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Abstract

Introduction

Expected age is increasing globally and dementia is a common outcome for an
increasing number of people. Dementia is a demanding syndrome for the patient
and the environment as well as it is costly for society. Damaging changes to the
cerebral blood flow also called white matter lesions (WML) are common in the
elderly and is expected to increase as age advances. It has been reported that
these types of lesions affect cognition in healthy elderly. They are also associated
to Alzheimer’s disease but have not been much studied in DLB. Quantitative
analysis and machine learning have a potential to contribute in understanding
the disease process as well as aid in diagnosis.

Methods

Quantitative analysis of WML volumes were calculated using an automatic
segmentation routine on magnetic resonance images (MRI) of subjects with
Alzheimer’s disease (AD), Lewy body dementia (LBD), and normal controls
(NC). Statistical tests were performed to compare groups as well as to investi-
gate relations to cognition. Additionally, WML volumes were used as features in
a machine learning (ML) environment to check whether WML volume were able
to classify subjects with AD and LBD from NC. Texture analysis (TA) may be
able to document changes at a microstructural level and was performed in WML
an non-WML regions of the different types of MRI’s (FLAIR and T1). 2D- and
3D TA features were calculated and used in classification with the aim to serve
as a tool for computer aided diagnosis (CAD) in dementia. The dataset used
was imbalanced meaning that the number of subjects in each group were very
different. Two methods for handling the imbalanced data were tested, namely
upsampling and cost-sensitive classification.
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Results and conclusions

Severity of WML did neither differ significantly between subjects with dementia
and NC nor between mildly demented patients with AD and LBD. WML severity
were associated with cognitive decline in AD, but not LBD suggesting that
WML contributes to cognitive decline in AD, but not LBD. More studies of the
potential clinical impact of WML in patients with LBD are needed.

The best classification results obtained using WML volumes as features in
an ML framework discerning subjects with dementia from healthy controls were
an area under curve (AUC) of 0.73 and 95% confidence interval of 0.57 to 0.83.

We experienced better classification results when using TA features compared
to WML volumes in classification and better results when performing classifi-
cation on TA features calculated from T1 MRI compared to FLAIR MRI. A
total accuracy, reported as mean with standard deviation in brackets over cross
validation folds, of 0.97(0.07) or higher was reported for the dementia vs. NC,
AD vs. NC, and LBD vs. NC classification problems for both the 2D- and
3D texture analysis approaches. In the AD vs. LBD case a total accuracy of
0.73(0.16) was reported using the 2D TA approach slightly exceeded by the 3D
TA approach were 0.79(0.15) was reported.

It seems like the results do not differ much when performing analysis in
different regions of the brain and that the results vary in an inconsistent way.

Using upsampling increased classification accuracy to a large extent in the
LBD class at the expense of total accuracy and the accuracy of the AD class.
In both the two-class problems NC vs. AD and NC vs. LBD, adding cost-
sensitivity increased classification performance in many of the tests, but upsam-
pling increased accuracy even more in most of the tests.

High classification performance was achieved when classifying dementia groups
from NC’s. The classification performance reached when classifying AD from
LBD did not reach the same level. Further research with the aim of developing
methods with a higher sensitivity to the different brain changes going on in AD
and LBD are needed.
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Chapter 1

Introduction

Global demographic changes result in better living conditions and higher age
many places around the world. One consequence is dementia which has been a
growing health problem the last few decades. Dementia is a great burden to the
diseased subject, the persons in their close relationships as well as to the health
care system and society. Advanced computer analysis of brain images has the
potential to be a tool aiding in understanding the disease as well as providing
diagnosis at an early stage of disease development.

1.1 Objectives

The main objective of this thesis has been to study how the development of white
matter lesions (WML) as depicted from T2-weighted FLAIR MR images relate
to dementia, especially Lewy body dementia (LBD), as well as using texture
analysis and machine learning (ML) techniques to classify groups with different
types of dementia and dementia patients from healthy controls at an early stage
of disease development. The analysis have been performed on magnetic reso-
nance images (MRI) from the Norwegian DemWest study. Such a tool has the
potential to be of support in early detection of disease progression and thereby
increase the possibility of engaging the patient in treatment at an early stage of
symptom development.

1.2 Contributions

In Paper I, we quantified the total and regional volume of WML in patients with
mild Alzheimer’s disease (AD), LBD, and healthy controls using an automated
segmentation routine and explored the association with cognitive impairment
including memory and executive function. In Paper II we used WML volume as
well as texture features in an ML framework with the aim of classifying subjects
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2 CHAPTER 1. INTRODUCTION

with dementia from healthy controls. In Paper III and IV, we applied 2D- and
3D texture analysis in white matter (WM), WML regions as well as normal
appearing white matter (NAWM) on FLAIR and T1-weighted MR images as
a computer based application for dementia diagnosis by constructing an ML
system for classification of different types of dementia as well as healthy controls.
We also tested different ways of handling the imbalanced data problem by using
oversampling and cost sensitive classification.

1.3 Dissemination of results

Paper I: White Matter Hyperintensities in Mild Lewy Body Dementia, K.
Oppedal, D. Aarsland, M.J. Firbank, H. Sønnesyn, O.B. Tysnes, J.T. O’Brien,
M.K. Beyer, Dement Geriatr Cogn Disord Extra, 2012.

Paper II: Using local binary pattern to classify dementia in MRI, K. Oppedal,
K. Engan, D. Aarsland, M. Beyer, O.B. Tysnes, T. Eftestøl, Proceedings of
International Symposium on Biomedical Imaging (ISBI), 2012.

Paper III: Classifying dementia using local binary patterns from different re-
gions in magnetic resonance images, K. Oppedal, T. Eftestøl, K. Engan, M.
Beyer, D. Aarsland, International Journal of Biomedical Imaging, 2015.

Paper IV: Classifying Alzheimer’s disease, Lewy body dementia, and normal
controls using 3D texture analysis in magnetic resonance images, K. Oppedal,
K. Engan, T. Eftestøl, M. Beyer, D. Aarsland, Submitted manuscript, 2015.

1.3.1 Other publications

Paper V: Multispectral MRI segmentation of age related white matter changes
using a cascade of support vector machines, S. Damangir, A. Manzouri, K.
Oppedal, S. Carlsson, M.J. Firbank, H. Sønnesyn, O.B. Tysnes, J.T. O’Brien,
M.K. Beyer, E. Westman, D. Aarsland, L.O. Wahlund, G. Spulber, J Neurol
Sci, 2012.

Paper VI: White Matter Hyperintensities and the Course of Depressive Symp-
toms in Elderly People with Mild Dementia, Hogne Sønnesyn, Ketil Oppedal,
Ole Jacob Greve, Friederike Fritze, Bjørn H. Auestad, Sabine P. Nore, Mona
K. Beyer, and Dag Aarsland, Dement Geriatr Cogn Disord Extra, 2012, 2(1),
97–111.
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Paper VII: Relationship between orthostatic hypotension and white matter hy-
perintensity load in older patients with mild dementia, Hogne Sønnesyn, Dennis
W. Nilsen, Ketil Oppedal, Ole Jacob Greve, Mona K. Beyer, and Dag Aarsland,
PLoS One, 2012, 7(12).

1.4 Organization of thesis

The thesis is divided into eight chapters. Chapter 2 will introduce the reader to
the medical background necessary to understand the motivation behind the work
presented. The chapter starts with a general introduction to dementia and the
two variants of dementia studied followed by an introduction to vascular lesions
in the aging brain and their relevance to cognition and dementia. Towards the
end of the chapter an introduction to the analyses MRI in dementia will be given
ending with a comment on how advanced computational approaches can aid in
dementia diagnosis.

In Chapter 3, the data material studied during the work of the thesis will
be described. Chapters 4, 5, and 6 takes the reader into more of the technical
applications used. The analyses have been performed in several brain regions
and Chapter 4 will explain the procedures behind the segmentation of these
regions from brain MRI. Both volumetric as well as textural features have been
used in this work and Chapter 5 will introduce the reader to these features.
Chapter 6 introduces the reader to the classifiers used as well as the classification
performance measures. In addition, an introduction to the methods used to
handle the challenges experienced when performing data analysis on cohort data
will be given.

Chapter 7 presents the reader to the contributions of this thesis by presenting
the results obtained during the work of the papers included in this thesis as well
as a discussion of these results. Chapter 8 is the last chapter and will give an
overall discussion of the thesis project together with some concluding remarks.

Figure 1.1 (below) gives an overview of the workflow throughout the research
work presented in the thesis. The figure is divided into four columns each repre-
senting a chapter in the thesis. The first column is related to Chapter 3 “Mate-
rial”, the second column is related to Chapter 4 “Region of interest extraction”,
the third column is related to Chapter 5 “Feature extraction”, and the fourth
column is related to Chapter 6 “Statistical analysis and machine learning”. The
reader will meet the figure again in the beginning of each chapter highlighting
the relevant column.
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Figure 1.1: The figure gives an overview of the workflow throughout the re-
search work presented in the thesis. The figure is divided into four columns each
representing a chapter in the thesis. The first column is related to Chapter 3
“Material”, the second column is related to Chapter 4 “Region of interest ex-
traction”, the third column is related to Chapter 5 “Feature extraction”, and
the fourth column is related to Chapter 6 “Statistical analysis and machine
learning”.



Chapter 2

Medical background

2.1 Dementia

Cognition are the activities of thinking, understanding, learning, and remem-
bering and can be conscious and unconscious, concrete or abstract, as well as
intuitive and conceptual. Cognitive processes use existing knowledge and gener-
ate new knowledge. Mental abilities and processes such as knowledge, attention,
memory, judgment, evaluation, reasoning, problem solving, decision making, and
language develops through the whole lifespan from infancy to the end stages of
life. An infant undergo several important cognitive development phases both
psychologically and neurologically. During childhood neurons sprout vigorously
to form new connections, while in the brain of a teenager, connections between
neurons are pruned in a “use it or lose it manner”, as well as myelin insulation
is developed improving information processing speed and efficiency. Abstract
thoughts, imagining, reasoning ability, goal prioritizing, planning, problem solv-
ing, multitasking, the ability to control impulses, understanding of right and
wrong, and emotional control, are abilities that evolve well into the twenties.
In the same period, brain growth peaks and the development is characterized
by maturation. It is important to mention that great variability exists between
individuals. At the other end of the life cycle, the brain development takes the
opposite direction. As part of healthy aging, typically older adults will expe-
rience decreased visual and auditory acuity that interfere with integration of
sensory input which may result in slower motor response to sensory stimula-
tion. Other features are loss of recent memory, divided attention, a reduction in
overall health status and disruption of formation of new memories.

Some of us will deviate from the path of healthy aging and experience symp-
toms of neurodegeneration that are part of a dementia syndrome. Typical signs
are deterioration in memory, thinking, and behavior in such a way that it inhibits
the ability to perform everyday activities. There are many types of dementia,
and Alzheimer’s disease (AD) and Lewy body dementia (LBD) are the two most
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6 CHAPTER 2. MEDICAL BACKGROUND

common neurodegenerative variants. In addition, cerebrovascular disease is an-
other important cause of dementia. Dementia is a progressive syndrome with
several stages showing typical symptoms linked to the progression and the degree
of neurodegeneration. In the early stage typical experiences are forgetfulness and
difficulties keeping track of time and place. During the middle stage forgetting
recent events, becoming lost at home, experiencing difficulty with communica-
tion, personal care, and behavior changes are common. Eventually, in the last
stage of the disease, many experience a total dependency on others with inac-
tivity as a result. Many will be unaware of time and place, have difficulties
recognizing people that have been close to you, loose control of muscles and
coordination, and changes of behavior will escalate.

Dementia is an umbrella term for a variety of pathological conditions and
gives rise to a wide range of symptoms, and the type of dementia is usually
classified according to the cause of the experienced symptoms. In clinical practice
this is difficult, since the cause can be challenging to reveal. Dementia is defined
in various international classification frameworks. The Diagnostic and Statistical
Manual of Mental Disorders, 5th Edition (DSM-5) and International Statistical
Classification of Diseases and Related Health Problems 10th Revision (ICD-10)
are most often referred to. Failure of the intellectual functions is a key feature
of dementia.

The World Alzheimer Report 2015 [1] states that 46.8 million people world-
wide are living with dementia, a number that will almost double every 20 years.
These estimates are 12-13% higher than reported in the 2009 edition. The world-
wide health care costs related to dementia are calculated as the sum of direct
medical costs, direct social care costs (paid and professional home care, and
residential and nursing home care) and costs of informal (unpaid) care and are
estimated to US$818 billion. This is an increase in 35.4% compared to the 2010
edition.

The 2014 edition of the yearly updated report states that the strongest causal
associations with dementia are those of low education in early life, hypertension
in midlife, and smoking and diabetes across the life course. A great challenge
in the global society is the increasing age in the population, since age is the
primary marker for developing dementia. The importance of dementia research
is enormous.

World Health Organization (WHO) states in a fact sheet on dementia from
April 2016 (http://www.who.int/mediacentre/factsheets/fs362/en/) that 47.4
million people suffers from dementia worldwide, that 7.7 million new cases are
expected each year, and that dementia has physical, psychological, social, and
economical impact on caregivers, families and society.

2.1.1 Alzheimer’s disease

The same fact sheet states that Alzheimer’s disease (AD) is the most common
neurodegenerative dementia, and accounts for 60-70% of people with dementia.
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The most characteristic anatomical findings in AD occurs in both hemispheres
(temporal-, parietal-, and frontal lobes), and in areas such as hippocampus,
gyrus cinguli, amygdala, nucleus basalis, dorsal raphe, substantia nigra, and lo-
cus coeruleus. Hippocampus is always injured and there is reason to believe that
the disease starts here. The classical neuropathological signs of AD are amyloid
plaques and neurofibrillary tangles [2, 3, 4] as well as granulovacuolar degener-
ation, deposition of amyloid in the blood vessels, cell damage, and cell death
with loss of synapses. The neurofibrillary tangles are formed inside the brain
cells and consists of fibers twisted around each other (paired helical filaments)
due to hyperphosphorylation of the tau protein. No efficient disease-modifying
treatment for AD exists today.

2.1.2 The Lewy body dementias

LBD are the second most common type of degenerative dementia in patients
older than 65 years [5]. In [6], the authors state that Dementia with Lewy bod-
ies (DLB) together with dementia associated with Parkinson’s disease (PDD)
account for 15-20% of people with dementia. In their systemtic review, Jones
et al. estimated that among persons with dementia, between 0 and 23 % have
DLB [7]. The defining pathological feature for these patients is Lewy-body de-
generation in brain stem, forebrain, and limbic and cortical structures. The
Lewy bodies are abnormal collections of protein called alpha-synuclein develop-
ing within the cytoplasm of neurons. They appear as spherical masses that evict
other cell components and are eosinophilic cytoplasmic inclusion consisting of
a dense body with surrounding radiating fibrils. The DLB and PDD are often
combined into a Lewy-body dementia group (LBD) [8, 9]. However, the rela-
tionship between localization and density of Lewy-bodies with clinical dementia
symptoms is not strong [10], suggesting that other pathologies contribute as well,
such as AD pathology, vascular brain changes seen as white matter hyperinten-
sities which are common in the elderly, lacunar infarcts, which may contribute
to the clinical presentation of LBD. For example, vascular changes in the basal
ganglia are common in the elderly and may cause parkinsonism and cognitive
impairment [11]. People with DLB suffer from visual hallucinations, Parkinso-
nian features such as rigidity and balance disturbances. Patients may experience
varying degree of awareness and confusion during the day and many suffer from
sleep disturbances.

2.2 White matter lesions

White matter lesions (WML) are frequently observed on brain images of the
elderly. In CT images, they are recognized as bilateral, patchy, or diffuse areas
with irregular margins of hypodensity, and the hyperintensities on T2-weighted
MRI are often used as a surrogate marker. They are typically seen around the
ventricles (periventricular WML), but also as focal lesions in the deep white
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matter. WML are associated with various disturbances with poor prognosis [12]
and can be spotted in periventricular white matter regions, corona radiata, and
centrum semiovale. They are reported as a manifestation of cerebral small-vessel
disease [13, 14], which is one of the most common of all neurological disorders
[15], and they are associated with an increased risk of stroke [16]. European
Task Force on Age-Related White Matter Changes was founded in 1996 [17]
and LADIS (Leukoaraiosis and disability) was established as an European mul-
ticenter collaboration in 2001 [18]. The main study outcome was the transition
from an autonomous status to disability, defined as the presence of 2 or more
impaired Instrumental Activities of Daily Living (IADL) activities. Secondary
outcomes were dementia, stroke, depression, and reduced quality of life [19]. The
underlying pathology of WML is heterogeneous, ranging from mild demyelina-
tion to incomplete subcortical infarctions, and the exact underlying mechanisms
are not fully understood. Wallin and Fladby [20] suggest two mechanisms that
could account for the association of WML with dementia. Direct damage to the
cortical-subcortical neuronal networks and an interaction between WML and
related neuropathological changes, which would imply that the presence of one
type of lesion accelerates the expression of the other. In the general population
the prevalence of WML ranges from 11-21% in adults aged around 64 to 94% at
age 82 [21, 22].

2.2.1 WML and cognitive decline

Understanding the role of WML for the pathogenesis of the progression of cog-
nitive impairment is important, since preventing WML may represent a target
for future attempts to prevent or slow down the dementia disease process at an
early phase of the disease.

WML becomes more abundant with increasing age in healthy subjects, but
they are also found to be associated with dementia [23, 24, 25, 26, 27, 28].

Clinical symptoms associated with WML include gait disturbances [29], de-
pression [25, 30], and cognitive impairment [31]. In [32], the authors studied
the effect of normal aging versus hypertension, abnormal body mass index, and
diabetes mellitus on WML volume. They found that after the age of 50, the
mentioned comorbidities were significantly associated with WML volume.

Cortical changes mediated by WML and vascular risk factors might be as-
sociated with cognitive decline and dementia [33]. Mild cognitive impairment,
poor episodic memory, and late-life depression are associated with cerebral corti-
cal thinning and WML [34]. Severe WML is associated with worse performances
on global tests of cognition, executive functions, speed and motor control atten-
tion, naming and visuoconstructional praxis [35]. Increasing severity of WML
and number of lacunes (lacunes are 3 to 15 mm cerebrospinal fluid (CSF)-filled
cavities in the basal ganglia or white matter, frequently observed coincidentally
on imaging in older people, often not clearly associated with discrete neurolog-
ical symptoms [36]) are both related to worse cognitive performances [37] and
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when considered together, WML are significantly associated with cognitive sta-
tus, whereas the association with lacunes are less prominent. Patients with a
combination of severe WML and at least one lacune or of a multilacunar state
and moderate-to-severe WML performed more poorly on tests of global cog-
nitive function, psychomotor speed, attention and executive functions, verbal
fluency, and working memory compared to those with a combination of less
severe changes [38]. Medial temporal lobe (MTL) atrophy, taken as a marker
of Alzheimer type pathology, is associated with WML and cognitive functions
[39]. In [40], the authors concluded that MTA independently affected mem-
ory and language in AD patients and that WML affected attention and frontal
executive functions. Together, MTA and WML showed interactions on some
cognitive deficits and dementia severity which suggest a combined involvement
of Alzheimer and vascular pathology in the earliest stages of cognitive decline.
Longitudinal studies show patients with a more severe combination of WML
and lacunes present a significantly steeper decline of cognitive performance and
a 3-fold risk of developing dementia during follow-up independently of age, sex,
education and MTL atrophy [38]. WML severity turns out to be one of the
strongest predictor of cognitive decline (dementia and not dementia), indepen-
dently of age, education, and MTL atrophy. In [41], the authors states that
amyloid burden and WML are two common markers of neurodegeneration able
to indicate impact on cognition at an early stage in advanced aging. They con-
clude that amyloid burden and WML had distinct cognitive profiles in a group of
clinically normal older adults. The authors found that amyloid burden showed
specific influence on episodic memory and that WML were primarily associated
with executive function. The findings suggest that both amyloid burden and
WML represents neuropathological cascades with distinct etiologies and disso-
ciable influences on cognition even before onset of clinical impairment. In [42],
the authors conclude that WML at baseline predicts further development of
WML and that its relation to cognitive decline is complex and modulated by
brain atrophy. In [43], the authors conclude that white matter hyperintensi-
ties contribute to patterns of brain atrophy related to AD. In [44], the authors
studied WML detected pathologically postmortem in patients with PDD. They
conclude that the individual and cumulative burden of WML, LB lesions, and
AD lesions may interdependently contribute to cognitive decline in Lewy body
disorders such as PDD. However, the role of WML for the cognitive decline in
LBD is not known.

2.3 MRI in dementia

Currently, a definite diagnosis of AD and LBD can only be performed post-
mortem. Improved diagnostic techniques may aid in achieving a diagnose earlier
and imaging has a potential to add valuable information.

Magnetic resonance imaging (MRI) is an advanced method for non-invasive
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construction of soft tissue contrast images. Depending on the chosen MR image
sequence, tissue with varying water content provides rise to the image contrast
enhancing anatomy or pathology and in even some cases functional activity. The
subject under study is positioned in the MRI scanner under the influence of a
strong magnetic field, typically 1.5T and 3T, such that the spinning protons
precess. The energy from radio waves excites the precessing protons to a higher
energy level. Immediately afterwards, relaxation processes gives rise to a nuclear
magnetic resonance (NMR) signal that is detected by a receiver coil close to the
studied tissue. Field gradients is used to code the NMR signal using frequency-
and phase information which makes it possible to locate the NMR signal.

MRI should be used to detect intracranial lesions and rule out other causes
to dementia related symptoms [45]. Both DLB and AD are complex diseases
with a composite mix of both neurodegenerative and vascular brain changes.
Some of these changes can be demarcated on MR images which makes MRI an
important tool for studying dementia and cognitive deterioration [46]. The abil-
ity to detect neurodegenerative changes early and non-invasively is some of the
benefits. Several excellent reviews are available [47, 48, 49]. In [50], the authors
reviews available methods for quantitative imaging of white matter anatomy
and pathology as well as recent findings in aging and dementia. They state
that computer aided quantification offers better statistical power compared to
visual rating scales. Early detection of disease and relevant functional connec-
tions between brain areas are important benefits. Harper et al. [51] concludes
that visual rating scores from MRI offer practical and inexpensive ways of in-
creasing diagnostic accuracy in 184 post-mortem confirmed dementia subjects.
They combined several visual rating scores together realizing a higher accuracy.

Some of the MR imaging methods available today provide acceptable anatom-
ical detail as well as being safe for the patient. In the earliest stages of AD and
LBD, the characteristic brain abnormalities are not visible on anatomical MRI
alone. Quantitative assessment of volumes of the different areas of the brain can
be a powerful source of information regarding detection of focal and subtle brain
pathology [52, 53, 40, 54]. Giorgio and Stefano provides a thorough review of
brain volumetry in clinical applications [55]. Differences in MTL atrophy be-
tween AD and healthy controls measured using semi-quantitative techniques on
MRI has shown sensitivity and specificity greater than 85% [56, 57, 58]. Signifi-
cant alterations in tissue microstructure measured by longitudinal and transver-
sal relaxation times was found in patients with DLB compared to healthy con-
trols [59]. Differences between AD and other dementias could not be found
with similar sensitivity and specificity though [60, 61, 62]. Higher accuracy may
be found measuring hippocampal volume [63]. Cortical thickness measurements
have also shown high accuracy discerning AD from healthy subjects [64] and AD
from DLB [65, 66]. Watson et al. report that for a similar severity of dementia,
DLB appears to have more subcortical atrophy compared to AD [67].

Another MR imaging approach showing promising results concerning analysis
of white matter integrity is diffusion tensor MRI (DT-MRI)[68]. DT-MRI is
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an MRI method which is sensitive to the diffusion, or Brownian motion, of
water molecules. By applying diffusion sensitizing gradients, water molecules
will experience a slightly different magnetic field based on a linear relationship
between the precession frequency and the position along the direction of the
gradient. Under these circumstances will the stationary water molecules precess
coherently resulting in no signal loss. On the other hand, the water molecules
undergoing diffusion will precess with different phase depending on the length of
the displacement along the gradient direction resulting in an attenuated signal.
By measuring the water diffusion along at least six diffusion sensitizing directions
(preferably more), it is possible to calculate a diffusion tensor using tensor math.
Eigen calculations can provide information about the water principal diffusion
direction for each image voxel. In [69], Bozzali and Cherubini provides a brief
review over DT-MRI analysis as a tool to investigate dementias. On the other
hand, Jones et al. [70] points out important limitations to how the information
contained in these images is interpreted by many scientists in clinical research.

Measuring changes in the blood oxygenation level-dependent (BOLD) signal,
which indirectly quantifies brain activity, is called functional MRI (fMRI) [71,
72]. It has been shown that fMRI is able to differentiate between DLB and AD
[73].

By combining analyses from different variants of MRI as well as combining
these with results from positron emission tomography (PET), a multimodal ap-
proach has made it possible to track the development of brain changes related
to AD as it progresses in time [74, 75]. PET is a functional imaging technique
able to assert metabolic processes in the body by measuring the concentration
of a positron-emitting tracer delivered to the subject of study.

2.3.1 Computer aided diagnosis

In the context of medical imaging, CAD are computational approaches developed
with the ambition to assist medical personnel in the detection of pathology, the
quantification of disease progress, and differential diagnosis [76]. Unbiasedness to
human mistakes is one benefit using CAD. CAD approaches applied in analyses
of neurodegeneration has a great potential when studying dementia [77, 78, 79].
Higher sensitivity and specificity in diagnosing AD from healthy controls have
been reported using CAD (95%) as compared to radiologists (between 65 and
95%) [80].
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The data material studied in the work of this thesis is based on subjects
with AD and LBD drawn from the DemWest cohort [6] and healthy controls
drawn from the ParkWest cohort [81]. In the following chapter the data material
will be introduced such that the reader will get an overview of the cohorts,
clinical recruitment procedures, relevant baseline clinical information, and MRI
protocols.

3.1 The DemVest study

DemWest is an observational study of patients referred for evaluation of cognitive
impairment and dementia in all dementia clinics in geriatric, age psychiatric, and
neurological departments in western part of Norway. The study started in 2005
and the main objective is to monitor people with various forms of dementia
over the course of the disease in order to study the evolution of malfunctions
and failures in various brain functions. Problems and symptoms associated
with various biological markers of brain disease revealed by magnetic resonance
imaging (MRI), spinal fluid examination, genetic testing, and brain examination
after death are studied. Particularly interest has been put into DLB.

3.2 Patient inclusion

From March 2005 to March 2007 all referrals to five outpatient clinics in geri-
atric medicine and old age psychiatry in the counties of Rogaland (Stavanger
and Haugesund) and Hordaland (Bergen) in Western Norway were screened. In-
clusion criteria were a first time diagnosis of mild dementia according to ICD-10,
and a minimum mini mental state examination (MMSE) score of 20. From 2007,
patients with DLB and PDD were selectively recruited. Additionally, three neu-
rology outpatient clinics in the same area were contacted, and agreed to refer
new dementia cases to one of the participating centres. The patients and their
caregivers were first seen by the study clinician, who performed a structured
clinical interview of demographic and clinical data. The comprehensive assess-
ment procedure included a detailed history using a semi-structured interview,
clinical examination including physical, neurological, psychiatric, and neuropsy-
chological examinations, and routine blood tests. At the time of this study,
235 subjects fulfilled inclusion criteria. Patients are followed annually with the
same assessment battery. Patients with acute delirium, terminal illness, recently
diagnosed with a major somatic illness, previous bipolar disorder or psychotic
disorder were excluded. Further details of the recruitment process are provided
elsewhere [6].

A control group consisting of normal controls (NC) was drawn from the Nor-
wegian ParkWest study [81]. They were recruited from spouses, friends, and
relatives of patients with Parkinson’s disease, and other volunteers, in Western
and Southern Norway. These subjects were younger than the dementia popula-
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tion, and thus there was a need to individually match for sex, age, and years of
education.

The Regional Committee for Medical Research Ethics, Western Norway, ap-
proved the study. All participants signed informed consent to participate in the
study after the study procedures had been explained in detail to the patient and
a caregiver, usually the spouse or offspring.

3.3 Dementia diagnosis and clinical assessment

Diagnoses were made after a detailed assessment, including the use of stan-
dardized assessment of hallucinations, parkinsonism and cognitive fluctuations
as previously described [6]. The procedures included Hachinski ischemia scale
(HIS) [82, 83], Clinical Dementia Rating scale sum of boxes (CDR-SOB) [84],
and APOE ε4 genotyping. Transversal 123I-FP-CIT SPECT (DaTscan) images
through the basal ganglia were visually assessed for most cases with suspect
DLB, scoring caudate and putamen in normal, abnormal, or strong abnormal,
by one blinded nuclear medicine physician expert to aid in the diagnosis.

Based on assessments, two old-age psychiatrists independently applied the
diagnostic criteria for AD [85] and DLB [10] at baseline and 2 and 5 years
later. In cases of disagreement, and in patients fulfilling more than one set
of operationalized diagnostic criteria, the final ascertainment was made based
on consensus. 46 patients have come to autopsy with a pathological diagnosis
consistent with the clinical diagnosis in 85% of the cases. DLB and PDD have
similar clinical symptoms and brain changes, and were combined into one group,
LBD (12 DLB, 4 PDD) [8, 9]. APOE 4 genotype was analyzed as previously
described [86].

A comprehensive clinical assessment battery was applied including standard-
ized cognitive, psychiatric and neurological instruments, as previously described
[6]. The neuropsychological battery included tests of verbal memory (California
Verbal Learning Test II /CVLT-2) and executive functioning (semantic verbal
fluency) in addition to the MMSE. The sum of immediately recalled words from
the 5 presentations of the CVLT (list A) and number of animals listed during
one minute for the analysis with the WML measures were used. More details
are presented elsewhere [6].

3.4 Baseline clinical characteristics

A total of 77 mild dementia subjects, 61 with AD and 16 with LBD, as well
as 37 healthy controls had MRI scans of sufficient quality and were included in
this study. Please see Figure 3.1 for an overview of patient inclusion. Table 3.1
shows basic clinical characteristics of the subjects from the DemWest cohort that
were included in this study and compares them to the subjects that were ex-
cluded. Mann-Whitney tests between the two groups showed significantly lower
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Hachinski score and the CDR-SOB score in the included subjects compared to
the excluded subjects. Age, years of education, sex, MMSE, CVLT-2, verbal flu-
ency, APOE ε 4, and CIRS vascular did not show significant differences between
groups.

As seen in Table 3.2, there were no significant difference between the AD
and the LBD group in age or years of education, but there were more males in
the LBD than in the AD group. MMSE was lower and the proportion with at
least one ApolipoproteinE 4 (APOE 4) allele (any of the alternative forms of
a gene that may occur at a given locus) was higher in the patient groups, as
expected, but did not differ between AD and LBD groups. We decided to add
APOE 4 as a possible confounder in the statistical analysis, since it is known
to be associated with WML [87]. CVLT-2, verbal fluency, CDR-SOB and HIS
score did not differ between the two dementia groups, but CIRS vascular was
significantly lower in the AD group compared to the LBD group.

Totally 235 subjets. 

77 subjects with wml results: 16 
with LBD and 61 with AD studying 
AD vs. LBD. 

Subset of 37 subject, 5 with 
LBD and 32 with AD to 
compare with NC . 

37 NC from ParkWest cohort 
individually matched by age, 
sex and years of education to 
a dementia subject. 

74 subjects: 37 dementia patients and 37 NC 
studying dementia vs. healthy controls. 

h wml
nd 3774 su

151 with no study MRI 
- missing MRI data (n=27) 
- CT only (n=9) 
- unknown reason (n=14) 
- low quality MRI or artefacts (n=25) 
- missing 3D T1 image (n=3) 
- wrong protocol (n=61) 
- unsuccessfull WML segmentation (n=6) 
- infarction (n=3) 
- missing information (n=3) 
7 with other dementias 

udy MRI

com

(subset) 

AD vs. LBD Dementia (AD+LBD) vs. NC 

Figure 3.1: Flow chart representing the selection of current MRI study sample
from initial DemWest study cohort.
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Variable n(excl) : n(incl) Excluded Included p-value
Age, yr (std) 157:77 75.8 (7.7) 75.2 (7.2) 0.546
Education, yr (std) 145:77 9.7 (3.1) 9.1 (2.4) 0.375
Sex, male:female 158:77 70:87 27:50 0.298a)

MMSE (std) 154:77 23.6 (2.8) 24.0 (2.3) 0.387
CVLT-2 (std) 158:75 19.9 (8.4) 19.9 (7.5) 0.849
Verbal fluency (std) 161:76 11.3 (4.4) 11.9 (4.4) 0.640
Hachinski (std) 141:76 4.0 (2.4) 3.0 (2.0) 0.001
APOE ε4, yes:no 100:51 62:38 31:20 0.885b)

CDR-SOB (std) 139:74 5.8 (2.7) 4.5 (2.1) 0.001
CIRS vascular 135:73 0.16 (0.51) 0.16 (0.41) 0.477

Table 3.1: Baseline clinical characteristics of the dementia subjects with and
without WML volume results. n(excl) = number of patients in the excluded
group, n(incl) = number of patients in the included group. Mann-Whitney U
test was used except if otherwise indicated. a) Pearson Chi-Square: 2.423, b)
Pearson Chi-Square: 0.021, yr= Years, std = Standard deviation, MMSE =
Mini Mental State Examination, CVLT-2 = California Verbal Learning Test
II , APOE ε4 yes means subject has at least one APOE ε4 allele, CDR-SOB
means Clinical Dementia Rating Sum of Boxes Score, and CIRS vascular means
Cumulative Illness Rating Scale for vascular symptoms.

3.5 MRI

The patients were scanned at three different sites: Stavanger University Hospital,
Haugesund Hospital, and Haraldsplass Deaconess Hospital. A 1.5 T scanner was
used in all three centers (Philips Intera in Stavanger and Haugesund, and GE
Signa Excite in Bergen), using the same scanner in each center during the entire
study period and a common study imaging protocol. The NCs were scanned at
four different sites. They were scanned on the same scanners as the patients in
Stavanger and Haugesund, and on different scanners in Arendal (1.0T Philips
Intera) and Bergen (1.5T Siemens Symphony). The patients and the NC’s were
scanned on the same scanner using the same protocol at each center.

Two different whole brain MRI sequences were collected for each subject,
namely a 3DT1 and a FLAIR MRI. The former provides a high resolution image
with good contrast between WM and GM. The latter provides an MR image with
a null signal for fluid (e.g. cerebrospinal fluid) and were WML is hyperintense.

After a visual inspection some patients scans were excluded due to either
insufficient image quality, not having both FLAIR and T1 images for the patient,
or movement artifacts and other artifacts. Please see Figure 3.1 for an overview
of inclusion of patients and normal controls.
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Variable NC AD LBD p-value p-value
n=37 n=61 n=16 (overall) AD/LBD

n=114 n=77
Age, yr(std) 70.6(6.2) 75.2(7.7) 75.5(5.2) 0.005KW 0.89
Educ, yr(std) 10.0(2.3) 9.3(2.5) 8.5(1.9) 0.042KW 0.176

Sex, m:f 13:24 14:47 13:3 < 0.001a) < 0.001a)

MMSE(std) 28.8(1.0) 23.9(2.3) 24.3(2.5) < 0.001KW 0.314
CVLT-2(std), - 19.2(7.0) 23.2(9.3) - 0.198
n=61:14
Verb flu(std), - 13.0(6.2) 11.5(4.2) - 0.409
n=60:16
Hachinski(std) - 2.9(2.1) 3.6(1.9) - 0.109

APOE ε4, y:n 11:25 27:14 4:6 0.007b) 0.133c)

CDR-SOB(std) - 4.4(2.0) 4.8(2.6) - 0.578
CIRS vasc(std), - 0.11(0.32) 0.42(0.67) - 0.045
n = 61:12

Table 3.2: Baseline clinical characteristics of the patients and normal controls
in the study. Mann-Whitney U test was used except if otherwise indicated. a)
Pearson Chi-Square = 18.9, b) Pearson Chi-Square = 9.9, c) Pearson Chi-Square
= 2.5, yr= Years, std = Standard deviation, m = male, f = female, y = yes, n =
no, Educ = Education, MMSE = Mini Mental State Examination, CVLT-2 =
California Verbal Learning Test II, Verb flu = Verbal fluency test APOE ε4 yes
means subject has at least one APOE ε4 allele, CDR-SOB = Clinical Dementia
Rating Sum of Boxes score, CIRS vasc means Cumulative Illness Rating Scale
for vascular symptoms, MW = Mann-Whitney U test, KW = Kruskal-Wallis H
test.
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3.5.1 MRI parameters: the DemWest study

In Stavanger (Stavanger University Hospital): a Philips Medical Sys-
tems Intera scanner with software version NT 10.3.1\PIIM V2.1.4.1 MIMIT
MCS was used. The T1-weighted 3D sequence was a coronal T1W/3D/FFE,
Scanning Sequence GR, and Sequence Variant SP, using 10 ms Repetition Time,
4.6 ms Echo Time, Flip Angle 30, 2 Number of Averages, 2.0 mm Slice Thick-
ness with 1.0 mm Spacing Between Slices, Acquisition Matrix 256 × 256, and
an image Voxel Resolution (X, Y, Z) of (1.015625 mm, 1.015625 mm, 1 mm)
where Z is the slice thickness. The T2-weighted FLAIR image was an axial
T2W/FLAIR, Scanning Sequence IR, and Sequence Variant SK, using 6000 ms
Repetition Time, 100 ms Echo Time, 2000 ms Inversion Time Flip Angle 90,
2 Number of Averages, 4.0 mm Slice Thickness with 5.0 mm Spacing Between
Slices, Acquisition Matrix 256 × 202, and an image Voxel Resolution (X, Y, Z)
of (0.8984375 mm, 0.8984375 mm, 4 mm) where Z is the slice thickness.

In Haugesund (Haugesund Hospital): a Philips Medical Systems Intera
scanner with software version NT 10.3.1\PIIM V2.1.4.1 MIMIT MCS was used.
The T1-weighted 3D sequence was a coronal T1W/3D/FFE, Scanning Sequence
GR, and Sequence Variant SP, using 20 ms Repetition Time, 16 ms Echo Time,
Flip Angle 30, 1 Number of Averages, 1.0 mm Slice Thickness with 1.0 mm
Spacing Between Slices, Acquisition Matrix 256 × 196, and an image Voxel
Resolution (X, Y, Z) of (1.015625 mm, 1.015625 mm, 1 mm) where Z is the slice
thickness. The T2-weighted FLAIR image was an axial T2W/FLAIR, Scanning
Sequence IR, and Sequence Variant SK, using 6000 ms Repetition Time, 110 ms
Echo Time, 2000 ms Inversion Time Flip Angle 90, 2 Number of Averages, 4.0
mm Slice Thickness with 5.0 mm Spacing Between Slices, Acquisition Matrix 256
× 182, and an image Voxel Resolution (X, Y, Z) of (0.44921875 mm, 0.44921875
mm, 4 mm) where Z is the slice thickness.

In Bergen (Haraldsplass Deaconess University Hospital): a GE Medi-
cal System Signa Excite scanner with software version 12\LX\MR Software re-
lease:12.0 M5 0606.b was used. The T1-weighted 3D sequence had a Series De-
scription COR T1 3D FSPGR IR prepped, Scanning Sequence GR, and Sequence
Variant SS\SP\SK, using 8.224 ms Repetition Time, 3.144 ms Echo Time, Flip
Angle 7, 500 ms Inversion Time, 1 Number of Averages, 1.0 mm Slice Thick-
ness with 1.0 mm Spacing Between Slices, Acquisition Matrix 256 × 256, and
an image Voxel Resolution (X, Y, Z) of (1 mm, 1 mm, 1 mm) where Z is the
slice thickness. The T2-weighted FLAIR image had a Series Description Ax
T2 FLAIR , Scanning Sequence IR, using 7927 ms Repetition Time, 105.064 ms
Echo Time, 1981 ms Inversion Time Flip Angle 90, 1 Number of Averages, 4.0
mm Slice Thickness with 5.0 mm Spacing Between Slices, Acquisition Matrix
256 × 256, and an image Voxel Resolution (X, Y, Z) of (0.8984 mm, 0.8984
mm, 4 mm) where Z is the slice thickness.
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3.5.2 MRI parameters: the ParkWest study

In Bergen (Unilabs Røntgen Bergen): a Siemens Symphony scanner with
software version syngo MR 2004A 4VA25A was used. The T1-weighted 3D se-
quence had a Series Description t1 mpr ns cor, Scanning Sequence IR\GR, and
Sequence Variant SP\MP, using 2130 ms Repetition Time, 3.93 ms Echo Time,
Flip Angle 15, 1100 ms Inversion Time, 1 Number of Averages, 1.0 mm Slice
Thickness, Acquisition Matrix 256 × 256, and an image Voxel Resolution (X, Y,
Z) of (0.9765625 mm, 0.9765625 mm, 1 mm) where Z is the slice thickness. The
T2-weighted FLAIR image had a Series Description t2 tirm tra dark-fluid 103
, Scanning Sequence IR\SE, and SK\SP\MP\OSP using 8400 ms Repetition
Time, 103 ms Echo Time, 2500 ms Inversion Time Flip Angle 150, 2 Number of
Averages, 4.0 mm Slice Thickness with 4.4 mm Spacing Between Slices, Acquisi-
tion Matrix 256 × 204, and an image Voxel Resolution (X, Y, Z) of (0.9765625
mm, 0.9765625 mm, 4 mm) where Z is the slice thickness.

In Arendal: a Philips Medical Systems Gyroscan NT Intera scanner with
software version NT 9.1.1\1.3 was used. The T1-weighted 3D sequence was a
coronal T1W/3D/FFE, Scanning Sequence GR, and Sequence Variant SP, using
25 ms Repetition Time, 6.8912 ms Echo Time, Flip Angle 30, 1 Number of Aver-
ages, 2.0 mm Slice Thickness with 1.0 mm Spacing Between Slices, image Voxel
Resolution (X, Y, Z) of (1.01562 mm, 1.01562 mm, 2 mm) where Z is the slice
thickness. The T2-weighted FLAIR image was an axial T2W/FLAIR, Scanning
Sequence IR, and Sequence Variant SK, using 6000 ms Repetition Time, 100 ms
Echo Time, 1900 ms Inversion Time Flip Angle 90, 2 Number of Averages, 4.0
mm Slice Thickness with 5.0 mm Spacing Between Slices, image Voxel Resolution
(X, Y, Z) of (0.9375 mm, 0.9375 mm, 4 mm) where Z is the slice thickness.

3.5.3 MRI cohort reliability study

Since the DemWest cohort is a multicenter study, a reliability study was done
where three human volunteers acquired images from all centers using the com-
mon cohort protocols. The human volunteers were scanned twice, one hour
apart, in all centers to analyze scanner reliability between centers. Scanning
was organized with two separate sessions, one hour apart, on the same day.
From these scans, the total brain white matter was segmented from the T1
image and the volume calculated for the two MRI acquisitions at all four cen-
ters using FreeSurfer (http://surfer.nmr.mgh.harvard.edu/). Cronbachs alpha
between MR scanners at different centers was 0.958. Cronbach’s alpha between
two time points varied between 0.982 and 0.995, indicating excellent reliabilities
both between centers and between different time points. A similar reliability
study was performed for the ParkWest study, also with excellent reliabilities.
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Segmentation of WML was mainly performed for three reasons. We wanted
to calculate the regional volume of WML in the brain and explore statistical
relationships in groups of subjects with AD, LBD, and NC. In addition, we
wanted to explore the possibilities that regional WML volume contributes to
reduced cognitive score in subjects with AD and LBD. Lastly, we wanted to
calculate texture features in WML- and non-WML regions of the brain and do
classification discerning subjects with AD, LBD, and NC. The following chapter
introduces the reader for the methods used to segment the regions of interest
(ROI) used in the work of this thesis.

4.1 WML segmentation

Segmentation of WML was performed according to a method developed and
previously published by M J Firbank and colleagues in Newcastle, England
[88]. Briefly, the non-brain regions were removed from the T1 image, using
the segmentation routines in SPM5 (http://www.fil.ion.ucl.ac.uk/spm). After
transforming to the image space of the FLAIR image, the segmented T1 im-
age was used as a mask for scull stripping of the FLAIR image. Then the
WML were segmented automatically on a slice-by-slice basis from the FLAIR
images, with the images in native space, using a threshold determined from
the histogram of pixel intensities for each image slice. To explore the regional
distribution of WML throughout the brain, a WML region of interest (WML-
ROI) template in standard MNI space was used (Montreal Neurological Insti-
tute, http://www.bic.mni.mcgill.ca). The WML-ROI template was transformed
from MNI space to the image space (FLAIR) of each subject by use of the
normalization routines in SPM5, and the volumes of WML in each WML-ROI
was calculated. The WML-ROI map was based on the Brodmann template, see
Figure 4.1.

Because of the variability between the different centers participating in this
study, we found it difficult to choose a single threshold level that gave us an ac-
ceptable segmentation result without manual editing. A threshold level that gave
us an overestimation of the lesion load in every subject was used. Manual edit-
ing was then done to correct for this, by removing excess pixels using FSLView
(http://www.fmrib.ox.ac.uk/fsl/index.html), a medical image-editing program
being a part of the FSL software bundle. Manual editing was performed after
training by a consultant radiologist who is experienced at evaluation of WML.
We performed inter- and intra-rater reliability testing between the two raters to
ensure good quality. They both edited the same 10 datasets twice. Once in the
beginning to ensure good inter rater reliability and a second time at the end to
ensure the similar reliability still persisted and to evaluate intra-rater reliability.
We found excellent intra class correlation coefficient (ICC) was 0.998 for inter
rater reliability and 0.964 for intra rater reliability.
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Figure 4.1: Left figure displays an axial slice showing the brodmann areas and
the right figure displays a rendered surface image.

4.2 Segmentation of grey matter (GM), white
matter (WM), and normal appearing white
matter (NAWM)

Segmentation of GM and WM were performed using standard segmentation
routines in SPM5 (http://www.fil.ion.ucl.ac.uk/spm). The NAWM image was
calculated by subtracting the WML image from the WM image.
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Both volume based features and textural features have been applied. In the
first section of this chapter, a description of the volume based features will be
given. The next section will provide a general introduction to texture analysis
methods as well as an overview of texture analysis used as an application to
study dementia. The rest of the chapter is spent introducing the reader to the
texture features used in this thesis.

5.1 Regional WML volume

WML volumes in various regions of the brain were used in statistical analyses and
as features in classification discerning patients with different types of dementia
and healthy controls. From the WML segmentation results the total brain-,
total periventricular-, and total deep-white-matter WML volume, as well as the
temporal- (Te), occipital- (Oc), frontal- (Fr), parietal- (Pa), cerebellar- (CB),
basal ganglia- (BG), central white matter (CW), and corpus callosum (CC)
volume in each of the three regions were calculated by counting the number of
voxels matching the regions in the Brodmann template and then divided by the
total number of voxels in the brain. Total brain volume was obtained calculating
the sum of GM and WM. A total of 27 volume features were calculated.

5.2 Texture analysis

In the book “Image processing: dealing with texture” [89] Petrou and Sevilla
suggest that “texture is the variation of data at scales smaller than the scales of
interest”. By this means, texture can be interpreted as the variation that makes
for example music and art beautiful, and that makes every day different from
the day before.

In optical images, texture may be the result of variation of the albedo or
the result of variation of the shape of the imaged surface. In the former case,
the change of colors creates variation in the brightness of the image at scales
smaller than the scale of the object of interest. In the latter case, texture in an
image will arise from the interplay of shadows and better illuminated parts, if
the surface is rough, even if it is uniformly colored. In non-optical images as for
example MRI, the presence of texture indicates variation of the proton density
from one location to another.

Texture properties can be used as descriptors of nature as well as man-made
objects, both in two-dimensional and three-dimensional structures. With our
senses, texture can be recognized as fine, coarse, smooth, irregular, or lineated
while touching surfaces [90]. Similar textural properties can be detected visually
with new features. Even though our ability to discriminate complex textures
visually is limited [91], numerous methods can be applied to quantitatively anal-
yse a vast range of textural parameters that are below the limits of human visual
perception [92].



5.2. TEXTURE ANALYSIS 27

Early examples of quantitative and qualitative use of texture parameters in
analysis and classification in industry was when Kaizer used an autocorrelation
function to describe aerial photographs in the 1950s [93], and when Haralick
used grey tone spatial dependencies as texture features when analyzing pho-
tomicrographs, aerial photographs, and multispectral scanner satellite images
[90]. These two approaches and other statistical texture analysis methods are
used during automatically inspection in machine vision.

In a medical context, texture analysis can apply a quantitative approach to
analyse and identify anatomical and pathological structures, and even physiolog-
ical changes appearing during symptom development. Chien and Fu developed
an application in 1974, where co-occurrence matrix was used for automatic anal-
ysis of chest X-ray [94]. Application of texture analysis have provided advanced
non-visible information in pathological tissue areas in radiograph, ultrasound,
computed tomography and magnetic resonance imaging. Harrison [95] exten-
sively reviews the use of texture analysis in a clinical context, analyzing MR
images in non-Hodgkin lymphoma, mild traumatic brain injury, and multiple
sclerosis. She concludes that “non visible lesions and physiological changes as
well as visible focal lesions of different etiologies could be detected and charac-
terized by texture analysis of routine clinical 1.5 Tesla scans”.

5.2.1 Texture analysis methods

In their review of texture analysis, Tuceryan and Jain proposed four major cate-
gories of texture methods [92], statistical, geometrical, model-based, and signal-
processing methods. Other names for analogous methods exist, e.g. Materka
and Castellano term the geometrical methods group structural, and the signal-
processing methods transform methods [96, 97]. In Kassners and Thornhills
review of texture analysis in neurologic MR imaging applications [98], the au-
thors suggest three general categories, namely syntactic, statistical, and spectral
methods.

The syntactic texture analysis methods are characterized by a composition of
texture elements with certain geometric properties ordered in a pattern by some
placement rules. These textures are either analyzed by computing statistical
properties from the extracted texture elements, or by extracting the placement
rule that describes the texture. Methods comprising syntactic texture is limited
in power unless one is dealing with very regular textures and are seldom reported
used in texture analysis in neuro-MR imaging.

The statistical methods are based on the spatial distribution of gray values
and are one of the early methods proposed in the machine vision literature. The
statistical methods are divided into first-order and second-order statistical ap-
proaches. Among many first-order variants we find the self explanatory mean of
gray level, variance of gray level as well as parameters characterizing local gray-
level differences. The second-order statistical features are either extracted from
gray level co-occurrence matrixes or run-length matrixes. The co-occurrence
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matrix and the run-length matrix were introduced in the 1970s by Galloway and
Haralick respectively [99, 90, 100].

As an example of spectral texture analysis methods are features extracted
from wavelet functions. Where co-occurrence or run-length features lack the
sensitivity to identify larger scale or more coarse changes in spatial frequency, can
wavelet functions be designed to evaluate spatial frequencies at multiple scales.
Some of the shortcomings of using the Fourier transform for texture description
is the lack of ability to delineate temporal changes in frequency content as well
as that all signals reflect a superposition of sinusoids. These shortcomings are
overcome by the wavelet transform. By trading some degree of spatial-frequency
resolution for the ability to localize this frequency content in time, even more
flexibility is available.

5.2.2 Texture analysis in brain MRI in dementia

The application of texture analysis in a machine learning (ML) environment
has shown success in discerning different dementias from each other and from
healthy controls. In [101], Freeborough and Fox used 260 measures derived from
the spatial gray-level dependence method, obtained a linear discriminant func-
tion using stepwise discriminant analysis obtaining a classification rate of 91%
discerning AD from healthy controls. deOlivieira et al. [102], found statistical
significant differences in gray level co-occurrence matrix measurements in sub-
jects with mild AD, amnestic mild cognitive impairment (aMCI), and healthy
controls using Kruskal-Wallis tests and Mann-Whitney U tests. Zhang et al.
[103] performed 3D texture analysis of the hippocampus and entorhinal cortex
in MR images of Alzheimer’s disease. They extracted 3D texture features from
image histogram, gradient co-occurrence matrix, and run length matrix and
four different feature selection procedures were applied. Depending on ROI se-
lection, feature extraction procedure and selection, they achieved between 64.3%
and 96.4% classification accuracy, and that most texture features correlated with
the mini-mental state examination (MMSE) score. Sivapriya et al. showed in
[104] that texture analysis in brain MRI using wavelets, and classification with
back propagation network (BPN) gave high classification accuracy in AD. Li et
al. [105], extracted 3D texture features from gray level co-occurrence matrix
and run length matrix in the hippocampus area of MR images and found that
entropy, grey level non-uniformity, and run length non-uniformity showed signif-
icant differences between AD patients, patients with mild cognitive impairment
(MCI), and normal controls, and that the texture features were correlated with
mini-mental state examination (MMSE) score. This result suggest that 3D tex-
ture analysis could describe the pathological changes of hippocampus in patients
with early AD and MCI, and be helpful to early diagnosis of AD. Kodama et al.
[106], calculated 76 features from co-occurrence matrix and run length matrix in
cerebral parenchyma regions and were able to confirm 70.0% of DLB patients,
90.5% of AD patients, and 90.0% of the healthy individuals.
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Even though 2D slice by slice approaches are successful, 3D texture features
have shown to be an important step towards better discrimination in machine
learning systems, especially when the images are intrinsic three dimensional like
many MR modalities are [107].

Features from several texture analysis methods can be collected to increase
accuracy of classification results. A sophisticated strategy for feature selection
with state of the art pattern recognition techniques is required to save compu-
tation time, reduce overfitting challenges, and optimize classification results.

5.3 Local binary pattern texture analysis

Ojala et al. [108, 109] introduced LBP as a texture operator. Since its discrim-
inative power is high and at the same time computationally simple, LBP is a
popular texture descriptor used in various applications, and unifies traditionally
divergent statistical and structural models of texture analysis. Adding an image
contrast measure (C) calculating the local variance in the pixel neighbourhood,
as well as varying the texture neighbourhood enhances the discriminative power
of the LBP feature even further. In [110], Unay et al. demonstrated that the
rotation invariant LBP is invariant to some common MRI artifacts i.e. the bias
field.

5.3.1 2D LBP

The derivation of the gray scale and rotation invariant texture operator LBP
starts by defining texture T in a local neighbourhood of a monochrome texture
image as the joint distribution of the gray levels of P (P > 1) image pixels:

T = t(gc, g0, ..., gP−1), (5.1)

where gray value gc corresponds to the gray value of the center pixel of the local
neighbourhood and gp(p = 0, ..., P−1) corresponds to the gray value of P equally
spaced pixels on a circle of radius R(R > 0) that form a circularly symmetric
neighbour set. When the coordinates of gc are (0, 0), the coordinates of gp are
given by (−Rsin(2πp/P ), Rcos(2πp/P )) and the gray values of neighbours which
do not fall exactly in the center of pixels are estimated by interpolation.

To achieve gray-scale invariance, the gray value of the center pixel (gc) is
subtracted from the gray values of the circular symmetric neighbourhood gp(p =
0, ..., P − 1), giving:

T = t(gc, g0 − gc, g1 − gc, ..., gP−1 − gc). (5.2)

By assuming that differences gp−gc are independent of gc and thereby factorizing
we get:

T ≈ t(gc)t(g0 − gc, g1 − gc, ..., gP−1 − gc). (5.3)
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The distribution t(gc) describes the overall luminance of the image and is unre-
lated to local image texture and is removed. The approximated distribution

T ≈ t(g0 − gc, g1 − gc, ..., gP−1 − gc), (5.4)

conveys much of the textural characteristics from the original.
By considering just the signs of the differences instead of their exact values,

invariance with respect to gray-scale shifts is achieved:

T ≈ t(s(g0 − gc), s(g1 − gc), ..., s(gP−1 − gc)), (5.5)

where

s(x) =

{
1, x ≥ 0

0, x < 0.
(5.6)

Each sign s(gp − gc) is assigned a binomial factor 2p, such that T is trans-
formed into a unique LBPP,R number that characterizes the spatial structure of
the local image texture:

LBPP,R =
P−1∑
p=0

s(gp − gc)2
P . (5.7)

See also Figure 5.1.
To assign a unique identifier to each rotation invariant local binary pattern,

LBP ri
P,R is defined as:

LBP ri
P,R = min{ROR(LBPP,R, i) | i = 0, 1, ..., P − 1} (5.8)

where ROR(x, i) performs a circular bit-wise right shift on the P -bit number x
i times.

Certain local binary patterns are fundamental properties of texture. ”Uni-
form” patterns are circular structures that contain very few spatial transitions.
They function as templates for micro structures such as bright spot, flat area,
dark spot, and edges of varying positive and negative curvature. The uniformity
relates to the number of spatial transitions (i.e. bit wise 0/1 changes) in the LBP
pattern, e.g. 000000002 and 111111112 have a uniformity value U(”pattern”)
of 0, whereas 000000112 and 100001112 of 1 and 2 respectively. Patterns that
have a U value of at most 2 is designated as ”uniform”. A gray-scale, rotation
invariant, and uniform LBP texture operator is defined as follows:

LBP riu2
P,R =

{∑P−1
p=0 s(gp − gc) if U(LBPP,R) ≤ 2

P + 1 otherwise,
(5.9)

where

U(LBPP,R = |s(gP−1 − gc)− s(g0 − gc)|

+

P−1∑
p=1

|s(gp − gc)− s(gp−1 − gc)|.
(5.10)
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Figure 5.1: Top figure demonstrates LBP thresholding. A neighbour to a cen-
ter pixel is set to one if it has equal or higher pixel value and zero if it has
lower. In an anti-clockwise manner every neighbour is multiplied by powers of
two and summed as demonstrated in the equation below. The bottom figure
demonstrates how the radius and number of samples can be varied in the choice
of neighbourhood.
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Superscript riu2 reflects the use of rotation invariant ”uniform” patterns that
have a U value of at most 2. By definition, exactly P + 1 ”uniform” binary
patterns can occur in a circularly symmetric neighbour set of P pixels whereas
the ”non-uniform” patterns are grouped under a miscellaneous label (P + 1).

The LBP ri
P,R and LBP riu2

P,R operators are excellent measures of spatial pat-
terns, but discards contrast. If gray-scale invariance is not required, the contrast
(C) of local image texture can be measured with a rotation invariant measure
of local variance defined as:

V ARP,R =
1

P

P−1∑
p=0

(gp − μ)2, where μ =
1

P

P−1∑
p=0

gp, (5.11)

which is invariant against shifts in gray-scale.
The LBP and C values are calculated for every voxel in the specified region

of interest creating an LBP- and a C-valued image. Typically the LBP- and
C values are collected and represented as a histogram for each instance in the
dataset. The histogram can be used as a vector of features. Other approaches
include calculating new features from the histogram.

5.3.2 3D LBP

VLBP

Ojala et al. [108, 109] introduced LBP as a texture operator for 2D images. Zhao
and Pietikäinen developed an LBP variant for dynamic texture recognition called
volume LBP (VLBP) [111] for 3D volumes. The VLBP texture feature takes
into account the in-slice neighborhood in a radius R from the pixel of interest
sampled with P neighbours as well as the neighborhood in the slice before and
the slice after, thus working as a 3D texture operator.

3D texture V in a local neighborhood of a monochrome multislice texture
sequence is defined as the joint distribution v of the values of 3P +2 given (P >
1) image pixels, where P is the number of local neighbouring points around the
center pixel in one frame.

V = v(s(gtc−L,c − gtc,c), s(gtc−L,0 − gtc,c), ..,

s(gtc−L,P−1 − gtc,c), s(gtc,0 − gtc,c), ..,

s(gtc,P−1 − gtc,c), s(gtc+L,0 − gtc,c), ..,

s(gtc+L,P−1 − gtc,c), s(gtc+L,c − gtc,c)).

(5.12)

The gray level value gtc,c corresponds to the gray level value of the center pixel
of the local volume neighborhood. gtc−L,c and gtc+L,c correspond to the gray
level value of center pixel in the previous and posterior neighbouring frame with
distance L. gt,p(t = tc − L, tc, tc + L; p = 0, .., P − 1) corresponds to the gray
level value of P equally spaced pixels on a circle of radius R(R > 0) in image
t, which form a circularly symmetric neighbour set. As with LBP, invariance
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with respect to gray scale is achieved by considering the sign of the differences

only s(x) =

{
1, x ≥ 0

0, x < 0
. Each s(x) is assigned a binomial factor 2p, such that

V is transformed from a binary code into a unique V LBPL,P,R number that
characterizes the spatial structure of the local image texture:

V LBPL,P,R =

3P+2∑
q=0

vq2
q. (5.13)

Two variants of a rotation invariant V LBPL,P,R has been developed. The
original variant where the rotation invariant LBP is calculated from each frame
and then combined and a newer variant obtained by rotating the neighboring set
in all three frames synchronously, see [111] for further details as well as Figure
5.2.

LBP-TOP

When increasing the number of samples in the neighborhood, P , the number
of VLBP texture patterns increases according to 23P+2 which can get unman-
ageable large when using large values for P. Another LBP variant for dynamic
texture recognition is the LBP three orthogonal planes (LBP-TOP) developed
by Zhao and Pietikäinen [111]. Usually, a medical image volume like the anatom-
ical 3DT1 MR image, is thought of as several slices in the XY-direction lined
up in a slice-wise manner in the Z-direction. Of course, the alternative where
the image is viewed upon as XZ-slices stacked in the Y-direction, or as YZ-slices
stacked in the X-direction is equally valid. With this approach the number of
LBP patterns is reduced to 3 × 2P which is a great advantage. The LBP-TOP
patterns are calculated in the XY-, the XZ-, and the YZ-direction of the MR
image and are thereby called the LBPXY , the LBPXZ , and the LBPY Z . In the
case where MR images are acquired in an isotropic manner, meaning that the
in-plane resolution is the same in all three directions, it seems reasonable to set
the radius, R, and number of samples, P , equal for all three directions. However,
more generally the radii RX , RY , RZ and the number of samples PXY , PXT ,
PY T can be set differently. The corresponding pattern would then be denoted as
LBP − TOPPXY ,PXZ ,PY Z ,RX ,RY ,RZ

and be an extension of the LBP definition.
Suppose the coordinates of the center pixel gtc,c are (xc, yc, zc), the coordinates
of gXY,p, are given by:

(xc −RX sin(2πp/PXY ), yc +RY cos(2πp/PXY ), tc), (5.14)

the coordinates of gXZ,p, are given by:

(xc −RX sin(2πp/PXZ), yc, tc −Rz cos(2πp/PXZ)), (5.15)

and the coordinates of gY Z,p are given by:

(xc, yc −RY cos(2πp/PY Z), tc −RZ sin(2πp/PY Z)). (5.16)
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Figure 5.2: Top figure demonstrates the neighborhood configuration in VLBP.
The center pixel in the current slice (orange), named x, is the current pixel.
A threshold is set on each pixel in the 3D neighbourhood. The bottom figure
shows how the readout is performed, which starts at the center pixel in the pre
slice (yellow) and ends in the center pixel in the post slice. Every neighbour
is multiplied by powers of two and summed as demonstrated in the equation
below.
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Figure 5.3: For a point in 3D space spanning the brain, the LBP-TOP code is
calculated similar as in a 2D case for the coronal, the axial, and the sagittal
direction comprising a 3D texture feature for all voxels in the brain. The top
left figure shows the 3D MR image displayed as three MR images in the three
orthogonal directions. The top right figure demonstrates the three orthogonal
planes (TOP) neighborhood. The other figures demonstrates how the LBP code
is calculated in a circular neighborhood in the three orthogonal directions.
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Contrast

The V LBP ri
P,R and LBP − TOP ri

P,R operators are excellent measure of the spa-
tial pattern, but discards contrast. If gray-scale invariance is not required, the
contrast (C) of local image texture can be calculated as local variance and is in-
variant to rotation and shifts in gray-scale. In the VLBP case it will be defined
as:

CL,P,R =
1

3P + 2

3P+1∑
p=0

(gp − μ)2,

where μ =
1

3P + 2

3P+1∑
p=0

gp,

(5.17)

and in the LBP-TOP case:

CP,R =
1

P

P−1∑
p=0

(gp − μ)2, where μ =
1

P

P−1∑
p=0

gp, (5.18)

calculated in all three directions (XY, XZ, and YZ).

5.4 The texture feature vector

The local binary pattern approach to texture analysis produces a vast amount of
information that can be interpreted in many ways producing a range of different
results. Very common is the calculation of an LBP histogram. Especially when
used with high sampling of the neighborhood, as when using a 3D variant of
LBP, the histograms grows large. Large feature vectors in combination with few
subjects in the training dataset introduces limitations to classification and poor
accuracy due to overtraining. Instead of using these histograms or the whole
range of LBP values, we decided to calculate statistical measures of the collec-
tion of LBP values and use the generated numbers as features in classification.
The calculated measures were mean, standard deviation, variation, median, in-
terquartile range, entropy, skewness, and kurtosis of the LBP values. For each
neighborhood configuration eight features related to LBP and eight related to C
were calculated and concatenated into one feature vector for each subject.
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Using the quantified WML volumes and calculated texture features an im-
portant objective was to compare different dementia groups and healthy controls
with statistical tests and discern the same groups using classification and ma-
chine learning techniques. In the following chapter the reader will be presented
for the statistical tests as well as the classifiers and other machine learning tech-
niques used in the work of this thesis.

6.1 Statistical analysis

Comparison of demographic variables was done with the nonparametric Mann-
Whitney and Kruskal-Wallis tests because of the non-normal distribution of the
data for age, years of education and MMSE score. Neither of the above men-
tioned features nor data for WML volumes became more normally distributed
after a log transformation. For sex a Pearson Chi-Square was used to test in-
dependence between groups. We first compared the matched dementia and NC
groups, and subsequently the AD vs. LBD group. WML volume measure-
ments were compared between the dementia group vs. normal controls and
between the AD group and LBD with the nonparametric Mann-Whitney test.
Correlations between WML load and cognitive scores were done calculating the
Spearman correlation coefficient with two-tailed significance. We also applied
Hierarchical multivariate linear regression analysis to study the associations be-
tween cognitive scores and WML volume, adjusting for demographic variables
significantly associated with cognition in bivariate analysis. All statistical tests
were performed using PASW Statistics 18, release 18.0.1, and p-values < 0.05
was considered statistically significant.

6.2 Classification

Classification of objects into a number of categories is a scientific discipline
named pattern recognition [112]. Depending on the application, these objects
can be images or signal waveforms or any type of measurement that need to be
classified. Machine learning evolved from pattern recognition and was defined
by Arthur Samuel in 1959 as “the field of study that gives computers the ability
to learn without being explicitly programmed”. Another way of putting it is
that machine learning is about algorithms that can learn from data and perform
predictions from the learned algorithms.

Pattern recognition systems typically consist of five elements: sensing, seg-
mentation and grouping, feature extraction, classification and post processing.
A camera or a microphone array could be examples of transducers or sensors
that typically can be input to a pattern recognition system. Characteristics and
limitations of the transducer as for example the bandwidth, the resolution, the
sensitivity, the distortion, the signal-to-noise ratio, or the latency induces dif-
ficulty into the equation. In this thesis MR images formed by radio frequency
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(RF) pulses applied to a subjects brain inside strong magnetic fields (1.5T) is
the source of input to the analysis system.

Many classification algorithms exists, and it is common to divide them into
two main subgroups, unsupervised and supervised techniques. The former refers
to algorithms where for example a function is inferred with the purpose of unveil-
ing hidden structures in unlabeled data. The latter refers to algorithms where
a function is inferred on the background of labeled data. The labeled data have
known class affiliations. Using this information, a classifier is trained based on
a subset of the available data (the training data) and afterwards validated using
the remaining data (the test data).

6.2.1 Bayes decision theory and maximum likelihood clas-
sification

Many pattern classification methods exists and there is a vast amount of litera-
ture in the field. Bayesian decision theory is a fundamental statistical approach
for many classification methods. It is based on an assumption that the decision
problem is posed in probabilistic terms. Given a problem with j classes ωj for
j = 1, 2, ..., c with prior probability P (ωj) and feature vector x in a d-dimensional
Euclidean space Rd called the feature space – a set of random variable whose
distribution depends on the class condition – the class-conditional probability
density function is expressed as p(x|ωj). The joint probability density of finding
a pattern that is in category ωj and has feature vector x can be written in two
ways: p(ωj ,x) = P (ωj |x)p(x) = p(x|ωj)P (ωj). Rearranging the equation leads
us to Bayes formula:

P (ωj |x) = p(x|ωj)P (ωj)

p(x)
, (6.1)

where

p(x) =
c∑

j=1

p(x|ωj)P (ωj), (6.2)

and can informally be expressed as

posterior =
likelihood× prior

evidence
. (6.3)

The a posteriori probability P (ωj |x), namely the probability of the class being
ωj given the values of feature vector x, can thus be calculated from the prior
probability P (ωj) and the likelihood p(x|ωj) of ωj with respect to x where p(x),
called the evidence factor, can be viewed as a scale factor that ensures that the
posterior probabilities sum to one. In a classification problem a given x will
belong to the class ωj showing the highest posterior probability P (ωj |x). This
decision minimizes the probability of misclassification.

In pattern recognition applications, we seldom have enough knowledge about
the complete probabilistic nature of the problem at hand. We may only have a
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set of training data which represents the patterns we want to classify, and by
using this information we can estimate the unknown probabilities and probability
densities and use them as if they were the true values. Estimating the prior
probabilities presents no difficulty, but the class-conditional densities can be
challenging to determine, and the number of training samples easily seems too
small, especially if the feature vector x is large. By assuming that the class-
conditional densities p(x|ωj) are normal distributed with mean μi and covariance
matrix Σi the problem is simply one of estimating these parameters instead of
the probability function. Parameter estimation is a classical problem in statistics
and can be approached in many ways. One of the main benefits of using the
Maximum-likelihood estimation methods is its good convergence properties as
the number of training samples increases. The parameters are seen upon as
quantities whose values are fixed but unknown, and that the best estimate is
defined to be the one that maximizes the probability of obtaining the samples
actually observed.

Given a set of samples separated in classes such that we have c datasets,
D1, ..., Dc and the samples in Dj drawn independently according to the proba-
bility law p(x|ωj). Let us further assume that p(x|ωj) is uniquely determined
by the value of a parameter vector θj which for a normal distributed sample
set p(x|ωj) ∼ N(μj ,Σj), consists of the components μj and Σj . Explicitly, the
dependence of p(x|ωj) on θj, is written as p(x|ωj , θj). Using the information pro-
vided by the training samples, our problem is to obtain good estimates for the
unknown parameter vectors θ1, ..., θc associated with each category. We assume
that the parameters for the different classes are functionally independent. Dj

is a set of training samples drawn independently from the probability density

p(x(j)|θj) and contains n samples, x
(j)
1 , ...,x

(j)
n .

We then have p(Dj |θj) =
∏n

i=1 p(x
(j)
i |θj). p(Dj |θj) is called the likelihood of θj

with respect to the set of samples in class j also written l(θj |x(j)
i ). Themaximum-

likelihood estimate of θj is the value θ̂j that maximizes l(θj |x(j)
i ) written as:

θ̂j = argmax
θ

l(θj |x(j)
i ) (6.4)

By applying standard methods of differential calculus the global maximum can
be estimated and it can be shown that the solution is the sample mean μj =
1
n

∑n
i=1 x

(j)
i and the weighted average of the sample covariance matrices Σj =

1
n

∑n
i=1(x

(j)
i − μj)(x

(j)
i − μj)

T for each class ωj .

Based on the means and covariance matrices estimated from the training
samples x1, ...,xn drawn from Dj , discrimination functions for each class ωj can
be produced and a sample earlier unseen xtest can be classified as belonging to
class ω1 if p(x|ω1)P (ω1) > p(x|ω2)P (ω2) and otherwise decide ω2 in a two-class
problem.
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6.2.2 Decision trees and random forest classification

In many situations our classification problem involves nominal data i.e. discrete
descriptors without natural notion of similarity or ordering. In these situations
a typical feature vector will be a list of attributes and not real numbers. To con-
sider such discrete problems, rule-based or syntactic pattern recognition methods
are applied.

An example of such a method is a decision tree, which is created by asking
a sequence of questions concerning the values in the feature vector in an orderly
fashion. The first value considered makes the root node at level zero in the
decision tree construction, and is thereby displayed at the top. Successive links or
branches from the root node to descendant nodes in the tree are formed based on
answers from questions, for example a ”yes/no” question or ”true/false” question
or ”value(property) ∈ set-of-values” question. These are similarly connected
until a terminal or leaf node is reached which has no further branches. The test
pattern is assigned the category of the leaf node.

Before classification can be performed, the decision tree has to be created
using training data. Using a set D containing instances having a class label and
a set of discriminative properties, the decision tree progressively splits the set
into smaller and smaller subsets. If the new subset is pure, i.e. all the samples in
the subset have the same category label, this part of the tree can be terminated
and the node considered a leaf node. If on the other hand the subset had a
mixture of labels, a decision weather to stop and accept an imperfect decision,
or select another property and grow the tree further, is appropriate.

This methodology provides us with a recursive tree-growing process and gives
rise to a generic tree-growing procedure called CART (classification and regres-
sion trees), and provides a general framework that can be instantiated in various
ways to produce different decision trees. Important design decisions of the CART
methodology are how many splits will be performed at each node, which prop-
erties should be tested at each node, when should a node be declared a leaf, how
to prevent the tree growing excessively large, how to assign category labels if the
node is impure, and how to handle missing data. Many of these design decisions
can be difficult to handle.

Some of the experienced benefits using decision trees are the ability to han-
dle large datasets using standard computing resources, the boolean logic making
the system highly interpretable, and the ability to handle both numerical and
categorical data. One drawback is related to the search methods used when
looking for the optimal split. For example using the greedy algorithm may re-
sult in decisions made on local optima. Another drawback is the creation of
overly complex trees resulting in overfitting, reduced generalization ability, and
thereby poor validation performance. A common approach to reduce the limi-
tation introduced by overfitting is pruning which means that sections providing
little classification power are removed with the aim of reducing the size of the
tree without reducing classification performance. A third drawback could be



42 CHAPTER 6. STATISTICAL ANALYSIS AND MACHINE LEARNING

problems concerning data with many input variables each one containing small
amount of information. In extreme cases, a single tree classifier will have only
slightly better performance compared to a random choice of class. Many of the
aforementioned challenges are overcome by the random forests algorithm which
was developed by Leo Breiman [113].

One of the key factors behind the success of Random Forest classifiers is the
introduction of randomness to the tree growing process which have to important
layers: the use of bagging and random features in the split selection. Together,
they improve strength as well as reducing the correlation between each tree in
the forest.

Bagging means that for the chosen training set a sub-sample is drawn with
replacement from the original training set. A classification tree is grown on the
new sub-sampled training set using random feature selection. Given a dataset
S containing several instances 1, 2, . . . , N , each instance consisting of several
descriptors a, b, c and a class label C, see Equation 6.5. S1, S2, . . . , SM , are
subsets of S, S1 ⊆ S, S2 ⊆ S, . . . , SM ⊆ S, sampled with replacement, see
Equation 6.6 and the top part of Figure 6.1.

S =

⎡
⎢⎢⎢⎣
fa1 fb1 fc1 C1

fa2 fb2 fc2 C2

...
...

...
...

faN fbN fcN CN

⎤
⎥⎥⎥⎦ (6.5)

S1 =

⎡
⎢⎢⎢⎣
fa1 fb1 fc1 C1

fa7 fb7 fc7 C7

...
...

...
...

fa23 fb23 fc23 C23

⎤
⎥⎥⎥⎦ , SM =

⎡
⎢⎢⎢⎣
fa2 fb2 fc2 C2

fa12 fb12 fc12 C12

...
...

...
...

fa35 fb35 fc35 C35

⎤
⎥⎥⎥⎦ (6.6)

For each subset a classification tree is generated. A forest of M classification
trees is build from the M random subsampled datasets, see lower part of Figure
6.1. During the tree growing process, the nodes in the classification trees are
split using random features. That means that only a subset of all the features
are used when growing the tree at each node. Finally, a new instance that is
run through the classification tree will be classified according to the mode of
the decisions from the trees in the forest. Bagging introduces two benefits to
the classifier development. One, accuracy is enhanced when used together with
random feature selection. Two, bagging can be used to give ongoing estimates of
the generalization error of the combined ensemble of trees, as well as estimates
for the strength of and correlation between each tree based on the non-sampled
instances from the original training set. It can be shown that the Random Forest
method is robust to overfitting as more trees are added to the classifier [113].
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Figure 6.1: A dataset S and subsets S1, S2, . . . , SM sampled with replacement
from S. A classification tree is generated for each subset S1, S2, . . . , SM . The
final decision is made based on the majority vote of classification results from
the forest.
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Figure 6.2: 5 folds cross validation using 4/5 of the data for training a classifier
and 1/5 of the data to test the classifier. The process is repeated five times,
each time using a different fold for validation. The resulting validation measure
is averaged over all five folds.

6.2.3 Training and testing

In a medical context an important application of pattern recognition is computer-
aided diagnosis. The final diagnose decision is made by a medical doctor. There-
fore, an aim of pattern recognition applications could be to assist the doctor while
interpreting medical image information. Poor image quality can alter the subtle
nature of the findings and subjectivity can prevent accurate results. A common
challenge using machine learning techniques such as classification of subjects
having a disease from healthy controls is the lack of sufficient amount of data.
A consequence may be difficulty in learning a classifier with sufficient low bias
and variance in the validation results. It is of utmost importance that great care
is taken when training a classifier on data containing few instances and a high
number of descriptors for each instance. When performing training under such
circumstances, overfitting is a common problem and needs to be dealt with. In
addition, the performance measures calculated from the test data can become
unreliable showing high bias and variance. Overfitting refers to a learned classi-
fier that performs well on the training data, but have low generalization abilities
resulting in poor validation outcomes.

A widely used method when learning a classifier on scarce data is cross-
validation (CV). When doing K-fold CV, data are divided into K roughly equal-
sized partitions, see Figure 6.2. If K equals five, training is performed on four
fifths of the data and testing is performed on the remaining one fifth. The
process is repeated K times and the validation error is averaged over all K folds.

A special case of K-folds CV is when K equals the number of instances in the
dataset such that the validation is performed on one instance only. This method,
called leave-one-out CV (LOOCV), makes the most out of the data concerning
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training and another benefit is that the validation bias is commonly low. Two
drawbacks are the high validation variance [114] and that the total prediction
error becomes overly optimistic [115]. Five- or tenfold CV is recommended as
a compromise between validation bias and variance [116, 117]. Even better
performance can be achieved when using stratification. That means that the
relative frequency of instances in each class is kept the same throughout the CV
procedure.

In Hastie et al. [118], the authors mention important elements regarding
CV and warn against using the methodology wrongly. Typical misuse is when
LOOCV is used for training on sparse data with high number of descriptors.
In [115] they achieved 84% apparent predictive ability on a synthetic dataset
consisting of random numbers only. Two other wrong approaches are when the
complete dataset has been used for feature sub selection ahead of using CV
for classifier learning, parameter optimization and validation, or when classifier
learning is performed using CV and then validation is performed on all data. A
third option is when the result from validation using CV is used for optimizing
parameters during classifier learning. Rao et al. [119] emphasize the dangers
when using results from CV to choose the most optimized classifier from a too
large set of possibilities. In all the above mentioned cases the learned classifier is
not validated on true unseen data. Taylor et al. [120] attaches great importance
to the need for validation on unseen data, or external validation. In the case
of sparse data with many descriptors, descriptor (or feature) sub selection is an
important step when training a classifier [121], but it is important that this step
is included in the CV scheme and thus repeated for every fold. Two common
approaches for feature subset selection is the filter approach and the wrapper
approach [122]. An example of the former approach is when the data is filtered
such that the features that correlates highly with the class labels and at the same
time little with each other are collected. The latter approach uses classification
results to test different feature subsets.

Hjorth et al. [123] was first out using one CV procedure inside another. In
[115] Anderssen et al. points to the importance of using an inner CV procedure
for feature selection and classifier training and an outer CV procedure for vali-
dation, see Figure 6.3 to ensure that the developed model is validated on unseen
data. This is called nested CV and are verified in [124, 125] as well.

6.2.4 Performance measures in classification

Traditionally, accuracy and error rate have been widely used as performance
measures in classification. Accuracy is calculated as the sum of correct classified
instances in all classes divided by the total instances in the dataset and error
rate is defined as: error rate = 1 − accuracy. These measures are frequently
used, but can be very sensitive to the composition of the dataset. For example,
if the relative number of instances in each class is very different the results can
be deceiving not providing adequate information [126, 127, 128, 129, 130, 131,
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Figure 6.3: Nested cross validation: In the inner loop, the performance of differ-
ent sets of classifier parameters and features are estimated based on a bootstrap
cross-validation. The optimal classifier parameters and features are selected
based on the performance evaluation over several bootstrap rounds. In the outer
loop, model performance of the optimized classifier parameters and feature sub-
set are evaluated on the hold-out test set. The outer loop is repeated several
times, every time with potentially different classifier parameters and features.
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132, 133].

A representation of classification performance that takes into account the
successful as well as the unsuccessful classification results for both the positive
and the negative class in a two class problem is the confusion matrix. The true
positives (TP) are the instances that are correctly classified as belonging to the
positive class and the false positives (FP) are the instances that are classified
as the positive class but really belong to the negative class. The true negatives
(TN) and false negatives (FN) can be explained similarly, see Table 6.1.

Actual positive Actual negative
Predicted positive TP FP
Predicted negative FN TN

Table 6.1: A confusion matrix with TP meaning true postive, FP meaning false
positive, TN meaning true negative, and FN meaning false negative.

In many situations it will be an advantage to report a single classification
performance measure instead of the whole confusion matrix which does not share
the same sensitivity to the data imbalance problem as accuracy and error rate.
Two common measures used in the machine learning community is precision
and recall. Precision is a measure of exactness and is defined as the fraction
of instances that are correctly classified to all instances that are classified as
this class and is also known as positive predictive value. Recall is a measure
of completeness and is defined as the fraction of instances that are correctly
classified to all the instances that really belong to this class and is also known
as true positive rate or sensitivity. Based on the confusion matrix shown above
(Table 6.1), precision is then defined as: Precision = TP

TP+FP and recall is

defined as: Recall = TP
TP+FN .

Area under curve (AUC) is yet another performance measure used in the ma-
chine learning community. It is the calculated area under the receiver operating
characteristics (ROC) graph [134, 135]. A ROC graph, is formed by plotting
true positive rate (TPrate) over false positive rate (FPrate) which are defined as:
TPrate =

TP
TP+FN and FPrate =

FP
FP+TN . A classifier produces a TPrate and an

FPrate which serve as a point in ROC space. By varying the decision threshold
in a probabilistic classifier additional points in ROC space can be made making
it possible to draw a graph between points. By doing the necessary steps, it
is possible to draw ROC graphs from the results of hard-type classifiers as well
[136, 137]. The ROC curve serves as a visual representation of trade-offs between
benefits (TP ) and costs (FP ). Theoretically, the point (0, 1) in ROC space is
the result of the optimal classifier and the closer the ROC graph is to this point,
the better the performance of your system. A common way of representing the
results from ROC analysis as a single scalar value, is by calculating the area
under curve (AUC). The closer the area is to 1.0 the better the performance of
your system.
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6.3 The imbalanced data problem

Studying data from a cohort, potentially introduce data groups with unequal
number of instances as well as groups containing few instances. Most learning
algorithms will fail to perform accurately under circumstances where data is
imbalanced since balanced class distributions or equal misclassification costs are
expected. The distributive characteristics of the data is often difficult to describe
resulting in poor accuracy across data groups. In many cases the majority class
will achieve close to 100 percent accuracy showing only 0-10 percent accuracy
for the minority class. In a medical context where most of the instances are rep-
resented in the majority class as healthy subjects and only some of the instances
are represented in the minority class as patients, this could have severe conse-
quences since most patients would be wrongly classified as healthy subjects. The
challenge is further increased when the dataset is small. The induction rules de-
scribing the minority group becomes fewer and weaker compared to the majority
group. If, in addition, the size of the feature vector is large, learning algorithm
easily gets too specific leading to overfitting and low generalization abilities.

A requirement in classification when the dataset is imbalanced is high accu-
racy for the minority class without simultaneously reducing the accuracy for the
majority class too much. Many approaches have been suggested in the literature
in an attempt to remedy the problem, see [138] for a thorough review. In this
work we have focused on two different approaches, namely synthetic minority
oversampling technique (SMOTE) [139] and cost-sensitive classification.

6.3.1 SMOTE

Even though it has been shown that classifiers learned from imbalanced data can
perform well [140, 141], many classifiers performs better when trained on bal-
anced data [142, 143, 144]. Sampling methods, such as over- and undersampling,
have the potential to increase classification performance by either randomly un-
dersample the majority class, oversample the minority class, or both. In the first
case a drawback can be that important class concepts is missed during learning,
in the second case replicated samples of certain instances can lead to overfitting
and increases computation time. Combining both procedures can reduce some
of the mentioned limitations.

The SMOTE algorithm creates synthetic data using information from feature
space. 1) start with the feature vector from an existing instance xi in the mi-
nority class, 2) randomly choose one of its K nearest neighbors x̂i, 3) calculate
the difference vector between the instance under consideration and the neighbor
x̂i − xi, 4) multiply the difference vector by a random number δ between 0 and
1, and 5) add it to the vector under consideration xnew = xi+(x̂i−xi)× δ. The
process is repeated for other xi’s until the number of instances in the minority
class has reached a satisfying level.

Creating synthetic data using SMOTE can be beneficial since the synthetic
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Table 6.2: A cost matrix showing a numerical value for the cost related to the
classification results. TP and TN are the number of correct classified positive
and negative instances respectively and CTP and CTN is the cost related to
correct classification. FP is the number of instances that were predicted to be
positive, but were truly negative. FN is the number of instances that were pre-
dicted to be negative, but were truly positive. If the majority class is considered
the positive class and the minority class is considered the negative class, then
CFP is typically set to 1 and CFN to an arbitrary number n higher than one.

Cost matrix True positive True negative
Predicted positive CTP CFP

Predicted negative CFN CTN

=
0 1
n 0

instances avoids the ties introduced by replication to the learned classifier. On
the other hand, a limitation is how SMOTE generates the same amount of new
instances from each original sample which can increase overlapping between
classes [145].

6.3.2 Cost-sensitive classification

As mentioned above, often in a medical context misclassification of the minority
class has greater and more negative consequences compared to misclassification
of the majority class. This is especially important to consider when the majority
of instances in the dataset are healthy subjects and the minority of instances
are patients. As an alternative to sampling, another approach to address these
differences is by including an increased cost to misclassification of the minority
class than the opposite into the learning algorithm.

In [146], McCarthy et al. discusses the performance of cost-sensitive learning
and sampling techniques. They conclude that in most small datasets, sampling
techniques show better performance and that in most, but not all, large datasets
the situation is reversed.

The cost matrix is an essential concept in cost-sensitive learning. It is a
numerical representation of misclassification penalties. In the upper left and
lower right corners are the costs related to the true positive and true negative
classification outcomes respectively. Mostly, there are no cost associated with
correct classification, so CTP and CTN are typically zero. Since the cost related
to misclassification of instances in the minority class are greater than the op-
posite, the CFP is typically set to 1 and CFN to an arbitrary number n higher
than one, see Table 6.2. One solution to adding cost sensitivity to a probabilistic
classifier, is by deciding on the class with lowest cost instead of the class with
highest probablity of correct classfication. This is the sama as minimizing the
expected risk. In [147], Lomax reviews over 50 algorithms where the objective
was to add cost sensitivity to classification trees.
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Chapter 7

Contributions

After reading through chapters 1-6 the reader should have an understanding
of the motivation behind this thesis and the objectives as well as the theoretic
background for interpreting the results published in- and submitted to journals
and published in conference proceedings. In the following chapter a summary of
these results will be displayed organized per paper or manuscript.

7.1 Paper I

White Matter Hyperintensities in Mild Lewy Body Dementia, K. Oppedal,
D. Aarsland, M.J. Firbank, H. Sønnesyn, O.B. Tysnes, J.T. O’Brien, M.K.
Beyer, Dement Geriatr Cogn Disord Extra, 2012.

In Paper I, we studied the statistical differences concerning WML load in
the periventricular regions as well as the deep white matter areas in MRI of the
brain between two different dementia groups, an Alzheimer’s disease group, a
Lewy body dementia group, as well as a normal control group. MRI scans for
77 (61 AD and 16 LBD) patients and 37 healthy elderly control subjects were
available for analysis. Baseline characteristics of the subjects can be found in
Section 3.4 page 15 in Chapter 3. Nonparametric tests were used to compare
groups. Additionally, the correlation between WML volume and cognition were
calculated to explore the possible association between increased WML volume
and cognition. Finally, we carried out multivariate regression to further explore
this association and at the same time eliminate confounders.

7.1.1 Results for dementia vs. NC

The dementia group had numerically higher WML volumes than NC for total-
and periventricular WML, but the differences did not reach statistical signifi-
cance as shown in Table 7.1, see also Figure 7.1. Since the dementia groups were

51
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Variable
AD+LBD

Sub-group (dementia)
n=37

Matched NC
n=37

p-value
dementia vs. nc

tot WML%,
median(iqr)

1.18 (1.88) 1.11 (0.87) 0.492MW

pvh WML%,
median(iqr)

0.88 (1.29) 0.61 (0.61) 0.185MW

dwm WML%,
median(iqr)

0.18 (1.29) 0.35 (0.68) 0.499MW

Table 7.1: WML volumes (percent of brain volume) between a sub-group of
demented (AD and LBD) matched for age, sex, and years of education to a group
of normal controls. tot WML% = total White Matter Lesion volume (percent of
total brain volume), pvh WML% = periventricular White Matter Lesion volume
(percent of total brain volume), dwm WM% = deep white matter White Matter
Lesion volume (percent of total brain volume), iqr = inter quartile range, and
MW = Mann Whitney U test.

not matched for sex, we examined differences in WML in the male subjects (14
AD and 13 LBD) separately - there were no differences between the male AD
and LBD patients in either total- (p=0.141), periventricular- (p=0.325), or deep
white matter WML (p=0.202).

7.1.2 Results for AD vs. LBD

Total-, periventricular- , and deep white matter WML volumes as percentage
of total brain volume in the AD- and LBD groups are shown in Table 7.2 and
Figure 7.2. There were no significant differences in WML volumes between the
AD- and LBD groups (total WML: p=0.238, periventricular WML: p=0.264,
and deep white matter WML: p=0.444), although LBD patients had higher
numerical values for all three WML measures.

7.1.3 Results for correlation between WML volume and
cognition

In the 77 dementia cases, there were significant correlations between cognitive
scores and WML, see Table 7.3. We then analyzed AD and DLB groups sep-
arately. In the AD group, total-, periventricular-, frontal-, but not deep white
matter WML correlated (Spearman rho, p-value) significantly with MMSE and
verbal fluency, but not CVLT-2 (MMSE; total WML: -(0.361,0.004), periven-
tricular WML: (-0.296, 0.02), frontal WML:( -0.392, 0.002), and fluency; total
WML: (-0.318, 0.013), periventricular WML: (-0.278, 0.031), frontal WML: (-
0.376, 0.003)). In contrast, the correlations were low and insignificant in the
LBD group. In the AD group, there were correlations between years of edu-
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Figure 7.1: Box plots showing the distribution of WML volumes comparing the
dementia group vs. normal controls (NC). a) shows total WML in dementia
vs. NC, b) shows periventricular WML in dementia vs. NC, and c) shows deep
white matter WML in dementia vs. NC.
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Figure 7.2: Box plots showing the distribution of WML volumes comparing AD
and LBD. a) shows total WML in AD vs. LBD, b) shows periventricular WML
in AD vs. LBD, and c) shows deep white matter WML in AD vs. LBD.
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Variable
AD
n=61

LBD
n=16

p-value
AD vs. LBD

tot WML%,
median(iqr)

1.53 (1.68) 2.43 (3.79) 0.238MW

pvh WML%,
median(iqr)

1.16 (1.65) 1.89 (2.59) 0.264MW

dwm WML%,
median(iqr)

0.24 (0.74) 0.31 (1.26) 0.444MW

Table 7.2: WML volumes (percent of brain volume) between groups AD and
LBD. tot WML% = total White Matter Lesion volume (percent of total brain
volume), pvh WML% = periventricular White Matter Lesion volume (percent
of total brain volume), dwm WM% = deep white matter White Matter Lesion
volume (percent of total brain volume), iqr = inter quartile range, and MW =
Mann Whitney U test.

cation and MMSE, CVLT-2, and fluency. There were significant correlations
between age and education and CVLT in the AD group, but not in the DLB
group, see Table 7.3 for further details.

7.1.4 Results for multivariate regression

Multivariate regression was also applied to eliminate confounders, see Table
7.4. Hierarchical multiple regression was used to further study the association
between WML (first total- and then frontal WML volume) and cognition (first
MMSE and then verbal fluency). Total WML explained an additional 5.4% of
the variance in MMSE, after controlling years of education. (R2 change = 0.054,
F change (1, 58) = 4.445, p = 0.039. Beta for total WML was -0.237, p = 0.039).
Frontal WML explained an additional 4.9% of the variance in MMSE. R2change
= 0.049, F change (1,58) = 4.030, p = 0.049. Beta for frontal WML was -0.230,
p = 0.049). There were no significant contribution from WML on verbal fluency
beyond that of years of education. See Table 5 for details.

7.1.5 Discussion

Using a semi-automatic method to measure volumes of WML on FLAIR images,
similar levels of WML were found in patients with mild AD and LBD. WML load
was associated with cognition in AD, but not in LBD, suggesting that although
LBD have WML similar to AD, WML contributes to cognitive decline in AD,
but not LBD.

Earlier studies have shown that WML volume is increased in AD patients
compared to elderly people without dementia [25], but few previous studies of
WML in LBD exist. In a study of patients with AD, PDD, DLB, and normal
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Variable AD LBD

MMSE n = 61 n = 16
tot WML -0.361 (0.004) 0.008 (0.978)
pvh WML -0.296 (0.020) -0.048 (0.859)
dwm WML -0.227 (0.078) 0.183 (0.497)
frontal WML -0.392 (0.002) 0.023 (0.933)
Age -0.150 (0.249) -0.056 (0.836)
Education 0.461 (0.000) 0.195 (0.468)
Sex -0.080 (0.542) -0.107 (0.692)

CVLT-2 n = 61 n = 14
tot WML -0.098 (0.451) -0.002 (0.994)
pvh WML -0.171 (0.188) -0.122 (0.679)
dwm WML 0.078 (0.552) 0.164 (0.576)
frontal WML -0.148 (0.254) -0.064 (0.828)
Age -0.316 (0.013) -0.512 (0.061)
Education 0.324 (0.011) -0.077 (0.794)
Sex 0.175 (0.177) -0.239 (0.410)

Verbal Fluency n = 60 n = 16
tot WML -0.318 (0.013) 0.101 (0.711)
pvh WML -0.278 (0.031) 0.145 (0.592)
dwm WML -0.210 (0.107) 0.220 (0.412)
frontal WML -0.376 (0.003) 0.086 (0.752)
Age -0.195 (0.136) -0.211 (0.433)
Education 0.422 (0.001) -0.101 (0.709)
Sex -0.167 (0.203) 0.000 (1.000)

Table 7.3: Nonparametric bivariate correlations between WML volume and cog-
nition score in the different groups of the study and different scores for cognition
and between age and different scores for cognition. Numbers represent Spearman
rho and p-values. tot WML = total WML correlation coefficient, pvh WML =
periventricular WML correlation coefficient, and dwm WML = deep white mat-
ter WML correlation coefficient.
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Independent
vs. dependent
(controlling for

education)

R
Square

R
Square
Change

F Change
(df1,
df2)

Sig F.
Change

Beta
(Educ.
WML)

Sig.
(Educ.
WML)

MMSE vs.
tot WML

0.299 0.054
4.445
1.580

0.039
0.447

−0.237
0.000
0.039

MMSE vs.
frontal WML

0.294 0.049
4.030
1.580

0.049
0.434

−0.230
0.000
0.049

fluency vs.
tot WML

0.153 0.003
0.182
1.570

0.671
0.377

−0.053
0.004
0.671

fluency vs.
frontal WML

0.158 0.008
0.535
1.570

0.467
0.363

−0.092
0.006
0.467

Table 7.4: Linear hierarchical regression with cognition (MMSE and fluency) as
dependent, WML volume as independents, and controlling for years of educa-
tion. tot WML = total White Matter Lesion volume, pvh WML = periventric-
ular White Matter Lesion volume, and dwm WML = deep white matter White
Matter Lesion volume.

controls, the authors did not find any differences between total WML, periven-
tricular WML, or total deep WML in subjects with PDD or LBD compared to
controls [148]. Subjects with AD had significantly greater volumes on all three
measures compared to controls. This is in line with our results, although in
our study, the difference in WML between dementia and NC groups did not
reach significance, possibly related to the small sample size. Another possible
explanation is the mild disease stage, since in a 1-year longitudinal follow-up, a
significant increase in total WML within all the individual groups with the ex-
ception of the LBD group was found [148]. In a diffusion tensor imaging (DTI)
study where fractional anisotropy (FA) values were significantly reduced in a
number of white matter areas in the LBD group, no correlations between FA
values and MMSE scores were found in the LBD subjects [149]. This could imply
a different impact of WML in AD than LBD, consistent with our results.

There are methodological limitations that may have influenced our findings.
Due to insufficient quality of scans, only a subset of available scans could be
included, and thus the sample sizes were relatively small, in particular the LBD
group. In addition LBD is a heterogeneous group. Thus, statistical power to
detect minor differences may be reduced. In addition, the patients who were
included had lower HIS and lower CDR-SOB scores, suggesting that they were
slightly healthier than those excluded. Furthermore, this was a cross-sectional
study, and thus we cannot conclude whether WML can cause cognitive decline.

The diagnosis was clinical, and misdiagnosis of AD and LBD cannot be
excluded. However, standardized and validated clinical instruments were used,
and patients were followed longitudinally. Among 20 patients with a clinical DLB
diagnosis, 17 had abnormal uptake in the striatum on DaTscan. A small group
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with autopsy diagnosis from this cohort (n=7), showed full consistence between
pathological and clinical diagnosis. Thus, we believe the dementia diagnoses are
accurate.

Several methods for quantification of WML severity from MR images of the
brain exist [150, 151, 152]. A significant limitation to all of the above referenced
methods is that they are prone to inter rater variability. It has been shown that
quantification of the actual volume of WML is a more sensitive approach than
the visual rating scales [153]. Others have found that visual rating is as good
as the more complex methods in routine clinical practice, but that volumetric
assessment should be used in research settings if possible [154].

Automated quantitative segmentation methods are suitable for assessing im-
pact of WML on cognitive function [155]. Thus we decided to use an automatic
segmentation method for the volume calculations [156], which is a strength of
this study. Since the segmentation method was not robust enough to handle the
variation in MR image quality in the DemWest multicenter study, we needed to
manually edit the segmentation results to ensure correct results. The reliability
of this manual editing between two raters, was ascertained. A more robust and
fully automatic segmentation method such as [157], [158], or [159] might have
increased the accuracy of our results further.

A possible limitation to our study was that we chose to calculate total brain
size as the sum of gray matter and white matter, and use that as a point of
reference when calculating lesion volume ratios. As age increases and possible
dementia evolves, a significant atrophy is expected in both gray- and white mat-
ter [160, 161]. Others, [162], have used total intracranial volume as a reference
point since lower degree of change is normally found here.

In multicenter studies differences between scanners and differences between
imaging protocols are known to impact the results of automatic segmentation
methods [163, 164, 165]. In our study we found it difficult to choose a common
threshold level to automatically segment the WML without manual editing,
probably caused by slight differences in imaging protocols. This was solved by
choosing a method where manual editing was applied, to ensure that the reported
volumes represent only WML and not other tissue with similar signal intensity
such as fat.

To conclude, we found that although severity of WML did not differ signif-
icantly in mildly demented patients with AD and LBD, WML were associated
with cognitive decline in AD, but not LBD. More studies of the potential clinical
impact of WML in patients with LBD are needed.
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7.2 Paper II

Using local binary pattern to classify dementia in MRI, K. Oppedal, K.
Engan, D. Aarsland, M. Beyer, O.B. Tysnes, T. Eftestøl, Proceedings of Interna-
tional Symposium on Biomedical Imaging (ISBI), 2012.

In the former paper (Paper I), it was shown that nonparametrical statisti-
cal tests couldn’t reveal strong differences between WML volume in the three
groups AD, LBD, and NC. A relevant question would be if further developing
the analysis by applying a machine learning framework to WML volume features
would be more potent regarding revealing differences between groups. In this
paper, WML volume in different regions of the brain as well as texture analysis
parameters were used as features in a machine learning framework with the aim
to differentiate between a dementia group and normal controls. The total- and
regional WML volumes in various regions were used as features. Total brain-,
total periventricular-, and total deep white matter WML volume, as well as the
temporal- (Te), occipital- (Oc), frontal- (Fr), parietal- (Pa), cerebellar- (CB),
basal ganglia- (BG), central white matter (CW), and corpus callosum (CC) in
each of the three regions were used to form 27 features. Mean, standard devi-
ation, and entropy of the gray-scale intensities in the concatenation of all the
WML areas of a patient, were used to form three other features. A maximum
likelihood (ML) classifier was applied, see Section 6.2.1 page 39 in Chapter 6.
Because of the small dataset, a leave-one-out technique was used as a strategy
for cross-validation, see Section 6.2.3 page 44 in Chapter 6. Area under receiver
operating curve (AUC), was used to quantify the performance of the classifier,
see Section 6.2.4 page 45 in Chapter 6. All texture features were calculated from
the FLAIR MR image.

7.2.1 Results for 1D feature vectors

In the first experiment, all possible 1D feature vectors were tested classifying
the demented from the normal controls. The best classification result using the
WML volumes as features were total cerebellar WML volume with an AUC of
0.73 and 95% confidence interval of 0.57 to 0.83. Similar results were achieved for
the cerebellar WML volume in the deep white matter, the frontal WML volume
in the periventricular region and the volume of WML in the basal ganglia, see
Table 7.5.

The AUC from the mean, standard deviation, and entropy of the grayscale
values in the ROI were all close to or below 0.6. Because of the unpromis-
ing result, these features were not further used. Using the same classification
framework texture analysis features were applied. The decision fell on a texture
feature named local binary pattern (LBP) see Section 5.3 page 29 in Chapter 5.
The highest AUC values from the LBP features, were median value of the all
the LBP values calculated with radius two using eight samples and similar with
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Feature AUC (CI95)
CBtot 0.73 (0.57, 0.83)
CBdwm 0.73 (0.57, 0.83)
Frpvh 0.73 (0.54, 0.86)
BGdwm 0.71 (0.52, 0.84)
BGpvh 0.71 (0.51, 0.84)
pvh 0.70 (0.51, 0.84)

Table 7.5: The six 1D volume feature vectors giving the highest AUC classifying
normal controls and demented.

radius four using 16 samples with AUC equal to 0.86 (0.68, 0.93) and 0.82 (0.64,
0.91) respectively, see Table 7.6.

7.2.2 Results for 2D feature vectors

The best performing 1D feature vectors were combined with all other possible
1D feature vectors to generate 2D feature vectors which were tested in the same
manner as above, and provided a significant improvement over 1D feature vec-
tors. The 2D feature vector with the highest AUC were the combination of the
entropy of all the calculated LBP values with radius four and 16 samples com-
bined with the median of all the calculated contrast measures with radius eight
and 16 samples with AUC equal to 0.90 (0.74, 0.96), see Table 7.7.

7.2.3 Results for 3D feature vectors

In the same manner 3D feature vectors were made combining the best performing
2D feature vector with all other 1D feature vectors only performing marginally
better than the best 2D feature vectors. The 3D feature vector with the highest
AUC were the combination of the entropy of all the calculated LBP values with
radius four and 16 samples, median of all the calculated contrast measures with
radius eight and 16 samples, and the median of all the calculated LBP values
with radius eight and 16 samples with AUC equal to 0.91 (0.75, 0.97), see Table
7.8.

7.2.4 Discussion

Based on image processing of WML in MR images of demented and normal
controls, the LBP features used in our experiment are proposed as powerful
features in a maximum likelihood classifier, when classifying demented from
normal controls.

Earlier Kloppel et al. [166] successfully used whole brain images as features
in a SVM classifier to distinguish subjects suffering from Alzheimer disease from
healthy elderly. To our knowledge though, regional WML volumes, LBP, and C
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Feature AUC (CI95)

LBP r2p8
median

0.86 (0.68, 0.93)

LBP r4p16
median

0.82 (0.64, 0.91)

LBP r1p8
mean 0.79 (0.61, 0.90)

LBP r4p16
entropy 0.79 (0.61, 0.90)

LBP r2p8
entropy 0.79 (0.60, 0.90)

LBP r2p8
mean 0.77 (0.58, 0.89)

LBP r2p8
skewness

0.75 (0.56, 0.88)

LBP r1p8
skewness

0.75 (0.56, 0.88)

Cr8p16
mean 0.75 (0.56, 0.87)

LBP r1p8
entropy 0.74 (0.55, 0.86)

Cr8p16
median

0.72 (0.53, 0.85)

LBP r8p16
entropy 0.70 (0.52, 0.83)

Table 7.6: The twelve 1D texture feature vectors giving the highest AUC classi-
fying normal controls and demented.

Features AUC(CI95)

LBP r4p16
entropy , C

r8p16
median 0.90 (0.74, 0.96)

LBP r2p8
mean, C

r8p16
median

0.89 (0.72, 0.96)

LBP r2p8
median, C

r8p16
mean 0.89 (0.72, 0.96)

LBP r1p8
mean, C

r8p16
median

0.89 (0.72, 0.96)

LBP r1p8
mean, C

r4p16
mean 0.88 (0.71, 0.95)

LBP r4p16
entropy , C

r8p16
mean 0.88 (0.71, 0.96)

LBP r8p16
entropy , C

r8p16
median 0.88 (0.71, 0.96)

LBP r2p8
median, C

r4p16
mean 0.88 (0.71, 0.95)

Table 7.7: The eight 2D texture feature vectors giving the highest AUC classi-
fying normal controls and demented.
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Feature AUC(CI95)

LBP r4p16
entropy , C

r8p16
median, LBP r8p16

median 0.91 (0.75, 0.97)

LBP r4p16
entropy , C

r8p16
median, LBP r8p16

kurtosis 0.90 (0.74, 0.96)

Table 7.8: The two 3D texture feature vectors giving the highest AUC classifying
normal controls and demented.

values calculated from WML regions in MR images have not earlier been used
as features to classify demented from normal controls. Since the distribution of
the features in the dataset may not be normal, this approach can underestimate
the true AUC values.

The small dataset of 95 subjects is a limitation of the study, but a leave-
one-out cross-validation technique is adopted to exploit the dataset as good as
possible. It is not certain that the features we used are normally distributed, and
thus it is possible that the results would improve if a nonparametric classification
technique was adopted.
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7.3 Paper III

Classifying dementia using local binary patterns from different re-
gions in magnetic resonance images, K. Oppedal, T. Eftestøl, K. Engan,
M. Beyer, D. Aarsland, International Journal of Biomedical Imaging, 2015.

Based on the promising results from the texture analysis approach in Paper
II, further investigation was deemed required. Relevant questions would be if
texture features calculated from the T1 images could improve classification of
dementia further, especially the LBD class, compared to the FLAIR images.
And how will increasing the size of the region of interest (ROI) into all white
matter influence performance?

We wanted to test if the WML regions inherit textural information in an
extent that can be used to classify dementia patients from normal controls and
AD from LBD. As the detection of textural information in WML might not
be dependent on an exact delineation of WML, we also wanted to test if a
comparable classification accuracy can be achieved using all of WM as ROI,
since WM segmentation is more available and only a 3DT1 MR image is needed
which is commonly acquired in a clinical setting. We wanted to test different
types of LBP calculations together with a contrast measure (C) calculated from
FLAIR and 3DT1 MR images and on a subset containing data from one scanner
only.

Because of the challenging situation with imbalanced data having different
numbers of subjects in the represented groups in the above mentioned cohorts,
we wanted to test how the use of resampling of instances affect classification
results. For that purpose SMOTE, see Section 6.3.1 page 48 in Chapter 6, was
applied to the data.

We decided to apply the random forest classifier since it is known to be
robust showing high classification performance with low bias and variance in
many classification problems, see Section 6.2.2 page 41 for more information.

7.3.1 Results for three class problem, NC vs. AD vs. LBD

Results for the three-class problem with class 0 being NC, class 1 being AD and
class 2 being LBD are shown in detail in Table 7.9. TotAcc is the total accuracy
for all three classes. P0 is the precision for the NC group, P1 is the precision for
the AD group, P2 is the precision for the LBD group, R0 is the recall for the
NC group, R1 is the recall for the AD group, and R2 is the recall for the LBD
group.

The first test named FLAIR-WMLri indicate that the FLAIR MR image
was used for calculation of LBP and C, that WML was the ROI, and that the
rotational invariant variant of the LBP feature was used. The second test named
T1WMLri indicates that the T1 MR images was used for calculation of LBP and
C, that WML was the ROI, and that the rotational invariant variant of the LBP
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Test TotAcc
P0 P1 P2
R0 R1 R2

FLAIR-WMLri 0.60(0.13)
0.71(0.28) 0.61(0.14) 0.33(0.41)
0.48(0.25) 0.77(0.28) 0.20(0.35)

T1WMLri 0.82(0.12)
0.96(0.10) 0.80(0.11) 0.58(0.49)
0.98(0.08) 0.88(0.18) 0.25(0.35)

T1WMLSMOTE
ri 0.87(0.08)

0.97(0.07) 0.81(0.17) 0.85(0.11)
1.00(0.00) 0.82(0.16) 0.78(0.20)

T1WMri 0.82(0.09)
0.96(0.08) 0.81(0.11) 0.42(0.49)
1.00(0.00) 0.88(0.16) 0.20(0.35)

T1WMSMOTE
ri 0.75(0.13)

0.90(0.12) 0.66(0.16) 0.70(0.21)
1.00(0.00) 0.72(0.19) 0.55(0.22)

T1WMLSMOTE
svg,ri 0.91(0.15)

1.00(0.00) 1.00(0.00) 0.87(0.22)
1.00(0.00) 0.77(0.42) 1.00(0.00)

Table 7.9: Results are reported as mean with standard deviation in brackets,
m(s), over 10 folds cross validation, classifying NC vs. AD vs. LBD. To-
tAcc=total accuracy, R=recall, P=precision. 0 for class NC, 1 for class AD,
and 2 for class LBD. ROI is either WM for white matter or WML for white
matter lesion area.

feature was used. The third test named T1WMri indicates that the T1 MR
images was used for calculation of the LBP and C, that the WM was the ROI,
and that the rotational invariant variant of the LBP feature was used.

The total accuracy showed great variation throughout the different tests rang-
ing from 0.6(0.13) to 0.87(0.08). The performance increased considerably when
calculating the LBP and C features from the T1 MR image as compared to the
FLAIR MR image. The classification performance proved best in the T1 case
and when WML was used as ROI.

For comments on the T1WMLsvg,ri-test, see Section 7.3.4.

7.3.2 Results for the two class problem, NC vs. AD+LBD

Results for the two-class problem with class 0 being NC and class 1 being AD
and LBD together are shown in detail in Table 7.10. TotAcc is the total accuracy
for the two classes. P0 is the precision for the NC group and P1 is the precision
for the combined AD and LBD group, R0 is the recall for the NC group and R1
is the recall for the combined AD and LBD group.

In addition to the above mentioned tests, another test named T1WMLriu2

was applied to assess whether the classification performance would differ when
rotational invariant LBP were calculated alone or in combination with selection
of uniform LBP values only.

Total accuracy is generally higher in the T1 case (ranging from 0.97(0.04) to
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Test TotAcc
P0 P1
R0 R1

FLAIR-WMLri 0.80(0.12)
0.69(0.20) 0.87(0.11)
0.72(0.23) 0.84(0.12)

T1WMLri 0.98(0.04)
0.98(0.06) 0.99(0.04)
0.98(0.08) 0.99(0.05)

T1WMri 0.97(0.04)
0.96(0.08) 0.99(0.04)
0.98(0.08) 0.97(0.06)

T1WMLriu2 0.98(0.04)
0.96(0.08) 1.00(0.00)
1.00(0.00) 0.97(0.06)

T1WMLsvg,ri 1.00(0.00)
1.00(0.00) 1.00(0.00)
1.00(0.00) 1.00(0.00)

Table 7.10: Results are reported as mean with standard deviation in brackets,
m(s), over 10 folds cross validation, classifying NC vs. AD+LBD. TotAcc=total
accuracy, R=recall, P=precision. 0 for class NC and 1 for class AD+LBD. ROI
is either WM for white matter or WML for white matter lesion area.

0.98(0.04)) compared to the FLAIR case (0.80(0.12)), but approximately similar
for the two different ROI’s when T1 MR images are used. Precision for class
0 is higher in the case of LBP and C calculated in the WML area of the T1
image (0.98(0.06)) as compared to all of the WM area (0.96(0.08)). Recall for
class 0 is similar for both ROI’s. This is also the case for precision for class 1
(0.99(0.04)), but recall for class 1 is higher when LBP and C are calculated in
the WML region 0.99(0.05) as compared to the WM region (0.97(0.06)).

When the rotational invariant calculation of LBP is combined with selection
of the uniform values only, the P0 and R1 are similar to the ri-case. The riu2-
case had marginally higher values for total accuracy, P1, and R0.

For comments on the T1WMLsvg,ri-test, see Section 7.3.4.

7.3.3 Results for the two class problem, AD vs. LBD

Results for the two class problem with class 1 being AD and class 2 being LBD
are shown in detail in Table 7.11.

Classification performance was highest in the T1 case when WM was used
as ROI.

7.3.4 Results when using data from Stavanger only

In both the three-class problem and in the two-class problem NC vs. AD+LBD
a fifth test was run named T1WMLsvg,ri which indicates that the T1 MR images
was used for calculation of the LBP and C, that the WM was the ROI, and that
only data from the MR-scanner located at Stavanger University Hospital were
used. This experiment was done to ensure that the results we achieved, were not
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Test TotAcc
P1 P2
R1 R2

FLAIR-WMLri 0.73(0.15)
0.78(0.11) 0.20(0.45)
0.91(0.12) 0.10(0.32)

T1WMLri 0.66(0.17)
0.74(0.10) 0.00(0.00)
0.84(0.18) 0.00(0.00)

T1WML
SMOTE
ri 0.73(0.16)

0.72(0.18) 0.76(0.17)
0.75(0.20) 0.71(0.19)

T1WMri 0.74(0.16)
0.80(0.09) 0.45(0.51)
0.75(0.20) 0.71(0.19)

T1WMSMOTE
ri 0.68(0.14)

0.67(0.14) 0.75(0.21)
0.69(0.29) 0.68(0.14)

Table 7.11: Results are reported as mean with standard deviation in brackets,
m(s), over 10 folds cross validation, classifying AD vs. LBD. TotAcc=total
accuracy, R=recall, P=precision. 1 for class AD and 2 for class LBD. ROI is
either WM for white matter or WML for white matter lesion area.

a profit of the fact that the data were collected from different MR centers using
slightly different MR protocols. The rotational invariant LBP feature was used
in this test. An even better performance was reached in both cases. In the three-
class problem a total accuracy of 0.91(0.15) was achieved and all of the cases in
the dataset were classified correctly in the two-class problem. An implication of
this is that between-center noise falsely reduces classification accuracy and that
the developed method shows even higher performance when all data come from
the same scanner.

7.3.5 Discussion

Our results improved doing LBP texture analysis in 3DT1 image rather than
the FLAIR image, indicating that there exists more textural information in the
3DT1 image compared to the FLAIR image relevant to our problem formulation.
In the three-class problem as well as in the two-class problem NC vs. AD+LBD
our results indicates that there exists similar amount of relevant textural infor-
mation regarding dementia classification using all of WM as ROI compared to
using only WML. This could be a benefit. WML segmentation is unsatisfactory
developed and very often demanding manual outlining is required as well as a
FLAIR MR image, where WML is hyper intense, while WM segmentation is
readily available from many well known and freely downloadable software pack-
ages needing only a 3DT1 MR image which is a common part of a clinical MR
protocol. In addition recent focus on diffusion tensor imaging (DTI) in vascular
disease [167], amnestic mild cognitive impairment (aMCI) [168], and dementia
[169, 170, 68] strengthens the view that age-related changes in WM plays an
important role in the development of dementia. DTI is never the less not suffi-
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ciently available and at the same time costly making other approaches for WM
analysis, like ours, a valuable addition.

In the two-class problem AD vs. LBD, we did not reach a comparable clas-
sification result compared to the AD+LBD vs. NC case. There probably exist
several explanations for that, one of the most obvious being the small sample size
in the LBD class compared to the other classes. The LBD subjects are mainly
classified as AD subjects indicating that the two groups experience similarities
concerning our methods. Even though the two groups show different neurologi-
cal etiologies they do not differ equally regarding vascular changes. Having few
subjects in the LBD group, the calculated texture features may not represent
the group with proper specificity or generality. Another explanation could be
related to the common basis for neurodegenerative dementias pointed out by
Bartzokis in [171] or Schneider’s observations about mixed brain pathologies in
dementia [172].

In the three-class problem NC vs. AD vs. LBD, is the accuracy for the
LBD class improved showing a precision of 0.85(0.11) and recall of 0.78(0.20).
When doing the same test on the data from Stavanger only, even better results
were achieved with a precision of 0.87(0.22) and a recall of 1.00(0.00) for the
LBD class. Vemuri et al. [62] used atrophy maps and a k-means clustering
approach to diagnose AD with a sensitivity of 90.7% and a specificity of 84%,
LBD with a sensitivity of 78.6% and specificity of 98.8%, and FTLD with a
sensitivity of 84.4% and a specificity of 93.8%. A strength of their study was
that they only used MR images of later histological confirmed LBD patients.
They also report sensitivity and specificity for the respective clinical diagnoses.
AD with a sensitivity of 89.5% and a specificity of 82.1%, LBD with a sensitivity
of 70.0% and specificity of 100.0% and, FTLD with a sensitivity of 83.0% and
a specificity of 95.6%. Compared to the reported sensitivity and specificity for
clinical diagnosis, our method shows substantial higher accuracy for LBD and
comparable accuracy for AD. A limitation is the use of different measures of
goodness to the classification results and that different data is used. In [106]
Kodama and Kawase a classification accuracy of 70% for the LBD group from
AD and NC is reported. Burton et al. report a sensitivity of 91% and a specificity
of 94% using calculations of medial temporal lobe atrophy assessing diagnostic
specificity of AD in a sample of patients with AD, LBD and, vascular cognitive
impairment, but do not report results for the LBD group [61]. In [65], Lebedev
et al. uses sparse partial least squares (SPLS) classification of cortical thickness
measurements reporting a sensitivity of 94.4 and a specificity of 88.89 discerning
AD from LBD.

To verify that the classification results are not driven by differences in the
local variation of signal intensities (the C values) between centers used during
collection of MR data in the study, the test T1WMLsvg,ri was conducted on
the Stavanger data only. The results showed an increase in classification perfor-
mance, which gives us reason to believe that the results reflect real diagnostic
differences.
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LBP is based on local gradients and is therefore prone to noise and could be
a limitation to our approach. LBP values calculated in a noisy neighbourhood
would be recognized by many transitions between 0’s and 1’s. We performed
a test, the T1WMLriu2 test, where only rotational invariant and uniform LBP
values, showing a maximum of two transitions between 0’s and 1’s, are collected.
The result showed identical results as the T1WMLri-test indicating that noise
do not constitute a severe problem in our method. Even though noise reduction
procedures can be useful in the application of for example segmentation, a noise
reduction approach could remove relevant textures. The contrast measure is
invariant to shifts in gray-scale but not invariant to scaling. We do not use
any normalization of the images prior to the feature calculation. Thus, one
could argue that different patients are scaled differently making the contrast
measure less trustworthy. On the other hand, if a normalization is done, for
example based on a maximum intensity value, this could indeed change the
local subtle textures, and effect the contrast measures, possibly in a negative
way. In the present work we have investigated the discriminating power of the
features calculated without any smoothing or normalization, since the effect of
such operators are not clear for this application. In future work we want to
investigate the use of different preprocessing steps, both using denoising and/or
normalization and compare the discrimination power of the features with and
without preprocessing. The improvement in results when using data from one
center only (Stavanger), indicates lack of robustness which can be related to the
facts mentioned above.

Cronbach’s alpha was calculated using total brain volume to ensure that our
data material was consistent even though it was collected from different centers
spanning a time scale. Texture features can be exposed to noise and a limitation
to our study is the lack of using texture features for the reliability analysis.

Another limitation to our study is the lack of clinical interpretation of texture
features which is difficult in our case, since brain regional information is lost in
the process of feature calculation.

This study demonstrates that LBP texture features combined with the con-
trast measure C calculated from brain MR images are potent features used in
a machine learning context for computer based dementia diagnosis. The results
discerning AD+LBD from NC is especially promising, potentially adding value
to the clinical diagnose. In the three-class problem, the classification perfor-
mance exceeded the accuracy of clinical diagnosis for the LBD group and at the
same time keeping the classification accuracy for the AD group comparable to
the clinical diagnose. A lower accuracy was achieved when classifying AD from
LBD in the two-class problem AD vs. LBD. We considered it good news that the
results using WM as ROI gave almost equally good classification performance as
WML, since the WM segmentation routine is much more accessible compared to
WML segmentation. The performance using 3DT1 images for texture analysis
was notably better than when using FLAIR images, which is an advantage, since
most common MR protocols include a 3DT1 image.
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7.4 Paper IV

Classifying Alzheimer’s disease, Lewy body dementia, and normal
controls using 3D texture analysis in magnetic resonance images, K.
Oppedal, K. Engan, T. Eftestøl, M. Beyer, D. Aarsland, Submitted manuscript,
2015.

In the previous study we concluded that 2D texture analysis calculated from
WM and WML regions in 3DT1 MR images of the brain used in a random
forest classifier, is able to classify subjects with dementia from healthy controls
with high accuracy. Lower performance was reached when classifying subject
with AD from subjects with LBD. With an ambition to increase classification
performance for the LBD group we decided to try out 3D texture analysis. The
main objective of this paper was to test whether 3D LBP texture features used
in a random forest classifier is able to discern patients with AD and patients
with LBD from normal controls with similar or higher accuracy than 2D LBP.
Two different approaches to 3D LBP analysis were considered, (1) volume LBP
(VLBP) and (2) LBP three-orthogonal-planes (LBP-TOP). Four classification
tasks were tested, a three-class problem NC vs. AD vs. LBD, and three two-
class problems, NC vs. AD, NC vs. LBD, AD vs. LBD. A second objective was
to consider brain regional importance of LBP features in dementia classification
by calculating texture features in the white matter lesion (WML) and normal
appearing white matter (NAWM) areas of the brain. The data used in this study
is imbalanced concerning the number of subjects in each group. In addition to
performing classification on the original data, two methods for handling the
imbalance problem were tested. One is to use synthetic minority oversampling
technique (SMOTE) to balance the groups evenly and another is to use cost
sensitive classification by adding a cost to the wrongly classified subjects. We
wanted to elaborate on the clinical relevance of 3D LBP texture features by
calculating correlation between features and cognition measured by mini mental
state examination (MMSE) controlling for age.

In the tables, a naming convention was used for the name of the tests as
follows:

ClassProbdata,ntrXX
ROI,texture,

where ClassProb can be either NC/AD/LBD, NC/AD, NC/LBD, AD/LBD,
ROI can be either WML or NAWM, texture can be either VLBP or TOP, data
is either orig, smote, or cost, where orig means that no resampling was used,
smote means that the smaller classes are resampled up to the same number as the
largest class using SMOTE, and cost means that cost-sensitive classification was
used, ntrXX refers to the number of trees used in the random forest classifier.
In the case of the three-class problem, ClassProb has been omitted from the test
name to save space.
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7.4.1 Results - classification of NC, AD, and LBD

In this experiment we were looking at the three-class problem NC vs. AD vs.
LBD for different textural features (Step 1), regions of interest (Step 2), using
both the original data, resampling with SMOTE, or cost-sensitive classification
(Step 3), and using different number of trees in the random forest classifier (Step
4). The best results are reported in Table 7.12. The number of subjects in each
class is as follows: NC = 36, AD = 58, and LBD = 16.

Test
TotAcc

P0 P1 P2
R0 R1 R2

smote,ntr50
VLBP,WML 0.78(0.10)

0.95(0.09) 0.72(0.16) 0.72(0.11)

0.93(0.14) 0.69(0.11) 0.73(0.19)
smote,ntr20
VLBP,NAWM 0.78(0.10)

0.86(0.14) 0.77(0.10) 0.75(0.18)

0.92(0.12) 0.69(0.25) 0.73(0.15)
smote,ntr30
TOP,WML 0.76(0.09)

0.86(0.14) 0.75(0.18) 0.73(0.14)

0.92(0.09) 0.61(0.24) 0.78(0.11)
smote,ntr50
TOP,NAWM 0.79(0.07)

0.91(0.10) 0.71(0.12) 0.79(0.16)

0.97(0.07) 0.69(0.13) 0.71(0.18)

Table 7.12: Results for the three-class problem NC vs. AD vs. LBD are reported
as mean with standard deviation in brackets, over 10 folds cross validation,
classifying NC vs. AD vs. LBD. TotAcc=total accuracy, R=recall, P=precision.
0 for class NC and 1 for class AD and 2 for class LBD. ROI is either WML for
white matter lesion area or NAWM for normal appearing white matter area.
TOP is short for LBP-TOP. smote means that the data used for analysis was
resampled. ntrXX refers to the number of trees used in the random forest
classifier.

The best result was achieved when using LBP-TOP/C in the NAWM area
and 50 trees in the random forest classifier. There were no benefit in adding cost-
sensitive classification doing this experiment. In all cases resampling the data
using SMOTE increased the precision and recall for the LBD class considerably
and on the expense of total accuracy, precision and recall for the AD class, and
in most cases for the NC class as well.

7.4.2 Results - three two-class problems

In this experiment we report results from the three different two-class problems
(i, ii, and iii) through steps 1-4 in the same manner as above. i) The NC (36
instances) vs. AD (58 instances) problem shows similar results for both texture
types and ROI’s. The groups are not dramatically unbalanced and the results
using either the original data, resampling with SMOTE, or doing cost-sensitive
classification show very similar classification accuracy. Thus in Table 7.13, the



7.4. PAPER IV 71

best results are shown and are marked with test name NC/AD. ii) Test NC vs.
LBD (16 instances) showed best results when using VLBP texture calculated in
the WML area. This is a more imbalanced test and using SMOTE gave best
results in all cases. See the entrances in Table 7.13 marked with test name
NC/LBD. iii) The test AD vs. LBD gave best results when VLBP texture
was calculated in the NAWM region. The groups in this test is dramatically
imbalanced. Here the precision and recall for the LBD group becomes lower than
chance using the original data and resampling is necessary. The results using
SMOTE are shown in Table 7.13 and are marked with test name AD/LBD.

7.4.3 Results - robustness test

We wanted to test the robustness of the proposed method by performing the
classification on a subset of the original data where all the subjects were scanned
on one scanner only. This subset includes 12 NC, 47 AD and 11 LBD instances.
In the case of poor robustness large variation between classification results based
on the original data and data from one scanner only would be large. In the case
of a high degree of robustness the results would not differ too much.

In the highly imbalanced three-class problem (see Table 7.14) as well as
the two-class problem AD vs. LBD (see Table 7.15), the results using a single
scanner only (marked ss in the tables) are very similar to what is achieved
using the entire set (marked orig in the tables) for all tests, hence a reasonable
robustness is achieved.

In the classification of the two-class problems NC vs. AD and NC vs. LBD,
the test using data from a single scanner achieve a classification accuracy of
100% in all tests which in most cases is close to the results achieved using the
entire dataset which indicates a reasonable robustness as well.

7.4.4 Results - correlation of features vs. cognition

For the NC group, one VLBP-feature showed significant correlation in the WML
area, none of the C-features and neither VLBP nor C showed correlations in the
NAWM area. In the LBP-TOP/C-case, 10 out of 72 LBP-TOP-features showed
significant correlations and one out of 72 C-features.

In the correlation tests the AD group stands out when features were cal-
culated in the NAWM area. In the VLBP/C case, seven out of eight VLBP-
features and one out of eight C-features showed significant correlation and in the
LBP-TOP/C case, 60 out of 72 LBP-TOP-features and 37 out of 72 C-features
showed significant correlations. When using WML as area for feature calcula-
tion only one VLBP-feature and two C-features in the LBP-TOP/C case showed
significant correlation.

None of the features showed correlation for the LBD group.
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Test
TotAcc

P0 P1
R0 R1

NC/AD
cost0120,ntr30
VLBP,WML 0.94(0.09)

0.93(0.11) 0.96(0.10)

0.93(0.17) 0.95(0.09)

NC/AD
orig,ntr30
VLBP,NAWM 0.97(0.07)

0.95(0.11) 0.98(0.05)

0.98(0.08) 0.97(0.07)

NC/AD
orig,ntr10
TOP,WML 0.97(0.07)

0.96(0.10) 0.98(0.05)

0.98(0.08) 0.97(0.07)

NC/AD
smote,ntr10
TOP,NAWM 0.94(0.07)

0.93(0.10) 0.97(0.07)

0.97(0.07) 0.92(0.12)
P0 P2
R0 R2

NC/LBD
smote,ntr20
VLBP,WML 0.97(0.06)

1.00(0.00) 0.96(0.10)

0.94(0.12) 1.00(0.00)

NC/LBD
smote,ntr20
VLBP,NAWM 0.87(0.11)

0.86(0.16) 0.93(0.12)

0.92(0.14) 0.85(0.17)

NC/LBD
smote,ntr20
TOP,WML 0.89(0.13)

0.92(0.15) 0.90(0.16)

0.90(0.17) 0.90(0.17)

NC/LBD
smote,ntr10
TOP,NAWM 0.93(0.09)

0.97(0.11) 0.94(0.11)

0.92(0.14) 0.95(0.16)
P1 P2
R1 R2

AD/LBD
smote,ntr30
VLBP,WML 0.76(0.13)

0.79(0.17) 0.76(0.13)

0.74(0.17) 0.78(0.19)

AD/LBD
smote,ntr50
VLBP,NAWM 0.79(0.15)

0.83(0.17) 0.79(0.17)

0.74(0.25) 0.83(0.16)

AD/LBD
smote,ntr30
TOP,WML 0.77(0.10)

0.80(0.14) 0.76(0.12)

0.74(0.12) 0.79(0.15)

AD/LBD
smote,ntr50
TOP,NAWM 0.72(0.18)

0.73(0.18) 0.73(0.20)

0.73(0.25) 0.72(0.24)

Table 7.13: Results for the three two-class problem NC vs. AD, NC vs. LBD,
and AD vs. LBD are reported as mean with standard deviation in brackets, over
10 folds cross validation. TotAcc=total accuracy, R=recall, P=precision. 0 for
class NC and 1 for class AD and 2 for class LBD. ROI is either WML for white
matter lesion area or NAWM for normal appearing white matter area. TOP
is short for LBP-TOP. orig means that the original untouched data was used
for texture feature calculation, cost that cost-sensitive classification was applied,
and smote that the data was resampled. ntrXX refers to the number of trees
used in the random forest classifier.
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Test
TotAcc

P0 P1 P2
R0 R1 R2

orig,ntr20
VLBP,WML 0.86(0.10)

0.96(0.08) 0.84(0.13) 0.79(0.39)

0.97(0.11) 0.93(0.12) 0.45(0.44)
ss,ntr20
VLBP,WML 0.84(0.11)

1.00(0.00) 0.86(0.11) 0.50(0.50)

1.00(0.00) 0.94(0.11) 0.30(0.48)
orig,ntr50
VLBP,NAWM 0.82(0.14)

0.89(0.19) 0.80(0.14) 0.75(0.50)

0.92(0.14) 0.93(0.09) 0.25(0.42)
ss,ntr50
VLBP,NAWM 0.79(0.14)

1.00(0.00) 0.82(0.11) 0.29(0.49)

1.00(0.00) 0.88(0.14) 0.20(0.42)
orig,ntr30
TOP,WML 0.82(0.10)

0.91(0.12) 0.81(0.11) 0.50(0.50)

0.98(0.08) 0.90(0.12) 0.20(0.35)
ss,ntr30
TOP,WML 0.84(0.11)

1.00(0.00) 0.85(0.12) 0.63(0.48)

0.90(0.32) 0.96(0.08) 0.30(0.48)
orig,ntr10
TOP,NAWM 0.80(0.12)

0.80(0.15) 0.83(0.14) 0.71(0.49)

0.95(0.16) 0.84(0.10) 0.35(0.41)
ss,ntr10
TOP,NAWM 0.81(0.10)

1.00(0.00) 0.88(0.11) 0.43(0.37)

1.00(0.00) 0.87(0.19) 0.40(0.52)

Table 7.14: Robustness test three-class problem NC vs. AD vs. LBD. Results
for the three-class problem NC vs. AD vs. LBD are reported as mean with
standard deviation in brackets, over 10 folds cross validation, classifying NC vs.
AD vs. LBD. TotAcc=total accuracy, R=recall, P=precision. 0 for class NC
and 1 for class AD and 2 for class LBD. ROI is either WML for white matter
lesion area or NAWM for normal appearing white matter area. TOP is short
for LBP-TOP. orig means that the data used for analysis was resampled and ss
means that data was from a single scanner only. ntrXX refers to the number of
trees used in the random forest classifier.
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Test
TotAcc

P0 P1
R0 R1

AD/LBD
orig,ntr30
VLBP,WML 0.74(0.13)

0.79(0.08) 0.33(0.52)

0.91(0.12) 0.10(0.21)

AD/LBD
ss,ntr30
VLBP,WML 0.80(0.10)

0.83(0.07) 0.38(0.48)

0.94(0.11) 0.15(0.34)

AD/LBD
orig,ntr30
VLBP,NAWM 0.69(0.12)

0.80(0.09) 0.27(0.36)

0.81(0.15) 0.25(0.35)

AD/LBD
ss,ntr30
VLBP,NAWM 0.78(0.08)

0.81(0.02) 0.25(0.50)

0.94(0.10) 0.05(0.16)

AD/LBD
orig,ntr20
TOP,WML 0.71(0.15)

0.80(0.11) 0.31(0.43)

0.83(0.16) 0.25(0.35)

AD/LBD
ss,ntr20
TOP,WML 0.81(0.12)

0.84(0.11) 0.50(0.50)

0.96(0.10) 0.20(0.42)

AD/LBD
orig,ntr20
TOP,NAWM 0.83(0.17)

0.86(0.12) 0.72(0.44)

0.93(0.12) 0.50(0.41)

AD/LBD
ss,ntr20
TOP,NAWM 0.74(0.11)

0.84(0.09) 0.25(0.27)

0.85(0.14) 0.25(0.42)

Table 7.15: Robustness test two-class problem AD vs. LBD. Results for the
two-class problem AD vs. LBD are reported as mean with standard deviation
in brackets, over 10 folds cross validation, classifying NC vs. AD vs. LBD.
TotAcc=total accuracy, R=recall, P=precision. 0 for class NC and 1 for class
AD and 2 for class LBD. ROI is either WML for white matter lesion area or
NAWM for normal appearing white matter area. TOP is short for LBP-TOP.
orig means that the data used for analysis was resampled and ss means that
data was from a single scanner only. ntrXX refers to the number of trees used
in the random forest classifier.
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7.4.5 Discussion

Results: 3D texture analysis by VLBP/C and LBP-TOP/C shows encourag-
ing results when classifying AD- and LBD dementia and normal controls. The
three-class problem NC vs. AD vs. LBD shows a total accuracy of 0.79(0.07),
the two-class problems NC vs. AD and NC vs. LBD show a total accuracy
of 0.97(0.07) and 0.97(0.06) respectively. The two-class problem AD vs. LBD
shows a total accuracy of 0.79(0.15). Compared to the results we achieved in
[173] where we used 2D LBP texture analysis, the results using 3D LBP tex-
ture features shows lower accuracy for the three-class problem, approximately
the same accuracy for the two-class problems NC vs. AD and NC vs. LBD as
was achieved in the NC vs. (AD+LBD) problem, and higher accuracy for the
two-class problem AD vs. LBD. The latter is especially encouraging since one
of the main goals of this work was to test whether 3D texture analysis would
improve on that specific task.

In the three-class problem using LBP-TOP/C for 3D texture feature calcu-
lation gives higher accuracy as compared to VLBP/C. In the two-class problem
NC vs. AD, similar results is achieved for both texture features. VLBP/C gives
the best performance for the two-class problems NC vs. LBD and AD vs. LBD.
Based on these results it could seem like the VLBP/C feature most often outper-
forms the LBP-TOP/C than the opposite, but it is not a superior victory. The
VLBP/C is more computationally expensive, but this is hardly an argument for
choosing one over the other since great computer capacity is easily available to-
day. On the other hand, the VLBP/C approach results in a much lower feature
count than LBP-TOP/C which is a benefit combined with many classifiers.

The WML region showed highest accuracy for the NC vs. LBD problem. On
the other hand, In the NC vs. AD problem both ROI’s showed the same high
accuracy and in both the three-class problem and in the AD vs. LBD problem
NAWM gave better results than the WML region.

Limitations: A limitation to our study is the variation in number of subjects
in the data used for classification and especially the small number of subjects
in the LBD group. This can probably explain some of the reason that the AD
vs. LBD problem acquires lower accuracy compared to the two other two-class
problems. This is the reason we wanted to address the imbalanced data problem
by testing two different approaches in addition to doing the classification on the
original and untouched data, namely adding cost-sensitivity to the classification
and resampling the data such that all classes had same number of subjects as
the largest class using SMOTE. Neither in the three-class problem nor the two-
class problem AD vs. LBD were there any benefits in adding cost-sensitivity to
the classifier in any of the tests. On the other hand, resampling with SMOTE
increased classification accuracy to a large extent in the LBD class at the ex-
pense of total accuracy and the accuracy of the AD class. In both the two-class
problems NC vs. AD and NC vs. LBD, adding cost-sensitivity increased classi-
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fication performance in many of the tests, but SMOTE increase accuracy even
more in most of the tests. The difficulty in discerning AD from LBD can also
be explained by the similarities in the changes appearing in neurodegenerative
dementia stated by Bartzokis in [171] and Schneider’s observations about mixed
brain pathology in [172].

Clinical value: In an attempt to add clinical value to the 3D texture analysis
approach, we decided to calculate correlations between the texture features and
cognition. Only the AD patients showed a great number of significant correla-
tions and only when the texture features were calculated in the NAWM region.
None of the features showed correlation in the LBD group and to a very little ex-
tent did the NC subjects show any correlations. The classification results showed
highest accuracy in WML as well as NAWM in the NC vs. AD problem. In ad-
dition, both the three-class problem as well as the AD vs. LBD problem showed
best classification performance when the texture features were calculated in the
NAWM region. Disintegration of the normal appearing white matter (NAWM)
is strongly related to the severity of WML [174]. This could indicate that WML
as well as NAWM is important in dementia research generally and AD especially.

Robustness of methods: The robustness of the proposed approach for de-
mentia classification was addressed by comparing the classification results per-
formed on the original data and data from one scanner only as explained earlier
(see Section 7.4.3). We expected that the results from one scanner only data to
be similar or slightly better because of higher consistency in the data. This is
also what we experienced. Even though we to some degree have been able to
develop a robust method for dementia classification, a limitation to our study
is that we have not validated the method on another large scale data-set as for
example ADNI-data.

Comparison to others: Vemuri et al. [62] diagnosed AD with a sensitivity
of 90.7% and a specificity of 84%, LBD with a sensitivity of 78.6% and speci-
ficity of 98.8%, and FTLD with a sensitivity of 84.4% and a specificity of 93.8%
using atrophy maps and k-means clustering. All the LBD subjects were later
histologically confirmed. In the same paper, the sensitivity and specificity for
the respective clinical diagnoses were reported as well. AD with a sensitivity of
89.5% and a specificity of 82.1%, LBD with a sensitivity of 70.0% and specificity
of 100.0%, and FTLD with a sensitivity of 83.0% and a specificity of 95.6%. In
the light of these numbers, our method shows higher accuracy for the AD group
and for the LBD group compared to clinical diagnosis. The use of different mea-
sures of goodness and that another dataset was used reduces the value of the
comparison. In [106] Kodama and Kawase reported a classification accuracy of
70% when classifying LBD patients from AD patients and normal controls. In
Burton et al. [61] a sensitivity of 91% and a specificity of 94% is achieved for
the AD class in a data material containing subjects whit AD, LBD, and vascular
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cognitive impairment, using calculations of medial temporal lobe atrophy. Lebe-
dev et al. [65], reports a sensitivity of 94.4 and a specificity of 88.89 discerning
AD from LBD using sparse partial least squares (SPLS) classification of cortical
thickness measurements from the two groups.

Conclusion: We have been able to develop a CAD system where NC, AD,
and LBD are discerned with higher accuracy than clinical diagnosis. 3D texture
analysis improved classification accuracy in the AD vs. LBD problem as com-
pared to 2D texture features reported earlier. It did not seem to be important
whether the choice fell on VLBP/C compared to LBP-TOP/C as texture fea-
tures. NAWM seemed to be the ROI that most often gave highest accuracy. Both
cost-sensitive classification and resampling using SMOTE proved good methods
to handle the imbalanced data problem. The AD group stood out regarding cor-
relation between texture features and cognition, mainly in the NAWM region.
Together this could suggest that the NAWM region is a relevant area regarding
Alzheimer’s disease. The robustness of the method was tested and seems to be
good even though a limitation to our study is the lack of validation from for
example ADNI data.
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7.5 Preliminary results for texture analysis in
GM

In the former papers, focus has been put on WML and WM as ROI for the
extraction of texture features. The amyloid hypothesis for Alzheimer’s disease
posted by Hardy and Allsop [175], has been an important basis for work in the
field of dementia research for more than two decades. In this work, we wanted
to apply local binary pattern (LBP) texture analysis in GM as well as WM to
distinguish patients with AD, LBD, and NC with high accuracy and to get an
impression whether textural differences between NC-, AD-, and LBD subjects
appear mostly in WM or GM. The method used are similar to those used in
Paper III using 2D LBP.

A total accuracy of 0.95(0.06) is achieved in the two class problem NC vs.
AD+LBD when LBP/C have been calculated using GM as ROI. Correspondingly
high values were achieved for precision and recall. The results from the GM and
WM areas were very similar and showed high accuracy. This may indicate that
there are great differences between healthy elderly persons and patients with
neurodegenerative dementia in all regions of the brain which is supported by the
results published by Schneider et al. [172] and that dementia may neither be a
GM nor a WM disease alone, but that all of the brain is severely affected. In
the two class problem AD vs. LBD, the classification performance achieved in
the GM region was a total accuracy of 0.72(0.12), slightly worse than the results
from the WM region, but still comparable. To conclude – the results from the
WM and the GM region are very similar, slightly favoring the WM region.
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Discussion

Throughout the papers included in this thesis, we have performed quantitative
analysis of WML as well as performing texture analysis in WML and non-WML
regions in subjects with dementia and healthy controls. In the following chapter
an overall discussion of the contributions of this thesis, of the limitations that
need to be acknowledged as part of this project, and suggestions for future
research will be presented.

8.1 Summary of contributions

The contributions given in this thesis span from volumetric quantification of
WML in different regions of the brain to applying advanced biomedical imaging
techniques, such as texture analysis, in WML- and other brain regions. Con-
ventional statistical methods for group comparison, as well as machine learning
techniques have been subject of investigation. Below will a summary of the
contributions in this thesis be listed.

8.1.1 Quantitative analysis of WML in dementia

Understanding the role of WML for the pathogenesis of the progression of cog-
nitive impairment is important, since preventing WML may represent a target
for future attempts to prevent or slow down the disease process. It is particu-
larly important to study this in the early phase of the disease, as this will likely
be the target for future treatment. Few studies have explored the severity and
consequences of WML in LBD, the reported findings are inconsistent, and they
have been performed in subjects with end-stage disease (autopsy studies) or with
moderate to severe dementia [176, 177, 148]. Thus, there has been a need to
clarify the influence of WML in mild LBD. A contribution of this thesis has
been to measure the total and regional volume of WML in patients with mild
AD and LBD and to explore the association with cognitive impairment including

79
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memory and executive function. We concluded that although severity of WML
did not differ significantly between subjects with dementia and NC or between
mildly demented patients with AD and LBD, WML were associated with cogni-
tive decline in AD, but not LBD, and that more studies of the potential clinical
impact of WML in patients with LBD are needed. See Section 2.2 and Paper I
for more information.

Several methods for visual quantification of WML severity from MR images
of the brain exist [150, 151, 152]. A significant limitation to all of the above
referenced methods is that they are prone to inter rater variability. It has been
shown that quantification of the actual volume of WML is a more sensitive
approach than the visual rating scales [153]. Others have found that visual
rating is as good as the more complex methods in routine clinical practice, but
that volumetric assessment should be used in research settings if possible [154].
Automated quantitative segmentation methods are suitable for assessing impact
of WML on cognitive function [155]. Lately, several approaches for automatic
segmentation of WML have been suggested [158, 157, 159]. A contribution of
this thesis has been to use automatic segmentation routines for the calculation
of total and regional volume of WML. See Section 4.1 and Paper I for more
information.

Statistical analysis is a common approach when looking for differences be-
tween groups in quantitative analysis in dementia. Lately, the interest in apply-
ing ML approaches have increased. In [51], the authors performed classification
of patients with AD, DLB and frontotemporal lobar degeneration using results
from six visual rating scales as input and report a substantial better performance
as compared to using only a single scale as input and at least as good as ex-
pert reads. In [178], the authors propose a method for differential diagnosis of
AD, frontotemporal lobar degeneration, vascular dementia, DLB, and NC using
volumetric- and morphological- as well as vascular characteristics from MRI as
input to a multiclass classifier. By combining information from T1 weighted im-
ages, DT-MRI, and resting state functional MRI, the authors in [179], were able
to classify NC from mild AD from moderate AD with an increasing accuracy
by stepwise adding features from the different MRI sequences. Others have had
success in predicting development from to AD from MCI with high accuracy by
combining quantitative MRI and clinical information such as plasma biomark-
ers in classification [180]. A contribution of this thesis has been to use WML
volume as features in an ML framework classifying subjects with dementia from
healthy controls. The best classification results obtained using the WML vol-
umes as features were total cerebellar WML volume with an AUC of 0.73 and
95% confidence interval of 0.57 to 0.83. Similar results were achieved for the
cerebellar WML volume in the deep white matter, the frontal WML volume in
the periventricular region and the volume of WML in the basal ganglia. See
Paper II for more information.
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8.1.2 Texture analysis in AD and LBD

AD and LBD are very complex diseases making them difficult to prevent, delay
or cure. Current therapy focus on many approaches, for example helping pa-
tients maintain an acceptable mental functioning, managing typical behavioral
changes, and slowing symptom progression. Early intervention is important,
and the ability to identify these types of dementia and healthy controls early in
the disease course may be essential for successful patient care. Differentiating
between AD and LBD is also important since they differ in prognosis and re-
sponse to drug treatment. Currently, the only available method to differentiate
between AD and LBD is the dopamine transporter scan, which is expensive and
not readily available at all centers.

White matter (WM) comprises approximately half the brain volume and pro-
vides connectivity between the two brain hemispheres as well as ensure efficient
transfer of neural activity complementing information processing in the gray
matter (GM). WM neuropathology is often diffuse and affects many neuronal
networks which can be disturbed simultaneously resulting in a multidomain syn-
drome. An important hypothesis for AD has been that the disease is caused by
accumulation of peptide amyloid beta (Aβ) in the brain. It has been called the
amyloid hypothesis and has been a prevailing motivation for research activity
for years. Less attention has been brought to studying WM pathology with
the ambition of bringing greater understanding of the dementia decease process
[181, 171, 182, 174, 34, 33].

CAD can be a helpful tool to pinpoint diagnosis early in the disease course
in a cost-effective manner and unbiased to human inconsistencies [76]. Early
detection of disease and the discovery of functional connections between brain
areas relevant for the disease are important benefits. Recent advances in the field
have focused especially on AD and patients with MCI, which are considered a
precursor to AD [75, 78, 79, 64, 80]. Less attention has been put into developing
CAD systems for LBD. As mentioned above, LBD have high prevalence, and
accurate clinical diagnosis depends on little available and expensive dopamine
transporter scan and postmortem histology. Few papers report high accuracy
discerning patients with AD and LBD or other dementias using neuroimaging
techniques on MRI [61, 62, 65].

Not many have applied texture analysis in a machine learning (ML) envi-
ronment to successfully discern different dementias from each other and from
healthy controls [101, 183, 106, 105, 102, 104, 103]. A contribution of this thesis
has been to apply 2D- and 3D texture analysis in white matter (WM), WML
regions as well as normal appearing white matter (NAWM) on FLAIR and T1-
weighted MR images as a computer based application for dementia diagnosis. We
experienced better classification results when using texture features calculated
from the 3DT1 MR image compared to the FLAIR MR image. A total accu-
racy, reported as mean(std) over cross validation folds, of 0.97(0.07) or higher
was reported for the dementia vs. NC, AD vs. NC, and LBD vs. NC classifica-
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tion problems for both the 2D- and 3D texture analysis approaches. In the AD
vs. LBD case a total accuracy of 0.73(0.16) was reported using the 2D texture
analysis approach slightly exceeded by the 3D texture analysis approach were
0.79(0.15) was reported. See Chapters 4 and 5 and Papers II,III, and IV for
more information.

8.1.3 Machine learning in dementia

An important application of pattern recognition is computer aided diagnosis.
A common challenge when applying classification to cohort data is the lack of
sufficient number of instances in each group. One consequence may be difficulty
in learning a classifier with sufficient low bias and variance in the validation
results. It is especially important that care is taken when training a classifier on
data containing few instances and a high number of descriptors for each instance.
This could cause overfitting which refers to a learned classifier that performs well
on the training data, but have low generalization abilities resulting in poor val-
idation outcomes. Another consequence of insufficient data is data groups with
unequal number of instances, often called the imbalanced data problem. Most
learning algorithms will fail to perform accurately under such circumstances.
The distributive characteristics of the data is often difficult to describe resulting
in poor accuracy across data groups. The induction rules describing the minority
group becomes fewer and weaker compared to the majority group. A require-
ment in classification when the dataset is imbalanced is high accuracy for the
minority class without simultaneously reducing the accuracy for the majority
class too much. Many approaches have been suggested in the literature in an
attempt to remedy the problem [138]. Yet another consequence is that com-
mon performance measures such as accuracy and error rate can possibly give
a false impression of classifier performance. A representation of classification
performance that takes into account the successful as well as the unsuccessful
classification results for both the positive and the negative class in a two class
problem is important. A contribution of this thesis has been to construct an
ML system for classification of different dementia and healthy controls apply-
ing a proper training and testing procedure by using a random forest classifier
together with a nested cross validation scheme, handling the imbalanced data
problem in a proper manner by using SMOTE and cost sensitive classification,
and using proper performance measures such as AUC, precision, and recall for
validation of classification results. In Paper III, we concluded that neither in
the three-class problem nor the two-class problem AD vs. LBD were there any
benefits in adding cost-sensitivity to the classifier in any of the tests. On the
other hand, upsampling with SMOTE increased classification accuracy to a large
extent in the LBD class at the expense of total accuracy and the accuracy of
the AD class. In both the two-class problems NC vs. AD and NC vs. LBD,
adding cost-sensitivity increased classification performance in many of the tests,
but SMOTE increase accuracy even more in most of the tests. See Chapter 6
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and Papers II,III and IV for more information.

8.1.4 ROI-wise analysis

A recurring theme throughout this work has ween the ROI-wise analysis in
dementia. Firstly as a volumetric analysis of WML in Paper I and II, and then
as a region of interest for calculation of texture features. In Paper II texture
analysis in the WML region was studied. In Paper III results from 2D texture
analysis in WML and all of WM were compared. In Paper IV results from 3D
texture analysis in WML were compared to NAWM. Preliminary results on 2D
texture analysis in GM have also been presented. It seems like the results do
not differ much between regions and varies in an inconsistent way.

8.2 Limitations

A fairly robust system for CAD in dementia using TA has been developed and
an acceptable performance is observed, especially when classifying the dementia
groups from healthy controls. In the following sections several limitations will
be discussed.

8.2.1 Black box system

The LBP texture feature in its original form are typically organized in a his-
togram for each subject. These histograms can be quite large, especially when
the number of neighbors increases and even more when the 3D variants are used.
A high dimensional feature vector in combination with a small dataset often re-
sults in overtraining when learning a classifier. In an attempt to overcome such
issues, reducing the size of the feature vector was necessary. As a first step we
decided to calculate statistical measures such as mean, median, standard devia-
tion, skewness and others, of all the LBP values in the region of interest. The
benefit was highly discriminative features in our applications. The drawback was
that information regarding brain regional importance of features was to some
extent lost. We cannot conclude where in the brain the discriminative features
are located on a more accurate scale than the choice of ROI. Even though the
methods used throughout this thesis have to some extent been used to study
regional importance of texture features in dementia, this has been done on a
coarse scale. Results have been reported for WML, NAWM, all of WM, and
GM (unpublished results). The results in this work do not vary much between
brain regions. A consequence is that we do not learn much about where in the
brain the distinguishing features are located or what kind of textural changes
that distinguishes the two dementia groups from each other and from healthy
controls. Such information has a clinical potential and this is a limitation to our
studies.
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8.2.2 Clinical diagnosis

Even though the accuracy of dementia diagnosis has increased during recent
years, a lot of information has to be collected to determine if there is a reversible
or irreversible cognitive impairment, the severity of the symptoms, and the cause
of the symptoms. The diagnosis involves a complete medical and neuropsycho-
logical evaluation of the patient. Examples of tests run at such an evaluation
are a review of history or onset of symptoms, medical history and medications,
neurological examination, rule out vitamin deficiencies or metabolic conditions,
brain imaging, and mental status testing. Many of these tests are prone to sub-
jective evaluation errors, can be time consuming, and may exhibit low- inter- and
intra-rater reliability. Thus, clinical dementia diagnosis is not 100% accurate.

8.2.3 Postmortem brain autopsy

The ultimate gold standard for dementia diagnosis is post mortem brain au-
topsy. A strength of the DemWest study is that such pathological confirmation
has been performed on a substantial amount of the participating subjects. Until
this date, 46 subjects have undergone brain autopsy by an experienced neu-
ropathologist whom where blind to clinical data. So far, a diagnostic accuracy
of approximately 85% of clinical diagnosis of DLB and AD has been confirmed
(unpublished data). Out of the 46 subjects with a post mortem brain autopsy,
12 subjects were a part of our studies. Out of those with a mismatch diagnosis
only one was part of the studies included in this thesis and that was a subject
with a clinical diagnose of DLB and a pathological confirmed AD diagnosis. Our
methods did show high classification performance when classifying AD from NC
as well as LBD from NC. The results when classifying AD from LBD did not
show the same accuracy. The LBD group consisted of only 16 subjects including
one subject with a fault diagnosis. In addition, the LBD group was a collec-
tion of subjects with both DLB as well as Parkinson disease dementia with the
consequence of blurring the differences between disease groups. This may have
contributed to the poor statistical results in Paper I and the low classification
performance reported in Papers II-IV when classifying the AD group from the
LBD group.

8.2.4 Multicenter study

The data used in the work of this thesis is part of the DemWest- and ParkWest
studies. The MR images were acquired at many different imaging centers, each
center having different MR scanner vendor, -model, or -software version. Even
though resources were put into designing a common MR protocol for all centers,
deviations from the protocol and differences in equipment reduced the amount
of data available for classifier training as well as variability was introduced to the
decision applications. Some of these limitations were overcome using cross vali-
dation techniques and random forest classification. If used correctly, the former
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are able to take care the problems arising using small datasets in classification.
The latter is able to handle small datasets, high dimensionality in the feature
vector, and variability in the data.

8.2.5 WML segmentation

The chosen WML segmentation method was not robust enough to handle the
great variation in MR image quality at hand and time consuming manual editing
was necessary to correct for that. Manual editing is also prone to subjectivity
and low intra- and inter-correlation coefficient. In future research we would
recommend applying a completely automatic WML segmentation procedure such
as , [158], [157], or [159] to ensure a reliable segmentation result.

8.3 CAD in clinical practice

A method for automatic dementia diagnosis based on MR imaging could over-
come some of the challenges regarding limitations addressed to the clinical di-
agnose. Not as a substitution for the clinical point of view, but as a second
opinion. Either to aid in making decisions whether to further examine, treat, or
monitor a person with a subjective impression of reduced cognitive abilities, or
to strengthen differential diagnosis and prediction of further cognitive decline.
On the other hand, using CAD systems in clinical practice involves several chal-
lenges. Very often, these applications demands a certain level of competence in
handling advanced computer software and hardware. Indeed does a CAD system
demand a certain quality from the data. As mentioned above, two important
limitations to our work is related to using data from a multicenter cohort study.
One of them is the imbalanced data problem and the other is the lack of image
protocol harmonization. To ensure high statistical power and classification per-
formance, it will be beneficial to acquire a balanced dataset with images having
limited amount of artifacts and noise for model training. Using harmonized MRI
protocols are crucial. Before CAD can be implemented in clinical practice for
the diagnosis of individual patients, large, multicenter studies with pre-defined
methods of classification are needed.

8.4 Future research

In addition to being computationally efficient and showing high discriminative
properties in many applications, the LBP descriptor have many attractive prop-
erties such as gray-scale invariance, few parameters, and rotation invariance
achieved by simple cyclic shifts. On the other hand, several limitations can be
detected, such as limited spatial support, little local textural information, and
high sensitivity to noise. Several attempts have been made to remedy some of
the limitations [184, 185, 186, 187, 188, 189]. In [78], the authors propose an
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extended version of LBP where both intensity-based and difference-based fea-
tures are developed and show high discrimination ability. These features would
be highly interesting to implement in a CAD system of MRI in dementia in the
future.

The 3D texture analysis methods used in this thesis were originally devel-
oped for dynamic texture recognition tasks. There is reason to believe that 3D
texture features applied to 3D MRI could improve the system’s ability to dis-
criminate subjects with different dementia types. In [190], the authors propose
an extension of the LBP to 3D. A future perspective would be to further study
3D texture features in dementia.

A limitation to our work has been the lack of clinical information in the
features used in the classifier. A future objective would be to implement a
CAD system using features that provides a higher clinical value, i.e. features
that can tell something more specific on what kind of changes are going on in
the diseased brain and what kind of differences exists between subjects with
different types of dementia. As mentioned in Chapter 2, common approaches
to advanced MR neuroimaging in dementia have been to measure the volume
of relevant anatomical brain structures in an attempt to measure atrophy [55].
Other approaches have been to analyze cortical thickness [64, 65, 66] or perform
shape analysis. Few have looked into texture analysis which has the potential
to depict microstructural changes in the brain. Such analysis may be able to
aid in diagnosing pathologic conditions, quantifying the severity of pathology,
and quantifying temporal changes of a certain pathological condition even before
significant atrophy appears. In [191], features with information on 3D texture
orientation show ability to depict differences between age matched subject of
different gender.

It is difficult to identify precisely the time of onset for the dementia syn-
drome. The changes going on in the brain probably starts long before the onset
of symptoms and many medical interventions are only of help early in the disease
course [192]. Future research on neuroimaging in dementia would probably bene-
fit from multiparameter image analysis combining several MRI descriptors, such
as volumetry, measurements of cortical thickness, shape analysis, and texture
analysis. Including biochemical- and genetic biomarkers together with informa-
tion on cognitive profile may strengthen analysis even further. By combining
analyses from different variants of MRI as well as combining these with results
from positron emission tomography (PET), a multimodal approach has made it
possible to track the development of brain changes related to AD as it progresses
in time [74, 75]. When done in a proper manner, multimodal image analysis has
a great potential for achieving further understanding of disease mechanisms and
prediction of disease outcome even before symptom development [193, 194].
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