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Abstract

During Nordsjørittet 2014, blood samples, blood pressure and ECG were systematically

gathered from over 1000 contestants. With this gathering of data, there is an opportunity

to study the effects an endurance bike race has on presumably healthy individuals. In

addition to this data, there are complete data from sports watches from a third of these

contestants. When the medical analysis was done, 25 contestants were diagnosed with

myocardial damage. Eight of these were from those with sports watches.

The motivation for this thesis is to test if the data logged with the sports watches can

be used to predict myocardial damage. Or whether this data can be used to separate the

contestants with high or low troponin I values.

To achieve this, a classification system was designed to test if there are patterns in the

sports watch data that can be connected to myocardial damage or troponin I values.

As a consequence of variable sampling, the sports watch data were interpolated and

smoothed. After this pre-processing, several features were extracted from the sports

watches, from a predefined segment in the race. Two different methods, exhaused search

and sequential forward selection, were used to select the feature subset maximizing the

prediction rate. Furthermore, a Naive Bayes classifier was trained and validated using

leave-one-out cross-validation. To measure reliability of the results in the experiments,

Matthews correlation coefficient were used.

With an achieved prediction rate of 86% and a correlation coefficient of 0.58, the results

clearly indicates that the data logged in the sports watches can predict myocardial damage.

When testing if the sports watch data can separate the contestants with high or low

Tropinin I, the results were inconclusive. Therefore, it is uncertain if this is achievable

with the current data.
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1. Introduction

Recreational active people will in average live seven years longer than those who are

inactive. With reduced stamina the inactive have a much greater risk of developing car-

diovascular disease and death. But with with some positive change in oxygen intake during

exercise this risk is reduced. From the Harmonised European Time Survey (HETUS) it

is shown that Norway is second to last when it comes to overall daily physical activity

related to transport, trips, training and sports [4]. In contrast, there has been an increase

in physical activity during leisure time. An important motivational factor for organized

training are the many competitions such as Nordsjørittet, Birkebeiner ski/bike race and

Birkebeiner run [2].

Intense physical training does not come without some risk, although the probability for

sudden death during these competitions are very small. In 100 000 marathon hours there

is an estimate of one death. During Vasaloppet (90 km ski race), there has been thirteen

deaths among 698.102 competitors from 1970 to 2005 [15]. In comparison to the health

gain, this risk seems modest.

With data systematically gathered by the North Sea Race Endurance Study (NEEDED)

in Nordsjørittet 2014, there is an opportunity to study the effects an endurance bike race

has on presumably healthy individuals. In addition to blood samples, blood pressure and

electrocardiography (ECG) from over 1000 contestants, there are complete sports watch

data from about one third of these. This data and one of the biomarkers (troponin I1)

derived from the blood samples, are studied in detail in this thesis. The main goal in the

end is to test if there are any relations between the data from the sports watches and high

troponin I values or whether the contestant may have a serious heart condition.

1Troponin I is a protein specific to the cardiac muscle. Cardiac troponins are released into circulation
in response to myocardial necrosis. As such, cardiac troponins are one of the preferred biomarkers for the
detection of cardiac injury [8]
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1.1 Nordsjørittet

Nordsjørittet is a 91 km long mountain bike race between Egersund and Sandnes. When

the the race was arranged for the first time in 1998, only 184 contestants participated.

But during the first five years the number of contestants increased fivefold. The increase

continued and in the years 2012 - 2014 this number was 12.500 which is the upper limit

decided by the organizers. With these numbers Nordsjørittet is the second largest moun-

tain bike race in Norway [30]. The varied course takes you trough forest, mud, dirt roads

and some asphalt, along the famous North Sea Route and the Kings Road [7].

From the course profile, figure 1.1, one can see that the beginning of the course is somewhat

hilly before the first real hill climb up to Vandavatnet at 33 km. Thereafter awaits a

decline to about sea level, where it continues to be flat for a while. After around 70 km

awaits the steepest climb of the race, Tinghaug hill, which is the last real hurdle before the

contestants can ride to the finish line in relatively easy terrain. The hills up to Vandavatnet

and Tinghaug will be the primary focus, to test if there are any connections between the

logged data from the sports watches and myocardial damage or high troponin I values.

Figure 1.1: Course profile Nordsjørittet [3].

1.2 NEEDED

NEEDED is the biggest study of biomarkers on people competing in exercise competition

in history. A group of scientists from Helse Stavanger HF are the initiators for this study,

and one of the goals is to increase the knowledge about what happens inside the body on

presumably healthy individuals during these types of competitions. The study will place

particular emphasis on changes in troponin I values measured as high sensitive troponin

I (hsTnI 1). As a marker hsTnI is very specific for myocardial injury, and is obligatory

in the diagnosis of acute coronary syndromes. Regardless of reason, release of hsTnI into

the blood stream is connected to unfavourable prognosis in multiple cardiac disorders.

In contradiction to this, multiple studies have shown that there can be release of hsTnI

1New method that is regarded as high sensitive if it, with high precision, can prove measurable values
of troponin in 75-80% of healthy individuals [10].
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during endurance training and competitions [27] [9]. The clinical significance of this for

presumably healthy trained individuals is uncertain.

During the pilot study in 2013, which had 97 completing contestants, they found after

medical examination that three of the four with highest hsTnI values had undiagnosed

heart condition. The following year during the main study, a over 1000 contestants par-

ticipated. Blood samples, blood pressure and ECG were systematically gathered 24 hours

before, 3 and 24 hours after the race. As with the pilot study the contestants over a

hsTnI threshold 1 were called in for medical examination. These were examined either

with computed tomography (CT)-coronary angiography 2 or regular coronary angiography.

When the medical examination was done, 25 contestants were diagnosed with myocardial

damage. Eight of these were from those with sports watches.

All personal data is confidential and all research data are identified with their personal

identification number to make allowance for gathering additional data in the future. The

data are saved on a closed research server at Stavanger university hospital and has the

identification key stored separate from this. In this thesis all data are depersonalised.

1.3 Previous work

This section is a short summary of Martin Nyg̊ards previous work on this project. His

first task was to gather the data files from the sports watches used during the race and

to save these in a database for later work. The data were from both new and old watches

from Polar and Garmin. Because of this, there are several different types of data files,

and the information logged in these watches varies. To complement this data, additional

information were provided by the NEEDED project group. This is information about the

contestants age, total race time, the three hsTnI measurements and some medical remarks

from those who had findings during CT-scan. A class indicator was given, dividing the

contestants in to tree classes. Two groups are over a hsTnI threshold value decided by

the NEEDED project group, where the potential findings from CT-scan is their difference.

The third class has low hsTnI values. In total there were registered 292 contestants with

sports watches. After deleting corrupted, badly sampled or incomplete there are 182

contestants remaining. How and why these files were removed, can be read in Martin

Nyg̊ards master’s thesis [25]. A flowchart of the removed data can be seen in figure 1.2.

This is a reprint from the above mentioned thesis, why there is missing one contestant

here is not known.

1The hsTnI used in the main study was 195 [ng/l]
2CT coronary angiography is a non-invasive examination done with contrast agent and low radiation

< 1 mSv.
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Contestants with high TnI

based on myocardial damage

(8)

Contestantswith high TnI  

for other reasons

(22)

Contestants with low TnI

(261)

Problem with

data

(1)

No problem 

with data

(7)

Problem with

data

(5)

No problem 

with data

(17)

Problem with

data

(103)

No problem 

with data

(158)

Data for further

study

(182)

Contestants with

sport watches

(291)

Figure 1.2: A short summary of the data removed in previous work by Martin
Nyg̊ard. Reprint of the flowchart used in his thesis [25].

Furthermore, Martin tried with statistical analysis to test if there are any connections be-

tween those with myocardial damage and their heart rate data. The results can be studied

in his thesis, but in short he concluded that there seems to be some connections worth

mentioning. Those with heart problems had lower heart rate than the other contestants.

It is not the case throughout the race, since the sick contestants heart rate declines slower

than those who are healthy. This is more noticeable in the parts of the race that are less

intense.

1.4 Thesis outline

This thesis is organized as follows.

Chapter 2 - Theory:

This chapter will in short describe the theory behind some of the methods used in

Materials and Methods.

Chapter 3 - Materials and Methods:

This chapter starts with a presentation of data material and the pre-processing of

this data. After this follows a description of the various methods used to interpolate,

smooth, extract features and how to select a subset from these features. Additionally,

four class definitions are presented.

Chapter 4 - Experiments and results:

This chapter describes the different experiments followed by the results from these.
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Chapter 5 - Discussion:

This chapter discusses the data material, methods and results.

Chapter 6 - Conclusion:

The conclusion of the thesis and possible future work is found in this chapter.

Appendix A - Matlab-code:

A short presentation of the various Matlab-files used during this work.

Appendix B - Data sets:

A short presentation of the various data sets that are generated and used during the

experiments.

Appendix C - Additional figures:

Figures for visual inspection of data. And some figures to complement the results.

Appendix D - Additional tables:

Tables with comparison of the different classifiers initially tested.
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2. Theory

This chapter presents the theoretical background needed for some of the methods used

later on in this thesis. In addition, the theory behind how to measure the reliability and

quality of the results from the experiments.

2.1 Interpolation

There are several reasons why it is desirable to interpolate the data. Since the signals

from the sports watches in this thesis are sampled with different rates (some irregularly),

interpolating it makes it possible to “read between” these samples. An important property

when choosing a interpolating function is that it has to preserve the shape of the original

signal. The simplest way is with the use of polynomials, but extremely large polynomials

are generally needed to preserve the shape of the original signal. These are computationally

expensive to decide and evaluate. They can also have issues with oscillation and non-

convergence.

2.1.1 Piecewise Polynomial Interpolation

Piecewise polynomial interpolation is an alternative to the theoretical and practical issues

with polynomial interpolating of higher degree. This method makes it possible to inter-

polate larger quantities of data with lower degree polynomials, which is an advantage.

Interpolation of a given signal with the samples (ti, yi), a different polynomial would be

used for each subinterval [ti, ti+1]. The point ti, where the interpolant changes from one

polynomial to another has different names, which are knots, breakpoints or control points.

Piecewise linear interpolation is the simplest use of this method. Here the successive sam-

ples at the knots are connected with straight lines. Even though this method removes the

issues with oscillation and non-convergence, it achieves this by sacrificing the smoothness

of the interpolating function.
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2.1.2 Hermite Cubic and Spline Interpolation

With Hermite interpolation the derivative will in addition to the interpolation function,

be specified for each interval. A Hermite cubic interpolant is a piecewise polynomial

interpolant that has a continuous first derivative. An alternative is cubic spline, which is

piecewise cubic polynomial which has a continuous second derivative and will with this be

more suited if smoothness is critical. But if the preservation of the monotonicity of the

original signal is essential, an Hermite cubic interpolant would be more appropriate [18].

Example in figure 2.1.

0 1 2 3 4 5 6 7 8 9 10

t

0

1

2

3

4

5

6

7

8

y

Spline

Hermite cubic

Samples

Figure 2.1: Comparison between Spline and Hermite interpolation.

2.1.3 Piecewise Cubic Hermite Interpolation in Matlab

The following section is how piecewise cubic Hermite interpolation is implemented in

Matlab, and is derived from Numerical Computing with Matlab [23].

Let hi specify the length of the ith subinterval:

hi = ti+1 − ti (2.1)

The first devided difference, δi, is derived from

δi =
yi+1 − yi

hi
(2.2)
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Let di be the slope of the interpolant at ti:

di = P ′(ti) (2.3)

For the piecewise linear interpolant, di = δi−1 or δi, but for higher order interpolants this

is not necessary true. Regard the following function in the interval ti < t < ti+1, given in

terms of the local variables s = t− ti and h = hi:

P (t) =
3hs2 − 2s3

h3
yi+1 +

h3 − 3hs2 + 2s3

h3
yi

+
s2(s− h)

h2
di+1 +

s(s− h)2

h2
di

(2.4)

This cubic polynomial in s, and thus in t, satisfies the two conditions on function values

and the two possible unknown derivative values:

P (ti) = yi, P (ti+1) = yi+1 (2.5)

P ′(ti) = di, P
′(ti+1) = di+1 (2.6)

If the function values and the derivative to a set of samples are known, piecewise Hermite

interpolation will be able to reproduce this signal. But if the derivative is unknown the

slopes di has to be defined. One of the methods to define these will be described here and

is called pchip.

In Matlab, this is a shape-reserving, visually pleasing interpolant. It is based on an

old Fortran program by Fritsch and Carlson [14] and is described by Kahaner, Moler and

Nash [20]. The idea is to decide the slopes di so the function values wont overshoot the

data, at least not locally.

� If the signs of δi and δi−1 are opposite or if one of them are zero, ti would either be

a local maximum or minimum. Then

di = 0

This is illustrated in the left part of figure 2.2. The blue solid line is the piecewise

linear interpolant. Its slope on either side of the knot have opposite signs. Ergo,

the slope of the dashed line is zero. The green solid line is the shape-preserving

interpolant formed by two different cubics. These two interpolate the center value

and both their derivative are zero here.
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� If the signs of δi and δi−1 are the same and their intervals are equal in length, then

di is the harmonic mean of the two slopes.

1

di
=

1

2

(
1

δi−1
+

1

δi

)
(2.7)

I.e. at the knots, the reciprocal slope of the Hermite interpolant is the average of

the slopes from the piecewise linear interpolant. An illustration of this is shown in

the right part of figure 2.2. If the slopes of the linear interpolan (blue line) changes

from 1 to 5 at the knot, the slope of the dashed line is 3, the average of 1 and

5. The shape-preserving interpolant (green line) is then formed by two cubics that

interpolates the center value which have a slope of 1/3.

� If the signs of δi and δi−1 are the same, but the intervals are of unequal length, then

di is a weighted harmonic mean. These weights are decided by the intervals lengths.

ω1 + ω2

di
=

ω1

δi−1
+
ω2

δi
(2.8)

where

ω1 = 2hi + hi−1, ω2 = hi + 2hi−1 (2.9)

Figure 2.2: Slopes for pchip [23].

2.2 Locally Weighted Scatter plot Smooth (lowess)

The following sections on smoothing with lowess and rlowess is derived from Filtering

and Smooting Data [1]. This smoothing method uses weighted linear regression. The

process is regarded as local since, as moving average, each smoothed value is determined

by neighbouring data points within a give span. It is weighted since a regression weight is
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defined for all data points within the span. In addition to this weight, a more robust weight

is available (rlowess), which makes the smoothing process more resistant to outliers.

For each sample will lowess follow these steps:

1. The regression weights are computed for each sample within the span. These are

derived from the tricube function below.

Wi =

(
1−

∣∣∣∣x− xid(x)

∣∣∣∣3
)3

(2.10)

Where x is the predictor value identified with the response value to be smoothed, xi

are neighbouring samples of x defined by the span. d(x) is the distance from x to

outermost predictor in the span along the abscissa 1. The weights have the following

characteristics:

� The sample to be smoothed has the largest weight. Hence, it has most influence.

� Outside the span the samples has zero weight and therefore no influence.

2. A weighted linear least-square regression is preformed with a first degree polynomial.

3. The smoothed value is given by the weighted regression at the predictor value of

interest.

If the calculation involves an equal number of neighbouring samples on either side of the

smoothed sample, there is a symmetric weight function. But, if there are unequal number

of neighbouring samples on either side, the weight function will be asymmetric. Unlike

smoothing with moving average, the span wont change its size. If one were to smooth the

start or end sample in a signal, the shape of the weight function is truncated by half. An

example of this is shown in figure 2.3.

A lowess example with the smoothed values and corresponding regressions for the first

four samples in a signal are shown in figure 2.4.

Observe that the span does not change during this example. But, depending on the number

of neighbours on either side, the regression weight function are not always symmetric

around the sample to be smoothed. In the plots (a) and (b) there is a asymmetric weight

function, whereas in (c) and (d) the weight function is symmetric.

1The distance of a point from the y-axis on a graph in the Cartesian coordinate system. It is measured
parallel to the x-axis. For example, a point having coordinates (2,3) has 2 as its abscissa. http://www.

dictionary.com/browse/abscissa

http://www.dictionary.com/browse/abscissa
http://www.dictionary.com/browse/abscissa
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Figure 2.3: Local regression weight function. Figure from Mathworks [1]

2.2.1 Robust lowess

If the signal to be smoothed contains outliers, the values might be misrepresented, and

not reflect the majority of neighbouring samples. To avoid this problem, a more robust

method of lowess is available that wont be influenced by outliers.

The robust smoothing procedure follows these steps:

1. Calculate the residuals from the smoothing procedure described in the previous

section.

2. Compare the robust weights for each sample in the span. The weights are given by

the bisquare function

Wi =


(
1− (ri/6MAD)2

)2
, |ri| < 6MAD,

0, |ri| ≥ 6MAD
(2.11)

where ri is the residual of the ith sample produced by the smoothing procedure, and

MAD is the median absolute deviation of the residuals,



2.3. CLASSIFICATION 13

0 2 4

(a)

6 8

80

60

40

20

0

0 2 4

(a)

6 8

80

60

40

20

0

0 2 4

(a)

6 8

80

60

40

20

0

0 2 4

(a)

6 8

80

60

40

20

0

Samples

Smoothed value

Samples

Smoothed value

Samples

Smoothed value

Samples

Smoothed value

Figure 2.4: lowess smoothing. Figure from Mathworks [1].

MAD = median(|r|) (2.12)

The median absolute deviation is a measure of how spread out the residuals are. If

ri is small compared to 6MAD, then the robust weight is close to 1. If ri is greater

than 6MAD, the robust weight is 0 and the associated sample is excluded from the

smooth calculation.

3. Smooth the signal again using the robust weights. The final smoothed value is

calculated using both the local regression weight and the robust weight.

4. Repeat the previous two steps for a total of five iterations.

2.3 Classification

A classifier can refer to a mathematical function, which implements a classification al-

gorithm that maps an observation to a category. This is supported by a set of training

data containing observations which is labelled with the correct category, and is known as

supervised learning. These observations can be described by a vector of features, which
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may be a physical description of an object (size, form, colour) or a description of the signal

properties (mean, variance, etc.). These feature vectors can be regarded as points in a

multi-dimensional space.

2.3.1 Naive Bayes

This classification algorithm has gone under several different names. Some of these are

idiot’s Bayes, simple Bayes and independent Bayes. It is especially appropriate if the

dimension of the feature space is increasing, making density estimation demanding [17]. If

one need N training data points to obtain sufficiently accurate estimation for a probability

density function (PDF) in a one dimensional space. The number of points needed for a

higher dimensional space will increase exponentially, referred to as the curse of dimen-

sionality. So for a l -dimensional space one would need N l data points. But if one assume

that the individual features are statistically independent the PDF can be written as:

p(X|ωk) =

P∏
j=1

p(Xj |ωk) (2.13)

Now one will only need to estimate l one-dimensional PDFs and lN data points is sufficient

to get good estimates instead of N l [29].

This assumption of independence is for most problems unrealistic and generally not true,

but practical examples show that it often competes well and can even be more effective

than more sophisticated classifiers [16].

The Naive Bayes may often be a better classifier than more powerful alternatives when

the sample size is small, even in domains where this learning model might not be the most

appropriate [13]. Since it also has favourable properties like simplicity, learning speed,

classification speed, etc., it will be used in the experiments in chapter 4.

The Naive Bayes algorithm, as presented in the Matlab documentation [5].

1. Estimate the densities of the predictors within each class.

2. Models posterior probabilities according to Bayes rule. That is, for all k = 1, ...,K,

P̂ (ωk|X1, ..., Xp) =

P (ωk)
P∏

j=1
p(Xj |ωk)

K∑
k=1

P (ωk)
P∏

j=1
p(Xj |ωk)

(2.14)

where:
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� X1, ..., XP are the random predictors of an observation.

� P (ωk) is the prior probability that a class is k.

3. Classifies the observation by estimating the posterior probability for each class, and

then assigns the observation to the class yielding the maximum posterior probability.

2.4 Binomial proportion confidence interval

When working with sampled data from a larger population it is interesting to know how

reliable the observations are without further sampling. A confidence interval can be seen

as a prediction of what would happen if the same experiments were to be repeated, and

since each observation are seen as a sample of the population, one can predict the rage of

the true values in the population.

There are several formulas for calculating a binomial confidence interval, and in the exper-

iments that follow the adjusted Wald approach is found to be suitable. One reason for this

is that it behaves well for very small sample sizes. Another reason is that, in comparison

to other methods, it provides shorter intervals with actual coverage probability usually

nearer the nominal confidence level. This means that when forming a 95% confidence

interval other methods achieves at least 95% and typically coverage probabilities up to

98% or 99% where Adjusted Wald may be less that 95% but it is usually quite close [11].

2.4.1 Adjusted Wald

Another name for this binomial confidence interval is Agresti-Coull Interval [11].

For X successes in n trials, one can define

ñ = n+ z2 (2.15)

and

p̃ =
1

ñ

(
X +

1

2
z2
)

(2.16)

A confidence intervall for p can then be given as

p̃± z
√

1

ñ
p̃(1− p̃) (2.17)
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Where z is the 1 − 1
2α quantile of a standard normal distribution. For a 95% confidence

interval, α = 0.05 which gives z = 1.96.

2.5 Matthews correlation coefficient
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Figure 2.5: Confusion matrix

As a measurement of the quality of binary

classifications, Matthews correlation coeffi-

cient (MCC) was introduced by biochemist

Brian W. Matthews in 1975 [22]. It is gen-

erally regarded as a balanced measure be-

tween true and false positives and nega-

tives, but can be used even if the classes

are unbalanced. In essence the MCC is the

correlation between the observed and pre-

dicted binary classification and will return

a value between -1 and +1. A perfect pre-

diction will give a coefficient of +1, 0 is not

better than random guess, while -1 shows

total disunity between prediction and ob-

servation. For the values between these extremities, use table 2.1 as a rule of thumb.

Size of Correlation Interpretation

0.90 to 1.00 (-0.90 to -1.00) Very high positive (negative) correlation

0.70 to 0.90 (-0.70 to -0.90) High positive (negative) correlation

0.50 to 0.70 (-0.50 to -0.70) Moderate high positive (negative) correlation

0.30 to 0.50 (-0.30 to -0.50) Low positive (negative) correlation

0.00 to 0.30 (-0.00 to -0.30) Little if any correlation

Table 2.1: Rule of thumb for interpreting the size of the correlation coefficient,
Hinkle et al. [19]

There is no optimal way of describing a confusion matrix of true and false positives and

negatives with a single digit. But MCC is generally seen as one of the best for said

measures [26] and can be calculated directly from a confusion matrix, figure 2.5, as follows:

MCC =
TP · TN − FP · FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(2.18)
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This chapter starts with a presentation of the data material and how it is extended and

restructured, to simplify the use of the data. Then, the pre-processing of the signals

and method for interpolation are described, followed by an example on how and why the

velocity signals are smoothed.

Next, there is a description of the method used to detect split times in the race. From these

split times, race segments are defined so they are equal for all contestants. Furthermore,

there is a presentation of the features extracted from these segments. This is followed by

two methods to select subsets from these features. Additionally, four class definitions will

be described along with their associated goals.

The Matlab scripts/functions for the above mentioned methods is found in appendix A.

3.1 Data material

As mentioned in the introduction previous earlier work, the data used in this thesis are

based on the work of Martin Nyg̊ard. To make the data more user friendly, the whole
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dataset is changed from a cell array 1 to struct 2, example seen in figure 3.1. The main

advantage of this restructuring, is that it will be easier to work with, it will also make it

easier to read for future work. It is now more intuitive to locate the desired data just by

reading the headlines in the struct. As an example, earlier one had to write filer1{i, 2}(:, 4)

to access the heart rate signal from contestant number i. With struct, one can now write

Data(i).WatchData(:, 4) to access the same signal.

(a) Original data set as cell array (b) Data set after conversion to struct

Figure 3.1: Data set before and after conversion between cell array and struct.

Since the WatchData contains several data vectors, ideally this cell should also be changed

to struct, but it makes the file size to big. Causing the loading of data to take several

minutes, which is unwanted since the data will be loaded often. The columns in WatchData

contains the following signal vectors:

1. Time in seconds, t(n).

2. Velocity in m/s or km/t, v(n).

3. Distance in meter, d(n).

4. Heart rate in bpm 3, hr(n).

5. Longitude (if any).

6. Latitude (if any).

7. Elevation (if any), elev(n).

With additional information provided by the hospital the NeededData-field is now ex-

tended with height, weight and body mass index (BMI) for all contestants. This field is

complemented with headlines so this information is found more easily, see figure 3.2.

1Arrays that can contain data of varying types and data.
2Arrays with named fields that can contain data of varying types and data.
3beats per minute
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Figure 3.2: Example of data found in NeededData.

This new information from the hospital also contains the official split time for the con-

testants throughout the race. In total there are five official split times, which are at the

following locations:

1. 21 km: Brusand camping.

2. 32 km: Vandavatnet.

3. 55 km: H̊a gamle presteg̊ard (Haa old vicarage).

4. 66 km: Bottom of Tinghaug hill.

5. 67 km: Top of Tinghaug hill.

This extra information is appended to the data as a new struct element, SplitTimes. Since

the time format for these are in hours, they are converted to seconds. Thus making it easier

to use these with the rest of the data set, which are sampled in seconds. To preserve all

information, the split times are saved both in hours and in seconds, example in table 3.1.

The data is saved in a .mat file, Data.mat.

21 km 32 km 55 km 66 km 67 km Unit

01:00:13 01:43:54 02:30:48 03:03:22 03:08:57 hour

3613 6234 9048 11002 11337 sec

Table 3.1: Example of data found in SplitTimes.

3.2 Interpolation

t(n)

v(n)

d(n)

hr(n)

tI(m)

vI(m)

dI(m)

hrI(m)

Figure 3.3: Interpolation of signals from the sports watches.

The fact that the recorded data are from several types of sports watches, means that

there are some differences that needs to be addressed. There are a few issues, but the
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main problem is that many of the signals are sampled irregularly. Where some of the

regularly sampled signals have logged one sample per second, these might only have three

to four samples for every ten seconds. To make it worse, the time between these samples

are often irregular. It is imperative to have equal sampling rate when comparing the

signals. Some of the data sets have signals which are already sampled once per second.

Due to this, the remainder of them are also interpolated up to this rate. But, before the

signals are interpolated, some additional pre-processing are needed.

The data set Data.mat generated in the previous section is the starting point for this

pre-processing. The first issue to be addressed, is to locate the correct start and end

time/sample for all contestants. This is because some of the contestants start their watches

before the start signal of the race, some forget to stop it after they have crossed the finish

line and some even do both. The reason why this needs to be changed is when interpolating,

issues with start/end time can provoke some unwanted spikes. A method is created to

handle this, see algorithm 1.

For all contestants, the method starts with the first sample and iterates forward until

a criterion is met, this is determined as the new start sample for the data. Next, to

determine a new end sample, the method iterates backwards from the last sample until it

locates a sample that fulfils the end criterion. The criteria to decide where to set the new

start and end samples are found through experimentation. It should approximate the real

start and end samples better than it has before.

Algorithm 1: Pre-processing part 1: Adjustment of start/end sample.

for all contestants do
Initialize ts(n) = t(start)
while ts(n+ 8)− ts(n) > 50 do

n = n+ 1
end
start = ts(n)
Initialize te(n) = te(end)
while te(n)− te(n− 10) > 60 or te(n) == te(n− 1) do

n = n− 1
end
end = te(n)
New Data = Data(start:end)

end

Furthermore, in some of the data sets, the heart rate signals has some or more samples

which are zero. Since interpolation of the signal is the end goal of this process, these

samples are deleted so they wont cause any unwanted artefacts. Another issue is that

some samples, mainly at the end, has the same sample time two or more samples in a

row. This causes the interpolation function in Matlab to break down, which is obviously
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unwanted. Hence, the samples that has the same time as the previous sample are deleted.

Lastly, some samples in the distance signal are recorded with shorter distance than the

previous, which is incorrect. These are estimated as the average of the distance sample

before and the one after.

d(n) =
1

2
[d(n− 1) + d(n+ 1)] (3.1)

A summary of these pre-processing steps can be seen in algorithm 2.

Algorithm 2: Pre-processing part 2: Adjustment of corrupted data.

for all contestants do
for all n do

if hr(n) == 0 then
Delete sample n in all columns

end
if t(n) == t(n− 1) then

Delete sample n in all columns
end
if d(n) < d(n− 1) then

Estimate d(n) = 1
2 [d(n− 1) + d(n+ 1)]

end

end

end

When the pre-processing of the data set is finished, the signals are ready for interpolation.

This is done with a Matlab function, interp1 which has several different methods of

interpolation available. To preserve the shape of the original signals, the methods pchip

and spline described in section 2.1, are tested on all data sets. An issue with the signals

from the sports watches is that it may at times have holes. This may happen if the heart

rate monitor misses some or several beats after each other. If spline interpolation is used

to fit these signals, it will cause an unwanted overshoot in some of the data sets. pchip on

the other hand, will not have this issue. It will not be as smooth as spline, but visually it

will represent the original signal better. An example of this, taken from the interpolation

of the heart rate signal from two of the contestants are shown in figure 3.4.

When the interpolation is done, some final adjustments of the data sets are required.

Some of the contestants does not have any logged velocity data. These are estimated as

the derivative of the distance.

vI,est(m) = dI(m+ 1)− dI(m) for all m (3.2)

Another issue with the velocity is that there is no consistency as to which unit is used.

This is corrected by first calculating the mean velocity for everyone throughout the race.
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(a) (b)

Figure 3.4: Comparison between spline and pchip when interpolating a heart-
beat signal.

If this is lower than 10, the unit is in meters per seconds and is corrected by multiplying

it with 3.6. The logic behind this threshold, is that the fastest contestant had less that 10

m/s as official average velocity and the slowest had over 10 km/t. The data set is saved

as Data2.mat.

3.2.1 Comparison of data

To compare if the interpolated signals are preserved and equal in shape as the original, all

contestants are plotted with both old and new data for visually inspection. An example

with both original data, which in this case is irregularly sampled, and interpolated data

is shown in figure 3.5.
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Figure 3.5: Comparison of original irregularly sampled signal versus interpo-
lated signal.
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3.3 Smoothing of velocity

vI(m) vI,smooth(m)

Figure 3.6: Smoothing of the velocity signal.

Since velocity will play an important role in the next parts of the project, such as locateing

good estimation of the split times and feature extraction, additional pre-processing is

required. The velocity signals for many of the contestants are very chaotic which makes

it hard to observe any comparable trends in these signals. In addition, the sports watches

that did not log the velocity and was estimated as the derivative of distance (eq. 3.2),

has some issues. The distance travelled between each logged sample are in some cases

extremely uneven. This results in a very spiky velocity, which is even harder to read,

figure 3.7 (b). To make this data useful, it has to be smoothed quite a bit. A robust

version of locally weighted scatter plot smooth, described in section 2.2, is used for this.

The main reason for using this method is that it handles outliers efficiently, which removes

some of the unwanted spikes in the signal. A span of 150 samples is used for the smoothing.

This is found through experimentation and established to be adequate for all data sets.

An issue with a span this big, is that the velocity in the beginning and in the end of the

race will be inaccurate. But since these two parts wont have any influence on the work

further, the issue is found irrelevant.
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(a) Smoothing of good signal
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(b) Smoothing of bad signal

Figure 3.7: Smoothing the velocity signal to locate a comparable trend. (a)
is a data set with a relatively good signal where the trend is visible in the
original signal, but is more clear after smoothing. (b) is a data set where it is
impossible to read any trends before smoothing. After smoothing the trend is
prominent.

As illustrated in figure 3.8, the data set is now increased with a new struct-element called

Resampled, where all signals now has a 1 Hz sample rate, and contains the following signal
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vectors:

1. Interpolated time, tI(m)

2. Interpolated distance, dI(m)

3. Interpolated heart rate, hrI(m)

4. Interpolated normalized heart rate, hrI,norm(m) (not in use)

5. Interpolated velocity, vI(m)

6. Interpolated and smoothed velocity, vI,smooth(m)

7. Interpolated elevation, elevI(m) (if any)

Additionally, the number of samples discarded during the pre-processing are saved under

Discarded.

Figure 3.8: Example of dataset after interpolation and smoothing.

3.4 Split time detection

vI,smooth(m) POI.mat

Figure 3.9: Detect locations for the split times with use of the velocity signal.

To be able to compare the contestants data correctly, it is imperative to use the same

part of the signals for all the contestants, i.e. they need to be in the same part of the
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race. The first idea was to use the official split times, to extract the same race segment for

everyone from these. But when comparing these times with the sports watch data, it was

not an approach that would suffice. There are mainly two reasons for this. As figure 3.10

clearly shows, there is a deviation between the distance at where the official split times are

supposed to be and the distance reached for the majority of the contestants according to

their watches. There are two probable causes for this. Either the majority of the watches

or the official distances are wrong, the latter seems more probable.

Figure 3.10: The histograms are the contestants and how far they have reached
at the official split times according to their watch. The dotted lines are at
which distance the official split times are registered.

Hence, another solution is needed. When studying the contestants velocity signals, espe-

cially after it has been smoothed, a common trend can be observed. In light of this, a new

idea is to use these trends to pinpoint where in the race the contestants are, independent

of the time. The most distinguished trend is around where split time 4 and 5 are and it

corresponds to the Tinghaug hill. The velocity will reach a minimum up this hill, which

can be found with relative ease. Both these points are located, for every contestant, be-

tween 68 and 71 km. Hence, a method is devised to automatically locate these points, see

algorithm 3. An example of the desired result from this method is shown in figure 3.11.

Algorithm 3: Detection of split times

for all contestants do
Pinpoint the lowest velocity between 68 and 71 km
Locate the last local maximum before this and set it as split time 4
Distribute the remaining split times according to the official split times

end
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One problem is that this method wont locate the correct local maximum in all contestants

velocity. To correct this, all signals are plotted and visually inspected to manually adjust

those with incorrect local maximum. An example of this visual inspection can be seen in

figure C.1 in appendix C. When all correct points are located, the data is saved is a .mat

file POI.mat for the tasks ahead.
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Figure 3.11: In (a) the green asterisk (*) is the point between 68 and 71 km
with the lowest velocity from on of the contestants. When this point is found,
the velocity peak before this point is the bottom of Tinghaug hill, shown as
the red asterisk (*). This is approximately where split time 4 is. Thereafter
in (b), the difference between the official registered split times are used to
approximate where the other split times * are compared to split time 4 *

.

3.5 Race segments

To classify with the data from the contestants sports watches, one need to locate the

sections of the race that will provoke a clear increase in the contestants heart rate. The

hills in the race are the first segments that comes to mind and these will probably be the

parts where the increase in heart rate will be most prominent. Of the hills in the race, one

of them will be studied in detail and another hill will be tested as a validation hill. These
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two are Tinghaug hill, which is between split time 4 and split time 5, the other is from one

of the last inclines up to Vandavatnet at split time 2. Why Tinghaug hill is chosen as the

one to be studied in detail has several reasons. Mainly it is because the split times 4 and

5 are close, which makes it possible to choose a segment that is equal for all contestants

with high accuracy. Another important reason to choose this particular hill is that the

incline is quite steep. Hence, the majority of the contestants will probably come close to

their maximum heart rate during this incline. An illustration of Tinghaug race segment

is shown in figure 3.12.
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Figure 3.12: Race segment from Tinghaug hill between the red dotted line.

The second hill of interest is found in a similar way as split time 4 as described in sec-

tion 3.4. But, as with split time 4, the method to locate local maximum struggles to locate

the correct one in several of the velocity signals. To fit all the contestants correctly to

this segment, a visual inspection is also needed in this case. From thies, some will require

some manual adjustment. Due to this, there are probably some more inaccuracies in this

segment than the main one.

3.6 Classifying data from the pulse watches

After the race segments are chosen and adjusted for all contestants, a number of features

will be extracted from their heart rate signal, velocity signal or a combination of these.

This will be described in detail in section 3.7. With a subset from these features, a

Naive Bayes-classifier (described in section 2.3.1) will be trained. Two features selection

methods, described in section 3.9, will be tested to select the best subset of the available
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features. Finally, all subsets selected with these two methods will be validated with leave-

one-out cross-validation.

Algorithm 4: Classification with

leave-one-out cross-validation.

for all contestants do
Set contestant as validation set

Remove contestant from training

set

Normalize the training set

Normalize the validation data

with training set

Train classifier model

Predict validation data with model

Add result to predicted class

vector
end

Compare predicted class with true

class

Calculate accuracy, true positive rate

and true negative rate.

Repeat

N times

Feature data
(N data sets)

Training set
(N-1 data sets)

Validation set
(1 data set)

Mean

Standard

Deviaton

÷ ×

+-+-

÷ ×

Leave-one-out

Train

classifier

Predict

N predicted

values

Calculate

accuracy, TPR, TNR

Figure 3.13: Flow chart for
classification with leave-one-out
cross-validation

3.6.1 Leave-one-out cross-validation

Since the amount of data to train and validate the classifier is finite, a method is needed to

use the same data for both. There are several different methods available for this problem.

In this thesis leave-one-out cross-validation is chosen, which is an N -fold cross-validation

where N is the number of training data sets available. The training of the classifier is done

using N-1 data sets and then validated with the excluded set of data. This is repeated N

times with a different set of data excluded each time. Since the learning and validation is

done N times, it comes with high computational cost. Nevertheless, this method makes

the most of the small amount of available data. Also, since the data is very unbalanced

this is thought to be the best approach so all classes are represented in every validation.

Algorithm 4 and figure 3.13 illustrates this process.
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3.7 Feature extraction

features.matv
I,smooth(m)

Race 

segment

hrI(m)

Figure 3.14: Feature extraction.

In this section there is a presentation of the various features that will be used when trying

to classify the data from the sports watches. Some of these features are global, i.e. they

are not dependent on any specific parts of the race. The remainder of the features are

specific to the race segments mentioned in section 3.5.

3.7.1 Global features

These are features that describes the contestants physical properties, it can be an indicator

on the health or how hard they have pushed themselves during the race. All these features

may affect the heart rate in some way and may prove to be important when trying to

classify the data.

Age

Studies [28] [24] show that age is an important factor on maximum heart rate. From these

there are several different ways to predict this:

� HRmax = 220− age

� HRmax = 211− 0.64 · age

� HRmax = 208− 0.7 · age

Since these are different methods of predicting maximum heart rate, the heart rate in this

thesis will not be normalized as in previous work [25]:

HRnorm =
HR

HRmax
(3.3)

Instead age will be used as a feature independent from heart rate.

Feature name: Age



30 CHAPTER 3. MATERIALS AND METHODS

Race time

Total race time as a feature will show how hard the contestants have pushed themselves

and/or how physically fit they are. Alone it will probably not be useful as a feature, but

when using it in combination with other features it might be.

Feature name: RaceTime

Body Mass Index

Body Mass Index (BMI) is an indicator of the contestants physical properties.

BMI =
weight [kg]

height2 [m2]
(3.4)

According to Norsk helseinformatikk [6] one is overweight if the BMI exceeds 25 and one

starts to be obese if the BMI exceeds 30. Since obesity is linked to several cardiovascular

changes [31] it is interesting to test if this might be useful as a feature. One problem is

that BMI does not differentiate between muscle mass and fat mass. Hence, an athletic

person can be obese according to BMI, but in reality have a low fat percentage.

Feature name: BMI

hsTnI

As mentioned, there has been measurements of hsTnI for each contestant approximately

24 hours before, 3 and 24 hours after the race. High values is an indicator for myocardial

damage, but some of the contestants with high hsTnI values did not have any damages

to the heart. These three measurements will be used as features both when classifying

myocardial damage and classifying race time (the class definitions will be described in the

next section). When classifying myocardial damage one problem is that contestants both

with and without any heart problems may have elevated hsTnI values. But hopefully with

some testing one can show that one or more of the hsTnI features in combination with

other features might prove to be useful.

Feature names: hsTnI1, hsTnI2, hsTnI3

3.7.2 Segment specific features

Whereas the global features are independent from the race segments, the following features

are extracted directly from these. Since the same features are extracted from both sections,

they are only described once. All the following features are mainly based on two signals,
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heart rate and velocity, see figure 3.15. The only exception is the calculation of force which

is only dependent on the contestants weight and the incline in the given segment.

Heart rate signal

hrI(m) (1Hz sampling rate, length M) (3.5)

Velocity signal

vI,smooth(m) (1Hz sampling rate and smoothed, length M) (3.6)
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Figure 3.15: Example of heart rate and velocity signals from Tinghaug hill.
The signal vectors are between the dotted lines.

From the signals in equation 3.5 and 3.6 the following features are extracted with their

feature name in parenthesis.

Mean heart rate (meanHR)

µHR =
1

M

M∑
m=1

hrI(m) (3.7)

Variance heart rate (varHR)

σ2HR =
1

M

M∑
m=1

(hrI(m)− µHR)2 (3.8)

Maximum heart rate (maxHR )

max(hrI(m)) (3.9)
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Median heart rate (medianHR)

Difference heart rate (diffHR)

max(hrI(m))−min(hrI(m)) (3.10)

Mean velocity (meanSpeed)

µV =
1

M

M∑
m=1

vI,smooth(m) (3.11)

Variance velocity (varSpeed)

σ2V =
1

M

M∑
m=1

(vI,smooth(m)− µV)2 (3.12)

Median velocity (medianSpeed)

Regression coefficient velocity (RegCoeff )

∆V =
vI,smooth(M)− vI,smooth(1)

M
(3.13)

Correlation between heart rate and velocity (CorrHRspeed)

ρ =
cov(hrI , vI,smooth)

σHRσV

(3.14)

where

cov(hrI , vI,smooth) =
1

M

M∑
m=1

((hrI(m)− µHR)(vI,smooth(m)− µV)) (3.15)

Force (Force)

To simplify this calculation, friction and air drag are assumed to be zero. In addition,

mass is approximated as the persons measured weight plus 10 kg for the bike and

other equipment. Since few of the contestants have any elevation data logged, the

angle of the incline, α, is approximated as an average from these few, and used for

all contestants. An illustration of the forces at play when calculating the average

force, ~F , needed to move up this incline are shown in figure 3.16

~F = ~FgSin(α) = mgSin(α) [N ] (3.16)
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Figure 3.16: Illustration of average incline with the variables used for calcu-
lating force.

Work (Work)

W = ~Fs [KJ ] (3.17)

Power (Pwr)

P = ~Fv [W ] (3.18)

Recovery heart rate is the hearts ability to return to normal levels after physical activ-

ity [12]. A heart that is healthy will recover more quickly than an unhealthy or one that

is not accustomed to exercise. In light of this four more features are extracted from the

Tinghaug segment. These are:

Heart rate one minute after top (HRoneMinAfterTop)

Heart rate two minutes after top (HRtwoMinAfterTop)

Distance cycled one minute after top (DistOneMinAfterTop)

Distance cycled two minutes after top (DistTwoMinAfterTop)

Since most of the riders probably will not slow down after they have reached the top of

this incline, it it uncertain if this can be regarded as recovery time. Nonetheless, these

are features that needs to be included in the experiments, to explore if there are any

connections of value.

3.8 Class definitions

The main goal for this thesis is to test if it is possible to classify myocardial damage or

high hsTnI values with the data from the sports watches. To do this, one need to define
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some classes that is going to be classified. In this section, four will be defined.

� Original - the original class definitions from previous work, which were a three class

problem. These are redefined to a two class problem, which is with or without

myocardial damage. (181 contestants in total).

� CT - as with original this is also with or without myocardial damage. The main

difference here is that the whole without damage class have undergone a CT-scan and

therefore it is certain that these do not have any myocardial damage. (53 contestants

in total).

� Troponin - two class problem where one is over and the other is under a hsTnI

threshold. (181 contestants in total).

� Race time - two class problem, where one is over and the other is under mean race

time. (181 contestants in total).

3.8.1 Original

From earlier work the contestants were split in three different classes, labelled with a class

indicator (CI-X). CI-0 are contestants with high hsTnI values and with findings during CT-

scan (7), CI-1 are those with high hsTnI values without any findings during CT-scan (17)

and finally CI-2 are those with low hsTnI values (157). The number in the parenthesis are

number of contestants in either class. Probability density functions (PDFs) for a selection

of the features can bee seen in figure 3.17.

But since one of the goals are to test if there are any connection between the sports

watch data and myocardial damage, this definition is redefined. Based on the original

class definition with three classes, CI-1 and CI-2 are combined. Hence, there are now two

classes of which one have heart damage (7) and one does not (174). The PDFs for this

definition is seen in figur 3.18.

3.8.2 CT

A control group containing 40 contestants with low hsTnI had to undergo a CT-scan.

Based on the scan, these were confirmed healthy. CI-1 will therefore consist of the contes-

tants over the hsTnI threshold without findings during CT-scan and the proven healthy

with low hsTnI. CI-0 is equal as the original class definition. Hence, there are two classes

(CI-0 and CI-1) which can be defined with certainty as with (7) or without (46) myocardial

damage. The PDFs for a selection of features can be seen in figure 3.19.
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Figure 3.17: Density functions for the original class definition with three
classes. CI-0: High hsTnI values with heart damage, CI-1: High hsTnI values
with heart damage and CI-3: Low hsTnI values.

Figure 3.18: Density functions for the original class definition with two classes.
CI-0 - with myocardial damage. CI-1 and CI-2 combined - without myocardial
damage.

3.8.3 Troponin

The goal for this class definition is to see if there are any connections between the data

from the sports watches and the hsTnI values three hours after the race. Here one will

try to classify two groups as low (CI-0) or high (CI-1) hsTnI value. As a threshold to

divide these two classes, the mean hsTnI for all contestants are used at first. Several other

threshold values are later tested, to see if there are thresholds which are easier classify

than other. Because of this, the number of contestants in either class will vary with the
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Figure 3.19: Density functions for the CT class definition. CI-0 - with my-
ocardial damage. CI-1 - without myocardial damage.

chosen threshold. PDFs for a selection of features from this class definition, with mean

hsTnI as threshold value, can be seen in fingure 3.20.

Figure 3.20: Density functions for the troponin class definition. CI-0 - Under
mean hsTnI. CI-1 - over mean hsTnI.

3.8.4 Race time

This last class definition is based on the total race time for the contestants. The whole

group is divided in two, whereas class CI-0 is above the average race time and class CI-1

is below. With this class definition the goal is to test if the hsTnI features are relevant.

If so, there may be a connection between the hsTnI values and how hard the contestants
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have pushed them selves or something about their level of fitness. PDFs for a selection of

features from this class definition can be seen in figure 3.21.

Figure 3.21: Density functions for the race time class definition. GI 0 - above
average race time. GI 1 - below average race time.

3.9 Feature selection

In this study the number of features available to design a classification system is quite

large. Even though Naive Bayes classifier will be used and the curse of dimensionality

wont matter much, there are other reasons to reduce the number of features. The most

obvious one is to reduce the computational complexity, but a more important reason is

to remove the features that are redundant and/or irrelevant. As seen in section 3.8, the

PDFs for the different class definitions are not a visually good indicator on how good the

individual features will preform. Therefore, two different approaches will be used to select

a subset of l features from n available which will create the best l -dimensional feature set.

3.9.1 Exhaustive search

Since the number l is unknown, all combinations of features are tested for all l = 1, 2, ..., n.

As an example, to select the best subset of the following feature vectors x1, x2, x3, which

is n = 3 different features. With this method, a classification is done with each of the

following feature subsets:

[x1]
T [x1, x2]

T [x1, x2, x3]
T

[x2]
T [x1, x3]

T

[x3]
T [x2, x3]

T
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In total this is seven runs, which might not be much. But when the number of differ-

ent features n increases, the number of classifications needed for an exhaustive search

will increase exponentially, 2n − 1. With n = 19 different features, which is the most

tested in the experiments, this is now 524 287 classifications and will be quite challenging

computationally. The best subset of features are chosen by a criterion which will differ

between the different class definitions. These criteria are described more in detail when

the experiments are presented in chapter 4.

3.9.2 Sequential forward selection

This method is based on a method with the same name in Pattern Recognition [29].

Compared to exhaustive search which will select the best available feature subset, this a

suboptimal method. But it is considerably less complex computationally. As an example,

from the available features x1, x2, x3 the subset is found as follows:

1. Classify the training data with all the one-dimensional features, [x1]
T , [x2]

T , [x3]
T ,

separately and select the best based on a criterion.

2. Then classify all two-dimensional feature combinations with the best feature from

the previous step, [x1, x2]
T and [x2, x3]

T . Now select the best of these.

3. Finally, for this example with three features, form a tree-dimensional feature vector

[x1, x2, x3]
T , and classify the training data with these.

If there are more features available than the example above, keep selecting the best com-

bination from the previous step and increase dimensionality until the dimension equals

number of features. Since the dimension of the best of theses suboptimal feature sets are

not known, all dimensions are tested. In total this will require n2 − n(n−1)
2 classifications.

In contrast to exhaustive search, this method will with n = 19 only need 190 classifications.



4. Experiments and results

This chapter presents the various experiments done and the results from these. There is

an explanation on the test set up, which methods and parameters used. Also the criteria

used for the determination of the best feature subset are described.

After visual inspection of all velocity/heart rate signals in the Tinghaug race segment, ten

of the contestants were excluded. There are different reasons for this, but mainly it was due

to poor data sets or that the race segment itself was too inaccurate. As these are all from

the large group of presumably healthy contestants, this should have had minimal effect on

the result. Because of this, the number of contestants in the following experiments will

differ compared to the numbers presented in section 3.8.

Two examples of the excluded data sets can be seen in figure 4.1. The left figure shows

a sudden drop in hear rate, the reason tor this is not known. The right figure shows the

heart rate signal from a contestant that has seemingly stopped. In addition, it seems like

the logging of data stops when the contestant is standing still.
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Figure 4.1: Two exaples of data excluded from experiments.

There are four different ways the classes were defined, and with all these class definitions

the two methods described in section 3.9.1 and 3.9.2 were used similarly to select feature

subsets. The only difference was that the troponin and race time classes used a different

criteria than original and CT to select the best feature subset.
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In short, exhaustive search iterated through all possible feature combinations from a cho-

sen feature set. Each feature combination was then classified individually, before the

optimal combination was selected based on a given criteria. Opposed to exhaustive search,

the sequential forward selection would only classify a small portion of the possible fea-

ture combination and select a suboptimal but hopefully decent subset of features. The

classification process itself was equal in all experiments, described in section 3.6.

All results from the experiments in this chapter are presented in tables with accuracy

(ACC), true positive rate (TPR) and true negative rate (TNR). Furthermore, since these

results are derived from a sample of a larger population, a 95% confidence interval is

calculated, described in section 2.4. This is a measurement on how reliable the results are,

and is shown in the square brackets behind each results. Finally, Matthews correlation

coefficient (MCC) is used as a second measurement on the results reliability, described in

section 2.5.

At the bottom of each table, the subset of features that produced the results are presented.

In addition to these results, confusion matrices for all the best achieved results can be found

in appendix C.

4.1 Prediction of myocardial damage

The goal for the experiments in this section, was to test if there are any information logged

in the sports watched that could predict myocardial damage.

4.1.1 Original class definition

The training data were divided in two classes as described in section 3.8.1

TP - True positive class with contestants that has high values of hsTnI and proven

myocardial damage. Contains 7 test subjects.

TN - True negative class with contestants that has high values of hsTnI without

myocardial damage and those with low hsTnI values (presumably without any heart

issues). Contains 164 test subjects.

Exhaustive search

This experiment tested all possible combinations of the available features, as described in

section 3.9.1. In this class definition, TP was the most important class to classify cor-
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rect. Since the data set is quite unbalanced, these tests were also performed with several

different misclassification costs. This was a time consuming process and it took, with 19

different features, around 24 hours running in parallel with 80 processing cores. These cal-

culations were done on a server dedicated for these types of demanding operations. To do

this experiment on a single processing core, it will use approximately 80-times more time

to complete these calculations. Afterwards, when exhaustive search had iterated through

all possible combinations, the best subset was chosen based on criteria 1.

Criteria 1: Selection of feature subset when classifying original/CT class

definitions.
1. Select all subsets with the highest TP prediction rate

2. Select the subset with highest TN prediction rate from step one.

With exhaustive features selection and feature subset chosen by these criteria, the classi-

fication results are presented in table 4.1.

No cost Cost 10 Cost 20

ACC 1 0.92 [0.87 0.96] 0.81 [0.75 0.86] 0.73 [0.66 0.79]

TPR 2 0.00 [0.00 0.40] 0.86 [0.47 0.99] 0.86 [0.47 0.99]

TNR 3 0.96 [0.92 0.98] 0.81 [0.74 0.86] 0.72 [0.65 0.79]

MCC 4 -0.04 0.32 0.25

Features
Age Force CorrHrSpeed

medianHR medianSpeed

Table 4.1: Classification results from original classes - exhaustive search fea-
ture selection

Sequential forward selection

As described in section 3.9.2, this is a suboptimal method for finding a good subset of

feature. But the fact that it is considerably more efficient i terms of computational speed, it

could test a lot more features than exhaustive search. Compared to the previous method,

these calculations could with ease be done on a regular computer and each test were

completed in matter of minutes. This made it possible to run more tests in a shorter

amount of time. With this method and the use of criteria 1 to select a subset of features,

the results are shown in table 4.2.

1Accuracy
2True Positive Rate (also known as sensitivity)
3True Negative Rate (also known as specificity))
4Matthews correlation coefficient
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No cost Cost 15 Cost 30

ACC 0.92 [0.87 0.96] 0.79 [0.73 0.85] 0.74 [0.67 0.80]

TPR 0.14 [0.01 0.53] 0.86 [0.47 0.99] 0.86 [0.47 0.99]

TNR 0.96 [0.91 0.98] 0.79 [0.72 0.85] 0.73 [0.66 0.79]

MCC 0.08 0.30 0.26

Features
Age Force CorrHrSpeed BMI

maxHR meanHR medianSpeed

Table 4.2: Classification results from original classes - sequential forward fea-
ture selection

4.1.2 CT class definition

The training data were divided in two classes as described in section 3.8.2

TP - Contestants with high values of hsTnI and proven myocardial damage. Con-

tains 7 test subjects.

TN - Contestants with high values of hsTnI without any myocardial damage and

the control group with low hsTnI (proven without any heart issues). Contains 41

test subjects.

The methods used to select the optimal feature subset with exhaustive search, and to

select a good suboptimal subset with sequential forward selection, were exactly the same

as with the original class definition. The only difference was that TN in this experiment

contained fewer contestants.

Exhaustive search

No cost Cost 5 Cost 10

ACC 0.78 [0.64 0.87] 0.86 [0.73 0.93] 0.84 [0.71 0.92]

TPR 0.29 [0.08 0.65] 0.86 [0.47 0.99] 0.86 [0.47 0.99]

TNR 0.86 [0.72 0.94] 0.86 [0.72 0.94] 0.83 [0.69 0.92]

MCC 0.14 0.58 0.55

Features

Age Force CorrHrSpeed BMI

maxHR meanHR medianHR

diffHR RaceTime medianSpeed

Table 4.3: Classification results from CT classes - Exhaustive search feature
selection



4.2. PREDICTION OF RAISED HSTNI VALUES 43

Sequential forward selection

No cost Cost 5 Cost 10

ACC 0.80 [0.87 0.96] 0.84 [0.71 0.92] 0.80 [0.66 0.89]

TPR 0.43 [0.16 0.75] 0.86 [0.47 0.99] 0.86 [0.47 0.99]

TNR 0.86 [0.72 0.94] 0.83 [0.69 0.92] 0.79 [0.64 0.89]

MCC 0.26 0.55 0.49

Features
Age Force CorrHrSpeed BMI

RaceTime meanHR maxHR

Table 4.4: Classification results from CT classes - sequential forward feature
selection

4.2 Prediction of raised hsTnI values

The goal for the experiments in this section, was to test if there are any information

logged in the sports watches that is correlated to the contestants hsTnI values. With the

two class definitions in these experiments, the goal were tried achieved using two separate

approaches.

4.2.1 Troponin class definition

The training data are divided in two classes as described in section 3.8.3

TP - Contestants with hsTnI values over a given threshold. Number of test subjects

will wary with the threshold.

TN - Contestants with hsTnI values under a given threshold. Number of test sub-

jects will wary with the threshold.

With this class definition, the goal was to test if there are any connections between the

hsTnI values and the available features. As the contestants with high hsTnI values due to

proven heart disease could do this difficult, these were excluded from the data prior to the

experiment. Furthermore, the features hsTnI1, hsTnI2 and hsTnI3 were removed from

the feature set for obvious reasons.

Both classes were evenly important in this class definition. Based on this, the criteria

used to select subsets when predicting predict myocardial damage would not suffice. To

weigh in the importance of both classes, criteria 2 were used to select feature subset in

this experiment.
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Figure 4.2: ROC 1graph
with the euclidean dis-
tance between classifi-
cation result and per-
fect classification.

Criteria 2: Selecting best feature subset when

classifying hsTnI or race time.

for all classifications do
Calculate euclidean distance (d i figure 4.2)

to perfect classification.

end

Select feature subset with minimum distance.

Exhaustive search

When using this method to search for the optimal subset of features, the hsTnI threshold

value was the contestants combined mean, which was 120 [ng/l].

No cost Cost 4 Cost 8

ACC 0.80 [0.73 0.85] 0.64 [0.57 0.71] 0.39 [0.32 0.46]

TPR 0.03 [0.00 0.17] 0.63 [0.45 0.77] 0.84 [0.68 0.94]

TNR 0.98 [0.94 1.00] 0.65 [0.56 0.73] 0.27 [0.21 0.36]

MCC 0.05 0.22 0.11

Features Age Force HRtwoMinAfterTop DistTwoMinAfterTop

Table 4.5: Classification results from troponin classes - Exhaustive search
feature selection

Sequential forward selection

A few different thresholds were tested when searching for a subset of features with this

method, these were 100, 150 and 200 [ng/l]. Furthermore, the selected features were testes

with several misclassification costs for all thresholds.

1Receiver operating characteristic graph, sometimes called sensitivity vs (1-specificity) plot. It depicts
the relative trade-off between TP and false positive (FP).
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No cost Cost 4 Cost 8

ACC 0.74 [0.67 0.80] 0.64 [0.57 0.71] 0.40 [0.33 0.48]

TPR 0.06 [0.01 0.20] 0.60 [0.44 0.74] 0.71 [0.55 0.84]

TNR 0.93 [0.87 0.96] 0.66 [0.57 0.73] 0.31 [0.24 0.40]

MCC -0.02 0.21 0.02

Features
Age Work medianSpeed Force

diffHR varHR HRoneMinAfterTop

Table 4.6: Classification results from hsTnI classes with threshold at 100 [ng/l]

No cost Cost 4 Cost 8

ACC 0.82 [0.76 0.87] 0.66 [0.59 0.73] 0.51 [0.43 0.58]

TPR 0.00 [0.00 0.15] 0.46 [0.29 0.65] 0.77 [0.58 0.89]

TNR 0.98 [0.93 1.00] 0.70 [0.62 0.77] 0.46 [0.38 0.54]

MCC -0.06 0.13 0.17

Features
Age diffHR HRtwoMinAfterTop

DistOneMinAfterTop DistTwoMinAfterTop

Table 4.7: Classification results from hsTnI classes with threshold at 150 [ng/l]

No cost Cost 4 Cost 8

ACC 0.90 [0.84 0.93] 0.74 [0.67 0.80] 0.61 [0.53 0.68]

TPR 0.00 [0.00 0.25] 0.64 [0.39 0.84] 0.64 [0.39 0.84]

TNR 0.98 [0.94 1.00] 0.75 [0.68 0.81] 0.60 [0.52 0.68]

MCC -0.04 0.25 0.14

Features
Age maxHR meanHR medianHR

RaceTime diffHR HRtwoMinAfterTop

Table 4.8: Classification results from TnI classes with threshold at 200 [ng/l]

4.2.2 Race time class definition

For this last class definition the training data were divided in two classes as described in

section 3.8.4

TP - Contestants slower than mean race time. Contains 61 test subjects.

TN - Contestants faster than mean race time. Contains 102 test subjects.

The goal for this class definition were to test if there are any connection between the

contestants race time and their hsTnI values. There could be issues with the result since
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some had high values due to their heart issues. Hence, these contestants were excluded

from the data so only the presumably healthy individuals remained. Furthermore, all

features related to velocity were excluded since these are directly connected to the race

time and would be preferred over the other features with both feature selection methods.

As with the troponin class definition these experiments also used criteria 2 to select the

subset of features.

Exhaustive search

No cost Cost 2 Cost 4

ACC 0.79 [0.72 0.85] 0.74 [0.66 0.80] 0.71 [0.63 0.77]

TPR 0.67 [0.55 0.78] 0.69 [0.56 0.79] 0.70 [0.58 0.81]

TNR 0.86 [0.78 0.92] 0.76 [0.67 0.84] 0.71 [0.61 0.79]

MCC 0.55 0.45 0.40

Features
Age BMI meanHR hsTnI3

diffHR HRoneMinAfterTop HRtwoMinAfterTop

Table 4.9: Classification results from race time classes - exhaustive search
feature selection.

Sequential forward selection

No cost Cost 2 Cost 4

ACC 0.74 [0.67 0.80] 0.68 [0.61 0.75] 0.61 [0.54 0.68]

TPR 0.62 [0.50 0.73] 0.67 [0.55 0.78] 0.74 [0.61 0.83]

TNR 0.81 [0.73 0.88] 0.69 [0.59 0.77] 0.54 [0.44 0.63]

MCC 0.44 0.35 0.27

Features
Age BMI meanHR hsTnI2

maxHR diffHr medianHR

Table 4.10: Classification results from race time classes - sequential forward
feature selection.

4.3 Validating the results with a different hill

A final experiment was done where the goal was to test the possibility to train the classifier

with one hill (Tinghaug) and validate it with another (Vandavatnet). The subset of

features that produced the best results in the experiments with the original and CT class

definitions were tested. Moreover, the misclassification cost was the same as with the

previous experiments. The test results are presented as confusion matrices, figure 4.3.
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5. Discussion

5.1 Data material

Thoroughly pointed out in previous work [25], there are several issues with the data

collected from the sports watches. The main problem for the work in this thesis was that

there were no consistency as to which rate the signals were sampled. This problem was

overcome by interpolating all data sets to the point that all sampling rates were equal.

But the fact remains that the data are collected from various watch brands, which may

not use equal methods for logging the data.
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Figure 5.1: Example of watch believed to
have paused while contestant is standing still.

Another issue worth mentioning, is that

some of the sports watches seemingly stops

logging data when the contestants are

standing still. Since this is a feature

available in many sports watches, it may

be activated on several of the contestants

watches. An illustration of this can be seen

i figure 5.1. If this issue was detected and

it was within the race segment used for fea-

tures extraction, these contestants were ex-

cluded prior to the experiments.

As mentioned in section 3.3, there were

some issues with a few of the sports watches that did not log the velocity signal. These

were estimated as the derivative of the distance. But as pointed out earlier, this could pro-

duce a very spiky signal. When smoothing these signals, another issue emerged. Figure 5.2

shows the mean velocity before and after smoothing from a selection of the contestants.

Two of these, marked with red boxes, has a sports watch that did not log the velocity.

It clearly shows that when smoothing these contestants velocity, the mean velocity are

notably changed compared to the rest. Since some of these are from the contestants with

myocardial damage, the data were not excluded.
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Figure 5.2: Example of some contestants mean velocity before and after
smoothing. The two contestants within the red boxes did not have velocity
data logged, and is estimated as the derivative of distance before smoothing.

5.2 Methods

Since there are issues with the velocity signals from several of the sports watches, other

methods might be more suitable for the smoothing. One idea might be to use some form of

adaptive smoothing algorithm, where the troublesome signals are detected and smoothed

different than the rest.

When it comes to detection of the real split times in the race, some improvements may

be needed. Firstly, since the detection of split time 4 is based on the velocity, the issue

with smoothing might introduce inaccuracies. These inaccuracies are tried corrected after

visual inspection, but a more sophisticated and less time consuming method for this might

be convenient. Secondly, since there are suspicion that some watches might pause when

the contestants are standing still, another problem arises. The other four split times are

placed based on the time difference in the official split times and distributed from split

time 4 according to each contestants watch data. If a watch pauses due to a contestant

sanding still, this distribution will not be correct. This might cause issues when selecting

the race segments, since these are based on where the split times are detected.

The main race segment, which is between split time 4 and split time 5, should be quite

accurate. This segment is short and through visual inspection some (but few) contestants

were excluded prior to the experiments. The other segment, near split time 2, used a

method to locate some local maxima and with these define the segment. Due to some

issues with locating these maxima, this segment is not as accurate as the main segment.

After the segments were defined and the features had been extracted from these, a Naive

Bayes classifier was trained. Several other classifiers, such as Support Vector Machine

and Decision tree were initially tested. But the Naive Bayes preformed better in every

test, and therefore it was chosen as the preferred classifier. A comparison of the different

classifiers are shown in appendix D. The subset of features used when comparing these

are equal. Since the optimal subset for Naive Bayes may not be the best for the other

classifiers, a new search for subsets could give a more favourable results for these.

Since the data to train the classifier is limited, the same data is used for validation. The

leave-one-out cross-validation method is used in the experiments in this thesis. 10-fold

cross-validation is proven [21] better, but is hard to realize with data as unbalanced as the

available data is.
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5.3 Results

The first goal were to test if any connections can be found between the data from the

sports watches and myocardial damage. The results presented in tables 4.1- 4.4 shows that

it should be possible to use features derived from sports watches to predict myocardial

damage. There is also a clear trend of which features these experiments selected. With

the exception of exhaustive search in the original class definition, all the other experiments

had the following features among the selected: Age, Force, CorrHrSpeed, BMI, meanHR

and maxHR. Why the best from exhaustive search in the original class definition only had

three of these features is uncertain, but it might be a case of overfitting. When analysing

the best results more in detail, it shows that the classifier correctly predicts six out of

seven with myocardial damage, which is a TPR of 0.86. But, since there are very few

samples in this class, the 95% confidence interval becomes wide: [0.47 0.99]. The TNR

from the best results varies from 0.79 to 0.86.

When measuring the quality of the classification, the CT class definition gains a MCC

between 0.5 and 0.6. This is interpreted as a fairly good prediction according to table 2.1.

The original class definition has nearly as good results in terms of TPR and TNR, but the

MCC is barely over 0.3, which is not so good. This is believed to be a result of a more

unbalanced data set. Lastly, the one TP that is misclassified in all experiments, is the

same individual. When studying the information provided by the hospital, this individual

has “suspicion of myocardial damage” whereas the other six have confirmed findings as

remarks from CT-scan.

The second goal were to test if any connections can be found between the sports watch

data and the contestants hsTnI values. Both approaches to test this had relatively poor

results. When using the watch data to predict if the contestants were over or under a

hsTnI threshold, majority of the results are barely better than random guess. The best

results were achieved with a hsTnI threshold value of 200 [ng/l], with both TPR and TNR

over 0.6. But in despite of this prediction rate, the MCC indicates quite poor results.

The other method used to test the connection between hsTnI and watch data, was to

search for features that could predict the race time. If one or more of the hsTnI features

were one of these, it could indicate that there is a connection between the hsTnI values

and how fast the contestants completed the race. Both feature selection methods used in

this experiment gave hsTnI as one of the features. But since the TPR, TNR and MCC

scores are not very good, it is uncertain if the goal is achievable with this method.

The final experiment, where the classifier is trained and validated with different hills,

predicted all data to belong to TN. Hence, the TNR was 100% and TPR is 0%. The

features from these hill are identically extracted, but as mentioned, the Vandavandet race
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segment might not be as accurate as the Tinghaug segment. Another possibility is the

fact that the hill at Vandavandet are not as steep as Tinghaug, and therefore not as hard.

A third possibility is that Vandavandet is earlier in the race, which is an important factor

on how tired the contestant are. To test if the classifier can be used to classify other hills,

a more similar and more accurately placed hill might be needed to get any conclusive

results.



6. Conclusion

Of the two goals for the work in this thesis, one achieved favourable results. For the

first goal, to test if there were any information logged in the sports watches that could be

connected to myocardial damage, the results indicated a clear connection. It was especially

clear when using the CT class definition where all contestants had been diagnosed with

CT-scan. Hence, their true medical condition were confirmed. To summarize, the best

result in each of these experiment was the correct prediction of six of the seven who had

myocardial damage. At the same time, up to 86% of the healthy contestant achieved a

correct prediction.

As for the second goal, to find any relations between data from the sports watches and

the contestants hsTnI values. Both approaches tested had less conclusive results. The

results showed that when using the data from the sports watches, to predict whether

the contestants were over or under a predefined hsTnI threshold. None of the tested

feature sets were able to do this with satisfying results. When using the hsTnI values

to predict whether the contestant were over or under the average race time, the results

were somewhat better. All in all, it is uncertain if either of these methods will be able to

achieve this goal.

Finally, for the last experiment, to test if it were possible to train the classifier with one

hill and validate it with another. These results were inconclusive with current data and

race segments.

6.1 Future work

As discussed, there are some issues with the current data set. For similar studies in the

future, an idea is to provide the contestants with identical sports watches. The collected

data from these will be more suitable, and might improve the results in this thesis. If

lucky, one might even find relations between this new data and the hsTnI values.

If working further with current data, the velocity might need another method for smooth-
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ing. As discussed, one solution might be to smooth the signals from the different con-

testants with different methods. Or one could simply just exclude the data sets where

the velocity signals require to much smoothing. This will remove data from every class,

which might not be an advantageous approach. Another improvement might be to design

a method that increases the accuracy when defining the race segments.

Based on initial testing, the work in this thesis mainly used the Naive Bayes classifier

in the experiments. It is possible that other classifiers might outperform it, or be more

suitable the for second goal which remains unfulfilled.
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A. Matlab-code

The following Matlab-files are embedded as matlab.7z

restructureData.m

This script changes the original data set filer.mat from cell to struct-array. Further-

more, the script adds some additional information to the data set. This process is

described more in detail in section 3.1.

Input: < filer1.mat > < 1502061 v2.xlsx > < 151102mellomtider.xlsx >

Output: < Data.mat >

resapleData.m

In this script there is some preprocessing of Data.mat before the whole data set is

interpolated. See section 3.2 for further details.

Input: < Data.mat >

Output: < Data2.mat >

resampleTest.m

This script plots the original data and the interpolated data for visual inspection.

Example in figure C.2.

Input: < Data2.mat >

smoothData.m

As described in section 3.3, this script is used to smooth the velocity signal.

Input: < Data2.mat >

Output: < Data4.mat >

findPOI.m

Finds the time and distance for the official split times in the contenders data. This

script also calls the function findDistance.m

Input: < Data4.mat >

Output: < POI.mat >
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findDistance.m

Function that returns the sample index for all contestants corresponding to a desired

distance.

Input: < Data4.mat > < desireddistance >

Output: < sample indexes >

testPOI.m

Plots the point found in POI.mat for all contestants either relative to distance or

time. This is used for visual inspection and then manually adjustment of the points.

Input: < timeOrDistance > < Data4.mat > < POI.mat >

tinghaug.m

Script that extracts the features from heart rate and velocity signals from the Ting-

haug race segment. Additionally there is a possibility to plot these two signals for

all contestants. The global features are also found in this script.

Input: < Data4.mat > < POI.mat >

Output: < features.mat >

vandavatnet.m

This script extends features.mat with features from the race segment at Vandavatnet.

There is also a possibility to plot the heart rate and velocity signal in this segment

with this script.

Input: < Data4.mat > < POI.mat > < features.mat >

Output: < featuresAll.mat >

CTclasses.m

Script that creates data set and features set for the CT class definition.

Input: < Data4.mat > < CT.mat > < featuresAll.mat >

Output: < DataCT.mat > < featuresCT.mat >

RaceTimeClasses.m

Function that decides the class indicator in data set DataRT.mat based on a chosen

threshold.

Input: < Data4.mat > < Threshold >

Output: < DataRT.mat >

TroponinClasses.m

Function that decides the class indicator in data set DataTnI.mat based on a chosen

threshold.

Input: < Data4.mat > < Threshold >

Output: < DataTnI.mat >
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featuresDensity.m

Script that plots the PDFs for the original class definition. Either for two or three

classes.

Input: < Data4.mat > < featuresAll.mat >

featuresDensityCT.m

Script that plots the PDFs for the CT class definition. It also has the option for a

histogram plot over the PDFs.

Input: < DataCT.mat > < featuresCT.mat >

featuresDensityTnI.m

Script that plots the PDFs for the troponin class definition.

Input: < DataTnI.mat > < featuresAll.mat >

featuresDensityRT.m

Script that plots the PDFs for the race time class definition. It also has the option

for a histogram plot over the PDFs.

Input: < DataRT.mat > < featuresAll.mat >

ClassifyFcn.m

Function that use a chosen < classifier > to classify the sports watch data with

a selected < featureSet > and < classDefinition >. It will return the information

displayed in the tables from the results. If used without outputs, the function will

plot the confusion matrix. A more detailed explanation on the inputs and outputs

for this function can be found in the beginning of the code itself.

Input: < classDef > < featureSet > < classifier > < cost > < Val > < confInt >

Output: < conf >< Acc >< TPR >< TNR >< MCC >< ID on the misclassified >

ClassifyCtUX.m

Example script for exhaustive feature selection with CT class definition

Input: < DataCT.mat > < featuresCT.mat >

Output: < classifyResults CT.mat >

ClassifyCtUX BottomUp.m

Example script for sequential forward feature selection with CT class definition

Input: < DataCT.mat > < featuresCT.mat >

Output: < classifyResult CT BottomUp.mat >
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B. Data sets

The following data sets are not available to the public. If needed, contact Prof. Trygve

Eftestøl at University of Stavanger for more information.

filer.mat

Data file from Martin Nyg̊ards master thesis.

Data.mat

Data file after its been restructured and with added split times, weight, height and

BMI..

Data2.mat

Data file where the interpolated signals are included.

Data4.mat

Data file after smoothing of the velocity data. This is the main data file for the

original classes.

DataTnI.mat

Data file for the troponin class definition.

DataRT.mat

Data file for the race time class definition.

DataCT.mat

Data file for the CT class definition.

CT.mat

Vector with the ID numbers for the control group with low hsTnI that was diagnosed

with CT-scan.

POI.mat

This file contains time and distance to the detected split times from the sport watch

data.
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featuresAll.mat

All features from the two hills Tinghaug and Vandavatnet and all the global features

are collected in the file.

featuresCT.mat

Contains the same features as the one above, but only for the contestants in the CT

class definition.

1502061 v2.xlsx

Excel sheet from the NEEDED study with various information. Example can be

seen in figure 3.2.

151102mellomtider.xlsx

Excel sheet from the NEEDED study with the official split times for all contestants.



C. Additional figures

Visual inspection of POIs

Figure C.1: Visually inspection of correct POI from a selection of the contes-
tants
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Visual inspection of interpolated singals

Figure C.2: Comparison of original heart rate signal versus interpolated signal
from a selection of contestants. Some of the contestants in this plot are zoomed
in for a more detailed inspection.
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Original class definition
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Figure C.3: Confusion matrices with the best results from the original class
definition.

CT class definition
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Figure C.4: Confusion matrices with the best results from CT class definition.
Both with misclassification cost equal 5.
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Troponin class definition
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Figure C.5: Confusion matrices with the best results from the hsTnI class
definition.
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Race time class definition
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Figure C.6: Confusion matrices with the best results derived from the race
time class definition. Both with misclassification cost equal 2.
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D. Additional tables

Original class definition

SVM 1 NB 2 DT 3

ACC 0.79 [0.72 0.84] 0.79 [0.73 0.85] 0.87 [0.81 0.91]

TPR 0.57 [0.25 0.84] 0.86 [0.47 0.99] 0.29 [0.08 0.65]

TNR 0.80 [0.73 0.85] 0.79 [0.72 0.85] 0.90 [0.84 0.93]

MCC 0.18 0.30 0.11

Features
Age Force CorrHrSpeed BMI

maxHR meanHR medianSpeed

Table D.1: Comparison of different classifiers. Sequential forward features
selection and misclassification cost = 15

CT class definition

SVM NB DT

ACC 0.69 [0.55 0.81] 0.84 [0.71 0.92] 0.80 [0.60 0.84]

TPR 0.57 [0.25 0.84] 0.86 [0.47 0.99] 0.86 [0.16 0.75]

TNR 0.71 [0.56 0.83] 0.83 [0.69 0.92] 0.79 [0.64 0.89]

MCC 0.21 0.55 0.17

Features
Age Force CorrHrSpeed BMI

RaceTime meanHR maxHR

Table D.2: Comparison of different classifiers. Sequential forward features
selection and misclassification cost = 5

1Support Vector Machine
2Naive Bayes
3Decision tree
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Troponin class definition

SVM NB DT

ACC 0.51 [0.51 0.66] 0.64 [0.57 0.71] 0.59 [0.51 0.66]

TPR 0.47 [0.31 0.64] 0.63 [0.45 0.77] 0.19 [0.09 0.36]

TNR 0.61 [0.53 0.69] 0.65 [0.56 0.73] 0.69 [0.60 0.76]

MCC 0.06 0.22 -0.11

Features Age Force HRtwoMinAfterTop DistTwoMinAfterTop

Table D.3: Comparison of different classifiers. Exhaustive search features
selection and misclassification cost = 4

Race time class definition

SVM NB DT

ACC 0.65 [0.57 0.72] 0.68 [0.61 0.75] 0.50 [0.42 0.57]

TPR 0.69 [0.56 0.79] 0.67 [0.55 0.78] 0.39 [0.28 0.52]

TNR 0.63 [0.53 0.72] 0.69 [0.59 0.77] 0.59 [0.46 0.65]

MCC 0.31 0.35 0.-0.05

Features
Age BMI meanHR hsTnI2

maxHR diffHr medianHR

Table D.4: Comparison of different classifiers. Sequential forward features
selection and misclassification cost = 2
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ClassifyCtUX.m


load ../matFiles/featuresCT.mat
load ../matFiles/DataCT.mat

% Remove corrupted data sets
ID = {'50794' '50558' '50557' '50493' '50383' '50357' ...
    '50218' '50173' '50316' '50187'};
k = 1;
for i = 1:length(Data)
    for j = 1:length(ID)
        if strcmp(Data(i).Id, ID(j))
            rem(k) = i;
            k =  k+1;
        end
    end
end

Data(rem) = [];
features.tinghaug(rem) = [];
features.vandavatnet(rem) = [];
features.Age(rem) = [];
features.BMI(rem) = [];
features.RaceTime(rem) = [];
features.hsTnI1(rem) = [];
features.hsTnI2(rem) = [];
features.hsTnI3(rem) = [];

feat = {'Age','RaceTime','BMI', 'hsTnI2', 'hsTnI3', 'maxHR','medianSpeed','CorrHrSpeed', ...
    'varHR','meanHR','medianHR', 'diffHR','meanSpeed','Force','Work', 'HRoneMinAfterTop', 'HRtwoMinAfterTop',...
    'DistOneMinAfterTop', 'DistTwoMinAfterTop'};

glbFeat = {'Age','RaceTime','BMI', 'hsTnI1', 'hsTnI2', 'hsTnI3'};

% Check if any of the global features ar choosen
i = 1;
for k = 1:length(glbFeat)
    if any(ismember(feat, glbFeat{k}))
        training{i} = [features.(glbFeat{k})];
        i = i+1; 
    end
end

% Fill in the rest of the features
for i = length(training)+1:length(feat)
    training{i} = [features.tinghaug.(feat{i})];
end

% Build all combinations of feature subsets
test = 1:length(feat);

n = 1;
for i = 1:length(test)
    nk = combnk(test,i);
    for j = 1:size(nk, 1)
        
        for k = 1:size(nk, 2)
            X{n}(k:k+size(cell2mat(training(nk(j,k))),1)-1,:) = cell2mat(training(nk(j,k))) ;
            comb{n} = nk(j,:) ;
        end
        n = n+1;
    end
end

%%
tic
% Start parallel pool on 80 cores
poolObj = parpool(80);

numClasses = 2;

for l = 1:1 % Possibility to test both naive bayes and svm
    if l == 1
        disp('Classify with naive bayes')
    else
        disp('Classify with svm')        
    end
    
    for k = 1:1 % Possibility to test several misclassification cost
        
        Cst = [5 5 5];
        if k == 1
            Cost = [0 Cst(k); 1 0];
        elseif k == 2
            Cost = [0 Cst(k); 1 0];
        else
            Cost = [0 Cst(k); 1 0];
        end
        
        
        parfor n = 1:length(X)
            crossVal = {};
            for i = 1:length(Data)
                % Training set
                train = X{n}';
                % Validation set
                val = train(i,:);
                
                % Define classes  used for training
                Y = {};
                Y([Data.GroupIndicator] == 0) = {'HighRisk'};
                Y([Data.GroupIndicator] == 1 | [Data.GroupIndicator] == 2) = {'LowRisk'};
                
                Y(i) = [];
                Y = Y';
                
                % Remove i from training set
                train(i,:) = [];
                
                % Normalize training data
                MEAN = mean(train);
                SD = std(train);
                train = bsxfun(@minus, train, MEAN);
                train = bsxfun(@rdivide, train, SD);
                
                % Normalize validation data
                val = bsxfun(@minus, val, MEAN);
                val = bsxfun(@rdivide, val, SD);
                
                
                %     knn = fitctree(train, Y, 'Cost', Cost);
                knn = fitcnb(train, Y, 'Cost', Cost);
                %     knn = fitcsvm(train, Y, 'Cost', Cost);
                crossVal(i, 1) = predict(knn, val);
                                
            end
            
            % Plot confusion matrix
            Y_true = zeros(numClasses, length(Data));
            Y_true(1,[Data.GroupIndicator] == 0) = 1;
            Y_true(2,[Data.GroupIndicator] == 1 | [Data.GroupIndicator] == 2) = 1; % Use for 2 class problem
            
            
            Y_predict = [];
            Y_predict(1,strcmpi(crossVal,'HighRisk')) = 1;
            Y_predict(2,strcmpi(crossVal,'LowRisk')) = 1; % Use for 2 class problem
            
            % Calculate the diagonal on the confusion matrix
            conf = zeros(2);
            for j = 1:2
                for i = 1:length(Y_true)
                    if Y_true(j,i) && Y_predict(j,i) == 1
                        conf(j,j) = conf(j,j)+1;
                    end
                end
            end
            confDiag(n,:, k) = diag(conf);
            predError(n) = sum(diag(conf))/length(Data);
        end
        
        % Criteria for best subset
        [Diag(k,1,l), ~] = max(confDiag(:,1, k));
        idx = find(confDiag(:,1, k)==Diag(k,1,l));
        
        [Diag(k,2,l), idx2] = max(confDiag(idx,2, k));
        Diag(k,3,l) = idx(idx2);
        featComb{k} = feat(comb{idx(idx2)});
    end
    
    
end

disp('Classification done')
Diag
str = sprintf('classifyResult_0512_CT.mat')
%%
save(str,'confDiag', 'Diag', 'feat', 'comb', 'featComb', 'Cst')
%%
toc
% Delete parallel pool
delete(poolObj);
exit






ClassifyCtUX_BottomUp.m

tic
clear all
load ../matFiles/featuresCT.mat
load ../matFiles/DataCT.mat


% Exclude corrupted data sets
ID = {'50794' '50558' '50557' '50493' '50383' '50357' ...
    '50218' '50173' '50316' '50187'};
k = 1;
for i = 1:length(Data)
    for j = 1:length(ID)
        if strcmp(Data(i).Id, ID(j))
            rem(k) = i;
            k =  k+1;
        end
    end
end

Data(rem) = [];
features.tinghaug(rem) = [];
features.vandavatnet(rem) = [];
features.Age(rem) = [];
features.BMI(rem) = [];
features.RaceTime(rem) = [];
features.hsTnI1(rem) = [];
features.hsTnI2(rem) = [];
features.hsTnI3(rem) = [];

feat = {'Age','RaceTime','BMI', 'hsTnI1', 'hsTnI2', 'hsTnI3', 'maxHR','medianSpeed','CorrHrSpeed', ...
    'varHR','meanHR','medianHR', 'diffHR', 'varSpeed', 'meanSpeed','Force','Work', 'Pwr', 'HRoneMinAfterTop',...
    'HRtwoMinAfterTop', 'DistOneMinAfterTop', 'DistTwoMinAfterTop'};

glbFeat = {'Age','RaceTime','BMI', 'hsTnI1', 'hsTnI2', 'hsTnI3'};

% Check if any of the global features ar choosen
i = 1;
for k = 1:length(glbFeat)
    if any(ismember(feat, glbFeat{k}))
        training{i} = [features.(glbFeat{k})];
        i = i+1; 
    end
end

% Fill in the rest of the features
for i = length(training)+1:length(feat)
    training{i} = [features.tinghaug.(feat{i})];
end


toc
%%
tic
numClasses = 2;

% Misclassification cost
Cost = [0 5; 1 0];
for k = 1:length(training)
    
    % All features
    feats = 1:length(training);
    
    % Remove best combination from last iteration
    if k ~=1
        rem = cell2mat(comb(Diag(k-1,3), k-1));
        feats(rem) = [];
    end
    
    % Create new features with the previous best and one more og each
    % combination
    for j = 1:length(feats)
        if k == 1
            X{j, k} = cell2mat(training(feats(j))) ;
            comb{j, k} = feats(j) ;
        else
            X{j, k} = [X{Diag(k-1, 3), k-1} ; cell2mat(training(feats(j)))] ;
            comb{j, k} = [comb{Diag(k-1, 3), k-1} feats(j)] ;
        end
        
    end
    clear Acc TPR TNR vec
    for n = 1:length(X)-k+1
        crossVal = {};
        
        for i = 1:length(Data)
            % Training set
            train = X{n, k}';
            % Validation set
            val = train(i,:);
            
            % Define classes  used for training
            Y = {};
            Y([Data.GroupIndicator] == 0) = {'HighRisk'};
            Y([Data.GroupIndicator] == 1 | [Data.GroupIndicator] == 2) = {'LowRisk'};
            
            Y(i) = [];
            Y = Y';
            
            % Remove i from training set
            train(i,:) = [];
            
            % Normalize training data
            MEAN = mean(train);
            SD = std(train);
            train = bsxfun(@minus, train, MEAN);
            train = bsxfun(@rdivide, train, SD);
            
            % Normalize validation data
            val = bsxfun(@minus, val, MEAN);
            val = bsxfun(@rdivide, val, SD);
            
            
            %     knn = fitctree(train, Y, 'Cost', Cost);
            knn = fitcnb(train, Y, 'Cost', Cost);
            %     knn = fitcsvm(train, Y, 'Cost', Cost);
            %     knn = fitcknn(train, Y, 'NumNeighbors', 2, 'Distance', 'euclidean', 'Cost', Cost);
            crossVal(i, 1) = predict(knn, val);
            
            
        end
        
        % Plot confusion matrix
        Y_true = zeros(numClasses, length(Data));
        Y_true(1,[Data.GroupIndicator] == 0) = 1;
        Y_true(2,[Data.GroupIndicator] == 1 | [Data.GroupIndicator] == 2) = 1; % Use for 2 class problem
        
        
        Y_predict = [];
        Y_predict(1,strcmpi(crossVal,'HighRisk')) = 1;
        Y_predict(2,strcmpi(crossVal,'LowRisk')) = 1; % Use for 2 class problem
        
        % Calculate the confusion matrix
        conf = zeros(2);
        for j = 1:2
            for i = 1:length(Y_true)
                if Y_true(j,i) && Y_predict(j,i) == 1
                    conf(j,j) = conf(j,j)+1;
                elseif j == 1 && Y_true(j,i) == 1 && Y_predict(j,i) == 0
                    conf(2,1) = conf(2,1)+1;
                elseif j == 2 && Y_true(j,i) == 1 && Y_predict(j,i) == 0
                    conf(1,2) = conf(1,2)+1;
                end
            end
        end
        
        confDiag(n,:, k) = diag(conf);
        predError(n, k) = sum(diag(conf))/length(Data);
        
        % Accuracy
        Acc(n) = (conf(1,1) + conf(2,2))/sum(conf(:));
        
        % Sensitivity, true positive value (TPV)
        TPR(n) = conf(1,1)/(conf(1,1)+conf(2,1));
        
        % Specificity, true negative value (TNV)
        TNR(n) = conf(2,2)/(conf(2,2)+conf(1,2));
        
        
    end
    vec = [(1-TNR)' TPR']; perfect = [0 1];
    temp = abs(bsxfun(@minus, vec, perfect));
    dist = arrayfun(@(idx) norm(temp(idx,:)), 1:size(temp,1));
    [minDist minDistIdx] = min(dist);
    
    % Criteria 2 for selection best susbset
    Diag(k, 3) = minDistIdx;
    Diag(k, 1:2) =  confDiag(minDistIdx, :, k);
    featComb{k} = feat(comb{Diag(k, 3),k});
    
    % Criteria 1 for selection best susbset
%     [Diag(k,1), ~] = max(confDiag(:,1, k));
%     idx = find(confDiag(:,1, k)==Diag(k,1));
%     
%     [Diag(k, 2), idx2] = max(confDiag(idx,2, k));
%     Diag(k, 3) = idx(idx2);
%     featComb{k} = feat(comb{idx(idx2),k});
end

disp('Classification done')
Diag
featComb;
toc
%%
save('classifyResult_0512_CT_BottomUp','confDiag', 'Diag', 'feat', 'comb', 'featComb')







ClassifyFcn.m

function [conf, Acc, TPR, TNR, MCC, missClID] = ClassifyFcn(classDef, featureSet, classifier, cost, Val, confInt)
% function [conf, TPR, TNR, MCC, missClID] = ClassifyFcn(classDef, featureSet, classifier, cost, Val, confInt);
% Input:
%   classDef        - 'CT' will chose the dataset with cyclists who have been checked
%                   with CT. The classes are devided in two groups (1. CT with
%                   findings and 2. CT without findings).
%                   - 'TnI' will chose the dataset with all cyclists. The
%                   classes are devided in two groups. (1. Over and 2.
%                   under threshold TnI).
%                   - 'Original' will chose the dataset with all cyclists. The
%                   classes are devided in three groups. (1. High TnI whith 
%                   findings on CT, 2. High TnI without findings on CT and 3. Low TnI)
%                   Here classes 2 and 3 is comined and one tries to find the
%                   class with findings from CT.
%                   - 'RT' will chose the dataset with all cyclists. The
%                   classes are devided in two groups. (1. Over and 2.
%                   under mean RaceTime) 
%          
%   featureSet      - Cell array with the features chosen for
%                   classification.
%                   Example: chosenFeatures = {'Age' 'BMI' 'maxHR' 'varHR'}
%
%   classifier      - 'nb' for Naive Bayes classifier
%                   - 'svm' for Support Vector Machine
%                   - 'tree' for Decision tree
%
%   cost            - cost matrix 2x2. 
%                   Example: Cost = [0 5; 1 0];
%
%   Val             - The classifier is trained withfeatures from Tinghaug. 
%                   Chose to valitate with Vandavandet or Tinghaug.          
%                   1 for Tinghaug
%                   2 fir Vandavandet
%
%   confInt         - Choosen confidence interval.                     
%                   Example: confInt = 0.95; for 95% interval.
%
% Output:
%   conf        - Confusion matrix
%
%   Acc         - Accuracy of the classification
%
%   TPR         - True positive rate (Sensitivity). For all datasets class 
%               1 is the positive class.
%
%   TNR         - True negative rate (Specificity). 
%
%   MCC         - Matthews correlation coefficient
%
%   missClID    - ID numbers for the missclassified subjects

 

if  ~nargin
    classDef = 'RT';
    Cost = [0 5; 1 0];
    feat = {'Age' 'BMI' 'RaceTime' 'Force' 'CorrHrSpeed' 'maxHR'  'meanHR' 'medianSpeed'};
    classifier = 'nb';
    Val = 1;
    confInt = 0.95;
else
    Cost = cost;
    feat = featureSet;
end

cI = 1-confInt;
z = max(norminv([cI/2, 1-cI/2]));

if strcmp(classDef, 'CT')
    load matFiles/featuresCT.mat
    load matFiles/DataCT.mat
elseif strcmp(classDef, 'TnI') || strcmp(classDef, 'Original')
    load matFiles/featuresAll.mat
    load matFiles/DataTnI.mat
elseif strcmp(classDef, 'RT')
    load matFiles/featuresAll.mat
    load matFiles/DataRT.mat
else
    disp('Invalid option! Choose dataset = ''CT'', ''TnI'', ''Original'' or ''RT''')
    return
end

% Remove corrupted
ID = {'50794' '50558' '50557' '50493' '50490' '50383' '50357' ...
    '50218' '50173' '50316' '50187'};

k = 1;
for i = 1:length(Data)
    for j = 1:length(ID)
        if strcmp(Data(i).Id, ID(j))
            rem(k) = i;
            k =  k+1;
        end
    end
end

if strcmp(classDef, 'RT') || strcmp(classDef, 'TnI')
   rem = [1:7 rem]; 
end

Data(rem) = [];
features.tinghaug(rem) = [];
features.vandavatnet(rem) = [];
features.Age(rem) = [];
features.BMI(rem) = [];
features.RaceTime(rem) = [];
features.hsTnI1(rem) = [];
features.hsTnI2(rem) = [];
features.hsTnI3(rem) = [];
%     p_ting(rem(i),:) = [];

% Check if any of the global features ar choosen
glbFeat = {'Age' 'RaceTime' 'BMI' 'hsTnI1' 'hsTnI2' 'hsTnI3'};
j = 1;
for k = 1:length(glbFeat)
    if any(ismember(feat, glbFeat{k}))
        training{j} = [features.(glbFeat{k})];
        validate{j} = [features.(glbFeat{k})];
        j = j+1; 
    end
end

% Loop through the rest of the chosen features
for i = j:length(feat)
    training{i} = [features.tinghaug.(feat{i})];
    validate{i} = [features.tinghaug.(feat{i})];
%     validate{i} = [features.vandavatnet.(feat{i})];
end

% Add all training- and validation data in two matrices
valData = validate{1}';
trainData = training{1}';
for i = 2:size(training,2)
    trainData = [trainData, training{i}'];
    valData = [valData, validate{i}'];
end


%%
numClasses = 2;

crossVal = {};

for i = 1:length(Data)
    % Training set
    train = trainData;
    % Validation set
    if Val == 1        
        val = trainData(i,:);       % Validate with Tinghaug
    elseif Val == 2
        val = valData(i,:);         % Validate with Vandavatnet
    else 
        disp('Invalid option! Choose trainOrVal = 1 or 2')
        return
    end
    
    % Define classes  used for training
    Y = {};
    if strcmp(classDef, 'CT') || strcmp(classDef, 'Original')
        Y([Data.GroupIndicator] == 0) = {'HighRisk'};
        Y([Data.GroupIndicator] == 1 | [Data.GroupIndicator] == 2) = {'LowRisk'};
        
    elseif strcmp(classDef, 'TnI') || strcmp(classDef, 'RT')
        Y([Data.ClassIndicator] == 0) = {'HighRisk'};
        Y([Data.ClassIndicator] == 1 ) = {'LowRisk'};
        
    end
    
    Y(i) = [];
    Y = Y';
    
    % Remove i from training set
    train(i,:) = [];
    
    % Normalize training data
    MEAN = mean(train);
    SD = std(train);
    train = bsxfun(@minus, train, MEAN);
    train = bsxfun(@rdivide, train, SD);
    
    % Normalize validation data
    val = bsxfun(@minus, val, MEAN);
    val = bsxfun(@rdivide, val, SD);
    
    
    if strcmp(classifier, 'nb')
        mdl = fitcnb(train, Y, 'Cost', Cost);
        classifyName = 'Naive Bayes';
    elseif strcmp(classifier, 'svm')
        mdl = fitcsvm(train, Y, 'Cost', Cost);
        classifyName = 'Support Vector Machine';
    elseif strcmp(classifier, 'tree')   
        mdl = fitctree(train, Y, 'Cost', Cost);
        classifyName = 'Decision tree';        
    else
        disp('Invalid option! Choose classifier = ''nb'' , ''svm'' or ''tree''')
        return
    end
    crossVal(i, 1) = predict(mdl, val);
    
    
end

% Plot confusion matrix
Y_true = zeros(numClasses, length(Data));

if strcmp(classDef, 'CT') || strcmp(classDef, 'Original')
    Y_true(1,[Data.GroupIndicator] == 0) = 1;
    Y_true(2,[Data.GroupIndicator] == 1 | [Data.GroupIndicator] == 2) = 1;
    
elseif strcmp(classDef, 'TnI') || strcmp(classDef, 'RT')
    Y_true(1,[Data.ClassIndicator] == 0) = 1;
    Y_true(2,[Data.ClassIndicator] == 1) = 1;
    
end

Y_predict = [];
Y_predict(1,strcmpi(crossVal,'HighRisk')) = 1;
Y_predict(2,strcmpi(crossVal,'LowRisk')) = 1;

% Find ID for the missclassified
missCl = Y_true(1,:) ~= Y_predict(1,:);
missClID = cellfun(@str2num, {Data(missCl).Id});

% Set up confusion matrix
conf = zeros(2);
for j = 1:2
    for i = 1:length(Y_true)
        if Y_true(j,i) && Y_predict(j,i) == 1
            conf(j,j) = conf(j,j)+1;
        elseif j == 1 && Y_true(j,i) == 1 && Y_predict(j,i) == 0
            conf(2,1) = conf(2,1)+1;
        elseif j == 2 && Y_true(j,i) == 1 && Y_predict(j,i) == 0
            conf(1,2) = conf(1,2)+1;
        end
    end
end
TP = conf(1,1); % True positive
TN = conf(2,2); % True negative
FP = conf(1,2); % False positive
FN = conf(2,1); % False negative

% Accuracy 
Acc = (TP + TN)/sum(conf(:));

% Sensitivity, true positive value (TPV)
TPR = TP/(TP+FN);

% Specificity, true negative value (TNV)
TNR = TN/(TN+FP);

% Matthews correlation coefficient
MCC = (TP*TN - FP*FN)/sqrt((TP+FP)*(TP+FN)*(TN+FP)*(TN+FN));

% Calculate confidence interval for Accuracy
successTOT = TP + TN;
nHat = sum(conf(:)) + z^2;
pHat = (1/nHat) * (successTOT + 0.5*z^2);
q = z*sqrt((1/nHat)*pHat*(1-pHat));

% Calculate confidence interval for TPR
successTPR = TP;
nHatTPR = sum(conf(:,1)) + z^2;
pHatTPR = (1/nHatTPR) * (successTPR + 0.5*z^2);
qTPR = z*sqrt((1/nHatTPR)*pHatTPR*(1-pHatTPR));

% Calculate confidence interval for TNR
successTNR = TN;
nHatTNR = sum(conf(:,2)) + z^2;
pHatTNR = (1/nHatTNR) * (successTNR + 0.5*z^2);
qTNR = z*sqrt((1/nHatTNR)*pHatTNR*(1-pHatTNR));

% Print results
fprintf(' Classification with %5s done.\n Confusion matrix:  \n',classifyName)
disp(conf);
fprintf(' Accuracy: %2.2f [%1.2f %1.2f] \n', Acc, pHat-q, pHat+q)
fprintf(' Sensitivity: %2.2f [%1.2f %1.2f]\n', TPR, pHatTPR-qTPR, pHatTPR+qTPR)
fprintf(' Specificity: %2.2f [%1.2f %1.2f]\n', TNR, pHatTNR-qTNR, pHatTNR+qTNR)
fprintf(' MCC: %2.2f \n', MCC)
% fprintf([' Confidence interval: [%1.2f  %1.2f] \n' ], pHat-q, pHat+q)

if ~nargout
    figure
    plotconfusion(Y_true,Y_predict);
    xlabel('True class','FontWeight','bold'), ylabel('Predicted class','FontWeight','bold')
    title('');
end










Class_definitions/CTclasses.m

clear all

load matFiles/Data4
load matFiles/CT
load matFiles/featuresAll

DataCT = Data(1:24);

for i = 1:length(Data)
    ID(i,1) = str2num(Data(i).Id);
end

k = 25;
for i = 1:length(CT)
    idx = find(ID == CT(i));
    if ~isempty(idx)
        DataCT(k) = Data(idx);
        k = k+1;
    end
end

Data = DataCT;
save('matFiles/DataCT.mat','Data')

%%
for i = 1:length(DataCT)
     
   idx = find(str2num(DataCT(i).Id) == ID);
   featuresCT.Age(i) = features.Age(idx);
   featuresCT.RaceTime(i) = features.RaceTime(idx);
   featuresCT.BMI(i) = features.BMI(idx);
   featuresCT.ID(i) = features.ID(idx);
   featuresCT.hsTnI1(i) = features.hsTnI1(idx);
   featuresCT.hsTnI2(i) = features.hsTnI1(idx);
   featuresCT.hsTnI3(i) = features.hsTnI1(idx);
   featuresCT.tinghaug(i) = features.tinghaug(idx);
   featuresCT.vandavatnet(i) = features.vandavatnet(idx);
end
features = featuresCT;
save('matFiles/featuresCT.mat','features')






Class_definitions/RaceTimeClasses.m

function RaceTimeClasses(Th) 
% Decides the class indicator in data set DataRT.mat based on a
% threshold Th

load matFiles/Data4.mat

if  ~nargin
    meanRT = 3.7; % Mean race time
    Th = meanRT; 
end
for i = 1:length(Data)
   if cell2mat(Data(i).NeededData(2,2)) >= Th
       Data(i).ClassIndicator = 0;
   else
       Data(i).ClassIndicator = 1;
   end
end

save('matFiles/DataRT.mat','Data')






Class_definitions/TroponinClasses.m

function TroponinClasses(Th)
% Decides the class indicator in data set DataTnI.mat based on a
% threshold (Th)


load('matFiles/Data4.mat')
if  ~nargin
    Th = 120.2; % Mean hsTnI2 from excell sheet from hospital
end
for i = 1:length(Data)
   if cell2mat(Data(i).NeededData(2,4)) >= Th 
       Data(i).ClassIndicator = 0;
   else
       Data(i).ClassIndicator = 1;
   end
end

save('matFiles/DataTnI.mat','Data')






FeatureDesity/featureDensity.m

clear all
load featuresAll.mat
load Data4.mat

%% Remove corrupted data
ID = {'50794' '50558' '50557' '50493' '50490' '50383' '50357' ...
    '50218' '50173' '50316' '50187'};

k = 1;
for i = 1:length(Data)
    for j = 1:length(ID)
        if strcmp(Data(i).Id, ID(j))
            rem(k) = i;
            k =  k+1;
        end
    end
end

Data(rem) = [];
features.tinghaug(rem) = [];
% features.vandavatnet(rem) = [];
features.Age(rem) = [];
features.BMI(rem) = [];
features.RaceTime(rem) = [];
features.hsTnI1(rem) = [];
features.hsTnI2(rem) = [];
features.hsTnI3(rem) = [];

%% Define number of classes and assign data
numClasses = 2;

if numClasses == 3
    GI = {1:7, 8:24, 25:length(Data)}; % Asigns data to the different classes
    c = {'r','b', 'y'};
else
    GI = {1:7, 8:length(Data)};
    c = {'r','b'};
end

%% Chosen features Tinghaug
subfields = {'varHR','maxHR','meanHR','medianHR', 'diffHR','varSpeed',...
    'meanSpeed','medianSpeed','CorrHrSpeed','Force','Work','Pwr'};
figure('position',[500 300 1200 500]); 

hold on
for j = 1:length(subfields)
    subplot(3,5,j)
    clear x
    hold on
    for i = 1:numClasses
        [f,x] = ksdensity([features.tinghaug(GI{i}).(subfields{1,j})]);
        fill(x,f, c{i}, 'FaceAlpha', 0.7)
        xlim([min(x) max(x)])
    end
    title(subfields{1,j})   
end

subplot(3,5,j+1)
hold on
for i = 1:numClasses
    [f,x] = ksdensity([features.Age(GI{i})]);
    fill(x,f, c{i}, 'FaceAlpha', 0.7)
end
title('Age')

subplot(3,5,j+2)
hold on
for i = 1:numClasses
    [f,x] = ksdensity([features.RaceTime(GI{i})]);
    fill(x,f, c{i}, 'FaceAlpha', 0.7);
end
title('Race time')

subplot(3,5,j+3)
hold on
for i = 1:numClasses
    [f,x] = ksdensity([features.BMI(GI{i})]);
    fill(x,f, c{i}, 'FaceAlpha', 0.7)
end
title('BMI')

if numClasses == 3
    legend('GI 0','GI 1','GI 2')
else
    legend('GI 0','GI 1 og GI 2')
end

suptitle('Sannsynlighetstetthetsfordeling Tinghaug')

%% Chosen features Vandavantnet
%{
subfields = {'varHR','maxHR','meanHR','medianHR', 'diffHR','varSpeed',...
    'meanSpeed','medianSpeed','CorrHrSpeed','Force','Work','Pwr'};
figure; hold on
for j = 1:length(subfields)
    subplot(4,4,j)
    clear x
    hold on
    for i = 1:numClasses
        [f,x] = ksdensity([features.vandavatnet(GI{i}).(subfields{1,j})]);
        fill(x,f, c{i}, 'FaceAlpha', 0.7)
    end
    title(subfields{1,j})   
end

subplot(4,4,j+1)
hold on
for i = 1:numClasses
    [f,x] = ksdensity([features.Age(GI{i})]);
    fill(x,f, c{i}, 'FaceAlpha', 0.7)
end
title('Age')

subplot(4,4,j+2)
hold on
for i = 1:numClasses
    [f,x] = ksdensity([features.RaceTime(GI{i})]);
    fill(x,f, c{i}, 'FaceAlpha', 0.7);
end
title('Race time')

subplot(4,4,j+3)
hold on
for i = 1:numClasses
    [f,x] = ksdensity([features.BMI(GI{i})]);
    fill(x,f, c{i}, 'FaceAlpha', 0.7)
end
title('BMI')

if numClasses == 3
    legend('GI 0','GI 1','GI 2')
else
    legend('GI 0','GI 1 og GI 2')
end
suptitle('Sannsynlighetstetthetsfordeling Vandavatnet')
%}






FeatureDesity/featureDensityCT.m

clear all
load matFiles/featuresCT.mat
load matFiles/DataCT.mat

% Histogram over pdf, 1 = yes, 0 = no
pdfhist = 0;

%% Remove corrupted data
ID = {'50794' '50558' '50557' '50493' '50490' '50383' '50357' ...
    '50218' '50173' '50316' '50187'};

k = 1;
for i = 1:length(Data)
    for j = 1:length(ID)
        if strcmp(Data(i).Id, ID(j))
            rem(k) = i;
            k =  k+1;
        end
    end
end

Data(rem) = [];
features.tinghaug(rem) = [];
% features.vandavatnet(rem) = [];
features.Age(rem) = [];
features.BMI(rem) = [];
features.RaceTime(rem) = [];
features.hsTnI1(rem) = [];
features.hsTnI2(rem) = [];
features.hsTnI3(rem) = [];

%% Assign data to correct class
numClasses = 2;

% Cyclists with findings from CT
GI{1} = find([Data.GroupIndicator] == 0);
% Cyclists without findigns from CT
GI{2} = find([Data.GroupIndicator] == 1 | [Data.GroupIndicator] == 2);

%% PDF plot of Chosen features Tinghaug

subfields = {'varHR','maxHR','meanHR','medianHR', 'diffHR','varSpeed',...
    'meanSpeed','medianSpeed','CorrHrSpeed','Force','Work','Pwr'};
figure('position',[500 300 1200 500]);  hold on
c = {'r','b'};

% Plot pdf for the segment specific features (Tinghaug)
for j = 1:length(subfields)
    subplot(3,5,j)
    clear x
    hold on
    for i = 1:numClasses
        [f,x] = ksdensity([features.tinghaug(GI{i}).(subfields{1,j})]);
        fill(x,f, c{i}, 'FaceAlpha', 0.7)
        %             bw = (x(end)-x(1))/(length(Data(GI{i})));
        if pdfhist == 1
            histogram([features.tinghaug(GI{i}).(subfields{1,j})],...
                length(Data(GI{i})), 'FaceColor', c{i}, 'FaceAlpha', 0.3, ...
                'Normalization', 'pdf', 'EdgeColor', c{i})
        end
    end
    title(subfields{1,j})
end

% Plot pdf for the globale features (Age, RaceTime and BMI)
subplot(3,5,j+1)
hold on
for i = 1:numClasses
    [f,x] = ksdensity([features.Age(GI{i})]);
    fill(x,f, c{i}, 'FaceAlpha', 0.7)
    %         bw = (x(end)-x(1))/(length(Data(GI{i})));
    if pdfhist == 1
        histogram(features.Age(GI{i}), length(Data(GI{i})), 'FaceColor', c{i}, ...
            'FaceAlpha', 0.3, 'Normalization', 'pdf', 'EdgeColor', c{i})
    end
end
title('Age')

subplot(3,5,j+2)
hold on
for i = 1:numClasses
    [f,x] = ksdensity([features.RaceTime(GI{i})]);
    fill(x,f, c{i}, 'FaceAlpha', 0.7);
    %         bw = (x(end)-x(1))/(length(Data(GI{i})));
    if pdfhist == 1
        histogram(features.RaceTime(GI{i}), length(Data(GI{i})), 'FaceColor', c{i},...
            'FaceAlpha', 0.3, 'Normalization', 'pdf', 'EdgeColor', c{i})
    end
end
title('Race time')

subplot(3,5,j+3)
hold on
for i = 1:numClasses
    [f,x] = ksdensity([features.BMI(GI{i})]);
    l(i) = fill(x,f, c{i}, 'FaceAlpha', 0.7)
    %         bw = (x(end)-x(1))/(length(Data(GI{i})));
    if pdfhist == 1
        histogram(features.BMI(GI{i}), length(Data(GI{i})), 'FaceColor', c{i}, ...
            'FaceAlpha', 0.3, 'Normalization', 'pdf', 'EdgeColor', c{i})
    end
end
title('BMI')


legend([l(1), l(2)],'CT with findings','CT without findings')









FeatureDesity/featureDensityRT.m


%RaceTimeClasses(3.7);   % Use to change race time threshold
clear all
load matFiles/featuresAll.mat
load matFiles/DataRT.mat

% Histogram over pdf, 1 = yes, 0 = no
pdfhist = 0;

%% Remove corrupted data pluss the ones with myocardial damage
ID = {'50794' '50558' '50557' '50493' '50490' '50383' '50357' ...
    '50218' '50173' '50316' '50187'};

k = 1;
for i = 1:length(Data)
    for j = 1:length(ID)
        if strcmp(Data(i).Id, ID(j))
            rem(k) = i;
            k =  k+1;
        end
    end
end
rem = [1:7 rem];

Data(rem) = [];
features.tinghaug(rem) = [];
% features.vandavatnet(rem) = [];
features.Age(rem) = [];
features.BMI(rem) = [];
features.RaceTime(rem) = [];
features.hsTnI1(rem) = [];
features.hsTnI2(rem) = [];
features.hsTnI3(rem) = [];
%% Assign data to correct class
numClasses = 2;

% Cyclists with findings from CT
GI{1} = find([Data.ClassIndicator] == 0);
% Cyclists without findigns from CT
GI{2} = find([Data.ClassIndicator] == 1);

%% PDF plot of Chosen features Tinghaug

subfields = {'varHR','maxHR','meanHR','medianHR', 'diffHR', ...
    'CorrHrSpeed','Force','Work','Pwr', 'HRoneMinAfterTop'};
figure('position',[500 300 1200 500]); hold on
c = {'r','b'};

% Plot pdf for the segment specific features (Tinghaug)
for j = 1:length(subfields)
    subplot(3,5,j)
    clear x
    hold on
    for i = 1:numClasses
        [f,x] = ksdensity([features.tinghaug(GI{i}).(subfields{1,j})]);
        fill(x,f, c{i}, 'FaceAlpha', 0.7)
        %             bw = (x(end)-x(1))/(length(Data(GI{i})));
        if pdfhist == 1
            histogram([features.tinghaug(GI{i}).(subfields{1,j})],...
                length(Data(GI{i})), 'FaceColor', c{i}, 'FaceAlpha', 0.3, ...
                'Normalization', 'pdf', 'EdgeColor', c{i})
        end
    end
    title(subfields{1,j})
end

% Plot pdf for the globale features (Age, RaceTime and BMI)
subplot(3,5,j+1)
hold on
for i = 1:numClasses
    [f,x] = ksdensity([features.Age(GI{i})]);
    fill(x,f, c{i}, 'FaceAlpha', 0.7)
    %         bw = (x(end)-x(1))/(length(Data(GI{i})));
    if pdfhist == 1
        histogram(features.Age(GI{i}), length(Data(GI{i})), 'FaceColor', c{i}, ...
            'FaceAlpha', 0.3, 'Normalization', 'pdf', 'EdgeColor', c{i})
    end
end
title('Age')

subplot(3,5,j+2)
hold on
for i = 1:numClasses
    [f,x] = ksdensity([features.BMI(GI{i})]);
    l(i) = fill(x,f, c{i}, 'FaceAlpha', 0.7)
    %         bw = (x(end)-x(1))/(length(Data(GI{i})));
    if pdfhist == 1
        histogram(features.BMI(GI{i}), length(Data(GI{i})), 'FaceColor', c{i}, ...
            'FaceAlpha', 0.3, 'Normalization', 'pdf', 'EdgeColor', c{i})
    end
end
title('BMI')


subplot(3,5,j+3)
hold on
for i = 1:numClasses
    [f,x] = ksdensity([features.hsTnI1(GI{i})]);
    l(i) = fill(x,f, c{i}, 'FaceAlpha', 0.7)
    %         bw = (x(end)-x(1))/(length(Data(GI{i})));
    if pdfhist == 1
        histogram(features.hsTnI1(GI{i}), length(Data(GI{i})), 'FaceColor', c{i}, ...
            'FaceAlpha', 0.3, 'Normalization', 'pdf', 'EdgeColor', c{i})
    end
end
title('hsTnI1')

subplot(3,5,j+4)
hold on
for i = 1:numClasses
    [f,x] = ksdensity([features.hsTnI2(GI{i})]);
    l(i) = fill(x,f, c{i}, 'FaceAlpha', 0.7)
    %         bw = (x(end)-x(1))/(length(Data(GI{i})));
    if pdfhist == 1
        histogram(features.hsTnI2(GI{i}), length(Data(GI{i})), 'FaceColor', c{i}, ...
            'FaceAlpha', 0.3, 'Normalization', 'pdf', 'EdgeColor', c{i})
    end
end
title('hsTnI2')

subplot(3,5,j+5)
hold on
for i = 1:numClasses
    [f,x] = ksdensity([features.hsTnI3(GI{i})]);
    l(i) = fill(x,f, c{i}, 'FaceAlpha', 0.7)
    %         bw = (x(end)-x(1))/(length(Data(GI{i})));
    if pdfhist == 1
        histogram(features.hsTnI3(GI{i}), length(Data(GI{i})), 'FaceColor', c{i}, ...
            'FaceAlpha', 0.3, 'Normalization', 'pdf', 'EdgeColor', c{i})
    end
end
title('hsTnI3')

legend([l(1), l(2)],'Over mean race time','Under mean race time')









FeatureDesity/featureDensityTnI.m


% TroponinClasses(120);     % Use to chanve hsTnI threshold
load featuresAll.mat
load DataTnI.mat

%% Remove corrupted data pluss the ones with myocardial damage
ID = {'50794' '50558' '50557' '50493' '50490' '50383' '50357' ...
    '50218' '50173' '50316' '50187'};

k = 1;
for i = 1:length(Data)
    for j = 1:length(ID)
        if strcmp(Data(i).Id, ID(j))
            rem(k) = i;
            k =  k+1;
        end
    end
end
rem = [1:7 rem];

Data(rem) = [];
features.tinghaug(rem) = [];
% features.vandavatnet(rem) = [];
features.Age(rem) = [];
features.BMI(rem) = [];
features.RaceTime(rem) = [];
features.hsTnI1(rem) = [];
features.hsTnI2(rem) = [];
features.hsTnI3(rem) = [];
%% Assign data to correct class
numClasses = 2;

GI{1} = find([Data.ClassIndicatorTnI] == 0);
GI{2} = find([Data.ClassIndicatorTnI] == 1);


%% Chosen features
subfields = {'varHR','maxHR','meanHR','medianHR', 'diffHR','varSpeed','meanSpeed','medianSpeed','CorrHrSpeed','Force','Work','Pwr'};
figure('position',[500 300 1200 500]); hold on
c = {'r','b'};
for j = 1:length(subfields)
    subplot(3,5,j)
    clear x
    hold on
    for i = 1:numClasses
        [f,x] = ksdensity([features.tinghaug(GI{i}).(subfields{1,j})]);
        fill(x,f, c{i}, 'FaceAlpha', 0.7)
    end
    title(subfields{1,j})   
end

subplot(3,5,j+1)
hold on
for i = 1:numClasses
    [f,x] = ksdensity([features.Age(GI{i})]);
    fill(x,f, c{i}, 'FaceAlpha', 0.7)
end
title('Age')

subplot(3,5,j+2)
hold on
for i = 1:numClasses
    [f,x] = ksdensity([features.RaceTime(GI{i})]);
    fill(x,f, c{i}, 'FaceAlpha', 0.7);
end
title('Race time')

subplot(3,5,j+3)
hold on
for i = 1:numClasses
    [f,x] = ksdensity([features.BMI(GI{i})]);
    fill(x,f, c{i}, 'FaceAlpha', 0.7)
end
title('BMI')
legend('Under mean hsTnI','Over mean hsTnI')






findDistance.m

function [index] = findDistance(dist, Data)
% [index] = findDistance(dist, Data) finds the sample index where each
% participant are at a given point in the race
%
% dist -    distance
% Data -    Data struct given from "load('Data4.mat') 
%
% index -   sample index for each participant

index = zeros(length(Data), 1);

for i = 1:length(Data)
    if isnan(Data(i).Resampled)
        index(i) = NaN;
    else        
        f = Data(i).Resampled(:,2);
        
        if length(dist) == 1
            [~, index(i)] = min(abs(f-dist));       % Fixed distance
        else
            [~, index(i)] = min(abs(f-dist(i)));    % Vector of distances
        end
    end
end













findPOI.m

%% findPOI

load matFiles/Data4.mat

% POI_1 (Tinghaug)
distStart = 68000;
indexStart = findDistance(distStart, Data);

distEnd = 71000;
indexEnd = findDistance(distEnd, Data);

for i = 1:length(Data)

    % Find "mid-point" of Tinghaug
    [~, indexPOI] = min(Data(i).Resampled(indexStart(i):indexEnd(i), 6));
    POI(i).TinghaugMidt = round(Data(i).Resampled(indexStart(i) + indexPOI, 2));
    POI(i).TinghaugMidtTid = round(Data(i).Resampled(indexStart(i) + indexPOI, 1));
    
    % Find "top-point" of Tinghaug (not in use)
    for j = 1:300
        diff(j) = Data(i).Resampled(indexStart(i)+indexPOI+j,6)-...
            Data(i).Resampled(indexStart(i)+indexPOI+j-1,6);
    end
    [~, idxPOI] = max(diff);
    POI(i).TinghaugTop = round(Data(i).Resampled(indexStart(i) + indexPOI + idxPOI, 2));
    POI(i).TinghaugTopTid = round(Data(i).Resampled(indexStart(i) + indexPOI + idxPOI, 1));
    
    % Find startpoint of Tinghaug
    [pks,locs] = findpeaks(Data(i).Resampled(indexStart(i):indexStart(i)+indexPOI, 6),'MINPEAKHEIGHT', 8);
    if isempty(locs)
        POI(i).SplitDist4 = NaN;
        POI(i).SplitTime4 = NaN;
    else
        [~, indexPOI] = min(abs(locs-indexPOI));
        POI(i).SplitDist4 = round(Data(i).Resampled(indexStart(i) + locs(indexPOI), 2));
        POI(i).SplitTime4 = round(Data(i).Resampled(indexStart(i) + locs(indexPOI), 1));
    end
    
end

% Quick fix (inserts manual points where 'findpeaks' misses)
manualPOI = [11 18 91 132];
manualPOItime = [10406 9424 9527 10700];
for j = 1:length(manualPOI)
    POI(manualPOI(j)).SplitTime4 = manualPOItime(j);
    POI(manualPOI(j)).SplitDist4 = round(Data(manualPOI(j)).Resampled(manualPOItime(j),2));
end

% Distribute the other split times relative to the official times.
for i = 1:length(POI)
    if ~isnan(POI(i).SplitTime4)
        POI(i).SplitTime1 = POI(i).SplitTime4 + cell2mat(Data(i).SplitTimes(3,1)) - cell2mat(Data(i).SplitTimes(3,4));
        POI(i).SplitDist1 = round(Data(i).Resampled(POI(i).SplitTime1,2));
        POI(i).SplitTime2 = POI(i).SplitTime4 + cell2mat(Data(i).SplitTimes(3,2)) - cell2mat(Data(i).SplitTimes(3,4));
        POI(i).SplitDist2 = round(Data(i).Resampled(POI(i).SplitTime2,2));
        POI(i).SplitTime3 = POI(i).SplitTime4 + cell2mat(Data(i).SplitTimes(3,3)) - cell2mat(Data(i).SplitTimes(3,4));
        POI(i).SplitDist3 = round(Data(i).Resampled(POI(i).SplitTime3,2));
        POI(i).SplitTime5 = POI(i).SplitTime4 + cell2mat(Data(i).SplitTimes(3,5)) - cell2mat(Data(i).SplitTimes(3,4));
        POI(i).SplitDist5 = round(Data(i).Resampled(POI(i).SplitTime5,2));
        
    end
end

save('POI.mat','POI')








resampleData.m

%% Resample HR and distance relative to time .
load matFiles/Data
tic

for j = 1:length(Data)
    clearvars -except j l Data DataSize sampleNr first_sample
    
    sampleNr = zeros(length(Data),2);       % Allocate space
    DataSize = zeros(length(Data),3);
    
    fprintf('%d. Resampling testperson %5s.\n', j, Data(j).Id)
    
    % Discart test subjects without any time data
    if nnz(Data(j).WatchData(:,1))<10
        fprintf('Testperson %5s does not have time data \n',Data(j).Id);
        Data(j).Discarded = NaN;
        Data(j).Resampled = NaN;
    else
        
        % Find start sample (Where the distance between samples are small enough)
        i = 1;
        sampleNr(j,1) = i;
        while Data(j).WatchData(i+8,1) - Data(j).WatchData(i,1) > 50
            i = i+1;
            sampleNr(j,1) = i;
        end
        
        % Find end sample (Where the distance between samples are small enough)
        i = length(Data(j).WatchData);
        sampleNr(j,2) = i;
        while Data(j).WatchData(i,1) == Data(j).WatchData(i-1,1) ...
                || Data(j).WatchData(i,1) - Data(j).WatchData(i-10,1) > 60
            i = i - 1;
            sampleNr(j,2) = i;
        end
        
        temp = Data(j).WatchData(sampleNr(j,1):sampleNr(j,2),:);    % Intervall som skal resamples
        temp2 = zeros(nnz(temp(:,4)),7);                            % Allocate space
        first_sample(j) = Data(j).WatchData(sampleNr(j,1),1);
        
        % Remove samples with HR == 0
        k = 1;
        for i=1:length(temp)
            if temp(i,4) ~= 0
                temp2(k,:) = temp(i,:);
                k = k+1;
            end
        end
        
        
        temp3 = zeros(nnz(temp(:,4)),7);                    % Allocate space
        k = 2;
        temp3(1,:) = temp2(1,:);
        for i = 2:length(temp2)
            % Adjust samples in distance if sample is smaller than previous sample
            if temp2(i,3) -  temp2(i-1, 3) < 0
                temp2(i, 3) = 0.5*(temp2(i-1, 3) + temp2(i+1, 3));
            end
            % Remove samples with equal sample time as previous sample
            if temp2(i,1) ~= temp2(i-1,1)
                temp3(k,:) = temp2(i,:);
                k = k+1;
            end
        end
        
        vecLen = nnz(temp3(:,4));
        
        Data(j).Resampled(:,1) = 0:temp3(vecLen,1)-temp3(1,1);     % Generate vector with one sample per sec
        time = temp3(1:vecLen,1)-temp3(1,1);                       % Original irregular sampletime
        dist = temp3(1:vecLen,3);                                  % Original dist per irregular sample
        HR = temp3(1:vecLen,4);                                    % Original HR per irregular sample
        speed = temp3(1:vecLen,2);                                 % Original speed per irregular sample
        elevation = temp3(1:vecLen,7);                             % Original elevation per irregular sample
        
        % Resampled distance (One sample per second)
        Data(j).Resampled(:,2) = interp1(time, dist, Data(j).Resampled(:,1),'pchip');
        
        % Resampled HR (One sample per second)
        Data(j).Resampled(:,3) = round(interp1(time, HR, Data(j).Resampled(:,1),'pchip'));
        
        % Normalize HR according to maxHR and age
        HR_max = 208 - (0.7 * cell2mat(Data(j).NeededData(2,10)));
        Data(j).Resampled(:,4) = Data(j).Resampled(:,3)./HR_max;
        
        % Resampled speed (One sample per second)
        if sum(speed) < 5 || sum(isnan(speed)) > 5
            for i = 1:length(Data(j).Resampled)-1
                Data(j).Resampled(i,5) = ...
                    abs(Data(j).Resampled(i,2)-Data(j).Resampled(i+1,2));
            end
        else
            Data(j).Resampled(:,5) = interp1(time, speed, Data(j).Resampled(:,1), 'pchip');
        end
        
        % Resampled elevation if any
        Data(j).Resampled(:,7) = interp1(time, elevation, Data(j).Resampled(:,1), 'pchip');
        
        % Change from m/s to km/t for the contestants with wrong unit
        if mean(Data(j).Resampled(:,5)) < 10
            Data(j).Resampled(:,5) = Data(j).Resampled(:,5) .* 3.6;
        end
        
        % Signal length after each adjustment
        DataSize(j,1) = length(Data(j).WatchData);  % Original signal length
        DataSize(j,2) = vecLen;                     % Signal length after removing some samples
        DataSize(j,3) = length(Data(j).Resampled);  % Signal length after interpolation
        
        % Samples discarded
        Data(j).Discarded.BeginningEnd = length(Data(j).WatchData) - length(temp);  % start end adjustment
        Data(j).Discarded.ZeroHR = length(temp) - length(temp2);        % Samples with HR = 0
        Data(j).Discarded.EqualTime = length(temp2) - vecLen;    % Samples with equal time as previous sample
        Data(j).Discarded.Sum = Data(j).Discarded.BeginningEnd + ...    % Sum discarded samples
            Data(j).Discarded.ZeroHR + Data(j).Discarded.EqualTime;
    end
end
save('Data2.mat','Data')
toc








resampleTest.m

%% Visual test of resampled HR-data

load matFiles/Data2.mat

testsett{1} = [1:27 29:31];
testsett{2} = [32:61];
testsett{3} = [62:91];
testsett{4} = [92:121];
testsett{5} = [122:151];
testsett{6} = [152:181];

for j = 6:6
    figure('position',[300 100 1000 700])
    y = testsett{j};
    
    
    for i = 1:30
        subplot(6,5,i)
        
        % Plot of resampled HR relative to time
        plot(Data(y(i)).Resampled(:,1),Data(y(i)).Resampled(:,3),'r', 'LineWidth', 2)
        xlim([0 max(Data(y(i)).Resampled(:,1))])        
        
        % Plot of original HR relative to time
        hold on
        x = Data(y(i)).WatchData(:,1) - Data(y(i)).WatchData(1,1);
        plot(x,Data(y(i)).Int_puls(:,1), '.k', 'MarkerSize', 3)
            %xlabel('sec'); %ylabel('bpm');
            
        title(y(i))
        ylim([100 220])
        grid on;
        ax = gca
        ax.XTick = 0:max(Data(y(i)).Resampled(:,1)):30000
        ax.FontSize = 7
        %     ylim([min(Data(x).Resampled(:,3)) max(Data(x).Resampled(:,3))]
        
    end
%     legend('Original','Resampled')
    suptitle('Samples = black, Interpolated = red')
end

%% Visual test of resampled distance data
testsett{1} = [1:27 29:31];
testsett{2} = [32:61];
testsett{3} = [62:91];
testsett{4} = [92:121];
testsett{5} = [122:151];
testsett{6} = [152:181];

for j = 1:6
    figure('position',[500 300 800 500])
    y = testsett{j};
    
    for i = 1:30
        subplot(6,5,i)
        plot(Data(y(i)).Resampled(:,1),Data(y(i)).Resampled(:,2))
        xlim([-500 max(Data(y(i)).Resampled(:,1))+500])
        ylim([min(Data(y(i)).Resampled(:,2)) max(Data(y(i)).Resampled(:,2))])
        title(y(i))
        
    end
end






restructureData.m

%% Make datafile (struct) from Martin Nygaards file

clear all
load('filer.mat');
colHeadings = {'Id' 'WatchData' 'NeededData' 'Int_puls' 'GroupIndicator' 'Norm_puls'};
Data = cell2struct(filer1, colHeadings, 2);

%% Read Weight, BMI and heigth from excel en add to Needed data
[~, ~, raw] = xlsread('..\..\1502061_v2.xlsx');

for i = 1:length(Data)
    num = str2num(Data(i).Id);
    
    % Find position in excel
    index = find([raw{2:end,1}] == num)+1;
    
    % Writes additional information
    Data(i).NeededData(1,11:13) = raw(index, 11:13);
    
end

%% Name column Needed data
colHeadings = {'ID' 'RaceTime' 'S_HSTNI1' 'S_HSTNI2' 'S_HSTNI3' 'Pulsfile' 'Sex' 'RemarksCT' 'Measures' 'Age'...
    'Weight' 'BMI' 'Height'};
for i = 1:length(Data)
    Data(i).NeededData(2,:) = Data(i).NeededData(1,:);
    Data(i).NeededData(1,:) = colHeadings;
end

%% Read SplitTimes from excel
[~, ~, raw] = xlsread('..\..\151102 mellomtider.xlsx');
for i = 1:length(Data)
   num = str2num(Data(i).Id);
   % Find position in excel
   index = find([raw{2:end,1}] == num)+1;

   % Writes additional information
   Data(i).SplitTimes(1,:) = {'21 km', '32 km', '55 km'...
       , '66 km', '67 km', 'Unit'};
   Data(i).SplitTimes(2,1:5) = raw(index,14:18);
   [~,~,~, H, MN, S] = datevec(raw(index,14:18));
   Data(i).SplitTimes(3,1:5) = num2cell((H*3600+MN*60+S)');
   Data(i).SplitTimes(2,6) = {'hour'};
   Data(i).SplitTimes(3,6) = {'sec'};
   clear H MN S
end
save('Data.mat','Data')








smoothData.m

% Smooting of velocity signal

% Start paralelle pool 
poolObj = parpool(24);
tic
load Data2.mat
% Remove contestant nr 28 due to no time samples
Data(28) = [];

parfor j =1:length(Data)
    fprintf('%d. Smoothing testperson %5s.\n', j, Data(j).Id)
    
    % Smoothe the speed 
    if sum(~isnan(Data(j).Resampled(:,5))) > 5
        Data(j).Resampled(:,6) = smooth(Data(j).Resampled(:,5), 150 , 'rlowess');
    else
        Data(j).Resampled(:,6) = zeros(length(Data(j).Resampled(:,5)),1);       
    end
end

save('Data4.mat','Data')

toc

delete(poolObj);








testClassifyFcn.m


%% Experiment 1 - Originalt datasett - NOT IN USE
dataset = 'Original';
Cost = [0 25; 1 0];
feat = {'Age' 'RaceTime' 'CorrHrSpeed' 'maxHR'  'meanHR' 'RegCoeff'};
classifier = 'nb';
Val = 1;
confInt = 0.95;

[conf, Acc, TPR, TNR, MCC, missClID] = ClassifyFcn(dataset, feat, classifier, Cost, Val, confInt);

%% Experiment 2 - Originalt datasett - NOT IN USE
dataset = 'Original';
Cost = [0 16; 1 0];
feat = {'Age' 'RaceTime' 'CorrHrSpeed' 'maxHR'  'medianSpeed'};
classifier = 'nb';
Val = 1;
confInt = 0.95;

[conf, Acc, TPR, TNR, MCC, missClID] = ClassifyFcn(dataset, feat, classifier, Cost, Val, confInt);

%% Experiment 3 - Originalt datasett
dataset = 'Original';
Cost = [0 10; 1 0];
feat = {'Age' 'CorrHrSpeed' 'medianHR' 'medianSpeed' 'Force'};
classifier = 'nb';
Val = 1;
confInt = 0.95;

% [conf, Acc, TPR, TNR, MCC, missClID] = ClassifyFcn(dataset, feat, classifier, Cost, Val, confInt);
ClassifyFcn(dataset, feat, classifier, Cost, Val, confInt);


%% Experiment 4 - Bottom up / Originalt datasett
dataset = 'Original';
Cost = [0 15; 1 0];
feat = {'Age' 'BMI' 'medianSpeed' 'Force' 'maxHR' 'CorrHrSpeed' 'meanHR'};
classifier = 'nb';
Val = 1;
confInt = 0.95;

[conf, Acc, TPR, TNR, MCC, missClID] = ClassifyFcn(dataset, feat, classifier, Cost, Val, confInt);
% ClassifyFcn(dataset, feat, classifier, Cost, Val, confInt);


%% Experiment 5 - Bottom up / CT datasett - classifyResult_0512_CT_BottomUp_TnI.mat
dataset = 'CT';
Cost = [0 5; 1 0];
feat = {'Age' 'BMI' 'RaceTime' 'CorrHrSpeed' 'maxHR' 'meanHR' 'Force'};
classifier = 'tree';
Val = 1;
confInt = 0.95;

[conf, Acc, TPR, TNR, MCC, missClID] = ClassifyFcn(dataset, feat, classifier, Cost, Val, confInt);
% ClassifyFcn(dataset, feat, classifier, Cost, Val, confInt)
% disp(missClID(1))

%% Experiment 6 - Exhaustive CT datasett - classifyResult_0317_CT.mat
dataset = 'CT';
Cost = [0 10 ; 1 0];
feat = {'Age' 'RaceTime' 'BMI' 'maxHR' 'CorrHrSpeed' 'meanHR' 'medianHR' 'diffHR' 'Force'};
classifier = 'nb';
Val = 1;
confInt = 0.95;

[conf, Acc, TPR, TNR, MCC, missClID] = ClassifyFcn(dataset, feat, classifier, Cost, Val, confInt);
% ClassifyFcn(dataset, feat, classifier, Cost, Val, confInt);
% disp(missClID(1))

%% Experiment 7 - RaceTime Bottom up (Without speed features and without participants with myocardial damage).
% classifyResult_0421_RT_BottomUp_noCost1.mat
dataset = 'RT';
Cost = [0 2; 1 0];
% feat = {'meanSpeed' 'varHR' 'maxHR' 'Work'};
feat = {'Age' 'BMI' 'hsTnI2' 'meanHR' 'diffHR' 'maxHR' 'medianHR'};
classifier = 'tree';
Val = 1;
confInt = 0.95;

[conf, Acc, TPR, TNR, MCC, missClID] = ClassifyFcn(dataset, feat, classifier, Cost, Val, confInt);
% ClassifyFcn(dataset, feat, classifier, Cost, Val, confInt);

%% Experiment 8 - TnI bottom up, Threshold 100 (Without those with myocardial damage)
% TroponinClasses(100) % Choose threshold for Troponin classes
dataset = 'TnI';
Cost = [0 8; 1 0];
feat = {'Age' 'Force' 'HRoneMinAfterTop' 'Work' 'varHR' 'medianSpeed' 'diffHR'};
classifier = 'nb';
Val = 1;
confInt = 0.95;

[conf, Acc, TPR, TNR, MCC, missClID] = ClassifyFcn(dataset, feat, classifier, Cost, Val, confInt);
% ClassifyFcn(dataset, feat, classifier, Cost, Val, confInt);

%% Experiment 9 - TnI bottom up, Threshold 150 (Without those with myocardial damage)
% TroponinClasses(150) % Choose threshold for Troponin classes
dataset = 'TnI';
Cost = [0 8; 1 0];
feat = {'Age' 'diffHR' 'DistOneMinAfterTop' 'HRtwoMinAfterTop' 'DistTwoMinAfterTop' 'meanHR'};
classifier = 'nb';
Val = 1;
confInt = 0.95;

[conf, Acc, TPR, TNR, MCC, missClID] = ClassifyFcn(dataset, feat, classifier, Cost, Val, confInt);
% ClassifyFcn(dataset, feat, classifier, Cost, Val, confInt);

%% Experiment 10 - RaceTime Bottom up (Without speed features and without participants with myocardial damage).
% classifyResult_1905_RT.mat
dataset = 'RT';
Cost = [0 4; 1 0];
feat = {'Age' 'BMI' 'hsTnI3' 'meanHR' 'diffHR' 'HRoneMinAfterTop' 'HRtwoMinAfterTop'};
classifier = 'nb';
Val = 1;
confInt = 0.95;

[conf, Acc, TPR, TNR, MCC, missClID] = ClassifyFcn(dataset, feat, classifier, Cost, Val, confInt);
% ClassifyFcn(dataset, feat, classifier, Cost, Val, confInt);

%% Experiment 11 - Mean TnI
% TroponinClasses()
dataset = 'TnI';
Cost = [0 4; 1 0];
feat = {'Age' 'Force' 'HRtwoMinAfterTop' 'DistTwoMinAfterTop'};
classifier = 'tree';
Val = 1;
confInt = 0.95;

[conf, Acc, TPR, TNR, MCC, missClID] = ClassifyFcn(dataset, feat, classifier, Cost, Val, confInt);
% ClassifyFcn(dataset, feat, classifier, Cost, Val, confInt);
% disp(missClID(1))

%% Experiment 12 - TnI bottom up, Threshold 200 (Without those with myocardial damage)
% TroponinClasses(200) % Choose threshold for Troponin classes
dataset = 'TnI';
Cost = [0 8; 1 0];
feat = {'Age' 'RaceTime' 'maxHR' 'medianHR' 'meanHR' 'HRtwoMinAfterTop' 'diffHR'};
classifier = 'nb';
Val = 1;
confInt = 0.95;

[conf, Acc, TPR, TNR, MCC, missClID] = ClassifyFcn(dataset, feat, classifier, Cost, Val, confInt);
% ClassifyFcn(dataset, feat, classifier, Cost, Val, confInt);

%% Experiment 13 - Originalt datasett validate with Vandavatnet
dataset = 'Original';
Cost = [0 10; 1 0];
feat = {'Age' 'CorrHrSpeed' 'medianHR' 'medianSpeed' 'Force'};
classifier = 'nb';
Val = 2;    % 1 to validate with Tinghaug, 2 to validata with Vandavatnet
confInt = 0.95;

% [conf, Acc, TPR, TNR, MCC, missClID] = ClassifyFcn(dataset, feat, classifier, Cost, Val, confInt);
ClassifyFcn(dataset, feat, classifier, Cost, Val, confInt);

%% Experiment 14 - Exhaustive CT datasett - classifyResult_0317_CT.mat (Validate with vandavatnet)
dataset = 'CT';
Cost = [0 5 ; 1 0];
feat = {'Age' 'RaceTime' 'BMI' 'maxHR' 'CorrHrSpeed' 'meanHR' 'medianHR' 'diffHR' 'Force'};
classifier = 'nb';
Val = 2;    % 1 to validate with Tinghaug, 2 to validata with Vandavatnet
confInt = 0.95;

% [conf, Acc, TPR, TNR, MCC, missClID] = ClassifyFcn(dataset, feat, classifier, Cost, Val, confInt);
ClassifyFcn(dataset, feat, classifier, Cost, Val, confInt);
disp(missClID(1))






testPOI.m

function testPOI(timeOrDist, Data, POI)
% function testPOI(POInr, timeOrDist)
% Visual check of correct detection of POI.
%
% timeOrDist - Choose time or distance on the x-axis
%              'meter' for distance
%              'sec' for time
% Data       - Data struct with resapled HR/dist/speed from "load('Data3.mat')"
% POI        - Data struct with time and distanse at the five split times
%              in the race.


if ~nargin
    load matFiles/Data4.mat
    load matFiles/POI.mat
    timeOrDist = 'meter';
end

testset{1} = [1:20];
testset{2} = [21:40];
testset{3} = [41:60];
testset{4} = [61:80];
testset{5} = [81:100];
testset{6} = [101:120];
testset{7} = [121:140];
testset{8} = [141:160];
testset{9} = [161:180];

for j = 1:length(testset)
    figure(j)
    %     clf
    x = testset{j};
    
    for i = 1:length(x)
        
        subplot(5,4,i)
        
        
        if strcmp(timeOrDist, 'meter')
            plot(Data(x(i)).Resampled(:,2),Data(x(i)).Resampled(:,6), 'k')    % x-axis is distance in meter
            hold on
            
            for k = 1:5
                POInr = k;
                
                if POInr == 1           % Split nr 1: Ogna
                    plot(POI(x(i)).SplitDist1, Data(x(i)).Resampled(POI(x(i)).SplitTime1, 6),'r*');
                    
                elseif POInr == 2       % Split nr 2: Vandavatn
                    plot(POI(x(i)).SplitDist2, Data(x(i)).Resampled(POI(x(i)).SplitTime2, 6),'r*');
                    
                elseif POInr == 3       % Split nr 3: Hå gamle prestegård
                    plot(POI(x(i)).SplitDist3, Data(x(i)).Resampled(POI(x(i)).SplitTime3, 6),'r*');
                    
                elseif POInr == 4       % Split nr 4: Tinghaug start
                    plot(POI(x(i)).SplitDist4, Data(x(i)).Resampled(POI(x(i)).SplitTime4, 6),'g*');
                    
                elseif POInr == 5       % Split nr 5: Tinghaug top
                    plot(POI(x(i)).SplitDist5, Data(x(i)).Resampled(POI(x(i)).SplitTime5, 6),'r*');

                end
                xlim([POI(x(i)).SplitDist1-10000 POI(x(i)).SplitDist5+10000])
            end
            
            
        elseif strcmp(timeOrDist, 'sec')
            plot(Data(x(i)).Resampled(:,1),Data(x(i)).Resampled(:, 6), 'k')    % x-axis is distance in sec
            hold on
            
            for k = 1:5
                POInr = k;
                
                if POInr == 1           % Split nr 1: Ogna
                    plot(POI(x(i)).SplitTime1, Data(x(i)).Resampled(POI(x(i)).SplitTime1, 6),'r*');
                    
                elseif POInr == 2       % Split nr 2: Vandavatn
                    plot(POI(x(i)).SplitTime2, Data(x(i)).Resampled(POI(x(i)).SplitTime2, 6),'r*');
                    
                elseif POInr == 3       % Split nr 3: Hå gamle prestegård
                    plot(POI(x(i)).SplitTime3, Data(x(i)).Resampled(POI(x(i)).SplitTime3, 6),'r*');
                    
                elseif POInr == 4       % Split nr 4: Tinghaug start
                    plot(POI(x(i)).SplitTime4, Data(x(i)).Resampled(POI(x(i)).SplitTime4, 6),'r*');
                    
                elseif POInr == 5       % Split nr 5: Tinghaug top
                    plot(POI(x(i)).SplitTime5, Data(x(i)).Resampled(POI(x(i)).SplitTime5, 6),'r*');
                    
                end
                xlim([0 length(Data(x(i)).Resampled(:,1))])
            end
        end
        
        
        title(Data(x(i)).Id)
        
    end
end







tinghaug.m

% Feature extraction

clear all
load matFiles/POI.mat
load matFiles/Data4.mat
meanHeight = 1.79; % From excel sheet

for i = 1:length(Data)
    
    
    Tinghaug(i).point3 = POI(i).TinghaugMidtTid; % Not in use
    Tinghaug(i).point4 = POI(i).SplitTime5;
    Tinghaug(i).point2 = POI(i).SplitTime4;
    
    % ID
    features.ID(i) = str2num(Data(i).Id); 
    
    % Age
    features.Age(i) = cell2mat(Data(i).NeededData(2,10));
    
    % Total race time
    features.RaceTime(i) = cell2mat(Data(i).NeededData(2,2));
    
    % Troponine leveles
    features.hsTnI1(i) = cell2mat(Data(i).NeededData(2,3));
    features.hsTnI2(i) = cell2mat(Data(i).NeededData(2,4));
    features.hsTnI3(i) = cell2mat(Data(i).NeededData(2,5));
    
    % BMI 
    features.BMI(i) = cell2mat(Data(i).NeededData(2,12));   
    
    % HR from point2 to point 4
    HR{i} = smooth(Data(i).Resampled(Tinghaug(i).point2:Tinghaug(i).point4, 3), 1 , 'lowess');
    
    % Normalized HR from point2 to point 4
%     HR{i} = smooth(Data(i).Resampled(Tinghaug(i).point2:Tinghaug(i).point4, 4), 1 , 'lowess');
    
    % Variance in HR from point2 to point4
    features.tinghaug(i).varHR = var(HR{i});
    
    % Max HR
    features.tinghaug(i).maxHR = max(HR{i});
    
    % Mean HR
    features.tinghaug(i).meanHR = mean(HR{i});
    
    % Median HR
    features.tinghaug(i).medianHR = median(HR{i});
    
    % Difference HR
    features.tinghaug(i).diffHR = max(HR{i})-min(HR{i});
    
    % Normalized speed from point 2 to point 4
    Speed{i} = Data(i).Resampled(Tinghaug(i).point2:Tinghaug(i).point4, 6); 
    NSpeed = Speed{i}./Speed{i}(1);
    
    % Variance in speed from point2 to point4
    features.tinghaug(i).varSpeed = var(Speed{i});
    features.tinghaug(i).varNSpeed = var(NSpeed);
    
    % Difference in max and min speed
    features.tinghaug(i).diffSpeed1 = max(Speed{i})-min(Speed{i});
    
    % Mean speed
    features.tinghaug(i).meanSpeed = mean(Speed{i});
    
    % Median speed
    features.tinghaug(i).medianSpeed = median(Speed{i});    
    
    % Variance in HR relative to speed.
    features.tinghaug(i).varHrRelativeSpeed = var(Speed{i})./var(HR{i});
        
    % Mean in HR relative to speed.
    features.tinghaug(i).meanHrRelativeSpeed = mean(Speed{i})./mean(HR{i});
       
    % Median in HR relative to speed.
    features.tinghaug(i).medianHrRelativeSpeed = median(Speed{i})./median(HR{i});
    
    % Regression coefficient between point2 and point4
    features.tinghaug(i).RegCoeff = (Data(i).Resampled(Tinghaug(i).point4, 6)-Data(i).Resampled(Tinghaug(i).point2, 6))./ ...
        length(Data(i).Resampled(Tinghaug(i).point2:Tinghaug(i).point4, 6));
    
    % Polyfit
    y = HR{i};
    x = Data(i).Resampled(Tinghaug(i).point2:Tinghaug(i).point4, 2);
    
    x1{i} = round(linspace(1, length(x), round(length(x)/10))');
    [p_ting(i,:), ~, mu(:,i)] = polyfit(x1{i}, y(x1{i}),4);
    
    % Correlation between HR and speed
    features.tinghaug(i).CorrHrSpeed = corr(Speed{i}, HR{i});
    %     features(i).CorrHrSpeed = corr(-1*(Speed1-mean(Speed1)), HR);
    
    % Heartrate one and two minutes after top
    features.tinghaug(i).HRtop = Data(i).Resampled(Tinghaug(i).point4, 3);
    features.tinghaug(i).HRoneMinAfterTop = Data(i).Resampled(Tinghaug(i).point4 + 60, 3);   
    features.tinghaug(i).HRtwoMinAfterTop = Data(i).Resampled(Tinghaug(i).point4 + 120, 3);
    
    % Distance one and two minutes after top
    features.tinghaug(i).DistOneMinAfterTop = Data(i).Resampled(Tinghaug(i).point4 + 60, 2)...
        - Data(i).Resampled(Tinghaug(i).point4, 2);
    
    features.tinghaug(i).DistTwoMinAfterTop = Data(i).Resampled(Tinghaug(i).point4 + 120, 2)...
        - Data(i).Resampled(Tinghaug(i).point4, 2);
end

% save('matFiles/polyfit.mat', 'p_ting')

%% Calculate force/work/power
k=0;
for i = 1:length(Data)
    if max(Data(i).Resampled(:,7))~=0
        k = k+1;
        elev(k) = Data(i).Resampled(Tinghaug(i).point4, 7) - ...
            Data(i).Resampled(Tinghaug(i).point2, 7);
    end    
end

avgElev = mean(elev);
avgBikeWeight = 10;
g = 9.81;

for i = 1:length(Data)
    s(i) = Data(i).Resampled(Tinghaug(i).point4, 2) - Data(i).Resampled(Tinghaug(i).point2, 2);
    alpha = atan(avgElev/s(i));
    m = cell2mat(Data(i).NeededData(2,11)) + avgBikeWeight;
    features.tinghaug(i).Force = m * g * sin(alpha);
    features.tinghaug(i).Work = features.tinghaug(i).Force .* s(i);
    features.tinghaug(i).Pwr = features.tinghaug(i).Force .* features.tinghaug(i).meanSpeed;
%     features.tinghaug(i).CorrHrWork = corr(features.tinghaug(i).Work, HR{i})
end

save('matFiles/features.mat','features')

%% Plot
%{
close all

testset{1} = [1:20];
testset{2} = [21:40];
testset{3} = [41:60];
testset{4} = [61:80];
testset{5} = [81:100];
testset{6} = [101:120];
testset{7} = [121:140];
testset{8} = [141:160];
testset{9} = [161:180];

p = get(0, 'monitorpositions');

for j = 1:1
    
    
    %     hfig=figure;
    %     set(hfig,'Units', 'Normalized', 'OuterPosition', [0 0 1 1]);
    figure(j);
    
    clf
    x = testset{j};
    
    for i = 1:6
        subplot(3,2,i)
%         subplot(5,4,i)
        
        [ax h1 h2] = plotyy(Data(x(i)).Resampled(:,1),Data(x(i)).Resampled(:,6),...
            Data(x(i)).Resampled(:,1),Data(x(i)).Resampled(:,3));
        
        hold(ax(1), 'on');
        axis(ax(1));
        
        % plot(Data(i).Resampled(:,1),Data(i).Resampled(:,5))
        
%         plot(Data(x(i)).Resampled(Tinghaug(x(i)).point3, 1), Data(x(i)).Resampled(Tinghaug(x(i)).point3, 6), '*k')
        plot(Data(x(i)).Resampled(Tinghaug(x(i)).point2, 1), Data(x(i)).Resampled(Tinghaug(x(i)).point2, 6), '*k')
%         plot(Data(x(i)).Resampled(Tinghaug(x(i)).point5, 1), Data(x(i)).Resampled(Tinghaug(x(i)).point5, 6), '*k')
        plot(Data(x(i)).Resampled(POI(x(i)).SplitTime5, 1), Data(x(i)).Resampled(POI(x(i)).SplitTime5, 6), '*r')
        
        set(ax,'xlim',[Data(x(i)).Resampled(Tinghaug(x(i)).point2, 1)-200 ...
            Data(x(i)).Resampled(Tinghaug(x(i)).point4, 1)+200]);
        
%         ylim(ax(2), [0.6 1.1])
%         set(ax(2),'YTick',[0:0.25:2])   
        ylim(ax(2), [100 190])
        set(ax(2),'YTick',[100:20:200])   
        
        ylim(ax(1), [0 45])
        set(ax(1), 'YTick', [0:12.5:50])
        
        title(x(i))
        
    end
    
    if size(p,1) == 2
        set(gcf, 'position', p(1,:))
    end
    
    pause(0.0001);
    frame_h = get(handle(gcf),'JavaFrame');
    set(frame_h,'Maximized',1);
end
%}






vandavatnet.m


load matFiles/POI.mat
load matFiles/Data4.mat
load matFiles/features.mat

for i = 1:length(Data)
    
    Vandavatnet(i).point2 = POI(i).SplitTime2;
    
    [pks,locs] = findpeaks(Data(i).Resampled(1:Vandavatnet(i).point2, 6),...
        'MinPeakHeight', 20, 'MinPeakProminence', 12);
    
    Vandavatnet(i).point1 = locs(end);
    [~, idx] = min(Data(i).Resampled(POI(i).SplitTime1:Vandavatnet(i).point1, 6));
    Vandavatnet(i).point01 = POI(i).SplitTime1 + idx;
    [~, idx] = max(Data(i).Resampled(POI(i).SplitTime1:Vandavatnet(i).point01, 6));
    Vandavatnet(i).point0 = POI(i).SplitTime1 + idx;
end

%% Manually adjust those findpeaks are missing
% Adjust those who have three points wrong
testPerson = [15 28 41 89 112];
idx = [3358 4672 3351 8105 3517;
    2792 4000 2757 6603 3060;
    3073 4261 3062 7195 3249];
for i = 1:length(idx)
    Vandavatnet(testPerson(i)).point1 = idx(1, i);
    Vandavatnet(testPerson(i)).point0 = idx(2, i);
    Vandavatnet(testPerson(i)).point01 = idx(3, i);
end

% Adjust those who have two points wrong
testPerson = [4 24 77 84 100 137 144 147 163 170 174];
idx = [4105 3887 4949 3145 3809 4316 4684 4262 5431 3194 3531;
    4253 4024 5345 3386 4177 4684 5098 4679 5850 3344 3852];
for i = 1:length(idx)
    Vandavatnet(testPerson(i)).point0 = idx(1, i);
    Vandavatnet(testPerson(i)).point01 = idx(2, i);
end

%% Chose start and stop index

idxStart = [Vandavatnet.point0];
idxEnd = [Vandavatnet.point01];

%% Feature extraction
for i = 1:length(Data)
    % HR from point1 to point 2
    HR{i} = smooth(Data(i).Resampled(idxStart(i):idxEnd(i), 3), 1 , 'lowess');
    
    % Normalized HR from point1 to point 2
    NHR{i} = smooth(Data(i).Resampled(idxStart(i):idxEnd(i), 4), 1 , 'lowess');
    
    % Variance in HR from point2 to point4
    features.vandavatnet(i).varHR = var(HR{i});
    
    % Max HR
    features.vandavatnet(i).maxHR = max(HR{i});
    
    % Mean HR
    features.vandavatnet(i).meanHR = mean(HR{i});
    
    % Median HR
    features.vandavatnet(i).medianHR = median(HR{i});
    
    % Difference HR
    features.vandavatnet(i).diffHR = max(HR{i})-min(HR{i});
    
    % speed from point 1 to point 2
    Speed{i} = Data(i).Resampled(idxStart(i):idxEnd(i), 6);
    NSpeed = Speed{i}./Speed{i}(1);
    
    % Variance in speed from point2 to point4
    features.vandavatnet(i).varSpeed = var(Speed{i});
    features.vandavatnet(i).varNSpeed = var(NSpeed);
    
    % Difference in max and min speed
    features.vandavatnet(i).diffSpeed1 = max(Speed{i})-min(Speed{i});
    
    % Mean speed
    features.vandavatnet(i).meanSpeed = mean(Speed{i});
    
    % Median speed
    features.vandavatnet(i).medianSpeed = median(Speed{i});
    
    % Variance in HR relative to speed.
    features.vandavatnet(i).HrRelativeSpeed = var(Speed{i})./var(HR{i});
    
    % Correlation between HR and speed
    features.vandavatnet(i).CorrHrSpeed = corr(Speed{i}, HR{i});
    
    % Regression coefficient between point2 and point4
    features.vandavatnet(i).RegCoeff = (Data(i).Resampled(idxStart(i), 6)-Data(i).Resampled(idxEnd(i), 6))./ ...
        length(Data(i).Resampled(idxStart(i):idxEnd(i), 6));
    
    % Polyfit
    y = HR{i};
    x = Data(i).Resampled(idxStart(i):idxEnd(i), 2);
    
    x1{i} = round(linspace(1, length(x), round(length(x)/10))');
    [p_vand(i,:), ~, mu(:,i)] = polyfit(x1{i}, y(x1{i}),4);
end


% save('matFiles/polyfit_vand', 'p_vand','mu','x1')

%% Calculate force/work/power
k=0;
for i = 1:length(Data)
    if max(Data(i).Resampled(:,7))~=0
        k = k+1;
        elev(k) = Data(i).Resampled(idxEnd(i), 7) - ...
            Data(i).Resampled(idxStart(i), 7);
    end
end

avgElev = mean(elev);
avgBikeWeight = 10;
g = 9.81;

for i = 1:length(Data)
    s(i) = Data(i).Resampled(idxEnd(i), 2) - Data(i).Resampled(idxStart(i), 2);
    alpha = atan(avgElev/s(i));
    m = cell2mat(Data(i).NeededData(2,11)) + avgBikeWeight;
    features.vandavatnet(i).Force = m * g * sin(alpha);
    features.vandavatnet(i).Work = features.vandavatnet(i).Force .* s(i);
    features.vandavatnet(i).Pwr = features.vandavatnet(i).Force .* features.vandavatnet(i).meanSpeed;
    %     features.tinghaug(i).CorrHrWork = corr(features.tinghaug(i).Work, HR{i})
end


save('matFiles/featuresAll.mat','features')
%}
%% Plot to check start and end point
%{
testset{1} = [1:20];
testset{2} = [21:40];
testset{3} = [41:60];
testset{4} = [61:80];
testset{5} = [81:100];
testset{6} = [101:120];
testset{7} = [121:140];
testset{8} = [141:160];
testset{9} = [161:180];

for j = 1:1
    x = testset{j};
    figure(j)
    for i = 1:20
        
        subplot(5,4,i)
        
        plot(Data(x(i)).Resampled(:,2), Data(x(i)).Resampled(:,6), 'b')
        hold on
        if max(Data(x(i)).Resampled(:,7))~=0
            plot(Data(x(i)).Resampled(:,2), Data(x(i)).Resampled(:,7), 'k')
            plot(Data(x(i)).Resampled(Vandavatnet(x(i)).point0, 2), ...
                Data(x(i)).Resampled(Vandavatnet(x(i)).point0, 7), '*')
            plot(Data(x(i)).Resampled(Vandavatnet(x(i)).point01, 2), ...
                Data(x(i)).Resampled(Vandavatnet(x(i)).point01, 7), '*')
        end
        plot(Data(x(i)).Resampled(Vandavatnet(x(i)).point0, 2), ...
            Data(x(i)).Resampled(Vandavatnet(x(i)).point0, 6), '*')
        plot(Data(x(i)).Resampled(Vandavatnet(x(i)).point01, 2), ...
            Data(x(i)).Resampled(Vandavatnet(x(i)).point01, 6), '*')
        title(x(i))
    end
end
%}

%% Plot those with elevation
%
testset{1} = [1:20];
testset{2} = [21:40];
testset{3} = [41:60];
testset{4} = [61:80];
testset{5} = [81:100];
testset{6} = [101:120];
testset{7} = [121:140];
testset{8} = [141:160];
testset{9} = [161:180];
k = 1;
for j = 1:9
    x = testset{j};
    for i = 1:20
        
        if max(Data(x(i)).Resampled(:,7))~=0
            figure(k)
            plot(Data(x(i)).Resampled(:,2), Data(x(i)).Resampled(:,6), 'b')
            hold on
            
            plot(Data(x(i)).Resampled(:,2), Data(x(i)).Resampled(:,7), 'k')
            plot(Data(x(i)).Resampled(Vandavatnet(x(i)).point0, 2), ...
                Data(x(i)).Resampled(Vandavatnet(x(i)).point0, 7), '*')
            plot(Data(x(i)).Resampled(Vandavatnet(x(i)).point01, 2), ...
                Data(x(i)).Resampled(Vandavatnet(x(i)).point01, 7), '*')
       
        plot(Data(x(i)).Resampled(Vandavatnet(x(i)).point0, 2), ...
            Data(x(i)).Resampled(Vandavatnet(x(i)).point0, 6), '*')
        plot(Data(x(i)).Resampled(Vandavatnet(x(i)).point01, 2), ...
            Data(x(i)).Resampled(Vandavatnet(x(i)).point01, 6), '*')
        title(x(i))
        k = k+1;
         end
    end
end
%}




