

FACULTY OF SCIENCE AND TECHNOLOGY

MASTER'S THESIS

Study program/specialization:

Information Technology – Automation and

Signal Processing

Spring semester, 2016

Open

Author: Vegard Brattland

…………………………………………
(signature author)

Instructor: Tormod Drengstig

Supervisor(s): Tormod Drengstig and Ivar Austvoll

Title of Master's Thesis: Image Processing and Analysis of Leaf Movement in Mimosa

Pudica

Norwegian title: Bildebehandling og Analyse av Bladbevegelse I Mimosa Pudica

ECTS: 30

Subject headings: Image processing, Black

box model estimation, Optical flow, Mimosa

Pudica, Leaf movement

 Pages: 85

 + attachments/other: 23

 Kristiansand, 15th of June

 Date/year

[This page is intentionally left blank]

I

Abstract

This thesis has the aim of develop and improve methods used in an ongoing
research project at the University of Stavanger, where the plant mimosa pudi-
cas response to change in its illuminative conditions is being examined. The
intention is to use these methods to analyse the mimosa pudicas responses,
as well as exploring the possibility of relating them to a control theoretic
viewpoint.

An image processing routine, using the HSV color model and triangle in-
tensity threshold segmentation, was developed to segment time-lapse image
series of the Mimosa Pudica - quantifying the plants image pixel count as a
metric. The result was used to estimate the ARX, ARMAX and Box Jenk-
ins black box models, with the plants illuminative condition and image pixel
count being used as the systems input and output. A routine for a second
metric was also developed, using the method of Farneback to estimate dense
optical flow, describing the plants movement orientation in the image plane.

The automatic non-parametric image segmentation routine performance
was evaluated on 7 test images, obtaining a DICE similarity coefficient of
0.932 ± 0.0175. Several ARX, ARMAX and Box Jenkins models was esti-
mated without being able to capture the systems dynamics. The routine
describing mimosa pudicas movement orientation was during the experiment
found to give a seemingly correct description of a small time-lapse sequence.

The successfully development of a automatic non-parametric image seg-
mentation routine will remove the need of manual intervention. The observed
dynamics in the mimosa pudica indicates that the changes in the illuminative
condition could be working as a disturbance on the plant. The dense optical
flow experiments did also shown patterns of the mimosa pudica starting its
response to the shift in the illuminative condition, before the actual shift
occurred. This suggests that a complex structure could lie behind the plants
response to the illumination regimes.

II

Acknowledgements

This thesis marks the end of my studies in the field of Information Technol-
ogy - Automation and Signal Processing, at the University of Stavanger. I
would first like to thank my supervisor Professor Tormod Drengstig for his
help and guidance during the last semester. I would also like to thank Dr Ivar
Austvoll for his guidance and feedback on the image processing and motion
estimation parts of the thesis .

My last thank goes to my spouse, friends and work-colleagues for their
patience and support - which has kept me going the past five years.

III

Contents

1 Introduction 1
1.1 Approach and limitations . 3
1.2 Organization . 4

2 Experimental Setup 5
2.1 Mimosa Pudica . 5
2.2 Movement In Plants . 7
2.3 Experimental Environment . 7
2.4 Running Experiments . 9

3 Image Processing 10
3.1 Color Models . 11

3.1.1 RGB . 11
3.1.2 HSV . 12
3.1.3 CIELAB . 13

3.2 Color Model Comparison . 14
3.3 Image Segmentation . 15

3.3.1 Intensity-based Segmentation 16

4 System Identification 17
4.1 General Linear Polynomial Model 18

4.1.1 ARX . 19
4.1.2 ARMAX . 19
4.1.3 Box Jenkins . 20

4.2 Model Evaluation . 20

5 Motion Estimation 21
5.1 Method of Farneback . 22

5.1.1 Polynomial Expansion 22
5.1.2 Displacement Estimation 24

IV

6 Implementation 26
6.1 Settings and Image Information 27
6.2 Segmentation . 28
6.3 Plotting . 29
6.4 Motion Estimation . 31
6.5 Black Box Modeling . 34

7 Experiment 36
7.1 Color Models Comparison . 36
7.2 Image Segmentation Evaluation 43
7.3 Black Box Model Estimation 48
7.4 Motion Estimation Evaluation 60

8 Results and Discussion 70
8.1 Image Processing . 70
8.2 Black Box Modelling . 71
8.3 Motion Estimation . 72

9 Conclusion 75

V

List of Figures

1 Mimosa Pudica opening and closing leafs over 24 hours 1
2 Oscillatory response, preliminary experiment 2

3 Mimosa Pudica . 5
4 Mimosa Pudica stem and leaf description [37] 6
5 The mimosa pudica inside the chipboard box 7
6 The Mimosa Pudica experimental environment 8

7 RGB cube [35]. 11
8 HSV hexcone. 12
9 CIELAB color space . 13
10 Image lightness and brightness example 14
11 The dark regime (left) and the light intensity regime (right)

used in the color space comparison 14
12 Intensity threshold triangle method 16

13 Periodic to constant light regime oscillatory response 17
14 General Linear Polynomial Model 18

15 Projection of P1 onto the vertical line, indicated by P2 23

16 Flow chart of Matlab routines 26
17 Plot from Plotting function 30

18 RGB component histograms from dark and light regime 37
19 HSV component histograms from dark and light regime 39
20 CIELAB component histograms from dark and light regime . 41
21 Image segmentation - Oxford 102 category dataset 43
22 Image segmentation - Test image 1 45
23 Image segmentation - Test image 2 45
24 Image segmentation - Test image 3 45
25 Image segmentation - Test image 4 46
26 Image segmentation - Test image 5 46

27 Test dataset - Model estimation 48
28 Validation dataset - Model estimation 49
29 Test dataset, removal of non-stationary effects 49
30 Validation dataset, removal of non-stationary effects 50
31 Estimated model fitted to test dataset 51
32 Estimated model fitted to validation dataset 51
33 Saddled/sloped pixel count response 52
34 Images from saddle/sloped response 52
35 Secondary validation and test dataset 53
36 Estimated model fitted to secondary test dataset 54
37 Secondary estimated model fitted to secondary validation dataset 54
38 Secondary estimated model fitted to first test dataset 55
39 Secondary estimated model fitted to first validation dataset . . 55
40 First validation dataset step response 56
41 Transfer function fitted to first validation dataset step response 57
42 Transfer function model in Simulink 58
43 Transfer function fitted to first test dataset 59
44 Transfer function fitted to secondary test/validation dataset . 59
45 Pixel count data from images used in motion estimation . . . 60
46 Optical flow vectors . 61
47 Four cases of leaf movement 61
48 Mean gradient magnitude . 62
49 Motion estimation, direction estimation 63
50 Motion estimation, improved direction estimation 64
51 Motion estimation, smoothed and extended histogram 65
52 Plant movement sequence . 66
53 Orientation detection, whole dataset 68
54 Orientation detection, partition of dataset 69

List of Tables

7.1 Dice similarity coefficients - Otsu‘s method and Triangle thresh-
old . 47

7.2 Motion estimation, ratio 0.5 67
7.3 Motion estimation, ratio 0.4 67
7.4 Motion estimation, ratio 0.3 67

8.1 Dice similarity coefficients - Otsu‘s method and Triangle thresh-
old . 71

Chapter 1

Introduction

The work presented in this thesis has its origin from an ongoing research
project at the Institute of Data and Electronics (IDE) and Centre for Or-
ganelle Research (CORE) at the University of Stavanger, and deals with
responses observed in the plant mimosa pudica during changes in its illumi-
native condition.

The observation of the mimosa pudica plant over an extensive period of
time reveals that the plant opens and closes its leafs based on its illumina-
tive condition, as displayed in figure 1. These responses are described in the
literature [24] as being related to the plants circadian rhythm, which is a pe-
riodic, self-sustaining and temperature compensating [26] biological process.

Figure 1: Mimosa Pudica opening and closing leafs over 24 hours

1

Further research on the plants responses led to the construction of an
experimental environment, where a camera was installed to captured the
mimosa pudicas response to change in its illuminative conditions. These re-
sponse was quantified by an image processing routine, where the amount of
image pixels belonging to the mimosa pudica was used as a metric.

Experiments were then performed where a pattern of periodic illumi-
nation, imitating the daily period of day and night, followed by a constant
period with no changes in the illumination - resulted in a oscillatory response
of the mimosa pudica. This is from the literature known to be the plants
free-running period, originating from its self-sustaining attribute, where an
approximatly 24 hour rhythm continues to run during the constant illumi-
nation conditions [34].

One of the interesting observations that was found while studying the
literatures description of the free-running period, is that the free-running
period often was illustrated to continue its oscillation with a constant am-
plitude. This description was different from the observations that was done
during the experiments at IDE, where the metric that indicated the plants
response is displayed in figure 2. This figure reveals an oscillatory response
that is slowly decreasing towards a steady state, which is seemingly similar
to the underdamped step response known from the field of control theory.

Figure 2: Oscillatory response, preliminary experiment

This observation raised the questions; Is the mimosa pudicas response
purely biological, or can the plants responses be related to a control theoret-
ical viewpoint, and is it possible to estimate mathematical models that can
describe the system?

2

1.1 Approach and limitations

The scope of this thesis includes the continuation of the preliminaries work
that have been done at IDE. The first part involves the improvement of the
experiments image processing routine, which quantify the responses by using
the amount of image pixels belonging to the mimosa pudicas in each image
as a metric of its response. This operation is as today performed by a routine
that utilizes the RGB color model and the fully implemented Otsu‘s Matlab
function in its image processing. The challenge with the routine is currently
that three different threshold limits must be adjusted, which require user
to perform a trail and error search to obtain the optimal parameters. The
intention is to re-develop the method to a automatic non-parametric routine.

The proposed idea is then to use the results of the image processing
method as a metric in the estimation of linear black box models. It have
been chosen to limit the experiments to include three different models, which
is the linear ARX, ARMAX and Box Jenkins models. These estimation is
performed by considering the illuminative condition as the systems input and
the plants response, found by the image processing, as the systems output.

It has also been chosen to include motion estimation in the scope of
the thesis, motivated by the recent published article Tracking Rhythms in
Plants, an automated leaf movement analysis program for circadian period
estimation [12]. The authors of this article presents a method for vertical
movement estimation of plants. It will in this thesis be will look at the
possibility of develop an alternative metric, where one is interested in the
possibility of quantifying the plants horizontal movement in the image plane.

3

1.2 Organization

It have been chosen to organize the thesis as following

Chapter 2 - Experimental Setup
This chapter contains a brief introduction to the botanical terminology,
material and methods used in the thesis experiments.

Chapter 3 - Image Processing
This chapter contains a brief introduction to the botanical terminology,
material and methods used in the thesis experiments.

Chapter 4 - System Identification
This chapter contains an introduction to the ARX, ARMAX and Box
Jenkins black box models, and a description of the models goodness
evaluation.

Chapter 5 - Motion Estimation
The chapter explains the theoretical foundation behind the Farneback
method for estimating optical flow.

Chapter 6 - Implementation
This chapter contain a brief and general explanation of the most im-
portant Matlab functions developed for the experiments in the thesis.

Chapter 7 - Experiments
This chapter includes a detailed description about the experiments per-
formed in the thesis.

Chapter 8 - Results and Discussion
This chapter contains discussion and evaluation of the results obtained
in the experiment chapter.

Chapter 9 - Conclusion
This chapter contains the conclusion of the work performed in the the-
sis.

Appendix
Contains the Matlab code developed and used in the thesis.

4

Chapter 2

Experimental Setup

The purpose of this chapter is to present the experimental setup and intro-
duce the essential botanical terminology to the reader. The first section is
intended to give an introduction of the mimosa pudica, which is the plant
used in the experiment. It is then given a brief explanation of plant move-
ment in the following section, before the chapter is ended with a presentation
of the experimental environment.

2.1 Mimosa Pudica

The plant used in the thesis experiments is the mimosa pudica, known as the
common sensitive plant, sensitive plant, et alia, shown in figure 3. The mi-
mosa pudica originates from the tropical parts of America and is a perennial
plant (can live several years) that usually grows to be about 15 - 45 cm tall.

Figure 3: Mimosa Pudica

5

The plants in the experiment is first grown for 3 - 4 weeks, before they
are moved to the experimental environment that is introduced in section 2.3.
The young plants will usually consist of two to four compound leafs that con-
tain between 7 and 10 pairs of leaflets arranged in a bi-pinnate (feather like)
pattern. These leaflets is observed to be in the color range of dark greenish
to yellowish with an oblong shape.

Figure 4: Mimosa Pudica stem and leaf description [37]

One of the favourable properties of the mimosa pudica from a experi-
mental viewpoint is the mimosa pudicas rapid response to stimulus. These
responses originate from the plants different pulvinus, which can be described
as motor organs that causes movement by increasing or decreasing the tugor
pressure of the pulvinus cells [38]. The mimosa pudica has three different
pulvinis, which includes a primary pulvinus at the joint of the petiole and
stem, a secondary pulvinus located in the joints between the petiole and
rachis, and tertiary pulvinus found at the base of each leaflet. The different
pulvinis has also been proven to respond differently [11] , where an example
is that the primary and tertiary pulvinus of the mimosa pudica responds to
touch or vibration - while the secondary pulvinus does not.

6

2.2 Movement In Plants

Motion in plants is a challenging subject as the movements can be classified
as repetitious and rhythmic, or provoked - which again can be separated
into nastic and tropic movements [24]. The difference between the latter
two is that tropic movement depends on the direction of the stimulus, where
a familiar example could be a flowers movement towards the direction of
sunlight. Nastic movements is opposite and does not depend on the direction
of the stimulus, which e.g. can be observed as the leaf contract as a result
of change in the illumination with the onset of darkness. The motion that
is observed can also be said to be either non-reversible, where the movement
for example is a result of plant growth, or reversible, which is a movement
that originate from the plants pulvinus.

2.3 Experimental Environment

The mimosa pudica plants that are used in the experiment is first grown for
3 to 4 weeks until their height are approximately 3 - 5 centimetres. The plant
that is chosen to be used in the experiment is then moved to the experimental
environment, which is inside a closed container made up by white colored chip
boards. When the plant has been placed inside the container, a blueish A4
sized paper is attached around the mimosa pudicas lower stem, only revealing
the shoot system of the plant. This is shown in figure 5 and has the intention
of making an uniform background that simplifies the image processing.

Figure 5: The mimosa pudica inside the chipboard box

7

The experiment that is performed in the thesis has the intention of ex-
amine the response of the mimosa pudica during changes in its illuminative
conditions. These responses is provoked by using two different illumination
regimes, named light regime and dark regime, as stimulus. The illumination
sources used in the light regime consist of 4 strips of 9 light emitting diodes,
while the dark regime uses 1 strip of 9 light emitting diodes with five of
the diodes covered. The light emitting diodes strip produce 0.7 watts with
a color temperature of 4000 K per diode and is attached to the container wall.

The experiments with each plant will usually be running for several days
where the stimulus is changed with a periodic pattern or kept constant in a
certain regime. The plants movement will in this period be recorded as a 3
to 5 minute interval time-lapse series by a Logitech C615 full HD 1080p web-
camera that is installed vertically above the mimosa pudica. The camera is
installed on two metal rails inside the container and is shown together with
the light emitting diode strips in figure 6.

Figure 6: The Mimosa Pudica experimental environment

8

2.4 Running Experiments

The experiment procedure used during the experiments is usually executed
by first exposing the mimosa pudica for a periodic interval of the light and
dark regimes. The periodic interval is run for a chosen duration of time,
before there is either a

� change in the light or dark illumination regime duration, changing or
shifting the periodic interval.

� change into a constant light or dark illumination regime.

The intention of doing changes in the stimulus of the mimosa pudica is to
observe the different provoked responses. These responses is captured and
continuously saved to a computer as long as the experiment last, which could
be everything from days to weeks to months. It has been chosen to only run
one experiment at the time, where it is usually chosen to start a new exper-
iment when the plant either wither or grow too large for the experimental
setup.

9

Chapter 3

Image Processing

The purpose of the image processing section in the thesis is to find a method
which can identify and count the image pixels that are a member of the
mimosa pudica plant. The first part examines and compare different color
models by looking at the individual components. The next step is to seek
a suitable segmentation method to segment the image based on properties
from the chosen color model.

10

3.1 Color Models

The time-lapse series in the thesis consist of images taken every third or fifth
minute over a period of several days, and includes challenging conditions like
alternating illumination, object movements causing change in local shading
and foreground object with varying color and shape. This emphasize the
need to evaluate and investigate different color models to examine which
representation that lay the best foundation to the task of segmenting the
foreground object from the background. The color models that has been
chosen to be examined is the well known RGB, the color specification based
HSV and the color difference based CIELAB.

3.1.1 RGB

The RGB is a color model where the obtainable colors can be described
as a weighted combination of the three primary colors red, green and blue.
The color space, which is a geometric representation of the gamut, is usually
represented as the unit cube shown in figure 7 - with the primary colors red,
green and blue located at the coordinates (1, 0, 0), (0, 1, 0) and (0, 0, 1).

Figure 7: RGB cube [35].

The weights used to describe a colors content of the primaries will in
the thesis be represented by a vector (IR, IG, IB), where I is the weight or
intensity of the primaries, and the subscripts are abbreviations for red, green
and blue. Examples of its use is best seen in figure 7 where e.g equal values
of (IR, IG, IB) result in a line of gray scales running from black at (0, 0, 0) to
white at (1, 1, 1), while the combination of two fully weighed primary colors
(1, 1, 0), (0, 1, 1) and (1, 0, 1) gives yellow, cyan and magenta.

11

3.1.2 HSV

The HSV color model is obtained by doing a non-linear transformation of
the RGB color model and is often represented as a hexcone color space. The
purpose of the HSV color model is to provide an easier way to describe color
specification in computer graphics [16] by using the terms hue, saturation
and value.

Figure 8: HSV hexcone.

The HSV color space is shown in figure 8 where the different colors can
be specified by a vector (hue, sat, val). The hue component is represented as
an angle ∈ [0 360], relative to red. The angular value is describing how the
color appears to be similar to the RGB primary colors, which are placed with
an angular spacing of 120◦ in their natural order. The value component is
represented by the line from black to white in the center of the hexcone and
is said to be equivalent to the term brightness [10]. This can be compared
with the diagonal with gray scales from black to white in the RGB cube and
is usually represented as a value ∈ [0 1]. The saturation component is often
compared to the purity of the color, where a highly saturated area will seem
chromatic in comparison with its associated brightness level. Saturation is
usually represented as a value ∈ [0 1], where an example of a fully saturated
color could be the RGB primaries red, green and blue.

12

3.1.3 CIELAB

CIELAB is a uniform color model developed by the International Commis-
sion on Illumination that was designed to be used for specification of color
differences. This means that the difference of two colors in the color space
can be described by the euclidean distance between them [10].

Figure 9: CIELAB color space

An example of a representation of the CIELAB color space is shown in
figure 9, where the axis are described by the L*, a* and b* components. The
L* component is the perceived lightness and is represented as the line from
black to diffuse white with a value ∈ [0 100]. Lightness can be interpret as
a relative brightness, and is best explained by using the white partly shaded
wall in figure 10 as an example. The wall surface will in terms of lightness
appear to be uniformly white because the term is judging the brightness
on the wall relative to the brightness of similarly illuminated areas. The
brightness of the wall will not be uniform because it is an absolute measure
that in this case is affected by the shades at the corner and the shadows
from the trees [21]. The two remaining components in the CIELAB color
space is the a* and b* components which describes the colors green-red and
blue-yellow content. The obtainable values of these components depends on
the color model that the image is converter from [7], and is in the case of
converting from RGB with the Matlab command rgb2lab found to be a*
∈ [−86.17 80.11] and b*∈ [−107.85 94.48]

13

Figure 10: Image lightness and brightness example

3.2 Color Model Comparison

The purpose of this section is to compare and evaluate the three color models
representation of the two images in figure 11, taken from the dark and light
regime.

Figure 11: The dark regime (left) and the light intensity regime (right) used
in the color space comparison

14

It has been chosen to compare the three color models in terms of how
their individual components represents useful information about the images,
where the important factor will be the individual components ability to pro-
vide information that makes it possible to distinguish the background and
the foreground. The tools that is used in the comparison is the individual
components histograms and the Color Thresholder application in the Matlab
Image Processing and Computer Vision toolbox.

A detailed comparison of the three color models is found in the Color
Models Comparison Experiment in Chapter 7.1, with the conclusion that
best individual components from each color model is the blue component from
RGB, the hue componet from HSV and the b* component from CIELAB.
The blue RGB component is not chosen since the difference in the light and
dark histogram distribution indicates that it is the component who is most
affected by changes in the illumination. Both the hue from HSV and b* from
CIELAB seem to provide much of the same result when being evaluated,
and there has not been found any other reason for choosing the one over the
other except the more intuitive representation of the hue component. This
is also the reason why the HSV color model will be used in the further image
processing of the thesis.

3.3 Image Segmentation

Image segmentation is in many occasions one of the first operations that
is performed on the image and can be the foundation for the remaining
image processing. The aim of the segmentation is to identify and distinguish
regions in an image based on e.g. chosen properties, where an example is to
separate a foreground object from a background based on color. One of the
challenges with image segmentation is the lack of a universal method [25],
and the method must therefore be chosen based on the problem to be solved.
It will in this thesis be attempted to implement a method from one of the
most basic types of image segmentation techniques, which is the threshold or
intensity-based method. This method usually work by doing a comparison
of each pixel value (intensity) against one or several threshold values.

15

3.3.1 Intensity-based Segmentation

The image segmentation used in the thesis is an intensity-based segmen-
tation method that locate a threshold value from the hue component his-
togram. The hue component of the image pixels ∈ [0◦ 360◦] is assigned into
100 histogram bins, meaning that the first bin will contain the number of
hue components ∈ [0◦ 3.6◦], the second bin will contain the number of hue
components ∈ (3.6◦ 7.2◦] and so on. This arrangement, together with the
prior knowledge of an almost uniform blueish background, implies that the
background will be seen as a narrow symmetric uni-modal distribution in the
histogram. This suggests that a suitable intensity threshold can be found by
implementing a triangle based method [40] as shown in figure 12.

Figure 12: Intensity threshold triangle method

The method starts by locating the (i) largest- and (ii) first non-zero his-
togram bin by iterating through the histogram data. Their location is then
used to calculated parameters for a straight line connecting the two bins, as
shown by the black in line figure 12. The next step in the algorithm is to
calculate the distance between the blue line and each of the bins that lay in
the range between the largest- and first non-zero histogram bin, as shown
with the double arrowed red line. The most suitable pixel intensity thresh-
old is then assumed to be represented by the histogram bin with the largest
distance to the line.

16

Chapter 4

System Identification

One of the observed activities seen in the time-lapse series of the mimosa
pudica is the folding and unfolding of the plant leafs. These activities were
made quantifiable by the image segmentation presented in the previous chap-
ter, where the folding and unfolding of leafs is observed to result in a decrease
and increase in foreground pixels, respectively. The increase and decrease of
pixel count, as seen in figure 13, is in this section considered a measure that
indicates the plants response to changes in the illumination regime.

Figure 13: Periodic to constant light regime oscillatory response

The available datasets reveals that the changes from dark to light regime
has a tendency to increase the amount of foreground pixels, while a change
from light to dark regime tend to cause a reduction. It is also observed that
a change from a periodic light regime pattern into a constant illumination
seem to cause oscillatory responses. These observations raises the question
whether the plants response to the change in its illuminative condition is

17

purely biological, or if it is possible to relate the oscillatory response to a
control theoretic mindset.

The purpose of this section is to first present the parametric black box
method for modelling the system, where the theoretic foundation for three
different versions of the general linear polynomial is presented. This is fol-
lowed by a section that describes how the model estimations are being eval-
uated. The experimental results of the model estimation is found in chapter
7.3.

4.1 General Linear Polynomial Model

The system identification that is performed in this chapter is by a parametric
method called black box modelling, where one assumes that the system that
is being modelled is unknown [23]. Mutually for all black box models used in
this thesis is that they have their basis from the general linear polynomials
in equation 4.1, which can be divided into set of deterministic and stochastic
rational transfer functions [27] .

A(q)y(k) =
B(q)

F (q)︸ ︷︷ ︸
Deterministic

u(k) +
C(q)

D(q)︸ ︷︷ ︸
Stochastic

e(k) (4.1)

The deterministic and stochastic transfer functions is in this case used to
describe the dynamics and disturbance of the system of interest [4], and
might be best visualized as shown in figure 14, where u(k) is the system
input, y(k) is the system output and e(k) is assumed to be white noise.

Figure 14: General Linear Polynomial Model

18

4.1.1 ARX

The AutoRegressive with eXogenous input (ARX) model is a simplification
of the general linear polynomial model in equation 4.1, and is obtained by
setting C(q) = F (q) = D(q) = 1. This yields the model shown in equation
4.2, where the autoregressive component is given by A(q)y(k), the exogenous
component is given by B(q)u(k) and a white noise term is given by e(k).

y(k) =
B(q)

A(q)︸ ︷︷ ︸
deterministic

u(k) +
1

A(q)︸ ︷︷ ︸
stochastic

e(k) (4.2)

The result of the simplifications in the ARX model is that the deterministic
and stochastic transfer functions share the same denominator, implying that
system noise and dynamics cannot be modelled independently [22]. This
makes the ARX, and the soon to be introduced ARMAX model, most suitable
the cases where we experience load disturbances [23].

4.1.2 ARMAX

The AutoRegressive Moving Average with eXogenous input (ARMAX) model
is obtained by setting F (q) = D(q) = 1. The ARMAX model can be viewed
as an extension of the ARX model, where the stochastic transfer function in
this case includes a moving average model component C(q)e(k). This changes
equation 4.1 into equation 4.3, where the deterministic and stochastic transfer
functions still have identical denominators.

y(k) =
B(q)

A(q)︸ ︷︷ ︸
deterministic

u(k) +
C(q)

A(q)︸ ︷︷ ︸
stochastic

e(k) (4.3)

The benefit of using an ARMAX compared with ARX model is the increased
flexibility in the disturbance transfer function, introduced by the moving
average component. This makes ARMAX preferrable in the cases where the
disturbance cannot be modelled by a single term e(k), while the ARX can
in cases of high signal to noise ratio [18] be both suitable and beneficial for
a fast estimation of simpler systems.

19

4.1.3 Box Jenkins

The Box Jenkins (BJ) model is obtained by setting A(q) = 1, giving the
model shown in equation 4.4. It is seen that the deterministic and stochastic
set of transfer functions now have different denominators, making it possible
to model the systems dynamics and disturbance independently.

y(k) =
B(q)

F (q)︸ ︷︷ ︸
Deterministic

u(k) +
C(q)

D(q)︸ ︷︷ ︸
Stochastic

e(k) (4.4)

The different denominator polynomials in the Box Jenkins model allows an
independent modelling of the systems dynamic and disturbance, thus, making
the Box Jenkin model favourable in the cases where the disturbance for
example is found as measurement noise [23].

4.2 Model Evaluation

The Mathworks Matlab workspace offers a broad range of different methods
for the evaluation of a models fit to some data-set, and it has in this thesis
been chosen to use the Akaike‘s Information Criteria (AIC) in the initial
search of model order combinations. The AIC is a measure that can be used
to compare the quality of a set of black box models to a particular dataset,
where a lower AIC value implies a better model [5].

The AIC formula is shown in equation 4.5, where k is the independent
adjustable parameters in the model and L is the models maximum likelihood
function [1]. This results in a criterion that favours both models with fewer
parameters, in terms of 2k, as well as the models goodness of fit, in terms of
a higher log likelihood 2log(L).

AIC = 2k − 2log(L) (4.5)

The second evaluation method is the normalized root-mean-square error
(NRMSE), which is used to compare fit of the different black box models
against the validation data. The NRMSE is given by equation 4.6, where
ytest is the test or validation data samples, ymodel is the estimated output
from the black box model and µdata is the mean value of the test or validation
data samples.

fit = 100

(
1− ‖ ydata − ymodel ‖

‖ ydata − µdata ‖

)
(4.6)

20

Chapter 5

Motion Estimation

The idea of estimating the movement of the leafs in the time-lapse series
has its root in a recent published article [12], that uses two frame motion
estimation to find the vertical movements of plants in conjunction with cir-
cadian period estimation from a 20 minute interval time-lapse series. The
experiment performed in the thesis has a slightly different approach, as it is
performed an estimation of the mimosa pudicas horizontal movement, with
a 3 - 5 minute interval time-lapse series.

The motion estimation in the thesis has been chosen to be executed by
one of the already implemented dense optical flow algorithms in the Math-
works Matlab 2015b Computer Vision System Toolbox. Dense optical flow
is described as the computation of an [36] ”independent estimate of motion
at each pixel” and is a measure of pixel movement between two succeeding
images [3]. The first of the two available dense optical flow algorithms in
Matlab is the Horn-Schunck method, which finds the optical flow under the
assumption of the brightness and smoothness constraint. These constraints
imply an assumption of pixel values (intensity) remaining the same after the
pixel is being displaced a small distance in the succeeding images, as well as
assuming that the velocity of the displacements varies smoothly [15]. The
second dense optical flow algorithm is the orientation tensor based method
of Farneback, which approximates the image pixel neighbourhoods of two
succeeding images as polynomials. The approximated polynomials is then
used to find the displacements, under the constraint of slowly varying dis-
placement fields [9].

The algorithm that have been chosen to be implemented for the estima-
tion of motion is the method of Farneback. The method has the benefit
of being able to estimate motion at coarser scale due to its pyramid layer

21

implementation, and thus making it more suitable to estimate the larger dis-
placements associated with e.g. leaf contraction. It also has the benefit of
being tensor based algorithm, which is ideal for Matlab implementation in
terms of running speeds.

5.1 Method of Farneback

The Gunnar Farneback method is a two-frame motion estimation algorithm
that uses polynomial expansion, where a neighbourhood of each image pixel
is approximated with the bivariate quadratic polynomial in equation 5.1 ,
resulting in a local signal model [9].

f(x) v xTA˜x + bTx + c (5.1)

The vector x is in this case a 1 × 2 vector containing the running variables
x and y, A˜ is a 2 × 2 symmetric matrix of unknowns, b is a 2 × 1 vector
of unknowns and c is a unknown scalar. Writing it in terms of tensors gives
equation 5.2, where the unknown coefficients is defined by the symbol ri.

f(x) v
[
x y

] [r4 r6
2

r6
2

r5

] [
x
y

]
+
[
r2 r3

] [x
y

]
+ r1 (5.2)

5.1.1 Polynomial Expansion

The quadratic polynomial in equation 5.1 can alternatively be expressed on
the form shown in equation 5.3 by multiplying the tensors in equation 5.2

xTA˜x + bTx + c = r1 + r2x+ r3y + r4x
2 + r5y

2 + r6xy (5.3)

The idea is that the quadratic polynomial displayed in equation 5.3 is used to
approximate a local signal model of each image pixels neighbourhood, where
the neighbourhood is represented by the m × m matrix F˜ . The operation
starts by arranging the m ×m matrix F˜ into a n × 1 column vector f , by
stacking the matrix columns in F˜ from left to right. This makes it possible
to see f as an element (vector) in a n dimensional vector space Cn. The
next step is to define a new subspace of Cn, spanned by a set of 6 linear
independent n× 1 basis functions bi, kept inn a n× 6 matrix B˜ . The size of
bi, which in this case is n× 1, indicates that the basis functions are elements
in Cn, while their linear independence imply that a set of 6 basis vectors will
span the subspace C6. It is then sought to find the vector in the subspace C6

that is closes to the neighbourhood vector f in the vector space Cn, which

22

is the projection of the neighbourhood vector f onto the column space of B˜ .
This is best visualized with coordinate systems of lower dimensions as seen
in figure 15, where the closes point on the vertical line with regards to the
point P1 in the two dimensional space, is the projection of P1 onto the line,
indicated by P2.

Figure 15: Projection of P1 onto the vertical line, indicated by P2

The search for a vector in the subspace C6 that is closest to the vector f
in the vector space Cn can alternatively be seen as the least square problem
shown in equation 5.4, as you are finding the coefficients ri to the vector Br
that are minimizing the distance to the vector f

argmin ‖ B˜ r − f ‖ (5.4)

One of the challenges in a pixel neighbourhood is uncertainties, which can
be caused by e.g. missing or corrupt data [8] . The Farneback method is
solving this by using a n × 1 vector c that specifies the certainty of each
image pixel in the neighbourhood vector f . The result is that missing data
from cases like border effects is weighted down with a low or zero valued
certainty. In addition, the method is also using an n× 1 applicability vector
a that indicates the significance of the pixels in the neighbourhood f . This
can be used to e.g. represent a higher importance of certain pixels. With
weighting taken into account, the coefficients in the polynomial expansion is
solved by finding a column vector r that minimizes ‖ B˜ r − f ‖W˜ , where r

is the weighted least squares solution.

argmin ‖ B˜ r − f ‖W˜ (5.5)

23

The weights are formed by changing the applicability and certainty vectors
to diagonal matrices and multiplying them together. Solving equation 5.5
gives the weighted least square solution in equation 5.6

r = (W˜B˜)†W˜f (5.6)

5.1.2 Displacement Estimation

The polynomial approximation that was performed in the previous subsec-
tion resulted in the weighted least square solution r, which is used in the
pixels local model shown in equation 5.7. These local pixel models are now
used in the the derivation of the algorithms displacement estimation, as de-
scribed in Gunnar Farnebacks paper ”Two-Frame Motion Estimation Based
on Polynomial Expansion” [9].

f(x) v xTA˜x + bTx + c (5.7)

The example that is used in the derivation will start by assuming that we
have a local signal model of a pixel neighbourhood f

1
(x), that is described

by the polynomial coefficients A˜ 1
, b1 and c1. It is then chosen to make a

new local signal model f
2
(x), that is identical to f

1
(x) but displaced by d.

The displaced local signal model f
2
(x) can then be formulated as shown in

equation 5.8

f
2
(x) = f(x − d) v (x− d)TA˜ 1

(x− d) + bT1 (x− d) + c1 (5.8)

Multiplying the tensors in equation 5.8, results in equation 5.9

f
2
(x) v xTA˜ 1

x− xTA˜ 1
d− dTA˜ 1

x + dTA˜ 1
d + bT1 x− bT1 d + c1 (5.9)

The A matrix is as stated earlier a symmetric matrix, which gives it the
property A˜ = A˜ T [2]. This makes it possible to rewrite equation 5.9 as
equation 5.10

f
2
(x) v xTA˜ 1

x + (b1 − 2A˜ 1
d)Tx + dTA˜ 1

d− bT1 d + c1 (5.10)

The new local neighbourhood model f
2
(x) can then be changed back to the

local signal model form as shown in equation 5.7 by defining the new tensors
in equation 5.11, 5.12 and 5.13

A˜ 2
= A˜ 1

(5.11)

b2 = b1 − 2A˜ 1
d (5.12)

24

c2 = dTA˜ 1
d− bT1 d + c1 (5.13)

Which result in equation 5.14

f
2
(x) v xTA˜ 2

x + bT2 x + c2 (5.14)

The result is that equation 5.12 can be used to find the displacement d under
the assumption that A˜ 1

is invertible, as shown in equation 5.15.

d = −1

2
A˜−11

(b2 − b1) (5.15)

The example derived from a single pixel neighbourhood in both images, re-
sulting in equation 5.15, can now be related to each of the individual pixel
neighbourhoods in both of the images. The generalization is performed by
using the pixels spatial coordinates as indicated by the indexing (x, y). It is
also stated in derivation in the article [9] that the ideal case of equation 5.11
is changed to the more realistic approximation in equation 5.16, while the
−1

2
(b2 − b1) term in equation 5.15 is changed to 4b.

A˜ (x, y) =
A˜ 1

(x, y) + A˜ 2
(x, y)

2
(5.16)

This changes equation 5.15 into equation 5.17

A˜ (x, y)d(x, y) = 4b (5.17)

It is then attempted to find the displacement d(x, y) that best satisfies equa-
tion 5.17. This is equivalent with minimizing equation 5.18, where I is the
neighbourhood around the pixel with coordinate (x, y) and ω(4x,4y) is a
Gaussian weight function.∑
4x,4y ∈I

ω(4x,4y) ‖ A˜ (x+4x, y +4y)d(x, y)−4b(x+4x, y +4y) ‖2

(5.18)
Where solving for d(x, y) in equation 5.18 gives equation 5.19

d(x, y) =
∑

(ωA˜ TA˜)−1
∑

ωA˜ T 4 b (5.19)

25

Chapter 6

Implementation

The purpose of this chapter is to give a brief presentation of the implemented
Matlab routines that are used in the thesis. A simplified overview of the
routine work flow is shown in figure 16, where rectangles describe the different
parts of the program and arrows indicates the flow of information.

Settings

Image Information

Segmentation

Pixel Count Motion Estimation

Black Box Models

Iterative method

Hue matrix

Figure 16: Flow chart of Matlab routines

26

6.1 Settings and Image Information

The settings and image information part of the routine consist of the ini-
tial directory settings and the functions Mapper, BildeInformasjon and
LightDarkVector. The initial directory settings is the first part of the pro-
gram where the image directory main path and the time-lapse series of choos-
ing is selected. These are variables that are fed into the function Mapper,
which returns a struct element that contain all the directory paths used in
the thesis.

1 % Folder with the image data
2 mappe = 'C:/Users/Vegard/Documents/MATLAB/Bilder';
3

4 % Image folder and camera direction
5 bildeDato = '/date 20160130';
6 kameraRetning = {'/camera1 top','/camera2 buttom'};
7

8 % Generating structure with folder and image names
9 mappeStruktur = Mapper(mappe, bildeDato, kameraRetning);

The next function, BildeInformasjon, uses the mappeStruktur element to
gather information about the time-lapse period, including time of start, du-
ration etc. This information, together with illumination regime informa-
tion from the Matlab file LightDark.m, is used as input to the function
LightDarkVector, which have the role of creating a vector that provides
information about the illumination regime at each sample in the time-lapse
series.

1 % Loading Dark Light regime file
2 run(sprintf('%s%s/LightDarkRegime/%s', ...

mappe,bildeDato,'LightDark.m'));
3

4 % Finding timelapse periode and first image offset
5 [timeLapsePeriode OffsetForsteBilde] = ...

BildeInformasjon(mappeStruktur);
6

7 % Making a Day-Light-Constant vector.
8 DLCvect = LightDarkVector(DarkLightConstant,...
9 timeLapsePeriode,OffsetForsteBilde);

The returned vector named DLCvect is used in the plotting function Plotting,
described in the last section of the chapter.

27

6.2 Segmentation

Segmentation of the image is performed by the function FargeTilSortHvitt,
which uses the image from the time-lapse series as input and returns the
segmented image and hue component matrix. The image to be segmented
is found by picking the images in the time-lapse series folder in consecutive
order. It has also been chosen to crop the images in some cases to reduce
the computational complexity in the cases where the background does not
contain useful information.

1 % Reading path from the mappeStructure file
2 bilde = ...

imread(sprintf('%s/%s',mappeStruktur.mappeOriginal,...
3 mappeStruktur.infoOriginal(i).name));
4

5 % Cropping image
6 bilde = bilde(1:end-50,1:end-175,:);
7

8 % Segmenting by FargeTilSortHvitt
9 [binBilde picture] = FargeTilSortHvitt(bilde);

The FargeTilSortHvitt works by first converting the image to the HSV
color mode by the Mathworks Matlab rgb2hsv function, before the hue
component matrix is extracted and the hue pixel values are arranged into
a histogram with 100 bins. It is then chosen to smooth the histogram by a
moving average filer before it is used as input to the triangle based intensity
threshold function triangle th, developed and shared by B. Panneton [30]
at the Mathworks file exchange.

1 % Using triangle method to find threshold
2 triThreshold = triangle th(imageHistSmooth,100);
3

4 % Making a segmentation mask
5 hueSegmented = imcomplement(im2bw(hue,triThreshold));

The triangle th function returns an intensity threshold based on the
method described in section 3.3.1, which is used as the threshold in the
Matlab function im2bw. The compliment of the im2bw function is a binary
image where the foreground consist of binary ones and the background consist
of binary zeros.

28

6.3 Plotting

The result of the segmentation is a matrix with either binary ones or zeros,
where the total amount of binary ones is found by using the matlab sum

function. The pixel count and the DLCvect is then used as input to the
function Plotting, which have the purpose of plotting the pixel count of
each time-lapse series image.

1 % Plotting pixel count
2 Plotting(antallHvitePiksler,DLCvect)

The Plotting functions works by first iterating through the DLCvect, where
the length and shifts of illumination regimes in stored in the vectors DLCLength
and DLCChangeIndex. This makes it possible to indicate the duration of the
light, dark and constant illumination regimes by a yellow, black and red col-
ored bars, as well as emphasize their start and stop by a black vertical line.
The necessary information to create the indication bars are found by locat-
ing the center of the illumination period, converting the period duration from
minutes to hours and finding the bars color.

1 % X-Coordinate for center of indication bar
2 indBarCenterX = DLCChangeIndex(i)+(DLCLength(i)/2);
3 % Length of periode in hours
4 indBarTime = int2str((DLCLength(i)*3)/60);
5 % Indication bar color
6 indBarColor = DLCcolorMatrix{DLCvect(DLCChangeIndex(i))};

Each of the indication bar is made by the Matlab function rectangle, where
the DLCChangeIndex, yaxisOffset and yaxislimits variables is used to
align the bars to the correct x- and y axis coordinates. The DLCLength and
indBarHeight contains information about the bars length and height, while
the indBarColor specifies its color.

1 % Plotting Indication bar
2 rectangle('Position',[DLCChangeIndex(i),yaxislimits(1)-...
3 yaxisOffset, DLCLength(i),indBarHeight],...
4 'FaceColor',indBarColor)

Much of the same variables is used to plot the rectangular windows indicating

29

the illumination regimes start and stop, as well as the text describing the
regime duration. It was also chosen to add an if-statement changing the text
color to white in the cases where the indication bar is black.

1 % Plotting rectangular Window
2 rectangle('Position',[DLCChangeIndex(i),yaxislimits(1),...
3 DLCLength(i),windowHeight]);
4

5 % Adding text to indication bar
6 if isequal(indBarColor,[0 0 0])
7 text(indBarCenterX,yaxislimits(1)-yaxisOffset+1000,...
8 indBarTime,'HorizontalAlignment','center',...
9 'color','white')

10 else
11 text(indBarCenterX,yaxislimits(1)-yaxisOffset+1000,...
12 indBarTime,'HorizontalAlignment','center');
13 end

One of the goals of the experiments was to look at the response after a
change from periodic to constant illumination regimes, which meant that the
change in periodicity had to be highlighted. This was solved by shifting the
indication bars down one level at each periodicity change by an offset equal
the height of the bar. It was also chosen to plot one of the last light and dark
regime with a fainter color. The result of the Plotting function is shown in
figure 17.

Figure 17: Plot from Plotting function

30

6.4 Motion Estimation

The motion estimation code used in the thesis starts by creating an optical
flow object called opticFlow.

1 % Creating an optical flow object
2 opticFlow = opticalFlowFarneback;

This object, together with the hue component from the image segmentation,
is used as input to the function estimateFlow. The estimateFlow function
calculates the optical flow between two subsequent images and returns the
Vx and Vy velocity components and the gradient orientation and magnitude.

1 % Estimating Vx, Vy, Magnitude and Orientation
2 flow = estimateFlow(opticFlow, bilde);

The two variables that were used in the motion estimation experiment is
the optical flow orientation and magnitude, stored under the variable names
flowOrientation and flowMagnitude. It was in the Motion Estimation
Experiment in chapter 7.4 found that the optical flow orientation could be
used if every image gradients first was thresholded by the mean image gra-
dient magnitude. This was performed by making a logical mask of the
flowMagnitude variable, where the optical flow magnitudes above 70% of
the mean optical flow magnitude was assigned the value 1 - while the ones
below was assigned the value 0 . The flowMagnitude mask was then used to
change the gradient orientation values in the individual image pixels to NaN,
in the indexes where flowMagnitude was zero valued. This operation was
performed after the optical flow orientation had been converted from radians
to degrees.

1 % Only keeping optical flow magnitudes above 70% of mean ...
magnitude value

2 flowMagnitude = flowMagnitude > (meanMag*0.7);
3

4 % Converting from radians and rounding
5 degreeMat = round(rad2deg(testvarOri));
6

7 % Converting from [-pi pi] to [0 360]
8 lessThanZero = (testvarOri < 0)*360;
9 degreeMat = degreeMat + lessThanZero;

10

31

11 % Thresholding, setting values below threshold equal NaN.
12 for k=1:800
13 for j=1:550
14 if flowMagnitude(j,k) == 0
15 degreeMat(j,k) = NaN;
16 end
17 end
18 end

The optical flow orientations was then arranged into a image histogram with
72 bin, where each bin covers a 5◦ range. The histogram data was also
extended by 100◦ to prevent the discontinuity at 360◦, as well as being filtered
with a moving average filter by the Matlab smooth function. A moving
window, ranging over 11 histogram bins, was then made by a for loop to
locate if there were histogram areas that indicated movement in the image.
The histogram values of the bin encapsulated by the window and window
index start was saved to the variables winVal and winStart. The window
with the highest value in 11 consecutive histogram bins was then compared
with the total amount of the histogram value, where the ratio was calculated
and saved to percentInWindow.

1 % Finding the window with highest values
2 for h=1:length(histoSmooth)-winSize
3 calcWinVal = sum(histoSmooth(h:1:(h+winSize-1)));
4

5 % Saving highest amount and window start
6 if calcWinVal > winVal;
7 winVal = calcWinVal;
8 winStart = h;
9 end

10 end
11

12 % Calculating percentage
13 percentInWindow = winVal/sum(histo.Values)

The last operation in the motion estimation experiment was to evaluate and
find the peaks for each window. It was chosen that a window had to contain
a certain orientation histogram values if it would be classified as an indica-
tion of plant movement. If a window contained enough values, the Matlab
findpeaks function would be used to find the peak value within the chosen
range - with the orientation saved to the variable direction. It was also
chosen to convert the orientation values ∈ [360 460] to the range [0 100],

32

as well as setting the direction values of the histogram where no windows
contained more than 30% of the total histogram values, equal NaN.

1 % Evaluating largest window
2 if percentInWindow > winPerThres
3 [peakValue location] = ...

findpeaks(histoSmooth(winStart:1:...
4 (winStart+winSize-1)),'MinPeakDistance',9);
5

6 % Finds the peak location
7 peakLocation = winStart + location;
8

9 % 72 histogram bins equals 5 degree per bin
10 direction(i) = peakLocation*5
11

12 % Changing the directin to range (0 - 359)
13 if direction(i) > 359
14 direction(i) = direction(i) - 360;
15 end
16 else
17 % If not above threshold, direction equals NaN
18 direction(i) = NaN;
19 end

33

6.5 Black Box Modeling

The black box modelling was performed by developing the script modelEst,
which imports the pixel count and illumination regime variables from the
Matlab workspace. The pixel count data is first pre-processed by the use
of detrend and smooth, before the test and validation dataset was ar-
ranged into iddata structures with the variable names modelTestData and
modelValData. The iddata structure is the data structure used as one of
the input variables to the Matlab arx, armax and bj functions, which is used
to estimate the ARX, ARMAX and Box Jenkins models.

1 if arxEstimation == 1
2 for na = 1:5
3 for nb = 1:5
4 for nk = 1:5
5 arxSys = arx(modelTestData,[na,nb,nk]);
6 % Saving the best fit (AIC)
7 if arxSys.Report.Fit.AIC < bestAICARX
8 bestAICARX = arxSys.Report.Fit.AIC;
9 bestARXModel = arxSys;

10 end
11 end
12 end
13 end
14 end

The estimation of each black box model is initiated by setting their if state-
ments true, here seen by the example of the ARX model, making it possible
to estimate one model at the time. Each model is estimated by an iterative
exhaustive search where each obtained Akaike‘s Information Criteria (AIC)
score is compared against, the until then, best AIC score, which in the case
of ARX is kept in the variable bestAICARX. The current model AIC score
and order is then saved if the model obtains a better score than the previous
calculated models.

The script does also offer two more possibilities, which includes testing
the goodness of the model in terms of NRMSE as well as converting the data
to SIMULINK compatible variables. The goodness of fit is found by using the
Matlab compare function, which uses the modelTestData or modelValData

and the estimated model that is being tested, modelToTest, as input. The
compare function used is seen to provide several outputs, where the one that
is used is the fitTest and fitVal, which provides the NRMSE between the

34

pixel count data and the estimated model.

1 % Comparing the model and test data
2 [outputTest fitTest x0] = ...

compare(modelTestData,modelToTest);
3

4 % Comparing the model and validation data
5 [outputVal fitVal x0] = compare(modelValData,modelToTest)
6

7 % Plotting the fit
8 figure(3)
9 compare(modelTestData,modelToTest)

The last option in the script is to make the pixel count vectors Simulink
compatible variables. This can be done by making the vector into a 2 × n
matrix, where n is the total amount of time lapse images. The change from a
vector to a matrix is necessary as Simulink requires time-stamp information
in the first matrix column.

1 % Making timestamp vector
2 ValDataLength = 1:1:length(ValDataInp);
3 EstDataLength = 1:1:length(EstDataInp);
4

5 % Arranging pixel count vector into matrix
6 dataOutput = [ValDataLength' ValDataOut];
7 estDataInput = [EstDataLength' EstDataInp];
8 estDataOutput = [EstDataLength' EstDataOut];

35

Chapter 7

Experiment

7.1 Color Models Comparison

This section describes a detailed comparison and evaluation of the three color
models RGB, HSV and CIELAB that was presented in in the Image Process-
ing chapter. The material that are used in the experiment is the individual
components histogram representation of the dark and light regime images
displayed in figure 11, as well as use of the Matlab Color Thresholder appli-
cation in the Image Processing and Computer Vision toolbox.

The first color model that is being evaluated is the RGB model, with its
individual component histograms representation of the dark and light regime
image displayed in figure 18. The upper histogram in figure 18 originates
from the red component, IR, and is observed to have a symmetric two-modal
histogram distribution in the light regime and a skewed histogram distribu-
tion in the dark regime. The symmetric two-modal distribution in the light
regime histogram is by the color thresholder application found to have its
origin in the blueish background as well as the greenish parts of the mimosa
pudica - while the yellowish parts of the mimosa pudica contains red content
in the range [0.5 0.9]. The same tool is used to discover that the skewed
distribution in the dark regime is the result of uneven illumination of the
background, where the red content in the blueish background in the upper
left corner is 0.27 - while the red content in lower left corner is 0.55. The
green component, IG, represented by the mid histogram of figure 18 seems
to have the same type of challenge as the red component in terms of the
yellowish parts of the mimosa pudica having of the same amount of IG as
the blueish background, and uneven illumination causing a slight skewness in
the dark regime histogram distribution. The green component is also serving

36

Figure 18: RGB component histograms from dark and light regime

37

as a good example of the differences between the RGB color model and our
intuition about color. Most people would have thought that the color per-
ceived as greenish in figure 11 would have the highest content of the green
component IG - while very few would actually have thought that the green
component content in this case is higher in both the yellowish leafs and the
blueish background. The last component is the blue component, IB, which
from the lower histogram in figure 18 is observed to have a symmetric two-
modal distribution in the light regime - while the distribution in the dark
regime is wide and symmetric. It is also observed that both histograms has
a visible outlier in the range [0 0.1], that is revealed by the color thresholder
application to be the blue content in the in the center of the mimosa pudica
leafs. The same tool is used to discover that the blue content in the remain-
ing part of the leafs and in some parts of the petiole is found in the range
[0.1 0.5], while the bluish background is located in the range [0.5 0.9] if we
include both the light and dark regime.

The next color model is the HSV model, showing its individual compo-
nents histograms in figure 19. The first evaluated component that is hue,
which seems to have a high resemblance when comparing the histograms of
the light and dark regime. This is seen as a symmetric uni-modal short-
tailed distribution with basis in the blueish background in the angular value
of 180◦− 200◦ in both of the histograms. The Color Thresholder application
also revails a small outlier with a skewed distribution in the angular area of
40◦−85◦, which have its origin from yellowish to greenish parts of the mimosa
pudica. The range between these two distribution includes the hue found in
most of the low contrast areas, like the mimosa pudica petiole and leaf edges.
The next component is saturation, which from the mid histogram of figure
19 is seen to have a symmetric uni-modal histogram distribution in the light
regime, and a skewed uni-modal histogram distribution in the dark regime.
The skewness in the histogram of the dark regime distribution is revealed by
the Color Thresholder application to be the result of uneven illumination,
while the slight rightward shift in the mode of the histogram distribution
compared to the histogram of the light regime is presumably the result of
reduced illumination and thus higher perceived saturation. The use of the
Color Thresholder application did also unveil that the histogram distribu-
tions that are observed in the dark and light regime are good descriptions
of the saturation of the background color. The saturation of the foreground
colors seems to be in a broader range as it appears to be slightly declining
from a saturation of around 0.9 in the center of the leafs, to a saturation of
around 0.3 on the leaf edges and petiole. The last component, value, is from
the lower histogram in figure 19 seen to have histogram distributions similar

38

Figure 19: HSV component histograms from dark and light regime

39

to the blue RGB component IB. This is because the non-linear transforma-
tion from RGB to HSV defines value to be equal to the highest valued RGB
component [33] - where the majority of the pixels in this case has its high-
est content in the blue component. Further observations done in the Color
Thresholder applications reveals that the value of the greenish parts of the
mimosa pudica seems to be below 0.5 in both the dark and light regimes,
while the yellowish parts of the mimosa pudica seems to be in the same value
range and the background region.

The last color model is the CIELAB which is shown with its individual
component histograms in figure 20. The first component, L*, is observed
to have much of the same properties as seen in the value component in the
HSV color model. Most of the greenish leafs of the mimosa pudica has a L*
value below 60, while the yellowish parts of the mimosa pudica share its value
range with the background region.The second component, a*, is displayed by
the mid histogram in figure 20. It seems to be a high resemblance in the case
of dark and light regime histograms as both has a symmetrical uni-modal
distribution with a slightly longer tail on the right side. Further observations
done with the Color Thresholder application reveals that the lower negative
side of a*, in the range of [−24 − 15], is representing the a* content in the
blueish background, the low contrast areas and the parts of the mimosa pu-
dica that is perceived to have a darker greenish color. The remaining range,
from [−15 0], is observed to represent the mimosa pudica regions perceived
to have a faint greenish to yellowish color. The last component is the b*
component, which is shown in the lower histogram of figure 20. Both the
light and dark regime histograms have a high resemblance with a uni-modal
short-tailed distribution located on the negative side of the b* component.
The Color Thresholder application reveals that the uni-modal distribution
has its origin from the blueish background and is located in the range around
[−25 − 5]. This is separated from the b* content in the foreground region,
which in both the dark and light regime is observed to be on the positive
side of b* component in the range [0 75].

40

Figure 20: CIELAB component histograms from dark and light regime

41

The evaluation of the different color models reveals that best individual
components from each color model is the blue component from RGB, the hue
componet from HSV and the b* component from CIELAB. The blue RGB
component is not chosen as the difference in the light and dark histogram dis-
tribution indicates that it is the component who is most affected by changes
in the illumination. Both the hue from HSV and b* from CIELAB seem to
provide much of the same result when being evaluated, and there has not
been found any other reason for choosing the one over the other except the
more intuitive representation of the hue component. This is also the reason
why the HSV color model will be used in the further image processing part
of the thesis.

42

7.2 Image Segmentation Evaluation

The purpose of this section is to present an evaluation of the segmentation
routine that was used in the thesis. It has been chosen to first do a subjective
evaluation of the segmentation, where the triangle thresholding is compared
against the result from segmentation with the automatic and non-parametric
Otsu‘s method [29]. The second part of the section is dedicated to a brief
objective evaluation, where the Dice similarity coefficient is calculated for
each segmented image.

It has been chosen to use a total of seven images in the evaluation, where
two images originates from the Oxford 102 category flower dataset [28], and
the remaining five is taken from the available mimosa pudica time-lapse se-
ries. It was chosen to start the evaluation with the two Oxford 102 category
flower images, named 7165 and 7958. These images are displayed in figure
21a and figure 21e and was selected as they fulfil the assumption of a uniform
and dominating background color. The two images, 7165 and 7958, did also
have available ground truth images that was used to evaluate the segmenta-
tion methods performance. The ground truth of image 7165 is displayed in
figure 21b and the ground truth of image 7958 is shown in figure 21f.

(a) Img 7165 (b) Ground Truth (c) Otsu‘s Method (d) Triangle Thresh.

(e) Img 7958 (f) Ground Truth (g) Otsu‘s Method (h) Triangle Thresh.

Figure 21: Image segmentation - Oxford 102 category dataset

43

The result of segmenting image 7165 with Otsu‘s method and triangle
thresholding is seen in figure 21c and figure 21d. These images clearly shows
that the triangle thresholding is most suitable in the case of segmenting the
flower from the uniform background. The triangle thresholding manage to
segment most of the flower in image 7165 correctly, with the exception of
parts at the brightest edges and some of the darker dots at the petals. It
should also be noted that the ground truth in figure 21b seem to consist of
some of the background pixel, seen as light blue color in the spacing between
the petals. These area looks to be segmented correctly by the triangle thresh-
olding in terms of being classified as background pixels, and not foreground.
The segmentation performed by the Otsu‘s method is seen to be missing large
parts of the flower. This may have its root in the Otsu‘s methods mode of
operation, which starts by converting the image from a RGB representation
to grayscale. The method is then assuming that the image can be divided
into two classes, e.g a foreground and background class, where a threshold is
found by minimizing the within-class variance [39]. This is seen from figure
21c to result in a segmentation where the brightest parts of the flower is clas-
sified as background pixels - while the darker parts is classified as foreground.

The image named 7958, seen in figure 21e, seem to provide much of the
same challenges as image 7165 in figure 21a. The triangle thresholding in
figure 21h segments the image with a result that looks to have a high re-
semblance with the ground truth in figure 21f. It only seem to differ by the
triangle thresholding including a small part of the stem in the lower right
corner, as well as the segmentation by the triangle thresholding does seem
to miss a small part of the upper petal edge. The result of segmentation by
Otsu‘s method in figure 21g seem to struggle with the same problems as in
the case of segmentation of image 7165, and are in this case miss-classifying
large parts of the background as foreground - and some parts of the fore-
ground as background. This ends with a segmentation where its not possible
to distinguish the foreground and the background.

One of the challenges with finding suitable test data was that the ground
truth often exclude the flower petioles/stems, as in the Oxford 102 category
dataset. It was therefore decided to select a total of five images from the
available time-lapse series and compose a set of manually segmented images.
Three of these images was taken from the light regimes and is displayed in
figure 22a, figure 23a and figure 24a, with their ground truth displayed in
figure 22b, figure 23b and figure 24b respectively. These images were selected
to test the segmentation routines performance on instances like local shadows,
small spacing between leaflets and occlusion between the compound leafs.

44

(a) Img 1 (b) Ground Truth (c) Otsu‘s Method (d) Triangle Thresh.

Figure 22: Image segmentation - Test image 1

(a) Img 2 (b) Ground Truth (c) Otsu‘s Method (d) Triangle Thresh.

Figure 23: Image segmentation - Test image 2

(a) Img 3 (b) Ground Truth (c) Otsu‘s Method (d) Triangle Thresh.

Figure 24: Image segmentation - Test image 3

The result of segmentation by the triangle thresholding routine is shown in
figure 22d, figure 23d and figure 24d, and shows an overall good performance.
It is seen from figure 22d that the shadows does not seem to affect the
segmentation, which was expected as the routine perform the segmentation
with basis in a hue component image. The triangle thresholding did also
manage to segment the individual leaflets with a varying result, where most
of the exterior leaflets in figure 23d seems to be classified correctly - while
the area between the two compound leafs in the same image seem to include
parts of background pixels in the foreground object. The same inclusion of
background pixels in the foreground can also be seen in some of the smaller
spacing between the leaflets and along the rachis in figure 24d. The same
images were then segmented with Otsu‘s method, with the result shown in
figure 22c, figure 23c and figure 24c. The result seen in figure 22c show

45

that the method is more sensitive to local shadows in the images compared
with the triangle thresholding. It is also observed from figure 23c that Otsu‘s
method is classifying a larger amount of background pixels in spacing between
the leaflets - as foreground. The same is also seen in the spacing between the
leaflets and along the contour of the mimosa pudica in figure 24c

(a) Img 4 (b) Ground Truth (c) Otsu‘s Method (d) Triangle Thresh.

Figure 25: Image segmentation - Test image 4

(a) Img 5 (b) Ground Truth (c) Otsu‘s Method (d) Triangle Thresh.

Figure 26: Image segmentation - Test image 5

The two remaining images is displayed in figure 25a and figure 26a, with
their respective ground truth shown in figure 25b and figure 26b. Both im-
ages is examples from the dark regime and show instances of a folded mimosa
pudica with and without local shading. The result of segmenting by the tri-
angle thresholding is displayed in figure 25d and figure 26d, and shows good
results. It is only possible to see content of the background along the con-
tours of the mimosa pudica and in the small spacings along the rachis. The
result of segmenting by Otsu‘s method is displayed in figure 25c and figure
26c, where figure 25c clearly shows that Otsu‘s method fails to segment the
foreground, i.e. the mimosa pudica, from the background. This might be
the result of the local shadows making the background non-uniform. The
segmentation of image 5 in figure 26c reveals a better result, where the only
included parts of the background in the foreground is seen at the upper parts
of the compound leafs. It is also observed that the segmentation in figure
26c does not include the mimosa pudica stem.

46

The next step was to perform an objective evaluation of each segmenta-
tion by using the Dice similarity coefficient (DCS), shown in equation 7.1, as
a metric.

QS =
2 | X

⋂
Y |

| X | + | Y |
(7.1)

The Dice similarity coefficient is a metric that describes the similarity of X
and Y in the range [0 1], where the coefficients 0 and 1 is the points of non-
and full spatial overlap respectively [31]. The quotient of similarity (QS) is
found by first multiplying the intersecting samples of binary value 1 in image
X and Y by two, before the product is divided by the total amount of samples
with binary value of 1 in both images. The calculation of the Dice similarity
coefficients is executed in the Matlab workspace with the DiceScore function
developed by Dr Hanno Scharr [31].

Method Img 7165 Img 7958 Img 1 Img 2 Img 3 Img 4 Img 5
Triangle 0.8977 0.9354 0.9556 0.8965 0.9272 0.9396 0.9366
Otsu‘s 0.6325 0.2537 0.7741 0.8711 0.8727 0.4391 0.8951

Table 7.1: Dice similarity coefficients - Otsu‘s method and Triangle threshold

The Dice coefficients from the comparison of segmentation is found in
table 7.1, where the manually segmented images was used as ground truth.
The use of the triangle based thresholding yielded an average quotient of
similarity of 0.932 ± 0.0175, while Otsu‘s method resulted in an average
quotient of similarity of 0.6805± 0.2520. Removing the Oxford 102 category
flower datasets, which does not include the flower petiole/stem in the ground
truth, changes the result of the triangle based thresholding to an average
quotient of similarity of 0.938 ± 0.0109 and Otsu‘s method to an average
quotient of similarity of 0.7755± 0.1947.

47

7.3 Black Box Model Estimation

This section describes the experiment where the different black box models
from chapter 4.1, is used to estimate a model for the oscillations that was
observed in the pixel count from the time-series of data. The experiment
were started by first partitioning the chosen dataset into a test and valida-
tion dataset, where the matlab function Plotting from chapter 6.3 is used
to displayed the test data in figure 27. It can be seen from the figure 27
that a 24-hour period is divided into 16 hours of light regime and 8 hours
of dark regime, with the exception of the small regime duration change that
is seen around the 2000 and 4000 sample area. The intention of the small
regime duration changes, called ”jetlags”, is to observe how the mimosa pu-
dica adapts to the shifted 24-hour period that continues after the ”jetlag”.
Each of the 4000 pixel count samples in figure 27 is obtained from the indi-
vidual segmented 3 minute interval time-lapse images, making the time span
of the test data 8.33 days.

Figure 27: Test dataset - Model estimation

The validation set is displayed in figure 28 and contains 5858 samples,
resulting in a dataset with a time span of 12.2 days. The approximately
1000 first samples is seen to come from a 24-hour period divided into 16
hours of light regime and 8 hours of dark regime, before the illumination is
kept constant for 243 hours - indicated by the red bar. The mimosa pudica
response to the constant stimulus is here seen to result in a underdamped
response in the pixel count.

48

Figure 28: Validation dataset - Model estimation

One of the requirements when using transfer functions to model a dataset
is that the datasets cannot have non-stationary effects [20], which includes
offsets, trends etc. This was solved by first normalizing the data, making
the pixel count ∈ [0 1], as well as using the Matlab detrend function to
both remove mean and trends. These operations resulted in the test dataset
shown in figure 29 and the validation dataset shown in figure 30.

Figure 29: Test dataset, removal of non-stationary effects

49

The test and validation pixel count data was then arranged as the sys-
tems output while the state of the illumination regime, where the light and
dark regime was assigned the values 0.1 and −0.1 respectively, was arranged
as the systems input. The two datasets were then arranged as iddent vari-
ables which is a Matlab data format that is compatible with the system
identification toolbox

Figure 30: Validation dataset, removal of non-stationary effects

The next step in the experiment was to find the best estimate of the
ARX, ARMAX and Box Jenkins models. It was chosen to limit the different
model polynomials A(q), B(q), ..., D(q) to have a maximum order of five. The
exhausting task of finding the best combinations was solved by an iterative
Matlab routine, with the best combinations being the one with lowest AIC
values. The ARX, ARMAX and Box Jenkins models were used to estimate
a model of the test data in figure 29, where the model was being validated
against the dataset in figure 30. The estimated models fit to the test data
is displayed in figure 31, where each of the individual models were evaluated
to obtain the best AIC score by only consisting of fifth order polynomials.
The model with the best NRMSE was the Box Jenkins, which scored a fit
of 29.33% to the test data. The same models were then used at the valida-
tion dataset, displayed in figure 32, where the Box Jenkins still obtained the
highest NRMSE score, with a fit of 19.04%. It is clear from the plot that the
models fail to provide a satisfying estimate of the input output relationship
of the system.

50

Figure 31: Estimated model fitted to test dataset

Figure 32: Estimated model fitted to validation dataset

51

One of the challenges with the test and validation data is the saddled/s-
loped shaped pixel count, which in most cases were found to be the result of
tertiary and/or secondary pulvini angling the leaf in a manner that reduces
the surface area. An example of this is shown with the sample range 1800 -
2200 in figure 31, displayed close up in figure 33.

Figure 33: Saddled/sloped pixel count response

The first pixel count peak in the sample range 1800 - 2200 is observed
at sample 1842, where it is seen from the leftmost image in figure 34 that
the mimosa pudica leafs are widespread. The two middle images in figure
34, representing sample 1930 and 2120, is then revealing that the compound
leafs are angled downwards for a duration of 200 samples, reducing the total
surface area. The count is then slowly increasing between sample 2120 and
2200, with the pixel count reaching its second peak at sample 2200 displayed
in the rightmost image in figure 34.

(a) Sample 1842 (b) Sample 1920 (c) Sample 2120 (d) Sample 2200

Figure 34: Images from saddle/sloped response

52

The saddles/sloped response in the dataset motivated for the inclusion
of a new dataset, which would work as test dataset to make new models as
well as validation set for the already estimated models. The new dataset is
displayed in figure 35 and consists of 5316 samples from a 5 minute interval
time-lapse series, making the time span of the data 18.45 days. The data
set does also have 3 ”jetlags”, seen around the 3200, 4200 and 8000 sample
point.

Figure 35: Secondary validation and test dataset

The first operation that was performed was to validate the already esti-
mated models on the new dataset. The result is displayed in figure 36. The
overall result is a poor fit, but it is possible to see that the ARMAX model
produces an oscillatory response that is slightly shifted compared with the
validation data. The delay of the ARMAX model was therefore increased in
an attempt to synchronise it with the pixel count response, with the result
of an unstable model at a sample delay of 10. The data in figure 35 was
then used to estimate new ARX, ARMAX and Box Jenkins models. The
result is displayed in figure 37, with the ARX having the polynomial orders
A(q) = 5, B(q) = 3 and input delay of 3, the ARMAX having the polynomial
orders A(q) = 5, B(q) = 2, C(q) = 5 and input delay of 2 and the Box Jenk-
ins having the polynomial orders B(q) = 5, C(q) = 3, D(q) = 5, F (q) = 5
with input delay of 3. These models were then validated by both the dataset
in figure 29 and figure 30, with the result displayed in figure 38 and figure
39.

53

Figure 36: Estimated model fitted to secondary test dataset

Figure 37: Secondary estimated model fitted to secondary validation dataset

54

Figure 38: Secondary estimated model fitted to first test dataset

Figure 39: Secondary estimated model fitted to first validation dataset

55

It is clear from figure 38 and figure 39 that the models estimated from
the second dataset does not manage to capture the dynamics of the system
in the first dataset. The ARX model provides the worst result in both cases,
where it is seen to become unstable during the constant illumination regime
in figure 39. The ARMAX model does also struggle in both cases, with an
increasing value in the dark regime and decreasing value in the light regime -
which is the opposite of the response in the validation data. The last model
is the Box Jenkins which looks to be following the trends of the pixel count,
but with a oscillatory response. This response is also seen to be too swift
compared with the systems oscillation in constant regime in figure 39.

It was then decided to import the dataset from figure 28 into the Matlab
Simulink environment to compare the oscillatory response of the system with
a second order transfer function, as shown in equation 7.2.

H(s) =
Y (s)

X(s)
=

K

(1
ω2
n
)s2 + 2 ζ

ωn
s+ 1

(7.2)

This attempt was based on a trail and error approach with the goal of finding
suitable values for the parameters ω, ζ and K, describing systems swiftness,
degree of oscillation and gain respectively [32]. As a starting point for the
search, it was assumed that a negative step in the input value 0.1 to 0.0
introduced the underdamped response with a period time of 600 samples,
displayed in figure 40.

Figure 40: First validation dataset step response

56

The underdamped response of the system implies that 0 < ζ < 1, which
means that the systems rise-time/system speed relationship is given by the
approximation in equation 7.3 [13]

Tr ≈
1.5

ωn
(7.3)

The challenge by using equation 7.3 to find ωn was in this case to locate the
correct Tr. It was instead chosen to use equation 7.4 to obtain a value for ωn,
as the period of the oscillation already was known to be 600 samples from
figure 40.

ωn =
2π

Tp
(7.4)

The result of using a period of 600 samples, which equals 30 hours, gave a
ωn = 0.0104. This did also make it possible to find the approximated rise-
time of 144.23 samples, or approximatly 7.22 hours, by equation 7.3. Several
combination were then tried to find a suitable ζ and K, where a ζ = 0.075
and K = 2 gave the underdamped response displayed in figure 41, and the
transfer function equation 7.5.

Figure 41: Transfer function fitted to first validation dataset step response

Two interesting observations were seen during the analysis of the oscilla-
tions and the estimation of the transfer function. The first observation is that
the period of the underdamped response in the constant regime has a longer
duration (30 hours) than in the periodic light and dark regime (24 hours).

57

The second observation is that the swiftness of the system, i.e. seen in the
rise time, also seem to change during the constant regime - where it clearly
becomes slower. These observations could imply that the periodic light and
dark regime works as a disturbance on the plant, forcing the widespread and
closing of leafs, while the oscillations seen in the constant regime is suggested
to be the plants free-running period, with a period time of 30 hours.

H(s) =
Y (s)

X(s)
=

2

9000s2 + 15s+ 1
(7.5)

It was then chosen to do one last test where the estimated transfer functions
response were validated by the test dataset from figure 27 and figure 35.
The validation and illumination regime data was imported into Simulink,
with the illumination regime being used as input to the transfer function -
as displayed in figure 42.

Figure 42: Transfer function model in Simulink

The comparison of the estimated models output and the validation data
is displayed in figure 43 and figure 44. The figures reveal that the transfer
function model is seen to have a sinusoidal like response, where maximum
peak value of the estimated system in most cases is occurring during the dark
illumination regime and the minimum peak value in most cases are found in
the light illumination regime. This is suggested to originate from the sys-
tems difference in swiftness, seen from the transfer functions slower rise time
and time to first peak, causing the transfer function model to lag behind the
response of the validation data.

The final conclusion is that the transfer function model does not manage
to model either of the systems in the validation datasets.

58

Figure 43: Transfer function fitted to first test dataset

Figure 44: Transfer function fitted to secondary test/validation dataset

59

7.4 Motion Estimation Evaluation

The intention of the motion estimation evaluation section is to examine the
possibility of quantifying the plants movement into a metric usable in the
analysis of the mimosa pudica responses. To simplify the examination, a
dataset of a mimosa pudica with only two compound leafs have been used,
which is assumed to result in fewer motion gradients. This dataset was also
used as the secondary dataset in the black box experiment section, and was
seen to have a levelled response in the dark regime and a slightly sloped and
saddled response in the light regime. The levelled response in the dark regime
is observed to be the result of almost no widespread of the individual mimosa
pudica leaflets. The response observed in the light regime contains more
activity, with the saddle/sloped response originating from (i) occlusion of
the leaflets, and (ii) tertiary and/or secondary pulvini angling the individual
leaflets upwards and thus reducing the leaflet area.

Figure 45: Pixel count data from images used in motion estimation

The two variables that were selected for examination in this experiment
was the optical flow vectors orientation and magnitude. Optical flow was in
chapter 5 described as a measure of pixel movement between to succeeding
images, and can be exemplified by figure 46 where the red arrows indicates
the optical flow vectors.

60

Figure 46: Optical flow vectors

It was chosen to start with the optical flow orientation, which was con-
verted from radians into an angular value ∈ [0◦ 360◦] and arranged into
histograms with 72 bins - where each bin represents an orientation range of
5◦. This is displayed in figure 47, where the individual histogram bins is
arranged along the x-axis and the histogram bin values is displayed along
the y-axis.

(a) Leftwards movement (b) Rightwards movement

(c) Opening (d) Closing

Figure 47: Four cases of leaf movement

61

The histograms displayed in figure 47 reveals four different cases of move-
ment, with figure 47a and figure 47b showing leftwards and rightwards move-
ment of the compound leafs, and figure 47c and figure 47d shows the opening
and closing of the compound leaf during the change of illumination regimes.
The figures reveals that the leftwards and rightwards movement produces
what looks like a Gaussian shaped histogram envelope, while the opening
and closing of the compound leafs seem to consist of a more even spread
among the orientations.

The optical flow magnitudes were then examined by first studying the
mean magnitude of the optical flow. The mean magnitude is displayed in
figure 48, and reveals that the majority of the large magnitudes is found,
but not limited, to be around the shift of the light and dark regime and
vice versa. The large magnitudes was during inspection found mostly to
be associated with movements such as in the widespread and closing of the
compound leafs, while the smaller magnitudes were in most cases originating
from the slow and prudent leaf movement in the image plane.

Figure 48: Mean gradient magnitude

One of the observations that motivated for further experimenting was the
Gaussian like shape of the optical flow orientation histograms, which seemed
to occur when the plant moved in a certain direction. It was therefore sug-
gested that if the histograms bins within a limited area, e.g. 11 histogram
bins, contained a chosen percentage of the total value of all the histogram

62

bins, e.g. 50 percent, then the peak value within the limited area would
be the direction of the leafs movement. This suggestion can be exemplified
by figure 49, where the 11 histogram bins inside the red rectangle contains
97 341 of the 440 000 histogram orientations. The rectangle is in this case
encapsulating 22% of the total amount of orientations, with the peak value
indicating a movement towards ≈ 170◦.

The fact that the Farneback method is a dense optical flow method meant
that each individual image pixel contributed with values to the orientation
histogram, which also included orientation information from for example the
background pixels. This meant that the orientation histogram most likely
contained excess information, which could (i) lead to an erroneous interpret
of the orientation direction and (ii) made the amount of data to be processed
substantially larger.

Figure 49: Motion estimation, direction estimation

It was therefore chosen to threshold each optical flow vector by using
the optical flow vectors mean magnitude, where only vectors with a magni-
tude above 70% of the optical flow vectors mean magnitude was taken into
account. The result is shown in figure 50, which is the optical flow vector
orientations from the same two subsequent images as figure 49, with the red
rectangle now containing 22192 of the 35074 histogram orientations - which
is approximately 63% of the total amount of orientation values.

63

The result of thresholding the optical flow vector orientation values by the
optical flow vectors mean magnitude was here seen to reduce the histogram
bin values of the histogram bins which was assumed to not contribute with
information about plants movement direction. The total percentage of ori-
entation values inside the red rectangle is from figure 49 to figure 50 seen to
change from 22% to 63%, which is an increase of 2.86 times.

The next step was to develop a method that would locate the orientation
direction. The two main challenges that had to be solved was the possibility
of multiple peaks, which can be seen in figure 50, as well as compensation
for the discontinuity at the 0◦ and 360◦ orientation. This was solved by
first performing a moving average filtering routine on the dataset, before the
20 first histogram bins were added to the end, extending the histogram to
[0◦ 460◦] - where the result of these operations is displayed in figure 51.

Figure 50: Motion estimation, improved direction estimation

64

Figure 51: Motion estimation, smoothed and extended histogram

It was at this point chosen to run tests with a small number of images,
where the purpose was to see if it was possible to quantify the observed move-
ments. The sequence used is displayed in figure 52 and contains 24 images. It
was seen from playing the sequence in Matlab that the plant wiggling slightly
back and forth in image 1 to image 5, but with a prudent movement towards
the right. The plant does then change its direction around image 7 where it
starts to move towards the left side. This leftwards movement continues the
remaining sequence.

Three different tests were run, where the parameter that differs them was
the required percentage of orientation values in the rectangular window. This
parameter was set to calculate the value of the histogram bins that is encap-
sulated by the rectangular window, and compares it with the total value of
the entire histogram. The ratio between the two is then used to evaluate if
there value inside the rectangular window is high enough to define a move-
ment direction.

The first run was parametrized to have a required ratio of 0.5, with the
results displayed in table 7.2. The high amount of NaN (Not a Number)
indicated that no movement direction was found, as the ratio might have
been too high. It was therefore chosen to run the same experiment with a
ratio of 0.4.

65

(a) Img 1 (b) Img 2 (c) Img 3 (d) Img 4

(e) Img 5 (f) Img 6 (g) Img 7 (h) Img 8

(i) Img 9 (j) Img 10 (k) Img 11 (l) Img 12

(m) Img 13 (n) Img 14 (o) Img 15 (p) Img 16

(q) Img 17 (r) Img 18 (s) Img 19 (t) Img 20

(u) Img 21 (v) Img 22 (w) Img 23 (x) Img 24

Figure 52: Plant movement sequence

66

Img 1 Img 2 Img 3 Img 4 Img 5 Img 6 Img 7 Img 8
NaN NaN NaN NaN NaN NaN 210◦ NaN
Img 9 Img 10 Img 11 Img 12 Img 13 Img 14 Img 15 Img 16
185◦ NaN 205◦ NaN NaN NaN 180◦ 185◦

Img 17 Img 18 Img 19 Img 20 Img 21 Img 22 Img 23 Img 24
180◦ NaN NaN NaN 35◦ NaN 195◦ 185◦

Table 7.2: Motion estimation, ratio 0.5

Running the experiment with a 0.4 ratio is displayed in table 7.3 and
reveals a lower amount of NaN values. The increase of direction values
when going from a ratio of 0.5 to 0.4 motivated to attempt one last run with
a 0.3 ratio, to investigate if it was possible to obtain even more orientations.
The result is displayed in table 7.4 and it is here seen that only 3 of 24
values is classified as NaN . It is possible to see from table 7.4 that the
the orientation in image 1 and 4 indicates a rightwards movement towards
340◦− 355◦, while most of the remaining images seem to consist of leftwards
movements in the range 155◦ − 185◦. These readings are according to the
observations that was seen during the inspection of the images in Matlab.

Img 1 Img 2 Img 3 Img 4 Img 5 Img 6 Img 7 Img 8
340◦ NaN NaN NaN NaN 230◦ 210◦ 160◦

Img 9 Img 10 Img 11 Img 12 Img 13 Img 14 Img 15 Img 16
185◦ NaN 205◦ 5◦ NaN NaN 180◦ 185◦

Img 17 Img 18 Img 19 Img 20 Img 21 Img 22 Img 23 Img 24
180◦ NaN 165◦ 155◦ 35◦ NaN 195◦ 185◦

Table 7.3: Motion estimation, ratio 0.4

Img 1 Img 2 Img 3 Img 4 Img 5 Img 6 Img 7 Img 8
340◦ NaN 280◦ 355◦ 230◦ 230◦ 210◦ 160◦

Img 9 Img 10 Img 11 Img 12 Img 13 Img 14 Img 15 Img 16
185◦ 180◦ 205◦ 5◦ 165◦ 160◦ 180◦ 185◦

Img 17 Img 18 Img 19 Img 20 Img 21 Img 22 Img 23 Img 24
180◦ NaN 160◦ 155◦ 35◦ NaN 195◦ 185◦

Table 7.4: Motion estimation, ratio 0.3

It was then chosen to run the motion estimation on the whole dataset
of 8316 images, with the ratio parameter set at 0.3. The NaN values that
was returned by the routine was removed, and the empty vector orientation

67

entries was filled by using the Matlab interp1 function to interpolate values.
The result is displayed in figure 53 and reveals a some what chaotic plot.

Figure 53: Orientation detection, whole dataset

It was then chosen to do a closer inspection of the plot in figure 53, dis-
played in figure 54, which shows what looks to be a pattern in the plants
orientation. The orientation value is found to move towards 300◦ − 360◦ be-
fore the shift from the dark to the light illumination regime, and is seemingly
switching its direction to towards 100◦−50◦ before the shift from light to dark
illumination regime. A frame by frame inspection of the sequence around the
illumination shift was performed to look for the origin of the pattern, where
the movements were found to originate from what seems to be the Mimosa
Pudicas primary pulvini. The observation revealed that the primary pulvini
seemed to pull the compound leafs upwards before the shift to the dark il-
lumination regime, which was interpret by the routine as a movement with
an orientation of 300◦ − 360◦. The opposite was seen during the shift to the
light regime, where the compound leafs were forced downwards, resulting in
a movement with an orientation of 100◦ − 50◦.

The same frame by frame inspection was done in the evaluation of the
noisy areas that is seen around the shift of illumination regimes in figure 54.
It was not possible to find a specific reason to why the values is observed
to fluctuate, but it is suggested to be related to the opening and closing of

68

the Mimosa Pudicas individual leaflets - which includes a large amount of
optical flow vectors going in various directions.

The last observation that is seen from figure 54 is the straight sloped line
which occurs around the middle of each light illumination regime. This is
the result of the interpolation that was performed to fill in the empty values
in the orientation vector, and indicates that the Mimosa Pudicas compound
leaf does not seem to move that much during this period- which was also
confirmed by playing and observing the time-lapse sequence.

Figure 54: Orientation detection, partition of dataset

69

Chapter 8

Results and Discussion

The purpose of this chapter is to present and discuss the results from the
image processing, black box modelling and motion estimation experiments.
It has been chosen to present the results in three individual sections - where
the results is obtained from the experiments performed in chapter 7.

8.1 Image Processing

The scope of the image processing part of the thesis has consisted of both
choosing a suitable color representation, as well as finding a routine for the
segmentation of the foreground, i.e. the mimosa pudica, from the background

The evaluation of color space involved the examination of the three colors
models; RGB, HSV and CIELAB. Experiments in chapter 7.1 revealed that
both the hue component from HSV and the b* component from CIELAB
provided a good foundation for the segmentation of the foreground object.
This was based on the clear separation of the foreground and background pix-
els in both components histograms - as well as experiments showing that hue
and b* was among those components who were least susceptible to illumina-
tion changes. It was chosen to use the hue component in the segmentation
routine, as the component was found to have a more intuitive representation.

The clear separation of the foreground and background pixels in the hue
component histogram motivated for the use of a triangle thresholding seg-
mentation routine. The segmentation routine was in section 7.2 tested on
seven different images. Five of the images included different instances from
the available time-lapse series of the mimosa pudica, while the two remain-
ing images came from the Oxford 102 category dataset. The result of the

70

segmentation is displayed in table 8.1, where the segmentation performed by
the triangle threshold method obtains a mean Dice similarity coefficient of
0.932± 0.0175 as an overall score on all the images. These results were com-
pared against a segmentation performed by Otsu‘s method, whom achieved
a Dice similarity coefficient of 0.6805± 0.2520 on the same dataset.

Method Img 7165 Img 7958 Img 1 Img 2 Img 3 Img 4 Img 5
Triangle 0.8977 0.9354 0.9556 0.8965 0.9272 0.9396 0.9366
Otsu‘s 0.6325 0.2537 0.7741 0.8711 0.8727 0.4391 0.8951

Table 8.1: Dice similarity coefficients - Otsu‘s method and Triangle threshold

8.2 Black Box Modelling

The purpose of the system identification in the thesis was to estimate ARX,
ARMAX and Box Jenkins models describing the pixel count and illumination
regime relationship of the mimosa pudica. These models were then supposed
to be used to evaluate the pixel count responses in a control theoretic view-
point.

The ARX, ARMAX and Box Jenkins model were chosen with basis in
the obtained AIC scores. The three models were then compared by their
achieved NRMSE fit on several validation datasets, where a Box Jenkins
model obtained the highest overall fit of 19.04%. The low NRMSE score was
interpret as a clear indication that the estimated models failed to capture
the system dynamics.

One of the challenges with estimating the black box models were that
the swiftness of the system seemed to change when the illumination regime
was altered from periodic to constant. It was therefore chosen to look at
the possibilities of obtaining the system characteristics by fitting the os-
cillatory response to a second order transfer function. The result was the
underdamped system described in equation 8.1.

H(s) =
Y (s)

X(s)
=

2

9000s2 + 15s+ 1
(8.1)

The obtained second order transfer function were then validated against
two datasets. This experiment revealed that there was a difference in both
the (i) swiftness and the (ii) period of the second order system, compared
with the systems used as validation. This was an interesting observations, as

71

one of the validation datasets were captured from the same mimosa pudica
plant as the test data used to estimate the transfer function. This could
imply that the periodic light and dark regime works as a disturbance on the
plant, forcing the widespread and closing of leafs, while the oscillations seen
in the constant regime is suggested to be the plants free-running period, with
a period time of 30 hours.

It should not go unmentioned that there are several factors that could
have affected the estimation of good black box models. One of the problems
is assumed to be related to the tertiary and/or secondary pulvinus downward
angling of the compound leafs. This was seen to result in a temporary reduc-
tion in the leaf surface area, which was observed in the pixel count plot as a
saddle/slope shaped curve. This is likely to affect the possibility of obtaining
a good and correct description of the system dynamics.

The second challange with the test data used to estimate the models in
the experiments was that it was either periodic or constant, with the pe-
riodicity only changing a few times during each experiment. The stimulus
used to provoke the mimosa pudica response should ideally have parts where
the illumination regime were a pseudo random binary sequence [14], i.e. the
changes in the illumination regime should have had both random changes
and durations. This would most likely make it possible to capture the dy-
namics of the system in a better manner.

The failure of modelling the response motived for a further investigation
on the topic of modelling responses in plants. The best description was found
in the recently published How to stop a biological clock: Point of singularity
[6] by W.Engelmann and K.H.Witte, whom referred to the work of Johnsson
and Karlsson on feedback models for biological rhythms [17, 19]. Their work
dealt with oscillations in the Kalanchoe flower, where a 24 hours rhythm
is modelled by a non-linear feedback model. The success of modelling the
Kalanchoe flower with a more complex model could imply that a linear black
box model is not adequate for the task of modelling the mimosa pudicas
response to changes in its illuminative conditions.

8.3 Motion Estimation

The purpose of the motion estimation performed in the thesis was to look
at the possibility of quantifying a metric whom could describe the observed
movements of the mimosa pudica in the image plane. It was chosen to cal-

72

culate the optical flow by using of the method of Farneback, described in
chapter 5, which also comes as a fully implemented Matlab function. The
two variables that was chosen for examination was the optical flow vectors
magnitude and orientation.

Evaluation of the optical flow orientation revealed that the movement
of the compound leafs in a certain direction create an almost Gaussian like
curve in the optical flow orientation histogram plot. The examination of the
optical flow magnitudes indicated that the majority of the large magnitude
were linked to the opening and closing of the mimosa pudica leafs, while
the smaller magnitudes in most cases originated from the slow and prudent
compound leaf movement.

A ratio based window search method was developed in chapter 7.4, that
calculated the ratio between the orientation values of the histogram bins in-
side a moving window and the total amount of orientation values of all the
histogram bins. Three test were performed where the best result was eval-
uated to be when the search window contained more than 30% of the total
orientation values in the histogram. This was based on a test sequence of
24 images, where the method seemingly classified the same orientation direc-
tions as the ones that was seen during the manual inspection of the dataset.

The routine was also tested on the whole dataset of 8316 images, where
a pattern in orientation direction around the shift of the illumination regime
was suggested to be linked to the primary pulvinus. The observations could
imply that the Mimosa Pudicas response to the illumination shift starts be-
fore the actual shift is taking place.

One of the challenges by estimating plant movement in this thesis was the
large amount of compound leafs in each dataset. The method evaluates the
overall movement in the image plane, which mean that smaller movements
performed by the individual compound leafs could be missed. The second
problem of examining the orientation with several compound leafs in the im-
age frame is that movements can potentially repeal each other by moving in
opposite orientation, and thus evening out the histogram curve.

A suggested solution to the mentioned challenges could be to reduce the
amount/size of the compound leafs in the image plane. An example of this
can be seen in the experiment performed in the recent published article Track-
ing Rhythms in Plants, an automated leaf movement analysis program for
circadian period estimation [12], where vertical movement was successfully

73

estimated. A second solution could be to implement tracking of the indi-
vidual leafs, where several methods for tracking leafs are suggested in the
article Leaf segmentation in plant phenotyping: a collation study [31]. This
could potentially allow the estimation of optical flow in time-lapse series with
multiple compound leafs.

74

Chapter 9

Conclusion

The intention of the thesis as stated in the introduction was to (i) improve
the image processing method used in the preliminary work, (ii) examine the
mimosa pudicas responses to change in its illuminative conditions and eval-
uate the possibility of estimate mathematical models that could describe the
responses, and (iii) look at the possibility quantify the observed movement
in the time-lapse series.

The preliminary work that was performed at IDE was executed with a seg-
mentation routine that required the users intervention. Several color models
have been thoroughly evaluated and a new automatic non-parametric image
processing routine has been developed - obtaining a DICE similarity score of
0.932 ± 0.0175 on test data. It is therefore suggested that the new method
replace the preliminary routine in the further work.

It was not managed to estimate any black box models that described the
input/output relationship of the mimosa pudica. The experiments did reveal
that both the systems (i) period and (ii) swiftness changed during the un-
derdamped response in the constant illumination regime, indicating that the
light and dark regime could work as disturbances on the plant. The period
duration of the oscillation in the constant regime was also found to be 30
hours, which deviates from the approximately 24 hour period that is sug-
gested in the literature. This is only based on experiments with one plant,
and additional experiments is therefore necessary to support this claim.

A method estimating of the mimosa pudicas movement orientation has
been developed. The method was seen to obtain seemingly good results dur-
ing test with a short image sequence. Experiments did also reveal what was
suggested to be a pattern of movement in the Mimosa Pudicas primary pul-

75

vini, where the shift of the illumination regimes seemed to induce movements
in certain directions.

Both the case of changing system dynamics when going from periodic to
constant illumination regime, as well as the repetitious patterns seen prior
of the illumination changes, could indicate that there is a complex structure
behind the observed responses of the Mimosa Pudica. This structure has
not been found during this thesis, but preliminary methods have been im-
proved and new routines have been developed. These methods can, and will
hopefully, be used in the further examination of the responses of the Mimosa
Pudica.

76

Bibliography

[1] Hirotugu Akaike. A new look at the statistical model identification.
Automatic Control, IEEE Transactions on, 19(6):716–723, 1974.

[2] Howard Anton. Elementary linear algebra. John Wiley & Sons, 2010.

[3] John L Barron and Neil A Thacker. Tutorial: Computing 2d and 3d opti-
cal flow. Imaging Science and Biomedical Engineering Division, Medical
School, University of Manchester, 2005.

[4] Pierre Borne, Dumitru Popescu, Florin Gheorghe Filip, and Dan Ste-
fanoiu. Optimization in Engineering Sciences: Exact Methods. John
Wiley & Sons, 2013.

[5] Kenneth P Burnham and David R Anderson. Model selection and mul-
timodel inference: a practical information-theoretic approach. Springer
Science & Business Media, 2003.

[6] Wolfgang Engelmann and Karl-Heinz Witte. How to stop a biological
clock: Point of singularity. 2016.

[7] Mark D Fairchild. Color appearance models. John Wiley & Sons, 2013.

[8] Gunnar Farnebäck. Polynomial expansion for orientation and motion
estimation. 2002.

[9] Gunnar Farnebäck. Two-frame motion estimation based on polynomial
expansion. In Image analysis, pages 363–370. Springer, 2003.

[10] David A Forsyth and Jean Ponce. A modern approach. Computer
Vision: A Modern Approach, pages 88–101, 2003.

[11] Jörg Fromm and Walter Eschrich. Transport processes in stimulated
and non-stimulated leaves of mimosa pudica. Trees, 2(1):7–17, 1988.

[12] Kathleen Greenham, Ping Lou, Sara E Remsen, Hany Farid, and
C Robertson McClung. Trip: Tracking rhythms in plants, an auto-
mated leaf movement analysis program for circadian period estimation.
Plant methods, 11(1):1, 2015.

[13] Finn Haugen. Praktisk reguleringsteknikk. Tapir forlag, 2003.

[14] Finn Haugen. Dynamiske Systemer: modellering, analyse og simulering.
Akademika Forlag, 2012.

[15] Berthold K Horn and Brian G Schunck. Determining optical flow. In
1981 Technical symposium east, pages 319–331. International Society for
Optics and Photonics, 1981.

[16] George H Joblove and Donald Greenberg. Color spaces for computer
graphics. In ACM siggraph computer graphics, volume 12, pages 20–25.
ACM, 1978.

[17] A Johnsson and HG Karlsson. A feedback model for biological rhythms:
I. mathematical description and basic properties of the model. Journal
of theoretical Biology, 36(1):153–174, 1972.

[18] Jer-Nan Juang and Minh Q Phan. Identification and control of mechan-
ical systems. Cambridge University Press, 2001.

[19] HG Karlsson and A Johnsson. A feedback model for biological rhythms:
Ii. comparisons with experimental results, especially on the petal rhythm
of kalanchoë. Journal of theoretical biology, 36(1):175–194, 1972.

[20] Karel J Keesman. System identification: an introduction. Springer Sci-
ence & Business Media, 2011.

[21] Frederick AA Kingdom. Lightness, brightness and transparency: A
quarter century of new ideas, captivating demonstrations and unrelent-
ing controversy. Vision Research, 51(7):652–673, 2011.

[22] Lennart Ljung. System identification: theory for the user. Englewood
Cliffs, 1987.

[23] Lennart Ljung. Black-box models from input-output measurements. In
Instrumentation and Measurement Technology Conference, 2001. IMTC
2001. Proceedings of the 18th IEEE, volume 1, pages 138–146. IEEE,
2001.

[24] Stefano Mancuso and Sergey Shabala. Rhythms in plants. Springer,
2007.

[25] Oge Marques. Practical image and video processing using MATLAB.
John Wiley & Sons, 2011.

[26] C Robertson McClung. Plant circadian rhythms. The Plant Cell,
18(4):792–803, 2006.

[27] National Instruments. LabVIEW 2014 Control Design and Simulation
Module Help.

[28] M-E. Nilsback and A. Zisserman. Automated flower classification over
a large number of classes. In Proceedings of the Indian Conference on
Computer Vision, Graphics and Image Processing, Dec 2008.

[29] Nobuyuki Otsu. A threshold selection method from gray-level his-
tograms. Automatica, 11(285-296):23–27, 1975.

[30] Dr B. Panneton. Gray image thresholding using the triangle method.
http://www.mathworks.com/matlabcentral/fileexchange/

28047-gray-image-thresholding-using-the-triangle-method/

content/triangle_th.m. Accesses: 2016-04-05.

[31] Hanno Scharr, Massimo Minervini, Andrew P French, Christian Klukas,
David M Kramer, Xiaoming Liu, Imanol Luengo, Jean-Michel Pape,
Gerrit Polder, Danijela Vukadinovic, et al. Leaf segmentation in plant
phenotyping: a collation study. Machine vision and applications, pages
1–22, 2015.

[32] Dale E Seborg, Duncan A Mellichamp, Thomas F Edgar, and Francis J
Doyle III. Process dynamics and control. John Wiley & Sons, 2010.

[33] Alvy Ray Smith. Color gamut transform pairs. ACM Siggraph Computer
Graphics, 12(3):12–19, 1978.

[34] David E Somers. The physiology and molecular bases of the plant cir-
cadian clock. Plant Physiology, 121(1):9–20, 1999.

[35] Maureen Stone. A field guide to digital color. CRC Press, 2013.

[36] Richard Szeliski. Computer vision: algorithms and applications.
Springer Science & Business Media, 2010.

[37] Paul Hermann Wilhelm Taubert. Leguminosae. 1887.

[38] Minoru Taya. Bio-inspired design of intelligent materials. In Smart
structures and materials, pages 54–65. International Society for Optics
and Photonics, 2003.

[39] Xiangyang Xu, Shengzhou Xu, Lianghai Jin, and Enmin Song. Charac-
teristic analysis of otsu threshold and its applications. Pattern recogni-
tion letters, 32(7):956–961, 2011.

[40] GW Zack, WE Rogers, and SA Latt. Automatic measurement of sister
chromatid exchange frequency. Journal of Histochemistry & Cytochem-
istry, 25(7):741–753, 1977.

Appendix

Matlab Code

Main script

1 % Vegard Brattland, University of Stavanger, 2016
2 % Thesis: Imaga Processing and Analysis of Leaf Movement...
3 % in Mimosa Pudica
4 % Main script in Matlab code
5

6 clear all -except Keep
7

8 % Creating an optical flow object
9 opticFlow = opticalFlowFarneback('NeighborhoodSize',15,...

10 'FilterSize',25);
11

12 % Folder with the image data
13 mappe = 'C:/Users/Vegard/Documents/MATLAB/Bilder';
14

15 % Image folder and camera direction
16 bildeDato = '/date 20160315';
17 kameraRetning = {'/camera1 top','/camera2 buttom'};
18

19 % Calling function to generate structure with folders and ...
imagenames

20 mappeStruktur = Mapper(mappe, bildeDato, kameraRetning);
21

22 % Loading the dark, light and constant information
23 run(sprintf('%s%s/LightDarkRegime/%s', ...

mappe,bildeDato,'LightDark.m'));
24

25 % Calling the BildeInformasjon function.
26 [timeLapsePeriode OffsetForsteBilde] = ...

BildeInformasjon(mappeStruktur);
27

28 % Making a vector which indicates day or night.

29 DLCvect = ...
LightDarkVector(DarkLightConstant,timeLapsePeriode,...

30 OffsetForsteBilde);
31

32 % Making plant direction vector
33 direction = [];
34

35 % Looping to segment images and estimation orientation
36 for i=1:numel(mappeStruktur.infoOriginal)
37

38 % Reading time-lapse images
39 bilde = ...

imread(sprintf('%s/%s',mappeStruktur.mappeOriginal,...
40 mappeStruktur.infoOriginal(i).name));
41

42 % Cropping image
43 bilde = bilde(1:end-50,1:end,:);
44

45 % Segmentation routine
46 [binBilde picture hue] = FargeTilSortHvitt(bilde);
47

48 % Calculating the optical flow
49 flow = estimateFlow(opticFlow,hue);
50

51 % Count the amount of binary ones in the images
52 antallHvitePiksler(i) = sum(sum(binBilde));
53

54 % Arranging flow orientations and magnitude in variables
55 flowOrientation = flow.Orientation;
56 flowMagnitude = flow.Magnitude;
57

58 % Calculating mean optical flow magnitude
59 meanMag = mean(mean(flowMagnitude));
60

61 % Only keeping larger magnitudes
62 flowMagnitude = flowMagnitude > (meanMag*10);
63

64 % Masking out the low magnitudes
65 flowOrientationMask = flow.Orientation.*flowMagnitude;
66

67 % Optical flow orientation and magnitude assigned to ...
new variables.

68 testvarOri = flow.Orientation;
69 testvarMag = flow.Magnitude;
70

71 % Converting orientation from radians and rounding answer
72 degreeMat = round(rad2deg(testvarOri));
73

74 % Converting orientation from [-180 180] to [0 360]

75 lessThanZero = (testvarOri < 0)*360;
76 degreeMat = degreeMat + lessThanZero;
77

78

79 % Setting zero magnitudes equal NaN.
80 for k=1:800
81 for j=1:550
82 if flowMagnitude(j,k) == 0
83 degreeMat(j,k) = NaN;
84 end
85 end
86 end
87

88 % Making a orientation histogram
89 histo = histogram(degreeMat,72);
90

91 % Total amount of orientation values
92 totOrient = sum(histo.Values);
93

94 % Arranging the histogram values to variable
95 histoValues = histo.Values;
96

97 % Extends orientation histogram
98 histoValues = [histoValues histoValues(1:20)];
99

100 % Smoothing the orientation histogram
101 histoSmooth = smooth(histoValues,'moving');
102

103 % Window size and larges window value variables.
104 winSize = 11;
105 winVal = 0;
106

107 % Finding the window with highest values
108 for h=1:length(histoSmooth)-winSize
109 calcWinVal = sum(histoSmooth(h:1:(h+winSize-1)));
110

111 % Saving highest amount and window start
112 if calcWinVal > winVal;
113 winVal = calcWinVal;
114 winStart = h;
115 end
116 end
117

118 % Calculating percentage
119 percentInWindow = winVal/sum(histo.Values);
120

121 % If above 30%, find orientation
122 winPerThres = 0.3;
123

124 if percentInWindow > winPerThres
125 [peakValue location] = ...

findpeaks(histoSmooth(winStart:1:...
126 (winStart+winSize-1)),'MinPeakDistance',9);
127

128 if isempty(location) == false
129

130 % Finds the peak location
131 peakLocation = winStart + location;
132

133 % 72 histogram bins equals 5 degree per bin
134 direction(i) = peakLocation*5;
135

136 % Changing the directin to range (0 - 359)
137 if direction(i) > 359
138 direction(i) = direction(i) - 360;
139 end
140 else
141 direction(i) = NaN;
142 end
143

144 else
145 % If not above threshold, direction equals 0
146 direction(i) = NaN;
147 end
148

149 % Iteration count
150 i
151

152

153 end
154

155 % Plotting the result
156 Plotting(antallHvitePiksler,DLCvect)

Function : Mapper

1 % Vegard Brattland, University of Stavanger, 2016
2 % Thesis: Imaga Processing and Analysis of Leaf Movement...
3 % in Mimosa Pudica
4 % ***
5 % This function returns a structure with the necessary folders
6 % and image information
7 % ***
8

9

10 function [mappeStruktur] = Mapper(mappe, bildeDato, ...
kameraRetning)

11

12 % Making path to folders with original and cropped images
13 mappeOriginalBilde = ...

[mappe,bildeDato,kameraRetning{1,1},'/images'];
14 mappeBeskjartBilde = ...

[mappe,bildeDato,kameraRetning{1,1},'/cropped'];
15

16 mappeOriginalBildeTo = ...
[mappe,bildeDato,kameraRetning{1,2},'/images'];

17 mappeBeskjartBildeTo = ...
[mappe,bildeDato,kameraRetning{1,2},'/cropped'];

18

19 % Original and cropped image names
20 originaleBilderEn = dir([mappeOriginalBilde,'/2016*.jpg']);
21 beskjarteBilderEn = dir([mappeBeskjartBilde,'/crop*.jpg']);
22

23 originaleBilderTo = dir([mappeOriginalBilde,'/2016*.jpg']);
24 beskjarteBilderTo = dir([mappeBeskjartBilde,'/crop*.jpg']);
25

26 % Arranging structure with folder information
27 mappeStruktur = struct('mappeOriginal',mappeOriginalBilde,...
28 'mappeCropped',mappeBeskjartBilde,...
29 'infoOriginal',originaleBilderEn,...
30 'infoCropped',beskjarteBilderEn,...
31 'mappeOriginal 2',mappeOriginalBildeTo,...
32 'mappeCropped 2',mappeBeskjartBildeTo,...
33 'infoOriginal 2',originaleBilderTo,...
34 'infoCropped 2',beskjarteBilderTo);
35

36 end

Function : BildeInformasjon

1 % Vegard Brattland, University of Stavanger, 2016
2 % Thesis: Imaga Processing and Analysis of Leaf Movement...
3 % in Mimosa Pudica
4

5 % This function is inspired from a Matlab file recieved from
6 % Prof. Tormod Drengstigs at the University of Stavanger
7

8 % ***
9 % This function returns information used in plotting

10 % ***
11

12 function [timeLapsePeriodeMin,OffsetForsteBilde] = ...
BildeInformasjon(mappeStruktur)

13

14 % Calculate timeinterval for time-lapse series
15 [sorterDato, sortidx] = ...

sort([mappeStruktur.infoOriginal.datenum]);
16

17 % Making structure with image information
18 originaleBilder = mappeStruktur.infoOriginal(sortidx);
19

20 % Finding date to first and last image in name column
21 forsteBilde=originaleBilder(1).name;
22 sisteBilde=originaleBilder(end).name;
23

24 % Finds year, month, date, time, minute and second on ...
laste image

25 yyyy = eval(sisteBilde(1:4));
26 mm = eval(sisteBilde(6:7));
27 dd = eval(sisteBilde(9:10));
28 HH = eval(sisteBilde(12:13));
29 MM = eval(sisteBilde(15:16));
30 SS = eval(sisteBilde(18:19));
31 datoSisteBilde = datenum(yyyy,mm,dd,HH,MM,SS);
32

33 % Finds year, month, date, time, minute and second on ...
first image

34 yyyy = eval(forsteBilde(1:4));
35 mm = eval(forsteBilde(6:7));
36 dd = eval(forsteBilde(9:10));
37 HH = eval(forsteBilde(12:13));
38 MM = eval(forsteBilde(15:16));
39 SS = eval(forsteBilde(18:19));
40 datoForsteBilde = datenum(yyyy,mm,dd,HH,MM,SS);
41 midnattForsteBilde = datenum(yyyy,mm,dd,00,00,00);

42

43 % Differance between first midnight and first image
44 OffsetForsteBilde = (datoForsteBilde - midnattForsteBilde)*24;
45

46 % Time-lapse periode in days
47 timeLapsePeriode = datoSisteBilde - datoForsteBilde;
48

49 % Time lapse period in minutes
50 timeLapsePeriodeMin = timeLapsePeriode*24*60;
51

52 end

Function : LightDarkVector

1 % Vegard Brattland, University of Stavanger, 2016
2 % Thesis: Imaga Processing and Analysis of Leaf Movement...
3 % in Mimosa Pudica
4

5 % ***
6 % This function returns a Dark, Light and...
7 % Constant illumination state vector.
8 % ***
9

10

11

12 function [DLCindicator] = ...
LightDarkVector(DarkLightConstant,...

13 timeLapsePeriode,OffsetForsteBilde)
14

15 % Transposing and making colum vector with ...
DarkLightConstant elements

16 DLCvect = DarkLightConstant';
17 DLCvect = DLCvect(:);
18

19 % Making a reference matrix where 1 = night, 2 =day and 3 ...
= constant

20 DLCref = [1 2 3];
21

22 % Padding making equal shape as DLCvect
23 DLCref = padarray(DLCref,[(length(DLCvect)/3)-1 ...

0],'replicate','pre')';
24 DLCref = DLCref(:);
25

26 % DLC Indicator where 1 = night, 2 = day, 3 = constant
27 DLCindicator = [];

28

29 for i=1:length(DLCvect)-1
30 % Length of current light regime in minutes
31 currDLClength = round(DLCvect(i)*60);
32

33 % Increasing length of regime vector if the new light ...
regime is

34 % longer than 1 minute
35 if currDLClength > 0
36 DLCindicator = ...

[DLCindicator;ones(currDLClength,1)*DLCref(i)];
37 end
38 end
39 % Removing the samples between midnight and first image. ...

Offset is
40 % in the unit [hours] and is converted to minutes.
41 DLCindicator = DLCindicator(OffsetForsteBilde*60:end);
42

43 % The images is taken every 3 minutes. Downsampling, ...
keeping every third

44 % sample
45 DLCindicator = downsample(DLCindicator,3);
46

47 end

Function : FargeTilSortHvitt

1 % Vegard Brattland, University of Stavanger, 2016
2 % Thesis: Imaga Processing and Analysis of Leaf Movement...
3 % in Mimosa Pudica
4

5 % ***
6 % This function returns a segmented time-lapse image, ...
7 % the hue component and the image that was used as input
8 % ***
9

10

11 function [hueSegmented ,picture, hue] = ...
FargeTilSortHvitt(picture)

12

13 % Converting from RGB to HSV colorspace
14 hsv = rgb2hsv(picture);
15

16 % Seperating the hue component.
17 hue = hsv(:,:,1);

18

19 % Assigning hue component to histogram
20 imageHistogram = imhist(hue,100);
21

22 % Smoothing the data
23 imageHistSmooth = smooth(imageHistogram,'moving');
24

25 % Using triangle method to find threshold
26 triThreshold = triangle th(imageHistSmooth,100);
27

28 % Making a mask
29 hueSegmented = imcomplement(im2bw(hue,triThreshold));
30

31

32 end

Function : triangle th [30]

1 function [level]=triangle th(lehisto,num bins)
2 % Triangle algorithm
3 % This technique is due to Zack (Zack GW, Rogers WE,
4 % Latt SA (1977), "Automatic measurement of sister
5 % chromatid exchange frequency", J. Histochem.
6 % Cytochem. 25 (7): 741 5 3 ,)A line is constructed between
7 % the maximum of the histogram at (b) and the lowest (or
8 % highest depending on context) value (a) in the histogram.
9 % The distance L normal to the line and between the line

10 % and the histogram h[b] is computed for all values from
11 % a to b. The level where the distance between the
12 % histogram and the line is maximal is the threshold value
13 % (level). This technique is particularly effective
14 % when the object pixels produce a weak peak in the histogram.
15

16 % Use Triangle approach to compute threshold (level)
17 % based on a 1D histogram (lehisto). num bins levels
18 % gray image.
19

20 % INPUTS
21 % lehisto : histogram of the gray level image
22 % num bins: number of bins (e.g. gray levels)
23 % OUTPUT
24 % level : threshold value in the range [0 1];
25 %
26 % Dr B. Panneton, June, 2010
27 % Agriculture and Agri-Food Canada

28 % St-Jean-sur-Richelieu, Qc, Canad
29 % bernard.panneton@agr.gc.ca
30

31

32 % Find maximum of histogram and its location along the x ...
axis

33 [h,xmax]=max(lehisto);
34 xmax=round(mean(xmax)); %can have more than a single ...

value!
35 h=lehisto(xmax);
36

37 % Find location of first and last non-zero values.
38 % Values<h/10000 are considered zeros.
39 indi=find(lehisto>h/1000000);
40 fnz=indi(1);
41 lnz=indi(end);
42

43 % Pick side as side with longer tail. Assume one tail is ...
longer.

44 lspan=xmax-fnz;
45 rspan=lnz-xmax;
46 if rspan>lspan % then flip lehisto
47 lehisto=fliplr(lehisto');
48 a=num bins-lnz+1;
49 b=num bins-xmax+1;
50 isflip=1;
51 else
52 lehisto=lehisto';
53 isflip=0;
54 a=fnz;
55 b=xmax;
56 end
57

58 % Compute parameters of the straight line from first ...
non-zero to peak

59 % To simplify, shift x axis by a (bin number axis)
60 m=h/(b-a);
61

62 % Compute distances
63 x1=0:(b-a);
64 y1=lehisto(x1+a);
65 beta=y1+x1/m;
66 x2=beta/(m+1/m);
67 y2=m*x2;
68 L=((y2-y1).ˆ2+(x2-x1).ˆ2).ˆ0.5;
69

70 % Obtain threshold as the location of maximum L.
71 level=find(max(L)==L);
72 level=(a-1)+mean(level);

73

74 % Flip back if necessary
75 if isflip
76 level=num bins-level+1;
77 end
78

79 level=level/num bins;

Function : Plotting

1 % Vegard Brattland, University of Stavanger, 2016
2 % Thesis: Imaga Processing and Analysis of Leaf Movement...
3 % in Mimosa Pudica
4

5 % ***
6 % This function plots the white pixels with a color bar ...

indicating
7 % night or day
8 % ***
9

10

11

12

13 function [] = Plotting(antallHvitePiksler,DLCvect)
14

15 % The derivative will indicate a change in Dark Light ...
Constant periode.

16 % This means that there is a shift from day to night, or ...
night to day.

17 changeInDLC = abs(diff(DLCvect));
18

19 % Making a matrix of color string. Yellow indicates day, ...
black indicates

20 % night and red indicates constant.
21 DLCcolorMatrix = {[0 0 0],[1 1 0],[1 0 0]};
22

23 % Finding locations of the where there is a change in Dark ...
Light Constant

24 % periode.
25 [DLCVal DLCChangeIndex] = findpeaks(changeInDLC);
26

27 % Shifting all index one step forward so the index is ...
located at the

28 % start of the new dark light periode.
29 DLCChangeIndex = DLCChangeIndex + 1;

30

31 % Finding the length of the different Dark Light Constant ...
periodes.

32 DLCLength = diff(DLCChangeIndex);
33

34 % A change in periode occurs when the previous periodeis ...
shorter or longer.

35 % A periode change can only occur from the third DLC shift ...
because the

36 % first DLC periode might be shorter during start-up
37

38 % Empty matrix with index of locations with a change of ...
periode

39 DLCregimeChange = [];
40

41 % Checking if there is a change in periode length. ...
Comparing night with

42 % night and day with day.
43 for i=3:length(DLCLength)
44 % Comparing length of night periode with night, and ...

day with day.
45 if DLCLength(i) ~= DLCLength(i-2)
46 DLCregimeChange = [DLCregimeChange;DLCChangeIndex(i)];
47 end
48 end
49

50 % Downsample by 2 to prevent shifing until next change in ...
periode

51 DLCregimeChange = downsample(DLCregimeChange,2);
52

53 % Making a figure for the white pixel plot
54 figure(1)
55 plot(antallHvitePiksler)
56 title('White pixel count')
57 ylabel('Amount of white pixels in image')
58 xlabel('Samples')
59

60 % Finding the range of the y-axis for DLC rectangle insertion
61 yaxislimits = get(gca,'ylim');
62

63 % ***
64 % This loop is windowing each DLC periode. It is plotted
65 % colored rectangles beneath each window indicating the length
66 % of the periode and if it is dark, light or constant. A
67 % change in the periode length will result in a downward
68 % shift in the indicators
69

70 % WINDOW: The first rectangle that is plotted is the
71 % window. One window contains one DLC periode.

72 % Window is starting at the lower y-axis limit and
73 % streches to the upper limit. The bounds of the
74 % windows is defined by the length of the DLC periodes.
75

76 % INDICATION BAR: The second rectangle is the indication
77 % bar. It is located beneath the window. It is colored
78 % yellow for day, black for night and red for constant.
79 % A change in the DLC periode length will be indicated
80 % by a downward shift of the indicator bar. The
81 % indication bar has a height of 2000 pixels.
82

83 % TEXT: Adding text to the indication bar. A IF condition
84 % chooses white text if night and black text else. The
85 % text is placed in the middle of the indication bar.
86

87 % Defining the height of the window and indication bar.
88 windowHeight = yaxislimits(2) - yaxislimits(1);
89 indBarHeight = 2000;
90

91 % Y-axis offset for the plotting of indication bars.
92 yaxisOffset = 2000;
93

94 for i=1:length(DLCChangeIndex)-1
95

96 % X-Coordinate for center of indication bar
97 indBarCenterX = DLCChangeIndex(i)+(DLCLength(i)/2);
98 % Length of periode in hours
99 indBarTime = int2str((DLCLength(i)*5)/60);

100 % Indication bar color
101 indBarColor = DLCcolorMatrix{DLCvect(DLCChangeIndex(i))};
102

103 % Plotting of the first window and indication bar.
104 if i == 1
105 % Plotting Window
106 rectangle('Position',[0,yaxislimits(1),...
107 DLCChangeIndex(1),windowHeight]);
108

109 % Plotting Indication bar.
110 rectangle('Position',[0,yaxislimits(1)-yaxisOffset,...
111 DLCChangeIndex(1),indBarHeight],'FaceColor',...
112 DLCcolorMatrix{DLCvect(1)})
113 end
114

115 % Checking if there is a change in DLC periode.
116 if ismember(DLCChangeIndex(i),DLCregimeChange) == true
117

118 % Calculating changing index for the faint color bars.
119 periodeChangeIndex = [DLCChangeIndex(i) ...

DLCChangeIndex(i)+...

120 DLCLength(i-2)];
121

122 % Plotting faint indication bars.
123 for j=1:2
124

125 % Changing to faint color
126 indBarColorFaint = ...

DLCcolorMatrix{DLCvect(DLCChangeIndex(i-3+j))};
127 % Finding center of the indication bar
128 shiftindBarCenterX = ...

periodeChangeIndex(j)+(DLCLength(i-3+j)/2);
129 % Converting from minutes to hours
130 shiftindBarTime = ...

int2str((DLCLength(i-3+j)*5)/60);
131

132 % Changing color.
133 if isequal(indBarColorFaint,[0 0 0])
134 % Grey
135 indBarColorFaint = [0.5 0.5 0.5];
136 else
137 % Faint yellow
138 indBarColorFaint = [1 1 0.80];
139 end
140

141 % Plotting Indication bar
142 rectangle('Position',[periodeChangeIndex(j)...
143 ,yaxislimits(1)-yaxisOffset, DLCLength(i-3+j),...
144 indBarHeight],'FaceColor',indBarColorFaint)
145

146 % Adding text to indication bar.
147 if isequal(indBarColorFaint,[0.5 0.5 0.5])
148 text(shiftindBarCenterX,yaxislimits(1)-...
149 yaxisOffset+1000,shiftindBarTime,...
150 'HorizontalAlignment','center','color','white')
151 else
152 text(shiftindBarCenterX,yaxislimits(1)-...
153 yaxisOffset+1000,shiftindBarTime,...
154 'HorizontalAlignment','center');
155 end
156

157 end
158

159 % Increasing the yaxisOffset
160 yaxisOffset = yaxisOffset + 2000;
161 end
162

163 % Plotting Window
164 rectangle('Position',[DLCChangeIndex(i),yaxislimits(1),...
165 DLCLength(i),windowHeight]);

166

167 % Plotting Indication bar
168 rectangle('Position',[DLCChangeIndex(i),yaxislimits(1)-...
169 yaxisOffset, DLCLength(i),indBarHeight],'FaceColor',...
170 indBarColor)
171

172 % Adding text to indication bar
173 if isequal(indBarColor,[0 0 0])
174 text(indBarCenterX,yaxislimits(1)-yaxisOffset+1000,...
175 indBarTime,'HorizontalAlignment','center','color',...
176 'white')
177 else
178 text(indBarCenterX,yaxislimits(1)-yaxisOffset+1000,...
179 indBarTime,'HorizontalAlignment','center');
180 end
181

182 end
183

184 end

Function : modelEst

1 % Vegard Brattland, University of Stavanger, 2016
2 % Thesis: Imaga Processing and Analysis of Leaf Movement...
3 % in Mimosa Pudica
4

5 % ***
6 % This function is used to estimate black box models
7 % ***
8

9

10 % Choice of model
11 arxEstimation = 0;
12 armaxEstimation = 0;
13 bjEstimation = 0;
14 testModel = 0;
15 simulinkModel = 1;
16

17 % Experiment test data
18 EstDataOut = antallHvitePiksler(1:4000)';
19 EstDataInp = DLCvect(1:4000);
20

21 % Experiment validation data
22 ValDataOut = antallHvitePiksler(1:4000)';
23 ValDataInp = DLCvect(1:4000);

24

25 % Normalization of test data
26 norm EstDataOutput = (EstDataOut - min(EstDataOut))/...
27 (max(EstDataOut) - min(EstDataOut));
28

29 % Normalization of validation data
30 norm ValDataOutput = (ValDataOut - min(ValDataOut))/...
31 (max(ValDataOut) - min(ValDataOut));
32

33

34 % Changing test dataLight = 0.5, and Dark = -0.5
35 for i = 1:length(EstDataInp)
36 if EstDataInp(i) == 1
37 EstDataInp(i) = -0.1;
38 end
39 if EstDataInp(i) == 2
40 EstDataInp(i) = 0.1;
41 end
42 end
43

44 % Changing val data Light = 0.5, and Dark = -0.5
45 for i = 1:length(ValDataInp)
46 if ValDataInp(i) == 3
47 ValDataInp(i) = 0;
48 end
49 if ValDataInp(i) == 1
50 ValDataInp(i) = -0.1;
51 end
52 if ValDataInp(i) == 2
53 ValDataInp(i) = 0.1;
54 end
55 end
56

57 % Detrending the test,validation and full dataset
58 EstDataOut = detrend(norm EstDataOutput);
59 ValDataOut = detrend(norm ValDataOutput);
60

61 % Smoothing data
62 EstDataOut = smooth(EstDataOut,'moving');
63 ValDataOut = smooth(ValDataOut,'moving');
64 ValDataOutMov = smooth(ValDataOut,125,'moving');
65

66 % Making iddata file
67 modelTestData = iddata(EstDataOut,EstDataInp,1);
68 modelValData = iddata(ValDataOut,ValDataInp,1);
69

70 % AIC initial
71 bestAICARX = 1;
72 bestAICARMAX = 1;

73 bestAICBJ = 1;
74

75 %Plotting the data
76 figure(4)
77 lengthVect = 1:1:length(EstDataOut);
78 plotyy(lengthVect,antallHvitePiksler(1:4000),lengthVect,...
79 EstDataOut)
80

81 figure(5)
82 lengthVect = 1:1:length(ValDataOut);
83 plotyy(lengthVect,antallHvitePiksler(1:4000),lengthVect,...
84 ValDataOut)
85

86

87

88 % Estimating ARX
89 if arxEstimation == 1
90 for na = 1:5
91 for nb = 1:5
92 for nk = 1:5
93 arxSys = arx(modelTestData,[na,nb,nk]);
94 % Saving the best fit (AIC)
95 if arxSys.Report.Fit.AIC < bestAICARX
96 bestAICARX = arxSys.Report.Fit.AIC;
97 bestARXModel = arxSys;
98 end
99 end

100 end
101 end
102 end
103

104 % Estimating ARMAX
105 if armaxEstimation == 1
106 for na = 1:5
107 for nb = 1:5
108 for nc = 1:5
109 for nk = 1:5
110 armaxSys = ...

armax(modelTestData,[na,nb,nc,nk]);
111 % Saving the best fit (AIC)
112 if armaxSys.Report.Fit.AIC < bestAICARMAX
113 bestAICARMAX = ...

armaxSys.Report.Fit.AIC;
114 bestARMAXModel = armaxSys;
115 end
116 end
117 nc
118 end
119 nb

120 end
121 na
122 end
123 end
124 % Estimating Box-Jenkins
125 if bjEstimation == 1
126 for nb = 1:5
127 for nc = 1:5
128 for nd = 1:5
129 for nf = 1:5
130 for nk = 1:5
131 bjSys = ...

bj(modelTestData,[nb,nc,nd,nf,nk]);
132 % Saving the best fit (AIC)
133 if bjSys.Report.Fit.AIC < bestAICBJ
134 bestAICBJ = bjSys.Report.Fit.AIC;
135 bestBJModel = bjSys;
136 end
137 end
138 end
139 end
140 nc
141 end
142 nb
143 end
144

145 end
146

147 % Testing model of choice
148 if testModel == 1
149 modelToTest = bj(modelTestData,[5 5 5 5 1])
150

151 % Comparing the model and test data
152 [outputTest fitTest x0] = ...

compare(modelTestData,modelToTest);
153

154 % Comparing the model and validation data
155 [outputVal fitVal x0] = compare(modelValData,modelToTest)
156

157 % Plotting the fit
158 figure(3)
159 compare(modelTestData,modelToTest)
160 end
161

162 if simulinkModel == 1
163 % Making timestamp vector
164

165 K = 2;
166 w0 = 0.01;

167 zeta = 0.075;
168

169 ValDataLength = 1:1:length(ValDataInp);
170 EstDataLength = 1:1:length(EstDataInp);
171

172 dataOutput = [ValDataLength' ValDataOut];
173 estDataInput = [EstDataLength' EstDataInp];
174 estDataOutput = [EstDataLength' EstDataOut];
175 ValDataOutputMov = [ValDataLength' ValDataOutMov];
176

177 save('simuModData.mat','dataOutput','estDataInput',...
178 'estDataOutput','ValDataOutputMov')
179

180 save('modelData.mat','modelTestData','modelValData')
181 end

