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Abstract 

 
Evaluation of strategies for fracture modeling: A case study at  

Teapot Dome, Wyoming 

Darjan Kundacina 

The University of Stavanger, 2016 

 

Supervisor: Nestor Cardozo  

External Supervisor: Lothar Schulte 

 
The characterization of fractured reservoirs is complex. Fracture modeling is often 

based on very limited well data and therefore is subject to high uncertainty. Typically, 

the standard modeling workflow uses interpolation algorithms to predict the fracture 

spatial distribution. This thesis shows an alternative workflow for improving fracture 

modeling between wells through the use of seismic attributes. The standard and the 

alternative workflows are applied to a public dataset from the Teapot Dome in central 

Wyoming, USA. The Teapot Dome is a basement-cored anticline above a thrust. The 

main objective of the thesis is to compare fracture models of the anticline guided by 

the two approaches: the standard interpolation based approach, and the seismic 

based approach using attributes sensitive to faults. The generated models differ 

mainly in the way of modeling the fracture intensity. The evaluation and uncertainty 

assessment of these techniques is based on the reservoir permeability derived from 

fracture models. A comparison of these two methods provides insight into the 

complexity and uncertainty involved in fracture modeling. In addition, the results show 

the disadvantages of models guided by the interpolation algorithms, Kriging and 

Gauss simulation. On the other hand, the seismic based workflow delivers fracture 

models that are more reliable. Although the seismic based fracture models give a 

similar permeability distribution like the interpolation methods, they show differences 

associated with the spatial distribution and connectivity of high permeability zones.  
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1. Introduction 

Natural fractured reservoirs (NFR) represent a considerable percentage of total 

hydrocarbon reservoirs in the world (Nelson, 2001). Compared to conventional 

reservoirs, NFR behave in significantly different manner and their characterization is 

far more complex. NFR can act as dual flow with presence of fluid flow in the matrix 

and the connected fractures. The presence of fractures and high flow zones within 

reservoirs lead to permeability anisotropy and heterogeneity. The flow through 

fractures often is greater than that through the tight matrix, and represents the main 

fluid path (Nelson, 2001; van der Most, 2008). Fractures form under the action of 

stress. The tectonic regime and orientation of paleo-stress decide on the fracture type 

(joint, shear fractures and stylolites) and fracture orientation (Fossen, 2010). Fracture 

modeling is a complex procedure of characterization and spatial prediction of fractures 

in order to the predict reservoir behavior. A reliable fracture model assumes a realistic 

representation of the fracture network at the reservoir level. Therefore, an accurate 

fracture characterization and a reliable fracture model are crucial for the reservoir 

simulation.  

In general, at the reservoir level, well logs provide essential information regarding 

fractures. These data have validity in the close vicinity of the wells. Hence, fracture 

characterization requires additional efforts to extrapolate to areas away from the wells. 

While additional information for some parameters (length, aperture, orientation) are 

often obtained from outcrops and analogues, the largest uncertainty is related to the 

fracture intensity. The standard procedure in fracture modeling estimates the fracture 

intensity from the fractures intersecting the wells. Lorenz and Hill (1992) refer to the 

method of fracture counting on core data and emphasize the disadvantages of this 

technique. Furthermore, the standard procedure employs geostatistic methods to 

estimate fracture density throughout the model. Interpolation algorithms such as 

Kriging and Sequential Gaussian Simulation (SGS), frequently result in unsuccessful 

predictions of fracture distributions (El Ouahed et al., 2005). In case of limited well 

control, the fracture intensity distribution and hence the fracture model becomes 

unreliable. Consequently, fracture modeling requires additional guidance such as a 

reliable linkage of fracture intensity to regional or local tectonic events (Nelson, 2001; 

Stearns and Friedman, 1972; Zellou et al., 1995). Many authors have introduced 



2 
 

different techniques to guide fracture modeling such as the usage of seismic attributes 

(Chopra and Marfurt, 2007; Shen and Ouenes, 2003; Thachaparambil, 2015; Wilson 

et al., 2013), random regional stress field (Joonnekindt et al., 2013; Phillips et al., 

2014), and neural network approach (Ouenes, 2000; Ouenes and Hartley, 2000; 

Ouenes et al., 1995; Zellou et al., 1995). These techniques have been applied to 

different datasets and areas, which makes it difficult to compare them and evaluate 

their advantages. The absence of a study that describes and compares the results of 

different fracture modeling workflows is one motivation of this thesis.  

The Teapot Dome in central Wyoming (Figure 1) is an excellent example of a NFR. 

The Teapot Dome as part of the large Laramide complex is also well known as a Naval 

Petroleum Reserve (NPR3). Located near the southwestern margin of the Powder 

River basin, the Teapot Dome is an elongated, asymmetrical, basement-cored 

anticline with a NW-SE axial trace and SW vergence (Cooper, 2000). The NE-SW 

striking faults, interpreted as normal to strike slip (Friedmann and Stamp, 2006; 

McCutcheon, 2003), divide the Dome in several blocks (Cooper et al., 2003; 

Friedmann et al., 2004; Friedmann and Stamp, 2006). The stratigraphy includes the 

Pennsylvanian Tensleep Formation consisting of eolian sandstone deposits with 

interbeds of sabkha and shallow marine dolomites. The dataset used in this study is 

public (RMOTC, 2005a,b). It includes well data, well logs, formation micro imager 

(FMI) logs, and a 3D seismic cube across the anticline. For reservoir modeling of this 

structure, accurate fracture characterization is crucial. Numerous studies have 

focused on fracture characterization and modeling of reservoirs in the Wyoming area. 

Generally, fracture characterization is performed on different scales. Cooper (2000), 

Cooper et al. (2006), La Pointe et al. (2002), Schwartz (2006), and Gilbertson and 

Hurley (2006) agree on the existence of three dominant fracture sets that strike 

oblique, parallel and perpendicular to the fold axis. Several studies use fracture 

characterization and fracture modeling. Some studies use volumetric seismic 

attributes as guidance for fracture modeling (Smith, 2008; Wilson et al., 2013). Some 

authors employ seismic attributes in an unconventional approach: For example 

Ouenes et al. (2010) couple the seismic attributes with additional fracture drivers, in 

the so called continuous fracture modeling (CFM) technique. This approach assumes 

the identification of fracture drivers, their rating, validation and usage in order to build 

the fracture model. Thachaparambil (2015) use different seismic volume attributes in 
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order to extract seismic discontinuities from post-stack attributes into seismic 

discontinuity planes (SDP) containing the fracture properties such as orientation, 

length and shape. 

 

Figure 1. Location of the Teapot Dome. Displayed are the general location of the Wyoming 
area (upper left map), the location of the Natrona County (light orange) and the Teapot Dome 
(blue) together with the Powder River Basin (dashed purple line). On the right side, a map 
view of NPR-3 is given (after Cooper, 2000). Modified from “The National atlas of the United 
States of America” U.S. Geological Survey, 2001. 

 
The main objective of this thesis is to develop and evaluate fracture models based on 

different approaches. Essentially the evaluation and uncertainty assessment of the 

techniques is performed on the resulting reservoir permeability. The approaches 

mainly differ in the guidance of the fracture intensity throughout the area. An additional 

objective is to perform a sensitivity analysis of the main fracture parameters in order 

to state their influence on the modeled results. In summary, the thesis focuses on the 

following topics: 

1) Analysis of statistical laws used in fracture modeling;  

2) Estimation of fracture parameters and sensitivity analysis;  

3) Analysis of geostatic interpolation methods;  

4) Application of seismic attributes as guidance in fracture modeling, and  

5) Creation, evaluation and comparison of the fractured models.  
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The result of the thesis should provide a better understanding of the complexity and 

problems associated with modeling of NFR. In addition, the comparison of the models 

highlights the disadvantages of the standard modeling procedure, which delivers an 

inaccurate prediction of fracture intensity. Although the application of different seismic 

attributes delivers fracture permeability of similar range, the derived fracture models 

show differences in the direction and connectivity of high flow zones.  
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2. Geologic setting  

The Rocky Mountain region is underlined by the numerous of uplifts and basins. They 

are formed in response to the horizontal shortening associated with two overlapping 

tectonic events, the Sevier and the Laramide orogenies (Gay, 1999). These events 

are expressed by different deformation styles. The deformations related to the Sevier 

orogeny are characterized by basement detached folding and thrusting (Stone, 1993; 

Gilbertson and Hurley, 2006).  

On the other hand, the Laramide orogeny is characterized by fault propagation folds 

developed above the basement rooted faults. The Laramide orogeny took place from 

late Cretaceous to Paleocene. The NE-SW shortening formed the basement-cored 

uplifts striking normal to the direction of shortening (Dickinson and Snyder, 1978; Bird, 

1998). The NW-SE trending basement cored uplifts are separated by sedimentary 

basins. In general, the axes of these basins are subparallel to the trend of the uplifts 

(Dickinson et al., 1988, Stone, 1993, Gao et al., 2011).  

The Laramide basins comprises numerous anticlines, such as Elk basin anticline, 

Alcova anticline, Oil Mountain anticline, Flat Top anticline, that strike subparallel to the 

primary structures.  

Figure 2a illustrates the main Laramide uplifts and basins of the Wyoming area. The 

Teapot Dome is a typical Laramide anticline trending sub parallel to the major 

structures of the area. It is an element of the larger Salt Creek complex, which contains 

several basement-cored anticlines (Doelger et al., 1993; Gay, 1999; Cooper, 2000; 

Chiaramonte, 2009), Figure 2b. The Teapot Dome is located near the southwestern 

edge of the Powder River basin and is surrounded by the adjacent uplifts (Sweetwater, 

Laramie, and Bighorn) and basins (Wind River, Bighorn, and Denver), Figure 2b. 
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Figure 2. a) Map of the Teapot Dome relative to the Laramide uplifts and basins in Wyoming 
(after Fox et al., 1991), and b) location of the Teapot Dome within the Salt Creek structural 
complex (green) (after Chiaramonte, 2009). 

 

2.1 Teapot Dome Anticline 

The Teapot Dome is an elongated, asymmetrical, doubly plunging anticline above a 

high angle thrust fault with 35°-40° east-northeast dip (Cooper, 2000; McCutcheon, 

2003; Chiaramonte, 2009). The Teapot Dome is characterized by shallow dips on the 

eastern flank and steeper dips on the western flank. This SW verging fold is underlined 

by a thrust fault that bounds the anticline on the west (McCutcheon, 2003, Milliken and 

Koepsell, 2003; Lorenz and Cooper, 2013). The sediments are folded over the thrust 

fault that offsets the basement and Paleozoic sediments and terminates within the 

Cretaceous sedimentary section above (Cooper, 2000; Lorenz and Cooper, 2013). 

The fold is more asymmetric near the basement while in the upper part (Cretaceous 

strata) the anticline is broader and less asymmetric with gentler limb dips (Lorenz and 

Cooper, 2013). 

Along the eastern flank, structural elements are represented by normal to strike-slip 

faults striking approximately perpendicular to the fold hinge (Doll et al., 1995). The NE-

SW striking normal to strike slip faults divide the dome in several blocks. In general, 
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these faults offset the basement and locally vary in orientation with very steep dip 

angles. These faults are noticeable on outcrops (Cooper, 2000) and seismic 

(McCutcheon, 2003). Figure 3 shows the structural map at the reservoir level. The 

main structures at Teapot Dome are the NW-SE striking anticline and NE striking 

normal to strike slip faults. 

 

 
Figure 3. The structure map of the reservoir top and main structures: solid lines S1-S4 
represent the normal to strike slip faults; dashed black line marks the position of the thrust 
fault and white dashed line is the fold axis. 

 

McCutcheon (2003) interpreted and named these faults S1 to S4. The lateral offset at 

the surface and observed sub-horizontal striations suggest that they are tear or 

accommodation faults (Cooper et al., 2003; Friedmann et al., 2004; Friedmann and 

Stamp, 2006). The timing of these faults might be contemporary with the Laramide 

shortening (Friedmann and Stamp, 2006).  

 

 

 

S1 

S2 

S3 

S4? 
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2.2 Stratigraphy 

The typically hydrocarbon bearing reservoirs of Wyoming are tight fractured sandstone 

units. At Teapot Dome, the stratigraphic column comprises the Devonian to 

Cretaceous Formations. The Tensleep sandstone is one of the key producers of the 

Teapot Dome. In general this Formation shows changes in lithological units (i.e. from 

carbonates to clastic) due to different depositional environments during the Late 

Paleozoic (Zhang, 2007). The Tensleep sandstone overlies the Amsden Formation, 

which contains mostly dolomites. The upper bound is an unconformity, above which 

there is a regional seal corresponding to the Permian Goose Egg Formation of shales, 

carbonates and anhydrite (Li, 2014). 

The Pennsylvanian sandstone sequence is 300 ft (100 m) thick and it is composed of 

eolian dunes intercalated with marine dolomitic deposits (Zhang, 2007). The 

intercalations of dolomites vary through the Tensleep section. Also, the depositional 

environment changes from dominantly marine (bottom) with thin sandstones and 

thicker carbonates, to non-marine on the top with cross bedded sandstones and thin 

carbonates (Zhang, 2007; Li, 2014). The presence of the thin dolomite layers within 

the inter-dune deposits can be explained by periods of transgression. This is further 

followed by exposure that leads to an unconformity on the top of the unit (Friedmann 

and Stamp, 2006). The Tensleep Formation is divided into the lithofacies: eolian 

dunes, interdunes and sand sheet based on the sandstone dolomite ratio (Zhang, 

2007). The sandstones A and B are the most important ones within the Formation, 

Figure 4. In general, the sandstone units are permeable zones but their properties 

depend on the degree of cementation, which in turn reduces the effective porosity and 

permeability. The average porosity is 8% while the average permeability is 80md 

(Friedmann and Stamp, 2006; Chiaramonte, 2009). The main producing part of the 

Formation is the B sand (Figure 4), which contains the highest degree of continuity of 

sandstone bodies. The thickness of the B sand is approximately 100 ft (Friedmann 

and Stamp, 2006).  
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Figure 4. Stratigraphic column of the Teapot Dome (left- courtesy of RMOTC), and lithological 
units within the Tensleep formation (right- after Chiaramonte, 2009).  

 

2.3 Fractures at Teapot Dome 

Numerous studies analyzed the fractures at Teapot Dome and adjacent areas 

(Cooper, 2000; Cooper et al., 2006; Schwartz, 2006; Gilbertson 2006; Lorenz and 

Cooper 2013). These studies are based on outcrop observations and interpretation of 

the core data and FMI logs. These interpretations document the changes in fracture 

patterns with depth (Lorenz and Cooper, 2013). Cooper (2000) performed a fracture 

characterization based on outcrops of the Cretaceous Mesaverde Formation. His 
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analysis reveals three main sets of fractures showing different orientations relative to 

the fold hinge. These fracture sets are oblique, parallel and perpendicular to the fold 

hinge. The all sets comprises the extension fractures that are vertical or bed normal in 

case of folded layers. They are formed with all three principal stresses in compression 

and opened against the minimum stress (Lorenz and Cooper, 2013). The hinge 

oblique set is documented through all the region with similar orientation and suggests 

that it may have been formed prior to the folding (Garrett and Lorenz, 1990; Hennings 

et al., 1998; Cooper, 2000; Lorenz and Cooper, 2013). The fracture sets parallel and 

perpendicular to the hinge consist of bed normal extension and high angle conjugate 

shear fractures. These two different types of fractures strike subparallel, Figure 5. The 

hinge parallel and perpendicular sets are formed in response to the bidirectional 

extension normal and parallel to the fold hinge (Cooper 2000, Lorenz and Cooper 

2013). The timing of these two sets is closely linked to the folding. Based on his 

analysis, Cooper (2000) proposes a 3D conceptual fracture model for Teapot Dome 

as illustrated in Figure 5.  

 

 
Figure 5. Conceptual 3D model (above) and plan view (below) of fractures pattern within the 
Teapot Dome (after Cooper, 2000). The model is based on fracture observations from 
outcrops of the Mesaverde Formation. 

 

Legend:
Hinge parallel fractures
Hinge normal fractures
Extension fractures
Shear fractures



11 
 

This conceptual model differs from the model proposed by Stearns and Friedman 

(1972) for thin-skinned basement cored thrusts. The main difference refers to the 

orientation of the conjugate pair of shear fractures. Whereas Stearns and Friedman 

(1972) model documents shear fractures obliquely transecting the fold hinge, Cooper 

(2000) model considers the shear fractures striking parallel and normal to the hinge. 

The distinct folding mechanisms and the depth of the thrust relative to the analyzed 

fractured layers explain these differences.  

The interpretation of FMI logs and cores provides insight into the fracture patterns 

within the Tensleep Formation. Contrary to the interpretation of the Mesaverde 

Formation where the dominant sets of fracture are normal and parallel to the hinge, 

the dominant fracture set within Tensleep strata strikes oblique to the fold hinge, 

Figure 6. The dominant oblique set involves extension fractures and high angle shear 

fractures that are striking sub-parallel to parallel. These two types of fractures reveal 

the maximum horizontal stress prior to the fracturing. According to Lorenz and Cooper 

(2013), the fractures of the Tensleep formation record the NNE-SSW extension 

initiated by horizontal shortening oblique to the fold hinge in WNW-ESE direction.  

 

 
Figure 6. The dominant fracture sets of the Teapot Dome at different stratigraphic layers: a) 
Mesaverde formation (after Cooper, 2000) and b) at Tensleep formation.    

 

The present day stress can be inferred from drilling induced fractures. The orientation 

of these fractures from FMI logs suggests that the present maximum compression 

stress strikes oblique to the fold hinge and parallel to the horizontal maximum stress 

responsible for the creation of the dominant fracture set (Schwartz, 2006; Lorenz and 

Cooper, 2013). Also, Lorenz and Cooper (2013) suggest that orientations of the 

dominant set, paleo and present day maximum horizontal stresses record the stress 
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orientation responsible for the thrusting. The differences between the dominant 

fracture sets within the two Formations can be explained by the degree of folding 

through the sediments. Shallower layers are more folded compared to the deeper 

layers. Consequently, the fractures in the Tensleep Formation are mostly formed in 

response to the extension normal to the horizontal shortening in the NW- SE direction. 

On the other hand, the fractures in the more folded Cretaceous layers are formed in 

response to extension parallel and normal to the fold hinge (Lorenz and Cooper, 

2013). The sets parallel and normal to the hinge are also present in Tensleep 

Formation but in considerable less extent. 
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3. Dataset  

The Rocky Mountain Oilfield Testing Centre (RMOTC) acquired the dataset used in 

the project. It consists of four 2D seismic lines, a 3D seismic cube and four wells 

penetrating the Tensleep Formation. The dataset is public (Friedmann and Stamp, 

2006; RMOTC, 2005a, 2005b). 

The 2D seismic includes 4 lines of different length in the SW-NE direction (Figure 7). 

The length of the lines B and C is 5,5 km, line D is 4 km and line E is 7,5 km (Figure 

7). In addition, one cross-line along the anticline (line A) has a length of approximately 

13 km (Figure 7). The maximum two-way travel time of the vintage is 4000 ms. The 

3D seismic data, consist of 345 in-lines and 188 cross-lines with a bin size of 110 ft 

(33 m). The total coverage of the cube is approximately 70 km2. The maximum two 

way-travel time is 3000 ms. The 3D seismic shows generally good quality. An 

exception is the western part of the survey, in front of the anticline forelimb where the 

data is characterized by chaotic pattern in reflectors. Also close to the edges of the 

survey, random noise affects the quality of the reflectors. A post-stack seismic time 

EXCEL Geophysical Services Company in Denver, Colorado (RMOTC, 2005a; Li, 

2014) interpreted migrated volume. This interpretation provides the picked horizons 

for the stratigraphic units within the Teapot Dome: the Second Wall Creek Formation 

(KF2), the Dakota Formation, the Tensleep Formation, the Tensleep base and the 

basement (McCutcheon, 2003). The data also include time-to-depth relationships and 

synthetic seismograms (Li, 2014). Figure 7 displays a map with the location of the 2D 

lines and the 3D seismic survey together with an in-line section in the time domain.   

In addition, the dataset contains four wells which penetrate the Tensleep Formation.  

All four wells (i.e. 25-1-X-14, 48-X-28, 67-1-X-10, 71-1-X-14) are located along the fold 

hinge and penetrate the Tensleep reservoir. All wells include FMI logs, lithology logs, 

fracture measurement logs and well tops. Also the interpretation of FMI logs is a part 

of the comprehensive dataset. Figure 8 illustrates a map with the position of the wells 

together with rose polar diagrams showing the fracture strikes. Also shown is a well 

with wireline logs and fracture data within the Tensleep interval and a stereonet with 

the provided fracture point data. 
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Figure 7. The seismic dataset. Navigation of the 2D lines and the seismic 3D cube (left), and example of a seismic 3D line (in-line 128) with 
interpretation of the main horizons (right).   
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Figure 8. The well data. a) The structure map of the Tensleep top with location of the wells and polar rose diagrams displaying the strike of the 
fractures, b) Example of one characteristic well (67-1-X-10) showing the provided logs (from left to right): fracture point data, neutron and density 
logs, gamma ray log, resistivity log, and electric fracture aperture log; c) Fracture point data displayed on upper hemisphere projection for all 
wells.     
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4.  Methodology 

The methodology involves two different approaches in fracture modeling: the standard 

method and the method guided by seismic attributes. The difference between these 

two methods lies in the way fracture intensity is modeled. Fracture intensity is an 

important fracture attribute because it guides the fracture simulation. It is estimated 

from the fracture point data derived from the well data and upscaled into the 3D model. 

Typically, the standard method employs Kriging or Sequential Gaussian Simulation 

(SGS) to interpolate the fracture intensity of the 3D grid. This method can deliver highly 

inaccurate results in case of limited well control. The second approach tries to reduce 

this uncertainty, through controlling the fracture intensity interpolation via seismic 

attributes. For both methods, the fracture parameters fracture length, aperture, and 

permeability need to be provided. The estimation of these parameters is based on 

statistical laws derived from analogue data. The derived fracture properties serve as 

input together with the modeled fracture intensity for the generation of a Discrete 

Fracture Network (DFN). Finally, the models derived from the two different methods 

are compared by evaluating the upscaled fracture permeability, which is derived from 

the aperture and intensity of the simulated fractures. The methodology scheme shown 

in Figure 9 summarizes the workflow used in this thesis and displays the steps for 

each of the two approaches. 

 

 

Figure 9. Workflows for fracture modeling based on the standard approach (dark blue) and 
on seismic attributes (light blue). 
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4.1 Basic workflow for fracture modeling  

The initial modeling step is the quality control of the logs used for fracture 

measurements. In general, the formation micro-imager (FMI) log delivers the fracture 

point data that reveals essential information of the fracture parameters dip, azimuth 

and aperture. One of the most essential parameter for the modeling is the fracture 

intensity. The fracture intensity can be derived in several different ways. The selected 

method depends upon the dimension that is selected for determining fracture intensity. 

Table 1 shows the measurements of fracture intensity in the 1, 2 and 3D.  

 

Table 1. Different values of the fracture intensity (after Dershowitz and Herda, 1992). 

 Dimension of fracture 

Dimension Number Length Area Volume 

1D P10 P11   

2D P20 P21 P22  

3D P30 P31 P32 P33 

 

Generally the intensity refers to the fracture spacing (Sf) that is dependent on the 

fracture orientation and can only be used under the assumption of sub-parallel 

fractures (Dershowitz and Herda, 1992). The intensity measured in the 1D represents 

the number of fractures per unit length and is named as P10. This value is inversely 

proportional to the fracture spacing (Dershowitz and Herda, 1992). The intensity 

measured in the 2D space is expressed either as the number of fractures per unit area 

(P20) or as the length of the fracture traces per unit area (P21).  

In general, the intensity defined in 1D and 2D is dependent on the orientation and 

shape of the fractures as well as on the orientation and shape of the measurement 

region (Lee et al., 2011). Consequently, these intensity measurements cannot be used 

in 3D fracture modeling. Figure 10 shows the fracture intensity estimation for the 1D 

and 2D.  
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Figure 10. Fracture intensity represented in 1D and 2D: a) Intensity in 1D - P10, dependent on 
orientation; b) intensity in 2D – P20 dependent on fracture size and c) intensity in 2D – P21 
dependent on the fracture and sampling area orientation (after Dershowitz and Herda, 1992).  

 

The 3D modeling requires fracture intensity defined in a 3D region, which is 

independent of the fracture size and orientation. The intensity P32 represents the 

fracture area within a reference volume. Direct observation of the intensity based on 

P32 is practically impossible. However, a relation between the intensity values P32 and 

P10 can be derived and is given by Equation 1 (Dershowitz and Herda, 1992; Lee et 

al., 2011): 

32 10 ∗ 10	    Equation.1 

where C10 is a constant dependent upon the orientation of the fractures and the 

borehole. 

The intensity conversion is essential for large volumes, for instance outcrops, where 

the fracture orientation plays an important role, figure 10c. For very small volumes 

such as boreholes, the P32 intensity can be related to the number of the fractures per 

unit length (P10). The diameter of the borehole is significantly smaller than the fracture 

length, which means that each fracture can be represented by a fracture point 

independent of the angle at which the fracture intersects the borehole. In fracture 

modeling, the intensity is derived from the slope of the cumulative distribution of the 

fracture point data.  

In addition, the correct borehole orientation plays an important role in estimating the 

fracture intensity. Prior to the value estimation, the angle between fractures and 

borehole needs to be considered. The procedure is well known as a correction of the 

borehole deviation (Baytok, 2010; Schlumberger, 2013). For instance, vertical 

boreholes have a smaller probability to sample vertical fractures compared to 

horizontal wells, Figure 11. Therefore, the borehole path needs to be corrected in order 

to estimate the fracture intensity more accurately.  
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Figure 11. Correction for borehole deviation. The horizontal well will result in higher intensity 
value.  

 

Once the intensity data has been derived, it needs to be sampled into a 3D grid and 

interpolated in order to get a 3D property. The most common interpolation algorithms 

used for modeling are Kriging and Sequential Gaussian Simulation (SGS). 

In addition, fracture modeling requires an estimation of the fracture parameters. From 

the fracture point data, the fracture orientation can be inferred in form of the dip angle 

and azimuth. In addition, electrical logs allows estimating the fracture aperture. The 

fracture length cannot be inferred from the logs since the borehole data are usually 

affected by sampling artifacts. These sampling artifacts are known as truncation and 

censoring. The truncation effect is caused by the low sampling resolution and leads to 

the underestimation of the small fractures (Ortega Pérez, 2002). In addition, due to the 

limited size of the sampling domain, the larger fractures usually extend further than 

the sampling region. This leads to poor sampling of the large fractures that can result 

in their underestimation. The impact of the censoring usually is associated with 

measurements of fracture length. Thus, fracture length estimation requires a combined 

usage of data from different scales in order to capture the parameter distribution. For 

instance, the data collected along the outcrops delivers insight into the length 

distribution. The gathered data indicate that the fracture length and fracture aperture 

are functions of the cumulative frequency of the fracture, which in turn is a direct 

measurement of fracture intensity (Ortega et al., 2006). Statistical laws describe the 

measured relationship between fracture parameters length and aperture with fracture 
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intensity. These laws are used to assign stochastically the fracture parameters to the 

simulated fractures of the model.  

After the generation of the fracture network model, the fracture properties are upscaled 

into the model in order to estimate the reservoir permeability.  

 

4.1.1 The analysis of the statistical laws  

In general, the fracture modeling and the generation of the discrete fracture network 

(DFN) use a number of statistical tools to model fracture length and aperture. These 

distribution laws describe the observed fracture length and aperture as a function of 

fracture intensity. Typically, distributions used in fracture modeling are normal, log 

normal, exponential and the power law. In Table 2, the statistical laws are describe 

together with their main controlling parameters. 

 
Table 2. Statistical laws utilize in fracture modeling 

Statistical law 
(distribution) 

Equation Controlling parameters

Normal 
1

√2


  µ - mean   

σ- st. deviation 

Log-normal 
1

√2


√   

µ - log mean   

σ- st. deviation 

Exponential 
1
β

 β - scale parameter 

Power law 
1

 
α – exponent 

Xmin- distribution lower 
bound 

 

Changing these parameters affect the fracture distribution allowing to reproduce, for 

instance, the distribution of measured fractures properties. As an example, Figure 12 

shows the fracture length for a normal distribution and different mean values.  
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Figure 12. Example of normal fracture length distribution presented by histogram and 
cumulative distribution function (CDF-pink line). Green boxes display input parameters and 
blue boxes display the statistics of the modeled fracture parameters.  

  

4.1.2 Estimation of fracture parameters 

The fracture modeling requires an assessment of the geometrical parameters such as 

fracture length, orientation and aperture. Fracture logs provide information about the 

fracture dip angle and azimuth. These parameters are integrated into the model in 

form of the mean dip and azimuth. Three different algorithm proposed by Fisher, 

Bingham and Kent (Schlumberger, 2013) are provided by Petrel which allow to 

introduce a user-controlled uncertainty for the orientation of the simulated fractures 

around the provided mean value in a controlled way. Figure 13 shows an example of 

simulated fracture orientations based on the three algorithms and the impact of their 

parameters on the distribution. 

In general, the Fisher method is similar to the Normal distribution and requires the 

mean orientation and a so-called concentration parameter as input. The Kent 

orientation introduces an anisotropy factor, which results in a more elongated 

distribution of the fracture orientations compared to the Fisher distribution. The 

Bingham distribution is defined by a mean orientation and two concentration 

parameters, azimuthal (Ac that controls the variations around mean azimuth) and 

radial concentration (Rc that controls variation around mean dip).  

Fracture length cannot be derived from well logs. Therefore, the estimation technique 

employs the data from analogues. Numerous studies performed a fracture 
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characterization based on outcrops (Cooper 2000; Cooper et al., 2006; La Pointe et 

al., 2002; Gilbertson and Hurley 2006; Wilson et al., 2015). The resultant statistical 

laws can be used to assign a fracture length to the simulated fractures.  

 

 
Figure 13. Three distributions of fracture orientation: Fisher distribution (upper), Bingham 
distribution (middle) and Kent distribution (lower). In all three distributions, the concentration 
parameters control the variation around the mean orientation values.   

  

The fracture aperture needs to be assigned to the simulated fractures in a similar way 

like the fracture length. Fracture apertures can be inferred from FMI logs. However, in 

case of limited data, the measurements can be highly uncertain. In order to estimate 

the aperture distribution more reliably the measured distribution can be combined with 

statistical laws. This can be done by adjusting the parameters of the selected statistical 

law in order to match the measured distribution of the fracture aperture.  
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Numerous studies refer to the relation between fracture length and aperture (Cowie 

and Scholz, 1992; Olson, 2003; Scholz, 2002; Vermilye and Scholz, 1995). The 

fracture aperture can be modeled in two ways: independently and related to the 

fracture length. Instead of the random assignment of the aperture to the fractures 

following the selected statistical law, a better approach is to take the relationship 

between aperture and length into account in fracture modeling. The studies mentioned 

above analyze the different fracture modes. Based on the displacement character 

(opening or shearing) the fractures are classified into three modes noted as opening 

(mode I), sliding (mode II) and tearing (mode III) mode fractures (Fossen, 2010; 

Klimczak et al., 2010). Mode I fractures are characterized by a displacement 

perpendicular to the fracture walls while modes II and III involve shear displacement 

perpendicular or parallel to the fracture edge, respectively (Fossen, 2010). The Figure 

14 shows the three fracture modes.  

 

 
Figure 14. Three different fracture modes (Fossen, 2010). 

 

There are different ways to define the aperture to length relation. For instance, 

Vermilye and Scholz (1995) propose a linear relationship between the aperture (Dmax) 

and the fracture length (L) based on studies performed on sliding and tearing mode 

discontinuities (mode 2 and 3): 
 

                                                     Dmax=γL                                      Equation (2) 
 

where γ represents a constant. In addition, Olson (2003) analyses the opening mode 

fractures (mode 1) and suggests the square root relation:  
 

                                                    Dmax=αL0,5                                    Equation (3) 
 

where α is a proportionality coefficient that is a function of the fracture toughness, 

Poison`s ratio and Young`s modulus (Klimczak et al., 2010). In this study, the fracture 

modeling uses the square root aperture to length relation (Equation 3). 
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The fracture permeability can be either, modeled independently or linked to the 

fracture aperture. The permeability is linked to the fracture aperture by the adaptation 

of the cubic law, under the assumption that fractures can be described by two parallel 

planar planes and that the flow within the fractures is laminar (Snow, 1969; 

Witherspoon et al., 1980), Equation 4: 
 

       	 12                              Equation (4) 

 
with: K – hydraulic conductivity for the diagonal tensor components (in x, y z 

directions); b - aperture or width between the fracture walls;  - fluid density;  - the 

gravitational acceleration;  -  fluid viscosity. 

 

Since the assessment of the fracture parameters shows a high level of uncertainty, a 

sensitivity analysis is important. This can be done by defining three sets of parameters 

representing the low, base and high case. Fracture models are calculated that keep 

all parameters to the base case with the exception of one. The models are compared 

through upscaling the fracture permeability and comparing their distributions, for 

instance in form of a Tornado diagram. The performed analysis allows identifying 

those parameters that are most influential on the reservoir parameters 

 

4.1.3 Generation of the fracture intensity by the interpolation algorithms   

The estimation of the intensity at the wells is described in section 4.1. The derived 

fracture intensity needs to be modeled. The two methods, Kriging and Sequential 

Gaussian Simulation (SGS) are the most commonly used algorithm for interpolation. 

The Kriging algorithm delivers an optimal interpolation in the sense of a best linear 

unbiased estimate at any location (Bohling, 2005). On the other hand, SGS delivers 

numerous realizations based on the same set of variables. Both algorithms are based 

on the variogram model derived from the input data. Also they honor the mean and 

variance of the input data. In addition, SGS provides a model data distribution similar 

to the input data. 

The variogram model refers to the spatial variation of the data (Ringrose and Bentley, 

2015). In general the variogram delivers the mean variance of data pairs of similar 

distance. Graphically, it is represented by the mean semi-variance as a function of the 

separation distance, Figure 15. The approximation of the semi-variance by an 
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analytical function delivers the variogram model. This model delivers the main 

variogram parameters sill, nugget and anisotropy range that are used in Kriging and 

Gauss simulation. Figure 15 shows an example of a sample variogram with the model 

(red line) and the definition of the main parameters. Among all parameters the 

variogram range is the crucial. It reveals the distance (range) at which the data do not 

show the spatial relationship. Consequently, a large range means a more 

homogeneous data distribution (Ringrose and Bentley, 2015). Also, in case of 

anisotropy of the data the spatial relationship varies with different directions (Bohling, 

2005). 

 

 
Figure 15. An example of semi variogram model with its essential parameters (after Ringrose 
and Bentley, 2015). 

 
The variogram modeling is achievable only in case of a sufficient amount of data. Due 

to the limited data of this study, the sample variogram is too noisy to allow a reliable 

modeling. Consequently, three sets of the variogram parameters are defined in order 

to study the behavior of both interpolation algorithms. Figure 16 shows examples for 

the Kriging and SGS based on different horizontal variogram ranges. It can be 

observed that the variogram range controls the radius of influence of the input data. In 

case of SGS, it also controls the size of the patches of high and low intensity. In 

addition, Figure 17 shows two models based on SGS with identical parameters but 

different seeds. The two simulations honor the same basic statistics of the input data: 

same mean, variance and histogram; however, they show a different distribution of the 

intensity. 
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Figure 16. An example showing the influence of the different variogram ranges on the 
intensity: Kriging algorithm a) small variogram ranges, b) large variogram ranges, and SGS c) 
small variogram ranges and d) large variogram ranges.  
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Figure 17. Fracture intensity based on SGS and the parameters of figure 16: a) Seed 25000 
and b) Seed 12000.  

 

4.2 Application of seismic attributes in fracture modeling  

The detection of fracture swarms and small scale faults can be difficult, since they are 

below seismic resolution (Marfurt and Chopra, 2006). In addition, individual fractures 

cannot be detected by seismic. However, fractures are generally related to the 

distorted seismic reflectors and are observed in the vicinity of faults. During the last 

decades seismic attributes have been developed that are well suited for a detailed 

structural analysis allowing to identify fracture swarms and subtle faults (Anees, 2013; 

Lefranc et al., 2012). In general, their successful usage is closely linked to advances 

in acquisition and processing techniques of seismic. The attributes are applied either 

on interpreted seismic horizons or on seismic volumes. Numerous studies refer to 

surface attribute fracture prediction (Hart et al., 2002; Roberts, 2001). However, the 

reliable application of surface attributes strongly depends on accurate horizon 

interpretation that consequently entails additional uncertainties (Marfurt and Chopra, 

2006). On the other hand, volumetric seismic attributes are independent of seismic 

horizon interpretation and are powerful tools to delineate the faults and small scale 
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discontinuities. Once the seismic attributes that show the fault and fracture swarm 

pattern convincingly are identified they need to be converted into fracture intensity. 

The usage of seismic attributes in fracture modeling requires a systematic approach 

that involves the following steps:  

1) attribute derivation and analysis;  

2) additional discontinuity enhancement thru conditioning the attribute cube;  

3) attribute sampling into the 3D grid and  

4) fracture intensity modeling using co-kriging method guided by seismic attribute.  

The following sections describe the methodology in more detail. 

 

4.2.1 Creation of the multiple volume attributes  

The usage of attributes for structural delineation is well documented by many 

researches (Aqrawi et al., 2012; Klein et al., 2008; Marfurt and Chopra, 2006). The 

ability of the fault identification by seismic attributes highly depends on the seismic 

resolution and the seismic response of the target zone (Thachaparambil, 2015). 

Structural smoothing allows improving the signal to noise ratio and enhancing the 

continuity of seismic reflectors. The used algorithm is a Gaussian filter that is guided 

by the dip and azimuth of the local structures (Randen et al., 2003). In addition some 

attributes (e.g. amplitude contrast) allow directional filtering that highlights the features 

in a particular direction (Aqrawi et al., 2012). 

Especially suitable seismic attributes for structural interpretation are the so-called 

geometric attributes. This group of attributes is based on a multi traces analysis and 

includes chaos, curvature, amplitude contrast, consistent dip, edge detection and 

variance. The chaos attribute investigates the chaotic signal (Baytok, 2010) while the 

variance measured variations in the signal, delivering a larger variance in faulted areas 

(Randen et al., 2001). In addition, the curvature attribute is related to broken seismic 

reflectors, recording the curvature of the amplitude field (Klein et al., 2008). The 

amplitude contrast displays the negative and positive amplitudes that correspond to 

the areas without and with discontinuities, respectively. In general, many attributes 

require an adjustment of their parameters in order to optimize the visualization of the 

fault pattern. The methodology uses the multi-trace attributes discussed above which 

are also used in published studies for fault pattern recognition (Thachaparambil, 2015; 
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Wilson et al., 2015). The selected attributes are displayed in Figure 18 for a time slice 

within the time range of investigation. 

 

 
Figure 18. An example of derived seismic volume attributes: a) amplitude contrast cube, b) 
chaos cube, c) consistent dip cube and d) curvature cube. 
 

4.2.2 Discontinuity enhancement and attribute analysis 

Considering that seismic data contains a significant amount of noise, the seismic 

attributes require additional improvement of the signal to noise ratio. One of the most 
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suitable method for the faults and discontinuity identification is the so-called ant-

tracking algorithm. The algorithm is based on the swarm intelligence concept (Randen 

et al., 2001; Pedersen et al., 2002). Generally spoken the attribute performs an edge 

augmentation and provides directional filters that allow the tracking of seismic 

discontinuities in the direction of interest. The ant tracking method is applied to the 

selected cubes (i.e. amplitude contrast, chaos, consistent dip and curvature - see 

figure 18).  

 
Figure 19. An example of the applied ant-tracking algorithm to derived seismic volume 
attributes: a) amplitude contrast cube, b) chaos cube, c) consistent dip cube and d) curvature 
cube. 
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The results, displayed in Figure 19 use the same time slice that is used in Figure 18.  

As can be observed in some areas ant-tracking cubes based on the different seismic 

attributes provide different fault pattern. This could be explained by the low signal-

noise ratio of the seismic that makes the identification of the faults difficult.  

 

4.2.3 Sampling attributes into the model 

The attributes that show the fault pattern are sampled into the 3D grid, by assigning 

the amplitude values to the grid cell that is closest to the seismic sample. In order to 

increase the signal to noise ratio for each modeled zone, an averaged map of the 

upscaled model property is calculated. Figure 20 gives an example of this method 

applied to the ant-tracking attribute. The original ant-tracking cube is shown as 

reference in Figure 20a. It can be observed that the averaged upscaled attribute 

(Figure 20c) shows the faults clearer compared to the upscaled property (Figure 20b). 

 

 

Figure 20. An example of averaging the ant-tracking attribute: a) ant-track attribute, b) 
sampled attribute into 3D grid and c) average map. 

 

4.2.4 Derivation of fracture intensity from seismic attributes  

As discussed, seismic attributes can be used to determine the fracture drivers, by 

capturing the changes in seismic amplitudes that are in turn associated with the faults 

or fracture corridors. The resultant model properties represent only variations of the 
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seismic attribute amplitudes and therefore cannot directly be employed as fracture 

intensity. However they can be used as secondary input for the interpolation of the 

fracture. The preferred interpolation algorithm is collocated co-kriging because one 

has full control over the radius of influence of the well data via the variogram ranges. 

In addition the influence of the secondary input, the seismic attribute, is controlled via 

its correlation factor with the well data. Figure 21 shows an example of the original 

secondary input derived from an seismic attribute (Figure 21a), together with the 

intensity model based on collocated co-simulation using a low correlation coefficient 

(Figure 21b) and high correlation coefficient (Figure 21c). In this study the calculated 

correlation coefficient between the measured upscaled fracture intensity and the 

seismic attribute is very low. However for modelling the intensity, a large correlation 

coefficient is used because the underlying assumption is that the fractures are 

associated with the fault pattern. Consequently, in the vicinity of the fault pattern a high 

fracture intensity is expected. 

 

 

Figure 21. An example of the correlation coefficient influence on collocated co-kriging method: 
a) secondary input, b) low correlation coefficient and c) high correlation coefficient. 

 

The other controlling factor is the variogram model. In section 4.1.3, the importance of 

variogram modelling has been discussed. The secondary input provides sufficient 

amount of points that allows a reliable variogram modelling. The variogram parameters 

are derived from these secondary properties assuming that the relation between 

fracture intensity and the seismic attributes is plausible. Figure 22 shows two different 
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variogram models for the secondary inputs of the attributes consistent dip (22a) and 

chaos (22b). As can be observed, using a large correlation coefficient the intensity 

property is largely influenced by the secondary input, which reduces the influence of 

the variogram range to the area around the wells (data points). 

 

 
Figure 22. An example of the variogram models generated from the secondary inputs (seismic 
attributes) for: a) consistent dip and b) chaos.  

 

4.3 Estimation of the reservoir properties 

The estimated fracture properties are used in order to generate the fracture network 

models. Several DFN models are generated using the same fracture parameters (e.g. 

length, aperture and orientation) guided by different intensity models. The fractures 

are upscaled into the reservoir model in order to derive the fracture based reservoir 

permeability. In general, the process involves the assignment of the fracture properties 

to the each model cell. For the fracture permeability, two different upscale methods 

are available. The flow based method uses a simulation technique based on the Darcy 

equation and takes into account the complete geometry and the fracture connectivity 

as filtration pathways. This method delivers accurate results, however it is very CPU 

demanding. An alternative approach is the so called ODA method. The method is 

based on a statistical model, assuming that all fractures within the grid cell contribute 

to the grid cell permeability without taking the fracture connectivity into account 

(Decroux and Gosselin, 2013; van der Most, 2008). The results of upscaling procedure 

are presented in form of the permeability property for the three main directions X, Y, 

Z. 
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4.3.1 Evaluation of the reservoir properties 

In general, naturally fractured reservoirs are considered as dual flow models with 

contribution of the rock matrix and the fractures (Nelson, 2001). From the viewpoint of 

flow simulation, the main pathways are provided by the fractures while the matrix 

influence is often neglected. Given that, the model comparison based on the upscaled 

fracture permeability appears to be a suitable approach. The method compares the 

models via their permeability distribution and cumulative probability distributions 

characterized by their P10, P50 and P90 values, Figure 23. In addition, the 

connectivity of the areas showing high permeability above a selected threshold value 

is analyzed. The connectivity analysis is done for a number of pseudo wells 

considering areas of connected volumes that are connected to the pseudo well under 

consideration. This allows attaining insight into possible high flow zones linked to the 

selected pseudo well. Figure 24 shows the location of the pseudo wells (24a) and an 

example of the connected high permeability zone linked to the pseudo well 4 (24b).  

 

 
Figure 23. Evaluation of a fracture model: histogram of permeability (left) and cumulative 
distribution function (CDF) with P10, P50 and P90 values (right). 
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Figure 24. Evaluation of the results: a) the location of the provided and pseudo wells and b) 
example of connected volumes in well 4 for the high permeability. 
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5. Results  

5.1 Analysis of statistical laws 

The following section discusses the statistical laws used in fracture modeling for 

simulating fracture length and fracture aperture. The equations are shown in Table 2, 

chapter 4.1.2. Since fracture intensity does not affect the parameter distribution, the 

analysis uses a constant low intensity of 0,005 ft-1. As the same statistical laws can be 

applied to fracture length, aperture or permeability, the discussion is focusing on 

fracture length. The distributions described by laws are provided on the histograms 

(Figure 25-28). It is worthwhile mentioning that the input parameters are displayed in 

the green boxes, while the statistic of the simulated fracture length is given by the blue 

boxes. In this way, one can observed the ability of the laws to simulate desired 

properties.  

 

Normal distribution 
 

The normal distribution is often used in natural sciences. The distribution is symmetric 

and represented by a bell shaped density curve. Two factors control the distribution: 

the mean value determining the density peak, and the standard deviation, which 

controls the spread of the distribution curve.  

Figure 25 illustrates the impact of changing the mean and standard deviation on the 

normal distribution. One can notice that changes in the mean length only affect the 

position of the distribution peak, Figure 25a, b. The typical symmetric shape of the 

distribution remains unaffected. Variations in the standard deviation affect the 

distribution shape. An increase in the standard deviation delivers a wider distribution, 

Figure 25c, d.  
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Figure 25. Normal distribution of fracture length presented by histogram and CDF (pink line). 
Distribution changes as the result of variation in: a) and b) the mean value, c) and d) the 
standard deviation.  

 
Log normal distribution 
 

The log normal distribution is closely related to the normal distribution. In general, it is 

characterized in terms of a log transformed variable using the same parameters as a 

normal distribution, mean and standard deviation (Davis and Sampson, 1986). If the 

logarithm of a variable X is normally distributed, then the variable itself is log normally 

distributed. The lognormal distribution is skewed with a longer tail on the right hand 

side. Figure 26 shows changes in the log distribution related to the variation of the 

mean and standard deviation. Similar to the normal distribution, the changes in the 

mean value have no major influence on the distribution shape. In addition, a more 
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skewed shape of the distribution can be observed for larger standard deviations. For 

comparison, the normal distribution is displayed as a black solid line in Figure 26.  

 

 
Figure 26. Log normal distribution of fracture length presented by histogram and CDF (pink 
line). Distribution changes as the result of variation in: a) and b) the mean value, c) and d) the 
standard deviation. 

 
Exponential distribution 
 

This distribution is controlled by the specific scale parameter β (Cowie and Scholz, 

1992). The scale parameter (β) is numerically the mean value and at the same time 

the standard deviation of the distribution. Figure 27 shows the fracture length 

distribution based on the exponential law for different values of β.  
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Figure 27. Exponential distribution of fracture length presented by histogram and CDF (pink 
line). The four histograms show different fracture length distributions as the result of changes 
in the mean value.  

 
Power law distribution 
 

The power law distribution has a shape similar to the exponential distribution and is 

controlled by a scaling parameter and an exponent. While the exponent α is controlling 

the spread, the scaling parameter is positioning the distribution along the length axis. 

When displayed on double-log scale, the power law distribution can be approximated 

by a straight line. Figure 28 illustrates the influence of both parameters on the 

distribution. A larger exponent leads to an increasing number of short-length fractures 

resulting in a smaller mean length (Figure 28a, b). The modeling software Petrel 

introduces the shape factor that is related to the exponent ( 1). Another 

controlling factor is the lower limit of the distribution range (xmin), which is represented 
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by the so-called scale factor. An increase of this parameter results in a larger modeled 

mean length and standard deviation. 

 

 
Figure 28. Power law distribution of fracture length presented by histogram and CDF (pink 
line). Distribution changes as the result of variation in: a) and b) shape factor, c) and d) scale 
factor. 

 

The shape of the presented distributions suggests that the exponential and the power 

law describe best fracture length distributions with mainly small values. Fracture length 

distributions presented in the literature often reveals a similar pattern (La Pointe et al., 

2002; Thachaparambil, 2015; Wilson et al., 2015) and thus either of these two laws 

usually best describe the fractures. The power law is often used to describe the 

fracture aperture-length relation and the aperture-permeability relation. In order to 

summarize the distributions commonly used in fracture modeling, all distributions are 

plotted in Figure 29. It should be noted that this comparison is based on the same 
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modeled mean values, standard deviation and fracture length range applied to all 

distribution laws. The plotted distributions show some similarities, for instance, the 

exponential and the power law distribution show the largest number of fractures for 

small fracture lengths.  

 

 
Figure 29. The summary plot of the statistical laws. The plot shows all distributions and their 
relationship with respect to the same modeled values. 

 

5.2 Sensitivity analysis and modeling parameters  

5.2.1 Sensitivity analysis 

A sensitivity analysis is performed in order to investigate the impact of the essential 

fracture parameters on the upscaled permeability. Three sets of parameters are 

defined as low, base and high case: fracture length, aperture and orientation (Table 

3). The modeling of these parameters is discussed in chapter Methodology, section 

4.1.2. The fracture orientation, inferred from well data, is described in terms of the 

mean dip angle and azimuth. In this study, the fracture orientation is modeled by the 

Fisher distribution, mainly because of the simple of this algorithm. The sensitivity 

analysis of the azimuth is done via the concentration factor while the dip is hold 

constant.  

The fracture length is derived from the outcrop studies of the Tensleep sandstones 

(La Pointe et al., 2002; Wilson et al., 2015). The studies are based on observations of 
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the Tensleep formation exposure in the Fremont Canyon area (La Pointe et al., 2002) 

and Circle Ridge field (Wilson et al., 2015). These studies agree upon the power law 

distribution of fracture length, but they provide different mean length values that vary 

from 40 ft (Wilson et al., 2015) to 160 ft (La Pointe et al., 2002). Consequently, the two 

length distributions are assumed as low and high case, respectively. The mean length 

for the base case is taken as the average value of the low and high case.  

The dimensions of the fracture aperture can be derived from the fracture logs. It is 

worth noticing that only well 67-1-X-10 provides measurements of the electrical and 

hydraulic aperture. These measurements deliver a mean aperture value of the order 

of 10-3 ft. Additional data is inferred from published studies (Schwartz, 2006; Wilson et 

al., 2015). Schwartz (2006) analyses the aperture from FMI logs of the Teapot Dome 

and proposes a mean fracture aperture of the order of 10-4 (0.00017 ft). Wilson et al. 

(2015) propose a mean aperture of 5.6x10-6 ft. The different mean aperture values are 

modeled by the exponential law and represent the high, base and low case 

respectively, Table 3. 

 
Table 3. Defined parameters used in sensitivity analysis  

Case/parameters 
Mean 
length 

(ft) 

St. 
deviation 

(ft) 

Mean 
aperture 

(ft) 

St. 
deviation 

(ft) 

Orientation 
(concentration 

factor) 

I –Low Case 40 9,48 0,000056 0,000024 10 

II- Base Case 80 35 0,00017 0,00012 30 

III- High case 160 58 0,0022 0,0012 50 

 

In order to estimate the influence of each parameter on the fracture simulation, one 

parameter at the time is set to its low or high case value while the base case value is 

assigned to the other parameters. Then the fracture model is calculated. The influence 

of each fracture parameter under investigation is captured by upscaling the simulated 

fracture model for its low and high case and calculating the mean permeability. It is 

worthwhile noting that the permeability of all models show similar values along the I, J 

and K direction that represent the model axes. This can be attributed to the fact that 

three fracture sets of different orientations are simulated. Consequently, there is no 

preferred permeability direction. 
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Alterations of the fracture length for the different cases, deliver a variation in 

permeability from 4 to 20 mD. A variation of the fracture orientation, in terms of the 

concentration factor, reveals no significant impact on the permeability. Conversely, the 

fracture aperture has a very large influence on the upscaled permeability covering the 

value range from 0,22 mD to 14000 mD. This clearly shows the dominant influence of 

the aperture on the upscaled permeability compared to the other two fracture 

parameters. The results delivered by the sensitivity analysis are displayed in form of 

a tornado diagram in Figure 30. The reference line in the middle of the diagram 

represents the mean permeability for the model where all fracture parameters are set 

to the base case value. It should be noted that the diagram is truncated at 200 mD. 

This is necessary because the mean permeability for the aperture high case is about 

104 mD. The high case aperture can be challenged because it delivers an extremely 

high permeability. Its value is provided by the fracture data set of well 67-1-X-10 and 

cannot be verified. 

 

 
Figure 30. Tornado chart showing the impact of the fracture parameters on the permeability 
in vertical (k) direction. 

 

5.2.2 Definition of model parameters 

The final model parameters of the DFN models that result from the two modelling 

strategies discussed in this thesis are chosen based on the performed sensitivity 
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analysis. Based on inferred orientation parameters the fractures are divided into three 

fracture sets. The Fisher distribution based on a large concentration factor (C) with the 

aim to avoid wide spread of the fractures around the mean orientation integrates these 

sets into the models. Fracture length variations show only a minor impact on the 

permeability. Therefore, a cell size of 250 ft together with the high case fracture length 

is selected because the fracture simulation is much less CPU demanding compared 

to the models based on the low and base case fracture length. The power law 

accomplishes the modeling of fracture length. For the fracture aperture, the base case 

aperture is selected because it delivers a mean permeability which is comparable with 

the mean permeability for the reservoir published by Friedmann and Stamp (2006). 

The square root relation relates the fracture aperture to the fracture length. The 

fracture permeability is related to fracture aperture by the cubic law. Table 4 shows 

the fracture parameters used as input for all models based on the different approaches 

discussed in this thesis. Figure 31 illustrates the three fracture sets in a stereonet, the 

power law distribution of fracture length, and the relation of fracture aperture with 

fracture length and permeability, all of them used in the models. 

 

Table 4. The fracture parameters used in fracture models.  

Model parameters 
Fracture 

length (ft) 
Fracture aperture

(ft) 
Fracture orientation 

Mean (ft) 160 0,00017 C=50 

Standard deviation 
(ft) 

58 0.00012 C=50 

Range (ft) 0-500 0.0001-0.0016 C=50 
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Figure 31. Model parameters: a) stereonet with poles of the defined fracture sets together 
with the fold hinge, b) fracture length modeled by a power law, c) fracture aperture related to 
the length by the square root relationship and d) relationship between permeability and 
aperture defined by the cubic law. 

 

5.3 The standard approach in fracture modeling 

As discussed earlier, the standard method uses non-conditioned interpolation 

algorithms for modeling fracture intensity. The variogram ranges have a major impact 

on the spatial distribution of fracture intensity. Therefore, three different ranges are 

employed in order to capture their impact on the model results (Table 5).  
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Table 5. The random variogram ranges for the three cases.  

Cases Case 1  Case 2  Case 3  

Major direction (ft) 2500 6000 12000 

Minor direction (ft) 2500 6000 12000 

 

5.3.1 Fracture intensity  

The fracture intensity based on Kriging and Gauss simulation are illustrated in Figure 

32 for one model layer. Figure 32a, b, and c display the Kriging interpolation result for 

the variogram ranges given in Table 5. The remaining figures refer to the Gaussian 

simulation based on the same variogram ranges. The two algorithms deliver very 

different fracture intensity maps. For instance, the Kriging algorithm assigns the mean 

value of the data points to the grid cells away from the data. Accordingly, it delivers a 

very smooth intensity distribution. Figure 32a-c also illustrate that the variogram range 

controls the radius of influence of the measured data. For instance, the case with the 

largest range (Figure 32c) delivers the widest extent of high fracture intensity away 

from the data points. This can be easily observed in the south, with a fracture intensity 

value larger than the average value (red squares). On the other hand, the Gauss 

simulation (Figure 32 d, e, f) delivers a very heterogeneous fracture intensity model. 

The patches with low and high intensity are randomly distributed throughout the area. 

In addition, the dimension of these areas depends on the defined variogram ranges 

(Figure 32d-f). 
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Figure 32. Fracture intensity guided by two different interpolation algorithms for three sets of 
variogram ranges (cases 1-3): (a-c) Kriging and (d-f) Gauss simulation. Note the impact of the 
variogram ranges on the modeled results. Red squares are used to highlight the differences. 

 

5.3.2 Evaluation of the models  

Since the permeability distribution show similarities in all three directions (i.e. I, J K), 

the models are further evaluated based on the upscaled permeability in the vertical 

direction (Kk). Figure 33 displays the permeability of the same layer and the six models 

discussed above. Analyzing the figures one can observe that the permeability pattern 

is consistent with the fracture intensity. Therefore, for the shown layer, high 

permeability values are absent for the models based on kriging shown in Figure 33a-

c.  
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Figure 33. Permeability (Kk) layer of the models guided by the interpolation algorithms for the 
three discussed variogram cases (1-3): (a-c) Kriging and (d-f) Gauss simulation. 

 

Figure 33d-f show the heterogeneous permeability distribution based on the Gauss 

simulation. The maps display high and low permeability zones; however, the location 

of these zones cannot be justified. In fact, each simulation will result in a different 

pattern of these zones. In addition, Figure 33d-f illustrate that the variogram range 

controls the size of the zones of high and low permeability. 

Figures 34 and 35 compare the models via their histograms, cumulative distributions, 

P-values and cross sections along the pseudo wells. The histogram (Figure 34a) 

illustrates the lognormal distribution of the permeability and emphasizes the variations 

between the models.  Models conditioned by Kriging show more dissimilarities for the 

three variogram ranges. The large variogram range delivers a broader permeability 
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distribution by means of lower P10 and higher P90 value (dark blue) compared to a 

small range. Due to this wide distribution, the model displays a more heterogeneous 

pattern on the cross section (Figure 35c).  

The models based on the Gaussian simulation show similar distributions (Figure 34 a, 

c), and consequently similar P-values. However, the cross sections reveal a more 

heterogeneous pattern in case of small variogram ranges (Figure 35a, c). It is 

worthwhile mentioning that both algorithms shows very similar P90 values for the large 

variogram range (case 3) while P10 and P50 are quite different. In addition, the Gauss 

based model is characterized by a larger spread of the distribution. This is because 

Kriging assigns the mean value to the grid cells outside the radius of influence of the 

data points.  

A further model comparison can be performed based on the connected volumes 

generated for the pseudo wells. The pseudo wells are located along the anticline 

eastern limb in close vicinity of the NE-SW striking main faults (Figure 24a, section 

4.3.1). The connected volumes incorporate only grid cells with permeability larger than 

the P90 value derived from the measured fracture data.  

The highest dissimilarities can be observed for the wells 4 and 5 (Figure 36). The 

models guided by Kriging demonstrate a strong dependency on the applied variogram 

ranges (Figure 36a-f). An increasing variogram range yields larger connected volumes 

(Figure 36a-f). Also the models guided by Gauss simulation show a dependence of 

the variogram parameters (Figure 36g-l). A model with a small variogram range 

displays a far greater degree of fracture connectivity, compared to a large variogram 

range (Figure 36g-l).  
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Figure 34. The permeability distribution (Kk) for the models guided by Kriging and Gauss simulation: a) histogram of log permeability (Kk) for the 
generated models, b) Cumulative distribution of the permeability for the models conditioned by Kriging and c) Cumulative distribution of the 
permeability for the models conditioned by Gauss simulation.  

 

 

 

Case 1
Case 2
Case 3

Case 1
Case 2
Case 3

c)b)a) 

Kriging Gauss simulation
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Figure 35. The cross sections along five pseudo wells shown in figure 24 for the models guided by interpolation algorithms for the three different 
variogram cases: (a-c) Kriging and (d-f) Gauss simulation.  
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Figure 36. Connected volumes for the pseudo wells 4 and 5, for the models based on Kriging (a-f) and Gauss simulation (g-l). For each well, the 
connected volumes are shown for three variogram cases (Table 5).   
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5.4 Seismic attributes based approach  

This section describes the usage of seismic attributes for guiding the fracture intensity 

distribution.  

5.4.1 Variogram parameters derived from seismic attributes  

The well data do not allow a correct estimation of the horizontal variogram range. Only 

the vertical variogram range can be inferred reliably because of the densely sampled 

fracture intensity logs. On the other hand, the seismic attributes provide additional data 

points and allow a reliable estimation of the horizontal variogram range. Assuming a 

close relationship between the fracture intensity and the seismic attributes, the 

horizontal variogram range is derived from the seismic attributes sampled into 3D grid. 

This variogram range is used in collocated co-kriging to interpolate the fracture 

intensity using a seismic attribute as secondary property (see the chapter 

Methodology, section 4.2.4). In order to maintain the pattern displayed by the seismic 

attributes a large correlation coefficient between the measured fracture intensity and 

seismic attribute is chosen in collocated co-kriging. The used variogram ranges are 

given in Table 6. The results are discussed in the following sections. 

 

Table 6. The variogram parameters used in collocated co-kriging process. 

Attributes 
Amplitude 
contrast 

Chaos Curvature 
Consistent 

dip 

Major 
direction (ft) 

4693 5615 5590 14000 

Minor 
direction (ft) 

2200 1555 3908 5500 

 

5.4.2 Fracture intensity 

The fracture intensity models are displayed for a layer of the 3D grid in Figure 37. The 

four maps correspond to the seismic attributes amplitude contrast, chaos, curvature 

and consistent dip. The maps show quite different intensity patterns. In the southern 

area, the maps a and b show a significantly different pattern compared to the maps c 

and d. In addition, the models guided by chaos and curvature (Figure 37b, c) deliver 

a high fracture intensity along the fold hinge. This pattern is not observed in the other 
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two models. In addition, the models in Figure 37b and c display a low fracture intensity 

in the northern area. The models guided by amplitude contrast and consistent dip 

(Figure 37a, d) deliver a high fracture intensity in this area. However, all maps share 

some similarities. In general, they display higher intensities in the vicinity of the faults 

along the eastern limb. Also, in the central part the maps display a similar fault pattern 

(black squares). The fracture intensity varies within the area from medium to high 

depending on the model. 

 

 
Figure 37. The fracture intensity maps for the models based on different seismic attributes:  
a) amplitude contrast, b) chaos, c) curvature and d) consistent dip.   
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5.4.3 Evaluation of the models  

The models are further evaluated using the upscaled permeability. Figure 38 displays 

the permeability properties for one layer of the models conditioned to the seismic 

attributes shown in Figure 37.   

 

 
Figure 38. The permeability (Kk) maps for the models based on different seismic attributes: 
a) amplitude contrast, b) chaos, c) curvature and d) consistent dip.   

 
A comparison of figures 37 and 38 shows that high permeability zones are in 

accordance with high intensity zones and vice versa. In general, higher permeability 
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zones are closely related to the main structures of the area. Also, similar to the 

intensity models, only the chaos and curvature based models reveal higher 

permeability zones along the fold hinge.  

 

 
Figure 39. The permeability (Kk) distribution for the models based on different seismic 
attributes: a) histogram of log permeability (Kk) for the generated models, b) Cumulative 
distribution of the permeability of the models conditioned to the seismic attributes. 

 

Figure 39 provides insight into the permeability distribution through the histograms, 

cumulative distributions and characteristic P-values. The histograms display similar 

permeability distributions for all models conditioned to the different seismic attributes 

(Figure 39a). Also the cumulative probability distribution confirms the similarities 

between the models. Consequently, the P-values (P10-P50-P90) do not deviate 

between the four models (Figure 39b). A further comparison of the models is provided 

by cross sections. Figures 40 and 41 show the cross sections along the pseudo wells 

and the provided wells, respectively. The cross sections show patches of high 

permeability above 100 mD. They are linked by zones of lower permeability (1-50 mD). 

In addition, the model based on consistent dip (Figure 40d) shows a very low 

permeability zone in the southern part.  

 

a) b)
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Figure 40. The cross sections along five pseudo wells shown in figure 24 for the models guided by seismic attributes: a) amplitude contrast, b) 
chaos, c) curvature and d) consistent dip. 
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Figure 41. The cross sections along the provided wells shown in figure 24 for the models guided by the seismic attributes: a) amplitude contrast, 
b) chaos, c) curvature and d) consistent dip. 
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The cross sections based on the chaos and curvature attributes (Figure 41b, c) show 

extended high permeability zones mainly between the wells 71-1-x-4 and 67-1-x-10 

along the fold hinge. The models displayed in Figure 41a and d, deliver local zones of 

the high permeability. The connected volumes are examined for the wells 3, 4 and 5 

(Figures 42-44), since they are located in areas that highlight similarities and 

dissimilarities of the permeability between the models. Again, the connected volumes 

are based on grid cells with a permeability higher than the P90 value of the fracture 

data.  

 

 
Figure 42. Connected volumes for the pseudo well 3, for the models based on the seismic 
attributes: a) curvature, b) consistent dip, c) chaos and d) amplitude contrast.  

 

 

Figure 43. Connected volumes for the pseudo well 4, for the models based on the seismic 
attributes: a) curvature, b) consistent dip, c) chaos and d) amplitude contrast.  
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Figure 44. Connected volumes for the pseudo well 5, for the models based on the seismic 
attributes: a) curvature, b) consistent dip, c) chaos and d) amplitude contrast.  

 

The similarities are mainly noticeable for the wells 3 and 4 of the models guided by 

chaos and amplitude contrast (Figures 42-43, c and d). The other two models (Figures 

42-43, a and b) provide a surprisingly large difference between the two closely 

positioning wells 3 and 4. In addition, all models do not show an extension of the 

connectivity to the south of the well 4. While the models based on chaos and amplitude 

contrast deliver a considerable large area of the connected volumes linked to the well 

5 (Figure 44, c and d), the models guided by the curvature and consistent dip do not 

show connected volumes of high permeability (Figure 44, a and b).  

 

5.5 Discussion 

5.5.1 Fracture intensity 

The limited well data does not allow deriving a reliable fracture intensity property by 

Kriging or Gauss simulation. The variogram range used by the two interpolation 

techniques determines the radius of influence of the data points. Unfortunately, the 

horizontal variogram range is not known because of lack of well data. This underlines 

the uncertainty linked to the modeled fracture intensity and consequently to the 

resulting fracture model. The advantage of Gauss simulation lies in its ability to derive 

several equi-probable models that can be used for capturing the uncertainty of the 

fracture intensity distribution. The results seem to be more reliable compared to the 

Kriging in the sense that the distribution of the input data is honored. However, due to 
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the limited number of well data, the simulated fracture intensity cannot provide 

accurate information about the locations of high and low fracture density. 

Based on the assumption that a strong relation exists between fractures and faults 

seismic attributes are used for deriving the fault pattern. This information is further 

used for calculating the fracture intensity models. Unfortunately, the seismic attributes 

analyzed in this study deliver fault patterns that deviate from each other. 

Consequently, the resultant fracture models are again subject to large uncertainty. 

However, the uncertainty in the horizontal variogram range can be addressed through 

deriving the variogram model from the seismic attributes. This workflow is justified 

under the assumption that the fractures and the faults are related to each other. Note 

that the vertical variogram range cannot be derived from the seismic attributes 

because of their low vertical resolution. Comparing the variogram models of the four 

seismic attributes, one can observe that consistent dip delivers a much larger 

horizontal variogram range compared to the other three attributes. This support the 

observation that the fracture intensity derived from the consistent dip attribute deviates 

considerably from the other three fracture intensity models. Consequently, the fracture 

model based on consistent dip should be regarded as an extreme case model.   

 

5.5.2 Model parameters 

The limited well data prevents an accurate modeling of the fracture properties. 

Therefore, in order to estimate and model the fracture properties, analogue studies 

are used. Statistical laws can be used to approximate the data from analogues. 

Numerous studies performed on different scales (from micro m to km) illustrate that 

the fracture length often follows a power law distribution. This is confirmed for the study 

area of this thesis. Therefore, all models incorporate the fracture length modeled by 

the power law with a shape factor of 2.8, a scale factor of 40 ft (13 m) and a maximum 

fracture length of 500 ft (150 m). 

The differences of the dominant fracture orientation with respect to the different 

stratigraphic layers were discussed previously (see chapter 2, Geologic setting, 

section 2.3). The dominant fracture set at reservoir level is represented by the oblique 

striking fractures, but in addition, all models incorporate the fractures normal and 

parallel fractures to the hinge. The sensitivity analyses demonstrate that the key 
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parameter influencing the permeability is the fracture aperture (Figure 30). The 

aperture is related to the fracture length by the square root law (Figure 31). The 

calculation of the permeability from the aperture based on the cubic law delivers values 

that are in conflict with published data for the study area. In order to match the 

published permeability, a scaling factor is derived for the base case aperture. This 

scaling factor is also applied to the high case and low case in order to get an average 

permeability that is not in conflict with published data. The sensitivity analysis 

demonstrates that fracture length and orientation affect the upscaled permeability to a 

smaller degree than the aperture.  

 

5.5.3 Comparison of the models 

The comparison of the fracture models is challenging. The large number of fractures 

suggest analyzing the upscaled permeability derived from the fractures, because it is 

most influential on the reservoir performance. The simple comparison of statistical 

parameters turns out to be of limited help, because it does not take into account the 

size of high permeability zones or areas of "low flow". Therefore, the connected 

volumes defined by high permeability are chosen for comparing the derived models. 

Fracture models based on Kriging deliver very smooth permeability models. In 

contrast, models based on Gauss simulation give highly heterogeneous permeability 

models. Consequently, both types of models should show very different dynamic 

behavior, which could be studied for instance using flow line simulations. The models 

based on seismic attributes deliver a permeability pattern similar to the fault pattern 

because of the chosen high correlation coefficient between the fracture intensity and 

the seismic attributes. As the seismic attributes display fault patterns that differ on the 

local scale, they provide fracture models, which show very different connected high 

permeability bodies for the same wells in some areas. It can be expected that seismic 

attributes will deliver more consistent results when applied to modern high-resolution 

3D seismic datasets. 
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Figure 45. Connected volumes for the pseudo well 4, for the models based on the different 
methods: a) Kriging, b) Gauss simulation, c) chaos attribute and d) consistent dip. 

 

Figure 45 summarizes the large uncertainty in fracture modeling for this dataset. It 

shows the connected volumes for the models based on Kriging, Gauss simulation and 

two seismic attributes. The significantly different pattern of the connected volumes 

linked to well 4 underlines the necessity of broad-band seismic with superior signal-

noise ratio to guide the fracture modeling process.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



64 
 

6. Conclusion 

The fracture modeling based on the dataset of the Teapot Dome reveals several 

conclusions: 

 The main controlling factors of the fracture models are fracture intensity and 

aperture. While the fracture intensity controls the spatial permeability 

distribution, the fracture aperture represents the parameter that has the 

greatest influence on the absolute value of the permeability. 

 The models based on Kriging and Gauss simulation do not deliver results and 

spatial permeability distribution in accordance with the observed fault and fold 

structures. Even though the algorithms deliver a permeability distribution 

comparable to the models based on seismic attributes, the spatial distribution 

and connectivity of high permeability zones are subject to high uncertainty.  

 The models guided by the seismic attributes deliver a more reliable spatial 

permeability distribution illustrated by the zones of higher permeability located 

along the anticline and in the vicinity of the faults. 

 Although the models deliver a similar permeability distribution, they show 

differences associated with the spatial distribution of the high permeability 

zones. Hence, the seismic guided fracture modeling requires special vigilance 

and control, since a model based on only one attribute can result in a 

questionable spatial permeability distribution. 

 

Future work might consider the application of an alternative upscaling method (i.e. flow 

based method) with the aim of deriving the permeability models more accurately from 

the simulated fractures. Most importantly, production data would greatly enhance the 

reliability of fracture models. History matching is an excellent approach for the 

additional evaluation and uncertainty assessment of the models. Finally, the proposed 

methodology should be applied to modern high-resolution datasets in order to reduce 

the fracture model differences introduced by seismic attributes. 
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