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Abstract
We present and discuss discontinuous Galerkin (DG) schemes for dry and moist atmospheric flows in the
mesoscale. We derive terrain-following coordinates on the sphere in strong-conservation form, which makes
it possible to perform the computation on a Cartesian grid and yet conserves the momentum density on an
f -plane. A new DG model, i.e. DG-COSMO, is compared to the operational model COSMO of the Deutscher
Wetterdienst (DWD). A simplified version of the suggested terrain-following coordinates is implemented in
DG-COSMO and is compared against the DG dynamical core implemented within the DUNE framework,
which uses unstructured grids to capture orography. Finally, a few idealised test cases, including 3d and
moisture, are used for validation. In addition an estimate of efficiency for locally adaptive grids is derived for
locally and non-locally occurring phenomena.
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1 Introduction
Dynamical cores for weather prediction or climate mod-
els, i.e. numerical solvers for the Euler equations or sim-
ilar models, are increasingly based on finite-volume type
discretisations. These schemes have often been manda-
tory in other areas of fluid dynamic simulations due to
their property to locally conserve the prognostic vari-
ables and therefore to treat shocks and other disconti-
nuities correctly. However, it is not easy to formulate
higher order schemes for these methods in complex ge-
ometries using non-cartesian grids. On the other hand,
higher order discretisations are relatively easy to achieve
with finite-element schemes; however, they are not lo-
cally conservative, in general. During recent years dis-
continuous Galerkin (DG) methods (e.g. Cockburn and
Shu (1989); Cockburn et al. (1989); Cockburn et al.
(1990)) have become popular in the fluid dynamics com-
munity. They combine the ideas of finite-volume and
finite-element schemes and consequently promise to be
both locally conserving and to allow discretisations of
almost arbitrary order. Additional appreciated properties
of DG discretisations are compact stencils, which facili-
tate their implementation on massively parallel comput-
ing architectures. Furthermore, it is easy to employ both
static or dynamic grid refinements.

Consequently, several groups have started to inves-
tigate the DG method for usability in numerical mod-
els for the atmosphere. For example, Giraldo and
∗Corresponding author: Dieter Schuster, Deutscher Wetterdienst, Frankfurter
Straße 135, 63067 Offenbach, Germany, e-mail: Dieter.Schuster@dwd.de

Restelli (2008) implemented the DG method for three
different sets of budget equations and compared them
with respect to their conservation properties, accuracy
and efficiency. The application of DG to solve shallow
water models on the sphere is found in Giraldo et al.
(2002). In Nair et al. (2009) (see also references therein)
DG methods have been successfully considered for hy-
drostatic global models. The convergence of a global
DG model for a scalar advection equation on a Yin-Yang
grid is studied in Hall and Nair (2012).

Other work shows, that variable resolution tech-
niques are becoming more and more relevant in at-
mospheric flow applications, most notably Behrens
(2006), but also in Jablonowski et al. (2009) or the
MPAS framework by Skamarock et al. (2012) just to
name a few. Müller et al. (2013) study an idealised test
case of a rising dry bubble, demonstrating that adaptive
grid refinement has a considerable potential to reduce
computational costs compared with a uniform grid. A
similar statement is done by Blaise and St-Cyr (2012)
where an adaptive DG method is considered for the shal-
low water equations on the sphere.

In contrast to the above mentioned positive properties
of DG schemes there are also some unsolved problems,
perhaps the most prominent is the relatively small time
step (or small Courant number) that has to be used and
so far prevents the method from being competitive with
currently used dynamical cores. Therefore, there has so
far been little effort to go beyond these idealised studies
with a dry atmosphere. Gabersek et al. (2012) presents
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besides dry test cases a two-dimensional study of cloud
development with rain simulated with a nodal spectral
element model using inexact quadrature formulas and
semi-implicit time integration. They discuss the depen-
dence on the grid and order refinement. For the dry sim-
ulations the solution converges to a reference solution
computed on a fine grid. But for the moist simulations
the solution changes with refinement. The authors make
the hypothesis that the strong non-linearity of the moist
equations is responsible for this behaviour.

The new “Non-hydrostatic Unified Model for the
Atmosphere” (NUMA for short) uses continuous and
discontinuous Galerkin methods (e.g. Kelly and Gi-
raldo (2012)) and is developed at the Naval Postgrad-
uate School and the Naval Research Laboratory by the
group around Francis X. Giraldo. In this work we take a
different approach and introduce a new dynamical core
based on a DG method into an existing model. This ap-
proach enables us to carry out a detailed comparison of
our new dynamical core with a well established model.
We chose the COSMO model which is used for opera-
tional weather prediction at the Deutscher Wetterdienst
and several other weather services. COSMO is a lim-
ited area model and is used for short range predictions.
Its current dynamical core solves the non-hydrostatic
fully compressible Euler equations in advection form
and is based on finite differences. The COSMO model
is described by Steppeler et al. (2003); Baldauf et al.
(2011), a scientific documentation is given in Doms et al.
(2011a); Doms et al. (2011b), and a short summary in
Brdar et al. (2013).

The new DG based model is described in section 2.
It is based on the Euler equations including moisture
terms, formulated in strong-conservation form using
terrain-following coordinates. In this article we com-
pare the new model, called DG-COSMO, with the fi-
nite difference solver of COSMO. For a more thor-
ough study of the DG approach, we also include some
comparisons with the DG dynamical core implemented
in the DUNE framework (see Dedner et al. (2010)
and references therein). This model was compared di-
rectly with COSMO in Brdar et al. (2013). The main
conceptual differences between DG-COSMO and the
DUNE implementation are the coordinate system and
grid structure used for the spatial discretization. While
DG-COSMO uses terrain following coordinates and
consequently a structured quadrilateral grid for the spa-
tial discretization, the DUNE model uses z-coordinates
and can handle very general grid structures (structured,
semi-unstructured, or totally unstructured). The general
grid structure also allows for the use of local grid refine-
ment and a new refinement indicator has been imple-
mented within the DUNE dynamical core for mesoscale
applications (see Brdar et al. (2013) and Baldauf and
Brdar (2013)).

Two DG-COSMO validation test cases are shown
in section 3. These are a two-dimensional mountain
overflow and a gravity wave expansion in a channel.
General questions, like the choice of basis functions and

the well-balancing problem are also addressed in this
section. We make a small comparison between all three
models (COSMO, DG-COSMO, and DUNE), focusing
on their capturing of orographic features when a dry
atmosphere is at rest. As pointed out, COSMO and DG-
COSMO use terrain following coordinates and DUNE
uses unstructured grids for the orography. Furthermore
two popular test cases with local and non-local character
are chosen to test the new adaptation criterion. The cold
density current Straka et al. (1993) is the one with local
character where the adaptive mesh refinement (AMR)
technique is shown to be more efficient by a factor of 4.
Similar results have been achieved in Müller et al.
(2013), but with a different refinement criterion. Finally,
a three-dimensional moist convection test case without
rain in a similar background atmosphere as in Weisman
and Klemp (1982) is investigated.

2 DG scheme

The starting point for our model are the compressible,
non-hydrostatic Euler equations for a moist atmosphere
on a rotating sphere written in conservation form

∂ρ ′

∂ t
+∇ ·ρu = 0, (2.1)

∂ρu
∂ t

+∇ · (ρu⊗u+ p′I) =−ρ ′gk−2ρΩ×u, (2.2)

∂ (ρθ)′

∂ t
+∇ ·ρθu = sθ , (2.3)

in which ⊗ is the dyadic product, I is the unit matrix, and
k is the vertical unit base vector. sθ is the source term of
the temperature equation, which is equal to zero for a dry
atmosphere. To reduce discretisation errors, e.g. by the
use of terrain-following coordinates, the thermodynamic
variables density ρ = ρ0 + ρ ′, pressure p = p0 + p′,
and potential temperature θ = θ0 + θ ′ are split into a
reference state (lower index ‘0’) and deviations (denoted
by ‘′’). The reference state fulfils the dry ideal gas law
p0 = Rdρ0T0 and the hydrostatic equation ∇p0 =−gρ0k
where Rd = 287.05 J

kg·K is the gas constant of dry air and
g = 9.80665 m

s2 is the absolute value of acceleration due
to gravity. One thermodynamic field can be arbitrarily
chosen; here, we prescribe a temperature profile of the
form

T0(z) = Tstr +(Tsl −Tstr)exp

(
− z

Hscal

)
(2.4)

with Tsl = 288.15K, Tstr = 213.15K and Hscal = 10km
(e.g. Zängl (2012)).

In the case of DG-COSMO, the equations are formu-
lated in terrain-following coordinates (λ ,φ ,ζ (λ ,φ ,r))
on the sphere. The momentum equations (2.2) in strong-
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conservation form are

∂
√

G′ρu
∂ t

+
∂

∂λ

(√
G′ρuu+ p′

r cos φ

)
+

∂
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)

+
∂
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(√
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r cos φ
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ρuv
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+
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∂ z

ρuw

])

=
√

G′ (S∗λ −b∗λ ), (2.5)

∂
√
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∂ t

+
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(√
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∂
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with the metric correction terms

b∗λ =−1
r

ρuw+
tan φ

r
ρuv,

b∗φ =−1
r

ρvw+
tanφ

r
(ρu2 + p′),

b∗z =−1
r
(ρ(u2 + v2)+2p′). (2.8)

and the physical components for the source term are

S∗λ = 2ρΩ(vsin φ −wcosφ),
S∗φ =−2ρΩusinφ ,
S∗z =−ρ ′g+2ρΩucosφ . (2.9)

The derivation of these equations and the notations are
given in appendix 6. In particular,

√
G′ is given by

Eq. (A.21). The analogous form for the scalar equations
is given by (A.23).

For the moist atmosphere we use additional quanti-
ties for the mass fraction of water vapour qv and cloud
water qc with their budget equations

∂ρqx

∂ t
+∇ ·ρqxu = sx, x ∈ {v,c}. (2.10)

COSMO makes the assumption that the specific heat
capacity cpml of moist air is equal to that of dry air (see
Doms et al. (2011a)). The same assumption is made for
DG-COSMO. This means that in equation (2.1) we use
instead of the potential temperature the approximated

moist potential temperature θm

θm =
Rm

Rd
T

(
p00

p

) Rm
cpd

which is a conserved variable when no phase change
happens (see. Brdar (2012)) and is up to the factor Rm

Rd

and the approximation cpml = cpd = 1005 J
kg·K identical

to the definition in Bryan and Fritsch (2002). With the
gas constant of water vapour Rv = 461.51 J

kg·K the moist
gas constant is defined as

Rm = (1−qv −qc)Rd +qvRv.

The source terms sv, sc and sθ describe the phase
change of water and the released or absorbed latent heat.
The equation of state including moisture is

p = p00

(
Rd

p00
ρθm

) cpd
cvml

,

where cvml = cpd −Rm. For the dry case cvml reduces to
the dry specific heat capacity cvd and θm to θ , respec-
tively. As usual, we fix p00 = 105 Pa.

Since the atmosphere is mainly turbulent, Reynolds-
averaged Euler equations are usually considered. The
turbulent diffusion coefficients are several orders of
magnitude larger than the viscous ones, therefore the lat-
ter can be neglected. The turbulent fluxes of momentum
and heat are described by turbulence parameterizations,
i.e. by adding a term ∇ · τ to the right hand side of the
momentum equation (2.2) with the turbulent stress ten-
sor

τ = ρμm(∇u+(∇u)T )

and the divergence of a turbulent heat flux term of the
form

ρμh∇θ

to the potential temperature equation (2.3). In this paper
we consider only idealised test cases with a prescribed
constant viscosity μm and diffusivity μh instead of an
advanced turbulence model. In this turbulence model
the kinetic energy dissipation ∇ · (u · τ) is ignored like
in COSMO (see Doms et al. (2011a)). So we use the
following equations if diffusion is contained

∂ρu
∂ t

+∇ ·
(
ρu⊗u+ p′I− τ

)
=−ρ ′gk−2ρΩ×u,

(2.11)

∂ (ρθ)′

∂ t
+∇ · (ρθu−ρμh∇θ) = sθ , (2.12)

∂ρqx

∂ t
+∇ · (ρqxu−ρμh∇qx) = sx, (2.13)

where x ∈ {v,c} and where the diffusion parametrisa-
tion for the tracers is in analogy to the potential tem-
perature with the same diffusion coefficients. These are
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the same equations as equation set 2 in Giraldo and
Restelli (2008), but with a symmetric viscous stress
tensor. For the formulation of these equations in the
strong-conservation form we refer to Baldauf (2005).

Spatial discretisation

Since the discretisation used in COSMO and within the
DUNE framework have been discussed briefly in Brdar
et al. (2013), and in the references provided there, we
focus here on describing the approach used within DG-
COSMO. The equation system (2.1)–(2.3) and (2.10) or
their terrain-following transformed counterparts can be
written in the compact form

∂q
∂ t

+∇ ·F(q) = S(q). (2.14)

Let the computational domain be Ω and consider a tes-
sellation Ω1, . . . , ΩN of quadrilateral elements of Ω.
In physical space, these elements usually are vertically
stretched and are horizontally slightly deformed due to
the convergence of the spherical coordinates towards the
poles. We use the same vertical stretching as in Bal-
dauf (2013a), p. 33. Let H be the height of the do-
main and let zk be the height in the Cartesian grid of
the vertical faces between the elements, with z1 = H and
zK+1 = 0, then zk is computed by

zk = H(βη2
k +(1−β )ηk),

ηk = 1− k−1
K

, k = 1, . . . ,K +1,
(2.15)

with a stretching factor β . The discretisation qh of the
prognostic variables q restricted to an element Ωi, i ∈
{1, . . . ,N} is a polynomial qi

qh|Ωi
(t,x) = qi(t,x) =

d

∑
l=1

qi,l(t)ϕl(ξ (x−xi)), (2.16)

where xi is the center of each cell and ξ maps the
interval ([−Δλ

2 , Δλ
2 ], [−Δφ

2 , Δφ
2 ], [−Δζ

2 , Δζ
2 ]) into the in-

terval [−1,1]dim Ω. B := {ϕ1(ξ ), . . . ,ϕd(ξ )} is a d-
dimensional basis of the discretised solution space. In
the discontinuous Galerkin approach we multiply (2.14)
for each element Ωi with a test function ϕm and inte-
grate over that element. After integration by parts of the
divergence term and the replacement of q|Ωi

with the dis-
cretisation qi we arrive at

d

∑
l=1

dqi,l

dt

∫
Ωi

ϕlϕm dΩ =−
∫

S=∂Ωi

F(qh) ·nϕm dS

+

∫
Ωi

F(qi) ·∇ϕm dΩ+

∫
Ωi

S(qi)ϕm dΩ,

(2.17)

for i ∈ {1, . . . ,N}. n is the outward directed unit vector
normal on ∂Ωi. The integral on the left side corresponds
to the mass matrix Mlm on the single element Ωi. We

search for a function q that fulfils (2.17) for all ϕm ∈ B
on all elements. Between the elements the solution can
be discontinuous, so we need to replace the physical flux
F(qh) ·n with a numerical flux function (F(qh) ·n)� to
get a well defined scheme. Usually, the Rusanov flux is
taken

(F(qh) ·n)�|e := 1
2(F(qi)+F(q j)) ·n|e − 1

2λ (q j −qi)

where e = Ωi ∩ Ω j and λ = maxe(c +
√

u ·n) is the
speed of the fastest permissible wave. c is the speed of
sound given by c2 =

cpd

cvd
RdT . Lobatto-Gauß-Legendre

quadrature formulas are used for numerical integration
(see Gassner (2009) for a discussion on quadrature
formulas). For the basis B, we either choose the full
tensor product of Legendre polynomials B f p up to a
chosen degree κ , or a minimal basis of products of
Legendre polynomials Bmb where the total degree is
bounded by κ , i.e.

B f p =

{
b(ξ )

∣∣∣∣∣ b =
dimΩ

∏
i=1

Pli(ξi), li ≤ κ

}
,

Bmb =

{
b(ξ )

∣∣∣∣∣ b =
dimΩ

∏
i=1

Pli(ξi),
dim Ω

∑
i=1

li ≤ κ

}
,

where Pl is the l-th normalised Legendre polynomial.
Choosing the Legendre polynomials is known as the
modal approach and results in a diagonal mass matrix
for the system (2.17). Consequently, there is no direct
physical interpretation of the coefficients qi,l in (2.16).

In order to discretise equations (2.11)–(2.13), we use
the local discontinuous Galerkin (LDG) scheme (e.g.
Cockburn and Shu (1998)) which is known to be of
the κ + 1 spatial accuracy order when the polynomials
up to the κ-th degree are used for the basis. Here, we
describe the scheme just for (2.11), because the scalar
case is analogous. We split the equation (2.11) into a
system of two coupled equations with only first order
derivatives introducing an auxiliary variable V

∂ρu
∂ t

+∇ · (ρu⊗u+ p′I−ρμ(V+VT ))

=−ρ ′gk−2ρΩ×u, (2.18)

∇u = V. (2.19)

At first, the equation (2.18) is handled by the Galerkin
approach, i.e. it is multiplied with a test function and
integrated over an element Ωi. After integration by parts
of the left side and the replacement of the flux in the
integral over the element face with a numerical flux,
equation (2.18) becomes∫

S=∂Ωi

(u ·n)�ϕ dS−
∫
Ωi

u∇ϕ dΩi =

∫
Ωi

Vϕ dΩi.

The LDG scheme solves this last equation for V. In the
second step V is inserted into (2.18) and the DG scheme
for the advection equation described above is applied.
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The diffusive numerical flux (u ·n)�|e for e = Ωi ∩Ω j is
given as

(u ·n)�|e :=
1
2
(ui +u j) ·n.

We choose free slip boundary conditions for the veloc-
ity on all non-periodic and non-open boundaries, i.e.
u ·n = 0, ∇u ·n = 0 and additionally ∂θ

∂ z = 0 on the ver-

tical boundaries and ∂θ
∂x = 0 horizontally.

Time discretisation

Equation system (2.17) is a system of nonlinear ODEs
of the form

d
dt

qh(t) = M−1L (t,qh).

where the operator L is given by the rhs. of Eq. (2.17).
Given an initial condition q(t = 0) = qinit and an end
time tend > 0, we apply general explicit m-stage Runge-
Kutta time integration schemes of the form

qn+1
h = qn

h +Δt
m

∑
l=1

blhl, q0
h = qh,init,

hl = M−1L

(
tn +Δt cl, qn

h +Δt
l−1

∑
r=1

alrhr

)
,

for l = 1, . . . ,m, n = 0, . . . ,	tend/Δt
 under the consis-
tency condition ∑m

l=1 bl = 1 and the autonomous condi-
tion cl = ∑m

r=1 alr . Coefficients alr , bl , and cl are further-
more determined so that the order of the m-stage Runge-
Kutta scheme is equal to the order of the discontinuous
Galerkin scheme.

The source terms sv, sc and sθ are handled through
a process splitting. We distinguish two time steps, one
for the advection (or the DG scheme) Δt and one for the
phase change Δτ with Δτ = σΔt for an integer σ . First
the advective terms are integrated with the Runge-Kutta
scheme described above with Δt for σ steps, then a sat-
uration adjustment on each quadrature point results in
new tendencies for the source terms of the phase change.
These tendencies are kept constant for the next σ ad-
vection time steps. The size of the integer σ is deter-
mined by experiments (see section 3.5). The saturation
adjustment reduces an oversaturation of water vapour to
saturation by condensation. Cloud water in an undersat-
urated air parcel is evaporated until all cloud water is
evaporated or saturation is reached. The absolute tem-
perature T is adjusted accordingly. DG-COSMO uses
an isochoric saturation adjustment, whereas COSMO
until now uses a similar isobaric scheme (Doms et al.
(2011b)). Note that under the assumption cpml = cpd , our
saturation adjustment is identical to the one by Tomita
(2008). Saturation adjustment assumes that the phase
change is infinitely fast, so the model does not need a
parameter for the time scale. We note, that the analogous
phase change parametrisation in DUNE is modelled by

a simple analytic evaporation function containing a re-
laxation time scale (see Brdar (2012)). However, due
to the above mentioned time-splitting, the time scale Δτ
has a similar effect. If the time scale is chosen too large,
the oversaturation will decrease too slowly, and as a re-
sult the convection is slowed down as well. Similar ob-
servations are made in DG-COSMO (see section 3.5 and
Fig. 10). The saturation adjustment in the DG context is
first applied in the quadrature points. If operator split-
ting is used a projection to the modal coefficients qi,l
in (2.16) is needed. To avoid this additional projection
for every saturation adjustment, we decided to use pro-
cess splitting in DG-COSMO, because in this case we
can use the adjusted values in the quadrature points di-
rectly.

There are a few drawbacks of the current state of DG-
COSMO that we want to mention. One is the lack of pos-
itivity preservation. In the saturation adjustment we clip
all negative values of qv and qc to zero like in Gabersek
et al. (2012), and therefore we lose the mass conserva-
tion for moist atmospheres. A further technical aspect
is, that DG-COSMO uses the same output routines as
COSMO, so just one point per element can be written,
plotted and post-processed.

Adaptive grid refinement

The vast spectrum of atmospheric spatial and temporal
scales makes adaptive mesh refinement (AMR) an in-
teresting numerical technique. In contrast to the finite
difference scheme, the use of AMR is intrinsic to the
discontinuous Galerkin or finite volume scheme, and
requires no significant change to the numerical model
other than simple prolongation and restriction of the data
between coarse and fine mesh cells. The prolongation
and restriction process is carried out in such an intuitive
manner, that the mass and the density potential temper-
ature ρθ are preserved within the refined or coarsened
cells. Most notably, the AMR has been deployed in the
operational model OMEGA (see Boybeyi et al. (2001);
Bacon et al. (1999); Gopalakrishnan et al. (2002)) for
extreme weather prediction.

Dynamical AMR requires an indicator which decides
whether a mesh cell Ωi should be refined or coarsened.
In our case, the indicator is the maximal jump ηi of
potential temperature between the neighbouring cells,
relative to the maximal jump ηmax over the whole grid.
Thus, we take

ηi = max
Ω∈N (Ωi)

η(Ωi,Ω) ·η−1
max,

η(Ωi,Ω) = max
a∈Q(Ωi)
b∈Q(Ω)

|θ ′(b)−θ ′(a)|,

ηmax = max
i, j

{η(Ωi,Ω j) | Ω j ∈ N (Ωi)},

where N (Ωi) is the family of all mesh elements neigh-
bouring Ωi. Q(Ωi) is the set of quadrature points which
allow exact numerical integration of polynomial on Ωi
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of degree up to the order of the discontinuous Galerkin
scheme, however not larger than third degree. In this
way the computational cost for the indicator, computed
every 5th DG time step, is reduced with negligible im-
pact to the indicator values. A simple rule can be stated,
if ηi >

1
10 then Ωi will be refined, otherwise if ηi <

1
100 ,

an attempt to remove Ωi together with correspondingly
marked cells belonging to the same father element is car-
ried out. The two threshold values are chosen based on
several trial-and-error tests until satisfactory results with
respect to the error and computational time are reached.
This kind of approach can, however, lead to infinite re-
finement of cells close to an oscillation in the numerical
solution. To prohibit this, we assign to each cell a re-
finement level – a nonnegative integer which is zero for
all cells in the start mesh, and increases by 1 when a
cell is refined, or decreases by 1 when coarsened. The
maximal refinement level is then set to control AMR.
Also only elements with positive refinement level can
be coarsened. To keep track which elements were cre-
ated from which father element, we use a hierarchical
grid structure (see Klöfkorn (2009)) so that coarsen-
ing is an exactly reversible operation to grid refinement.

3 Numerical results

In this section we present six test cases. The first two are
used to validate the new DG-COSMO core: the grav-
ity wave in a channel described by Baldauf and Br-
dar (2013) and a linear hydrostatic mountain overflow
as in Durran and Klemp (1983). After this valida-
tion, an atmosphere at rest with a mountain in the mid-
dle of the domain is simulated to investigate the well-
balancing properties of the three solvers (COSMO, DG-
COSMO, and DUNE) with their different discretization
approaches and different grid structures. To test dynamic
grid adaptation, we choose one test case with locally oc-
curring and one with non-locally evolving phenomena,
e.g. Straka et al. (1993) and Skamarock and Klemp
(1994). Finally, we study the implemented moist physics
on a rising moist bubble.

Given a reference solution ψref, the error in the quan-
tity ψ is computed in a relatively large domain ΩL ⊂ Ω,
containing a fixed number N of grid elements, by eval-
uating the deviations |ψ −ψref| at the midpoints of all
elements. The Lh-error in ΩL is then defined as

Lh =
h

√
1

‖ΩL‖
N

∑
i=1

|ψi −ψref,i|h · ‖Ωi‖. (3.1)

If not stated otherwise, ΩL is the full computational
domain Ω. In addition, to that, with the DUNE core, we
can take arbitrary N equally sized elements to compute
Lh. If there is a known (linearised) analytic solution, we
will take this as reference. Otherwise, we compare the
solutions of the different models to each other or with
results from the literature. We compare the two basis
sets available in the DG implementations on the same
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Figure 1: Gravity wave expansion in a channel with DG-COSMO.
The graph shows a cross section of θ ′ at z = 5km for the gravity
wave test case of Baldauf and Brdar (2013) for κ = 1 with a
grid size of Δx×Δz= 1000m×500m after 30 min. The blue dashed
line is the analytic linearised solution, the red solid line is the DG-
COSMO solution.

grid, and the different models with respect to the same
number of degrees of freedom. All three schemes use
the same number of degrees of freedom per quantity, so
we denote with “DoFs” the number used for a single
quantity, in the following.

3.1 Gravity wave in a channel

A first validation is performed with the gravity wave ex-
pansion described in Baldauf and Brdar (2013). Here
we present just the case without Coriolis force, because
this force is not implemented in DG-COSMO at the mo-
ment. For the test with Coriolis force with the DUNE
library we refer to Baldauf and Brdar (2013). A tem-
perature perturbation is placed in a two-dimensional
channel of 300 km length and 10 km height. The atmo-
sphere around the bubble is hydrostatically balanced,
isothermal with T0 = 250K, and has a horizontal back-
ground flow of u0 = 20 m

s . This test case is a modifi-
cation of the well known inertia gravity wave test case
of Skamarock and Klemp (1994). For this modifica-
tion an analytic solution for the linearised, compressible
equations is given in Baldauf and Brdar (2013). This
solution can serve as a reference, provided the ampli-
tude ΔT of the perturbation is sufficiently small. Fig. 1
shows θ ′ after 30 min at z = 5km for a rather coarse
grid and κ = 1. The phase speed is well represented by
DG-COSMO, but on this grid and due to the low order
there is a significant damping. When using an increased
order or a refined grid there is no visible damping and
the DG-COSMO solution lies on the analytic linearised
solution (not shown). Table 1 and Fig. 2 shows the de-
velopment of the error under grid refinement compared
to the linearised analytical solution. For κ = 2 the ampli-
tude of the perturbation is taken as 0.001K and for κ = 1
the amplitude 0.01K is sufficient to show the conver-
gence. So DG-COSMO has the expected convergence
order and we conclude that the implementation is cor-
rect.

We have compared the full tensor product basis and
the minimal basis for the same test case using 8 cores
(IBM Power7, 3.84 GHz, 256 kiB L2, 4 MiB L3), with
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Table 1: Convergence for θ ′ under grid refinement for κ = 1 and
Δz = 1

2 Δx. The reference is the linearised solution. Subtable (a)
shows κ = 1 (ΔT = 0.01K for reference amplitude) and subtable (b)
shows κ = 2 (ΔT = 0.001K for reference amplitude).

(a) κ = 1

grid (Δx) 2000 m 1000 m 500 m 250 m

L2-error 5.47e−4 1.40e−4 2.36e−5 6.72e−6
EOC – 1.97 2.57 1.81
L∞-error 1.84e−3 5.82e−4 1.02e−4 3.94e−5
EOC – 1.66 2.52 1.37

(b) κ = 2

grid (Δx) 2000 m 1000 m 500 m 250 m
L2-error 1.09e−6 1.26e−7 1.82e−8 3.77e−09
EOC – 3.11 2.79 2.27
L∞-error 1.34e−5 1.80e−6 2.28e−7 2.21e−08
EOC – 2.90 2.98 3.37
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10−4

degrees of freedom

L
2

-e
rr

or

2. order

θ′ (κ = 1)

3. order

θ′ (κ = 2)

Figure 2: Convergence analysis of DG-COSMO. The graph shows
the L2-error for the gravity wave test case of Baldauf and Brdar
(2013) for a second order scheme. The blue line is the idealised L2-
error and the red line is the L2-error θ ′ of the DG-COSMO solution.
For 2nd order the lines are solid for 3rd order the lines are dashed.

κ = 3, Δx = 1km and Δt = 0.125s. Table 2 shows, that
the minimal basis is significantly faster than the full
tensor product while the error is just slightly larger for
the minimal basis for this test case.

3.1.1 Well-balancing problem

To examine the order needed for the DG scheme, we
discuss the well-balancing problem. If the order of the
scheme is too low, κ = 1 for example, and the reference
atmosphere is not the background atmosphere, a spuri-
ous deviation from the background of significant size
will develop. There are two reasons for this balancing
problem. The first is the different numerical treatment
in (2.2) of the divergence term and the gravity term on
the right hand side. Therefore the numerical errors do
not cancel each other resulting in a numerically not bal-
anced scheme. To understand the second independent
reason we look at results from a simulation with κ = 1,
grid resolution Δx = 500m and time step Δt = 0.2s in
Fig. 3. It shows the spurious θ ′ and w after one sin-
gle DG time step for a vertical line in the domain at

Table 2: Comparison of the error of the full tensor product B f t and
the minimal basis Bmb. The relative deviation of the minimal basis
is noted in parentheses.

B f p Bmb

L1-error 3.17e−5 3.21e−5 (+1.3%)
L2-error 4.10e−5 4.18e−5 (+2.0%)
L∞-error 1.73e−4 1.76e−4 (+1.7%)

runtime 1 129 s 740 s 1.52 speedup
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Figure 3: The graph shows the well balanced (κ = 1 is green dashed,
κ = 3 is black dashed dot) and the not balanced (κ = 1 is blue
solid with dots, κ = 3 is red solid) solution after one advection
time step for a vertical cross cut at x = 275km. Subfigure (a) shows
θ ′ and (b) w. The abscissa is between −10−11 and 10−11 linear,
otherwise logarithmic.

x = 275km. This is far away from the bubble. If the
reference atmosphere (2.4) is chosen, a significant er-
ror is observed over the whole height of the domain, but
if the background atmosphere is chosen as reference at-
mosphere, we see an undisturbed solution. The reason
is the vertical component of the Rusanov flux for θ ′. Let
Ω j be the element above Ωi and e = Ωi ∩Ω j. We are
interested in the flux from Ωi to Ω j, i.e. in the term

1
2
(ρθiwi|e +ρθ jw j|e)−

1
2

λ (ρθ ′
j|e −ρθ ′

i |e). (3.2)

Now we regard the two different reference atmospheres:
1) θ0 is the potential temperature of the background
atmosphere, in which case the second term of (3.2)
vanishes; and 2) θ0 is not the background atmosphere,
but (2.4) is. While the first term of (3.2) still gives a rea-
sonable discretisation of ρθ , the second term introduces
spurious diffusion needed to stabilise the DG scheme,
but in this case it also leads to a disturbance in the solu-
tion. As shown for κ = 3 in Fig. 3 the spurious deviation
decreases by a few order of magnitudes. The reason for
this is the decreasing size of the jump (ρθ ′

j|e − ρθ ′
i |e)

caused by the increase in the order of the polynomials.
Therefore the diffusion becomes smaller. We conclude
that the well-balancing problem becomes less important
with increasing order of the scheme.
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Figure 4: Mountain overflow over a mountain with 1 m height and
10 km halfwidth. Subfigure (a) shows the horizontal velocity and (b)
the vertical velocity. The solid lines are the DG solution, the dashed
lines are the analytic linearised solution.

3.2 Mountain overflow

As the second validation test we simulate the two-
dimensional flow over a single mountain presented by
Durran and Klemp (1983). The mountain height zs has
the shape of the “versiera di Agnesi”

zs(x) =
hc

1+
(

x−xc
ac

)2 .

The height of the mountain is hc = 1m, the half width is
ac = 10km and the mountain is centred at xc = 120km.
The initial horizontal wind is u0 = 20 m

s and the integra-
tion time is 20 h. The domain is [0,240km]× [0,42km]
and is partitioned into a grid with 800× 100 elements.
For the vertical grid formula, we use (2.15) with β = 0.9.
This results in vertical layers of thickness between 45 m
and 795 m in the transformed system. We choose a third
order scheme, i.e. κ = 2. The upper 12 km are a sponge
layer. Fig. 4 shows the horizontal and vertical wind com-
pared to the analytic linearised solution described in
Durran and Klemp (1983) for the lower 12 km.

We also compare the two different basis on the same

Table 3: Comparison of the full tensor product and the minimal basis
for the mountain wave overflow. The table shows w, the linearised
analytic solution of Durran and Klemp (1983) is taken as refer-
ence. The relative deviation of the minimal basis w.r.t the full tensor
product is noted in parentheses. The runtime refers to 32 nodes of
the Cray XC30 at DWD.

B f p Bmb

L1-error 1.40e−4 1.39e−4 (−0.7 %)
L2-error 2.21e−4 2.20e−4 (−0.4 %)
L∞-error 8.24e−4 8.25e−4 ( 0.1 %)

runtime 13 336 s 11 304 s 1.18 speedup

grid for the setup described above. The result for w in the
domain ΩL = [80km,160km]× [0km,12km] is shown
in Table 3. Although the full tensor basis has more DoFs
than the minimal basis, the overall solution is not more
accurate. Thus, it seems that the minimal basis is a more
suitable choice for terrain following coordinates.

3.3 Atmosphere at rest with a steep mountain

For terrain with steep slopes, the terrain-following coor-
dinate approach produces errors even for an atmosphere
at rest. This is even true for numerical models utilising
unstructured grids to handle orography. In the follow-
ing, we will compare the errors of the original COSMO
model and the new DG-COSMO core, both using terrain
following coordinates, and the DUNE core which cap-
tures the orography using unstructured grids. We choose
nearly the same setup as described in Zängl (2012).
This means that: 1. the domain is a two-dimensional
(x,z) plane; 2. the background atmosphere is hydrostat-
ically balanced, isothermal with T0 ≡ 273K, and hori-
zontally homogeneous; 3. the orographic height zm is a
single mountain with the shape of a Gaussian bell given
by

zm(x) = he−
(x−xc)2

a2 ,

where xc is the center of the domain in x-direction.
We look at two different cases: a) h = 4000m; and
b) h = 7000m. Note, that in Zängl (2012), the half
width a is taken to be 2 000 m. Since the COSMO model
cannot be stably integrated up to 6 hours even with
the 4 000 m high mountain, we have decided to take a
flatter mountain by setting a = 3000m. This choice of a
still causes instabilities for h = 7000m in the COSMO
model, but with its maximum slope of a) 48.8 ° and
b) 63.4 ° presents a decent test for the two DG dynamical
cores.

The domain is L = 35km wide and H = 40km high,
out of which the upper 15 km form a sponge layer. The
time step is 0.01s for both the finite difference as well
as the DG cores. The average distance of the DoFs is
300 m in the horizontal and we choose 100 DoFs in
the vertical. The vertical grid size of the elements are
computed with the function (2.15) and β = 0.95. The
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(a) COSMO

(b) DG-COSMO κ = 1

(c) DG-COSMO κ = 3

Figure 5: Spurious vertical velocity w of (a) COSMO, (b) DG-
COSMO for κ = 1, (c) DG-COSMO for κ = 3 for the mountain
height h = 4000m. The pictures show the grid transformed to the
terrain following coordinates, so there is no mountain visible.

COSMO core uses 11700 DoFs (or grid points). For the
DG cores the simulation is repeated for κ = 1,2,3 for
both heights. For all simulations the number of DoFs is
chosen to be nearly the same. Fig. 5 shows the spurious
vertical velocity after 6 hours. Table 4 lists the grid size
and the extrema of the vertical velocity.

The spurious velocity of DG-COSMO for κ = 2, i.e.
a third order scheme, is comparable to the extrema of
COSMO. For κ = 3 the extrema of DG-COSMO are
about one order of magnitude smaller than for COSMO.
DG-COSMO and COSMO use an explicit sponge layer
after each time step to relax their numerical solutions
qpre towards the exact (initial) solution qinit

qh = (1−δ )qpre +δ qinit,

Table 4: Extrema of spurious vertical velocity in the atmosphere at
rest when different numerical models are used. Different polynomial
degrees κ are used for DG schemes.

4 000 m 7 000 m

wmin wmax wmin wmax

FD-COSMO −8.6e−2 7.2e−2 unstable

DG-COSMO κ1,67×58 −7.1e−1 3.5e−1 −8.5e−1 2.1e−1
DG-COSMO κ2,48×41 −9.5e−2 5.1e−2 −8.5e−2 3.2e−1
DG-COSMO κ3,37×32 −7.7e−3 9.0e−3 −7.4e−3 1.9e−2

DUNE κ1,67×58 −1.3e−1 3.7e−2 −2.0e−1 4.9e−2
DUNE κ2,48×41 −6.1e−3 4.1e−2 −7.6e−3 2.8e−2
DUNE κ3,37×32 −2.3e−4 3.1e−4 −4.8e−4 6.2e−4

with the blending function δ (z)= α
2

(
1− cos

(
π z−ztop

zlen

))
,

ztop being the top of the computational domain and zlen
the thickness of the sponge layer. For COSMO and DG-
COSMO we choose α = 0.1. On the other hand, the
DUNE core relaxes with an additional term in the gov-
erning equation. In this way, the relaxed equations (2.14)
take the following form

∂q
∂ t

+∇ ·F(q) = S(q)−δ (q−qinit).

Determining the coefficient α in this context is some-
what less intuitive than in the COSMO/DG-COSMO re-
laxation. For the extrema values in Table 4, DUNE uses
α = 80,75,50 for κ = 1,2,3, respectively. While not
having to cope with the terrain-following metric terms,
DUNE does indeed produce smaller spurious velocities
only after careful choice of α , but on the other hand, it
proved harder to produce such coefficient for κ = 2. The
maximum value for κ = 2 in Table 4 is solely due to re-
flections from the sponge layer. Other than that, the spu-
rious velocities are of one order smaller than in the case
of DG-COSMO, whereas for κ = 1 are already compa-
rable in the magnitude with the COSMO velocities. We
want to mention, that FD-COSMO uses the reference
state just to reduce balancing errors stemming mainly
from the pressure gradient terms, whereas no explicit
means are used to force well-balancing.

3.4 Adaptive meshes for cold density current
and inertia gravity wave

Different mesh implementations are available in the
DUNE package, ranging from fast non adaptive struc-
tured meshes to locally adaptive triangular or quadrilat-
eral grids. In order to get an insight of our AMR im-
plementation, we take structured SPGrid from Nolte
(2011), and adaptive ALUGrid from Klöfkorn (2009),
both quadrilateral meshes. Two test cases are consid-
ered: 1) cold density current from Straka et al. (1993);
and 2) inertial gravity wave from Skamarock and
Klemp (1994). The first test case tracks the evolution
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of a localised cold current placed in a neutral atmo-
sphere. The bubble current falls to the ground, where no-
flux conditions are imposed, and starts to slide along the
bottom, developing Kelvin-Helmholtz rotors at its top.
The model equations are taken without the (∇u)T -term
in (2.11), which are then identical to the equation set 2
of Giraldo and Restelli (2008). For such equations,
a constant viscosity of 75 m2

s is set in order to obtain
a grid converged solution which at t = 900s is shown
in Fig. 6a. This localised flow is an ideal setting for
AMR to outperform uniform mesh schemes. The second
test case puts somewhat more strain on AMR schemes
since the phenomenon spreads across the whole domain.
A thermal anomaly centred at (x,z) = (100km,5km) is
placed in an atmosphere at rest with the constant Brunt-
Väisälä frequency N = 0.01s−1 and a uniform horizon-
tal flow with u0 = 20 m

s . The potential temperature after
t = 3000s, is shown in Fig. 6b. We carried out several
runs using different resolutions, ensuring that the mini-
mal grid size of the AMR run matches the grid element
size of the uniform simulation. For instance, if a uni-
form simulation uses a 200 m grid resolution, and the
AMR run starts with 800 m (denoted “κ3 from 800 m”
in Fig. 6e) then we allow the maximal refinement level
to be equal to three in the AMR scheme.

In Fig. 6c and Fig. 6d, we can see that the AMR
scheme can faithfully represent the correct solutions. In
addition, maximal vertical velocity and front position
(i.e. position of potential temperature isoline with −1K)
have been measured and found to match remarkably
well. In terms of L2-error versus CPU time, our AMR
scheme is around 4 times more efficient than the uni-
form scheme for the first test cases. On the other hand,
the same AMR scheme would refine much of the do-
main if the flow is expanded with large oscillations in
the potential temperature across the whole domain, e.g.
shown in Fig. 6d. We can see in Fig. 6f that despite the
size of the refinement region in the second test case, the
AMR scheme is not considerably less efficient than the
uniform scheme. In particular, if we start from a 1 000 m
grid resolution using DUNE κ = 2 and allow two re-
finement levels, the AMR scheme will be more efficient
by a factor of 1.5. In general, such test cases could be
treated, at the cost of accuracy, by adjusting the thresh-
old parameters 1

10 and 1
100 during the simulation runtime.

However, we have not exploited this approach.

3.5 Rising moist bubble

To validate the moisture scheme, the setup of the three-
dimensional test case described by Weisman and Klemp
(1982) was used: the background atmosphere is hydro-
statically balanced and described by a vertical profile for
the potential temperature θ and the relative humidity f

θ(z) =

⎧⎨
⎩

θ00 +(θtr −θ00)
(

z
ztr

) 5
4
, z ≤ ztr,

θtr e
g

cpTtr
(z−ztr), z > ztr,

f (z) =

⎧⎨
⎩1− 3

4

(
z

ztr

) 5
4
, z ≤ ztr,

1
4 , z > ztr,

with the potential temperature at the ground equal to
θ00 = 300K and the troposphere ending at the height
ztr = 12km with values θtr = 338K and Ttr = 213K. The
water vapour of the background is clipped to a maximum
of 0.014, to simulate a well-mixed boundary layer. The
atmosphere is at rest and horizontally homogeneous.
This test case is initialised with a perturbation of the
temperature given by the following bubble

ΔT =

{
dT · cos(π

2 L)2, L ≤ 1,
0, L > 1,

where L =
√( x−xc

rx

)2
+
( y−yc

ry

)2
+
( z−zc

rz

)2
, with dT =

2K, rx = ry = 10km, rz = 1400m. The bubble lies on the
ground, i.e. zc = 1400m and xc and yc denote the hori-
zontal center of the domain. After the start of the simula-
tion, the bubble will rise and due to condensation a cloud
will be generated. After a couple of minutes the release
of latent heat will accelerate the rising of the cloud until
it reaches the top of the troposphere. We compare DG-
COSMO at different orders, but with the same effective
resolution. Additionally we compare these results to the
existing COSMO model at the same resolution to show
that they are plausible. At least for the rising period we
can expect similar albeit not equal results as this test
case is very sensitive. In the original setup there is a
turbulence scheme, we simply use a constant diffusion
of (2.11)–(2.13) with μm = μh = 50m2s−1. This results
to some extent in a smoother solution which allows a
better comparison between COSMO and DG-COSMO.
The simulation domain is a box that spans over 50 km
in both horizontal directions and over 22 km in the verti-
cal. For the DG scheme the minimal basis was taken for
three simulations: κ = 1 on 68×68×54 elements, κ = 2
on 50 × 50 × 40 elements and κ = 3 on 40× 40 × 32
elements, so that each has nearly one million DoFs.
The COSMO simulation is on the grid 108× 108× 86.
We use for all three DG simulations Δt = 0.025s and
Δτ = 3s. COSMO uses the same time step for the dy-
namics and the saturation adjustment, so we choose 3 s
for COSMO.

Fig. 7 compares the vertical velocity of DG-COSMO
with κ = 1,2,3 at 10 min, 15 min, 20 min, which mark
the beginning, the middle, and the end of the fast rising.
Also the COSMO solution with the same effective res-
olution as DG-COSMO is shown for comparison. We
have compared the cloud water content in Fig. 8 for the
same points in time. Because the results strongly depend
on the resolution, we bypass the COSMO output rou-
tines for these pictures and plot (κ +1)2 equally spaced
points per element in these two figures. In both Fig. 7
and Fig. 8 it can be seen that the case κ = 1 is too dif-
fusive. Similar to the well-balanced problem we see that
one should use at least κ = 2 for a DG scheme similar
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(a) Cold density bubble. θ ′-isolines at −9.5,−8.5, . . . ,0.5K on
uniform mesh 64×16 with DUNE κ3.

(b) Inertia gravity wave. θ ′-isolines at −0.0015,−0.001, . . . ,
0.003K on uniform mesh 200×13 with DUNE κ2.

(c) Cold density bubble. Solution on locally adaptive run starting
from 8×2 DUNE κ3 with the maximal refinement level of 3.

(d) Inertia gravity wave. Solution on locally adaptive run starting
from 25×2 DUNE κ2 with the maximal refinement level of 3.

(e) Cold density bubble. AMR efficiency. (f) Inertia gravity waves. AMR efficiency.

Figure 6: Numerical solutions and the corresponding grids at t = 3000s and t = 900s of the inertia gravity and the cold density current
test case, respectively. First, the simulations on uniform non-adaptive grids with (e) 400 m, 200 m, 100 m, and 50 m; and (f) 1000 m, 500 m,
and 250 m x-resolutions are plotted w.r.t. the CPU time and the L2-error. Vertical grid resolution is the same as x-resolution for the cold
density current and twice as small for the inertial gravity test case. In addition, the adaptive runs are added at the corresponding resolutions
using different refinement levels λ and initial uniform grids x-resolutions (given after '@’), i.e. on (e) 400 m (κ3@800 m, λ=1), 200 m
((κ3@800 m, λ=2), (κ3@400 m, λ=1)), 100 m ((κ3@800 m, λ=3), (κ3@400 m, λ=2), (κ3@200 m, λ=1)), and 50 m ((κ3@800 m, λ=4),
(κ3@400 m, λ=3), (κ3@200 m, λ=2)); and similarly, on (f) 1000 m (κ2@2 000 m, λ=1), 500 m ((κ2@2 000 m, λ=2), (κ2@1 000 m,
λ=1)), and 250 m ((κ2@2 000 m, λ=3), (κ2@1 000 m, λ = 2)). The L2-error is computed using (3.1) w.r.t. the elements with the midpoints
(e) (125ξ ,1200) m, ξ = 0, . . . ,120; (f) (1000 ·ξ ,5000) m, ξ = 0, . . . ,300.

to ours. For κ = 2 the shape of the cloud is very simi-
lar to the cloud of COSMO. But at the top of the cloud
there is a larger maximum of qc. For κ = 3 the corre-
spondence of the big rotor at the right and the left part

of the cloud increases, but the top of the cloud seems
to rise faster and additional turbulence appears in the
DG-COSMO solution. Fig. 9 shows the development
of the maximum and minimum vertical velocity and the
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Figure 7: Vertical cross section of w at y = 25km for the beginning,
in the middle and at the end of the fast rising bubble. From left to
right is depicted the solution of DG-COSMO for κ = 1, κ = 2 and
κ = 3 with solid lines. The solution of COSMO is depicted with
dashed lines.

maximum of cloud water content of COSMO and DG-
COSMO for κ = 1,2,3. Here, the case κ = 1 looks very
smooth compared to COSMO and to κ = 2,3. While the
extrema of the vertical wind velocity are closely com-
parable for DG-COSMO and COSMO during the rising
period of the cloud (first 20 min), the maximum water
content is significantly higher for the DG-COSMO so-
lution during this period. This is due to less diffusion of
the DG scheme, so the extrema are not smeared out. The
COSMO develops after 22 min a strong but local down-
draft at the top of the cloud (not shown), which results
in values of wmin down to 90ms−1. This value seems to
be unphysically high. In the DG-COSMO solution the
downdraft at the same position is much weaker.

The solution is highly dependent on the grid size for
both models (not shown), but for the DG solution it also
depends on the number of time steps σ between two
saturation adjustments. We show an example of this in
Fig. 10, where the saturation adjustment is called every
3 s (σ = 120) on the left side, this is the same time step
as in COSMO and each DG time step, i.e. every 0.025 s
(σ = 1) on the right side. For σ = 1 two rotors develop
symmetrically to the bubble in the lower part of the at-
mosphere and the top of the bubble is higher. The time
of the appearance and the size of these rotors depend
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Figure 8: Vertical cross section of qc at y = 25km for the beginning,
in the middle and at the end of the fast rising bubble. From left to
right is depicted the solution of DG-COSMO (solid lines) for κ = 1,
κ = 2 and κ = 3. For comparison the solution of COSMO is depicted
with dashed lines.

not only on the resolution but also on the size of the pa-
rameter σ . Low saturation-adjustment frequency 1

σ ex-
tents oversaturation so much that the overall convection
is slowed down. We have observed similar behaviour
for corresponding saturation time-scale values in DUNE
(see Brdar (2012)). Note that the DUNE time-scale
value sv,0 (eq. (2.15), pg. 21 in Brdar (2012)) could be
compared to the one of DG-COSMO as sv,0 ≈ σΔt.

4 Conclusion

This article documents the first steps of bringing dis-
continuous Galerkin (DG) schemes into meteorologi-
cal applications beyond idealised test cases. To this pur-
pose, we have taken the COSMO model, which is oper-
ationally used for numerical weather prediction (NWP)
and climate simulations, and have implemented a new
dynamical DG core. The choice of the polynomial de-
gree needed to get a suitable approximation for NWP
purposes has been discussed. To get a well resolved
cloud formation we suggest a polynomial degree κ ≥ 2
and to mitigate the error of the well-balancing problem
we suggest κ ≥ 3. So in our opinion the polynomial de-
gree should be at least 3. Otherwise, it has been shown
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Figure 9: Comparison of DG-COSMO κ = 1 (blue solid line with
dots), DG-COSMO κ = 2 (red dashed line with dots), DG-COSMO
κ = 3 (green dashed line) and COSMO (black solid line) of the
evolution of minimum and maximum of the vertical velocity and
of the maximum of the cloud water content.
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Figure 10: Cross section cut in the middle of the domain for the
moist rising bubble simulated with DG-COSMO (κ = 2) for two
different values of σ in the process splitting.

in (Baldauf (2013b)) that for 1-dimensional, linear
wave expansion the numerical dispersion relation tends
to achieve increasingly higher frequencies compared to
the true one with increasing polynomial degree. Conse-
quently, the maximum Courant number decreases faster
than ∼ 1

κ . Since DG methods generally suffer from rela-

tively strong time step restrictions we conclude that the
polynomial degree should not be much higher than 3, to
reduce computational overhead.

Based on some idealised simulations, we have demon-
strated the convergence and functionality of the new
core. In particular, we found DG-COSMO is more sta-
ble and accurate than COSMO for steep mountain over-
flow. There is an additional improvement possible by
using unstructured grids, which we have demonstrated
using the DUNE core. Moreover, DG-COSMO can be
improved by using primal DG formulation as in Brdar
et al. (2012), thus eliminating additional variable in the
LDG approach, effectively reducing runtime and mem-
ory requirement and shrinking the stencil size.

Of course there are still a lot of features missing in
DG-COSMO for a realistic weather prediction system.
These are mainly the coupling of the physics beside the
saturation adjustment and an at least vertically implicit
time integration scheme to improve efficiency. The in-
tegration of this core within the whole COSMO frame-
work will facilitate the use of the available parametrisa-
tions and data assimilation tools used within the opera-
tional code COSMO in the next steps.
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A The strong conservation form of the
budget equations

In this section, we derive the Euler equations in a spher-
ical and terrain following coordinate system K′. The ad-
vantage is, that the transformed grid is Cartesian. There-
fore, the grid is structured, without the need of a 3D-
triangulation, and the elements are cuboids, for which a
simple tensor product of basis polynomials can be used
for the DG method. For the following derivations we re-
fer to text books about tensor analysis (e.g. Stephani
(1988)).

Scalar case

A general balance equation for a scalar quantity ψ(r, t)
for an arbitrary coordinate system reads in tensorial
notation

∂ψ
∂ t

+∇k f k = S (A.1)
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with a flux f , a possible source term S (S = 0 for
conserved variables), and with the covariant derivative

∇k f k =
∂ f k

∂xk +Γk
k j f j. (A.2)

In this section the Einstein summation rule over equal
upper and lower indices is used. Γk

i j denotes the Christof-
fel symbol of 2nd kind. It can be expressed by deriva-
tives of the metric tensor gi j . In particular the property

Γk
k j =

1√
G

∂
√

G
∂x j (A.3)

holds, with G := det gi j. Since the coordinate transfor-
mation used in COSMO is independent of time, the
same holds for gi j and eq. (A.1) can be written as

∂
√

Gψ
∂ t

+
∂
√

G f k

∂xk =
√

GS. (A.4)

Note, that the terms containing partial derivatives look
like a ' quasi-Cartesian’ divergence of a flux and there-
fore can be discretised in a conserving manner by any
finite-volume or DG scheme on a quadrilateral grid. The
final formulation using physical components is given in
the next section.

Vector case

The case of the balance equation for the momentum ρu
with the momentum flux tensor

T i j = ρuiu j +gi j p (A.5)

and source terms S reads

∂ρui

∂ t
+∇kT ik = Si. (A.6)

By use of (A.3) the covariant derivative of a 2nd stage
tensor is

∇kT ik =
1√
G

∂
√

GT ik

∂xk +Γi
lkT lk. (A.7)

Therefore the balance equation can be written as

∂
√

G′ρui′

∂ t
+

∂
√

G′T i′ j′

∂x j′
+
√

G′ Γi′
l′ j′T

l′ j′ =
√

G′ Si′ .

(A.8)
Here we have added upper apostrophes to express all
variables in a coordinate system K′ (hence, the denota-
tion ‘′’ has a different meaning here than in section 2).
The disadvantage of this form is, that the flux term of the
momentum flux tensor T i j is split up and one part must
be put into the source term on the rhs. Therefore momen-
tum conservation could be violated numerically. This
disadvantage can be reduced by the use of the ‘strong
conservation’ form of the equations (Jorgensen (2003);

Wedi and Smolarkiewicz (2003)). The basic idea is to
keep the derivatives of an arbitrary coordinate system K′

while choosing normalised base vectors of an at least
orthogonal coordinate system K (here: spherical coordi-
nates), i.e. using the physical components of tensors.

Let A denote the transformation between tensor com-
ponents in K and K′:

Ai′
i =

∂xi′

∂xi , Ai
i′ =

∂xi

∂xi′
. (A.9)

and for any vector holds the relation ui′ = Ai′
i ui. Fur-

thermore, the physical components in the K-system (de-
noted with an upper star index ∗) are

u∗i =
√

g(ii) ui.

Brackets around indices indicate, that no summation
over equal indices is carried out. Inserting this in (A.8)
and multiplication with Ak

i′ and √g(kk) results in

∂
√

G′ρu∗k

∂ t
+Ak

i′
√

g(kk)

[
∂
√

G′T i′ j′

∂x j′ +
√

G′Γi′
l′ j′T

l′ j′

]

=
√

G′ S∗k. (A.10)

The term in square brackets can be partially integrated
resulting in:

∂
√

G′ρu∗k

∂ t
+

∂
∂x j′

(√
G′√g(kk) Ak

i′ T
i′ j′
)
+
√

G′ b∗k

=
√

G′ S∗k (A.11)

with

b∗k :=−T i′ j′ ∂
∂x j′

(√
g(kk) Ak

i′

)
+
√

g(kk) Ak
i′ Γ

i′
l′ j′ T

l′ j′ .

(A.12)
The term b∗k contains all the metric correction terms,
which can not be written in form of a ‘quasi-Cartesian
divergence’. The momentum equation (A.11) can alter-
natively be expressed by using the physical components
of the momentum flux tensor in K

∂
√

G′ρu∗k

∂ t
+

∂
∂x j′

(
√

G′A j′

i
T ∗k∗i

√g(ii)

)
=
√

G′ (S∗k−b∗k).

(A.13)

We further simplify b∗k by expanding its first sum-
mand and by renaming indices of its second summand

b∗k = T i′ j′
[
−Ak

i′
∂

∂x j′

(√
g(kk)

)
−√

g(kk)
∂

∂x j′

(
Ak

i′

)

+
√

g(kk) Ak
l′ Γ

l′
i′ j′

]
. (A.14)
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The expression

∂
∂x j′

(√
g(kk)

)
= Al

j′
∂

∂xl

(√
g(kk)

)
= Al

j′
g(k)p
√g(kk)

Γp
(k)l ,

(A.15)
further simplifies for an orthogonal coordinate system K
by

g(k)p

g(kk)
= g(k)p ·g(kk) = δ (k)

p (A.16)

to

∂
∂x j′

(√
g(kk)

)
= Al

j′
√

g(kk) Γ(k)
(k)l . (A.17)

By the transformation properties of the Christoffel sym-
bols one gets

b∗k = T i′ j′
[
−Ak

i′ A
l
j′
√

g(kk) Γ(k)
(k)l −

√
g(kk)

∂
∂x j′

Ak
i′

+
√

g(kk) Ak
l′

(
Al′

l Ai
i′A

j
j′Γ

l
i j +Al′

m
∂

∂x j′
Am

i′

)]

= T i′ j′ √g(kk)

[
−Ak

i′ A
l
j′ Γ

(k)
(k)l +Ai

i′A
j
j′Γ

k
i j

]

=
√

g(kk)

[
−T kl Γ(k)

(k)l +T i j Γk
i j

]
. (A.18)

Finally using physical components results in the rela-
tively symmetric expression

b∗k = T ∗i∗ j
√g(kk)

√g(ii)
√g( j j)

Γk
i j −T ∗k∗ j 1

√g( j j)
Γ(k)
(k) j.

(A.19)
Though b∗k is zero if K is a Cartesian coordinate system
(s. Jorgensen (2003)), it does not vanish for arbitrary
orthogonal coordinate systems. However, b∗k does not
contain any properties of K′, i.e. no contributions from
terrain following coordinates. Therefore, b∗k at most
depends on curvature contributions of the sphere and
consequently these correction terms for momentum can
be expected to be very small on the earth. Now, we
specialise the former considerations to the spherical
coordinate system K, with the coordinates xi = (λ ,φ ,z)
(with r = R+ z), i.e. we need

gjk =

⎛
⎝ r2 cos2 φ 0 0

0 r2 0
0 0 1

⎞
⎠ , (A.20)

and a spherical, terrain-following coordinate system K′,
with the coordinates xi′ =

(
λ ,φ ,ζ = ζ (λ ,φ ,z)

)
, for

which we need
√

G′ = r2 cos φ
∂ z
∂ζ

, (A.21)

∂x j′

∂xi =

⎛
⎝ 1 0 0

0 1 0
∂ζ
∂λ

∂ζ
∂φ

∂ζ
∂ z

⎞
⎠ . (A.22)

For the physical components of the velocity in K we use
the usual denotations u∗λ ≡ u, u∗φ ≡ v, and u∗z ≡ w. The
physical components of the momentum flux tensor in K
are

T ∗λ∗λ = ρu2 + p,

T ∗λ∗φ = T ∗φ∗λ = ρuv,

T ∗λ∗z = T ∗z∗λ = ρuw,

T ∗φ∗φ = ρv2 + p,

T ∗φ∗z = T ∗z∗φ = ρvw,

T ∗z∗z = ρw2 + p.

This finally results in the momentum equations
(2.5)–(2.7).

Analogously, we get for the scalar equation (A.4) the
form

∂
√

G′ψ
∂ t

+
∂

∂λ

(
√

G′ f ∗λ

r cos φ

)
+

∂
∂φ

(√
G′ f ∗φ

r

)

+
∂

∂ζ

(
√

G′

(
∂ζ
∂λ

f ∗λ

r cos φ
+

∂ζ
∂φ

f ∗φ

r
+

∂ζ
∂ z

f ∗z

))

=
√

G′ S. (A.23)

E.g. for the continuity equation we have ψ = ρ , with the
physical components for the flux f (i.e. in the spherical
coordinate system K) f ∗λ = ρu, f ∗φ = ρv, f ∗z = ρw and
S = 0.
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