
Geosci. Model Dev., 9, 2881–2892, 2016
www.geosci-model-dev.net/9/2881/2016/
doi:10.5194/gmd-9-2881-2016
© Author(s) 2016. CC Attribution 3.0 License.

Asynchronous communication in spectral-element and
discontinuous Galerkin methods for atmospheric dynamics –
a case study using the High-Order Methods Modeling Environment
(HOMME-homme_dg_branch)
Benjamin F. Jamroz1 and Robert Klöfkorn1,2

1Computational Information Systems Laboratory, National Center for Atmospheric Research, 1850 Table Mesa Drive,
Boulder, CO 80305, USA
2International Research Institute of Stavanger, P.O. Box 8046, 4068 Stavanger, Norway

Correspondence to: Robert Klöfkorn (robert.kloefkorn@iris.no)

Received: 31 January 2016 – Published in Geosci. Model Dev. Discuss.: 16 March 2016
Revised: 26 July 2016 – Accepted: 1 August 2016 – Published: 26 August 2016

Abstract. The scalability of computational applications on
current and next-generation supercomputers is increasingly
limited by the cost of inter-process communication. We im-
plement non-blocking asynchronous communication in the
High-Order Methods Modeling Environment for the time in-
tegration of the hydrostatic fluid equations using both the
spectral-element and discontinuous Galerkin methods. This
allows the overlap of computation with communication, ef-
fectively hiding some of the costs of communication. A novel
detail about our approach is that it provides some data move-
ment to be performed during the asynchronous communica-
tion even in the absence of other computations. This method
produces significant performance and scalability gains in
large-scale simulations.

1 Introduction

The Community Earth System Model (CESM) is a global
climate model with full coupling between the atmosphere,
ocean, land, sea-ice, and land-ice components (Gent et al.,
2011). The Community Atmosphere Model (CAM) is the at-
mospheric component in CESM which advances the physi-
cal attributes of the atmosphere as well as time-integrating
the atmospheric dynamics through the use of a dynamical
core (Neale et al., 2010). Although there are several dynam-
ical cores available in CAM, the High-Order Methods Mod-

eling Environment (HOMME) dynamical core (Dennis et al.,
2012) is most widely used for large-scale simulations on su-
percomputers due to its scalability.

HOMME was originally designed and optimized for the
spectral-element (SE) method but nowadays also supports a
discontinuous Galerkin (DG) approach to advance the hydro-
static primitive equations. Both methods have been chosen
for their scalability on large distributed memory supercom-
puters. The high order of accuracy of these methods is com-
plemented with a compact communication pattern between
representative elements. Specifically, in two dimensions each
element needs only to exchange information with its edge
neighbors (DG) or edge and vertex neighbors (SE). Unlike a
finite-volume method where higher-order stencils have larger
spatial extent, the SE and DG methods attain this property for
arbitrary order, at the expense of a smaller time step. These
schemes limit the amount of inter-process communication,
providing superior scalability in many applications.

HOMME has demonstrated very good scaling for both the
SE and DG methods. The SE method has shown good scal-
ing up to 178 k cores (Dennis et al., 2012), while the DG
method has shown similar scaling beyond 2 k cores (Nair
et al., 2009) and very recently up to 16 k cores (Nair et al.,
2016) and up to 21 k cores as part of this work. Excellent
scalability of both methods, SE and DG, on leadership class
supercomputers is also reported in other implementations,
for example, in the Nonhydrostatic Unified Model of the At-
mosphere (NUMA; Müller et al., 2015). Although HOMME

Published by Copernicus Publications on behalf of the European Geosciences Union.

2882 B. F. Jamroz and R. Klöfkorn: Asynchronous communication in SE and DG methods

scales well, further improvements in performance and scal-
ability can increase the amount of simulated years of cli-
mate per day (SYPD) of CESM on large parallel resources.
This reduces the time required for long simulations and in-
creases the amount of science obtained in a given amount of
wall-clock time. Additionally, better scalability yields more
efficient use of large-scale computational resources. Even a
small reduction of computational time can have a large im-
pact in reducing the operational costs of a large supercom-
puter. Finally, next-generation hardware, which is typically
characterized by lower clock frequencies and less memory
per core, will benefit from additional parallelism, concur-
rency, and asynchronicity as pointed out in Keyes (2011).

In this paper, we discuss the implementation of non-
blocking asynchronous communication in HOMME for both
the SE and DG methods. We highlight that our method pro-
vides some data movement to be performed, even in the
absence of additional computation, during the communica-
tion step. Overlapping communication with this data move-
ment and additional computation shows scalability and per-
formance gains on large-scale simulations. To the best of our
knowledge this has not been published before. Contempo-
rary works discussing scalability of dynamical cores for cli-
mate and weather prediction on leadership class supercom-
puters such as NUMA (Müller et al., 2015) or the Icosahedral
Nonhydrostatic model (ICON) and the Model for Prediction
Across Scales – Atmosphere (MPAS-A) (both in Brömmel
et al., 2015) do not mention asynchronous communication.
Only the Nonhydrostatic Icosahedral Atmospheric Model
(NICAM; Kodama et al., 2014) employs asynchronous com-
munication, but overlapping communication with computa-
tion is not presented. Besides these works, a vast number
of papers focusing on the scalability of simulation software
on supercomputers also exist. Some state-of-the-art works
have been presented at the International Conference on High
Performance Computing, Networking, Storage and Analysis
(SC) conference series (cf. Chhugani et al., 2012; Bermejo-
Moreno et al., 2013; Heinecke et al., 2014; Rudi et al., 2015)
and special extreme scaling workshops (cf. Brömmel et al.,
2015, 2016). All of these works mention the usage of asyn-
chronous communication but do not provide algorithmic or
implementation details. Additionally, the work of Wittmann
et al. (2013), which entirely focuses on the topic of asyn-
chronous communication, does not provide any details on
how to incorporate asynchronous communication overlap-
ping with computation in a simulation code. To that end we
are not aware of any work providing these details.

The outline of this paper is as follows. First, we present
the existing data structures and communication strategy in
HOMME. Next, we summarize our implementation of non-
blocking asynchronous communication, highlighting data
movement which can be performed during communication.
We then present scaling results and discuss advantages and
limitations of the new method.

2 Background

We first give some background on non-blocking message
passing using Message Passing Interface (MPI) (Forum,
1994). Next, in order to clearly explain the non-blocking
asynchronous communication method, we first describe the
data structures used in HOMME and the existing syn-
chronous communication method.

2.1 Non-blocking communication

Many high-performance scientific applications use MPI to
communicate between processes in a distributed memory
context. Point-to-point messaging is one of the communica-
tion paradigms implemented by MPI; others include reduc-
tions, broadcasts, scatters, and gathers. This communication
method is often used in the context of nearest-neighbor com-
munication in the solution of partial differential equations
using explicit time integration methods where data between
neighboring grid elements (finite-volume cells, Galerkin ele-
ments) must be exchanged. Point-to-point messaging is char-
acterized by one process (the “sender”) sending data to an-
other (the “receiver”).

Blocking communication is used when the MPI processes
involved cannot advance during a point-to-point communi-
cation cycle. Here, a process sending a blocking message,
typically using a call to MPI_Send, must wait until the mes-
sage has been sent and the storage buffer is ready to be
reused. Likewise, in a blocking receive, using MPI_Recv,
the receiver must wait for the message to be fully received.
Since blocking communication effectively causes a synchro-
nization between the sending and receiving processes, this
method is not widely used in high-performance parallel ap-
plications.

A non-blocking implementation allows sending messages
without the restriction that the sending process wait for the
message to be received. On the receiver side, the destina-
tion process posts a receive but can continue running without
waiting for the message to be received. Thus, both the source
and destination processes can continue execution while the
message is sent and received. This allows the overlap of
some computation during communications, giving the po-
tential to hide some of the cost of communication. In most
applications, however, there is a point in the calculation at
which the message needs to be fully sent and received before
any more progress can be made. At this point, the receiver
must wait for the message to be completely received, and
the sending process must wait for the send to be fully com-
pleted. Most commonly, non-blocking communication is im-
plemented using MPI with the MPI_Isend, MPI_Irecv, and
MPI_Wait/MPI_Waitall calls.

The effectiveness of non-blocking communication de-
pends not only on the MPI library implementation (cf.
Wittmann et al., 2013) but also on system-specific charac-
teristics which are not fully encapsulated in the MPI layer.

Geosci. Model Dev., 9, 2881–2892, 2016 www.geosci-model-dev.net/9/2881/2016/

B. F. Jamroz and R. Klöfkorn: Asynchronous communication in SE and DG methods 2883

A measure of the effectiveness of non-blocking communi-
cation is provided by the MPI_overhead test as a part of
the Sandia MPI Micro-Benchmark Suite (SMB). Here, non-
blocking communication between two processes is initialized
using MPI_Isend and MPI_Irecv. Then some computation
is performed before a call to MPI_Waitall. The amount of
computation is increased in each iteration, and each phase is
timed to find the point at which the computation costs domi-
nate the non-blocking communication costs. The benchmark
then reports a metric for what percentage of the time can be
used for computation for a given message size. We used this
benchmark to investigate the performance of two different
MPI implementations, IBM’s version of MPICH 1.5 and In-
tel MPI version 4.0.3.008, and different run time parameters
(i.e., environment variables) on the Yellowstone supercom-
puter (Computational and Information Systems Laboratory,
2012).

Figure 1 shows the results of the micro-benchmark for var-
ious message sizes sent between two nodes of the Yellow-
stone supercomputer (Computational and Information Sys-
tems Laboratory, 2012) averaged over 100 iterations for both
the Eager and Rendezvous protocols using the IBM MPI
implementation. Figure 1a shows the overhead and work_t
metrics for sending a non-blocking message for this micro-
benchmark using the Eager protocol. Here, overhead signi-
fies the time spent sending the non-blocking message, while
work_t denotes the amount of computational time estimated
to fully hide the resulting cost of waiting for the message
being received. Similarly, Fig. 1b shows the same data for
the receiver’s side. Figure 1c–d show similar results for the
Rendezvous protocol. In these plots, we can see that the
overhead of asynchronous non-blocking messaging increases
with message size. Additionally the amount of overlapped
computation required to effectively hide the cost of com-
munication increases with message size. This shows that, in
order to effectively hide communication costs using asyn-
chronous non-blocking communication, one must provide
enough computation to be performed during the communi-
cation step. Providing only a small amount of computation
to be performed during communication limits the benefit of
non-blocking asynchronous communication.

2.2 Current communication strategy

The computational grid in HOMME is typically a semi-
structured cubed sphere or fully unstructured static grid on
the surface of a sphere. Due to the timescale separation of
hydrostatic flows in the locally horizontal (along the sur-
face of the sphere) and locally vertical (radial) directions,
only the surface of the sphere is discretized using the SE
or DG method. The vertical direction uses centered finite-
difference methods (Simmons and Burridge, 1981). This ef-
fectively creates a stack of elements, an “element column”,
with one two-dimensional element for each vertical level.
Typically, for climate simulations, there are 26–50 vertical

levels, although some whole-atmosphere models consider up
to 81 levels (Liu et al., 2010). For parallel efficiency all ver-
tical levels, i.e., one element column, exist on the same pro-
cess.

In integrating the dynamics of the hydrostatic equations,
the majority of the computations are within each element
at one level. Additionally, the consistency conditions be-
tween elements (continuity for SE, flux balance for DG)
only involve horizontally adjacent neighboring elements at
the same vertical level. Thus the layout of the element data
in HOMME has the form

type element
real, dimension(np, np, nlev) :: element_data

end type element ,

where np represents the number of Gauss–Lobatto–
Lebesgue (GLL) points, np-1 equivalently denotes the order
of polynomial, and nlev denotes the number of vertical lev-
els. Since the data within one element (at one vertical level)
are colocated with stride-one access, intra-element compu-
tations, which represent the bulk of the computation, can be
done with maximal efficiency. However, at certain points in
the calculation, e.g., when calculating the surface pressure, a
reduction across vertical levels must be performed. Although
this data structure is not ideal for this particular calculation,
it is a small percentage of the overall computation. Thus the
above data structure is optimal for the majority of calcula-
tions.

Consistency between neighboring elements is one place
where communication between elements, and therefore pro-
cesses, must occur. In HOMME, for both the SE and the DG
methods this amounts to exchanging data between neighbor-
ing horizontal elements. For the SE method, since continuity
must be enforced, the horizontal neighbors with which in-
formation must be exchanged include elements which share
an edge and those which only share a vertex. For the DG
method, since only edge fluxes between elements are re-
quired, only the neighboring elements which share an edge
are included. Figure 2 illustrates the connectivity of a refer-
ence element for the SE and DG methods.

The existing communication method for both the SE and
DG methods has the following form. First, the element data,
which are represented above with a three-dimensional in-
dex, are packed into a one-dimensional buffer consistent with
what is required by the calls to MPI_Irecv and MPI_Isend.
The packing takes all of the edge and vertex values and writes
them into a buffer in a co-located manner. Once all of the
data for each element column on a process has been packed
into the buffer, the appropriate MPI_Irecv and MPI_Isend
calls are made. Immediately after all of these calls have been
made, a call to MPI_Waitall is made on all of the receive
and send requests. After this point, the data can be additively
unpacked from the buffer into the element data structures.
Although this communication pattern is technically asyn-

www.geosci-model-dev.net/9/2881/2016/ Geosci. Model Dev., 9, 2881–2892, 2016

2884 B. F. Jamroz and R. Klöfkorn: Asynchronous communication in SE and DG methods

0 2 4 8
1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
K

2
K

4
K

8
K

1
6
K

3
2
K

6
4
K

1
2
8
K

2
5
6
K

5
1
2
K

1
M

2
M

4
M

Message size [B]

100

101

102

103

T
im

e
 [
u
s]

Work_t
Overhead

(a) Eager - sender

0 2 4 8
1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
K

2
K

4
K

8
K

1
6
K

3
2
K

6
4
K

1
2
8
K

2
5
6
K

5
1
2
K

1
M

2
M

4
M

Message size [B]

100

101

102

103

T
im

e
 [
u
s]

Work_t
Overhead

(b) Eager - receiver

0 2 4 8
1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
K

2
K

4
K

8
K

1
6
K

3
2
K

6
4
K

1
2
8
K

2
5
6
K

5
1
2
K

1
M

2
M

4
M

Message size [B]

100

101

102

103

T
im

e
 [
u
s]

Work_t
Overhead

(c) Rendezvous - sender

0 2 4 8
1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
K

2
K

4
K

8
K

1
6
K

3
2
K

6
4
K

1
2
8
K

2
5
6
K

5
1
2
K

1
M

2
M

4
M

Message size [B]

100

101

102

103

T
im

e
 [
u
s]

Work_t
Overhead

(d) Rendezvous - receiver

Figure 1. Results from the Sandia MPI Micro-Benchmark using the IBM MPI implementation with Eager protocol (top) for sending (a) and
receiving (b) an asynchronous non-blocking message and Rendezvous protocol (bottom) for sending (c) and receiving (d). Here, overhead
corresponds to the amount of overhead time required to send or receive a non-blocking message, while work_t corresponds to the amount of
computation required to effectively hide the costs of sending or receiving the message.

(a) HOMME-SE connectivity. (b) HOMME-DG connectivity.

Figure 2. Connectivity in HOMME-SE (a) and HOMME-DG (b). The DG version does not need to communicate vertex data, and thus
connectivity to other processes is reduced.

chronous (because of the use of MPI_Irecv and MPI_Isend),
the immediate use of MPI_Waitall creates a synchronization
across processes, and we therefore denote this communica-
tion pattern as synchronous. In runs on large numbers of pro-
cesses, there is a significant amount of time spent at this call
where processes wait for neighboring processes to both send
and receive data.

3 Overlapping asynchronous communication strategy

In order to implement effective non-blocking asynchronous
communication in HOMME, we have revised the communi-
cation pattern. In the existing implementation, element edges
and vertices are packed (unpacked) into (out of) a buffer
sequentially, in order of element index, with no regard for

Geosci. Model Dev., 9, 2881–2892, 2016 www.geosci-model-dev.net/9/2881/2016/

B. F. Jamroz and R. Klöfkorn: Asynchronous communication in SE and DG methods 2885

whether the data need to be messaged. This is a key distinc-
tion from our method which takes into account this informa-
tion. Here, we have separated the packing and unpacking of
element edges and vertices into groups corresponding to in-
dividual messages to be sent and received. This modification
allows us to overlap the packing and unpacking of edges with
the communication. This approach also provides the ability
to perform some data movement even in the absence of any
other computation. We now describe this technique.

To implement the overlap of pack/unpack routines with the
communication itself, we generated the following mapping.
Denote by Lp the set of all processes with which a given
process needs to communicate. Using this set we generate
a set of elements that contains all elements e ∈ El that are
linked to process l ∈ Lp, either the edge or the vertices (see
also Fig. 2). This latter set specifies the data that need to be
packed before message l is sent. Specifically, after packing
all of the edges and vertices for message l, one can immedi-
ately call MPI_Isend and begin packing the data for the next
message.

On the receive side, one can unpack data as soon as a mes-
sage is received. Specifically, we use a call to MPI_Testany
to determine if any of the messages have been received. Af-
ter a message has been received, we remove it from the list of
messages to be checked in MPI_Testany and unpack the data
that were received. We repeat this process with a reduced list
of messages in the call to MPI_Testany until all of the mes-
sages have been received and the corresponding data have
been unpacked. Note that in general the connectivity for send
and receive could differ; i.e., we have a set Ls

p for the send
procedure and Lr

p for receive. However, the communication
we consider in this paper is symmetric, i.e., Ls

p = Lr
p.

In Algorithm 1 we present the packAndSend routine and
in Algorithm 2 the receiveAndUnpack routine. Both overlap
the send/receive with the corresponding pack/unpack.

and unpacking of edges with the communication. This approach also provides the ability to perform some data movement even

in the absence of any other computation. We now describe this technique.

To implement the overlap of pack/unpack routines with the communication itself we generated the following mapping.

Denote by Lp the set of all processes with which a given process needs to communicate. Using this set we generate a set of

elements that contains all elements e ∈ El that are linked to process l ∈ Lp, either the edge or the vertices (see also Figure 2).5

This latter set specifies the data that needs to be packed before message l is sent. Specifically, after packing all of the edges and

vertices for message l one can immediately call MPI_Isend, and begin packing the data for the next message.

On the receive side, one can unpack data as soon as a message is received. Specifically, we use a call to MPI_Testany to

determine if any of the messages have been received. After a message has been received, we remove it from the list of messages

to be checked in MPI_Testany and unpack the data that was received. We repeat this process with a reduced list of messages in10

the call to MPI_Testany until all of the messages have been received and the corresponding data has been unpacked. Note that

in general the connectivity for send and receive could differ, i.e. we have a set Ls
p for the send procedure and Lr

p for receive.

However, the communication we consider in this paper is symmetric, i.e. Ls
p = Lr

p.

In Algorithm 1 we present the packAndSend routine and in Algorithm 2 the receiveAndUnpack routine. Both overlap the

send/receive with the corresponding pack/unpack.15

Algorithm 1 packAndSend

1: MPI_Waitall(Ls
p) { wait for previously posted MPI_Isend calls }

2: for q ∈ Ls
p do

3: for e ∈ Eq do

4: packData(e, q) { pack data to MPI message buffer }

5: end for

6: MPI_Isend(q) { send data in message buffer to rank q }

7: end for

Most notable about the implementation explained above is that even in the absence of additional computation to be completed

during communication, the packing and unpacking of the buffers provides some data movement to be accomplished while

waiting for messages to be received. This is extended in the case where there are multiple elements per process. Here, these

intra-process edges and vertex contributions are packed and unpacked in between the send and receive stages, providing even

further data movement before querying for completed messages. More internal edges and vertices provide more data movement20

and therefore better communication hiding.

Finally, since our communication restructuring now clearly supports separate send and receive routines, one can now place

computation between these calls to potentially hide even more of the communication costs. In many cases, however, this

requires some algorithmic restructuring which is not always easy or possible. For that reason our implementation provides at

least the more simple overlap of pack/unpack with communication calls. It is important to mention that this approach can in25

principle be applied to any point-to-point communication stemming from the discretization of PDEs or other applications one

7

Algorithm 2 receiveAndUnpack

1: nr← 0

2: while nr < |Lr
p| do

3: { check if message is available, if yes then q contains the corresponding rank}

4: if MPI_Testany(Lr
p, q) then

5: for e ∈ Eq do

6: unpackData(e, q) { unpack data from MPI message buffer }

7: end for

8: reset MPI_Request for q to MPI_REQUEST_NULL

9: nr← nr +1 { increase received counter }

10: end if

11: end while

example being the semi-Lagrangian multi-tracer transport schemes implemented in HOMME by Erath et al. (2012) and Erath

and Nair (2014). We now describe the computation and data movement that can be performed while waiting for messages to

be received in the SE and DG methods.

3.1 Overlapping for the SE method

In the SE method, communication is required mainly as part of an operator which projects data for each element (which5

is redundant a the edges of the element) onto the space of continuous piecewise polynomials (Taylor and Fournier (2010)).

Specifically, data on element edges is not continuous until after a pack, communication, unpack cycle has been completed. This

adds a difficulty in overlapping computation with communication for the SE method since any computation depending upon

the data being messaged would have to take into account the discontinuity of the data.

While we haven’t been able to take advantage of any significant computation to be performed while communication occurs,10

there is still the data movement performed by the packing and unpacking of interior data and the packing and unpacking of

messages as they arrive. Since this data movement is required in the original synchronous communication method as well,

overlapping this data movement provides a small amount of work to be done to hide some of the communication costs.

3.2 Overlapping for the DG method

In the DG method, communication is required to obtain data needed to perform flux calculations carried out at each edge of15

an element (Nair et al. (2009)). This allows the computation of internal edge and element integrals during the asynchronous

communication. We have allowed the computation of auxiliary diagnostic variables between the call of send and receive.

Further code revision could include the computation of the right hand side and internal flux computations as described in

(Baggag et al. (1999)). In Algorithm 3 we describe how we overlap the computation of auxiliary variables and the computation

8

Most notable about the implementation explained above
is that, even in the absence of additional computation to be
completed during communication, the packing and unpack-
ing of the buffers provides some data movement to be ac-
complished while waiting for messages to be received. This
is extended in the case where there are multiple elements per
process. Here, these intra-process edges and vertex contri-
butions are packed and unpacked in between the send and
receive stages, providing even further data movement before
querying for completed messages. More internal edges and
vertices provide more data movement and therefore better
communication hiding.

Finally, since our communication restructuring now
clearly supports separate send and receive routines, one can
now place computation between these calls to potentially
hide even more of the communication costs. In many cases,
however, this requires some algorithmic restructuring, which
is not always easy or possible. For that reason our im-
plementation provides at least the more simple overlap of
pack/unpack with communication calls. It is important to
mention that this approach can in principle be applied to
any point-to-point communication stemming from the dis-
cretization of partial differential equations (PDEs) or other
applications – one example being the semi-Lagrangian multi-
tracer transport schemes implemented in HOMME by Erath
et al. (2012) and Erath and Nair (2014). We now describe
the computation and data movement that can be performed
while waiting for messages to be received in the SE and DG
methods.

3.1 Overlapping for the SE method

In the SE method, communication is required mainly as part
of an operator which projects data for each element (which
is redundant at the edges of the element) onto the space
of continuous piecewise polynomials (Taylor and Fournier,
2010). Specifically, data on element edges are not continu-
ous until after a pack–communication–unpack cycle has been
completed. This adds a difficulty in overlapping computation
with communication for the SE method since any computa-
tion depending upon the data being messaged would have to
take into account the discontinuity of the data.

www.geosci-model-dev.net/9/2881/2016/ Geosci. Model Dev., 9, 2881–2892, 2016

2886 B. F. Jamroz and R. Klöfkorn: Asynchronous communication in SE and DG methods

Figure 3. Surface pressure at day 7 and 9 for the HOMME-SE (a, c) and HOMME-DG (b, d) code for the Jablonowski–Williamson baroclinic
wave instability test case. Both methods used 1◦ resolution at the Equator (nlev= 26; SE: np= 4, ne = 30; DG: np= 6, ne = 18).

While we have not been able to take advantage of any sig-
nificant computation to be performed while communication
occurs, there is still the data movement performed by the
packing and unpacking of interior data and the packing and
unpacking of messages as they arrive. Since this data move-
ment is required in the original synchronous communication
method as well, overlapping this data movement provides a
small amount of work to be done to hide some of the com-
munication costs.

3.2 Overlapping for the DG method

In the DG method, communication is required to obtain data
needed to perform flux calculations carried out at each edge
of an element (Nair et al., 2009). This allows the computa-
tion of internal edge and element integrals during the asyn-
chronous communication. We have allowed the computation
of auxiliary diagnostic variables between the call of send and
receive. Further code revision could include the computation
of the right-hand side and internal flux computations as de-
scribed in Baggag et al. (1999). In Algorithm 3 we describe
how we overlap the computation of auxiliary variables and
the computation of the gradient of the solution for the diffu-
sion operator with the communication of the fluxes. Details
on the implementation of the diffusion operator can be found
in Nair (2009).

of the gradient of the solution for the diffusion operator with the communication of the fluxes. Details on the implementation

of the diffusion operator can be found in (Nair (2009)).

Algorithm 3 dg3d_uv_step

1: dg3d_packAndSend(userdata) {send data for flux and gradient computation}

2: gradient_p3d(userdata) {compute local auxiliary variables }

3: dg3d_recvAndUnpack(userdata) {receive data}

4: if updateDiffusion then

5: dg3d_diff_grads_uv(userdata) {compute local gradients}

6: dg3d_gradientPackAndSend(userdata)

7: end if

8: rhs← dg3d_uvform_rhs {compute fluxes and right hand side}

9: if updateDiffusion then

10: dg3d_gradientRecvAndUnpack(userdata) {receive the gradients}

11: diff_rhs← dg3d_diff_flux(userdata) {compute gradients fluxes}

12: end if

13: if diffusion then

14: rhs = rhs + diff_rhs

15: end if

In addition, in comparison to the DG implementation used in (Nair et al. (2009)) which uses the same communication

structure as the SE method (which means unnecessary communication of vertex values) the new DG implementation only

communicates edge values (see Figure 2b). This is easily achieved by simply altering the sets Ls
p and Lr

p. This reduces the5

inter-process connectivity considerably. The result is faster execution times and better scaling as presented in the next section.

4 Results

We test our implementation of non-blocking asynchronous communication using the well known Jablonowski-Williamson

baroclinic wave instability test case (Jablonowski and Williamson (2006)) using the Yellowstone supercomputer (Yel). We first

show that the new communication strategy allows us to reproduce the results obtained with the pre-existing communication10

strategy. Then we show results for strong scalings on representative climate simulation resolutions. For all of the following

runs we have used a cubed-sphere grid with ne elements along each edge of the cube for a total of E ≡ 6n2
e total elements.

4.1 The Jablonowski-Williamson baroclinic wave instability test case

The Jablonowski-Williamson baroclinic wave instability test case examines the evolution of an idealized baroclinic wave in the

northern hemisphere. This test is designed to evaluate dynamical cores at resolutions applicable to climate simulations. Thus, it15

9

In addition, in comparison to the DG implementation used
in Nair et al. (2009) which uses the same communication
structure as the SE method (which means unnecessary com-
munication of vertex values) the new DG implementation
only communicates edge values (see Fig. 2b). This is eas-
ily achieved by simply altering the sets Ls

p and Lr
p. This re-

duces the inter-process connectivity considerably. The result
is faster execution times and better scaling as presented in the
next section.

Geosci. Model Dev., 9, 2881–2892, 2016 www.geosci-model-dev.net/9/2881/2016/

B. F. Jamroz and R. Klöfkorn: Asynchronous communication in SE and DG methods 2887

Figure 4. Vorticity at day 7 and 9 for the HOMME-SE (a, c) and HOMME-DG (b, d) code for the Jablonowski–Williamson baroclinic wave
instability test case. Both methods used 1◦ resolution at the Equator (nlev= 26; SE: np= 4, ne = 30; DG: np= 6, ne = 18).

4 Results

We test our implementation of non-blocking asynchronous
communication using the well-known Jablonowski–
Williamson baroclinic wave instability test case
(Jablonowski and Williamson, 2006) using the Yellow-
stone supercomputer (Computational and Information
Systems Laboratory, 2012). We first show that the new
communication strategy allows us to reproduce the results
obtained with the pre-existing communication strategy. Then
we show results for strong scalings on representative climate
simulation resolutions. For all of the following runs we have
used a cubed-sphere grid with ne elements along each edge
of the cube for a total of E ≡ 6n2

e total elements.

4.1 The Jablonowski–Williamson baroclinic wave
instability test case

The Jablonowski–Williamson baroclinic wave instability test
case examines the evolution of an idealized baroclinic wave
in the Northern Hemisphere. This test is designed to evaluate
dynamical cores at resolutions applicable to climate simula-
tions. Thus, it is a good case to get a measure of performance
and scalability in a climate-realistic test problem. Although
an analytic solution is not available for this test case, refer-
ence solutions exist for the Eulerian dynamical core (Neale
et al., 2010).

In Figs. 3 and 4 we present the results for the surface
pressure and the vorticity, respectively, for the Jablonowski–
Williamson test case (The 2012 Dynamical Core Model In-
tercomparison Project, 2012; Jablonowski and Williamson,
2006) using non-blocking asynchronous communication. We
run both methods, the SE and the DG, for this test case using
a resolution of roughly 1◦ at the Equator. For the SE method
this means ne = 30, since we are using the standard config-
uration of np= 4. For the DG method, we use np= 6 and
ne = 18. Both models use nlev= 26. As Fig. 3 and 4 show,
with both methods we are able to reproduce the results pre-
sented in the literature (The 2012 Dynamical Core Model In-
tercomparison Project, 2012; Jablonowski and Williamson,
2006). For the DG method we are able to achieve bit-for-bit
reproducibility of the results achieved with the old and new
communication methods. For the SE method this is not possi-
ble due to the varying summation order of the communicated
vertex values (see Sect. 5.2).

In the following, we present a series of scaling results to
show the effectiveness and performance of our non-blocking
asynchronous communication strategy. For both scaling se-
ries we use a cubed-sphere mesh with a resolution of ne = 60
and ne = 120 elements along each edge of the cubed sphere
for E ≡ 21 600 and E ≡ 86 400 total elements, respectively.

www.geosci-model-dev.net/9/2881/2016/ Geosci. Model Dev., 9, 2881–2892, 2016

2888 B. F. Jamroz and R. Klöfkorn: Asynchronous communication in SE and DG methods

4.2 Scaling results for the SE method

For the SE method, we perform a strong scaling for half-
degree ne = 60 and quarter-degree ne = 120 resolutions with
np= 4 and nlev= 26. In order to limit the total amount of
computational time, we performed 9 days of simulated time
for the ne = 60 runs but only 1 day of simulated time for the
ne = 120 runs. Figure 5 shows the plots of the strong scaling
of total time-stepping time for both resolutions. Additionally,
Table 1 lists the timing results as well as speedup numbers
from the ne = 60 and ne = 120 scaling runs as well.

For moderate numbers of elements per process, we see a
significant decrease in run time when using asynchronous
communication. However, once the number of elements
per process decreases below four elements per process, the
advantage of using asynchronous communication becomes
negligible. This is due to the fact that there is a smaller
amount of interior packing and unpacking to be done while
the messages are being sent and received.

Finally, for ne = 120 on 338 processes we see that there
is a negligible performance improvement (1.009×) when us-
ing the asynchronous method. Here, the movement of ele-
ment edge and vertex data is a large part of the total run
time. Although this data movement hides some of the com-
munication costs, the decrease in memory locality when
packing/unpacking individual messages compared to pack-
ing/unpacking entire elements can increase the total cost
of data movement relative to the original communication
method.

4.3 Scaling results for the DG method

For the DG (np= 6, nlev= 26) strong scaling we com-
pare four different communication methods. The pre-existing
method using the same connectivity as the SE method (see
Fig. 2a) is referred to as synchronous. The method imple-
menting asynchronous communication but with the SE con-
nectivity is called overlap (vx). The remaining two meth-
ods use the reduced connectivity described in Fig. 2b. One
method only uses the overlapping of pack/unpack with
send/receive and is referred to as asynchronous. The other
method uses the overlapping of computation as described in
Algorithm 3 and is simply denoted overlapping.

In Fig. 6 the strong scaling results for the DG code (np= 6,
nlev= 26) for the Jablonowski–Williamson test case are pre-
sented. The numbers used to generate the plots are presented
in Table 2. We can see that using the asynchronous com-
munication leads to improved performance. Here, we en-
counter a performance gain of approximately 8 %. This is
increased by reducing the connectivity to over 10 %, which is
not surprising. More interesting is that, as the numbers for the
non-blocking and the overlapping runs show, placing some
work (other than the pack/unpack) between the send and re-
ceive calls increases the overall performance of the simula-
tion even further. This is a strong indicator that a code revi-

Table 1. Results for the strong scaling of the SE method (np= 4 and
nlev= 26) and for ne = 60 (a) and ne = 120 (b). We list the number
processes P, the maximum number of elements per process E/P ,
and the times for the synchronous and asynchronous communica-
tion methods. The speedup of using asynchronous communication
is included in parentheses.

(a) ne = 60

P E/P Synch. Asynch.

338 64 204.64 192.518 (1.063)
675 32 102.50 98.85 (1.037)

1350 16 55.32 51.78 (1.068)
2700 8 31.16 30.93 (1.007)
5400 4 18.29 17.94 (1.020)

10 800 2 10.69 10.71 (0.998)
21 600 1 6.29 6.45 (0.975)

(b) ne = 120

P E/P Synch. Asynch.

338 256 190.90 189.108 (1.009)
675 128 98.14 89.43 (1.097)

1350 64 49.19 45.18 (1.089)
2700 32 25.15 23.97 (1.049)
5400 16 13.73 13.37 (1.027)

10 800 8 7.52 7.40 (1.017)
21 600 4 4.44 4.39 (1.011)

sion (HOMME was originally only designed and optimized
for SE) such that the maximum amount of computation can
be placed between the send and receive calls will be benefi-
cial.

5 Discussion

5.1 Performance at large scale

As seen in Sect. 4.2, the non-blocking asynchronous com-
munication method yields significant performance increases
when the number of elements per MPI process is four or
above. This is due, in part, to the limited amount of data asso-
ciated with element boundaries when there are few elements
per process. Thus this technique is mainly beneficial when
there are a moderate number of elements per MPI process.
Although HOMME scales fairly well out to one element per
MPI process, production climate runs typically assign more
elements per process (Small et al., 2014). In this regime, the
asynchronous communication scheme is significantly more
efficient.

5.2 Bit-for-bit reproducibility

In the non-blocking asynchronous communication methods,
messages received from other processes are additively un-
packed as they are received through the use of MPI_Testany.

Geosci. Model Dev., 9, 2881–2892, 2016 www.geosci-model-dev.net/9/2881/2016/

B. F. Jamroz and R. Klöfkorn: Asynchronous communication in SE and DG methods 2889

 10

 100

338 675 1350 2700 5400 10 800 21 600

R
u
n
 t
im

e

No. cores

SE-ASPBARO-NP4-ne60

Optimal
Blocking

Non-blocking

(a) ne = 60

 10

 100

338 675 1350 2700 5400 10 800 21 600

R
u
n
 t
im

e

No. cores

SE-ASPBARO-NP4-ne120

Optimal
Blocking

Non-blocking

(b) ne = 120

Figure 5. Strong scaling of the SE method in HOMME the Jablonowski–Williamson test baroclinic wave instability test case for ne = 60 (a)
and ne = 120 (b). For these runs we used np= 4 and nlev= 26. For ne = 60 we computed 4860 time steps, and for ne = 120 we computed
1080 time steps.

 10

 100

338 675 1350 2700 5400 10 800 21 600

R
un

 ti
m

e

No. cores

DG3D-JW-NP6-ne60

Optimal
Blocking

Vx overlapping
Non-blocking
Overlapping

(a) ne = 60

 100

 1000

338 675 1350 2700 5400 10 800 21 600

R
un

 ti
m

e

No. cores

DG3D-JW-NP6-ne120

Optimal
Blocking

Vx overlapping
Non-blocking
Overlapping

(b) ne = 120

Figure 6. Strong scaling of the HOMME-DG code for the Jablonowski–Williamson baroclinic wave instability test case. For the run we used
np= 6, nlev= 26, and (a) ne = 60 or (b) ne = 120. For each run we compute 4500 time steps.

Due to the indeterminate ordering of these contributions and
the fact that finite-precision floating-point arithmetic is non-
associative, two identical runs, which may have MPI mes-
sages received in different orders, will not produce the ex-
act same, bit-for-bit, results. Although a stable numerical
scheme will produce qualitatively similar results, quantita-
tive differences may be present.

This complexity can confound traditional methods of veri-
fying the correctness of simulations, ports to other machines,
or code changes. However, knowledge of the numerical accu-
racy of the underlying integration and discretization schemes
can be used to bound this difference and restore confidence in
the accuracy of the dynamic results. Additionally, statistical
techniques such as Baker et al. (2015) can be used to ver-
ify that the differences are limited to machine level round-off
and will not have a drastic impact on qualitative results.

Although techniques such as Kahan summation (Kahan,
1965) can limit the amount of accumulated machine preci-
sion round-off error, ensuring bit-for-bit exactness between
identical runs requires more care. One possible avenue would
be to unpack messages as they are received, storing these data
in another buffer, and waiting to perform additive operations
until all messages have been received. This enforces a static

order of operations and avoids the differences caused by non-
associativity.

6 Conclusions

In this paper we outlined our implementation of non-
blocking asynchronous communication in HOMME for both
the SE and DG methods. This strategy included the use of
non-blocking MPI routines as well as a restructuring of the
pack and unpack methods to provide data movement as well
as other computation during the communication. Most no-
tably, even in the absence of additional computation, the SE
method attained performance gains simply by overlapping
the packing and unpacking of messages and internal buffers.
These gains were most significant when run at a modest num-
ber of elements per MPI process, as is typical in production
runs.

For the DG method, where additional computation is avail-
able to be performed during the communication, there were
even bigger efficiency and scalability gains. The scaling re-
sults for the DG method also highlighted the increases that
could be gained in the SE version if there is additional com-
putation with which to overlap communication.

www.geosci-model-dev.net/9/2881/2016/ Geosci. Model Dev., 9, 2881–2892, 2016

2890 B. F. Jamroz and R. Klöfkorn: Asynchronous communication in SE and DG methods

Table 2. Time in seconds for the synchronous, the overlapping with vertex connectivity, the asynchronous without vertex connectivity, and
the overlapping without vertex connectivity communication methods for the DG (np= 6, nlev= 26) strong scaling for ne = 60 (a) and
ne = 120 (b). P denotes the number of cores used in the simulation.

(a) ne = 60

P E/P Synch. Overlap(vx) Asynchronous Overlapping

338 63.9 458.88 434.73 (1.056) 435.52 (1.054) 421.32 (1.089)
675 32 228.54 216.37 (1.056) 214.45 (1.066) 206.68 (1.106)

1350 16 115.44 109.64 (1.053) 104.45 (1.105) 101.02 (1.143)
2700 8 56.95 59.48 (0.957) 53.95 (1.056) 54.12 (1.052)
5400 4 30.15 31.07 (0.970) 27.32 (1.103) 26.63 (1.132)

10 800 2 18.02 19.42 (0.928) 16.00 (1.126) 15.65 (1.152)
21 600 1 12.69 13.58 (0.934) 10.00 (1.269) 9.62 (1.318)

(b) ne = 120

P E/P Synch. Overlap(vx) Asynchronous Overlapping

338 255.6 1829.71 1686.99 (1.085) 1700.86 (1.076) 1635.55 (1.119)
675 128 917.91 859.39 (1.068) 856.77 (1.071) 822.08 (1.117)

1350 64 462.95 432.00 (1.072) 424.79 (1.090) 409.40 (1.131)
2700 32 227.26 218.71 (1.039) 212.71 (1.068) 205.41 (1.106)
5400 16 116.40 107.28 (1.085) 105.41 (1.104) 100.39 (1.159)

10 800 8 58.18 56.80 (1.024) 54.82 (1.061) 53.01 (1.097)
21 600 4 30.89 30.30 (1.019) 27.62 (1.118) 27.19 (1.136)

One limitation of the non-blocking asynchronous commu-
nication method, as implemented, is round-off level differ-
ences of results between identical runs for the SE method.
However, numerical and statistical analysis can be used to
bound these differences and restore confidence in simulation
results.

We expect that, with additional development, non-
blocking asynchronous communication will provide more
computation overlap, further increasing the performance and
scalability of HOMME, CAM, and CESM.

7 Code availability and compiler flags

For the test carried out in this study the source code
was compiled using the Intel Fortran (Formula Transla-
tion) compiler at version 13.1.2 with optimization flags
-O3. For the asynchronous communication we set the
environment variables MP_EAGER_LIMIT=4194305 and
MP_EAGER_LIMIT_LOCAL=4194305.

The source code is available through the
homme_dg_branch of the HOMME code repository (https://
www.homme.ucar.edu/) in the directory https://svn-homme-
model.cgd.ucar.edu/branches/homme_dg_branch/trunk/src.
The modified and added files1 are as follows:

linkage_mod.F90 implementing the linkage pattern de-
scribed in Fig. 2;

1Each file is linked to its repository location.

nonblockingcomm_mod.F90 implementing the asyn-
chronous communication described in Algorithms 1
and 2;

dg3d_packunpack_mod.F90 implementing the pack and
unpack routines for the DG method used in Algorithm
1 and 2;

advect_packunpack_mod.F90 implementing the pack
and unpack routines for the SE method used in Algo-
rithm 1 and 2.

Acknowledgements. We would like to acknowledge high-
performance computing support from Yellowstone (Computational
and Information Systems Laboratory, 2012) provided by NCAR’s
Computational and Information Systems Laboratory, sponsored
by the National Science Foundation. Robert Klöfkorn acknowl-
edges the DOE BER Program under the award DE-SC0006959;
NCAR/CISL’s Research and Supercomputing Visitor Program
(RSVP); and the Research Council of Norway and the industry
partners – ConocoPhillips Skandinavia AS, BP Norge AS, Det
Norske Oljeselskap AS, Eni Norge AS, Maersk Oil Norway AS,
DONG Energy A/S, Denmark, Statoil Petroleum AS, ENGIE E&P
NORGE AS, Lundin Norway AS, Halliburton AS, Schlumberger
Norge AS, Wintershall Norge AS – of The National IOR Centre of
Norway for financial support.

Edited by: S. Marras
Reviewed by: three anonymous referees

Geosci. Model Dev., 9, 2881–2892, 2016 www.geosci-model-dev.net/9/2881/2016/

https://www.homme.ucar.edu/
https://www.homme.ucar.edu/
https://svn-homme-model.cgd.ucar.edu/branches/homme_dg_branch/trunk/src
https://svn-homme-model.cgd.ucar.edu/branches/homme_dg_branch/trunk/src
https://svn-homme-model.cgd.ucar.edu/branches/homme_dg_branch/trunk/src/linkage_mod.F90
https://svn-homme-model.cgd.ucar.edu/branches/homme_dg_branch/trunk/src/nonblockingcomm_mod.F90
https://svn-homme-model.cgd.ucar.edu/branches/homme_dg_branch/trunk/src/dg3d_packunpack_mod.F90
https://svn-homme-model.cgd.ucar.edu/branches/homme_dg_branch/trunk/src/advect_packunpack_mod.F90

B. F. Jamroz and R. Klöfkorn: Asynchronous communication in SE and DG methods 2891

References

The 2012 Dynamical Core Model Intercomparison Project: avail-
able at: https://earthsystemcog.org/projects/dcmip-2012 (last ac-
cess: 22 August 2016), 2012.

Baggag, A., Atkins, H., and Keyes, D.: Parallel Implementation of
the Discontinuous Galerkin Method, in: Proceedings of Parallel
CFD’99, 115–122, 1999.

Baker, A. H., Hammerling, D. M., Levy, M. N., Xu, H., Dennis,
J. M., Eaton, B. E., Edwards, J., Hannay, C., Mickelson, S. A.,
Neale, R. B., Nychka, D., Shollenberger, J., Tribbia, J., Verten-
stein, M., and Williamson, D.: A new ensemble-based consis-
tency test for the Community Earth System Model (pyCECT
v1.0), Geosci. Model Dev., 8, 2829–2840, doi:10.5194/gmd-8-
2829-2015, 2015.

Bermejo-Moreno, I., Bodart, J., Larsson, J., Barney, B., Nichols,
J., and Jones, S.: Solving the compressible Navier-Stokes equa-
tions on up to 1.97 million cores and 4.1 trillion grid points, in:
Proceedings of SC13: International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, Denver,
62:1–62:10, 2013.

Brömmel, D., Frings, W., and Wylie, B. J. N.: JUQUEEN Ex-
treme Scaling Workshop 2015, Tech. Rep. FZJ-JSC-IB-2015-01,
available at: http://juser.fz-juelich.de/record/188191 (last access:
22 August 2016), 2015.

Brömmel, D., Frings, W., and Wylie, B. J. N.: JUQUEEN Ex-
treme Scaling Workshop 2016, Tech. Rep. FZJ-JSC-IB-2016-
01, available at: https://juser.fz-juelich.de/record/283461, last ac-
cess: 22 August 2016.

Chhugani, J., Kim, C., Shukla, H., Park, J., Dubey, P., Shalf, J., and
Simon, H. D.: Billion-particle SIMD-friendly Two-point Cor-
relation on Large-scale HPC Cluster Systems, in: Proceedings
of the International Conference on High Performance Comput-
ing, Networking, Storage and Analysis, SC ’12, IEEE Com-
puter Society Press, Los Alamitos, CA, USA, 1:1–1:11, http:
//dl.acm.org/citation.cfm?id=2388996.2388998, 2012.

Computational and Information Systems Laboratory. Yellowstone:
IBM iDataPlex System (Climate Simulation Laboratory), Boul-
der, CO: National Center for Atmospheric Research, avail-
able at: http://n2t.net/ark:/85065/d7wd3xhc (last access: 22 Au-
gust 2016), 2012.

Dennis, J. M., Edwards, J., Evans, K. J., Guba, O., Lauritzen,
P. H., Mirin, A. A., St.-Cyr, A., Taylor, M. A., and Worley,
P. H.: CAM-SE: A scalable spectral element dynamical core
for the Community Atmosphere Model, IJHPCA, 26, 74–89,
doi:10.1177/1094342011428142, 2012.

Erath, C. and Nair, R.: A conservative multi-tracer transport scheme
for spectral-element spherical grids, J. Comput. Phys., 256, 118–
134, doi:10.1016/j.jcp.2013.08.050, 2014.

Erath, C., Lauritzen, P. H., Garcia, J. H., and Tufo, H. M.: Proceed-
ings of the International Conference on Computational Science,
ICCS 2012 Integrating a scalable and effcient semi-Lagrangian
multi-tracer transport scheme in HOMME, Procedia Computer
Science, 9, 994–1003, doi:10.1016/j.procs.2012.04.106, 2012.

Forum, M. P.: MPI: A Message-Passing Interface Standard, Tech.
rep., Knoxville, TN, USA, 1994.

Gent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke,
E. C., Jayne, S. R., Lawrence, D. M., Neale, R. B., Rasch, P. J.,
Vertenstein, M., Worley, P. H., Yang, Z.-L., and Zhang, M.: The

Community Climate System Model Version 4, J. Climate, 24,
4973–4991, doi:10.1175/2011JCLI4083.1, 2011.

Heinecke, A., Breuer, A., Rettenberger, S., Bader, M., Gabriel,
A. A., Pelties, C., Bode, A., Barth, W., Liao, X. K., Vaidyanathan,
K., Smelyanskiy, M., and Dubey, P.: Petascale High Order Dy-
namic Rupture Earthquake Simulations on Heterogeneous Su-
percomputers, in: SC14: International Conference for High Per-
formance Computing, Networking, Storage and Analysis, 3–14,
doi:10.1109/SC.2014.6, 2014.

Jablonowski, C. and Williamson, D. L.: A baroclinic instability test
case for atmospheric model dynamical cores, Q. J. Roy. Meteor.
Soc., 132, 2943–2975, doi:10.1256/qj.06.12, 2006.

Kahan, W.: Pracniques: Further Remarks on Reducing Trunca-
tion Errors, Commun. ACM, 8, 40, doi:10.1145/363707.363723,
1965.

Keyes, D.: Exaflop/s: The why and the how, Comptes Rendus Mé-
canique, 339, 70–77, doi:10.1016/j.crme.2010.11.002, 2011.

Kodama, C., Terai, M., Noda, A. T., Yamada, Y., Satoh, M., Seiki,
T., ichi Iga, S., Yashiro, H., Tomita, H., and Minami, K.: Scalable
rank-mapping algorithm for an icosahedral grid sy stem on the
massive parallel computer with a 3-D torus network , Parallel
Comput., 40, 362–373, doi:10.1016/j.parco.2014.06.002, 2014.

Liu, H.-L., Foster, B. T., Hagan, M. E., McInerney, J. M., Maute, A.,
Qian, L., Richmond, A. D., Roble, R. G., Solomon, S. C., Garcia,
R. R., Kinnison, D., Marsh, D. R., Smith, A. K., Richter, J., Sassi,
F., and Oberheide, J.: Thermosphere extension of the Whole At-
mosphere Community Climate Model, J. Geophys. Res.-Space,
115, A12302, doi:10.1029/2010JA015586, 2010.

Müller, A., Kopera, M. A., Marras, S., Wilcox, L. C., Isaac,
T., and Giraldo, F. X.: Strong Scaling for Numerical Weather
Prediction at Petascale with the Atmospheric Model NUMA,
CoRR, abs/1511.01561, http://arxiv.org/abs/1511.01561 (last ac-
cess: 22 August 2016), 2015.

Nair, R., Choi, H.-W., and Tufo, H.: Computational as-
pects of a scalable high-order discontinuous Galerkin at-
mospheric dynamical core, Comput. Fluids, 38, 309–319,
doi:10.1016/j.compfluid.2008.04.006, 2009.

Nair, R. D.: Diffusion Experiments with a Global Discontinuous
Galerkin Shallow Water Model, Mon. Weather Rev., 137, 3339–
3350, 2009.

Nair, R. D., Bao, L., Toy, M. D., and Klöfkorn, R.: A High-Order
Multiscale Global Atmospheric Model, in: 8th AIAA Atmo-
spheric and Space Environments Conference, AIAA Aviation,
(AIAA 2016-3888), doi:10.2514/6.2016-3888, 2016.

Neale, R. B., Gettelman, A., Park, S., Conley, A. J., Kinnison, D.,
Marsh, D., Smith, A. K., Vitt, F., Morrison, H., Cameron-Smith,
P., Collins, W. D., Iacono, M. J., Easter, R. C., Liu, X., Tay-
lor, M. A., Chen, C.-C., Lauritzen, P. H., Williamson, D. L.,
Garcia, R., Lamarque, J.-F., Mills, M., Tilmes, S., Ghan, S. J.,
and Rasch, P. J.: Description of the NCAR Community Atmo-
sphere Model (CAM 5.0), NCAR Tech. Note, p. 268, available
at: http://www.cesm.ucar.edu/models/cesm1.0/cam/ (last access:
22 August 2016), 2010.

Rudi, J., Malossi, A. C. I., Isaac, T., Stadler, G., Gurnis, M., Staar,
P. W. J., Ineichen, Y., Bekas, C., Curioni, A., and Ghattas, O.: An
Extreme-scale Implicit Solver for Complex PDEs: Highly Het-
erogeneous Flow in Earth’s Mantle, in: Proceedings of the In-
ternational Conference for High Performance Computing, Net-

www.geosci-model-dev.net/9/2881/2016/ Geosci. Model Dev., 9, 2881–2892, 2016

https://earthsystemcog.org/projects/dcmip-2012
http://dx.doi.org/10.5194/gmd-8-2829-2015
http://dx.doi.org/10.5194/gmd-8-2829-2015
http://juser.fz-juelich.de/record/188191
https://juser.fz-juelich.de/record/283461
http://dl.acm.org/citation.cfm?id=2388996.2388998
http://dl.acm.org/citation.cfm?id=2388996.2388998
http://n2t.net/ark:/85065/d7wd3xhc
http://dx.doi.org/10.1177/1094342011428142
http://dx.doi.org/10.1016/j.jcp.2013.08.050
http://dx.doi.org/10.1016/j.procs.2012.04.106
http://dx.doi.org/10.1175/2011JCLI4083.1
http://dx.doi.org/10.1109/SC.2014.6
http://dx.doi.org/10.1256/qj.06.12
http://dx.doi.org/10.1145/363707.363723
http://dx.doi.org/10.1016/j.crme.2010.11.002
http://dx.doi.org/10.1016/j.parco.2014.06.002
http://dx.doi.org/10.1029/2010JA015586
http://arxiv.org/abs/1511.01561
http://dx.doi.org/10.1016/j.compfluid.2008.04.006
http://dx.doi.org/10.2514/6.2016-3888
http://www.cesm.ucar.edu/models/cesm1.0/cam/

2892 B. F. Jamroz and R. Klöfkorn: Asynchronous communication in SE and DG methods

working, Storage and Analysis, SC ’15, ACM, New York, NY,
USA, 5:1–5:12, doi:10.1145/2807591.2807675, 2015.

Sandia MPI Micro-Benchmark Suite (SMB): available at: http:
//www.cs.sandia.gov/smb/, last access: 22 August 2016.

Simmons, A. J. and Burridge, D. M.: An Energy and Angular-
Momentum Conserving Vertical Finite-Difference Scheme and
Hybrid Vertical Coordinates, Mon. Weather Rev., 109, 758–766,
doi:10.1175/1520-0493(1981)109<0758:AEAAMC>2.0.CO;2,
1981.

Small, R. J., Bacmeister, J., Bailey, D., Baker, A., Bishop, S., Bryan,
F., Caron, J., Dennis, J., Gent, P., ming Hsu, H., Jochum, M.,
Lawrence, D., Munoz, E., diNezio, P., Sheitlin, T., Tomas, R.,
Tribbia, J., Heng Tseng, Y., and Vertenstein, M.: A new synoptic
scale resolving global climate simulation using the Community
Earth System Model, J. Adv. Model. Earth Syst., 6, 1065–1094,
doi:10.1002/2014MS000363, 2014.

Taylor, M. A. and Fournier, A.: A Compatible and Conservative
Spectral Element Method on Unstructured Grids, J. Comput.
Phys., 229, 5879–5895, doi:10.1016/j.jcp.2010.04.008, 2010.

Wittmann, M., Hager, G., Zeiser, T., and Wellein, G.: Asynchronous
MPI for the Masses, CoRR, abs/1302.4280, available at: http:
//arxiv.org/abs/1302.4280 (last access: 22 August 2016), 2013.

Geosci. Model Dev., 9, 2881–2892, 2016 www.geosci-model-dev.net/9/2881/2016/

http://dx.doi.org/10.1145/2807591.2807675
http://www.cs.sandia.gov/smb/
http://www.cs.sandia.gov/smb/
http://dx.doi.org/10.1175/1520-0493(1981)109<0758:AEAAMC>2.0.CO;2
http://dx.doi.org/10.1002/2014MS000363
http://dx.doi.org/10.1016/j.jcp.2010.04.008
http://arxiv.org/abs/1302.4280
http://arxiv.org/abs/1302.4280

	Abstract
	Introduction
	Background
	Non-blocking communication
	Current communication strategy

	Overlapping asynchronous communication strategy
	Overlapping for the SE method
	Overlapping for the DG method

	Results
	The Jablonowski--Williamson baroclinic wave instability test case
	Scaling results for the SE method
	Scaling results for the DG method

	Discussion
	Performance at large scale
	Bit-for-bit reproducibility

	Conclusions
	Code availability and compiler flags
	Acknowledgements
	References

