtual machine runs fast with it. But it is picky concerning hardwares,
whichmeans not all machine can implement bare-metal hypervisors. Similarities and differences lies
with many other aspects too, the table below shows detailed comparisons in a theoretical way.

Table 2.5.3: Comparison of two type hypervisors.

Parameters Bare-metal hypervisor Hosted hypervisor

Performance High-performance,low cost Low-performance, high cost

Compatibility Specific hardware of OS required No specific hardware requirement

Easy to use Easy to install, complicated configura-
tion

Easy to install, configure and use

Availability Available if host machine is out of order Not available

Reliability High reliability due to quality-assurance No QA

Management Batch VMs management available Single VM management required

Cost Expensive to extend advanced features Free, or low-cost

Extensibility High, hundreds of VMs supported Limited

Products Microsoft Hyper-V, Oral VM, Linux
KVM etc.

VMWare workstation, Microsoft
Virtual PC

The differences mentioned in the table are actually the differences lying behind VMWare and
Hyper-V. From the table 2.5.1 we can tell that, the bare-metal hypervisor, which Hyper-v relies on,
has a better performance and lower cost with regard to occupying host OS resources. However, it
a has strict requirement on host machine’s hardware, while VMWare workstation is very easy to use
andmanage. In summary,Hyper-v is suitable for large-scale implementation of virtualmachineswith
a low hardware cost and management achieved. If there are only a small number of virtual machines
to be used, VMWare is a better choice due to its convenience to use.

17

3
Automating VirtualMachines

Basic knowledge about virtual machines is studied in previous chapter, and a simple comparison
about VMWareworkstation andHyper-V is presented. In this chapter, the principle andwork flowof
fully-automatedGUI testingwith virtualmachineswill be given. Besides, the corresponding automa-
tion implementation involved with virtual machines is demonstrated for both VMWare workstation
and Hyper-V. A detailed comparison in terms of practical use is shown finally, and virtual machine
software for fully automated GUI testing is chosen according to the comparison.

3.1 Principle of Fully AutomatedGUI Testing

Currently, for GUI testing, most of research work has put the weight on proposing new approaches
to generate GUI test cases, e.g. Marlon et al, proposed a test case generation based on Unified Mod-
eling Language (UML)[37], while Emil et al[9] introduced a new technology using image recogni-
tion to identify the GUI objects. While a Finite State Machine is implemented in GUI testing by
Hu[16] through modeling testing process in mathematic way. However, all of these work focus on
the approaches to generate GUI test cases, considering the entire testing process, the system where
GUI testing is executed on has to be turned on manually before performing testing. Therefore, ad-
ditional manual assistance, which can be turning on systems, installing pre-requested applications

18

3.1. PRINCIPLE OF FULLY AUTOMATEDGUI TESTING

or switching off system after all tests are finished, has to be available so that theses test cases can to
executed successfully. To some extent, the approaches in currently existing research work are only
half-automatic GUI testing in terms of the entire testing process. In this thesis, a fully automated
solution is proposed to avoid manual assistance as much as possible.

For the sake of improving the robustness of testing, different testing environments are needed, vir-
tual machines with different language settings will be used in the thesis to achieve the goal. Figure
3.1.1 demonstrates the basic diagram of the project. A pool of guest operation systems with different
language options are installed, which are probably located in a remote host or cloudmachine consid-
ering the remarkable compatibility and outstanding flexibility, or it can be located in a local machine
like in this thesis. While in localmachine a script is designed to control the virtualmachines automat-
ically with Application Programming Interface (API) provided by virtual machine software. Taking
the efficiency into account, multiple virtual machines are controlled in parallel.

Figure 3.1.1: Diagram of fully automated solution

How a virtual machine can be programmatically controlled by a script to execute a GUI test is
critical in this thesis. The typical scenario is shown as figure 3.1.2. Firstly, a guest OS should be pow-
ered on automatically by a script, noticeably, guest OS with different language settings are designed
to start concurrently, which means that all operations in the workflow are executed simultaneously
in multiple guest OSes. Snapshots, which enables the client to get back to any certain state of guest
OS, should be created before any operations in guest OS. Thus a clean state of guest OS is available.
The program under test is installed automatically via the control of script, following with running the
GUI testing, which is the most important part in the project. The outcome of test will be collected
by a script on host machine to verify the functionality of program. Last but not least, the program

19

3.2. AUTOMATING VMWAREWORKSTATION

installed should be removed from the guest OS, and the guest OS should be restored to the root
snapshot, which means going back to the initial state. The workflow shows basically each operation
involved in fully automated solution. It is worthwhile to mention that all the steps involved should
be executed automatically and in parallel.

Figure 3.1.2: Workflow of fully automated solution

From the description of the project above, one of the most significant parts of the thesis is to au-
tomate virtual machines programmatically. Specifically, the automation includes powering on op-
erating systems, installing programs, running tests, managing snapshots and copying files between
host and virtual machines. One possible approach to realize automatic management is to use API
provided by virtual machine software, and the other way is to try to control the hardware (e.g. mouse
click, keyboard input) in virtual machines. The feasibility and efficiency of these two approaches
will be discussed in the following chapter. Furthermore, the implementation of automatic control on
both VMWare workstation and Hyper-V will be presented too. A comparison of these two products
will be given so that the one works better for fully automated solution will be chosen.

3.2 Automating VMWareWorkstation

For automatingoperating in guestOS, controlling the low-level hardware in virtualmachines is always
one possible solution. In this way, the specific position of elements under control (e.g. the directory
of an executable file) is required. Hardcoding the position of executable file in scripts tends to cause
failure if the element moves even slightly. Another possible method is hardcoding the name of the
element, however, it is still easy to result in failure if thenameof the executablefile changes. Obviously
the hardware control is possible, but it is neither efficient, nor reliable.

TheVMWare company has released virtual infrastructure extension (VIX)API, which enables de-
velopers to automate virtual machines programmatically with an asynchronous, job-based program-
ming model.

20

3.2. AUTOMATING VMWAREWORKSTATION

There are two types of VMWare APIs provided.

• VMWare Virtual Infrastructure SDK: a set of tools and APIs to manage the VMWare Infras-
tructure environment. A toolkit that containsmanagedwrappers on top of the SOAP interface
provided by a VMWare deployed. The toolkit is mainly applied on VMWare ESX or Virtual
Center management , which will not be discussed in this thesis.

• VMWare VIX API. The VIX API allows developers to write programs and scripts aiming to
automate virtualmachineoperations, aswell asmanipulating guestswithin virtualmachines. It
runs on bothWindows and Linux and supports management of VMware Server,Workstation,
player, fusion and Virtual Infrastructure. Bindings are provided for C, Perl, and COM (Visual
Basic, VBscript, C#). Considering the compatibility of windows systems, .Net technology
language (C#) is adopted to implement automation in this thesis.

Before automationwithVixAPI, some concepts concerning implementation should be illustrated,
as is shown as follows:

Objects: the Vix API is object oriented. It either creates objects or modifies the properties of
existing objects for the majority of functions provided by Vix API.

Handles: Handles are opaque identifiers (actually integers) that can be passed as parameters to
functions. Most functions provided by Vix API take a handle as an input parameter.

There are several handle types,and the ones used in this thesis are:

• Virtual Machine handles, it represents a single virtual machine, the virtual machine might or
might not be powered on.

• Host handles represent a single host computer, either the local host or a remote host.

• Job handles, through which asynchronous operations are implemented.

• Snapshot handles, which indicate a snapshot of a virtual machine, which can be reverted or
deleted.

Considering the compatibility with Windows systems, .Net technology programming language
(C#) is adopted to realize remote control through test script. The brief code map is shown in figure
3.2.1, it is noted that only part of the methods in the automation class are shown in the map, the
relation of methods and handles are illustrated with arrows, the detailed method description and
implementation will be presented in the following part.

21

3.2. AUTOMATING VMWAREWORKSTATION

Figure 3.2.1: Code map for VMWare automation class

3.2.1 Connecting to Virtual Machine in VMWare Workstation

To work with virtual machine, a connection between host machine and virtual machine should be
established. If the virtual machine is stored on a host running workstation, a local connection is re-
quired. And if virtual machine is installed on a remote ESX, a credential should be supplied. With
connection between twomachines, automation can be realized through various handles. The snippet
below shows how a local connection is achieved. Specifically, a Connect function provided by Vix
API is utilized. Thehost type ,which describes theVMware software running on the host , is specified
by second parameter, no matter where the client is running. It is
VIX_SERVICEPROVIDER_VMWARE_WORKSTATION in this thesis, which indicates that the soft-
ware is VMWare workstation.

Listing 3.1: Connection function with Vix API

public void Connect()
{

jobHanlde = vix.Connect(Constants.VIX_API_VERSION,
Constants.VIX_SERVICEPROVIDER_VMWARE_WORKSTATION, null, 0, null,
null, 0, null, null);

int[] propertyIds = new int[1] {
VixCOM.Constants.VIX_PROPERTY_JOB_RESULT_HANDLE };

err = jobHanlde.Wait(propertyIds, ref results);
object[] hostArray = (object[])results;
hostHandle = (IHost)hostArray[0];

}

It is noticeable that the Connect() function is an asynchronous function, which means that the
function either implements time-consuming operations or interacts with persistent virtual machine

22

3.2. AUTOMATING VMWAREWORKSTATION

state. In this case, the asynchronous function allocates and returns a job handle.The job handle is
a Vix object that represents the execution of the asynchronous operation. It can be used to indicate
when the asynchronoushas finished, andalso, it canbeutilized to retrieve the results of the completed
asynchronous function. Furthermore, the returned job handlemay have several result properties that
are set when the job has completed. Information returned by a finished job is included in the result
properties.

A new job object will be always created by an asynchronous function, and the created job object
tracks the status of corresponding asynchronous function, so results of running asynchronous func-
tion can be retrieved after the call completes. Hence it is reasonable to wait until the call finishes
so as to get results. Currently, there are three approaches to detect when an asynchronous call has
finished, namely, pooling the job object for completion, using job object to block calls and using a
call back function. Among all the approaches, the second one, which is using job object to block
calls, is the most commonly used one. A function calledWait() provided by Vix API helps to realize
blocking. Moreover, results can be retrieved directly fromWait() function, otherwise, an additional
GetProperties() should be invoked on the job object to get the results back.

In the Connect() function above, a result property is retrieved when the Connect() has com-
pleted namely Constants.VIX_PROPERTY_JOB_RESULT_HANDLE , and the Wait() function is
used to both signal the completion of the asynchronous call and retrieve the final results. It is worth
tomention here that the returned result of aConnect() function is the host handle, which represents
a host machine. Next step after obtaining the host handle in the automation process is to power on
certain virtual machines , which will be described in the following section.

3.2.2 Identifying a Virtual Machine

According the principle of Vix API, a handle is used to identify different Vix objects, and there are
different types of handles. In the previous work, a host handle is obtained by connecting host ma-
chine with virtual machine software. Considering the operation in virtual machines, a similar handle
namely virtual machine handle is needed to realize guest operations, which can be exploited to iden-
tify or represent a virtual machine.

Mechanism provided by Vix API to obtain a virtual machine handle is converting a virtual ma-
chine path to a handle by aOpenVM () function, same withConnect() function,OpenVM () is an
asynchronous function called on the host handle. The result of such asynchronous call is therefore a
virtual machine handle. Wait() is adopted here to obtain the result as inConnect function.

23

3.2. AUTOMATING VMWAREWORKSTATION

3.2.3 Changing State of Virtual Machines

With virtual machine handle obtained, a virtual machine is represented by the handle. In general,
automatic management of virtual machines includes booting or shutting down guest OS, In order
to start up or shut down virtual machines through script using Vix API, the following steps must be
obeyed in the script:

1. Connecting to the host machine on which virtual machine is installed.

2. Getting the handle of host machine.

3. Using host machine handle to convert virtual machine file path to a virtual handle.

4. Utilizing virtual machine handle to call a functionPowerOn() to start up the virtual machine.

Noticeably, PowerOn() function can be used in two ways�

• To start up a virtual machine in a previously power-off state.

• To resume execution of a guest operating system in a suspended virtual machine.

For the sake of powering off or suspending a virtualmachine, similar with powering on, the first three
steps in the above numbered list should be followed, and only difference lies with the last step, using
PowerOff() or Suspend() depends on purpose , instead of using PowerOn().

3.2.4 Snapshot Management

Snapshot is one of the most important functions provided by virtual machine software,and plays a
critical role in fully automated GUI testing with virtual machines, for snapshot enables guest OS to
restore to any certain state. As a consequence, some repeated and tedious testingwork can be avoided
by reverting to snapshot with system configured directly. Also backing up of testing environment can
be obtained easily with snapshot.

With regard to snapshotmanagement, creating snapshot and reverting to certain snapshot is taken
into account in this paper. In terms of taking snapshot, a CreateSnapshot() function is available
to save a copy of virtual machine state as a snapshot object. It is noted that a snapshot with differ-
ent configurations can be taken with different inputs to the function. Concretely speaking, 0 and
VIX_SNAPSHOT_INCLUDE_MEMORY can be passed to the function, indicating taking snapshot
without memory and with memory respectively.

When considering reverting to a specific snapshot,RevertToSnapshot() helps reach the target. It
is utilized to restore virtual machine to the state when certain snapshot is created. A snapshot handle

24

3.2. AUTOMATING VMWAREWORKSTATION

is used here to represent a certain snapshot, which can be acquired byGetRootSnapshot() function.
The parameter in RevertToSnapshot() decides how a snapshot will be reverted specifically. If a
virtual machine is powered onwhen the snapshot was created, the parameter will determine how the
virtual machine is powered back on.

3.2.5 Automating Guest Operations

The fully automated solution relies a lot on whether the guest operations can be automated. The op-
erationswhich are necessary for fully automated solution include copying files betweenhostmachine
and virtual machine, running programs in the virtual machines automatically, creating folder and so
on. With the functions provided by Vix API, it is possible to realize all these operations by Copy-
FileFromGuestToHost(),CopyFileFromHostToGuest(),CreateDirectoryInGuest() and so on.
Among all these operations, running programs in guest OS is the most relevant to the GUI testing.
Therefore, it is worthwhile to take a further look into the implementation of the operation.

It is noticeable that there are two prerequisite functions before any operations in guest OS. Specif-
ically, users must log in as a VMWare user, which means that user will be granted the permission of
guest operations after logging in as a VMWare user. LoginInGuest() is the method provided by Vix
API to realize log in function,This function establishes a guest operating system authentication con-
text that can be usedwith guest functions for the given virtualmachine handle. In addition to logging
in, a collection of Vix services must be ready before all most all guest operations. The waiting time
can be specified byWaitForToolsInGuest() function.

Running programs in guestOS can be achieved through the function of RunProgramInGuest().
As shown in the codes below, the first parameter for the method is the absolute path where the pro-
gram stored in the file system in the absolute directory for the program . The second parameter is
command line argument, which provides users to run the program in their desirableway (e.g. passing
“VERYSILENT” as the command line arguments can automate installation of an applicationwithout
manually clicking next or accept terms). For Windows guest operating systems, user must pass
VIX_RUNPROGRAM_ACTIVATE_WINDOW as the value for the third parameter when running
a program with a graphical user interface. This value will ensure that the application’s window is vis-
ible and not minimized on the guest’s screen. The value is very important to GUI testing, because an
active desktop is required forGUI testing, if the application under test runs in the background, which
means it is invisible to users, and therefore performing GUI testing is impossible.

25

3.2. AUTOMATING VMWAREWORKSTATION

Listing 3.2: Running program in guest OSwith Vix API

int[] propertyId = new int[] {
Constants.VIX_PROPERTY_JOB_RESULT_GUEST_PROGRAM_EXIT_CODE };

IJob jobHandle = vmHandle.RunProgramInGuest(programPath, command,
Constants.VIX_RUNPROGRAM_ACTIVATE_WINDOW, null, null);

Being similar with other asynchronous functions, RunProgramInGuest() requires verifying the
completion of the call, and the result of calling such function can be obtained by Wait() function.
The returned results, which are the properties of the created job handle, can be set as following:

• VIX_PROPERTY_JOB_RESULT_PROCESS_ID: the process ID of the application which
has finish execution.

• VIX_PROPERTY_JOB_RESULT_GUEST_PROGRAM_ELAPSED_TIME: the elapsed time
of the process in seconds.

• VIX_PROPERTY_JOB_RESULT_GUEST_PROGRAM_EXIT_CODE: exit codeof thepro-
cess. it is necessary to obtain value that the application returned.

Figure 3.2.2: Variables and methods of VMWare automation class

26

3.2. AUTOMATING VMWAREWORKSTATION

The RunProgramInGuest() function together with other methods shown in the figure 3.2.2 en-
sure automating virtual machines in VMWare workstation possible, thus the fully automated GUI
testing with virtual machines is guaranteed to be applicable .

3.2.6 Manipulating Multiple Virtual Machine Simultaneously

Considering the principle of fully automatedGUI testingwith virtualmachines described in previous
chapter, a pool of guestOSeswithdifferent settings are installed for different virtualmachines. If there
exists an approach to perform test cases simultaneously, the performance will be enhanced to a very
great extent. Under this circumstance, performingmultiple test cases canbe equivalent to automating
several virtualmachines at the same time. However, VixAPI does not provide any function to achieve
concurrent automation. Fortunately, .net technology does supply method to perform multitasks in
parallel, namely multithreading.

A thread is defined as an execution path of a program, also every single thread can be deemed as
a unique flow of control. Multithreading indicates that user can have multiple threads of execution
inside a single program. When multiple threads are executed, it is likely to have multiple CPUs exe-
cution within the same program. As illustrated in figure 3.2.3, the first executed thread is known as
main thread, and another three threads can be started simultaneously. Between any pair of threads,
thread may switch and exchange data/ results.

Figure 3.2.3: A brief overview of multithreading

The benefits of using multithreading can be listed as follows:

• Multithreading canbe utilized to set isolation betweendifferent codes, therefore, the reliability
of applications can be improved.

27

3.2. AUTOMATING VMWAREWORKSTATION

• In most cases, codes can be simplified with multithreading.

• Concurrent execution can be achieved easily. Hence the efficiency of program is increased
greatly.

In C#, the System.Threading.Thread class is designed for working with threads. Creating and
accessing individual threads in a multithreaded application is allowed. When C# program starts ex-
ecution, the main thread is created automatically, a new thread can be created like normal variable.
The following codes realize multithreading in C#.

Listing 3.3: Multithreading implementation

for (int j = 0; j < groupNo; j++)
{

Thread[] testThread = new Thread[groupLength];
for (int i = 0; i < groupLength; i++)
{

testThread[i] = new Thread(tws.TEST);
testThread[i].Start();

foreach (Thread thread in testThread)
{

thread.Join();
}

}

The snippet above divides all virtual machines into several groups named groupNo, and in each
group there are certain number of virtualmachines namely groupLength. By default , virtualmachines
in a same group will be automated simultaneously, and the next group will start when all virtual ma-
chines in current groupfinish allwork. Thereason for classifying virtualmachine intodifferent groups
is that both host and guest OS may be extremely slow-responding if all virtual machines (6 in this
thesis) are set to run at the same time. Therefore it will be expensive for the host machine hardware
to perform simultaneous automation for all virtual machines. It is reasonable to make compromise
between cost and efficiency. Setting different groups for virtual machines is a considerable way to
increase the efficiency and decrease the cost at the same time.

Thedescriptionof various functions in the above section canbriefly illustrate howvirtualmachines
installed by VMWare workstation can be automated, and why Vix API is critical to achieve the goal.
Moreover, user experience towards Vix API can be generated in the course of automation. Roughly
speaking , Vix API is easy to use and the efficiency of various functions provided is quite high. As a

28

3.3. AUTOMATINGHYPER-V

consequence, simultaneous automation of virtual machines installed through VMWare workstation
is uncomplicated to achieve. the following section will discuss the automation for virtual machines
stored through Hyper-V, and a comparison toward automation for VMWare and Hyper-V will be
presented at the end.

3.3 AutomatingHyper-V

There are plenty of tools users can utilize to manage Hyper-V, e.g. Windows PowerShell acts as a
commandmanagement tool to automate operation inHyper-V. HoweverWindowsManagement In-
strumentation (WMI) API providesmore classes tomanage both hardware and software of host and
virtual machine in a programming way, which is the reason why it is adopted in the thesis.

3.3.1 Windows Management Instrumentation (WMI) Technology

Windows Management Instrumentation is a core management technology for Windows. It is based
on Common Information Model Object Manager (CIMOM). Visiting, managing and monitoring
Windows resources is easy with WMI. WMI allows managing in both local and remote computers.
For example, users can start a process in a remote computer and acquire any system information
throughWMI. Besides,WMI provides a common interface forMMCand scripts tomanage different
OS component without using different API. Different components ofOS are represented by a collec-
tion of objects with unique method and properties inWMI. All these objects are stores in a database
called CIM repository, user can adopt WMI query language (WQL) to query specific objects and
create different classes to represent network switchers, applications and so on. Developer can man-
age different component of OS through making change to CIM classed by methods and properties
provided . The possibility of use WMI in different language is taken into consideration when WMI
is designed, programming language like C/C++, Visual Basic, scripting languages (such as VBScript
or JScript) .NET family (C# for example) are supported. Therefore, users can choose their preferred
language to programmatically manage Hyper-V.

3.3.2 WMI Objects Description for Hyper-V Management by Operations

Similar to operations required for GUI testing in VMWare workstation, guest operations in Hyper-V
also consists of some basic operations, which can be shown figure 3.3.1. The code map of Hyper-V
automation class illustrates the relation between necessary methods and variables (part of them). It
is apparent that the method of RunPrograminGuest() has no association with other functions or

29

3.3. AUTOMATINGHYPER-V

variable. The reason will be presented in the following section together with the detailed implemen-
tation of various methods.

Figure 3.3.1: Code map of Hyper-V automation class

3.3.3 Connecting to Virtual Machine

Unlike VMWare workstation, where connecting virtual machine to host requires obtain the han-
dles of both host machine and virtual machine due to its hosted hypervisor architecture. Connect-
ing to virtual machine in Hyper-V simply means getting the object of certain Virtual Machine. The
Msvm_ComputerSystem class is designed for developers to get the information of both host ma-
chine and virtual machines. The class has some properties andmethod is used in the thesis, as shown
below:

• Caption is the properties describing the object, it is set to “Virtual Machine” if the instance
represents a VM, if the instances is host machine, it will equal to “Host Computer System”

• ElementName is the name user set to virtual machine, for example “win7” in the project. Or it
is name for host machine if host machine is represented.

• EnabledState is the states of virtualmachine representingby an integer, indicatesVM is running
or turned off and so on, it can be changed by the method of RequestChangeState, which is
used to power on or power off a virtual machine.

• Name is a unique symbol of certain virtual machine. It is recognized by system and is useful
when creating instance of system data.

By obtaining the Msvm_ComputerSystem class, basic information about both host and virtual
machine can be acquired. Noticeably, no matter Powershell or script, administrator right is needed
to list all the virtual machine information, otherwise, only host information is obtained. The code

30

3.3. AUTOMATINGHYPER-V

below shows how WMI class is used for listing virtual machine information. Before using any WMI
class, scope must be set to “\root\virtualization\V2”, which is the namespace where Hyper-V lo-
cates. Similarly, if users aims at controlling remotemachine usingWMI, a scope is required to set “IP
address\root\cimv2”,which is the remote WMI located.

Listing 3.4: Get virtual machine function withWMIAPI

ManagementScope mainscope = new
ManagementScope(@"\\.\root\virtualization\V2");

mainscope.Connect();
ObjectQuery vmquery = new ObjectQuery(query);
ManagementObjectSearcher vmsearcher = new

ManagementObjectSearcher(mainscope, vmquery);
ManagementObjectCollection vmCollection = vmsearcher.Get();
foreach (ManagementObject instance in vmCollection)
{

vm = instance;
return vm;

}

3.3.4 Changing State of Virtual Machines

Since virtualmachines information canbe acquired, launching/shuttingdownvirtualmachines is the
function to be realized in the next step. In the previous chapter, we know that EnabledState property
of Msvm_ComputerSystem class indicates the state of virtual machine, however, it is impossible
to change the virtual machine state from this property, because of the read-only limitation. Alter-
natively,Msvm_ComputerSystem class has a method of RequestStateChange, which enables de-
velopers to launch or shut down any virtual machines. The states of a virtual machine, which are
represented by different integers, can be changed by modifying an integer to another one. (e.g. 2 in
the method represents power on state). The following snippet demonstrates the workflow of change
state of virtual machines.

Listing 3.5: Change state of virtual machine withWMIAPI

if (operation.ToLower() == "poweron")
{
inparam["RequestedState"] = 2;
}

31

3.3. AUTOMATINGHYPER-V

if (operation.ToLower() == "poweroff")
{
inparam["RequestedState"] = 3;
}

ManagementBaseObject outParams =
vmObject.InvokeMethod("RequestStateChange",inparam,null);

Comparing to VMWare, Hyper-V WMI API provides more efficient function than VMWare be-
cause virtual machines’ states are represented by an integer, and modification of integer can change
the current state of virtual machines. Besides ,the integration of changing states also makes it much
easier. while in VIX API, user has to write individual functions for every single state change.

3.3.5 Snapshot Management

Snapshots play an important role in software testing. Essentially, they are the disk, configurations
and state of virtual machine in specific time. With snapshots, efficiency can be improved signifi-
cantly when different computer environments and various conditions in those environment need
to be recreated or reproduced many times. Consequently, snapshot management is fundamental
in terms of testing in virtual machines, Hyper-V snapshot management therefore is required. Fortu-
nately,WMIprovides classes tomanage snapshots, namelyMsvm_VirtualSystemSnapshotService
class. It represents the services to create, delete and apply snapshots in virtual machines, and some of
its’ read-only class can help to gain better understanding of the service. The property and methods
are demonstrated as follows:

• Description is the very basic property of all class, forMsvm_VirtualSystemSnapshotService
class, the description is read only and is set to “Service for creating, destroying, and applying
virtual machine snapshots”

• SystemCreationClassName is a string value read-only property, inferring the name of the class,
which is able to hold this servicer, and the value is always set to be
Msvm_ComputerSystem, which indicates a virtual machine or host machine.

• InstallDate indicates thedate and timea virtualmachine configuration is created, and it is useful
to check validity of a snapshot when snapshot tree is adopted.

Generally, the snapshot management follows the procedures below, which is also the basic steps
for most of operations using WMI classes:

32

3.3. AUTOMATINGHYPER-V

1. Getting the service object, which means searching the namespace in specific scope.

2. Obtaining method provided by the class usingGetMethodParametersmethod provided by
the management object type

3. Setting the input parameters, for example,CreateSnapshotmethod has parameters of Affect-
edSystem , and therefore is required to set as the virtual machine path under control.

4. Invoking method with certain parameters and receiving an object representing the output pa-
rameters of the method.

5. Reading the value of corresponding properties of output parameters to check status of the
method implementation.

In general, virtual machines are required to revert to an initial state after all testing is finished. An
initial state can be created by taking snapshot once the guest OS is installed. When it comes to re-
verting to initial state, ApplySnapshotmethod is provided by the class of
Msvm_VirtualSystemSnapshotService inWMI . Slightly differentwithCreateSnapshot, a param-
eter named Snapshot representing the snapshot to be applied must be provided. In addition to spec-
ifying the snapshot, the virtual machine which the snapshot is created should be provided as well.

GetRelatedmethod is employed toobtain instanceof snapshot of certain virtualmachine. Specifi-
cally,Msvm_ComputerSystem represents a virtual system,whileMsvm_VirtualSystemSettingData
stands for a snapshot. The relationship between these two classes is described as Antecedent andDe-
pendent. GetRelated method connects these two classes. Therefore, a snapshot for certain virtual
machine is returned. Being alike to creating snapshot, applying snapshot requires only setting the pa-
rameter of Snapshot as snapshot related to the virtual machine, which is the return value of function
GetSnapshot .

3.3.6 Copying Files Between Host and Virtual Machine

Unlike copying files between host machine and virtual machines installed through VMWare, where
files can be copied and pasted directly between two machines, it is more complicated in Hyper-V
due to the architecture of type1 hypervisor. The reason behind is that virtual machines constructed
throughHyper-v are deemed as independent “physical machines”. Therefore it is reasonable that files
cannot be copied/pasted directly between two physical machines. Nevertheless, there are existing
approaches to share files between host machine and virtual machine. To be specific, sharing files
through virtual disk, network and integration service are provided by Hyper-V.

33

3.3. AUTOMATINGHYPER-V

For the first approach, adding a virtual disk to virtual machine is necessary if files are chosen to
share through virtual disk. Virtual disk can be considered as a mutual disk between host machine
and virtual machine, through copying file to the disk in host machine, files can be found in virtual
machine too. The method seems to be proper and efficient. However, it involves in complicated
configurations of virtual disks in both host machine and virtual machine. Moreover, virtual machine
must be powered off when user is desired to share files.

Second approach, which is more common, is sharing files through network. It is obvious that
the basis of this approach is that virtual machine must be able to get access to network, the principle
behind is easy to understand. Due to the sharing network betweenhostmachine and virtualmachine,
a sharingdirectory is needed to realize file communication. Theapproach is comparatively easier than
virtual disk. However, it still requires frequent directory configuration if multiple files are design to
be shared.

Evidently, the above twomethods presented are not automated solution, whichmeans sharing files
is not programmatically controlled but manually set. Therefore a new efficient approach is needed.
Fortunately, inHyper-VWMIV2 version, an integration service is available to copy file automatically.
By default, backup option is excluded by integration service, therefore, backup should be selected so
as to enable sharing file function in the setting integration service dialog. In Hyper-V WMI provider
(V2), an integration service class, which can be used to solve problems that arises from the high level
of isolation from virtual machines, is added. Msvm_GuestFileService class is designed to enable
copies a file to a virtual machine from the Hyper-V host. The necessary properties and methods to
copy file is illustrated as below.

• SystemName is one of the properties inMsvm_GuestFileService class representing the ma-
chine name, which can hold the service. In other words, it infers the machine to which files
will copy. As a consequence, the value of SystemName is set to be the name of virtual machine.

• Msvm_CopyFileToGuestSettingData is a class representingparameters for copyingfile from
the host to guest OS

• SourcePath is one of the necessary properties in Msvm_CopyFileToGuestSettingData, and
it indicates the path of source files to be copied, noting that the source path has to be accessible
by Hyper-V host OS.

• DestionationPath is the corresponding destination path in virtual machine, and the path must
be accessible by guest OS.Moreover , the destination file is generated in this path. In this case,
the file name fromSourcePath should be used as destination file name.

34

3.3. AUTOMATINGHYPER-V

• CreateFullPath indicates thatmissing directories in the destination file’s pathmust be generated
before copying file.

• OverWritingExisting implies that whether overwrite destination file if there is a file already ex-
isted.

The method adopted for copying files isCopyFileToGuest, an input parameter of this method is
CopyFileToGuestSettings, which shouldbe set to the instanceof Msvm_CopyFileToGuestSettingData.
The snippet below shows how does the class work to realize copying files to virtual machine.

Listing 3.6: Copy files to virtual machine withWMIAPI

ManagementPath setPath = new
ManagementPath("Msvm_CopyFileToGuestSettingData");

ManagementClass setDataClass = new ManagementClass(mainscope, setPath, null);
ManagementObject copySetting = setDataClass.CreateInstance();
copySetting["SourcePath"] = SourcePath;
copySetting["DestinationPath"] = DestinationPath;
copySetting["OverWriteExisting"] = false;
settingData[0] = copySetting.GetText(TextFormat.WmiDtd20);

3.3.7 Running ProgramS in Virtual Machine

So far, the automated management of Hyper-V is done through the Hyper-V WMI provider (V2),
however, in order to runprograms automatically in virtualmachines. WMIAPI v2 is not enough. The
virtual machines created by Hyper-V are regarded as building on top of hardware directly instead of
host operating system, as a result virtualmachines are isolated fromhostmachine, which is the reason
why copy/paste does not work in Hyper-V. The isolation also makes running program automatically
in virtual machine complicated. Besides in Hyper-V WMI provider (V2) classes, there is no class
designed to start a process in virtual machines. In order to execute applications in virtual machines
automatically, treating virtual machine as remote machine is essential because controlling a machine
remotely is possible to achieve.

Connect to a virtual machine’sWMI classes
In order to manage guest operating system, connection between host machine and remote ma-

chine’s (Virtual machine installed) WMI should be established so that management can be achieved
byWMI provided in remotemachine. Regrading connecting to a remoteWMI, the principle is illus-
trated as Figure 3.3.2. It is clear from the diagram that two connections are needed if an asynchronous

35

3.3. AUTOMATINGHYPER-V

call ismade, to illustrate. Connection 1 ismade by client or script to obtain data fromWMI in remote
machine, while connection 2 is designed to deliver the result of asynchronous call back. However for
synchronous and semi-synchronous call, only connection 1 is required. We can know from figure
3.3.2 that remote connection in WMI is affected by firewall and DCOM, configuration on the fire-
wall and DCOM security must be done properly before remote WMI connection is achieved. The
configurations will be presented carefully in the following section.

Figure 3.3.2: Remote connection diagram in Windows OS

Firewall configuration
To successfully connect to remote machine, the same username and password credentials iden-

tify an account on remote machine. User account used in local machine must ensure that it is a local
administrator or domain account in the Administrators group on remote machine. In normal case,
firewall plays an important role in filtering untrusted data. By default, data request from remote ma-
chine will be blocked by firewall. In order to establish remote WMI connection , either firewall has
to be shut down, which is not recommend due to security issue, or firewall is set properly. For con-
nection 1, firewall setting on remote machine must be done locally. In detail, remote administration
must be enabled either by firewall user interface or by using NETSH command as below:

netsh firewall set service RemoteAdmin enable

Or if only WMI connection are needed, an exception in the firewall for WMI on the remote ma-
chine must be set. Similarly, choice can be made between firewall UI and command prompt using
WMI rule group like :

netsh advfirewall firewall set rule group=”windows management instrumentation (wmi)” new enable=yes

So far, the firewall setting on remote machine for connection 1 is described above. Some configu-
ration is required for connection 2, which allows delivery the result of asynchronous call back to local

36

3.3. AUTOMATINGHYPER-V

host . Firstly, remote administration exception should be enabled same as for connection 1. Specifi-
cally , DCOM port TCP 135 must be open. If not , error of 0x800706ba will occur , which indicates
that the remote procedure call (PRC) is unavailable. The reason for the error is that the PRC port
used by DCOM is closed. DCOM port can be opened by the command prompt as:

netsh firewall add portopening protocol=tcp port=135 name=DCOM_TCP135

Also, unsecapp.exe should be added to theWindows Firewall application exception list so that the
result can be delivered back to client. Commandprompt is useful to achieve it, which is shownbelow:

netsh firewall add allowedprogram program=%windir%\system32\wbem\unsecapp.exe
name=UNSECAPP

Lastly, for connection 2, itmay be an anonymous connection if the remotemachine is in a different
domain, which will be untrusted by local machine. Therefore, DCOM remote access permission to
anonymous connection should be granted on local machine as described in next section.

DCOM security configuration
Distributed Component Object Model (DCOM), a set of concepts and interfaces provided by

Microsoft, is an extension of Component Object Model (COM) which enables clients and servers
to communicate within the same computer. Traditional COM makes inter-process communica-
tion possible, while DCOM enables COM component to communicate across networks. WMI uses
DCOM to handle remote calls, which infers that DCOM should be configured correctly to establish
remoteWMI connection. Typical error of 0x80070005 (Access is denied)will occur if DCOM is not
set properly.

In windows, DCOM config utility is designed for configuration DCOM for WMI use, DCOMc-
nfg.exe can be found with administrative tools through control panel. With the utility, certain user
can be granted the permission to connect the computer remotely. By default only administrator or
members of administrator group can connect to the remote computer. If the current user is not ad-
ministrator, activation and launch permissions should be given by adding the user to group or user
name lists. Detained setting is available on Microsoft website “Securing a remote WMI connection”

Although Microsoft has provided detailed configuration documentation, sometimes, it still can-
not get work done when DCOM has configured correctly, and 0x80070005 still occur. The error
obviously shows that problem lies with permission, In this thesis, network service permission is the
reason, this probably due to the fact that somenetwork settings are changedby some software silently,
the following steps can solve 0x80070005:

37

3.3. AUTOMATINGHYPER-V

1. Right clickMyComputer, and then chooseManagement.

2. In the folder of Local Users andGroups, open the folder of Groups

3. Double click the Administrators listed, Administrators Properties dialog box will appear

4. Click Add button, in the selectUsers dialog box, click Advanced

5. Click FindNow button, chooseNetwork Service, and clickOK

Theabove setting guarantees a administrator have the permission for network service so thatWMI
can start normally. Configuration of remote WMI connection is trivial. It is error-prone and hard to
figure out reasonswhen theoretic configurations have been applied correctly. For example, in the reg-
istry, the valueof forceguest underHKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Lsa
should be 0. Also, the user should be granted the permission in the namespace of remoteWMI. Gen-
erally, if firewall is not set correctly, the error of “PRC servicer is unavailable” will occur, “Access is
denied” error is usually caused by DCOM security setting or no permission issue.

Executing application automatically

The configuration mentioned above guarantees that host machine is connected with virtual ma-
chine’s WMI, however, for controlling virtual machine with WMI classes, either WMIC, which is a
command tool provided in windows operating systems, or a script is needed to reach the goal. With
regard to the consistency of automation Hyper-V, programs in C# is adopted in the thesis to realize
automated management of virtual machine.

For the sakeof connectinghostmachinewith virtualmachine, except the configurationmentioned
above, the IP address orDomain/User name and password of virtual machine is required to establish
connection. In order to connect to the WMI classes in virtual machine, the namespace is required
set to \ROOT\cimv2, which is default namespace containing the majority useful classes for WMI
queries.

With connection between client and the remote WMI (e.g. WMI in virtual machines stored in
Hyper-V)established,Win32_Process class representing aprocess in anoperating system, is aproper
option to execute application automatically in virtual machines. It has various methods concerning
a process (e.g. Create, which creates a new process, Terminate, which terminates a process and all
its’ threads). The following code demonstrates how an application in virtual machine is executed.

38

3.3. AUTOMATINGHYPER-V

Listing 3.7: Start a process with remoteWMI

ManagementPath settingpath = new ManagementPath("Win32_ProcessStartup");
ManagementClass startupObject = new ManagementClass(scope, settingpath,null);
ManagementObject startup = startupObject.CreateInstance();
ManagementPath path = new ManagementPath("Win32_Process");
ManagementClass processClass = new ManagementClass(scope,path,null);
ManagementBaseObject inparam = processClass.GetMethodParameters("Create");
inparam["CommandLine"] = prgramPath;
inparam["CurrentDirectory"] = null;
inparam["ProcessStartupInformation"] = startup;
ManagementBaseObject outparam =

processClass.InvokeMethod("Create",inparam,null);

Noticeably, aWin32_ProcessStartup object is created to pass information to theCreatemethod
of Win32_Process. To use the Create method, some input parameters has to be set. Specifically,
CommandLine property indicates the command line arguments of the application under execution
(e.g. notepad.exe). CurrentDirectory is provided primarily for shells that must start a program and
specify the program’s initial drive and working directory, if the value is set to be NULL, the new pro-
cess createdwill have the samepath as the callingprocess. ProcessStartupInformation is one0f required
input parameter, which is usually the instance ofWin32_ProcessStartup class. By invokingCreate
method with specified parameters, a new process can be created as specified in virtual machines. All
variables and methods in Hyper-V automation class are shown as figure 3.3.3

Figure 3.3.3: Variables and methods in Hyper-v automation class

From the principle of starting a process in a virtualmachine , we know thatRunProgrmInGuest is
independent from other functions (as shown in previous code map) because variables and methods

39

3.4. COMPARISONOF VMWARE ANDHYPER-V

concerning the function is provided by a remote WMI in virtual machine instead of by a local WMI
in host machine.

AlthoughWMI class in remotemachine (i.e. virtualmachine in this thesis) provides valid and effi-
cient approach to start a process from localmachine, For security reasons theWin32_Process.Create
method cannot be used to start an interactive process remotely [2], which means that the process
created in virtual machines will run in the background, and will only be visible to task manager. The
limitation of Win32_Process.Create brings huge disadvantages forGUI testing in virtualmachines,
undoubtedly, GUI testing requires application runs as a windows on the desktop (i.e. active desktop
) . However , without assistance of third-party tool, it is impossible to run application in the fore-
ground. To the best of author’s knowledge, with both test controller set to run with test manager
and test agent set to run as interactive process , GUI testing in virtual machine is possible. Never-
theless introducing test controller is not expected in this thesis, because it makes automation more
complicated, especially compared to the simple solution available in VMWare.

3.4 Comparison of VMWare andHyper-V

One of the purposes of this thesis is obtaining the detailed differences of hyper-V and VMWare so
that best solution for GUI testing with virtual machines can be found. In addition to the theoretical
analysis about the architecture and principle in previous chapter, more detailed comparisons in term
of practical use in various aspects are listed below.

• Being consistent to theoretical analysis, VMWare is easier to configure thanhyper-V. For exam-
ple, by default host IP address is shared with virtual machines in VMWare, while for Hyper-V,
user is required to build new virtual adapter if network access is needed. Also, copy/paste is
supported in VMWare but not in hyper-V.

• For virtual machines in Hyper-V, restarting guest OS is required as long as the guest OS is
modified, for example in case of Windows updates, or turning off windows firewall and so on.
But, changing system setting does not result in the restart of guest OS in VMWare.

• Virtual machines residing in Hyper-V can be run in the background with the start of host OS,
while the ones in VMWare must be powered on either manually or by script.

• By contrast with theoretical analysis, a virtual machine in hyper-V runs slower than the one in
VMWare with the same configuration of 1GB memory and 1 virtual processor. However the
conclusion may be incorrect because the version of host OS is different, specifically, Widows
10 professional for Hyper-V and Windows 8 professional for VMWare.

40

3.4. COMPARISONOF VMWARE ANDHYPER-V

• For automated test usage, Application Program Interface (API) is important to achieve the
goal, both products provide APIs to programmatically controll virtual machines, VIX API for
VMWare, andWMI forHyper-V. As for the resources available online (fromofficial documen-
tation to open source community), WMI API for Hyper-V is more abundant.

• In a view of the functionalities provided by VIXAPI andWMI,WMI puts more weight on the
management of virtual machines, like programmatically resizing virtual hard disk, modifying
resources pool settings and so on, while VIX API focuses more on guest operation manage-
ment. To illustrate, listing file information in guest operation system and running programs
are easy to realize with a few lines in Vix API. And automated test in virtual machines de-
mands more operations in guest OS instead of management on virtual machines’ configura-
tions, which makes VIX API more preferable.

• Taking accessibility ofAPIs into consideration, VIXAPI is easier to use ifC# is adopted. But, in
order to useWMI, users has to adopt the format ofWindowsQuery Language (WQL), which
is similar to Structured Query Language (SQL) and probably is not friendly for users who is
accustomed to C#.

• WithWMI, automaticmouse click and keyboard input are easy to achieve in virtual machines,
however it is not provided by VIX API. With consideration of the way host machine connects
to virtual machines, VIX API and WMI works in totally different way. Due to Hyper-V ar-
chitecture, which is designed directly on hardware, it is necessary to take virtual machines in
Hyper-V as remote physical machines. Consequently, connecting to them requires network.
As for VMWare, network is unnecessary due to the fact that virtual machines are built as a part
of host OS.

• As for guestOSmanagement, it is impossible to create interactive processwith remoteWMI in
guest OS, process can only run silently, and can only be visible to taskmanagement. However,
for VIX API, interactive process is totally possible.

• Due to the limitation of remote WMI, GUI test with in virtual machine stored in Hyper-V are
theoretically impossible with only test agent installed in guest OS, because active desktop is
a big challenge for remote WMI. However, with test controller installed , GUI testing can be
realized.

The table 3.4.1 demonstrates briefly the differences and similarities in termof practical use forGUI
test.

41

3.4. COMPARISONOF VMWARE ANDHYPER-V

Table 3.4.1: Comparison of VMWare and Hyper-V

Parameters Hyper-v VMWare

Configuration Complicated Easy

Automatic power on VM Possible Impossible

Guest OSmodification Require restart Restart not required

VMperformance A little Slow Fast

API resources Resourceful Official documentation

Accessibility of API WQL required User-Friendly

API functions Mainly on VM management mainly on guest OS manage-
ment

Low-level control Possible Impossible

Remote control Network required No specific requirement

Interactive process Impossible Possible

GUI test Test controller and agent Only test agent

Snapshotmanagement Easy Easy

Automatic log in guest OS Impossible Impossible

WMI and VIX API have their respective pros and cons. They are similar at some points, e.g snap-
shots management can be doe easily with both APIs, and automatic logging in guest OS is unachiev-
able for both. However, for GUI testing, VMWare is preferable. The greatest weakness of Hyper-V
is that GUI of applications is invisible when the application is executed automatically. Furthermore,
the easy use of Vix API and its efficiency makes VMWare suitable.

It is well known that in theory, Hyper-V has a better performance than VMWare. As discussed in
previous chapter, Hyper-V has great advantage over VMWarewhen large amount of virtual machines
are installed. Considering the case in this thesis where only limited number of virtual machines are
needed, Hyper-v does not have greater advantage than VMWare, especially taking the cost of hard-
ware required by Hyper-V into account. To sum up , VMWare is selected as the virtual machine
software due to its high accessibility and resourceful guest OS management methods provided.

42

4
AutomatedGUI Testing

In previous chapter, automating virtualmachines in bothVMWare andHyper-V is presented, and de-
cision aboutwhich suits better forGUI testing ismadebasedon thedifferences in theory andpractical
use. In this chapter Necessary knowledge about GUI testing will be introduced , including the basic
concepts and various methods and tools available at current stage. A comparison of different tools is
given, according to which CodedUI test is chosen for this thesis, following with the implementation
of the solution proposed in the thesis namely fully automated GUI testing with machines.In the last
section,evaluation of the solution is presented.

4.1 Graphical User Interface (GUI)

Graphical User Interface (GUI), which is the user interface displaying computer operation environ-
ment with graphs, plays an important role in modern applications. Compared with the commands
adopted by early computer systems (e.g. Disk Operation System), GUI brings significant conve-
nience to users. Nowadays, users interact with programwith GUI, and the output of users input (e.g.
click button or keyboard input) can be visible immediately in the format of graph.

Nowadays, most of operation systems have provided graphical user interface, like Windows pro-
vided by Microsoft or Mac designed by Apple. Programs with GUI is always easy to use by freeings

43

4.1. GRAPHICAL USER INTERFACE (GUI)

people form complicated command language. Formajority of applications at present, they are always
installed with GUI applied, which makes GUI testing vital in development cycle.

4.1.1 GUI Objects and Events

GUI is constituting by a collection objects that are placed inside one ormore panes/windows, which
can be buttons, menus or windows. Generally, a GUI object represents a screen element that is used
to display information or enable users to interact with software in a certain way. Each user interaction
with the graphical environment, like button clicking or keyboard input causes an event and it is event
that manipulates GUI object. Event changes the state of software, which is reflected by the change of
appearance of one or more objects. Naturally, GUI is hierarchy, that is to say, a GUI object has its’
own parent, siblings and children.

Figure 4.1.1: Graphical User Interface of notepad application

The GUI objects of notepad are shown in figure 4.1.1, they are bordered with different colors.
Typically all GUI objects reside in a container, which is known as windows object. As the example
indicates. Windows object highlighted with red with the name of Untitled-Notepad holds all GUI
components. As a consequence, windows object is the ancestor of all objects in notepad. In detail,
windows object has three children, title bar object with name of untitled notepad colored with in-
digo, green menu bar which has five menu items as children, and lastly document object with gray
blue. All these objects have unique set of properties, which usually are identified with discrete value.
At any time of execution, the set of value may change, which indicates different states of software.
For example, the name of Document object, can be modified from none to anything input form the
keyboard, which represents that the text file is no longer empty. Detailed information about untitled
notepad GUI hierarchy structure is demonstrated in figure 4.1.2.

44

4.1. GRAPHICAL USER INTERFACE (GUI)

Figure 4.1.2: Hierarchy structure of GUI objects in untiled notepad

As the figure illustrates, theWindows object has three children, title bar, document andmenu bar.
Each of children has their own properties indicating the state of application, e.g. the name of docu-
ment is none in the figure which means that the notepad file has no content. The hierarchy structure
tells the children of each objects by different colors. It is worth to study the hierarchy structure of
GUI application due to the way certain object is searched in testing process. For example, if develop-
ers tend to find the menu item file, first step is to find windows object, next object to find is its’ child
menu bar, and finally menu item file is presented.

For developers, the hierarchy structure of GUI can be exploited to identify GUI events, which is
the basis in testing. According to the paper [6] , events are divided into different groups due to the
corresponding objects they are related to. They are itemized as :

• Restricted –focus event: apparently, user is restricted to operate for this type of event. For
example, in the notepad, when the user perform set font event, a window namedFont appears
and users choose font from the lists. Finally, user terminates the interaction by either click ok
or cancel. In this case, set Font is restricted-force event. Termination must be performed in
these classifications.

• Unrestricted-focus events: is opposite from restricted-force event. For example in notepad,
performing event Find opens a window named Find ,and user can input anything they want
to Find

45

4.1. GRAPHICAL USER INTERFACE (GUI)

• Termination event: typically, click ok andCancel appears termination event.

• Menu-Open event: is used to openmenus. Typically, File and Edit is menu-open event. This
type of event does not interact with software.

• System-interaction event : interacts with underlying software to execute some action. For
example copy event.

4.1.2 Characteristics of GUI Application

Being aware of characteristics of GUI application is instrumental to execute test. From the previous
introduction, it is reasonable to draw summary for the characteristics shown below:

• Accessing to features and functions of software or systems is provided via variousGUI objects,
likemenu bars, buttons, and keyboard shortcut. GUI applications set the low-level logic of the
software apart from users, which makes the software efficient to output expected results, and
therefore is convenient to correct errors if any occurs.

• Objects ofGUI are diverse and in hierarchic architecture. Anobjectsmay contain several other
objects, and these objects probably contain various types of other objects too, which forms the
hierarchy of GUI.

• GUI applications allow multiple windows to be displayed at the same time.

• The state of GUI applications is event-driven, users interact with applications through certain
events likemouse click, keyboard input. Consequently, the valueof properties of certainobject
changes. and therefore the state of application is modified.

• The output of GUI applications execution is not decided only by the event at present, also the
initial state and event performance history influence the output.

• GUI applications rely a lot on operating systems. In some cases, operating system functions
are called byGUI applications so that the applications behave correctly. As a consequence, the
state of external device and operation system have a significant impact on GUI applications,
especially, in the circumstance that GUI applications’ functions are realized by the interaction
between system API and the codes it holds.

46

4.2. AUTOMATEDGUI TESTING

4.2 AutomatedGUI testing

The existence of GUI applications brings huge convenience to users, at the same time the popularity
also makes GUI application more and more complicated and hence, difficult to execute GUI test.
Literally, GUI testing represents the process of testing an application that adopts graphical user in-
terfaces to make sure that it meets the required specifications. From a technical point of view, GUI
testing is mainly about verifying whether GUI objects act as expected and the state of application is
changed as expected after certain event is performed. Generally, it is about verifying the function of
GUI components, and verification on all states of application is included.

4.2.1 Challenges of automated GUI testing

It is clear that GUI testing differs from traditional testing in various ways. E.g. as for traditional tests,
the input of testing is a set of data. However, for GUI application, as mentioned before, is event-
driven, the input of GUI application is no longer conventional data set, but a series of event flow.
An event may be trigged by another event. Furthermore, there is no distinct output from running
GUI applications. Failure of certain event may make the rest of events fail to perform. Therefore,
verification of states change should be performance after every single event execution, instead of after
completion entire tests. GUI testing brings challenges in this ways. There are also other aspects listed
below shown the challenges:

1. As the characteristics of GUI applications indicate, the output of GUI application execution
not only rely on the current input but also on the historic performed events and initial state.
The feature adds complexity to GUI testing.

2. There exists great amount of state changes in GUI applications, which should be all included
in test. This requires that the states and architecture of GUI applications should be monitored
at any moment.

3. A test path is essentially a event sequence , it can be generated from permutation and combi-
nation of GUI objects and events. Due to the large number of GUI objects and events, the
number of test paths, which work as input to the application therefore, are tremendous.

4. The changes of GUI applications state are caused by events, for example a simple click button
can change the graphical interface. However, commands or messages from system can also
change states of the application. Therefore, uncertainty exists in GUI testing.

47

4.2. AUTOMATEDGUI TESTING

The challenges listed above make automated GUI testing difficult, especially when compared to
conventional testingmethodologies. Currently, GUI testing still relies a lot onmanual tests, inwhich,
testers click buttons or input keyboard physically and verification of states is also done in the same
way. Apparently, manual test has a great amount of disadvantages, for example, it is very time con-
suming and testers may easily ignore some test paths. Automated GUI testing is needed especially in
industrial area.

4.2.2 GUI Testing Approaches

The importance of GUI application and its’ unique challenges has raised concern in both academic
and industrial area. A lot of work and researches has been done to propose automaticmethodologies.
At the current stage , the most common and popular way is to use capture/replay mechanism, in
which human actions on GUI application is recorded by certain tools, GUI testing is done by the
automatic playback of the previously script recorded. Also , there are some other methods to realize
automated GUI testing, e.g. employing the Finite State Machine (FSM) to simulate the interaction
made between user and application. FSM model overcomes the defects in capture/replay to some
extent. However, it is usually complicated to construct models. There are also other solutions in
addition to the two mentioned above. In general, the majority of automated GUI testing methods
can be characterized [5] in the figure 4.2.1 below.

Figure 4.2.1: Brief overview of automated GUI testing methods

48

4.2. AUTOMATEDGUI TESTING

The graph in figure 4.2.1 demonstrates briefly the GUI testing process. There are two types of
elements in the graph respectively elliptical representing activities, and rectangular denoting the data
collections. Each edge connects an activity and adata collection. An important purpose in automated
GUI testing is to eliminate the need for a human user during testing , which means running the GUI
applications automatically. In other words, running the interactive application (play activity) with a
certain event sequence (event sequence data collection in the graph).

Taking the most common capture/replay (also known as record/replay) into account, the ap-
proach includes a record and replay process (record andpaly activity respectively). The former aims at
recording users’ behavior when users interact with applications. As a consequence, event sequence
is generated. Alternatively, there are other automated GUI testing approaches focusing on models,
which represents a set of possible event sequences. In these approaches, specific event sequences can
be created through a model by generating instances of a model. A model may include various data
collections. To illustrate, event sequence abstraction can be a part of models, Finite State Machine
[16], event flow graph[24], or Markov model [7] can be adopted to build event sequence abstrac-
tion. Besides, a model may contain information about GUI structure, like the hierarchy structure
of notepad mentioned before. In addition, event types is also instrumental in building an event se-
quence, frequency holding the information about which components are most used or most signif-
icant in practice. At last, input data is included in models too.

In termsof creating amodel, there are various options. Onepossibleway is to abstractmodels form
one or more specific event sequences (abstract activity). Alternatively, extracting information from
GUI applications is another choice (extract activity), e.g the GUI hierarchy structure of notepad can
be obtained through analysis the graphical interface. Hence, searching for certain objects and gener-
ating event sequence is possible. Last but not least, manual creating models is also one of important
approaches. It is efficient especially for small or medium sized GUI application, where test paths are
limited.

Apart from creatingmodels, maintainingmodels or event sequences to gain better performance is
also necessary in automatedGUI testing. Generally, themaintaining strategy is basedon the results of
previous playback, which canbe both pass and failure. As for conventional record/replay approaches,
results can be also used to fix the event sequences. Besides, the information from a model can be
utilized to fix a specific event sequence, like the GUI structure change information.

Among all automated GUI testing approaches, each method has respective pros and cros. As for
model based approaches, although they overcome the defects of record/replay and have high test
coverage, most of them require long development cycle and testers are required to be equipped with
good programming ability. Moreover, models are typically time consuming to maintain and update.
From development’s view, testers need to develop different models for different applications, which

49

4.3. CODEDUSER INTERFACE TEST (CUIT)

is inefficient and expensive to maintain, particularly, in industry area, where efficiency and feasibility
for implementation is emphasized. Alternatively. Record/replay technique gains popularity due to
high efficiency and feasibility.

4.3 CodedUser Interface test (CUIT)

Currently, there are many record/replay tools on the market, e.g.Selenium, QTP, and Coded ui test .
Coded UI test is a record/replay test tool provided by visual studio for automating GUI tests . Users
can verify that the whole application, including its user interface, is functioning correctly. Coded UI
Tests are particularly useful if there is validation or other logic in the user interface.

4.3.1 Advantages of Coded UI Test

Similar with other record/replay tools, performing automated GUI testing with coded UI test con-
sists of two steps. First comes the recording , in which user inputs low-level system interaction to the
application under test. Automated test is performed in second step, which is automatically playback
the recorded script in first step. Among all tools, coded UI test is chosen due to its huge advantages
compared to other tools. The strength can be listed below:

• Because CUIT is designed by visual studio, it is easy and efficient to writes script and debug-
ging due to all features of Visual Studio are applicable.

• CUIT can either be executed with Visual Studio or by usingMicrosoftTestManager (MTM).
With MTM various settings are provided for the test case execution so as to gather a lot of in-
formation while executing the test case behind the scene. CUIT provides various test settings
to perform test cases in order to capture different data when a bug is created

• For CUIT users can write the script with Visual Studio, making all object programming con-
cepts applicable if required.

• CUIT supports Windows Applications, web applications, WPF applications, SharePoint, Of-
fice Client applications and dynamics CRM Web Client applications.

• Coded UI Test supports any data source supported by .NET framework which can be in the
forms of a .CSV file, XML file or any other data source like SQL Server table, Access table etc.

• Coded UI Test includes a rich API library to code against and a resilient record and playback
tool. It can be extended to support custom controls as well.

50

4.3. CODEDUSER INTERFACE TEST (CUIT)

• ForCUITandMTM,users can be provided all theApplicationLifecycleManagement (ALM)
support Team Foundation Server provides. It supports work item tracking, source control or
version control and build automation. The support is in-built;

Table 4.3.1: Comparison of different record/replay tools

Category Selenium QTP CUIT

Record/playback supported supported supported

Ease of IDE Not sufficient Not sufficient Completely
supported

Ease of execution Supported Supported supported

Language Supported Supported supported

Object supported No No Supported

Application Only web Almost all Almost all

ALM supported Partially Partially Supported

The table above compares CUIT with other popular tools, QTP and Selenium respectively . The
comparison ismade in various aspects, from ease of IDE and features to the object-oriented language
support. It is apparent that CUIT is more powerful and more comprehensive than other GUI tools
, In particularly, third-party plug-in and Application Lifecycle Management is supported by CUIT,
which makes it suitable for industrial use.

4.3.2 Principle of CUIT

Obviously, the most significant part of record/replay technique is the record and play back engine.
Figure 4.3.1 illustrates the high-level architecture of record/replay engine. In general, the architecture
is constructed by three levels colored differently in the figure. Specifically, the recorder is designed
to listen and capture UI actions.Playback & API component aims at replaying the actions recorded
through interpreting codes generated. In order to simplify the way to call detailed UI technologies,
technology abstracting layer is set to provide a consistent interface to call into different UI technolo-
gies. Hence different plug-ins components used to identify different types UI controls, are designed
under technology abstracting layer. In the figure 4.3.1, web plug-in will be picked up for web ap-
plications. Rich client plug-ins includes UI Automation (UIA) and Microsoft Active Accessibility
(MSAA), the former plug-in is picked up when the GUI application isWindows Presentation Foun-
dation (WPF), while for other applications, e.g. Windows Forms applications, win32 applications,

51

4.3. CODEDUSER INTERFACE TEST (CUIT)

andMicrosoft Foundation Class (MFC) applications. MSAA plug-in is used to identify UI controls.
Generally speaking,MSAAworks for any controls which is not specified in web plug-in or UIA plug-
in, which is the reason why MSAA is default plug-in. Third party plug-ins is supported by the engine
too.

Figure 4.3.1: Architecture of record and replay engine in Coded UI test

RecordingUIactions is thebasis ofCUIT, a simple example is shown to illustratehowthe record/re-
play engine works. A simple mouse click on aWPF applications provokes the following steps at high
level for the recorder:

1. Recorder listens to Mouse Event.

2. X and Y coordinates will be acquired when the mouse button is clicked.

3. Recorder will call specific API to get the Control (e.g. button) at location of X, Y (for WPF
applica-tion, and MSAA plug-in will be called to identify the button.)

4. Recorder will get the properties and the hierarchy of the button.

5. Information about technology type of plug-in, control hierarchy and control properties will be
generated, which is used to search the button in playback process.

6. Capturing the actions, which means mouse click

7. Generating an XML file to represent the recording

Replaying step is one of the most important part in CUIT. Playback engine can be invoked through
automation API in CUIT, and playback engine involves the following steps at high level:

52

4.3. CODEDUSER INTERFACE TEST (CUIT)

1. In order to find the specific control, like a button in previous example, the information gener-
ated in step 5 during recording process is adopted to search for the control. Breath first search
(BFS) algorithm is used in searching process.

2. When the specific control is found, the playback engine will ensure the control is visible by
performing some actions.

3. Before interacting with the control, playback engine needs make sure that the control is ready
for specific action, like clicking on a button, some smart algorithms are employed to achieve
this goal.

4. Playback tries to ensure that the control that was supposed to have received an action has ac-
tually received it.

5. The playback finally performs the UI action on the control.

4.3.3 Workflow of Coded UI test

The playback logic is described clearly in previous section, how CUIT performs GUI testing is im-
portant for testers to analyze failures, figure 4.3.2 demonstrates the general workflow of GUI testing
with CUIT.

Figure 4.3.2: Workflow of Coded UI test

In figure 4.3.2, rectangulars colored in grey represent activities, while diamond indicates the out-
comeofGUI testing, either pass or fail. In general, CUITwill performFind first, which is responsible
for finding the specific controls (or finding next control) according to the recorded information (e.g.
controls’ name, type, hierarchy etc). If the control is not found, then test will end up with “cannot

53

4.4. EVALUATIONOF CODEDUI TEST

find control with search properties” error, otherwise CUITwill continue to execute Perform activity.
If the action cannot be performed, CUIT will fail with “action cannot be executed”, the reason be-
hind may varies a lot for different tests. If the action can be performed successfully, CUIT will verify
whether the expected state reached , if not, testing will fail too. Apparently, failure information is in-
strumental in fixing the test script, and therefore failure analysis is also one of themost important step
in the entire workflow. Noticeably, the testing will not quit unless there are failures or in the preform
activity , some termination events are performed ,like clicking finish or cancel button

4.3.4 Approaches for GUI test in virtual machines

For GUI test using the virtual machines, there are basically two approaches. Firstly, hardcoding the
mouse click and keyboard through API, which requires that testers know the absolute position of
variousGUI components, and failures are prone to appear if the positionof programunder testmoves
even a slightly bit. Or in another way, click the name of certain component, similarly, if the name is
changed, failure will occur. Another choice is to implementGUI test in virtualmachines by dropping
test script to guest operation system.

VMWare provides several different software development kit (SDK) products, and each is de-
signed for different community and platforms. To illustrate, VMware HTML Console SDK can be
only used for vSphere 5.1 and later, which is a JavaScript library implemented on a basis ofWebMKS,
provides mouse , keyboard processing and handle as well as cursor changes. While VMWare VIX
API is designed for users to control VMWare guest OS programmatically. The advantage of the pat-
tern is that it is easy to download and get what you need for developments clearly. However, when a
developer targets at some comprehensive functions, it usually requires extra product. For example,
VMWare workstation is only designed for virtual machines which are installed on the exactly same
host, and controlling mouse click and keyboard is impossible. This is the reason why dropping test
script to guest OS is adopted in this thesis.

Coded UI test provided by visual studio is automated test, which drives application under test
through its user interface (UI), and can realize functional test of UI controls and verify the func-
tionality of applications. It is very easy to use in terms of record and playback. Consequently. It is
employed in this thesis as automated GUI test tool.

4.4 Evaluation of CodedUI test

Currently, most of currently existing research work has put the weight on proposing new approaches
to perform GUI testing, e.g. Marlon et al[37],proposed a test case generation approach based on

54

4.4. EVALUATIONOF CODEDUI TEST

Unified Modeling Language (UML), while Emil et al[3] introduced a new technology using image
recognition to identify the GUI objects. However, all of these works focus on the approaches to
generate GUI testing, the system where GUI testing is executed on has to be turned on manually.
Therefore, additional manual assistance, which can be turning on systems, installing pre-requisite
applications or switching off system when all tests finished, has to be available for theses test cases to
beexecuted successfully. To someextent, the approaches that current researchproposedareonlyhalf-
automatic GUI testing in terms of the entire testing process. To address this problem to some extent,
a fully-automatic GUI testing solution is presented by locating tests in virtual machines. Through
automating virtual machines, all the procedures involved in testing process are automated. Besides,
multiple virtual machines can be automated concurrently, which means the efficiency of testing can
be improved significantly. In addition, evaluation of the on Coded UI Test is given in this paper
since no work evaluated the tool especially in industrial cases. The following chapter shows details of
evaluation related to CUIT in both host machine and virtual machines

4.4.1 Installation/Uninstallation Test

Installation of an applications is the premise of using the software, at the same time brings changes
to the system. In some scenarios, a failure installation may cause severe damage to users’ system,
leading to a reinstallation of the entire operating systembeing necessary . Fromuser experience point
of view, installation is the first step of using certain software. If installation fails, it will leave a bad
impression to the customers. All the circumstances mentioned above indicate that installation test is
critical in testing process. Additionally, installation in different systems and configurations should be
implemented to guarantee the robustness of the application under test.

For uninstallation, it should be emphasized that successful uninstallation removes the application
from a system completely, which means that all files relevant with the application should be deleted,
otherwise the installation of new version of application may be influenced significantly. Typically,
uninstallation of an application can be done through either uninstall.exe (in some cases uninstall.exe
is integrated in the setup file) or uninstall function available in control pane. However considering
the circumstance that control panemay have different forms of names in different operating systems,
e.g. in Norwegian operating system, control panel is “kontrollpanel” , it is efficient to hide the differ-
ence in GUI testing process, which is sensitive to UI properties. Thus uninstallation is done through
uninstall.exe in this paper,.

Figure 4.4.1 (a) and (b) illustrates the workflow for installation and uninstallation respectively,
notice that both tests are done through executing the setup file. The difference lies with that uninstal-
lation is achieved through Remove function provided by setup file and this function is only available

55

4.4. EVALUATIONOF CODEDUI TEST

when application is installed successfully.

(a) (b)

Figure 4.4.1: Installation/Uninstallation GUI testing workflow

As for installation test work flow shown in figure 4.4.1 (a), test starts with running the setup file for
the application, and if a previous installation is detected, all the files related to the application from
previous installation will be removed. If there is no previous installation found, installation test will
start the ordinary install procedure, including choosing installation option or selecting install path.
Notice that in this paper, the install path is set tobedefault directory. The test doesnot endupwith the
completion of installation, a followed validation of application installed is necessary. The validation
can be about the size and version or any other properties of application installed. The pass or failure
of test will be available from the outcome of validation.

Uninstallation test demonstrated in figure 4.4.1 (b) starts with check whether the application is
already installed. If not the test will fail with no application installed. Otherwise, uninstallation will
start normally from running setup file and choosing Remove function. Similar with installation test,
uninstallation test completes with validation whether all files are removed from specified directory.
Thus the outcome of uninstallation test can be generated.

In order to illustrate the efficiency of automatic GUI testing for installation and uninstallation, a

56

4.4. EVALUATIONOF CODEDUI TEST

small sized application called TestApp together with an industrial software named ABBRobView 5,
which is designed and released by ABB Robotics AS, is adopted for GUI testing in the thesis. These
two software varies in many aspects. One of the most influential sides with regard to completion
time taken, is the size of the setup file and application itself. As a consequence, the value of setup file
and application is obtained. Furthermore, GUI application is event-driven. The number of events in-
volved in installation/uninstallation testing process also affects the execution time. Table 4.4.1 below
shows the time taken to complete testing both manually and by script in host machine.

Table 4.4.1: Execution time of Insatllation&Uninstallation test for TestAPP and RobView 5

Test No.
events

setup
size

App size Manual test
duration

Automatic
test duration

Installation
TestApp

3 268K 276K 6s 6s

Uninstallation
TestApp

4 268K 276K 7s 6s

Installation Rob-
View

3 43.8M 103M 12s 8s

Uninstallation
RobView

4 43.8M 103M 20s 17s

Table 4.4.1 shows clearly the completion time for both manual test and automatic test with CUIT
for applications with different size. As for the application with small size, like TestApp in the table
with size of 276k, automatic test does not have apparent superiority over manual test. While for ap-
plication with a medium size, CUIT shows great superiority. To illustrate, the time taken to finish
manual test for installation of RobView is 12s, while the duration is 8s for automatic test with CUIT.
The performance in terms of completion time improved by around 33%, and for uninstallation test,
the value is 15%. Remarkably, the number of events is introduced in the table, which is the number
of actions involved in testing, e.g. for installation, testing includes click accept checkbox, click install
button and click finish button. Number of events for installation and uninstallation test is 3 and 4
respectively, and both are very small. One of significant reasons for automatic test having no obvious
advantage over manual test is that too few events are involved in testing process. Nevertheless, auto-
matic GUI test with CUIT adopted is still superior over manual test especially for medium and large
scale of programs.

57

4.4. EVALUATIONOF CODEDUI TEST

4.4.2 GUI Functional Testing

As the term indicated, functional testing aims at verifying whether an application or system under
test behaviors as expected. In traditional testing, functional testing takes data as input, and verifies
whether the actual output is consistent with expected outcome, which is usually written in script.
However, for GUI testing, there is no data as input since GUI application is event-driven. Sequence
of events can be considered as input in some content. The changes of state caused by each event
will be compared to expected change. GUI application functional testing is more complicated than
conventional ones in terms of input data and verification part.

Similarwith installation/uninstallation test,GUI functional testing forboth small-sizedandmedium
size applications is shown in this pape. SimpleAPP has a single function as shown in figure 4.4.2 (a)
. The application is made of 4 components, and once start button is clicked, the progress bar will
start working. When progress bar finishes, check box will be enabled, (before progress bar finishes,
check box is always disable, colored with grey) . EXIT button will be clicked after clicking check box
,which closes the application. The whole testing process can be summarized as: click start-wait for
progress bar-click check box-click exit. The number of event is 3.

(a) (b)

Figure 4.4.2: GUI of SimpleAPP and Robview 5 for GUI functional test

With regard to functional testing of RobView 5, it is much more complicated. The number of test
cases can be up to 67 if all functions are set to be covered. In order to illustrate the performance of
CULT, a test on the function of administration setting is chosen. Specifically, the tests is designed to
verify the function of logging in RobView with a certain account. As shown in figur4.4.2 (b), notice
that by default, User Account Setting (UAS) is disabled, a restart of RobView is required. Another
restart of the application is required after theusernameandpassword is verified so that the application
can startwith the specifiedaccount. To sumup, thenumberofGUIevents involved inUAS functional

58

4.5. EVALUATIONOF FULLY AUTOMATEDGUI TESTINGWITH VIRTUALMACHINES

test is 18. Obviously, functional testing on RobView is muchmore complicated and time consuming
than SimpleAPP

Table 4.4.2 below demonstrates the time taken to execute functional tests manually and by script
in host machine(windows 7 OS). Due to the difference of number of events, time taken varies sig-
nificantly for SimpleAPP and Robview 5. With regard to manual test, duration for Robview 5 is 2
minutes and 20 seconds, while for SimpleAPP , it is much less, only 6 seconds. Similar with instal-
lation/uninstallation test, for small-sized GUI applications, CULT does not bring much superiority.
For functional test, performance of UAS functional test for Robview 5 improves by 11.4 % . Notice
that, for installation/uninstallation test, the value can be up to 33%. The difference results from the
fact that in functional testing, it takes longer for CULT to find certain GUI component in a compli-
cated hierarchy structure, which is one of the disadvantages in CUIT. However compared to manual
test, CUIT is still faster and more advanced.

Table 4.4.2: Execution time of functional test for SimpleAPP & RobView 5

Test No. events Manual test dura-
tion

Automatic test du-
ration

SimpleApp 3 7s 6s

RobView 5 18 2min 20 s 2 min 04 s

4.5 Evaluation of Fully automatedGUI testingwith virtual machines

Virtual machines have brought huge advantages to users. Especially for software testing, with virtual
machines, various systems can be built in an inexpensive way, which is instrumental in testing the
robustness of application. Moreover, considering the circumstance that ”malware”may attack system
where application is installed in the testing process, damage may be brought to the system. With
executing tests in virtual machines instead of host machine, it is cost free to fix the problem, either
by reverting to snapshot or reinstalling the virtual machines. While for fixing the damage in host
machine, it is costly to reinstall the entire operating system.

Automating virtual machines is comparatively easy to achieve in an inexpensive cost with the ef-
ficient API provided. As a consequence, virtual machines are excellent candidate to solve fully auto-
mated testing issue, whichmeans that all the procedures involved in testing canbedone automatically
in virtual machine and the test results can be copied back to any directory in host machine. Evalu-
ating GUI testing in virtual machines is therefore critical. If the tests executed in virtual machines

59

4.5. EVALUATIONOF FULLY AUTOMATEDGUI TESTINGWITH VIRTUALMACHINES

take extremely long or guest OS responses extremely slow, then virtual machines are not an efficient
solution for fully automated testing. Table 4.5.1 shows different execution time of tests mentioned
above in different virtual machines. Notice that test in virtual machines is automated by playback
codedUI test script, and command prompt and visual studio test agent (MSTest.exe) is employed to
automated testing in virtual machines.

Table 4.5.1: Execution time of sets of GUI tests in various virtual machines

Guest
OS

TestApp
Instal-
lation
test

TestApp
uninstal-
lation
test

RobView
Instal-
lation
test

RobView
Uninstalla-
tion test

SimpleAPP
function test

Robview
function
test

Win7EN 20s 11s 44s 29s 9s 3 min09s

Win7CH 18s 11s 40s 25s 10s 3min02s

Win7NO 22s 13s 42s 28s 7s 3min01s

Win10EN 25s 22s 1min 04s 57s 22s —

Win10CH 19s 20s 51s 48s 13s —-

Win10NO 23s 18s 1min13s 1min02s 16s —-

Average 21s 15s 52s 41s 12s 3min04s

Skimming through table 4.5.1, it can be seen that duration varies a lot in different virtual machines
for different tests. Notice that, for windows 10, the duration for RobView UAS setting test is not
available because RobView is only designed for windows 7. If it is run in other operating systems,
CULT cannot find “start menu” due to accessibility of GUI object is not supported in the OS except
for windows 7 . In general, it takes longer to complete tests in windows 10 than windows 7, which
is due to the slow response in resources-consuming and high latencyWindows 10. Furthermore, the
more events involved in test, the longer the duration is. However, there is no linear relation between
them.

It is worthmentioning that the duration for a test in a certain virtual machinemay correlate signif-
icantly with the resource-usage situation in host operating system, if the virtual machine is installed
in the same machine with host machine like in this thesis. Taking the principle of hypervisor into
account, A virtual machine is regarded as a process in host OS. Consequently, the busier a host ma-
chine is, the slower a virtual machine will be. Therefore, to make duration data more representative,
an average of duration is computed to provide a more concise description. It is very clear from the

60

4.5. EVALUATIONOF FULLY AUTOMATEDGUI TESTINGWITH VIRTUALMACHINES

average value that installation test takes longer than uninstallation test and applications with smaller
size finish testing in shorter time.

Figure 4.5.1: Test duration for different set of tests in different manner

Figure 4.5.1 demonstrates the differences of test performance in manual test in host machine, au-
tomated test in host machine and automated test in virtual machines (with second as time unite).
Obviously, test in virtual machines always takes longer time to finish compared to manual test and
local automated test. The reason behind the fact is that time taken to start execution (i.e. start test
agentMSTest.exe) is by default included in completion time, while there is no starting test agent time
taken into account performing automated test from script in host machine. The greater test duration
in virtual machines is also partially because of slow response guest operating system in virtual ma-
chines, especially operating system like windows 10, which has a high requirement on host machine
hardware resources. Considering the reasons described above, although duration in virtualmachines
is greater than ones in other two ways, it can still be deemed as an efficient approach judging by the
benefits it brought.

4.5.1 Results of Executing Multiple Tests Concurrently

So far, no matter manual test or automated test, all test are executed individually, which means at
any point of time, only one test is allowed to be performed due to the non-cumulative property of

61

4.5. EVALUATIONOF FULLY AUTOMATEDGUI TESTINGWITH VIRTUALMACHINES

testing[27]. Apparently, if in some way, multiple tests can be executed simultaneously, the efficiency
will be enhanced dramatically. No solution is proposed so far to solve it in a host machine. However,
with virtualmachines, the problem can be addressed properly. Non-cumulative property also applies
to virtualmachines, which implies that two ormore tests execution at the same time in a single virtual
machine is not possible. It is conceivable that running multiple virtual machines should be able to
solve the problem.

In theory, any number of virtualmachines can bemanipulated in parallel. Nevertheless, it typically
has a strict requirement on the host machine hardware if many virtual machines are running simulta-
neously. Otherwise guest OSwill response extremely slow. As a consequence, compromise between
efficiency and cost should be made. In this thesis, a host machine with Intel Core-i7 4510U CPU
2.0GHz processor and 8 G installed memory is used to implementation. if 3 virtual machines with
Windows 10 installed, are set to run simultaneously, both host and virtual machines are extremely
slow. Therefore, in this thesis , only 2 virtual machines are set to run concurrently, and 3 groups with
2 virtual machines in each are formed.

Figure 4.5.2: Round trip time for different sets of GUI testing with different solutions

Figure 4.5.2 illustrates the different round trip time for manual test execution,single test execution
andmultiple tests execution respectively (withminute as time unit) . Round trip time is the duration

62

4.6. FAILURE ANALYSIS

between committing a source code change and the reporting test results reported back to developer.
Notice that, the round trip time includes time taken to automate virtual machines for both single
execution and multiple execution.(i.e. power on a virtual machine –run tests –copy results back to
hostmachine – power off a virtual machine etc). We can tell from the graph that single test execution
has a similar performance with the manual test, as explained in above section. The reason is that test
agent starting time is included in round trip time in single execution. However, It is clear from the
graph that multiple tests execution is always more efficient than single tests execution and manual
test. Specifically, for installation and uninstallation test of TestApp, time taken to automate tests in
all 6 virtualmachines one by one is around 18minutes, while the round trip time for executing 2 tests
simultaneously for 3 times (i.e. run test in all 6 virtual machines) is around 10 min, the performance
improved by around 40%. While compared tomanual test, performance improved by 11%. Comple-
tion time for installation and uninstallation test of RobView in single andmultiple execution is 28min
and 25min. performance enhances by around 11%. While for simple function test, there is around
40% performance boosted.

Although, the figure above does show some advantages of multiple test case executing over single
test case execution and manual test. In theory, the round trip time for multiple test case execution
should be twice less than single execution in this case. However, in fact, multiple test case execution
is not efficient as expected, the reason behind is that running multiple virtual machines at the same
time make both host OS and guest OSes extremely slow-responding, which increases the round trip
time greatly. Considering the circumstance that virtual machines are stored in a remote server or
cloudmachine, there will be no load introduced, and the number of virtual machines that run simul-
taneously can be up to 10 or even more, the efficiency of testing will improve greatly.

From the analysis of figure 4.5.2, efficiency of simultaneous multiple tests execution is consider-
able. Apparently, the more tests executed in parallel, the less round trip time is. However, if the host
machine is not powerful enough, more virtual machines will make not only virtual machines but also
host machine extremely slow, which results in long round trip time. As a result, trade-off between
cost and efficiency should be taken into account.

4.6 Failure Analysis

Coded UI test is an impactful tool for GUI testing in various aspects as results shown in previous
section. It is easy to use, efficient to maintenance and can fix codes. Nevertheless, failure is prone to
appearing in testing process, some of which is due to the disadvantages of CUIT, while part of which
is resulted from application under test. It is worth of analyzing the failure not only for fixing the error
in application under test, but also for gaining a further understanding of CUIT. Form the work flow

63

4.6. FAILURE ANALYSIS

of GUI testing described above, failures can be classified into three classes, searching GUI objects
failure, performing action failure, and lastly, verification of states failure. For the sake of analyzing
various failures in an explicit and concise manner, failures will be demonstrated in category fashion.

4.6.1 Searching GUI Object Failure

Searching failure is the most common one in testing process, however the reasons behind may be
various a lot mainly depending on specific circumstance.

• Problem: in installation/uninstallation test, the last step is generally click finish button, how-
ever in some cases, tests fail with error “cannot find finish button”.

Reason: Due to the searching mechanism of CUIT, GUI objects should be visible before any
action is performed. In this problem, finish button is not visible before time out, because in-
stall/uninstall progress bar always takes some time to finish.

Solution: Add WaitControlExists () method before click finish button in test script, which
suspends current thread until target control (GUI object) is visible. Hence existence of GUI
control can be guaranteed.

• Problem: test script generated in English version (e.g. windows 7 English), does not perform
clickWindows system close button, which is built in for every application. Test fails with can-
not find close button

Reason: for different operating system language version, the name for system button may be
various in different language system, for example close button in English operating system is
“button close”, while inNorwegian it is “knapp lukk”. Since theGUI control is found according
to it’s name, it is reasonable that close button cannot be detected in other language version.

Solution: instead of hardcoding clicking systembutton, exiting application from function pro-
vided by application itself like cancel button.

• Problem: in installation test, by default, when an application is installed, user account control
dialog will appear warning that modification on the machine will be done. Generally, clicking
OK buttonwill make application installation step into further procedure. However, for CUIT,
it is possible to capture the User Account Control dialog.

Reason: the event of UAC is semantic, which represents that it will not put into event queue
of GUI application. Therefore, CUIT will not capture the UAC dialog.

64

4.6. FAILURE ANALYSIS

Solution: modifying the setting of User Account Control to ignore the change ofmodification
onmachine. As a consequence, theUACdialog will not appear when new application is about
to install.

• Problem: As mentioned before, start menu of RobView is not visible in Windows 8 and Win-
dow 10.

Reason: the problem is probably caused by accessibility support of UIA element (i.e. start
menu) is not set for windows 8 and windows 10 considering the application is designed for
windows 7 only.

Solution: modifying the RobView application source code to enable the accessibility support.
However, the solution is not verified to be effective yet.

4.6.2 Action failures

Sometimes test cases fail with error like “certain action cannot perform on the control”, like the prob-
lem shown below.

• Problem : as illustrated in figure 4.6.1, the highlighted rectangle represents the Next button
found by the test script, and when click Next button is executed, the test will fail with error
“cannot perform click on next button”

Reason: the problemmay caused by the existence of cache control, the cache control may not
be deleted completely when the application is developed.

Solution: change the application source code to remove cache control, or in the case of Rob-
View, removing the Move User files dialog directly.

Figure 4.6.1: Action failure in Move User File application

65

4.6. FAILURE ANALYSIS

4.6.3 Application Error

• Problem: in the uninstallation test for TestApp, although the test can pass, which means files
in certain directory is deleted, it does not actually uninstall the application, and can still find
in control panel.

Reason: probably, the problem is due to the property of setup file, in which duplicated instal-
lation is enabled, which means more than two same application installation is allowed. Unin-
stallation test removes only one of the installations.

Solution: fixing the setup file to forbid duplicated installation may solve the problem.

4.6.4 System Problem

• Problem: for tests in virtual machines, when previous tests complete, immediate start of next
test sometimes lead to fail, especially when the OS responses slowly.

Reason: the cause of the problem is evidently due to the slow responding system. Previous test
probably has not finished in the background, and two or more test executions simultaneously
in a single machine is not allowed according to non-cumulative property.

Solution: Slowing down the system by adding sleep time before executing next test.

66

5
TestCases Scheduling in VirtualMachines

The performance of the solution proposed is proven to be considerable in previous chapter. For the
purpose of covering all the test paths and verifying every single function of a software, the number of
test cases canbe enormous amount asmentionedbefore, as a result completion timewill be extremely
great. The importance of decreasing the round-trip time, that is, the duration between committing a
source code change and the reporting test results reported back to developer, raises concern of testers.
As a consequence, scheduling test cases so that the round trip time isminimal is critical to improve the
effectiveness in the software testing process. In this thesis, tests can be distributed to different virtual
machines instead of performing all test cases in every virtual machine. In this way, the performance
of fully automated GUI testing can be optimized.

5.1 Introduction of Test Cases Scheduling

It is apparent that test case scheduling aims to reduce the round trip timeasmuchaspossible. Thesim-
plest and most straightforward approach is to perform test cases in as many machines as the number
of test cases concurrently. However, it is impractical considering the cost. Taking virtual machines in
this thesis as an example, running hundreds of virtual machines simultaneously will slow down the
hostmachine and guest operating systems significantly if the virtualmachine is stored on a same host

67

5.1. INTRODUCTIONOF TEST CASES SCHEDULING

machine. Therefore test cases takes longer time to finish. Obviously , the simplest approach is very
costly. As a result, test cases scheduling is one proper and inexpensive approach to achieve minimal
round trip time.

5.1.1 Description of Test Cases Scheduling

Test cases scheduling in virtualmachines simplymeans ordering the test cases under perform inmul-
tiple virtualmachines so that the time taken tofinish all tests isminimized to the greatest extent. From
a mathematical point of view, considering a set of test cases denoted as T, which has elements as {t ,
t · · · tn}. These test cases have corresponding execution duration D,it can be expressed as {d , d
· · · dn}. Furthermore, a set of virtual machines is described as VM, which has virtual machines as
elements shownwith {vm , vm · · · vmm} . Noticeably , these virtual machinesmay differ in various
aspect, e.g. operation systems , or the allocated hardware resources from host machine. Therefore,
the execution duration for each test case may slightly over-estimated to result in a small variation in
different virtual machines. Nevertheless, compared to the duration , the variation is too small, so it is
reasonable to ignore the changes.

The purpose of test cases scheduling in virtualmachines is to find a function f, so that S= f (M,T).
S is the targeted new sequence of test cases.The overall test execution time Te can beminimized with
the new sequence. The function f assigns test cases to different virtual machines. It is clear that the
time taken to find the best sequence set S is not negligible. Assume that the time required to find best
solution is denoted as Ts,, and the time taken to finish all tests can be represented as Te. Therefore,
the total time taken in testing process Tt is defined as: Tt= Ts+ Te. Minimizing Tt is the final goal of
test cases scheduling.

However, for test cases scheduling in virtual machines, the following constraints should be strictly
forced:

• No-cumulative scheduling : at any time , a single virtual machine can only executes one test
cases. Two or more test cases performing in the same virtual machine at the same time is not
allowed.

• No-preemptive scheduling: at any time, a test case running on a virtual machine cannot be
interrupted in order to execute another test case instead.

• Machine independent: it is hypothesized that the execution time of a test case is irrelevant
with any specific virtual machines, even though the virtual machines vary in terms of proces-
sors allocated, or memory assigned form the host machine.

68

5.1. INTRODUCTIONOF TEST CASES SCHEDULING

The optimization problem can be described by a time-discretized table. As table 5.1.1 shown, the
table contains a set of test cases ,duration for each test case and its assignment to given virtual ma-
chines.

Table 5.1.1: A simple case for test case scheduling

Test Duration Executable on

t 10 vm , vm , vm

t 3 vm , vm , vm

t 5 vm , vm , vm

t 6 vm , vm , vm

t 14 vm , vm , vm

t 15 vm , vm , vm

t 11 vm , vm , vm

t 20 vm , vm , vm

t 18 vm , vm , vm

A small test case scheduling problem is presented as table 5.1.1, let T be the set of test cases and
set to {t , t · · · t }, and the durationD here is set to {10,3,5,6,14,15,11,20, 18}. Note that the time
unit is not specified here, it can be minute or second. From reality view, the value can be gained by
empirical running test cases. The last column in table 5.1.1 indicates the virtual machines these test
cases can execute on. In this example, all tests can be performed in all machines. However, in some
cases, certain tests can only be executed on certain virtualmachine to test the specified function. But,
all virtualmachines are identical in this example, so test cases can be performed in all virtualmachines
available, e.g. vm , vm , vm , in the example.
From an algorithm point of view, test cases scheduling can bemapped as ”multiple-CPU scheduling”
[43] problem, the definition is given as:

Def 5.1.1. A set S = {a ,a , ..., an} of n proposed activities that compete to use common resources ,which
is a set of CPUs denoted as {m ,m ,· · · mm}. Each activity ai has a start time si and a finish time fi, where
si ≤ fi <∞ . If activity ai is selected, ai takes place during the half-open time interval [si, fi). Activities ai
and aj are compatible if the intervals [si, fi) and [sj, fj) do not overlap (i.e., ai and aj are compatible if si ≥
fj or sj ≥ fi). The target is to find the minimal completion time

It is clear that ”multiple-CPU scheduling” is a NP-complete problem, whichmeans that best solu-
tion can not be obtained quickly in polynomial time. Obviously, a naive approach is to use brutal-

69

5.1. INTRODUCTIONOF TEST CASES SCHEDULING

force, where all possible solutions are executed so that best one can be found out. There is no doubt
that brutal force can always find an optimal solution, but taking the time taken into consideration ,es-
pecially in cases with a great amount of solutions, it is an expensive approach. Some other methods
are proposed by researchers in last decades, including heuristic algorithm [2], the solution emulates
the behavior in biogenetics way so that a search approach is constructed. Simulate Anneal Arith-
metic(SAA) [19] is another approach, SAA interprets slow cooling as a slow decrease in the proba-
bility of acceptingworse solutionswhen it searches the solution space. Andneural network algorithm
31 is one of the options as well. In those algorithms, randomness is used to get a faster average run-
ning time. Furthermore , there is no evidence shown that these are faster and always produce a best
solution. Typically, the compromise between time taken and the optimal extent of final solution,
should bemade. Alternatively, greedy algorithm is proposed to solve the problem in an efficient way.
Noticeably, with greedy algorithm adopted, the solution found is not optimal , but “almost” optimal.

One possible best solution for the simple example is shown in figure 5.1.1 with greedy algorithm
adopted. The completion time is : 18 + 11 + 6 = 35

Figure 5.1.1: ”Almost” optimal solution for test case scheduling with greedy algorithm

5.1.2 Test Case Scheduling With Greedy Algorithm

From previous analysis, it is clear that greedy algorithm is capable of solving “multiple-CPU schedul-
ing” problem in an effective way. It finds the as optimal as possible solution in a short time. In all
the algorithms mentioned, search strategy is always the most critical part to solve problems. Differ-
ent strategy results in different performance, e.g. search approach in heuristic algorithm is based on
the theory in biogenetics. However randomness reduces algorithm’s performance to some extent.

70

5.1. INTRODUCTIONOF TEST CASES SCHEDULING

While for greedy algorithm, there exists various strategies too. For example searching can start with
test cases with shortest time first, or in contrast , always choose tests with longest completion time.
It is obvious from figure 5.1.1 that search strategy is based on longest competed time. To make the
algorithm clear, mathematical description is employed. For mathematical problems, there is always
input and output parameters, in this case, these parameters are illustrated as follows:
Input : As mentioned before, test cases , duration and virtual machines are denoted as T {t , t · · ·
tn}, VM {vm , vm · · · vmm} , D {d , d · · · dn} respectively. For duration , information about the
starting execution time si and finish execution time fi can be added to input set . Therefore, each test
case can be labeled as stating time , finish time , duration and virtual machines they can be executed
on . Among the input parameters, starting time and finishing time are variables to be assigned values.
mi is a variable indicating the virtual machine a certain test case will be assigned to. The value lies in a
finite domain [1,2,· · · m] adn m is the number of virtual machines. For the simple example in table
5.1.1, the value of mi can be set as [1,2,3]. In general, a test case can be expressed as {si, fi, di, vmi}
Output : S{s , s sn}, is the starting time set for corresponding test cases. M{m ,m · · · mn} is the
numeric value indicating corresponding test case assignment. Thegreedy algorithmcanbe illustrated
briefly as below:

Algorithm 1Greedy algorithm for test case scheduling
1: Starting time : si←
2: Finish time : fi←
3: Sort :D
4: for each element i inD do
5: Find : Maximun value : dm
6: Find : Virtual Machine : j
7: with shortest finishing time : fj
8: si← mj

9: mi ← j
10: end for
11: Return S,M

With greedy algorithm descripted above, the output of test scheduling for the example in table
5.1.1 is shown as :

S ={20,30,29,29,15,0,18,0,0} , M={3,3,1,2,1,12,3,2}; total completion time is 35.
In general, greedy algorithm in test scheduling aims at assigning test cases with longest- running

time to the virtualmachines that finishes current job firstly. Asmentioned above , greedy algorithm is
unable to guarantee the final solution to be optimal. But the algorithm ensures that it is approximate
optimal. Thereforewe can say that greedy algorithm is still effective, especially considering the cost in

71

5.1. INTRODUCTIONOF TEST CASES SCHEDULING

both space and time, which isO(1) andO(n*logn) respectively. For small ormedium scale problems,
the cost can be ignorable, which makes it suitable to solve the problem of test cases scheduling in
virtual machines.

5.1.3 Theoretic Implementation

In this section, applying test case scheduling in multiple virtual machines will be presented. In short
, implementing scheduling strategy discussed above in a realistic set of tests, which are designed to
verify the function “RobView” in ABB. Round trip time of scheduling will be given.

According to the information from testers in ABB, duration for an individual test to execute varies
from 1 minute to 5 minutes (depending on the test steps). In order to cover all functions in “Rob-
View”, there are 67 automated test cases in total. To execute the entire suite, it takes around 1.30
Hours. In this case, for each test cases, the average duration is 1.3 minutes, which means most of the
test cases take around 1 minute to complete. However the detailed duration for each test case is not
provided, a reasonable assumption ismade in this thesis to illustrate the test case scheduling solution.
The duration for each test case is assumed as listed in the table.

In table 5.1.2, the correspondingnumber of test cases is given for each test case duration . Thevalue
of duration for each test case are set to be integer so as to simplify the assumption. Being consistent
to the information from testers, the value of duration lies between 1minute to 5minutes. The overall
time is 90 minutes, and the overall number of test cases is 67. The sum of time and number of test
cases comfort to the information from tester, therefore, we can say that the assumption is reasonable.

Table 5.1.2: Assumed duration of each test case in GUI testing for RobView

Duration (minute) Number of test case Sum of duration (minute)
5 1 5
4 2 8
3 3 9
2 7 14
1 54 54

67 (Sum) 90(Sum)

The assumed duration for each test case is listed in the above table. According to the test schedul-
ing solution (with greedy algorithm adopted) , the round trip time is demonstrated as the following
graph. Notice that, in previous work, only 2 virtual machines are manipulated concurrently because

72

5.1. INTRODUCTIONOF TEST CASES SCHEDULING

the hostmachinewhere virtualmachine stored is not powerful enough. More than 2 virtualmachines
manipulation at the same time will make host and guest OS extremely slow-responding . However,
considering some situation that host machine is power enough to run 10 or more virtual machines
. In order to illustrate the efficiency of test case scheduling, graph 5.1.2 below shows the round trip
time with different number of virtual machine executed simultaneously.

Figure 5.1.2: Round trip time for tests with different number of simultaneous manipulation
virtual machines

As show in figure 5.1.2, the more virtual machines are manipulated, the less round trip time is.
Specifically, when no test case scheduling involved, the overall time to perform all test cases is 90
minutes as provided from tester. While it takes 46 minutes to complete all testing when 2 virtual
machines are executed simultaneously with greedy test case scheduling adopted. Compared with no
test case scheduling, the performance improves by around 48%. The corresponding round trip times
for 3 and 4 virtual machines simultaneous manipulation are 29 minutes and 15 minutes respectively.
As trend line indicates, the round trip time decreased dramatically. Thus the efficiency is enhanced to
a great extent. The industrial case studied above illustrates clearly that test case scheduling can reduce
the round trip time and increase testing efficiency significantly, although it is a theoretic evaluation.
However, for testing, the round trip time is just one of the parameter which affects the performance.

As is known universally, the goal of software testing is to find potential faults, and therefore the
detecting faults ability of test cases should be evaluated. The following part discusses how to improve

73

5.2. TEST CASES PRIORITIZATION

testing performance regarding faults detecting ability of test cases.

5.2 Test cases prioritization

Test cases prioritization is not a novel concept, literally, it means developers may prioritize test cases
so thatmore important ones, according to a certain criteria, will be executed earlier in testing process.
One of the potential and common goal is to increase the ability of test cases to detect faults earlier.
Rate of fault detection is adopted to indicate the ability, it indicates how fast a test suit detects faults
during the testing process. Earlier faults detection bring huge benefits to testing process, an improved
rate of detection can provided earlier feedback on the application under test , and therefore, earlier
debugging is possible. Moreover, if application under test is suspended due to some reasons, those
tests, whichhas the greatest fault detection ability, will be executedbefore application is halted. Figure
5.1.2, illustrates briefly the differences of testing with and without prioritization [34].

(a) T -T -T -T -T -T -T -T -T -T (b) T -T -T -T -T -T -T -T -T -T

Figure 5.2.1: Rate of fault detections with two different test cases sequence

Considering 10 test cases T1...T10, and 8 faults contained in the application under test. All faults
can be revealed by those 10 test cases. Two different test case execution sequences are proposed
to illustrate the effect of prioritization. Namely, test case order 1 : T -T -T -T -T -T -T -T -T -
T , order 2 : T -T -T -T -T -T -T -T -T -T . In figure 5.2.1 (a) and (b), the area under the curve
represents the weighted percentage of faults revealed with the corresponding test cases used.

For the first test order, T1 is executed first, and no faults are detected, following with performing
T2 and 2 faults are revealed. Therefore, the corresponding percentage of faults detected is 25% (2
out of 8 in total). After running test case T3, one more fault is detected, thus the detected faults

74

5.2. TEST CASES PRIORITIZATION

percentage increases up to 37.5 % (3 out of 8). All faults are revealed when all test cases complete.
In contrast, figure 2 (b) is apparently faster in detecting faults. Specifically, when first test case T9 is
executed, 5 faults is discovered, making the detected faults percentage to be 62.5%. Being different
form test order 1, test order 2 reveals all faults when the third test cases T5 is executed . Conclusion
can be easily drawn that faults can be detected much faster with test case prioritization , thus round
trip time can decrease since not all test cases are necessary for revealing all faults

5.2.1 Description of Test Case Prioritization Problem

In previous work [34], Rothermel et al, defines the test cases prioritization problem, and several so-
lutions are also illustrated. The test case prioritization problem is defined as follow:

Def 5.2.1. Given : T, a set of test case. PT, the set of permutations of T. f, a function from PT to real
number. Problem : Find T′ (T′ ∈ PT), such that for all T′′(T′′ ∈ PT,T′! = T′′), f(T′) > f(T′′)

Here, PT represents the set of all possible prioritizations, which is essentially the sequence of test
case execution. And f is a function applied to any such ordering. The selection of f may differ accord-
ing to the desired performance, it can be code coverage, rate of fault detection or fault likelihood.
Many previous works have proposed various solutions to target certain goal. To illustrate, Rothermel
et al [34] proposed strategy based on both function and statement levels. And Lee et al [23] reduce
test suits by adopting test cases that provide coverage of requirements. Offutt et al.[1] employees
coverage criteria to decrease prioritization test cases. However, none of the approaches mentioned
above can be applied to GUI testing, which is targeting at event-driven application.

5.2.2 Test Case Prioritization For GUI testing

GUI application, as described above, is event-driven, which means that the input is a sequence of
event and the change of state caused by each event should be verified inGUI testing. Therefore, a test
case prioritization solution to event-driven system is needed. A.M.Memon et al 30 proposed a new
approach forGUI test case prioritization. In their work some new concepts are presented to illustrate
the prioritization problem as shown in the following:

Parameter: is the GUI application widgets, e.g a checkbox. Parameters can be deemed as the
component of GUI application.

Value: is the setting for parameters, e.g. if the checkbox is clicked, then the value for the checkbox
parameter is true, otherwise it is false.

Parameter-value: is thepair of parameter andcorrespondingvalue, e.g. inprevious case, a parameter-
value can be <checkbox, true>.

75

5.2. TEST CASES PRIORITIZATION

Action: occurs when users set values to one ormore parameters on awindows before visiting next
window.

Different test case prioritization solutions are studied in their work, including parameter-value
interaction-based criteria, which is based on the interactions between multiple parameter-values.
Count-based criteria, solution is built according to the number of actions or windows a test case
covers. And frequency-based criteria, top priority is given by the number of most frequently visited
windows a test case covers.

Based on the experiments running on various solutions, the best solution to GUI tests prioritiza-
tion is parameter-value interaction criteria. Specifically, it is 2-way interaction solution. 2-way criteria
is a one of the solution proposed in the category of parameter-value interaction. It will be carefully
demonstrated in the following section.

The 2-way criteria is built on the assumption that faults are easily exposed when interactions of
parameters set values on different windows. Therefore, a next test case is chosen to maximize the
number of 2-way parameter-value interactions between windows. A simple example [30] illustrating
2-way solution is given in the table below:

(a) All 2 way interactions (b) 2-way interactions after T4 is selected

Figure 5.2.2: A simple case to illustrate 2-way interactions criteria

Table 5.2.2 lists 2-way interactions of parameter-values, the numeric value pairs in the interaction
indicate the parameter-value on different windows. For example 1-5 represents the possible value
of parameters in windows 1, 6-11 indicates the possible value of parameters in windows 2 and so
forth. Essentially, the interaction implies the communication of parameters on different windows.
According to 2-way criteria, T4 will be firstly selected due to the most interactions it includes. After
T4 is selected, the table will change due to the interactions in T4 will be excluded in rest of test cases

76

5.3. PRIORITIZED TEST CASES SCHEDULING INMULTIPLE VIRTUALMACHINES

because they are already excluded. Table 5.2.2 (b) shows the remaining interactions after T4 is se-
lected. Apparently, T5 is the next test case to perform because it contains most interactions untested
previously in T4. The final sequence is T4-T5-T3-T1-T2.

Based on the experiments running on all solutionsmentioned above, 2-way detects 100% of faults
in the fewest test cases. Average proportion of test cases used to reveal all faults is 54%, which means
that with only around half of all test cases, all faults can be detected. Therefore, another half of test
cases can be cut off. Obviously the 2-way solution improved the performance significantly, it reduces
the number of test cases and ensures all faults to be detected. The superior performance of 2-way
interaction solution makes it proper for the prioritized test cases scheduling, which will be carefully
presented in the following section.

5.3 Prioritized Test Cases Scheduling inMultiple VirtualMachines

As discussed above, test case scheduling ensures round trip time to be minimal, while test case pri-
oritization guarantees that all faults can be revealed as quick as possible. If testers desire to achieve
both minimal round trip time and high rate of fault detection, a novel approach should be proposed
to combine two properties of a test case together.

The problem of prioritized test cases scheduling in multiple machines can be defined as: given a
set of test cases with two properties, completion time and priority number respectively. A function f
should be found so that the overall round trip time and rate of fault detection is bothoptimal. It is very
obvious that the problem is NP-complete problem. No optimal solution can be find in polynomial
time, and there is few researches propose optimal solutions for this problem.

It is reasonable to taking the problem as ”rectangle packing”[22] problem, which is a problem
targeting at minimizing the area of rectangle. In detail, there is a bunch of rectangle pieces, and the
goal is to arrange them in a rectangle surface so that they don’t overlap while keeping the rectangle
area as small as possible. In this case, test case with different duration and priority can be deemed as
rectangle with different dimensions. For optimal solutions, pre-selecting ”interesting” place to locate
next rectangle is themost important part in the problem. Various solutions have been built, including
[11] ,it implements the bottom-left heuristic for two-diemnsion bin-packing, the time complexity is
O(N). And in paper[28], the solution is made based on limitation on the rectangles’ coordinates
and bounding box dimensions to the set of subset sums of the rectangles’ dimensions. However,
since the optimization problem isNP-hard, while the problemof decidingwhether a set of rectangles
which can be packed in a given bounding box is NP-complete. The solution to the problem is quiet
complicated, and there is no solution recognized as the best one so far. Considering the problem in
this thesis, a complicated algorithmmay increase takes time to findbest solution, therefore, the round

77

5.3. PRIORITIZED TEST CASES SCHEDULING INMULTIPLE VIRTUALMACHINES

trip time may increase.
Essentially, the basic idea to address the issue is that ordering test cases execution sequence with

consideration both it’s duration and priority. Hence a criteria of deciding the most ”important” test
case should be made. The method to weight different test cases is, therefore, critical in this problem.

5.3.1 Analytic Hierarchy Process Solution with Small Example

In order to illustrate the prioritized test cases scheduling solution, a small example is given below. 6
test cases with different time and priority are listed in the table.

Table 5.3.1: Test cases with different priority and duration

Test case Duration Priority

T 2 6 (highest priority)

T 1 2

T 5 4

T 3 1(lowest priority)

T 6 3

T 4 5

In the example in table 5.3.1, 6 test cases with corresponding duration and priority are shown.
Note that, discrete value is used here to demonstrate the difference in duration or time, the time unit
can beminute or hour. As for priority, the larger a numeric number is, themore important a test case
is. Therefore, from the table we can tell that test caste T1 has the highest priority, which is denoted
as 6. By recalling the algorithms we discussed before, for test case scheduling with multiple virtual
machines, test cases with longest duration will be always selected at first place, while in test case pri-
oritization approach, test cases with highest priority will be chosen to perform firstly. However, for
the prioritized test case scheduling withmultiple virtual machines, a test case may has a high priority
and short duration, like T1 in the example, should it be chosen to perform therefore the final round
trip time is minimal? Fortunately, analytic hierarchy process provided a “best decision” approach to
solve the issue.
Analytic hierarchy process (AHP) [33] is a structured technique for organizing and analyzing com-
plex decisions based on mathematics and psychology. It was developed by Thomas L. Saaty in the
1970s andhas been extensively studied and refined since then. APHhas a great range of use in various
aspects, where best decision is desired.

78

5.3. PRIORITIZED TEST CASES SCHEDULING INMULTIPLE VIRTUALMACHINES

Instead of prescribing a “correct” decision, AHP achieves final “optimal decision” that best suiting
users’ goal and their understanding of the problem. A comprehensive and rationalmodel for structur-
ing a problem is the basis of AHP.Moreover, AHPprovides an effectiveway to represent and quantify
the elements, and combine these elements with final goal, also evaluates alternative solutions.

To make a decision in an organized way, solution can be decomposed into the following steps:
[33].

1. Define the problem and determine the type of knowledge sought.

2. Structure the decision hierarchy from the top with the goal of the decision, then the objec-
tives from a broad perspective, through the intermediate levels (criteria on which subsequent
elements depend) to the lowest level (which usually is a set of the alternatives).

3. Construct a set of pairwise comparison matrices. Each element in an upper level is used to
compare the elements in the level immediately below with respect to it.

4. Use the priorities obtained from the comparisons to weigh the priorities in the level imme-
diately below. Do this for every element. Then for each element in the level below add its
weighed values and obtain its overall or global priority. Continue this process of weighing and
adding until the final priorities of the alternatives in the bottom most level are obtained.

According to the procedures defined above, the following steps are executed in order:

Constructing hierarchymodel
One of the most important concept in AHP is hierarchy model, problems can be analyzed in a

comprehensive way with the model. Typically, problems can be mapped into 3 layer as shown in
5.3.1, goal layer, criteria layer and alternative layer respectively. As depicted below, the goal layer is
the target of scheduling, which is to minimize round trip time and improve rate of fault detection.
There are two parameters in the second layer, namely duration and priority, which will affect the final
goal. In the third layer, there are 6 alternatives, each has unique duration and priority value.

Constructing judgementmatrix
According toAHP ,theweight of two alternatives over a criteria can be analyzed by comparing two

elements, e.g. comparing T and T in terms of duration, T is more important. Therefore, judgment
matrix is generated by comparison every two alternatives over a criteria. In order to illustrate the
weight of two alternatives in a precise way, 1-9 absolute number is introduced to denote how better

79

5.3. PRIORITIZED TEST CASES SCHEDULING INMULTIPLE VIRTUALMACHINES

Figure 5.3.1: AHP layers for solving prioritized test case scheduling problem

an alternative is over the others. For example, the duration time of T is 6, while the value for T is 1
, thus, T is extremely better than T , so D will be labeled as 9, while D is denoted as 1/9. Table
5.3.2 shows the detailed information about how judgment matrix is built, the rule applied for both
duration and priority criteria. In addition to constructing the judgmentmatrix between criteria layer
and alternative layer, the weights of criteria over goal layer is critical too. In this case, the weights of
duration and priority should be decided according to their importance for achieving the goal . For
the simple example, it is assumed that duration andpriority is equally important, whichmeansweight
put on each criteria is both 0.5, shown as w {0.5, 0.5}

Table 5.3.2: Criteria for building judgement matrix

Di- Dj or Pi-Pj Dij or Pij

1 or -1 2 or 1/2 (Ti is a little better/worse than Tj)

2 or -2 3 or 1/3 (Ti is somewhat better/worse than Tj)

3 or -3 5 or 1/5 (Ti is obviously better/worse than Tj)

4 or -4 7 or 1/7 (Ti is strongly better/worse than Tj)

5 or -5 9 or 1/9 (Ti is extremely better/worse than Tj)

Consequently, judgment matrices over duration and priority denoted as D and P respectively are
demonstrated as below:

80

5.3. PRIORITIZED TEST CASES SCHEDULING INMULTIPLE VIRTUALMACHINES

D=



/ / / /

/ / / / /

/

/ / /

/ /


, P=



/ / / /

/ /

/ / / / /

/ / /

/


Validation consistency of judgementmatrix

With the judgement matrix , it is still rash to make the final decision, because the quality of the
matrix should be evaluate so that rationality can be verified. In order to evaluate the consistency of
the matrix, consistency ration is utilized As defined as below:

CR =
CI
RI

(5.1)

where, CI is the consistency index , which is formulated as :

CI =
λmax − n
n−

(5.2)

λmax is the maximal eigenvalue of matrix .
RI is the random index, which is a constant value for the matrix with a fixed size of n. The value

of CI cannot exceed 0.1, otherwise the matrix is considered as inconsistent. In this simple example,
it is not difficult to get the value of λmax, which is 6.058 for both matrix, and RI= 1.24, when n=6,
therefore:

CI= λmax−n
n− = 0.016

CI= 0.013< 0.1;

The consistency of both matrix is proven,therefore, they can be used to make final decision. In
addition to the judgmentmatrix, the eigenvector corresponding to themaximal eigenvalue, is utilized
to represent the weight for alternatives over certain criteria. In the simple example, eigenvector for
duration matrix D can be computed as:

Wd= {0.055, 0.035, 0.26, 0.09, 0.41, 0.15}

while for priority matrix P, corresponding eigenvector is:

Wp= {0.41, 0.055, 0.15, 0.035, 0.09, 0.26}

81

5.3. PRIORITIZED TEST CASES SCHEDULING INMULTIPLE VIRTUALMACHINES

From the eigenvectors, we can tell that for duration parameter,T1 with weight of 0.055 is less im-
portant than T5 with weight of 0.41. Same applies for priority eigenvector.

Computation weight of alternatives over goal
Thefinal step ofAHP is to evaluate how important of every single alternative over the goal, i.e. eval-

uating test cases to find out which one is themost important to achieveminimal round trip timewith
high rate of faults detection in this thesis. Since alternatives’ weights over criteria can be computed
withAHP rules, andweights of criteria over final goal canbedecidedby empirical experience or refer-
ence in relevant research. However, in this thesis, it is assumed. Wci is adopted to denote the weights
of alternatives over criteria, and W , represents the weight of criteria over final goal. Therefore, the
final weightsW of alternatives over final goal can be formulated as :

W =

c.legth∑
i=

w ∗ wci (5.3)

For the simple example the final test cases’ weight is :

W=
[

. .
]
*



.

.

.

.

.

.


+
[

. .
]
*



.

.

.

.

.

.


W = {0.23, 0.04, 0.21, 0.06, 0.25, 0.21}

5.3.2 Evaluation of Prioritized Test Case Scheduling in Virtual Machines

With help of AHP, the weights of each test cases over the targeting goal is achieved. By default, the
higher a test case weight is, themore important it is for accomplishing the goal. For the simple exam-
ple, the final weight can be calculated: W= {0.23, 0.04, 0.21, 0.06, 0.25, 0.21} as shown in previous
section. Among all, w is maximal, and therefore T5 with duration of 6 and priority of 3 is the most
important. T1 with duration of 2 and priority of 6 is followed. T and T have an identical weight,
which is 0.21, In this situation, test case with longer duration ismore important according the results.

The optimized test case execution sequence, consequently, can be generated. For the small exam-
ple, the sequence is T —T —T —T —T —T , .According to greedy algorithm , selector always
chooses the most significant test cases first in testing process, and same with test case scheduling.

82

5.3. PRIORITIZED TEST CASES SCHEDULING INMULTIPLE VIRTUALMACHINES

Virtual machines with the shortest finishing time is always selected to run test case first. Therefore,
the solution for the prioritized test cases scheduling for multiple virtual machines can be shown as
figure 5.3.2 (assume that only two virtual machines available for 6 test cases).

Figure 5.3.2: Solution for prioritized test cases scheduling with AHP

(a) (b)

Figure 5.3.3: solution with only test prioritization and only test duration scheduling

The round trip time is 11 time unit for only test case scheduling in two virtual machines as shown
in figure 5.3.3(b). Considering test cases to be execute are prioritized, and assuming that 2-way in-
teraction mentioned in previous section is adopted. Thus all faults can be revealed when the 4th test
cases is performed. For the simple example, the solution shown in figure 5.3.2 finishes testingwith all
faults detected in a total round trip time of 10. It is apparent that the prioritized test cases scheduling
ensures the result to be better than only duration scheduling and only test case prioritization, which
is 17 and 11 time unit as shown in figure 5.3.3(a) and(b).

With the simple example studied, AHP is proven to be efficient in addressing the prioritized test
case scheduling problem when 2-way criteria prioritizition is adopted . In the simple example, test
case are labeled exactly one priority number using idea 2-way interaction approach . However, in
an industrial case, many test case may be at the same priority level, which is a little different from the
solution proposed in this thesis. Thus an industrial casewithmore test casesmaybeneeded to further

83

5.3. PRIORITIZED TEST CASES SCHEDULING INMULTIPLE VIRTUALMACHINES

verify the efficiency of the prioritized test case scheduling solution. In addition, the way of deciding
weight of criteria over final goal should be further discussed tomake the AHP solutionmore precise.

84

6
Conclusion and FurtherWork

6.1 Conclusion

The thesis proposes an approach, namely fully automated GUI testing with virtual machines. Cur-
rently, GUI testing relies a lot on human involvement. The input of GUI application is a sequence of
events and the changeof state causedby every event shouldbe verified. Thushardcoding the expected
outcome in program as traditional testing is difficult. That is why current GUI testing needs human
assistance a lot. This thesis aims to address the problem by locating GUI testing in virtual machines.
Through automating virtual machines, the tests performed in guest OS are automated. Two virtual
machine programs, respectively VMWare workstation andHyper-V, are studied in the thesis tomake
a better decision for GUI testing. Based on both theoretic analysis and practical use, VMWare work-
station is proven to be better suited forGUI testing, because its easy to configuration and the efficient
programming Vix API provided .

Result of implementation shows obviously that the performance of fully automated GUI testing
with virtual machines is much better than manual tests. Especially when multiple test cases are per-
formed in parallel. However with multiple virtual machines automated simultaneously, the compro-
mise of efficiency and cost should be taken into account in this thesis. If all virtual machines are
installed in remote server or cloud machine instead of stored in host machine, the performance of

85

6.2. FURTHERWORK

fully automated solution will be improved to a great extent.
Moreover, an optimized solution is proposed to further shorten the round trip time, namely prior-

itized test case scheduling. The optimized solution aims to detect all underlying faults in the shortest
time. With both duration and priority introduced to a test case, the weights of all test cases over final
goal is calculated by Analytic Hierarchy Process (AHP) method. Through a simple example stud-
ied, the result of the optimized solution is proven to be more efficient than only test cases duration
scheduling and only test cases prioritization.

6.2 FurtherWork

Although the solution proposed in the thesis proven to be efficient, some further work can be done
to make it more persuasive and precise as listed below:

1. Applying the solution to a bigger scale of test suits. Current work only focuses on a limited set
of test cases from ABB. However, with more test cases applied, the solution proposed can be
evaluated more accurately.

2. The weight of duration and priority over final goal for the optimized solution is simply set to
be equal in this thesis, although the final result shows superior performance. But the weight
can be designed in a more scientific way.

3. An industrial case implementedwith optimized solution should be studied to further illustrate
the efficiency of prioritized test cases scheduling.

4. Virtual machines in this thesis are installed on host machine directly, which will affect the per-
formance of testing. Considering automating virtual machines stored on a remote server, the
performance will be enhanced greatly. This should be verified in the future.

86

References

[1] J. Offutt A. Andrews and R. Alexander. Testing web applications by modeling with fsms. Soft-
ware and Systems Modeling, 4(3):326–345, 2005.

[2] MichelMittazAlainHertz. Heuristic algorithms. Theory, Solutions andApplications, pages 327–
386, 2000.

[3] Emil Alégroth. Transitioningmanual system test suites to automated testing: An industrial case
study. 2013 IEEE Sixth International Conference on Software Testing, Verification and Validation,
pages 56 – 65, 2013.

[4] Paul Ammann and Jeff Offutt. Introduction to software testing. Cambridge University Press,
2008.

[5] Milan Jovic Matthias Hauswirth Andrea Adamoli, Dmitrijs Zaparanuks. Automated gui per-
formance testing. Software Quality Journal, 19(4):801–839, 2011.

[6] M.L.Soffa AtifM.Memon,M.E.Pollaek. Coverage criteria for gui testing. 8th European software
engineering conference, pages 256–267, 2001.

[7] Bei bei Yin. A case study for invalidating themarkovian property of gui software structural pro-
file. 30th Annual International Computer Software and Applications Conference (COMPSAC’06),
1:447 – 454, 2006.

[8] Boris Beizer. Software testing techniques. Dreamtech Press, 2003.

[9] EmilBorjesson. Automated systemtestingusing visual gui testing tools: Acomparative study in
industry. 2012 IEEEFifth InternationalConference onSoftwareTesting, VerificationandValidation,
pages 350–359, 2012.

[10] Renee C Bryce, Sreedevi Sampath, and Atif M Memon. Developing a single model and test
prioritization strategies for event-driven software. Software Engineering, IEEE Transactions on,
37(1):48–64, 2011.

[11] B. Chazelle. The bottomn-left bin-packing heuristic: An efficient implementation. IEEETrans-
actions on Computers, page 697–707, 1983.

[12] Robert P Goldberg. Survey of virtual machine research. Computer, 7(6):34–45, 1974.

87

REFERENCES

[13] Brian R Gruttadauria, Andreas L Bauer, Gregory W Lazar, and Munish T Desai. Common in-
formationmodel (cim) translation to and fromwindowsmanagement interface (wmi) in client
server environment, November 29 2005. US Patent 6,971,090.

[14] Wenqi Huang, Duanbing Chen, and Ruchu Xu. A new heuristic algorithm for rectangle pack-
ing. Computers & Operations Research, 34(11):3270–3280, 2007.

[15] Takayuki Itoh, Yumi Yamaguchi, Yuko Ikehata, and Yasumasa Kajinaga. Hierarchical data visu-
alization using a fast rectangle-packing algorithm. Visualization and Computer Graphics, IEEE
Transactions on, 10(3):302–313, 2004.

[16] Hu Jin. Finite state machine for automatic gui testing. Computational Intelligence and Software
Engineering, 2009. CiSE 2009. International Conference on, pages 1 – 4, 2009.

[17] David S Johnson. The np-completeness column: An ongoing guide. Journal of Algorithms, 7
(4):584–601, 1986.

[18] Jung-Min Kim and Adam Porter. A history-based test prioritization technique for regression
testing in resource constrained environments, 2002.

[19] C. D. Vecchi M. P Kirkpatrick, S. Gelatt Jr. Optimization by simulated annealing. Science, page
671–680, 1983.

[20] D Richard Kuhn, Dolores R Wallace, and Albert M Gallo Jr. Software fault interactions and
implications for software testing. Software Engineering, IEEE Transactions on, 30(6):418–421,
2004.

[21] IBRAHIMS Kurtulus and EW Davis. Multi-project scheduling: Categorization of heuristic
rules performance. Management Science, 28(2):161–172, 1982.

[22] Martello S. Monaci M. Lodi, A. Two-dimensional packing problems: A survey. European
Journal of Operational Research (Elsevier), 141:241–252, 2002.

[23] M. Song M. Yoon, E. Lee and B. Choi. A test case prioritization through correlation of re-
quirement and risk. journal of software engineering and applications. Software Engineering and
Applications, 5(10):823–835, 2012.

[24] Atif M. Memon. An event-flow model of gui-based applications for testing. software testing,
verificatin and reliability, 17:137–157, 2007.

[25] Atif MMemon,Mary Lou Soffa, andMartha E Pollack. Coverage criteria for gui testing, 2001.

[26] Morten Mossige, Arnaud Gotlieb, and Hein Meling. Test generation for robotized paint sys-
tems using constraint programming in a continuous integration environment, 2013.

[27] MortenMossige, ArnaudGotlieb, andHeinMeling. Testing robotized paint system using con-
straint programming: an industrial case study. In Testing Software and Systems, pages 145–160.
Springer, 2014.

88

REFERENCES

[28] Hiroshi Murata, Kunihiro Fujiyoshi, Shigetoshi Nakatake, and Yoji Kajitani. Rectangle-
packing-based module placement, 1995.

[29] Ana CR Paiva, João CP Faria, Nikolai Tillmann, and Raul AM Vidal. A model-to-
implementation mapping tool for automated model-based gui testing. In Formal Methods and
Software Engineering, pages 450–464. Springer, 2005.

[30] AtifM.MemonRenéeC. Test suite prioritizationby interaction coverage.Workshop onDomain
specific approaches to software test automation, pages 1–7, 2007.

[31] F Rosenblatt. The perceptron: A probabilistic model for information storage and organization
in the brain. Psychological Review, 65(6):386–408, 1958.

[32] ThomasL. Saaty. Relativemeasurement and its generalization in decisionmakingwhy pairwise
comparisons are central in mathematics for the measurement of intangible factors the analytic
hierarchy/network process. Review of the Royal Academy of Exact, Physical andNatural Sciences,
Series A: Mathematics (RACSAM), 102:251–318, 2008.

[33] Thomas L. Saaty. Decision making with the analytic hierarchy process. Services Sciences, 1(1),
2012.

[34] Gregg Rothermel Sebastian Elbaum, Alexey G. Malishevsky. Test case prioritization: A family
of empirical studies. IEEE Transactions on Software Engineering, 28(2):159–182, 2002.

[35] Jeremy Sugerman, Ganesh Venkitachalam, and Beng-Hong Lim. Virtualizing i/o devices on
vmware workstation’s hosted virtual machine monitor., 2001.

[36] Tommi Takala, Mika Katara, and Julian Harty. Experiences of system-level model-based gui
testing of an android application, 2011.

[37] Marlon Vieira. A uml-based approach to system testing. Innovations in Systems and Software
Engineering, 1:12–24, 2005.

[38] LeeWhite, Husain Almezen, andNasser Alzeidi. User-based testing of gui sequences and their
interactions, 2001.

[39] Lee J White. Regression testing of gui event interactions, 1996.

[40] Yu-Liang Wu, Wenqi Huang, Siu-chung Lau, CK Wong, and Gilbert H Young. An effective
quasi-human based heuristic for solving the rectangle packing problem. European Journal of
Operational Research, 141(2):341–358, 2002.

[41] Qing Xie. Developing cost-effective model-based techniques for gui testing, 2006.

[42] Xun Yuan and Atif M Memon. Iterative execution-feedback model-directed gui testing. Infor-
mation and Software Technology, 52(5):559–575, 2010.

[43] Sergey Zhuravlev, Sergey Blagodurov, and Alexandra Fedorova. Addressing shared resource
contention in multicore processors via scheduling, 2010.

89

		Introduction

		Background and Motivation

		Contributions and Outline

		Virtual Machine Technology

		Virtual Machine Introduction

		Testing in Virtual Machines

		Principle of VMWare workstation

		Principle of Hyper-V

		Simple Comparison of VMWare and Hyper-V

		Automating Virtual Machines

		Principle of Fully Automated GUI Testing

		Automating VMWare Workstation

		Automating Hyper-V

		Comparison of VMWare and Hyper-V

		Automated GUI Testing

		Graphical User Interface (GUI)

		Automated GUI testing

		Coded User Interface test (CUIT)

		Evaluation of Coded UI test

		Evaluation of Fully automated GUI testing with virtual machines

		Failure Analysis

		Test Cases Scheduling in Virtual Machines

		Introduction of Test Cases Scheduling

		Test cases prioritization

		Prioritized Test Cases Scheduling in Multiple Virtual Machines

		Conclusion and Further Work

		Conclusion

		Further Work

		References

