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1 Introduction

Knowledge of the equation of state and the phase diagram of QCD is essential in under-

standing the properties of the deconfined matter created in heavy-ion collisions as well

as the properties of compact stars and their quark cores. In non-central heavy-ion col-

lisions, large time-dependent magnetic fields are generated during the experiment [1–3].

The maximum strength of these magnetic fields is on the order of 1019Gauss (qB ∼ 6m2
π).

Likewise, very strong magnetic fields exist inside magnetars [4]. These may be several

orders of magnitude larger than the magnetic fields in ordinary neutron stars. On the

surface, the magnetic field may be as strong as 1014–1015Gauss and it could be as strong

as 1016–1019Gauss in the interior of the star. This has spurred the interest in strongly in-

teracting matter at finite temperature, density and magnetic field, see for example ref. [5]

for a recent review.

The phase boundary in (T, µB, B) space is therefore of great interest; however due to

the infamous sign problem, one cannot use the standard techniques of lattice calculations

at finite µB. At zero µB and finite B, there is no sign problem and so one can calculate

the phase diagram in the T,B plane using Monte-Carlo methods. Recent lattice calcu-

lations [6, 7] suggest that for physical quark masses, the transition temperature for the

chiral transition is a decreasing function of the magnetic field B, while for larger values

of the quark masses corresponding to mπ ≃ 400MeV, the temperature is an increasing

function of B [8, 9]. The qualitative behavior of the transition temperature for physical

quark masses is in disagreement with model calculations using either the (Polyakov-loop

extended) Nambu-Jona-Lasinio ((P)NJL) model or the (Polyakov-loop extended) quark-

meson model ((P)QM); in these models, the critical temperature is an increasing function

of the magnetic field, see e.g. [10–20]. Possible resolutions to the disagreement have been

suggested [21–28] and we will discuss these at the end of the paper.
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In a previous paper [17], two of us used the two-flavor three-color quark-meson model

and the functional renormalization group [29] to map out the phase diagram in the µB −T

plane for different values of the magnetic field (see also refs. [30, 31]). In the present paper,

we add the Polyakov loop to the model to include certain aspects of confinement [32, 33]. In

particular, we investigate a set of possible implementations of the Polyakov loop and how

they effect both the chiral and deconfinement transitions. In the context of the functional

renormalization group, this was studied in ref. [16] at zero baryon chemical potential.

The paper is organized as follows: in section 2 we briefly discuss the functional renor-

malization group implementation of the quark-meson model in a constant magnetic back-

ground. In section 3 we add the Polyakov loop variable to the model and review the three

gluonic potentials we have used in this work. Section 4 explains the numerical implemen-

tation and the effects of the various gluonic potentials. In section 5 we discuss our results

for the deconfinement and chiral transitions. Finally, in section 6, we summarise the main

results and comment on the disagreement between lattice and model calculations at finite

B and µB = 0.

2 Quark-meson model and the functional renormalization group

The quark meson model is the linear sigma model coupled to two massless quark flavors

via a Yukawa coupling. The O(4)-invariant Euclidean Lagrangian for the model is

L = ψ̄
[

γµDµ − µγ4 + g(σ − iγ5τ · π)
]

ψ +
1

2

[

(∂µσ)
2 + (∂µπ)

2
]

+
1

2
m2

[

σ2 + π
2
]

+
λ

4

[

σ2 + π
2
]2 − hσ , (2.1)

where σ is the sigma field, π denotes the pions, (π1, π2, π3 ≡ π0) and τ are the Pauli ma-

trices, µ = diag(µu, µd) is the quark chemical potential, where µu and µd are the chemical

potential for the u and d quarks, respectively. We set µu = µd so that we are working

at zero isospin chemical potential, µI = 1
2(µu − µd) = 0. The baryon chemical poten-

tial is given by µB = 3µ. When we couple the quark-meson model to an Abelian gauge

field, we replace the partial derivatives by the covariant ones for the charged quarks as

well as for the charged pions. The covariant derivative Dµ couples to the charged fields,

Dµ = ∂µ− iqAEM
µ , where q is the charge of the field, 2/3e, −1/3e and ±e for the up quark,

down quark, and the charged pions respectively. With the addition of the Polyakov loop,

given in section 3, a coupling between the quarks and a constant background gauge field

is added to the covariant derivative. The Euclidean γ matrices are given by γj = iγjM ,

γ4 = γ0M , and γ5 = −γ5M , where the index M denotes Minkowski space. The fermion field

is an isospin doublet,

ψ =

(

u

d

)

. (2.2)

The coupling to the Maxwell field reduces the O(4) symmetry, or equally, SU(2)V ×SU(2)A
to U(1) × U(1)A simply because the electric charges of the u and d quarks are different.

The first term is a symmetry that corresponds to a rotation of the u and d fields with
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opposite phase, u → ueiδ and d → de−iδ. The complex field ∆ ≡ 1√
2
(π1 + iπ2) ≡ π+ is

simultaneouesly rotated ∆ → ∆e2iδ. The second is a chiral rotation of the u and d fields

with opposite phase, u → eiγ5δu and d → e−iγ5δd. The complex field υ ≡ 1√
2
(σ + iγ5π0)

is simultaneously rotated υ → e2iγ5δυ. The O(4) invariant σ2 + π2
0 + π2

1 + π2
2 now splits

into the two O(2) invariants υ†υ and π+π−, where π− = ∆†/
√
2. In this case, we have in

principle two Yukawa couplings, two mass terms and three different coupling constants.

If h 6= 0, the U(1)A symmetry is explicitly broken, otherwise it is spontaneously broken

in the vacuum. Either way, the symmetry is reduced. If the symmetry is broken spon-

taneously, the π0 is a Goldstone boson, while if the symmetry is broken explicitly it is

a pseudo-Goldstone boson. The charged bosons are no longer (pseudo)Goldstone bosons.

The U(1)A symmetry is broken in the vacuum by a nonzero expectation value φ for the

sigma field and we make the replacement

σ → φ+ σ̃ , (2.3)

where σ̃ is a quantum fluctuating field. The tree-level potential then becomes

UΛ =
1

2
m2

Λφ
2 +

λΛ

4
φ4 − hφ . (2.4)

Note that we have introduced a subscript Λ on U , m2, and λ, where Λ is the ultraviolet

cutoff of the theory. This is a reminder that these are unrenormalized quantities.1

We will follow Wetterich’s implementation of the renormalization group ideas based

on the effective average action Γk[ϕ] [29]. This action is a functional of a set of background

fields that are denoted by ϕ. Γk[ϕ] satisfies an integro-differential flow equation in the

variable k, to be specified below. The subscript k indicates that all the modes p between

the ultraviolet cutoff Λ of the theory and k have been integrated out. When k = Λ no modes

have been integrated out and ΓΛ equals the classical action S. On the other hand, when

k = 0, all the momentum modes have been integrated out and Γ0 equals the full quantum

effective action. The flow equation then describes the flow in the space of effective actions

as a function of k.

In order to implement the renormalization group ideas, one introduces a regulator

function Rk(p). The function Rk(p) is large for p < k and small for p > k whenever

0 < k < Λ, and RΛ(p) = ∞. These properties ensure that the modes below k are heavy

and decouple, and only the modes between k and the UV cutoff Λ are light and integrated

out. The choice of regulator function has been discussed in detail in the literature and

some choices are better than others due both to their analytical and stability properties,

see for example [34].

The flow equation for the effective action cannot be solved exactly so one must make

tractable and yet physically sound approximations. The first approximation in a deriva-

tive expansion is the local-potential approximation (LPA) where the flow equation for

Γk reduces to a flow equation for an effective potential Uk(φ). In this case one sets the

wave-function renormalization factors equal to one.2 Going beyond the local-potential

1The symmetry breaking term is equivalent to an external field that does not flow and therefore h = hΛ.
2Higher-order derivative operators that are consistent with the symmetries are also neglected in the LPA.

– 3 –



J
H
E
P
0
4
(
2
0
1
4
)
1
8
7

approximation, one would have to solve a set of coupled equations for the wave-function

renormalization factors as done in the recent paper by Kamikado and Kanazawa [19].3

Moreover, since the SU(2)A symmetry is broken by the magnetic field, as explained above,

the effective potential is therefore a function of these two invariants. This is similar to the

case of two-color QCD with a baryon chemical potential [35] or three-color QCD with an

isospin chemical potential [36]. In the LPA, the effective action then takes the form

Γk

[

|υ|, |∆|
]

=

∫ β

0
dτ

∫

d3x

{

1

2

[

(∂0σ)
2+(∂0π

2)
]

+
1

2

[

(∇σ)2+(∇π
2)
]

+Uk(|υ|, |∆|)
}

. (2.5)

However, since we do not have a charged pion condensate, the effective potential can be

evaluated at π+π− ≡ 0, but the flow equation still depends on both partial derivatives,
∂Uk

∂|υ| and ∂Uk

∂|∆| , of the potential Uk in field space. At the mean-field level these derivatives

are identical, beyond they are not. In order to make the problem numerically tractable,

we make the approximation that they are equal. With these approximations and defining

ρ = |υ|, the flow equation for the potential Uk[ρ, 0] then reads [16, 17]

∂kUk[ρ, 0] =
k4

12π2

{

1

ω1,k
[1 + 2nB(ω1,k)] +

1

ωk,2
[1 + 2nB(ω2,k)]

}

+k
|qB|
2π2

∞
∑

m=0

1

ω1,k

√

k2 − p2
⊥
(q,m, 0) θ

(

k2 − p2
⊥
(q,m, 0)

)

[1 + 2nB(ω1,k)]

− Nc

2π2
k

∞
∑

s,f,m=0

|qfB|
ωq,k

√

k2−p2
⊥
(qf ,m, s) θ

(

k2−p2
⊥
(qf ,m, s)

)[

1−n+

F (ωq,k)−n−

F (ωq,k)
]

,

(2.6)

where we have defined ω1,k =
√

k2 + U ′
k , ω2,k =

√

k2 + U ′ + 2U ′′
k ρ , ωq,k =

√

k2 + 2g2ρ ,

p2⊥(q,m, s) = (2m+1−s)|qB| , nB(x) = 1/(eβx−1) , ρ = 1
2φ

2 and n±
F (x) = 1/(eβ(x±µ)+1),

however the fermionic distribution functions will be transformed to eqs. (3.3) and (3.4)

when we add the Polyakov loop.

At zero temperature, the Bose distribution function vanishes and the Fermi distribution

function becomes a step function. Furthermore, if we set µ = 0, this step function vanishes

and we obtain the flow equation in the vacuum.

3 Adding the Polyakov loop

The Polyakov loop Φ is given by the thermal expectation value of the trace of the Wilson

line, i.e.

Φ =
1

Nc
〈Trc L〉 , (3.1)

where the trace is in color space and

L = P exp

[

i

∫ β

0
dτ A4

]

, (3.2)

3In this work, since a magnetic field breaks rotational symmetry, one must use two different wave-

function renormalization factors Z
‖
k and Z

⊥
k , where ‖ and ⊥ are the parallel and perpendicular directions

relative to the magnetic field.
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where A4 = iA0 and A0 = δµ0Aµ
ata. Here Aµ

a are the SU(3)c gauge fields and the generators

are ta = 1
2λ

a, where λa are the Gell-Mann matricies. The Wilson line is a complex variable

and so Φ is not equal to Φ̄ = 1
Nc

〈Trc L†〉 in general. It is known that Φ = Φ̄ at mean

field level, but in the present work this is only true at zero baryon chemical potential.

The Polyakov loop is an order parameter for deconfinement in pure-glue QCD. Under the

center symmetry ZN , it transforms as Φ → e2πin/Nc , where n = 0, 1, 2 . . . , Nc − 1. At low

temperatures, i.e. in the confined phase, we have Φ ≈ 0, while in the deconfined phase we

have Φ ≈ 1.

Coupling the Polyakov loop to the QM model gives a more physically accurate model of

the quark sector and allows us to explore both the chiral and deconfinement transitions of

low energy QCD. This is done by introducing a constant background temporal gauge field

δµ0Aµ
a via the covariant derivative for the quarks Dµ → Dµ − iδµ0Aµ

ata (however the co-

variant derivative acting on the pions remains unchanged) and adding a phenomenological

potential for the gluonic sector (discussed below). The Polyakov gauge is particularly con-

venient for calculations as the Wilson line is then a diagonal matrix, L = ei(λ
3A3+λ8A8)/2T .

Utilizing this and the mean field solution for the effective potential the quark distribu-

tion functions are found to be transformed from the standard Fermi-Dirac distribution

functions to

n+
F (Φ, Φ̄;T, µ) =

1 + 2Φ̄eβ(Eq−µ) +Φe2β(Eq−µ)

1 + 3Φ̄eβ(Eq−µ) + 3Φe2β(Eq−µ) + e3β(Eq−µ)
, (3.3)

n−
F (Φ, Φ̄;T, µ) = n+

F (Φ̄,Φ;T,−µ) . (3.4)

These are then substituted back into the renormalization group flow equation (2.6). This

form is a particularly promising result, as in the confining limit (Φ and Φ̄ → 0) we obtain a

Fermi-Dirac-like distribution function for states of three quarks, however as Φ and Φ̄ → 1

the functions n±
F are equal to the standard Fermi-Dirac distribution functions, as they

should be.

A number of forms for the gluonic potentials have been proposed and investigated at

mean field level for the PNJL model [37] and the PQM model with µ = 0 [38]. In this work

we will investigate three different gluon potentials. Since the Polyakov loop variable is the

order parameter for the Z(3) center symmetry of pure-glue QCD, a Ginzburg-Landau type

potential should incorporate this. A polynomial expansion then leads to [39]

Upoly

T 4
= −b2(T )

2
ΦΦ̄− b3

6
(Φ3 + Φ̄3) +

b4
4
(ΦΦ̄)2 , (3.5)

where the coefficients are

b2(T ) = 6.75− 1.95

(

T0

T

)

+ 2.624

(

T0

T

)2

− 7.44

(

T0

T

)3

, (3.6)

b3 = 0.75 , (3.7)

b4 = 7.5 . (3.8)

The coefficients b2(T ), b3, and b4 are chosen such that the Polyakov loop potential re-

produces the equation of state and temperature dependence of Φ around the transition

– 5 –
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at µ = 0. The parameter T0 is the transition temperature for pure-glue QCD lattice

calculations [40].

In refs. [41, 42], another form for the Polyakov loop potential based on the SU(3) Haar

measure was proposed:

Ulog

T 4
= −a(T )

2
ΦΦ̄ + b(T ) ln

[

1− 6 Φ̄Φ + 4(Φ3 + Φ̄3)− 3(Φ̄Φ)2
]

, (3.9)

where the coefficients are

a(T ) = 3.51− 2.47

(

T0

T

)

+ 15.2

(

T0

T

)2

, (3.10)

b(T ) = −1.75

(

T0

T

)3

. (3.11)

We note that the logarithmic term ensures that the magnitude of Φ and Φ̄ is constrained

to be in the region between −1 and 1, i.e. the possible attainable values for the normalized

trace of an element of the SU(3). Finally, Fukushima proposed a Polyakov loop potential

in [43]

UFuku

T 4
= − b

T 3

(

54e−a T0/TΦΦ̄ + ln
[

1− 6ΦΦ̄ + 4(Φ3 + Φ̄3)− 3(ΦΦ̄)2
]

)

, (3.12)

where the constants are a = 664/270 and b = (196.2MeV)3 and we have added dependence

upon the transition temperature, T0.

A problem with all the Polyakov loop potentials proposed is that they are independent

of the number of flavors and of the baryon chemical potential. However, we know that,

for example, the transition temperature for the deconfinement transition is a function of

Nf . In other words, one ought to incorporate the back-reaction from the fermions to the

gluonic sector. In ref. [44], the authors use perturbative arguments to estimate the effects

of the number of flavors and the baryon chemical potential on the transition temperature

T0. The functional form of T0 is [45]

T0 = Tτe
−1/(α0 b(Nf ,µ)), (3.13)

where

b(Nf , µ) =
1

6π
(11Nc − 2Nf )−

16

π
Nf

µ2

(γ̂ Tτ )2
, (3.14)

and Tτ = 1.77GeV, α0 = 0.304. γ̂ controls the curvature of T0 as a function of µ, and again

following [45] we experiment with a range of values to study the effects. This is further

discussed in the following section.

Let us finally make a few remarks about the complexity of the effective action. In the

mean-field approximation [47–50] of the PNJL and PQM models at finite µB, the effective

action is complex if one considers it a function of the complex variables Φ and Φ̄. If one

ignores the imaginary part of the effective potential, the effective potential becomes a real

function of real variables. One can then find a minimum of the effective potential in the

usual way. However, in this approach, one obtains Φ = Φ̄, which is in disagreement with

lattice results. In our calculations, we restrict Φ and Φ̄ to be real and we find Φ 6= Φ̄, thus

avoiding the problem.
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4 Numerical implementation and the glue potential

To find the equilibrium state values of the order parameters φ, Φ and Φ̄ we numerically solve

the flow equation (2.6) with the boundary condition specified by the tree level potential,

eq. (2.4), on a grid in φ-Φ-Φ̄-space with φ ∈ [0, 126]MeV and Φ, Φ̄ ∈ [0, 1] (Φ and Φ̄

are real, as discussed section 3). Doing this at various values of T , B and µ gives us

Uk=0(φ,Φ, Φ̄;T,B, µ), which we construct as a dimensionless quantity. In the derivation of

the flow equation we have used O(4) symmetry, thus for the boundary condition of the flow

we set h = 0, then when minimising with respect to φ we minimise Uk=0−hφ. The resulting

surface, Uk=0(Φ, Φ̄) is very smooth thus we use interpolation to save computation time.

Additional runs at intermediate values show that errors due to the interpolation are on

the order of 0.1%. Before we minimise with respect to the deconfinement order parameters

we must add the gluonic potential. Thus Φ and Φ̄ are obtained from the minimisation of

Uk=0(Φ, Φ̄) + Uglue(Φ, Φ̄)/Λ
4, where ‘glue’ stands for one of ‘poly’, ‘log’ or ‘Fuku’ as given

in section 3.

We use the following (dimensionless) bare parameters: m2
Λ = 0.075, λΛ = 9.2, g =

3.2258 and h = 0.0146 and we have Λ = 500MeV which give constituent quark masses of

300MeV, a sigma mass of ∼ 478MeV and pion masses of ∼ 140MeV, that is, our results

are calculated at the physical point. Changing the energy of the ultraviolet cutoff from

500 to 800MeV, gives an increase of approximately 3% to the chiral phase transition at

low µ, and approximately 10% at low T . Additional details about the implementation at

Φ = Φ̄ = 1 can be found in [17].

As the results presented here are calculated at the physical point all of the phase

transitions are crossover ‘transitions’ and thus all critical temperatures are pseudo-critical

temperatures. We must therefore define how we can calculate these transitions. Since we

have discretized the variables in the computation of the effective potential, calculating the

inflection point directly from the output data is very inaccurate. Thus one way to define

the transition temperature is to fit the data points for the order parameter in question with

a function and then define the transition temperature, Tx, as the inflection point of the

fitted curve. For the chiral transition we use this method, with the fit based on arctan(x).

However, using this method for the deconfinement transition we run into problems as the

functional form of the underlying curve changes with changing µ (see the left panel of

figure 3). An alternative way of defining this transition is when the order parameter, Φ(T ),

is equal to 1
2 , this we define as TΦ/2. To find this point we interpolate with third-order

polynomial interpolation. Figure 1 illustrates this for µ = 0. The left panel shows the data

points (crosses) for φ as a function of T . The open circle indicates the inflection point of

the fitted curve, i.e. Tφ, while the cross indicates the temperature when the normalized

chiral order parameter satisfies φ/φ(T = 0) = 1
2 , we denote this Tφ/2. The right panel

shows the same, but now for the deconfinement order parameter Φ and the green curve is

now the interpolation used to determine TΦ/2.

Following ref. [44], we introduced an Nf and µB-dependent transition temperature T0

via eq. (3.13). In figure 2, we show the effects of varying the parameter γ̂ in eq. (3.14) on

the deconfinement transition in the µ − T plane for zero magnetic field and utilizing the

– 7 –
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Figure 1. Methods used to determine the transition temperatures for the chiral transition (left)

and deconfinement transition (right). Both plots are for µ = 0. See main text for details.
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Figure 2. Phase diagram for the deconfinement transition with B = 0 and various values of the

parameter γ̂. See main text for details.

polynomial gluonic potential, eq. (3.5). The solid lines show TΦ/2 while the dashed lines

show TΦ̄/2 for the same values of γ̂. We note that both Φ and Φ̄ are real and coincide for

µ = 0 but differ at non-zero µ. Furthermore, for a µB-independent T0 (= 208MeV) the

transition temperature is almost independent of the baryon chemical potential µ (magenta

lines). The red, green, and blue lines show the results for γ̂ = 0.8, 0.9, and 1.0, respectively.

The bending of the curves decreases as a function of γ̂ which is reasonable since this
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with (left) and without (right) a µ dependent gluonic transition temperature, T0. + s are the data

points, lines are the interpolations thereof, s give TΦ/2 and ◦ s approximate TΦ.

parameter enters in the denominator of the parametrization (3.14) of b(Nf , µ). At γ̂ ≈ 0.9

we find the strongest µ dependence which still preserves TΦ/2 ≥ TΦ̄/2 thus in the remaining

figures in this paper (figures 3–8) we use γ̂ = 0.9. Finally, we remark that the qualitative

behavior is the same for finite magnetic field B. We will present more results for various

B-fields in the next section.

In figure 3, we show the order parameter Φ(T ) as a function of T for µ = 0 (blue),

µ = 210 (green), µ = 260 (red), and µ = 290 (magenta) with and without a µ dependent

gluonic potential. In the left panel, the results are for T0 = T0(Nf , µ), while in the right

panel T0 = T0(Nf , 0) i.e. independence from µ. Comparing the two panels we see the result

shown in figure 2, that only with a µ dependent transition temperature T0 do we obtain

significant change in the deconfinement order parameter when varying µ. Additionally we

see in the right panel that at high µ (magenta in particular) there is an initial increase in

Φ around T = 50MeV, which comes from the mesonic and fermionic potential, Uk=0, and

then around 208MeV there is the typical increase, driven largely by the gluonic potential,

Uglue. We then see in the left panel, with a µ dependent T0, that the effect of Uglue mirrors

that of Uk=0 and the deconfinement transition thus decreases with increasing µ.

Figure 3 also illustrates the aforementioned difficulties in defining the deconfinement

transition at large µ. It is seen that TΦ/2 ∼ TΦ at low µ, but for µ & 230MeV this is no

longer true. In addition to this, the numerics become more time consuming at low T , thus

for values of T & 30MeV our results only approximate the behavior of the model. For

these reasons we have only calculated the phase diagram up to µ = 290MeV.4

4We have also observed the splitting of the chiral transition reported in [46] without the Polyakov loop,

but have not resolved that region in detail with the Polyakov loop.
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Figure 4. Phase diagram for the deconfinement transition for different glue potentials and B = 0.

Also shown is the transition temperature T0 = T0(Nf , µ, γ̂ = 0.9) for pure glue for comparison.

In figure 4, we show the phase diagram for the deconfinement transition with the

three different glue potentials introduced in section 3 at B = 0. The blue lines are the

polynomial potential (3.5), the red lines are the logarithmic potential (3.9), and the green

lines are the Fukushima potential (3.12). The black line shows the transition temperature

T0 = T0(Nf , µ, γ̂ = 0.9) for pure glue for comparison. We note that the black curve is almost

the same as the curve for the Fukushima potential (red), implying that the coupling to the

quarks has almost no influence on the deconfinement transition.

As was observed in [41] we find with the logarithmic potential that Φ = Φ̄ for all

values of µ, we also find this to be true with the Fukushima potential. We also find with

the Fukushima potential, and to a lesser degree with the logarithmic potential, that the

deconfinement transition temperature is dominated by the gluonic potential. This was also

backed up by direct investigation of the Φ and Φ̄ as functions of T .

In figure 5, we show the phase diagram for the chiral transition using the different

gluonic potentials. We also show the phase diagram for the quark-meson model without

the Polyakov loop, i.e. for Φ = 1. The lines show that the particular form of the gluonic

potential is not as influential as we saw in the case of the deconfinement transition. At

zero µ and B, Tφ decreases by 2% and 3% for the logarithmic and Fukushima potentials

respectively. Only with µ & 260MeV do we see a significantly larger deviation than this.

5 Results at finite magnetic field

In this section, we will present our main results and discuss them in some detail. In

figure 6, we show the phase diagram for the chiral and the deconfinement transitions for

B = 0 (blue lines) and for |qB| = 5.3m2
π. The results are obtained using the polynomial

glue potential (3.5). We will discuss the results in detail in connection with figure 7,
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Figure 5. Phase diagram for the chiral transition for B = 0 with different glue potentials however

the same gluoinic transition temperature T0 = T0(Nf , µ, γ̂ = 0.9). Also shown is the transition

temperature for Φ = 1, i.e. for the quark-meson model without the Polyakov loop.
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Figure 6. Phase diagram for the deconfinement and chiral transitions for B = 0 and the largest

magnetic field, |qB| = 5.3 m2
π with the Polynomial potential.

where we show the chiral and deconfinement transition temperatures as a function of B

for different values of µ.

In figure 7, we show the transition temperatures for the chiral and deconfinement

transitions as functions of B for different values of µ. The solid blue lines indicate the
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Figure 7. Transition temperatures for the chiral and deconfinement transitions as functions of B for

different values of µ. Solid blue lines denote Tφ while dashed lines correspond to the deconfinement

transition with green giving TΦ/2, red giving TΦ̄/2.

chiral transition, Tφ, while the dashed green lines are TΦ/2 and the dashed red lines are

TΦ̄/2. In the left upper panel, µ = 0 and Φ = 1
2 and Φ̄ = 1

2 coincide for all B. We note

that the transition temperature for the chiral transition is increasing for values of µ up

to approximately µ = 210MeV where it is flat (lower middle panel). For larger chemical

potentials, the transition temperature for chiral transition is a decreasing function. This

shows the magnetic catalysis for small µ and inverse catalysis for large µ which we discuss

below. For nonzero µ we see that the splitting between Φ and Φ̄ increases with µ and

also with the strength of the magnetic field B. For small values of µ, TΦ/2 and TΦ̄/2 are

almost independent of B, while for large values, TΦ/2 increases with increasing B while TΦ̄/2

decreases with B. This behavior indicates that the relative importance of the fermionic

and mesonic fields also increases with larger B and µ although we have not identified a

mechanism behind this behavior.

In figure 8, we show the phase diagram for the chiral phase transition for different

values of the magnetic field B with coupling to the Polyakov loop variable (solid lines)

and without (dashed lines). Inset shows the transition temperature as a function of B for

vanishing µ in the two cases. We first notice that the critical temperature increases with

the magnetic field for small values of the chemical potential µ. The basic mechanism is that

of magnetic catalysis [51–53], namely that the chiral condensate increases as a function of

the magnetic field. It is interesting to note that the increase of the transition temperature
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Figure 8. Phase diagram for the chiral transition for different values of the magnetic field B with

(solid lines) and without (dashed lines) the Polyakov loop using the polynomial potential. Inset

shows the critical temperature as a function of B for µ = 0 with (solid lines) and without (dashed

lines) the Polyakov loop.

as a function of B is smaller when we couple the chiral sector to the gluonic sector. For

large values of the chemical potential µ, the critical temperature is a decreasing function

of the magnetic field. This is inverse catalysis [54, 55]. We also find that the transition

temperature is increased signficantly for all values of µ with the addition of the Polyakov

loop. Below µ ∼ 200MeV Tφ increases by approximately 25% and above this density we

find greater increases in Tφ. The Polyakov loop acts to suppress the finite temperature,

fermionic contribution to the effective potential at all temperatures, although particularly

at low temperatures. Thus we expect some increase in Tφ but its magnitude is of interest

as it shows that the confining dynamics does play an important role in the chiral transition

within this model. In this region we find Tφ, Fuku − Tφ, log/poly ≈ 20MeV. The relative

increase in magnetic field is more greatly affected by the choice of potential, with the

relative increase in Tφ being approximately 20% less with the logarithmic and Fukushima

potentials as opposed to the polynomial potential shown in figure 8.

Very recently, the existence of a new critical point associated with the deconfinement

transition of strongly interacting matter at finite T and B, but vanishing µ has been

suggested [56]. The basic idea is that quarks effectively decouple in the presence of very

large magnetic fields due to their increasing mass as a function of B. In this case, one should

be able to describe the system with an effective theory of pure gluondynamics. Although

this effective theory is anisotropic, it is likely that it has a first-order transition just like

isotropic pure-glue QCD. Since QCD with physical quark masses exhibit a crossover and
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not a first-order transition, there ought to be a critical point in the T − B plane, where

the line of first-order transition ends. However we find no evidence within the range of

magnetic fields we examine of a transformation from the observed cross-over transition to

a first order transition for the deconfinement order parameter.

6 Summary and outlook

In this work we have used the functional renormalization group to calculate the phase

diagram with respect to the chiral and deconfinement transitions for the Polyakov loop

extended quark-meson model. We first investigated the effects of the gluonic potential,

showing that the deconfinement transision is quantitavely dependent upon the exact im-

plementation, and in some cases even qualitatively dependent. Most noticeably TΦ/2−TΦ̄/2

is only non-zero when using the polynomial potential (3.5). This potential was also the

least dominating in that the fermionic and mesonic degrees of freedom had a much larger

effect upon the deconfinement order parameters, Φ and Φ̄. However for all three potentials

the gluonic potential dominated the dynamics. At high µ we see a double humped struc-

ture in these order parameters. This made the evaluation of TΦ/2 and TΦ̄/2 difficult and

we can not find a first order transition around µ ∼ 300MeV (given by Herbst et al. [45])

although we saw indications of this.

We find magnetic catalysis at low µ in agreement with other model calculations, how-

ever we see a weakening of its effects with the addition of the Polyakov loop. At large µ the

inverse magnetic catalysis found in the quark-meson model [17] is also found here. When

using the polynomial potential we a find splitting of TΦ/2 and TΦ̄/2 at non-zero µ. This

splitting increases with increasing magnetic field strength and quark chemical potential

(other than for the very highest µ value). In addition Tφ increases significantly for all val-

ues of µ shows that the Polyakov loop plays an important role in the chiral transition. In

contrast to the confinement transition, we found that the chiral transition is not sensitive

to the choice of the gluon potential.

In the recent papers [6, 24], the authors suggest a resolution of the discrepancy between

the model calculations and the lattice simulations. The chiral condensate can be written as

〈ψ̄ψ〉 = 1

Z(B)

∫

dUe−Sg det
(

D/(B) +m
)

Tr
(

D/(B) +m
)−1

, (6.1)

where the partition function is

Z(B) =

∫

dUe−Sg det
(

D/(B) +m
)

, (6.2)

and Sg is the pure-glue action. Thus there are two contributions to the chiral condensate,

namely the operator itself (called valence contribution) and the change of typical gauge

configurations sampled, coming from the determinant in eq. (6.1) (called sea contribution).

At least for small magnetic fields one can disentangle these contributions by defining

〈ψ̄ψ〉val = 1

Z(0)

∫

dUe−Sg det
(

D/(0) +m
)

Tr
(

D/(B) +m
)−1

, (6.3)

〈ψ̄ψ〉sea =
1

Z(B)

∫

dUe−Sg det
(

D/(B) +m
)

Tr
(

D/(0) +m
)−1

. (6.4)
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At zero temperature, both contributions are positive leading to magnetic catalysis. At

temperatures around the transition temperature, the valence condensate is still positive

while the sea condensate is negative. Hence there is a competition between the two leading

to a net inverse catalysis. The sea contribution can be viewed as a back reaction of the

fermions on the gauge fields and this effect is not present in the model calculations as

there are no dynamical gauge fields. If such a back reaction can be incorporated in the

model calculations, one may be able to obtain agreement with the lattice simulations.

One interesting attempt that was made recently, used a B-dependent parametrization of

the transition temperature T0 [28] in analogy with the flavor and µB dependence of T0.

Given the constraint that there is magnetic catalysis at zero temperature and that the chiral

transition is a crossover, the authours found that the PQMmodel leads to thermal magnetic

catalysis in the entire allowed parameter space. The calculations presented in [28] were

in the mean-field approximation and whether the inclusion of bosonic fluctuations changes

this picture is not known. In that case, we are still missing a key ingredient within these

models and the disagreement with lattice remains a major challenge to model builders.
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