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Truth is much too complicated

to allow anything but

approximations.

John von Neumann (1903-1957)
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Abstract

Scheduling jobs in a manufacturing company that delivers custom products is

challenging. Aarbakke is a company that manufactures advanced assemblies

for the oil and gas industry. Its existing resource planning tool frequently

produces unrealistic job schedules, leading to substantial delays. In this

thesis, we describe a reinforcement learning agent that optimizes scheduling

by utilizing historical data. Our aim is to minimize the time spent processing

jobs past their deadlines - the tardiness. The problem can be modelled

as an open shop scheduling problem. Existing research in this area has

only looked at other performance measures, such as makespan. Due to the

NP-hardness of the problem, we used ant colony optimization and genetic

algorithms to produce heuristic scheduling algorithms that can make efficient

decisions under uncertainty. Based on cross-validation of 18 algorithms, a

candidate model was selected and tested in a hypothesis test. It reduced the

mean tardiness by 2.6 % compared to the scheduling algorithm currently in

use when testing on historical processing times and by 14.6 % when testing

on sets of forecasted processing times. Implementing it in production can
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potentially lead to savings in manufacturing cost. The approach can be

applied to similar problems in other custom job shops.
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Preface

At the start of 2016, I had been juggling with the idea of using machine

learning in an industrial setting for my master’s thesis for some time, when

I became aware of a project my employer, F5 IT, had initiated with manu-

facturing company Aarbakke.

I knew this was a unique opportunity to test my ideas in a real-world

environment. Not only did Aarbakke have a large database of information

collected from the entire domain of their business. Its management also

had great ambitions about how to use it. There had been little in terms of

progress at the time, and I took it upon myself to rejuvenate the project.

After a successful proof of concept phase, we landed on a problem statement

that was aligned with the company’s strategy as well as my own interests.

The subsequent work has taken me on an interesting journey of data anal-

ysis, research and software development which has culminated in this thesis.

H̊akon Hapnes Strand

Stavanger, December 2016
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Chapter 1

Introduction

1.1 Background

Aarbakke is a Norwegian manufacturing company that produces advanced

equipment and assemblies for the oil and gas industry. To stay competitive

in a toughening market, the company has implemented an ERP system that

controls and monitors every operation in its manufacturing process.

An integral part of the ERP system is a scheduling tool that we will

refer to as the Scheduling Workbench (SWB). Throughout the company, all

operations are performed according to schedules that this tool outputs daily.

The operations are part of work orders that are inserted into the schedules

based on a deterministic dispatch algorithm. Although the system logs a

large amount of trace information to a database, the scheduling algorithm

does not take this historical knowledge into account. Nor does it consider
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the stochastic nature of processing times. As a consequence, the company

frequently experiences a substantial disparity between scheduled activities

and actual deliveries. Adding to the difficulty, Aarbakke’s work orders don’t

follow a regular pattern. Due to the customized nature of the equipment the

company delivers, orders are often very different.

To improve upon the existing scheduling framework, this research sug-

gests an alternative approach which utilises machine learning and computa-

tional statistics to discover and exploit patterns contained in the historical

data.

1.2 Scope

The primary aim of the research is to reduce the mean tardiness in the man-

ufacturing environment at Aarbakke by improving the scheduling algorithm

used in the Scheduling Workbench.

In order to achieve that, we use machine learning techniques and com-

putational statistics to infer optimal scheduling strategies. More specifically,

strategies are learned using implementations of two families of metaheuristic

search algorithms, ant colony optimization and genetic algorithms, in com-

bination with reinforcement learning.

It is also paramount to the research to validate and test the results using

statistically rigorous evaluation criteria.
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1.3 Significance

The alternative scheduling approach presented in this thesis can reduce the

tardiness at Aarbakke’s machine shop with a noticeable percentage, poten-

tially leading to significant savings in manufacturing cost.

The proposed framework can be implemented by integrating the software

developed during this research with the already existing Scheduling Work-

bench, with minimal need for adjustments.

While this research only looks for scheduling strategies that generalize

well to the manufacturing environment at Aarbakke specifically, the general

approach could be applied to manufacturing environments of a similar type,

where the scheduling process can be modelled as an open shop scheduling

problem.

Much of the existing literature on job scheduling, some of which is re-

viewed in chapter 2, only consider job shops with regular job patterns.

Scheduling in a custom job shop is significantly more difficult (Lang, 2011).

Open shop scheduling is given less attention than other scheduling prob-

lems in literature (Naderi, Ghomi, Aminnayeri & Zandieh, 2010). As we shall

see in chapter 2, evaluating the performance of metaheuristic algorithms in

minimizing tardiness in open shop scheduling is an open research problem.

3



1.4 Problem statement

How can Aarbakke utilize historical data to improve the scheduling algorithm

in its scheduling tool?

1.5 Assumptions

Throughout the thesis, we assume that the reader is familiar with the ba-

sic theory of statistics and elementary computer science. The definitions in

1.8 should provide sufficient information for readers with a scientific back-

ground, but explanations of the most rudimentary concepts are omitted. The

algorithms are either presented in an informal pseudocode that imitates the

Python programming language that was used extensively throughout the re-

search, or in actual Python code. Python has a comparatively simple syntax

that is sometimes called ”executable pseudocode” (Krol, 2014). Little or no

prior knowledge of computer science should be required to grasp the logic of

the algorithms.

It is assumed that the information contained in the database provides

an accurate account of historical events and that all work has been logged

correctly. 1

It is assumed that operations that are planned with zero duration don’t

act as constraints.

1An overview of the database is given in appendix B.
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1.6 Limitations

The time series data that the research is based on dates back to Decem-

ber 12, 2015, when Aarbakke started logging operational information in a

database. The entire data set spans approximately one year at the time of

thesis submission. Hence, there could be long-term trends that analysis of

the current data will not uncover. The calendar year of 2016 has been one

of great turmoil in the Norwegian oil and gas industry (NTB, 2016). The

activity level at the company this year does not necessarily reflect what has

been normal in previous time periods.

1.7 Delimitations

Aarbakke’s database contains more than 20 GB of tabular data spread across

23 tables, most of which has a relevance to the problem statement. Some

of the data has been excluded from the scope so that a practical solution to

the problem can be implemented within the given time frame, leading to the

following delimitations.

• While the research has modelled statistical distributions of processing

times connected to machines and resources, it would be possible to

use the same approach on other entities that are linked to work orders

and operations, such as employees, customers and machine parts. The

research has been purposely limited to machines and resources.

5



• Operations are constrained by the availability of parts. The database

keeps track of the inventory, but this information is not considered in

the simulation models.

• The machines are modelled as ideal machines that never experience

downtime due to failure.

• The arrivals of new work orders are stochastic by nature and affect

future schedules. When simulating the outcome of a schedule, future

orders are not considered.

• On some occasions, planned operations are moved from one machine

to another. This is not modelled in simulations.

• Schedules are exported from the Scheduling Workbench and effectuated

on a daily basis. When simulating the outcome of a schedule, the fact

that the schedule is subject to daily change is ignored. To incorporate

future schedules in the model, there would have to be simulations within

simulations, vastly increasing the computational complexity.

• All statistical models are defined according to the principles of frequen-

tist probability. Aarbakke has several senior employees with decades

of experience within the company, whose domain knowledge could be

exploited to construct Bayesian probability models.

• External factors that impact the activities at Aarbakke could be used

as inputs to the machine learning algorithm, but have been excluded

6



from the scope.

1.8 Definitions

Given the interdisciplinary nature of the thesis, this section provides defini-

tions of concepts specific to computer science and computational statistics.

Antifragility : Antifragile systems have the property of improving when fac-

ing risk and uncertainty, as opposed to resilient systems which simply resist

shock (Taleb, 2012, p. 2).

Big O notation: A way of describing the asymptotic upper bound running

time of an algorithm as a function of its input size n, often by inspecting the

algorithm’s overall structure (Cormen, Leiserson, Rivest and Stein, 2002, pp.

41-44).

Cross-validation: A model-validation technique for assessing how the results

of a statistical analysis will generalize to an independent data set (”Cross-

validation”, n.d.).

Discrete-event simulation: Modelling of systems in which the state variables

change only at discrete points in time (Banks, Carson, Nelseon and Nicol,

2009, p. 12). In discrete-event simulation, an artificial history of a system is

7



generated based on model assumptions and the performance of the system is

estimated using numerical methods.

Dispatch rule: A simple, rule-based algorithm that dispatches jobs in or-

der by evaluating a single metric.

Feature: A term commonly used in machine learning for input variables

to the machine learning algorithm.

Forward chaining : An alternative approach to cross-validation for time-series

data. As with k-fold cross-validation, the training subset of the dataset is

split into folds, but the model is always tested on data that succeeds the

training data in time (Williams, 2011).

Hyperparameter : Hyperparameters (in the context of machine learning) are

parameters that define higher level concepts about models and cannot be

learned directly from the data (Amatriain, 2016).

Kernel density estimation: An estimation of the probability density func-

tion of a variable, using sums of symmetrical probability densities. The

estimation is defined by the integral
∫∞
−∞K(t)dt = 1, where K(t) is a kernel

function (Rizzo, 2008). In this research, we use the standard normal density,

or the Gaussian kernel, as the kernel function.
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K-fold cross-validation: A machine learning technique in which the model

training subset of the dataset is split into k folds and the model is succes-

sively trained on k-1 folds and tested on the remaining fold. The process is

repeated k times so that every fold is used for testing exactly once (Raschka,

2015, p. 175).

Lazy evaluation: Evaluation of a programming expressing only when it is

needed, to avoid repeated evaluations (”Lazy evaluation”, n.d.).

Machine learning : The science of getting computers to act without being

explicitly programmed (Ng, 2011). Also known as data mining.

Machine learning model : A mathematical function inferred from data us-

ing a machine learning algorithm (Amatriain, 2016).

Markov decision process : A discrete time stochastic control process that

is partly random and partly under the control of a decision maker (”Markov

decision process”, n.d.).

Metaheuristics : A high-level problem-independent algorithmic framework

that provides a set of guidelines or strategies to develop heuristic optimiza-

tion algorithms (Sörensen & Glover, 2013).

9



NP-complete: A decision problem is said to be NP-complete if it cannot

be solved in polynomial-time. That is, no solution with a time complexity

of, using big-O notation, O(nk) has ever been found for an NP-complete

problem (Cormen et al., 2002).

NP-hard : The hardest complexity class in computational complexity the-

ory. An NP-hard problem is at least as hard as an NP-complete problem.

Overfitting : When a model captures the training data well, but fails to gen-

eralize well to unseen data (Raschka, 2015), often as a result of prolonging

the training experiment longer than necessary or because of biases in the

validation and testing phases of machine learning.

Pseudorandom: Computer-generated numbers that seem random but aren’t

in a strict sense (”Can a computer generate a truly random number?”, 2011).

A constant number, known as a random seed, can be used to reconstruct the

same sequence of pseudorandom numbers.

Reinforcement learning : A type of machine learning where a software agent

improves its performance by interacting with an environment and receiving

rewards for favourable outcomes. (Raschka, 2015, p. 6)
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Search space: In this context, the set of possible solutions to a decision

problem.

Tardiness : A measure of delay that ignores early completions (”Tardiness

(scheduling)”, n.d.).

1.9 Summary

In this chapter, we have defined the problem statement and scope of the

research. Important limitations, delimitations and assumptions that was

made during the research were highlighted. The reader has been provided

with a background explaining the underlying motivation for undertaking the

research as well as definitions of key concepts used throughout the thesis.
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Chapter 2

Literature review

2.1 Scheduling

In job scheduling, the optimization problem is defined by the structure of the

work process. We define any work process as a set of jobs to be performed

on machines using a number of operations. Each operation can only be

performed on one machine, while the machines could have specific or generic

capabilities depending on the problem. A machine does not have to be a

piece of physical equipment. It could also be an abstraction of a group of

employees or other entities that can execute work. The term resource is used

interchangeably, but in our case most of the resources are physical machines.

In the operations research literature on scheduling problems, different

terms refer to similar problems with small alterations. To avoid confusion,

we reproduce the definitions described in Anand and Panneerselvam (2015):

12



• Single machine scheduling: The problem consists of arranging a

number of jobs to be performed on one machine that can handle one

job at a time.

• Flow shop scheduling: The problem consists of scheduling n jobs

on m machines, each with m operations to be performed in the same

order.

• Job shop scheduling: The problem consists of scheduling n jobs on

m machines, each with m operations to be performed in varying order.

• Open shop scheduling: The problem consists of scheduling n jobs on

m machines, each with 1, 2,...,m operations to be performed in varying

order.

2.2 Open shop scheduling

In this research, we are dealing with a set of jobs that may require processing

on any number of machines from 1 to m. The order of processing can vary

freely. According to the definitions in the previous section, we can model

this as an open shop scheduling problem (OSSP).

Anand and Panneerselvam (2015) provide a comprehensive study of the

current state of open shop scheduling problems. Their review of the literature

group the different approaches by their optimization objectives:

• Minimizing the makespan.

13



• Minimizing the sum of completion time of all the jobs.

• Minimizing the weighted sum of completion time of all the jobs.

• Minimizing the total tardiness of all jobs.

• Minimizing the weighted total tardiness of all jobs.

• Minimizing the number of tardy jobs.

• Minimizing the number of weighted sum of tardy jobs.

• Minimizing the maximum lateness.

The underlying goal of scheduling optimization is roughly the same regardless

of objective function. The aim is to execute as much work as possible in as

little time as possible, maximizing efficiency.

As stated in section 1.2, the specific aim of this research is to minimize

mean tardiness as defined in 1.8 and 3.3. Very little research has been carried

out to minimize total tardiness 1 of all jobs in the open shop scheduling

problem (Anand & Panneerselvam, 2015, p. 45). The mentioned paper

suggests development of heuristic, metaheuristic and hybrid algorithms for

this problem. It is in this exact direction our research turns its attention.

2.3 Time complexity

Determining the asymptotic running time, or time complexity, of scheduling

problems has long been a research topic of interest in computer science. The

1Section 3.3 explains why we use mean tardiness as the objective function instead of
total tardiness and why it only makes a minor difference.
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Travelling Salesman Problem (TSP) is a well-known special case of the Job

Shop Problem (JSP) that was implicitly proven to be NP-hard in the early

1970s (Karp, 1972). By extension, JSP is also NP-hard, given that TSP can

be considered a simplification of JSP with m = 1.

The time complexity of the Open Shop Scheduling Problem (OSSP) has

also been devoted considerable study. The two-machine OSSP with different

resources has been shown to be NP-hard when the objective is minimizing

the makespan, that is, the total time elapsed from the beginning of the first

job to the end of the last (Gonzalez & Sahni, 1976). Other, similar results are

listed in Anand and Panneerselvam (2015) for various objective functions.

Considering the NP-hardness of general open shop scheduling problems,

this research focuses on heuristics, algorithms that find approximations rather

than exact solutions.

2.4 Metaheuristics

A heuristic algorithm is characterized by its aim of finding a solution that

is ”good enough”, when finding the global optimum through exact means

would be impractical. Metaheuristics is a class of algorithms that generate

heuristic algorithms.

Formally, metaheuristics is a high-level problem-independent algorithmic

framework that provides a set of guidelines or strategies to develop heuristic

optimization algorithms (Sörensen & Glover, 2013). In practice, the term is

15



also used to refer to a problem-specific implementation of a heuristic opti-

mization algorithm according to the guidelines expressed in the metaheuristic

framework (Bolufé-Röhler, 2014).

Yang (2011) provides an overview of the most commonly used metaheuris-

tic algorithms. Many of them are inspired by phenomena occurring in nature,

leading to a subset of metaheuristics called nature-inspired algorithms. This

research focuses on two classes of nature-inspired algorithms that have been

proven successful on a wide variety of optimization problems through decades

of research.

2.4.1 Ant colony optimization

Ant colony optimization was introduced in the PhD thesis of Marco Dorigo

(Dorigo, 1992). It is inspired by the foraging behaviour of social ants. Ants

communicate by excreting a chemical substance called pheromones. Ants

are attracted to its scent, so that an ant is more likely to follow a trail with

a high concentration of pheromones. Since pheromones gradually evaporate

over time, ants will tend to prefer the shortest route from the ant heap to the

food source. More and more ants will eventually follow the same trail, and

the colony will discover the shortest route from A to B. The behaviour of

the colony is a positive feedback mechanism, where the colony converges to

a self-organized state, which is the defining characteristic of ant algorithms

(Yang, 2011).

Ant colony optimization can be used both for discrete and continuous
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optimization problems (Heaton, 2014). In the discrete version, the goal is to

traverse a graph, a structure of connected nodes, by travelling the shortest

distance. The ”distance” in this case is the objective function, the total

tardiness in the machine shop.

The pheromones are added to the edges between nodes, so that the prob-

ability of an ant moving from node i to node j is

P (i, j) =
τij∑m
k=1 τk

, (2.1)

where τij is the amount of pheromones at edge ij, τk is the amount of

pheromones at edge k and m is the total number of edges.

The implementation in this research is based on Heaton’s approach. In

our case, each node in the graph corresponds to a work order, and the

path through the graph is the order in which work orders are scheduled.

Pheromones are deposited and evaporated after each iteration when all the

ants in the colony have traversed the graph, thus reinforcing the trail. Several

update rules are possible (Blum, 2005):

• Elitist Ant System

• Rank-Based Ant System (ASRank)

• Max-Min Ant System (MMAS)

• Ant Colony System (ACS)

• Hyper-Cube Framework (HCF)

This research implements variations of the Elitist and ASRank systems.
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2.4.2 Genetic algorithms

Genetic algorithms are inspired by the evolutionary process of natural selec-

tion and were first devised by John Holland in the 1960s and 1970s (Yang,

2011). The following overview is based on Heaton (2014).

In genetic algorithms, a population of candidate solutions evolve through

a series of generations. The members of the population are called phenotypes,

while their actual solutions are called genotypes. The genotype is an array

of numbers representing the model’s weights for each input variable. These

resemble the chromosomes in the DNA of living organisms. Hence, the name

genetic algorithms. The output of the model is the scalar product of the input

variables and the genotype. Let x be the input vector, w be the genotype

and n be the size of each vector. Then the output, y, is calculated as:

y =
n∑

i=1

xiwi (2.2)

In our implementation, the inputs are a series of dispatch rules further de-

scribed in chapter 5.

After each generation, the population evolves through natural selection.

The fittest phenotypes, according to some fitness function, breed new pheno-

types, while the least fit phenotypes are removed from the population. There

are three main selection methods:

• Truncation selection: The population is sorted by fitness and the

fittest proportion p of the population is selected and reproduced 1/p
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times. The rest of the phenotypes are removed from the population.

• Fitness proportionate selection: Each phenotype is selected with

a probability proportionate to its fitness.

• Tournament selection: A number of phenotypes, k, are selected to

participate in a tournament. Two and two phenotypes are paired up

in knockout rounds, where the fittest advance to the next round. The

tournament ends when only one winner is left.

Tournament selection has several advantages over the other methods. Most

importantly, it bypasses the concept of generations. For each tournament,

only its participants need to be scored, instead of the entire population.

This becomes very convenient when the scoring procedure is computationally

expensive, as is the case in this research. Thus, we will be using tournament

selection exclusively.

Once phenotypes have been selected for breeding, new members of the

population are generated by utilizing two genetic operators, crossovers and

mutation. These serve to balance exploitation and exploration of the search

space, much like in real-world biological evolution. Crossover works by taking

parts of the genotype of each parent solution when creating a new candidate

solution, exploiting the fit traits of the selected parents. Mutation works by

slightly altering parts of the parent genotype that is transferred to the child

genotype. This ensures that the population does not get stuck in a local

optimum by forcing exploration.
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As with ant colony optimization, genetic algorithms can be applied to

both discrete and continuous problem. In this research, we use a continuous

implementation to learn a set of composite dispatch rules. This approach has

been used successfully in job shop scheduling (Shahzad & Mebarki, 2010).

2.5 Reinforcement learning

Machine learning is the science of getting computers to act without being ex-

plicitly programmed (Ng, 2011). This field of computer science can further be

divided into three broad categories, depending on the problem type: Super-

vised learning, unsupervised learning and reinforcement learning (Raschka,

2015). Supervised learning deals with labelled data, when certain inputs

are established to correspond with known outputs. Unsupervised learning

discovers hidden structure in unlabelled data. In the problem at hand, our

aim is to devise an algorithm that learns optimal scheduling strategies when

outcomes are highly uncertain. One of the main methods to tackle such

problems is reinforcement learning (Kochenderfer, 2015, pp. 4-5).

Sutton and Barto (2012) define reinforcement learning as learning how to

map situations to actions, so as to maximize a numerical reward signal. In

mathematical optimization, this reward signal is referred to as the objective

function. In recent literature on machine learning, the term cost function - or

loss function - is used if the objective is minimization, and fitness function

if the objective is maximization. A more informal definition focusing on
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computational application is given by Raschka (2015, p. 6), who describes

reinforcement learning as a type of machine learning where a software agent

improves its performance by interacting with an environment and receiving

rewards for favourable outcomes.

The process in which scheduling takes place is essentially a Markov deci-

sion process, a discrete-time stochastic control process that is partly random

and partly under the control of a decision-maker, in this case the Schedul-

ing Workbench. Reinforcement learning can solve Markov decision processes

without explicit specification of transition probabilities. Instead, the tran-

sition probabilities are accessed through a simulator (”Markov decision pro-

cess”, n.d.). A more extensive discussion of the theory behind this can be

found in Sutton and Barto (2012, pp. 58-73). This research implements a

reinforcement learning agent in a discrete-event simulation environment.

2.6 Discrete-event simulation

Discrete-event simulation (DES) models systems in which the state variables

change at discrete points in time (Banks et al., 2009, p. 12). This is a flexible

approach with several advantages (Sharma, 2015), some of which are:

• DES allows the study of complex systems.

• DES enables feasibility testing of any hypothesis regarding the system.

• Designing the simulation model might help in increasing knowledge
about the system.
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• DES aids the formulation and verification of analytical solutions.

A discrete-event simulator consists of the following components:

• System state: A set of variables that capture the properties of the
system.

• Simulation clock: An internal integer counter that keeps track of
simulation time.

• Pending events: A list of events that are going to be simulated at
specified simulation times.

• Random number generator: One or several pseudorandom number
generators simulate the random behaviour of the system.

• Statistics: The simulator keeps track of quantitative performance
measures that describe the result of the simulation.

• Ending condition: The condition in which the simulation is termi-
nated. In this case, after time t has elapsed.

2.7 Summary

In this chapter, we have reviewed the existing literature on open shop schedul-

ing and established that our problem is an open research problem that is

NP-hard. The concept of metaheuristics has been defined and a descrip-

tion has been given of the nature-inspired algorithms implemented in this

research, ant colony optimization and genetic algorithms. Finally, we have

discussed the machine learning task of reinforcement learning as a way of

solving Markov decision processes and given a brief overview of discrete-event

simulation.
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Chapter 3

Methodology

3.1 Research methodology

To address the problem statement from 1.4, we use the scientific method,

which involves developing a testable hypothesis, gathering data and making

observations about the results. The problem can be divided into three central

questions that the research experiment must answer:

• Is it possible to use historical data to improve the scheduling algorithm?

• If it is, which model should be used?

• How well does the selected model perform?

A machine learning model applied to a practical problem should be vali-

dated on the basis of three measures: Accuracy, reliability and usefulness

(Lukawiecki, 2016).
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In the case of reinforcement learning, there is no meaningful way of mea-

suring predictive accuracy, since the exact values of optimal outcomes are not

known. Instead, the performance of the model is measured by some objective

function, or cost function. This metric is discussed in section 3.3.

The reliability of a model describes how well it generalizes to unseen data.

This is assessed through cross-validation and subsequent hypothesis testing,

described in sections 3.4 and 3.5 respectively.

Finally, the usefulness of a model is a qualitative assessment performed

by a domain expert. The expert’s experience in the domain in which the

model is to be applied will help quantify what would be a significant result

in the research experiment. This is discussed in section 3.5.1.

3.2 Simulation

To train, validate and test machine learning models against historical data,

a discrete-event simulator has been implemented. The technical implemen-

tation is described in chapter 4.

The simulator contains a model of the entire machine shop as well as a

framework for machine learning, cross-validation and two-sample hypothesis

testing. It is also capable of forecasting realistic operation processing times

based on historical observations, using kernel density estimation.
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3.2.1 Kernel density estimation

When forecasting the processing times of operations, the simulator samples

from probability density functions of processing times on each machine in the

machine shop which were estimated by kernel density estimation on historical

data. Figure 3.1 shows an example of such an estimate.

Figure 3.1: Probability density function of deviations on machine B316.

The operations that are scheduled on a single machine vary greatly in

planned duration. The magnitude of duration deviations increase as the

planned duration increases. Thus, it makes more sense to sample from the

density of percentage deviations instead of absolute time deviations. In the

example, we can see that the density of percentage deviations has a smoother

25



curve, which will typically be the case.

Figure 3.2: Probability density function of deviations (%) on machine B316.

The procedure for sampling from the density of machine m is as follows:

1. Generate a random uniform variable U on [0,1].

2. Find an index i = bU ∗ nc, where n is the size of the sample vector x

containing historical duration deviations on machine m.

3. Generate a sample from the Gaussian kernel of xi.

The sample is then multiplied with the planned duration to get a forecasted

processing time for the operation on machine m. The Python code for this

procedure is listed in appendix A.1.
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3.3 Cost function

The objective of the machine learning model is to minimize mean tardiness.

If we let di be the deadline of a job i and Ci be the time of completion, then

the tardiness of the job is defined as

Ti = max{0, Ci − di} (3.1)

The total tardiness of a system is

T =
n∑

i=0

Ti (3.2)

and the mean tardiness is

T =
1

N

n∑
i=0

Ti (3.3)

where N is the number of jobs.

By jobs, we are referring to work orders in this context. Since all the

discrete-event simulations are stopped by an ending condition, not every

work order will be completed during the simulation. Using total tardiness

as the cost function could cause the learning algorithm to prefer orders with

shorter completion time, causing unwanted bias in the model. Thus, we will

perform the research experiments using mean tardiness as the measure of

performance instead. In practice, this computational trick makes a minor

difference, as the number of completed jobs in the typical time windows vary

little compared to the variance of total tardiness.
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3.4 Data partitioning

In machine learning, it is common to divide datasets into partitions and

subsets in order to separate the data used for model training and model

testing.

3.4.1 Cross-validation

When choosing between predictive models, one must consider how well the

model performs on data that was not used in building the candidate models.

The models should be subjected to cross-validation (Walpole, Myers, Myers,

& Ye, 2012, p. 487).

There are two main cross-validation techniques in machine learning. The

simplest is holdout cross-validation, in which the dataset is split into a train-

ing set and a test set. This approach is problematic, since the same partition

that is used to select the best model is also used to evaluate the performance

of the model. This means that evaluation of model performance is subject to

selection bias (Najafzadeh, 2014) and the model will be more likely to overfit

(Raschka, 2015, p. 173). A better method is to separate the data into three

parts: a training set, a validation set and a test set.

The other technique is called k-fold cross-validation. The training set of

the dataset is split into k folds and the model is successively trained on k-1

folds and tested on the remaining fold. The process is repeated k times so

that every fold is used for testing exactly once (Raschka, 2015, p. 175).
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Neither of these techniques are particularly suitable for time series data,

which we are dealing with in this research. A more principled approach

for time series data based on k-fold cross-validation is forward chaining

(Williams, 2011).

3.4.2 Forward chaining

The idea of forward chaining is to preserve the most important principle of

cross-validation for time series data: Chronology. The model should only

be exposed to knowledge during training that would have been available at

the time, and validated on data that was collected later. As an example,

if a machine learning algorithm is trained on historical data from July and

observes that job j was delayed by a certain amount of time, the trained

model will be better able to schedule j in June. Yet, we obviously don’t have

exact knowledge about the future in the real world. Thus, during training

we only expose the learning algorithm to data that was collected before the

validation and test data. Figure 3.3 shows three configurations that are used

for several models in the research experiments 1.

1Blue = training, orange = cross-validation, yellow = testing, white = not used.
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Figure 3.3: Forward chaining on 2016 data from Aarbakke’s database.

In our research, this is sometimes done slightly different, because we are

also training the model on forecasted data. This means that the model can

be trained on forecasted July data and validated on data from the same

month, because the forecasted data was constructed using information that

was available before July 1, again preserving the principle of chronology.

Models are also cross-validated against forecasted, and not just historical,

numbers. The reasoning behind that is to evaluate the models on a wider

range of scenarios. The actual events that took place in the few months

of data that we’re testing against is simply one scenario out of many likely

scenarios that could have occurred in a highly uncertain environment. We

want to create an antifragile agent that improves its performance in the face

of uncertainty.

The only concern with the forward chaining approach on Aarbakke’s

dataset is that the most extensive work orders span many months and will

overlap the different partitions. A way to counter that would be to inten-

tionally remove some work orders from the dataset to avoid any overlap.

However, that would cause a bigger problem, since we are interested in the
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dynamics of the entire system, and removing work orders from the experi-

ments would create unrealistic scenarios. With the data available, it is simply

not possible to create an experiment that covers the dynamics of the entire

system without any overlap.

On the positive side, the work orders are comprised of operations with

durations that are measured in the hours and minutes. These will very

rarely overlap partitions. The forward chaining process aims at minimizing

the effects of overlapping work orders.

3.5 Hypothesis testing

Once a candidate model has been selected, a statistical hypothesis test will

establish whether the following null hypothesis (H0) can be rejected: It is

impossible to achieve a significant reduction in mean tardiness by altering the

scheduling algorithm in the Scheduling Workbench using historical data.

If the null hypothesis is rejected, its mutually exclusive logical negation,

the alternative hypothesis (H1), must be accepted: It is possible to achieve a

significant reduction in mean tardiness by altering the scheduling algorithm

in the Scheduling Workbench using historical data.

If the null hypothesis can’t be rejected, the hypothesis test has proved

inconclusive.
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3.5.1 Significance

In order to be able to test the hypothesis, we need to clarify what constitutes

a significant reduction in mean tardiness.

It is clear that late work orders cause a multitude of negative consequences

for Aarbakke, including:

• Increased resource use.

• Loss of future orders.

• Penalties in the form of fines.

• Compounding effect of late orders causing more late orders.

Each customer order has a huge impact on company revenue, often in the

millions of NOK. (R. Thu, personal communication, November 4, 2016).

Comparing these impacts with the relatively low cost of altering the

scheduling algorithm, we will consider a reduction of at least 1.0% in mean

tardiness significant, given that a p-value of less than 0.05 can be obtained in

a Student’s t-test when running multiple experiments against the benchmark

algorithm.

3.6 Benchmark algorithm

The benchmark algorithm in the Scheduling Workbench is a variation of

the dispatch rule Earliest Due Date (EDD), with slight modifications. The
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calculated priority number given to a work order is a function of the current

day, using a relative time scale. We will denote it as Π(n). Let n be a

relative integer representation of the current day, nstart a relative integer

representation of the deadline to start work on the order and nend a relative

integer representation of the deadline to finish work on the order, all using

the same zero reference. The priority function is then:

Π(n) = c1 ∗ (n+ 777− nstart) + c2 ∗ (n+ 777− nend) + u(n) (3.4)

where c1 and c2 are arbitrary constants. Throughout this research, the fol-

lowing values were used: c1 = 0.8, c2 = 0.2.

u(n) is a step function, defined as follows:

u(n) =



100, for nend − n < 7

92, for 7 ≤ nend − n ≤ 13

80, for 14 ≤ nend − n ≤ 20

72, for 21 ≤ nend − n ≤ 30

40, for 31 ≤ nend − n ≤ 90

12, for 91 ≤ nend − n ≤ 120

0, for nend − n > 120
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3.7 Summary

We started this chapter with an outline of the research methodology. We de-

scribed the simulation approach used to train, validate and test models. We

defined the cost function used to measure model performance. We discussed

how the original dataset was split into three partitions, using the concept

of forward chaining. We described the details of the benchmark algorithm.

Finally, the null hypothesis of the research experiment was defined, and we

quantified what we would be a statistically significant improvement in the

cost function, compared to the benchmark algorithm.
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Chapter 4

Design and implementation

4.1 System specifications

4.1.1 Computer specifications

All development and testing was performed on a PC with these specifications:

Model: ASUS N552VX

Processor: Intel Core i7-6700HQ

Clock rate: 2.60 GHz

Memory: 16 GB RAM

System type: 64-bit

OS: Microsoft Windows 10.0.14393
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4.1.2 Software versions

The Anaconda data science distribution of the Python programming lan-

guage was used for developing the simulation software along with the follow-

ing packages (version number on the right):

Anaconda 4.0.0

conda 4.2.7

Jupyter 1.0.0

matplotlib 1.5.1

NumPy 1.11.1

pandas 0.18.0

pyodbc 3.0.10

Python 3.5.2

SciPy 0.18.0

SimPy 3.0.8

SQLAlchemy 1.0.12

Other software tools used for purposes such as statistical analysis, data stor-

age, automation, version control and report writing include:
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EmEditor 16.0.2

Git 2.8.1

MiKTeX 2.9

Windows Powershell 5.1.14393.206

Powershell ISE 3.0

R 3.3.0

RStudio 0.99.902

SQL Server 13.0.15000.23

Sublime Text 3.3126

TeXStudio 2.11.0

Visual Studio Code 1.6.0

4.2 Data preparation and automation

At the start of every simulation run in the discrete-event simulator, three

tables are generated in the SQL database based on historical data. Each

table is created based on multiple joins from tables in the original database.

• Capacity: This table contains all allocated capacities and constraints

on each machine.

• Schedule: This table contains the entire schedule in the Schedul-

ing Workbench at the historical point in time when the simulation

is started.
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• Statistics: This table contains statistics about processing times on

each machine.

The capacity and schedule tables are used to generate schedules in the sim-

ulator, while the statistics table is used to simulate forecasted processing

times.

The entire dataset is automatically refreshed every hour with dumps from

the Scheduling Workbench using a series of Powershell scripts 1.

4.3 Discrete-event simulator

The discrete-event simulator (DES) is at the core of technical solution to

the optimization problem presented in this thesis. It consists of a console

application written in Python that models and simulates the machine shop

in Aarbakke’s factory.

The main components of the DES are implemented using SimPy, a discrete-

event simulation library for Python. SimPy keeps track of the simulation

clock as well as access rights for operations to be performed on machines

through queueing.

The library is largely built around the yield statement, which is Python’s

internal implementation of the generator pattern. The advantage of this is

that generators use lazy evaluation, which can reduce the running time of

the program drastically.

1Powershell is an automation tool for Windows.
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Built on top of the DES is an optimization and statistical hypothesis

testing framework. It is capable of constructing candidate models from two

types of metaheuristic optimization algorithms (ACO and GA). In addition,

it can cross-validate the results using standardized two-sample hypothesis

tests to assess the performance of models. We will henceforth refer to the

entire system as the simulator.

Figure 4.1: Simulator workflow.

Figure 4.1 shows a flow diagram of the simulator workflow. Every run

starts by importing the relevant data based on a set of input parameters.

If training mode is specified (blue track), the simulator will iteratively run

simulations and update the model according to the update rules in the meta-

heuristic algorithm until the specified number of iterations are completed.

At the end, the cost function of the best candidate solution and average cost

function of the population of solutions will be plotted per iteration. The

model parameters that define the best model are given as output.

If cross-validation mode is specified (orange track), the simulator will gen-

erate an array of either planned, forecasted, random or historical processing
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times. The benchmark algorithm and candidate model are then simulated

using the same numbers in parallel for a specified number of times. After

the simulations, a two-sample hypothesis test is performed, comparing the

candidate model to the benchmark, and the results are presented as output.

4.3.1 Parameters

When discussing simulation parameters, it is important to distinguish be-

tween the three different types of parameters present within the simulator.

The machine learning model parameters define the mathematical function

that the algorithm has learned implicitly from the data. The machine learn-

ing hyperparameters are a set of explicitly stated properties of the machine

learning algorithm that can be tuned to alter its behaviour. The parameters

of the simulator are inline arguments to the console application that define

the experiment. In this subsection, we will describe the latter.

• Granularity: This parameter refers to how often a machine updates

its capacity. By default, it is set to 15 time steps (minutes), which offers

a significant improvement in execution speed over updating every time

step.

• Import type: This parameter determines where the simulator imports

the data from, either from a CSV file, a local SQL database or a cloud-

based SQL database.

40



• Iterations: Number of iterations in the experiment. For each iteration,

at least one simulation is run.

• k: Number of discrete time steps in the simulation. Each step repre-

sents a minute.

• Mode: Algorithmic mode. See 4.3.2.

• Month: This parameter defines the starting point, t0, of a simulation

in simulated time, which is always at 5:00 on the first weekday of a

month.

• Time mode: See 4.3.2.

• Verbosity: This parameter controls the amount of text the application

will output to the console. It has five levels (0-4).

4.3.2 Modes

The simulator can be run in four different algorithmic modes, depending on

the aim of the experiment:

• Benchmark: This mode is used to assess the performance of the

scheduling algorithm in the Scheduling Workbench. It can also be

used to assess alternative algorithms based on deterministic dispatch

rules.
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• Ant colony optimization: This mode infers optimal permutations

of work order priorities using an implementation of the ant colony op-

timization algorithm. The implementation is described in detail in 4.4.

• Genetic algorithm: This mode infers a generalized linear model of

composite dispatch rules using a genetic algorithm. The implementa-

tion is described in detail in 4.5.

• Cross-validation: This mode is used to run a two-sample hypothesis

test on a trained model against the benchmark algorithm used in the

Scheduling Workbench.

Four different time modes are available:

• Historical time (deterministic): When using this mode, the process-

ing times of operations are the historical times that were recorded after

each operation finished.

• Planned time (deterministic): When using this mode, the process-

ing times of operations are the durations as they were planned in the

original schedule.

• Forecasted time (stochastic): This time mode is mainly used in con-

junction with the cross-validation mode to compare a model against the

benchmark. For each iteration of the experiment, a set of forecasted

processing times are generated and used in consecutive simulations for

both the benchmark and the model.

42



• Random time (stochastic): When using this mode, all processing

times are random, although algorithmically generated numbers are

never random in the strictest sense of the word (”Can a computer

generate a truly random number?”, 2011).

4.3.3 Machine shop model

The machine shop is modelled through four classes that simulate the workflow

at Aarbakke.

• The MachineShop class holds an array of the available machines and

keeps track of all the processing time delays that have been registered

on every machine. At the end of a simulation, the class’s evaluate()

method outputs a summary of the time delays.

• The Machine class models processing machines in the factory. Every

instance of this class corresponds to an actual machine. The main

responsibility of the class is to grant or deny operations access to the

machine. This is accomplished with the class’s capacity controller()

method, which uses data from the imported Capacity table to control

access to the machine and handle the queue of operations. The full

Python code of the capacity controller() method is listed in appendix

A.9.

• The WorkOrder class models work orders. It holds arrays of its as-

sociated operations and children work orders, both of which could be
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empty. Its calculate features() method calculates the feature vector

used in the genetic algorithm, while its set priority() method assigns

the work order a priority number equal to the scalar product of the

feature vector and the weight vector learned by the genetic algorithm.

• The Operation class holds metadata about operations through its class

members. The class has one method, forecast(), which preassigns the

operation with a forecasted processing time that can be reused in mul-

tiple simulations.

In addition, a set of separate functions built on top of SimPy link the data

model to the simulations.

The operation() function models the actual execution of operations. It

extends SimPy’s process() function, which is the basic generator upon which

the rest of the library is built. We will elaborate on the implementation

of the operation() function, as it is the central component that drives the

simulator.
The pseudocode in algorithm 1 presents a simplified, high-level version

of the operation() function. The function takes a list of arguments as input,
listed in table 4.1.
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Table 4.1: operation() arguments

Argument Description
environment The SimPy simulation environment the operation is a part of.
machine The Machine object the operation is scheduled on.
time mode The time mode of the current simulation (see 4.3.2).
historical time Historical processing time (see 4.3.2).
planned time Planned processing time (see 4.3.2).
forecasted time Forecasted processing time (see 4.3.2).
planned start The simulation time at which the operation is scheduled to start.

Algorithm 1: operation(arguments)

1 begin
2 yield until planned start
3 if time mode is ’historical’ then
4 time left = historical time

5 else if time mode is ’deterministic’ then
6 time left = planned time

7 else if time mode is ’forecast’ then
8 time left = forecasted time

9 else if time mode is ’random’ then
10 time left = planned time * sample from density(machine)

11 request time = environment.current time
12 yield machine.access controller.request() /* wait for access */

13 while time left do
14 if machine has capacity then
15 time left = time left - max(machine.capacity, 1)

16 time spent = environment.current time - request time
17 machine.delay = machine.delay + time spent - planned time

First, the function sleeps until the scheduled start of operation using the

yield statement (line 2).
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Then, a processing time is assigned to the time left variable depending

on the time mode of the current simulation (lines 3-10). If the random time

mode is enabled, a random processing time is sampled from the machine’s

kernel density estimation (line 10).

Next, the operation requests access to the machine it is scheduled on (line

12). If the machine has a queue of operations, the function sleeps until access

is granted.

Once access is granted, the operation starts consuming minutes from the

time left variable (lines 13-15). For every minute, a number equal to the

machine’s capacity is consumed, for a maximum of one minute (line 15).

Being part of the simulation environment means that the function knows

the state of the simulation clock and is able to record the simulated delay

once it is finished (line 17), which is its main purpose.

4.3.4 Scheduling

Scheduling at Aarbakke follows the principles of Just-In-Time (JIT) manu-

facturing, also known as lean manufacturing. Every work order is given a

priority number and the order with the highest number is scheduled until

all the orders have been assigned to the schedule. When a work order is

being scheduled, its operations are prioritized in numerical order, starting

with the smallest. An operation is always assigned to exactly one machine

(or resource).

The scheduling algorithm always looks for the latest possible starting time
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for an operation where there is enough capacity on the machine to finish the

operation just before its deadline if it uses the planned amount of time. If

there is not enough capacity before the deadline, the algorithm will look for

a later starting time as close to the deadline as possible. These scheduling

rules are universally true for all the algorithms used in this research, both the

deterministic and heuristic ones. The only differences between the algorithms

are the order in which work orders are scheduled.

Scheduling an operation is a computationally intensive procedure that is

invoked often during the course of a simulation. At the early stages of devel-

opment, this was a major bottleneck in the execution time of the simulator.

Algorithm 2 contains two lines of code that optimizes the procedure that

finds the starting point of the schedule using Python’s NumPy library. Note

that this is actual Python code, not pseudocode.

Algorithm 2: Vectorized Python code

1 reverse = capacities[0:latest start][::-1]
2 scheduled start = len(reverse) -

np.amin(np.where(np.cumsum(reverse)>consumption))

The capacities array contains the capacity on a machine for every minute

(or, with a granularity of 15, every 15 minutes) of the simulation. The con-

sumption variable represents the number of minutes the operation is planned

to consume on the machine. Finally, np.amin, np.where and np.cumsum are

NumPy functions for absolute minimum, where clause and cumulative sum.

The algorithm finds the latest index in the the capacities array where the

operation can be scheduled and still have enough capacity left before the
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deadline to finish the operation in time if it takes as long time as planned.

Using this vectorized implementation improved the performance by an order

of 750 times over a standard loop implementation.

4.4 Ant colony optimization

For the purpose of ant colony optimization, a custom, but fairly straightfor-

ward, algorithm was implemented.

The colony maintains a matrix T with each element τij representing the

edge between node i and node j. The ants in the colony traverse this graph

and deposit pheromones depending on the cost (mean tardiness) their can-

didate solutions achieve.

In the implementation of the Elitist Ant System, the ant with the best

path through the graph in the current iteration, as well as the ant with the

best global path, both deposit pheromones to the edges along the paths with

the following update equation:

Q/C (4.1)

Here, Q is an arbitrary parameter that is selected to fit the data while C is

the value of the cost function in the path.

The implementation of the Rank-Based Ant System (ASRank) follows

this procedure:

1. Sort the colony by cost function starting with the smallest.
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2. Select the first half of the ants for pheromone deposits.

3. Update edges using equation 4.1, where C is the each ant’s cost.

Ant colony optimization depends on the following hyperparameters:

• Colony size: The number of ants in the colony.

• Evaporation rate (ρ): The ratio in which pheromones disappear from
the edges.

• Initial pheromone level (τ0): The initial pheromone level in all edges
at the start of optimization.

• Added pheromone level per iteration (∆τ): The amount of pheromones
deposited to each edge per iteration.

• Q: An arbitrary parameter that controls the rate of learning. It should
be selected based on the magnitude of the input variables and size of
the dataset.

The full Python code of the function that implements the ants’ graph traver-

sal is listed in appendix A.2, while the function that implements pheromone

deposits is listed in appendix A.3.

4.5 Genetic algorithm

The genetic algorithm also follows a custom, but fairly straightforward, im-

plementation. It really only has one hyperparameter, which is the population

size, or the number of candidate solutions. The main concepts of genetic al-

gorithms were described in 2.4.2.

Each training cycle, or iteration, consists of the following procedure:
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1. Select two parents from the population using tournament selection.

2. Create two child phenotypes using crossover operations. Let the first

child inherit three chromosomes from the first parent and one from the

second parent. Let the other child inherit three chromosomes from the

second parent and one from the first parent.

3. Add the children to the population.

4. Score the children by running simulations with their genotypes.

5. Select two victims from the population using a reverse tournament.

6. Remove the victims from the population.

7. Select a random phenotype from the population and mutate it using

shuffle mutation.

8. Select a random phenotype from the population and mutate it using

perturb mutation.

Each phenotype’s genotype is a vector w containing the weights of four dis-

patch rules:

• EDD: Earliest Due Date. Work orders are prioritized according to

the due date of their last operations. Earlier due dates have priority.

Conversely, if the weight becomes a negative number, it represents the

inverse rule, Latest Due Date (LDD).
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• LPT: Longest Processing Time. Work orders are prioritized accord-

ing to the sum of their planned processing times. More time-consuming

orders have priority. Conversely, if the weight becomes a negative num-

ber, it represents the inverse rule, Shortest Processing Time (SPT).

• LNO: Largest Number of Operations. Work orders are prioritized

according to the total number of operations within the order. Work

orders with more operations have priority. Conversely, if the weight

becomes a negative number, it represents the inverse rule, Smallest

Number of Operations (SNO).

• LNC: Largest Number of Children. Work orders are prioritized accord-

ing to their total number of child work orders. Work orders with more

children have priority. Conversely, if the weight becomes a negative

number, it represents the inverse rule, Smallest Number of Children

(SNC).

Using four signed numbers as weights, the genetic algorithm can optimize

scheduling with combinations of eight different dispatch rules.

The full Python code of the functions that implement crossovers, perturb

mutations, shuffle mutations, tournament selection and reverse tournament

selection are listed in appendices A.4, A.5, A.6, A.7 and A.8 respectively.
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4.6 Summary

In this chapter, we have described the implementation of the discrete-event

simulator and its components in detail, including an overview of its different

parameters and metaheuristic optimization algorithms. The core algorithms

that control operation processing and scheduling were also presented.
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Chapter 5

Results and analysis

5.1 Algorithm overview

In this chapter, we evaluate and compare the following scheduling algorithms,
which are abbreviated accordingly in figures and tables:

• BM: The benchmark algorithm used in the Scheduling Workbench.
All the two-sample hypothesis tests are carried out by comparing the
performance of each algorithm to this one.

• EDD: Earliest Due Date. Work orders are prioritized according to the
due date of their last operations. Earlier due dates have priority.

• LDD: Latest Due Date. Work orders are prioritized according to the
due date of their last operations. Later due dates have priority.

• LPT: Longest Processing Time. Work orders are prioritized according
to the sum of their planned processing times. More time-consuming
orders have priority.

• SPT: Shortest Processing Time. Work orders are prioritized according
to the sum of their planned processing times of their operations. Less
time-consuming orders have priority.
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• LNO: Largest Number of Operations. Work orders are prioritized
according to the total number of operations within the order. Work
orders with more operations have priority.

• SNO: Smallest Number of Operations. Work orders are prioritized
according to the total number of operations within the order. Work
orders with fewer operations have priority.

• LNC: Largest Number of Children. Work orders are prioritized ac-
cording to their total number of child work orders. Work orders with
more children have priority.

• SNC: Smallest Number of Children. Work orders are prioritized ac-
cording to their total number of child work orders. Work orders with
fewer children have priority.

• GA1: Genetic Algorithm trained on historical processing times on
data spanning March through June.

• GA2: Genetic Algorithm trained on forecasted processing times on
data spanning March through June.

• GA3: Genetic Algorithm trained on historical processing times on the
June dataset.

• GA4: Genetic Algorithm trained on forecasted processing times on
the July dataset.

• GA5: Genetic Algorithm trained on planned processing times on data
spanning July through September.

• GA6: Genetic Algorithm trained on forecasted processing times on
data spanning July through September.

• ACO1: ASRank Ant Colony Optimization trained on historical pro-
cessing time for each month.

• ACO2: ASRank Ant Colony Optimization trained on forecasted pro-
cessing times for each month.

• ACO3: Elitist Ant Colony Optimization trained on historical process-
ing time for each month.
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• ACO4: Elitist Ant Colony Optimization trained on forecasted pro-
cessing times for each month.

5.2 Metaheuristic search

Training experiments using metaheuristic reinforcement learning were inten-

tionally restricted to keep execution time to a maximum of about 15 minutes,

which is approximately the time window available in the Scheduling Work-

bench before a new schedule is forwarded to the ERP system.

For the training experiments, a partition of the dataset containing the

first half of 2016 was used. In some experiments, data was forecasted for

later months, though only using information that would have been available

before July 1, 2016.

All the genetic algorithms were trained with a population size of 20 phe-

notypes. Similarly, all the ant colony optimization algorithms were trained

with a colony size of 10 ants. All algorithms were trained for 50 iterations.

The hyperparameters were kept constant in order to give all algorithms

the same prerequisites. In ant colony optimization, the following hyperpa-

rameters were used:

• Evaporation rate, ρ: 0.5

• Initial pheromone level, τ0: 1

• Added pheromone level per iteration, ∆τ : 0.05

• Q: 1000000

55



All the ant colony optimization algorithms were discrete, whereas the

genetic algorithms were continuous.

5.2.1 Ant colony optimization

The ant colony optimization experiments show poor convergence. Figures

5.2.1 and 5.2 present similar patterns for training experiments with the Rank-

based ant system (ASRank) and Elitist ant system. The best solution im-

proves in both cases, but the average tardiness does not decrease throughout

the experiment, indicating that the algorithm has not learned a path through

the solution graph that generalizes well to the problem of reducing tardiness.

The same pattern appeared when using both historical and forecasted pro-

cessing times.
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Figure 5.1: ASRank ACO training experiment on the July dataset.
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Figure 5.2: Elitist ACO training experiment on the August dataset.

The lack of convergence is mainly caused by the size of the graph that

represents the search space. For a scheduling problem with N number of

work orders, the size of the graph is its number of edges, |E| = N2. In the

datasets used in this research, the work orders number approximately 103,

leading to graphs with sizes in the order of 106. The number of distinct paths

through such a graph is N !, which becomes an exceptionally vast number in

this context.

For comparison, Figure 5.3 shows the result of the very same implementa-

tion of the algorithm benchmarked against the Travelling Salesman Problem
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with N = 10 and |E| = 100.

Figure 5.3: ACO training experiment on the Travelling Salesman Problem.

Here, we can clearly see that the colony converges towards the global

optimum, which it finds in less than 30 iterations.

Attiratanasunthron and Fakcharoenphol (2007) show that the expected

number of iterations required for an ACO-based algorithm with n ants and

m edges is, using big-O notation,

O(
1

ρ
n2m log n), (5.1)

where ρ is the evaporation rate. In our case, this would amount to 460517019
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iterations, or, with an average of half a minute per iteration, an execution

time of 438 years.

5.2.2 Genetic algorithms

Composite dispatch rules were introduced in an effort to reduce the search

space. To optimize the weights of the rules, a continuous algorithm was

needed. A genetic algorithm was implemented for this purpose.

Priority numbers were calculated based on four pairs of dispatch rules:

LNC/SNC, LNO/SNO, LDD/EDD and LPT/SPT (see 5.1 for an explanation

of each). With this configuration, a weight vector of [0, 0, -1, 0] would

correspond to the EDD rule, and conversely, [0, 0, 1, 0] to the LDD rule.

Table B.3 shows the feature weights for the dispatch rules as well as the

composite dispatch rules found by the genetic algorithms.

By greatly simplifying the search problem, the genetic algorithms were

able to converge within the restrictions of the experiments. Figure 5.4 shows

the mean tardiness of each phenotype in an experiment of 50 iterations. 1

The algorithm quickly converges, with all new members of the population

producing good scores halfway into the experiment.

1The x-axis of the plot extends to 120 because two phenotypes are scored each iteration
and the experiment starts with all 20 phenotypes in the original population being scored.
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Figure 5.4: Genetic Algorithm training experiment on the September dataset

with historical processing times. Individual phenotype tardiness.

Figures 5.5 and 5.6 show the total mean tardiness of the entire popula-

tion as it evolves through each iteration in two different experiments with

historical and forecasted processing times, respectively. As we can see, the

algorithm converges much more smoothly when trained on the historical pro-

cessing times found in the schedule. Whether this means that the algorithm

has simply found a poor local optimum can be revealed by how well it per-

forms. Next, we will use cross-validation through forward chaining to select

a candidate model.
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Figure 5.5: Genetic Algorithm training experiment on the June dataset with

historical processing times. Mean population tardiness.
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Figure 5.6: Genetic Algorithm training experiment on the July dataset with

forecasted processing times. Mean population tardiness.

5.3 Cross-validation

18 different scheduling algorithms (see 5.1) were cross-validated against the

benchmark on three different subsets of the validation partition of the dataset,

spanning the months of July, August and September of 2016, respectively.

Both historical and planned processing times retrieved from the database

and forecasted processing times generated by sampling from kernel density

estimations were used, leading to a total of 108 experiments. Whenever fore-
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casted numbers were used, each algorithm went through 50 iterations with

50 different sets of forecasted processing times. A pseudorandom seed was

implemented, ensuring that all algorithms were exposed to the same samples,

providing a fair comparison. Performing Student’s t-tests on the results, we

were able to calculate p-values and confidence intervals that indicate whether

there was a statistically significant difference between the benchmark and the

algorithm under validation.

First, we will look at the experiments run on the subset of the validation

partition containing forecasted data for July 2016. The data was constructed

using statistical information available before July 1. Table 5.1 and figure 5.7

summarize the results.

Throughout the 50 iterations, the benchmark incurred a mean tardiness

of 2078 minutes. This was exactly the same as the EDD rule, which is a close

approximation of the benchmark algorithm. Among the other deterministic

dispatch rules, the most striking result was achieved by the SPT rule. In

fact, it obtained the lowest mean tardiness estimate out of all 18 algorithms

on forecasted July data, 1755 minutes, which is a 15.5 % reduction compared

to the benchmark. Based on the experiment, the SPT rule reduces the mean

tardiness with between 242 minutes and 404 minutes with 95 % confidence.

The Student’s t-test yielded a very small p-value (less than 0.001), which

proves the statistical significance of the result. The only other dispatch rule

to achieve a significant improvement was the SNO, with a mean reduction in

tardiness of 122 minutes and a p-value of 0.005.
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Table 5.1: July cross-val. with forecasted processing times (n=50)

Algorithm T ∆ ∆ (%) L. bound U. bound p-value

BM 2078 0 0.00 0 0 1.000

EDD 2078 0 0.00 0 0 1.000

LDD 2077 -1 -0.05 -87 85 0.878

LPT 2206 128 6.16 24 232 0.014

SPT 1755 -323 -15.54 -404 -242 0.000

LNO 2080 2 0.10 -95 99 0.969

SNO 1956 -122 -5.87 -208 -35 0.005

LNC 1996 -82 -3.95 -187 24 0.120

SNC 2061 -17 -0.82 -105 72 0.706

GA1 1776 -302 -14.53 -389 -216 0.000

GA2 1807 -271 -13.04 -365 -177 0.000

GA3 1776 -302 -14.53 -388 -216 0.000

GA4 1830 -248 -11.93 -320 -176 0.000

GA5 1799 -279 -13.43 -370 -188 0.000

GA6 1806 -272 -13.09 -353 -191 0.000

ACO1 1952 -126 -6.06 -218 -34 0.006

ACO2 2014 -64 -3.08 -146 18 0.117

ACO3 1864 -214 -10.30 -309 -119 0.000

ACO4 1920 -158 -7.60 -246 -17 0.000

All the six genetic algorithms were able to perform better than every
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dispatch rule but the SPT. They achieved reductions in mean tardiness from

11.9 % (GA4) to 14.5 % (GA1 and GA3) compared to the benchmark. All

were significant reductions within a 95 % confidence interval with very small

p-values.

Figure 5.7: Mean tardiness July with forecasted processing times.

The solutions found by the ant colony optimization algorithms performed

significantly better than the benchmark with the exception of ACO2. With

a rather high p-value of 0.117, there is statistically a 11.7 % chance that the

true performance of ACO2 would be no better or worse than the benchmark.

ACO1, ACO3 and ACO4 all achieved significant reductions in mean tardi-

ness, by 6.1 %, 10.3 % and 7.6 %, respectively. The best ant colony solution

was still worse than the worst genetic solution on this subset.
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Using the forward chaining technique, we roll forward to the subset of

the validation partition containing forecasted data for August 2016. Table

5.2 and figure 5.8 summarize the results of the experiments.

The mean tardiness incurred by the benchmark algorithm through 50 cy-

cles of forecasted processing times was 2014 minutes. Again, the EDD rule

replicates the results of the benchmark. The SPT rule performs significantly

better than the benchmark again, with a p-value of 0.006 and a mean tardi-

ness estimate of 1838, which is an 8.5 % reduction. The SNO rule achieved

results on the borderline of what can be considered statistically significant

with a p-value of 0.052, although we can not say with a 95 % confidence that

it improves upon the benchmark.

Looking at the genetic algorithms we find the best results. With the

exceptions of GA2 and GA4, they achieved statistically significant reductions

in mean tardiness, with estimates ranging from 8.2 % (GA6) to 10.2 % (GA5).

The solutions provided by ant colony optimization gave noticeably uneven

results. Although their mean estimates are between 1.5 % (ACO4) to 4.7 %

(ACO1) lower than the benchmark, the variances in the results are high

enough that the p-values lie between 0.1 and 0.6.
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Table 5.2: August cross-val. with forecasted processing times (n=50)

Algorithm T ∆ ∆ (%) L. bound U. bound p-value

BM 2014 0 0.00 0 0 1.000

EDD 2014 0 0.00 0 0 1.000

LDD 1940 -74 -3.56 -188 39 0.191

LPT 2109 95 4.57 -67 257 0.242

SPT 1838 -176 -8.47 -303 -49 0.006

LNO 2026 12 0.58 -115 138 0.853

SNO 1922 -92 -4.43 -187 3 0.052

LNC 1950 -64 -3.08 -184 56 0.287

SNC 1957 -57 -2.74 -163 49 0.285

GA1 1832 -182 -8.76 -307 -58 0.001

GA2 1935 -79 -3.80 -193 36 0.169

GA3 1834 -180 -8.66 -294 -67 0.001

GA4 1917 -97 -4.67 -221 27 0.118

GA5 1803 -211 -10.15 -325 -97 0.000

GA6 1843 -171 -8.23 -280 -62 0.002

ACO1 1916 -98 -4.72 -215 20 0.096

ACO2 1958 -56 -2.69 -185 73 0.381

ACO3 1939 -75 -3.61 -232 82 0.337

ACO4 1983 -31 -1.49 -150 88 0.601
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Figure 5.8: Mean tardiness August with forecasted processing times.

The last subset of forecasted data in the cross-validation partition con-

tains data for September 2016. Table 5.3 and figure 5.9 summarize the results

of the experiments.

The benchmark and the EDD rule both incurred a mean tardiness of

1032 minutes in the experiments. Curiously enough, the inverse LDD rule is

very close with a mean tardiness of 1031 minutes. The SPT rule performs

better than the benchmark with a mean tardiness estimate of 850 minutes,

but with a higher p-value of 0.075 this time. Other dispatch rules do not

offer significant improvements in these experiments.
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Table 5.3: September cross-val. with forecasted processing times (n=50)

Algorithm T ∆ ∆ (%) L. bound U. bound p-value

BM 1032 0 0.00 0 0 1.000

EDD 1032 0 0.00 0 0 1.000

LDD 1031 -1 -0.03 -300 299 0.997

LPT 1066 34 1.64 -212 280 0.784

SPT 850 -182 -8.76 -387 23 0.075

LNO 1032 0 0.00 -234 234 1.000

SNO 982 -50 -2.41 -326 225 0.715

LNC 1032 0 0.00 -251 251 1.000

SNC 1032 0 0.00 -231 231 1.000

GA1 818 -214 -10.30 -421 -8 0.038

GA2 799 -233 -11.21 -431 -36 0.018

GA3 740 -292 -14.05 -491 -93 0.003

GA4 858 -174 -8.37 -372 23 0.077

GA5 802 -230 -11.07 -467 6 0.051

GA6 743 -289 -13.91 -505 -73 0.007

ACO1 789 -243 -11.69 -451 -34 0.020

ACO2 1003 -29 -1.40 -252 185 0.789

ACO3 734 -298 -14.34 -492 -103 0.002

ACO4 781 -251 -12.08 -504 1 0.047

The best results are more unevenly distributed between the two families
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of metaheuristic algorithms on the September subset. The very best result

is achieved by ACO3, with a mean tardiness estimate of 734 minutes, a 14.3

% reduction, and a p-value of 0.002. It is closely followed by GA3 and GA6

with mean tardiness estimates of 740 minutes (14.1 % reduction) and 743

minutes (13.9 % reduction), respectively.

Figure 5.9: Mean tardiness September with forecasted processing times.

Most of the solutions produced by metaheuristic means offer statistically

significant performance improvements on the September subset, with the

notable exception of ACO2, which is no better than the benchmark with a

p-value of 0.789.

We now move over to the cross-validation experiments performed with

historical data.
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Table 5.4: Cross-validation with historical processing times

Algorithm T July T August T Sept. ∆ ∆ (%)

BM 2055 2280 609 0.00 0.00

EDD 2055 2280 609 0.00 0.00

LDD 2009 2167 609 -53 -2.40

LPT 2148 2242 592 13 0.02

SPT 1939 2416 502 -29 -5.75

LNO 2082 2221 609 -11 -0.42

SNO 1968 2386 609 6 0.14

LNC 1990 2158 609 -62 -2.84

SNC 2067 2287 609 6 0.30

GA1 1924 2287 502 -77 -7.88

GA2 1939 2452 502 -17 -5.22

GA3 1920 2284 502 -79 -7.99

GA4 1944 2467 502 -10 -4.92

GA5 1930 2259 502 -84 -8.19

GA6 1947 2332 502 -54 -6.85

ACO1 1958 2321 502 -54 -6.83

ACO2 1981 2351 530 -27 -4.49

ACO3 1986 2314 502 -47 -6.48

ACO4 1847 2369 502 -75 -7.93

The cross-validation partition follows the same calendar months, but this
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time using data that was actually produced at Aarbakke in the respective

months instead of forecasted numbers. All the 54 tests are presented in table

5.4. The historical data will always yield the same deterministic results as

long as the same heuristic algorithm is used to schedule work orders. Because

of this, the results are only calculated once, and it wouldn’t make sense to talk

about statistical metrics like confidence intervals and p-values. We evaluate

the results simply by observing the values obtained in the cost function, the

mean tardiness.

Figure 5.10: Mean tardiness July with historical processing times.

In July (figure 5.10), the benchmark incurred a mean tardiness of 2055

minutes, close to what was forecasted. The SPT rule, which has performed

best among the simple dispatch rules, averaged out to 1939 minutes of tar-
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diness.

The genetic algorithms came pretty close to the SPT rule in performance,

ranging narrowly from 1920 minutes (GA3) to 1947 minutes (GA6). Results

like this could partly be explained by the fact that the SPT rule is weighted

positively in all six candidate models, although it is not the dominating rule

in all of them (see table B.3).

The results from the experiments with historical data from August (figure

5.11) differ drastically from the other results. The benchmark incurred a

mean tardiness 2280 minutes, higher than what was forecasted. What is

more interesting, however, is that the performance of the other algorithms

are practically reversed when compared with other experiments.

Figure 5.11: Mean tardiness August with historical processing times.
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The otherwise poorly performing LNC and LDD rules achieved the best

results with a mean tardiness of 2158 minutes and 2167 minutes, respectively.

The metaheuristic algorithms show poor results, the worst being GA4 with

a mean tardiness of 2467 minutes, and GA2 with a mean tardiness of 2452

minutes. GA5 is the only metaheuristic algorithm to improve slightly over

the benchmark with a mean tardiness of 2259 minutes. These numbers show

that the uncertainty associated with just one month of data can generate

somewhat unexpected results.

Finally looking at historical data from September, we see an altogether

different pattern. With fewer work orders and lower tardiness, the algorithms

seem to have hit upon the same scheduling paths that produce either one

of two results. The benchmark incurred a mean tardiness of 609 minutes,

which is also true for most of the other simple dispatch rules.

The SPT rule, as well as almost all of the metaheuristic algorithms ob-

tained a mean tardiness of 502 minutes, the only excetion being ACO2, which

is close at 530 minutes.
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Figure 5.12: Mean tardiness September with historical processing times.

5.3.1 Model evaluation

Comparing the overall results of the algorithms in all experiments, GA3

performed best, scoring on average 10.20 % better than the benchmark, 12.42

% with forecasted numbers and 7.99 % with historical numbers. The next

three ranks also belong to genetic algorithms, with GA5, GA1 and GA6 all

scoring more than 9 % better than the benchmark on average.

The genetic algorithms that were trained on deterministic numbers gen-

erally perform better than the ones trained on forecasted numbers, with the

top three overall algorithms all belonging to the former group.

The fifth best algorithm is a deterministic dispatch rule, SPT. It achieves

the lowest mean tardiness on the July dataset with forecasted processing
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times, but does not perform as well as the metaheuristic algorithms on the

experiments with historical processing times. The impressive performance

by this dispatch rule, which favours work orders with short processing times,

could probably be explained by the limited time windows of the data subsets

used for validation. This dispatch rule will naturally tend to give the heavy

duty work orders low priority, which could simply serve to postpone the

problems with tardiness until later. In the metaheuristic algorithms, the

effect of this tendency is reduced by also training on longer time windows.

The ant colony optimization algorithms generally outperform the deter-

ministic dispatch rules, but are more uneven than their genetic counterparts.

The p-values from the Student’s t-tests are well above what can be consid-

ered statistically significant for some of the experiments. ACO3 achieves the

lowest mean tardiness on the September dataset with forecasted processing

times while ACO4 achieves the lowest mean tardiness on the July dataset

with historical processing times. The sporadic nature of these results suggest

that the algorithms have stumbled upon good solutions by chance.

Based on the results and analysis, we select GA3 as the candidate model.
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5.4 Hypothesis test

The candidate model (GA3) was first tested on 50 iterations of forecasted

data on the October and November dataset in a two-sample hypothesis test

against the benchmark algorithm. The benchmark achieved a mean tardiness

of 3412 minutes while the candidate solution achieved a mean tardiness of

2913 minutes, a reduction of 14.6 %. The standard error in the hypothesis

test was 39 minutes, leading to a Z-score of -12.4 and a very small p-value

on a Z-test. Similarly, the p-value from the Student’s t-test was smaller than

0.001 with three digits of precision. The mean tardiness using the candidate

solution was between 577 minutes and 421 minutes lower than when using

the benchmark with 95 % confidence. Figure 5.13 shows the consistency in

which the candidate solution outperforms the benchmark on forecasted data.
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Figure 5.13: Hypothesis test on forecasted October and November data.

The test with actual, historical data from October and November pro-

vided less dramatic, but still significant, results.

79



Table 5.5: Test on historical October and November data

Metric Benchmark Candidate model

Total tardiness (mins.) 613119 597283

Mean tardiness (mins.) 955 930

Percentage of benchmark 100% 97.4%

Improvement over BM 0.0% 2.6%

Finished work orders 642 642

Total machine delay 295058 295058

The candidate model achieved a 2.6 % reduction in mean tardiness. The

number of finished work orders was the same for both algorithms. Thus, the

candidate model also achieved a 2.6 % reduction in total tardiness. Around

half of the tardiness (295058 minutes) was a result of delay that was in-

curred when processing operations on machines, while the rest was a result

of operations waiting for machine access.

The two-sample hypothesis test of the candidate model satisfied the cri-

teria for significance specified in 3.5.1. The null hypothesis can therefore be

rejected.

5.5 Summary

In this chapter, we have presented and analysed the results of the machine

learning experiments that were performed to optimize schedules on mean tar-
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diness. The performance of 18 different scheduling algorithms based on both

metaheuristics and deterministic dispatch rules were cross-validated against

the benchmark by running a total of 108 experiments on both forecasted and

historical data, using the forward chaining technique. The family of genetic

algorithms outperformed all other algorithms. The candidate model (GA3)

was selected based on cross-validation and evaluated in a statistical hypoth-

esis test. It performed drastically better (14.6 %) than the benchmark when

testing on forecasted data and significantly better (2.6 %) when testing on

historical data. We ended the chapter by concluding that the null hypothesis

can be rejected.
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Chapter 6

Conclusion

The aim of this research was to reduce the problem with work order delays

at Aarbakke by altering the algorithm that schedules work. At the start of

chapter 3, we broke the problem into three questions that we wanted the re-

search to answer. We have shown that it is indeed possible to improve on the

current scheduling regime by introducing algorithms that exploit patterns in

historical data. The research has highlighted the importance of reducing the

search space and aiming for approximate solutions when dealing with the NP-

hard problem of open shop scheduling. Among the models we evaluated, the

best was a genetic algorithm that simplified the problem by optimizing the

composition of a set of dispatch rules. It achieved significant improvements

when testing on a subset of historical time series data containing processing

times. It also generalized well when exposed to a wider range of scenarios by

simulating processing times from statistical distributions.
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With the adverse effects of late work orders and low cost of implementing

the proposed solution, the alternative scheduling algorithm could prove ben-

eficial for the manufacturing company to gain an extra edge in a competitive

market. Furthermore, the approach could be applied to similar problems,

where custom jobs are scheduled with high degrees of uncertainty.

6.1 Suggestions for future research

Future research could look into the effects of using other metaheuristic al-

gorithms for tardiness optimization in the open shop scheduling problem,

such as simulated annealing, tabu search or particle swarm optimization.

Researchers could also implement Q-learning in combination with artificial

neural networks.

It is likely that the results achieved in this particular problem domain

could be improved by making the machine shop model more accurate. A good

start would be to eliminate some of the delimitations listed in section 1.7.

Another suggestion is to add more dispatch rules to the feature vector. One

could also study the effects of changing the underlying scheduling algorithm

by sidestepping the principle of just-in-time or using statistical estimates of

processing times when determining how much machine capacity is needed in

the schedule.

The candidate model should be subjected to further testing in a produc-

tion environment to make a more precise assessment of its performance.
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Appendix A

Source code

This appendix lists the source code of some of the more important functions.

A.1 sample from density function (kde.py)

1 def sample f rom dens i ty ( s e r i e s , n=1):
2 s e r i e s = np . array ( s e r i e s )
3 u = np . random . uniform (0 ,1 , n )
4 i = u∗ len ( s e r i e s )
5 j = np . f l o o r ( i ) . astype ( int )
6 rand samples = s e r i e s [ j ]
7 sigma = np . std ( s e r i e s )
8 rand ke rne l = np . random . normal ( rand samples , sigma /2 , n)
9 sample = np . f l o o r ( rand ke rne l ) . astype ( int )

10 i f ( len ( sample )==1):
11 sample = sample [ 0 ]
12
13 return sample

A.2 step function (ant.py)

1 def s tep ( s e l f ) :
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2 t r a n s i t i o n p r o b a b i l i t i e s = s e l f . matrix [ s e l f . l o c a t i o n ]
3 s tep = −1 # I n t e n t i o n a l l y crash the program i f something i s wrong .
4
5 # Weighted random sampling :
6 goa l = np . random . uniform ()∗sum( t r a n s i t i o n p r o b a b i l i t i e s )
7 cumulat ive = 0
8 for i in range (0 , len ( t r a n s i t i o n p r o b a b i l i t i e s ) ) :
9 cumulat ive += t r a n s i t i o n p r o b a b i l i t i e s [ i ]

10 i f ( cumulative>goa l ) :
11 s tep = i
12 break
13
14 s e l f . l o c a t i o n = step # Move ant to the new l o c a t i o n .
15 s e l f . matrix [ : , s t ep ] = 0
16 # Ensure ant w i l l not v i s i t t h i s p l a c e again .
17 s e l f . path . append ( s tep )

A.3 deposit pheromones function (colony.py)

1 def depos i t pheromones ( s e l f , a lgor i thm ) :
2 i f a lgor i thm == ’ asrank ’ :
3 for ant in s e l f . g e t t o p a n t s ( int ( s e l f . c o l o n y s i z e / 2 ) ) :
4 for i in range (0 , len ( ant . path )−1):
5 s e l f . g r i d [ ant . path [ i ] , ant . path [ i +1] ] += \
6 s e l f .Q/ant . co s t # Update r u l e
7
8 i f a lgor i thm == ’ e l i t i s t ’ :
9 # Best ant in t h i s i t e r a t i o n d e p o s i t s pheromones

10 for i in range (0 , len ( s e l f . be s t path )−1):
11 s e l f . g r i d [ s e l f . be s t path [ i ] , s e l f . be s t path [ i +1] ] \
12 += s e l f .Q/ s e l f . g l o b a l b e s t p a t h c o s t
13 # Globa l b e s t ant d e p o s i t s pheromones
14 for i in range (0 , len ( s e l f . g l o b a l b e s t p a t h )−1):
15 s e l f . g r i d [ s e l f . g l o b a l b e s t p a t h [ i ] , \
16 s e l f . g l o b a l b e s t p a t h [ i +1] ] \
17 += s e l f .Q/ s e l f . g l o b a l b e s t p a t h c o s t
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18
19 s e l f . g r i d += s e l f . pr
20 # A l l edges r e c e i v e a sma l l amount o f
21 # pheromones to ensure some randomness
22 s e l f . g r i d = s e l f . g r i d ∗ s e l f . i n v e r s e i d e n t i t y
23 # Remove s e l f−l o o p s to nodes

A.4 crossover function (genetic.py)

1 def c r o s s o v e r ( mother , f a t h e r ) :
2 daughter = Phenotype ( )
3 daughter . chromosomes = np . empty l ike ( mother . chromosomes )
4 daughter . chromosomes [ : ] = mother . chromosomes
5
6 son = Phenotype ( )
7 son . chromosomes = np . empty l ike ( f a t h e r . chromosomes )
8 son . chromosomes [ : ] = f a t h e r . chromosomes
9

10 index = np . random . rand int ( len ( mother . chromosomes ) )
11 # Only swap one gene
12 daughter . chromosomes [ index ] , son . chromosomes [ index ] \
13 = son . chromosomes [ index ] , daughter . chromosomes [ index ]
14 # Crossover
15
16 return son , daughter

A.5 perturb mutate function (genetic.py)

1 def perturb mutate ( s e l f ) :
2 perturb amount = 0.1∗max(abs ( s e l f . chromosomes ) )
3 c h i l d = Phenotype ( )
4 c h i l d . chromosomes = np . empty l ike ( s e l f . chromosomes )
5 c h i l d . chromosomes [ : ] = s e l f . chromosomes
6 c h i l d . chromosomes \
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7 += np . random . uniform(−perturb amount , perturb amount )
8
9 return c h i l d

A.6 shuffle mutate function (genetic.py)

1 def sh u f f l e mu ta t e ( s e l f ) :
2 c h i l d = Phenotype ( )
3 c h i l d . chromosomes = np . empty l ike ( s e l f . chromosomes )
4 c h i l d . chromosomes [ : ] = s e l f . chromosomes
5 index1 = np . random . rand int ( len ( s e l f . chromosomes ) )
6 index2 = index1
7 while index2==index1 :
8 index2 = np . random . rand int ( len ( s e l f . chromosomes ) )
9 c h i l d . chromosomes [ index1 ] , c h i l d . chromosomes [ index2 ] \

10 = c h i l d . chromosomes [ index2 ] , c h i l d . chromosomes [ index1 ]
11
12 return c h i l d

A.7 tournament select function (genetic.py)

1 def tournament se l e c t ( s e l f , rounds ) :
2 champ = None
3 for i in range ( rounds ) :
4 contender = \
5 s e l f . phenotypes [ np . random . rand int ( len ( s e l f . phenotypes ) ) ]
6 i f not champ or contender . f i t n e s s < champ . f i t n e s s :
7 champ = contender
8
9 return champ
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A.8 reverse tournament function (genetic.py)

1 def reverse tournament ( s e l f , rounds ) :
2 v ic t im = None
3 for i in range ( rounds ) :
4 contender = \
5 s e l f . phenotypes [ np . random . rand int ( len ( s e l f . phenotypes ) ) ]
6 i f not v ict im or contender . f i t n e s s > v ict im . f i t n e s s :
7 v ic t im = contender
8
9 return v ict im

A.9 capacity controller function (machine shop.py)

1 def c a p a c i t y c o n t r o l l e r ( s e l f , env ) :
2 while True :
3 i f s e l f . c a p a c i t i e s [ env . now ] == 0 :
4 i f s e l f . a c c e s s c o n t r o l l e r . capac i ty >1:
5 s e l f . a c c e s s c o n t r o l l e r = \
6 simpy . Resource ( s e l f . env , capac i ty =1)
7 # Set machine c a p a c i t y to 1
8
9 i f s e l f .VERBOSITY>=4:

10 print ( ” [ ” , env . now , ” ] : Deact ivat ing ” , s e l f . name , \
11 ” capac i ty : ” , s e l f . a c c e s s c o n t r o l l e r . capac i ty )
12 s e l f . a c t i v e = False
13 else :
14 i f not s e l f . a c t i v e :
15 s e l f . a c t i v e = True
16 cap = max( s e l f . c a p a c i t i e s [ env . now ] ,
17 s e l f . g r a n u l a r i t y )
18 s e l f . a c c e s s c o n t r o l l e r = \
19 simpy . Resource ( s e l f . env , capac i ty=cap )
20 # A l t e r machine c a p a c i t y
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21
22 i f s e l f .VERBOSITY>=4:
23 print ( ” [ ” , env . now , ” ] : Act ivat ing ” , s e l f . name , \
24 ” with capac i ty ” , s e l f . a c c e s s c o n t r o l l e r . capac i ty )
25
26 y i e l d s e l f . env . t imeout ( s e l f . g r a n u l a r i t y )
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Appendix B

Tables

Table B.1: Overview of Aarbakke’s database

Table Description

Customer A list of Aarbakke’s customers

CustomerOrder Single orders by customer

CustomerOrderLine Customer orders split into manufacturing lines

Employee Employees at Aarbakke

ExternalOrderPriority Work order priorities generated by machine learning

ImportRef An index of all the data import times by datetime

Part A list of parts used in manufacturing

PartStock The inventory of available parts

PlanningGroup A list of resources/machines
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Table B.2: Overview of Aarbakke’s database (continued)

ProcurementOrder Single procurement orders

ProcurementOrderLine Procurement orders split into manufacturing lines

ProcurementOrderLineTransaction Changes in procurement order lines

ProductStructure Overviews of operations needed to manufacture products

ProductStructureOperation Planned time and cost of manufacturing operations

ProductStructureOperationMaterial Planned material use of manufacturing operations

ResourceCapacity Calendar of schedules for resources

StockTransaction Changes in inventory

Supplier A list of Aarbakke’s vendors

SWBWorkOrder Dumped simulation data on work orders

SWBWorkOrderOperation Dumped simulation data on single operations

WorkOrder Logged work order data

WorkOrderOperation Logged single operation data

WorkOrderOperationMaterial Logged material usage in operations

WorkOrderOperationTransaction Logged changes in single operations
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Table B.3: Feature representation of composite dispatch rules.

Algorithm LNC LNO LDD LPT

EDD 0 0 -1 0

LDD 0 0 1 0

LPT 0 0 0 1

SPT 0 0 0 -1

LNO 0 1 0 0

SNO 0 -1 0 0

LNC 1 0 0 0

SNC -1 0 0 0

GA1 0.03546921 0.41632695 -0.6430961 -0.57688912

GA2 0.08808435 0.80908903 0.85178828 -0.71719603

GA3 0.01251136 0.11287817 -0.81582536 -0.8730170

GA4 0.16040067 -0.06205546 0.80051283 -0.21281097

GA5 0.51273901 0.60069229 -0.4295663 -0.94386541

GA6 -0.3709734 0.12062362 -0.67238265 -0.49071046
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