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Part I
The Esculpi/Aloma mystery

1 Abstract

The main task of this thesis is to investigate the stability of anisotropic perfect
fluid spheres with electrical charge when the cosmological constant is included.
However, before we get so far we needed to read articles about the subject.
We have read articles about the stability of anisotropic fluid spheres with and
without charge, we have read articles about the stability of isotropic fluid spheres
with and without cosmological constant, but one of the reasons we’ve taken on
this thesis, is that we could not find any articles covering the stability of all of
these things at the same time.

It was Chandrasekhar who was the first to develop this pulsation equation in
his work from 1964 [1], for an isotropic, uncharged perfect fluid sphere. In 1979
Irving Glazer [2] developed the same pulsation equation for an isotropic charged
fluid sphere. These pulsation equations have been showed to be trustworthy, so
any pulsation equation we reach for the anisotropic charged perfect fluid sphere
with the cosmological constant included should match these equations for the
isotropic charged and uncharged case, without the cosmological constant.

While reading different articles [4] we stumbled over an article written by
M.Esculpi and E.Aloma [3] regarding charged anisotropic fluid spheres. In this
article most of the calculations are left out, which is not necessarily a problem
in itself, but they state that they use the conservation of the energy-momentum
tensor, they site the calculations of the required perturbed quantities, and sim-
ply gives the end result, which is a fairly long pulsation equation. The problem,
however, is that in the few equations given there are several mistakes. They
could very well be simple typos, but we wanted to make sure that the end result
was trustworthy. Since no calculations were shown, we had to reproduce them
and see whether we reach the same result.

After that we shall develop the pulsation equation for an anisotropic charged
fluid sphere when the cosmological constant is included. This is an equation
that, to our knowledge, has not been developed. The last section in this thesis
will be dedicated to develop the Tolman-Oppenheimer-Volkoff equation to go
with the pulsation equation.



2 The field equations

We shall start by looking at the article of M.Esculpi and E.Aloma.

The line element is given by:

ds®> = e’ dt* — e* —r?(df* + sindp?).

The Einstein field equations are further given by:
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where v and A are unknown functions of the radial coordinate r, primes denote
derivatives with respect to the radial coordinate r, and dots denote derivatives

with respect to the time coordinate x°.



3 The energy-momentum tensor

The gravitational energy part of the energy-momentum tensor reads
Ty = (p+ pruyu” — gipe + (Pr — po) XX (6)

where p is the matter energy density, p, is the radial pressure in the direction
of Xu, pt is the pressure in the two-space orthogonal to x,, , u, is the velocity
four-vector of the fluid , and ¥, is a unit space vector in the radial direction
orthogonal to u,.

The electromagnetic field tensor is of the form

1

1
Tylem) = o <4fa5f”‘ﬁ - g"g"’ fuafl/ﬂ> ; (7)

where the electromagnetic field tensor f,, is given in terms of the electromag-
netic potentials A,,

Juw = Ay — Avy (8)
If we consider the potential vector
Au = (AO,()»O?O)’ (9)
it follows that
for = —fi0 = Aon (10)
The Maxwell equations reads:
1 0

ﬁax” (\/jgfw) = dmou”, (11)

o is the charge density, and ocu” is the current vector.
Before we go anywhere we need to establish how the u,’s and x,’s are defined:

_dz*

== (12)

Our line element yields
LAt (dr\? ([0, [do\?
l=e (ds) —e <ds> —r <ds> + sin“6 <ds> (13)

Since we are only interested in radial motions we will put % = % =0 so we
get:

1=e"(u®)? — eM(u')? (14)
Considering u' we obtain
dr  dx° :
1_ _ .0
U= X =ug, (15)



where we defined £ = %
Solving (5) for u” and then (6) for u! to first order we find:

u =e" 2, (16)

NN

and )
ul = e 3. (17)

Here Esculpi/Aloma has made the first printing mistake, in writing u! = ée’%
Now, the x*’s are not so obvious, but from the written definition we have what
we need: x* should be orthogonal to u* and orthonormal, meaning

xHu, =0, (18)

and
Xfxup = —1. (19)

Which leads to the same results as Esculpi/Aloma, namely

X0 = e3¢ (20)

A
2

x'=e (21)

For the calculation of the electromagnetic field tensor, it helps to know that
under spherical symmetry only fy; and fi¢ are non-zero, and furthermore:

fio = —for- (22)
For the static case, £ vanishes, and we are left with u# = (u°,0,0,0) and x* =
(0,x",0,0)
From (6) we obtain
2
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From the Maxwell equations, equation (11) we further have

_Afw
Vo (V) = S (¢ i) = moc . o)
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Solving for £ by integration we get

A+v

e~z 2ol :/47T0'7"26%d7“. (28)

The right hand side of this equation is merely the total charge within a sphere,
so we call it Q:

Q(r) = / Aroe? r2dr. (29)
0
We then obtain Q')
_ T A+v
o= g (30)

By lowering the indices, and reversing the order of them, we obtain

e F" fio0= 7%/47T7‘206%d7" = Qr(;)’ (31)
which yields
(ho? = LD e (32)
We now find the components of the energy-momentum tensor
Ty =T™" + T, (33)
We obtain
19 = p+mn, (34)
T = —p, +, (35)
T3 = —pe — 1, (36)
T3 = —p — 1, (37)
where we follow Glazers notation and define
g = TOCm) _ 85% _ (fé)ijf ) (38)

The pulsation equation itself comes from the covariant divergence of the
energy-momentum tensor, namely

TV, =0, (39)

v

is a necessary identity. By choosing i = 1 and using that the covariant derivative
can be written as

14

, 1 0 T 8gya
wv =g Oxv 2 Ozr’

we get the following relation

70 Tt 7 —\ ! 2 T2 T3
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For the static case, we distinguish the quantities describing this equilibrium state
by a subscript zero. All time derivatives vanish for the equilibrium quantities
by definition. Using equations (34)-(37), equation (41) yields a relation between
the equilibrium values

/

1% 4 2
50 (po + pro) = (My — Pro) + Pt/ (Pro — Pro) - (42)

Subtracting (2) by (3) we get the identity

1/’+/\’)

87 (T — T}) = 8n(p+pr) = e ( .



4 Perturbations

Perturbing the equilibrium state we write

A= Xo(r) + 0A(r, xo), (44)
v =uy(r) + sv(r,z°), (45)
P = Po (7“) + 5P(T7 xO ) (46)
pr = pro(r) + 6pyo(r, 2°), (47)
Pt = pto(r) + (Spt()('l”, xo)a (48)
n = no(r) + on(r,z°). (49)
For small perturbations, to first order we have:
et — ro(1 4 ), (50)
etV = oo (1 4 §v). (51)

To first order, all T}"’s remain the same, except for these perturbations to the
quantities.

T3 = po+0p+ 10+ n, (52)
T} = —pro — 6pr + 10 + 01, (53)
T3 = —pio — Ope — M0 + 67, (54)
T3 = —pio — pe — 1m0 + 01, (55)

Unlike the static case, we now get another non-zero entry in our energy-momentum
tensor. Using equations (6), (16), (17), (20), and (21) we obtain

T} = —(po + pro + 0p + 6p,)e X ) (14 5A)(1 = 6v)¢, (56)
which to first order is
T = —(po + pro)e* )¢, (57)

Now, the conservation of the energy-momentum-tensor becomes littered with
these perturbed quantities, and it is equation (41) that we will develop into the
pulsation equation:

N orY o, . o o
Tl;a == @‘f’Tl (V(]+5V+)\O+(S)\)—

b+ oV oTt 2
M(Tg_Tll)JrilJr; T~

or 2

(58)
Inserting equations (52),(53),(54),(55),(57) into equation (58) and keeping only
the first order terms

T§+T§") _ 0



!

v} dv
= (po +pro +3p +0pr) = = (po + o) (59)

__Z (pro—vo¢ _
920 (6 &(po erm)) D)
0 2
+E (770 — Pro + 577 - 6pr) + ; (2770 + 2577 + Do — pro + §pt - 5p7") =0.

Using equation (41) and cancelling the static solution we are left with the equa-
tion

. !

/
o7 (py + pro) € = (51 — ) — 22 (5p+ 3p2) — o (po +ro)
(60)
4 2
+ 7577 + = (5pt - 510r)
r r
This is the equation that will yield the ”pulsation equation” once we insert
the expressions for these perturbed quantities. Here, Esculpi/Aloma simply
cite ”Chandrasekhar’s work” and claims that Jn has been obtain as proposed
by Glazer. The quantities are easily derived, and it is therefore weird that of
the six proposed results, three of them are flawed, and the result for é7 is not
usable in the form given. This leaves quite an impact on the pulsation equation
as there are many terms that could have been cancelled, but was not.
Compared to the isotropic case, here we have one extra variable, since the
pressure p now contains two kinds of pressure, the radial pressure p, and the
tangential pressure p;. Hence we will also need an extra equation to solve the
system. We will keep it simple, as Esculpi/Aloma did, and look at the case
where the tangential pressure p; is proportional to the radial pressure p,., i.e.

bt = Cpm (61)

which immediately yields
op; = Cdp,. (62)

We now need to show what the other perturbed quantities look like. We
shall start by looking at the field equations. Subtracting (3) from (2) (both

static) we find
e o
8m(Ty —T}) =

(Ao + v0); (63)
which we will write as
8mrer (po + pro) = (V5 + \p). (64)
Inserting equation (64) into (5), we can integrate
O = =877 € (po + pro), (65)

to find
S\ = —8mre¢(po + pro).- (66)



looking at (64) and (66) we see that we necessarily have
N = =&y + Ap)- (67)

Esculpi/Aloma gives the expression for §\ with an extra factor of r~1.
Taking the first field equation into account, equation (2) reads

- 1 Ap+3dA 1
—e (1= 6)) [72— ¢ } +772 = 8m(po + 1o + dp + 1), (68)
and cancelling the static solution
1 ) 1
Y 0 _
—e Lg - r} + 5 =8m(po +10). (69)

We find that the perturbations relate to each other

r2

A\ 1 A e=Ho
e"05N ( - ) + (ON) = 87 (dp + dn). (70)
r r
Multiplying the equation with r? we simplify the left-hand side

e NN = Nor) 4+ e 0r(0A) = (e7"5N) = 8ar?(5p + 6n) (71)
And using (66) we get

8r2(8p + 0n) = (re=*°[—8xre™&(po + pro)]) . (72)

Solving equation (72) for dp we further have

3= == (*€(p0 + b)) — 01, (73)

Here, Esculpi/Aloma has lost the negative-sign in the first term on the right
hand side.

Finding a useful expression for d7 is particularly long-winded, but more
or less straight-forward. While Esculpi/Aloma do give an expression for it, the
expression they give is useless in it’s given form. From their given expression it is
easy to express 07 in a way that is very useful since it will simplify the pulsation
equation considerably. Irving Glazer did this in his paper, and Esculpi/Aloma
sited his paper, so they surely shouldn’t be strangers to this simplification.

Let’s just do a quick relabelling to make things less confusing.

for = Eo + 6F, (74)

where Ey and 0F are the equilibrium and perturbed quantities of the elec-
tromagnetic field tensor respectively. The energy-momentum of the field now
becomes

0(em) e_(>\+y) 2 6_(A0+V0)(1 — o — 5V)

I = &r (fi0)" = e (Eo+6E)*.  (75)




From equation (38) we defined the quantity 1 to be just this Tg (em), and so also
in the perturbed state:

—()\0+V0) 6E
=10+ 0= B2(1— (5) + o) + 222)), (76)
87 Ey

to first order. Looking at the Maxwell equations (11) in this perturbed state we

find
1 9

=5 040 (V=gf") = 4dnou’, (77)

which reads

e_w o _*o;”o (1 N+ v
22 Y ([
r2sind OxY

)yr2sinf(Eq + 5E)> = dnoole . (78)

Since we this time differentiate with respect to time both r2? and sinf will cancel.
This equation can be immediately integrated to give

(J” + 5”) Fo + 6F = dmogte 5", (79)
Multiplying both sides with 2Ey we find
E} (—(6)\ +ov) + 22?) = SWEOUOEeMJ;—uQ (80)
Inserting in (63) we have
Mo + 01 = 67(;[:%) Eg(1+ 8WJO%(jM;WJ ) = 67(;:%) E2 4+ 00¢Ege 2 . (81)

Remembering equations (32) and (38), for the static case we find

e~ (Ro+ro)

o = TEg’ (82)

By equations (81) and (82) we must have that

ro

(51’} =ogEFpe 2 (83)

This is the expression given in Esculpi/Aloma, but it is not very useful, as it
doesn’t simplify anything. Further investigation however yields a very simple
and powerful expression for §7. Equation (38) can be written

2 5 2
PO gy @l +Q) ”
To first order we have 00(1)50
on = 4drd (85)

10



we further have , )
( )/ _ QQO(T)QO<T) o QO(T)
o 8mrd 2mrd
We defined Qo (r) earlier, in equation (29), and from equation (30) we find Qo(r)’
as

(86)

Qu(r) = Arrloge ™. (87)
Equation (86) now reads
A
_ Qo(r)ooe®  Q3(r)

(m0)" = p S (88)

From equations (22) and (31) we have

() = a0 e — D), (59)
and by employing equation (83), (89) can be written as
(m0)" = _5?7) - %770- (90)
This last equation may also be written in the following way
S+ Oy + )€ = 0. o1)

If you take a look at the perturbed quantities given by Esculpi/Aloma, you see
that in the expression for dp,, equation (48) in their paper, these terms can be
cancelled. In the pulsation equation that follows this zero-term appears four(!)
times, and could have been avoided altogether. Thus the calculations became
much more complicated than they need to be.

Now all we need is the expression for dp, and we can squeeze out the pul-
sation equation. To produce the expression for dp, we need to make use of a
supplementary condition, the conservation of baryon number i.e.

(Nu®),o =0. (92)

This means that the total number of particles in the system remain unchanged.
We write
N = Ny(r) + 6N (r, z°). (93)

The contraction of the covariant derivative of a contra-variant vector Nu® is
given by
O(Nu") d(ln\/—g)
Nu®)., = Nyt ———=2, 94
( u )706 oxv + u Ot ( )

11



We remember equations (16) and (17), that u* = (e~ 2, e~ %,0,0). Hence
(71) reads, to first order

ou® 5N oul ANy ,
(No) 5o + o+ (No) g + 1
. . 95)
oA+ Al b2 (
SNy [} 0N (2o 2
2 2 r
Inserting our expressions for u* we find
v L o - —uy ) vo 6N
— N067701 +6Ne 2 + (N06770£)’ + NoeTUl + Noe 2 —
2 2 2 (96)

v . )\/ / 2
+ Noe_Tof (0—2’_1/0 + 7“) = 07

where the first and the fourth term cancel. We can actually integrate this
equation immediately and solve for § N

v vo N\ v v by b2
SNe~ % + (Noe*%g) + Noe™ B 86X+ Noe~ F¢ ( 0 ; 4 r) 0. (97)
We find that equation (97) can be simplified to give
Yo
- 5 )\/ /
SN + %(Noe*%’r?g)’ + N, <6>\+§ (0;”0» =0 (98)

And by (67) the third term here is actually zero, which means we get the very
nice expression

Yo
ON = —er; (Noe™ 2 r2¢)’. (99)
Now if
N = N(p(r,2°), p, (r,2%)), (100)
is the equation of state, it follows that
ON ON
ON = ——dp+ —0pr. 101
a0 """ o, (101)

By equations (73), (91), and (99), equation (101) reads

ON e? v ON [ 1 / 4
7(57«:—71\7_22 A 2 . / = )
O, = = (o 26 = S [ (el + o)) + 0+ T
(102)
Expanding some terms we obtain
ON / e? —20 94\s ON / 4 / / PO+ Pro 9.
aT)T(Spr = —Nof—Noler(e 277¢) _67;) —&(pro — ;770 — 1o+ pp) + T(T '

(103)

12



Using equation (42)we can rewrite equation (103) in the following way

apr
ON 2 + pr
ap[§(20m+pm)+rﬁhoﬂw) DD ey — g
(104)
We collect the terms in the bracket and obtain
6N 2 Po + Dro |l
e {é‘ < 5 (Po+Pro) + —(pro pto)) (T %) —¢py| = (105)
ON | 2 (po +pr0)e%0 LA
o [fr(Pro —Pro) — T(e 2r7€) —&pp | -
Using equation (105), equation (104) now reads
ON ON €%  _w ON
677,52% = —N)¢—(No—(po+pro) op )~ 2 (e 2 25) 8p (T(Pro — Pro) — p6> .
(106)
We further have
N No 9p,
Nj(r,2%) = Nj(p(r, 1), pr(r, 1)) = 20 2P0 | ONo Opro (107)

dpg Or  Oprg Or
Keeping our analysis to first order, we must only bring aN to zero’th order.

ON _ ONg
e ——0pr, 108
apr 8p'rO P ( )

and similar for %—ZZ .
ON _ 0Ny
—dp = —30p.
ap " Ipo

Using equations (107), (108), and (109), equation (106) becomes

o = f ONy apo n 0Ny 5’pro apv"O
Pr Bpy Or | Oppy O 3]\70

(109)

Opr ON, _x

— 82]7\[0 (No (po + pro) 3,000> o (e 3 7’25)/ (110)
~ ONg Opro ( ) éapro ONy dpgy
Bpo N, \ - Pro T Peo dNo 9po Or

Here the first and the last term on the right hand side cancel, two factors of the
second term cancel, and we can can recognize one of the factors as the ratio of
specific heats, that is

1 0Ny
VZM—@MmM) (111)
Dro g,ﬁf . ( dpo

13



There is also an equivalent definition of this -,

(pro + po) Opro
Pro apO ’

(112)

which yields
Ipro __ Pro
dpo  po+ Pro

Employing equations (111) and (112), equation (110) can now be written as

(113)

L)
ez v 2
Wroe? (o~ pagy P8 2 ). (114)

Spr = —Eply —
Dr é.p'rO r2 00 +pr0 r

ro
Here Esculpi/Aloma again lost a factor, i.e. 33 in the second term and they

also carried along the three terms from equation (91) that cancel.
We now need the perturbed expression for v'. Equation (3) when perturbed
yields, to first order

/ 1 5 /
—e =) |24 | e (2] Sn(op b+ 0n). (119
The static solution to (3) is:
| 1
—e [ 2 2 = s (pat ). (116)
roor| oo

Using equation (116) to cancel the static solution from (115) we find

“o
¢ (6v') = —ef)‘o%\ [1/6 + ﬂ + 87 (dp,. — 07). (117)

r

Employing equation (66) we find

~o
0 = satopn o)+ Sn( ke (v + 1) ()

Remembering equation (64) we can write the left hand side in the following way:

(6o + 9r0) =[5 = 61— (e (s )] @6+ 3. (119

This equation matches equation (50) from Esculpi/Aloma.

14



5 The pulsation equation

We shall assume perturbation in the form of radial oscillation,

£ = e’ (120)
which leads to )

£ = —&w?. (121)

Using equations (61), (62), (73), (91),(114), and (119), equation (60) takes the
following complicated form

v /
_ 4 Proe® , _n
0 (po + pro) € = <(n6 o =Pl — (e E )

+ ( VPTOE 2(0 _ 1)pr0>

po+proT
l/l 1 / 4
+ 50 (—TQ (r*€(po + pro)) + (m + ;770)5 - fﬁo)
ro
V(/) YPro€ 2 _¥0 9. .\y ’Yprof 2
+ (- e 2r)+———(C—1)p,
2( 7 ( §) m+mﬁ )Pro
4 1 vy + A
|06+ 2 = o) = G+ ol (5 + 1) P52
ro ! !
YPro€ 2 , _ra o .y Ypro€ 2 (VO + /\0)
+ |- e 2 r2) + 22 (0 = Dppy | 222
o 2 po+proT Jpro 2
4, 4
+ ;(Uo + ;770)5
2 yp e?
0 Yo
-2(C-1) [an;o - I (e r%)']
4 pr
— 727705(0 —1)%pyo.
74 po + Pro
(122)

We shall first look only at the ’isotropic’ terms, the terms that do not involve
(C —1), thereafter we will look at the terms that do include the term (C' —1).
Starting with the ’isotropic’ terms, in (122) we find

v
2 v

!
4 Ypro€2 , v 4 4
- (‘(776 + o - Pro)é + 02 (e7= 7”25)I> + ;(776 + ;770)5

r

/
)

! ! 4 VY Dr e _ v
+ < (742 (r*€(po +pro)) + (my + ;7;0)5 —eply — 7?2 (e—F 12y

2

4 YproeE . _n 1 vy + A
+ | (o + 7o = Pro)é — T(e 2 72€) — (po + pro)é ( vh + - % 5 0)
(123)

15



Even this is quite complicated, but we will simplify it step by step. Looking
only at the terms with v we collect them as follows

v ! v
— ("/Pr()26 § (eu‘fr%)') _ <V26> ’Ypr02€ § (e’%r2£)’

T r
(124)
v+ M\ Yproe®  _m
(A7) ety
These can be collected as a single term, i.e.
vg /
A A 2 12
e~ (vot3R) [emﬁ%) Wr??; (e—%,ﬁg)/] _ (125)
Remembering equations (42) and (61), we can write
4 7 2
oo+ 2m sl = (Blou+pa) - 2C =) & (120)
Inserting this equation (123) takes the following form
v 2 !
K;(Po +pro) — —(C — 1)]77-0) f]
r
Yo
_ e*(VUJF/\TO) e(V0+ATO),yp7:‘)2€ 2 (6’/20T2£)/‘|
vy [V 2
+ 2 (L0 +0) - 2C - ) (121)
T
o+ ) [V 2 1
+ % [ZO(PO + pro)é — ;(C = Dpro€ — (po + Pro)§ <V(l) + r)] £
Wl e N
5 7z (€(po+pro)) +— o+ —mo | €.

Considering the terms in equation (127) containing (pg + pr0)¢ we have

’ / 1\2
[I;O(po +pro)£] + <(VZ) (Po +pro)§> +
Ao + v [1/6

1 vh1
B 5 <V6 + r)] (po + pro)§ — 50772(7“25(/)0 + pro)-

(128)

Expanding the first and last terms, factoring the derivative of ”—2" from the first
term, and the derivative of 72 in the last term, we obtain

" / 1\2
S 0+ | + Ll 4 ) + (P80 4 proke) +
% [1/26 - <V6 + 71,)} (po + Pro)€ — %6%(5(00 +pro)) (129)

- % ((po + pro§)>/~

16



This expression can be drastically simplified, since two terms cancel, and the
remaining terms can be written in the following way:

N 15,1 3 / )\/
(Po ';p 0)§ [u{)’ _ 02V0 _ Vo:‘ 0} . (130)
We rewrite equation (4) as
o+ (vh)* L= 20) A(ﬂ/é} )2
2 2 2 8
P ' (131)
v,
— 8me™ (pyo + no) — v (O + ) :
8 r
We now see that equation (130) can be written as
A vo (v 8
—87(po + pro)&e™* (Cpro + Mo) — (po + Pro)é 3 T (132)
The second term here, using (42) reads
1 4 2
3 {2 ((776 — Pro) + ;770 + ;(C - 1)%0)} X
2 4 2 8 (133)
— (s =P - -(C-1 1.
LO . ((no Pro) + 10+ —( )pm) + J
Here we separate the isotropic and anisotropic terms to obtain
6 / / 4 2 45 / 4 /
o0t Pro (10 = Pro) + —110)" | + (1 + 100 = Do)
£ 4 ;4 /
~(C -1)P, Zno — 134
po+pro7’( )Bro(1o + —1l0 = Pro) (134)
S 4 252 8
— —(C-1)"P —£(C = 1Dpro.
00 + Pro TQ( ) 70+ ng( )p 0

Expanding the first term in (34) we have

5 / /7 \2 8 / / 16 2 45 / 4 45
20 + Pro (Mo — Pro)” + TUO(UO Pro) + 2o + , (o + 7]70) S Pro
4 &pro(C —1) ;4 / 1 8¢ 2
TR —Mo — —(C = 1)p, —(C = 1)p2y.
T oo+ pro (o + o/l Pro) + r( )pro| + r2( )Pro

(135)

There are still terms in equation (122) that we have not considered, i.e. the
anisotropic terms which read

(B vmag) - (%158 (o nmee). )
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This expression can be collected to a single derivative,
N Ao 2 !
—e~ (0t ) (e("”%)r(c - 1)Prof)> : (137)
Employing expressions (128)-(137), expression (123) reads

2 !
— 8 (po +pro)£eA°(Cpro +10) — 6—(uo+%°) (e(uﬁ?)r(c _ 1)2%05))

!/

Yo
et 3) law%‘)%of(e—?r%)’
T

£ / /N2 8 / ’ 16 9 4£ 4¢ 4
po + pro (1o = Pro)” + 7/70(770 Pro) + 72" , (mo + . o) + SPro
4§n@«7—1){ C o4 } g 2
= 282ole = D 20 — pl) + —(C = Dppo| — = (C — 1)p?
T Po + Pro (770 ,,,770 p’I‘O) 7,_( )p 0 ’]"2 ( )p 0

+§%+§mﬁ
(138)

Here some terms cancel, but we are not finished yet. Considering (122) again,
we write the anisotropic terms as

n ( Pro§ 2(07 1)pro>

Po + ProT
vprof 2 vy + vy + A
4+ ——(C-1 e ——
oo+ Pro ( )Pro ( 5 (139)
2 'VprOeVTO (67%)7"25)/ o 2 ’Yprof g

C - 1)pr0

+o(C-1)

/
+
Ero r2 T po+proT

Here the two first terms can be collected as a single derivative. Hence (139)
reads

!
=) <6m+22m YPro& E(C 3 1)pr0)
Po + ProT
(140)

v
T 2 _¥o 2 i 2
YPro€ 2 (e 207“25)’ 4 P o0& 7(6 _ 1)@()] )

2
-1 e
+ T( ) gpr0+ r2 Tp0+p'r07ﬁ

Now, if we use the results from (138) and (140) in (122) we get the pulsation
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equation.

by Ay 2 !
— 87 (po + Pro)€e™ (pro +mo) — e~ o+ (e(wr 20)?(0 - 1)pro§))

!/

— et [ren 2 (o2 2y
£ ’ s 2, 8 ’ , 16 4
- — Do) + ~mo(h — Pho) + 03| + =D
20 + Pro (o — Pro) T770(770 Pro) 20 - Pro
4§pr0(c_1> / 4 / 1 8 2
- —No — —(C=1pro| —=(C—-1 141
T o+ o (770+T770 Pro)"‘r( )Pro 7'2( i (141)
Ao+2 Ao+2 f 2 /
+e ( T <0—1>pro)
po+prorT
2 vproe® v oo, Aprof 2
+=(C-1 o+ e 2r%) — ——=(C-1)p,
2(C ) [eng + P H ) - B 20
= e 7" (pg + pro) Ew?.

Here we separate some terms to compare with the pulsation equations we find in
other papers regarding analysis’ of stability of isotropic, charged perfect fluids.
Equation (136) reads

4
;pﬁo — 87 (po + pro)ée™ (Cpro + 10)

y v /

et [0 T (o 2y

&

pPo + Dro

/

e (20 1)

_Apn(C-1)
T po+ Pro

8 _ Ao+2vg Ag+2vg ’yp2.0§ 2 !
— —(C = 1)p2y+e 2 e 2 ———=——(C-1
S(C =12y (e et 2

8 16
0 pla)? + Sl — o) + 2538

(142)
0+ 20— )+ £(C = Dol

+ 201

vo 5
/ APro€ 2 ¥ 9. 2 yproé C

_ 2 r0S e g
§Pr0 + 7,,2 (e r 5 T po ¥+ Dro ( )

= ehomvo (po + pro) Ew?.

This is the equation we can compare with the pulsation equation of other au-
thors. If we want to compare this equation to the one we find in Glazer. By

19



setting C' = 1 we can immediately write

_ 4
e (pg + pro) Ew? :;p;() — 87 (po + pro)&e™ (pro + 1M0)
_ e,(VOJr’\TO) {em YPro (67,/707"25)/}/

r2
£ 8 16
S | 0 = Pro) ol = Pho) + 55 |
(143)

This is the very same equation that we find in Glazer’s paper on isotropic
charged fluids. This equation is NOT reproduced in the results given by Es-
culpi/Aloma.

Setting the charge, 179 = 0 as well we are left with the equation

_ 4
e (pg + pro) Ew? :;p;«o — 87(po + pro)ée™ (pro)

—(1 +20) [ 3votro YPro , %0 o 1’ (144)
) [ ]

— €
r2

which is the exact equation given by Chandrasekhar. Esculpi/Aloma do indeed
reproduce this equation for isotropic non-charged fluids, but there is demon-
strably something wrong with the pulsation equation. We found a plethora of
mistakes, which may or may not be printing errors. It is easy to understand that
they may have dropped a term in the rather tedious work to produce the pulsa-
tion equation. Which ever way they did it, an article containing this amount of
mistakes should not make it through the proof-reading, which makes us wonder
who, if any, proof-read this article.

We have done all these calculations that Esculpi/Aloma surely must have
done too, to show how the pulsation equation is supposed to look in the case
where the tangential pressure is proportional to the radial pressure.
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Part IT
The most general pulsation
equation

It is now natural to wonder how the equation will look in the most general case.
In the most general case, the tangential pressure will be a function of the radial
pressure. We will include the cosmological constant also, and find the pulsation
equation.

We will now undertake the task to produce this equation. We will start from
scratch. Things will look more or less identical to the above case, until we start
investigating the tangential pressure.
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6 The field equations

Now, what we need to do is generalize this equation even further. We shall
allow the tangential pressure to be any function of the radial pressure.
We have the line element

ds®> = e” dt* — e* —r?(df? + sin®d¢?), (145)

and the Einstein field equations are further given by:

1 N 1

_e A [7“2 _ r} + 5= 8Ty, (146)
Y1 1 1
—e |:7” + 702:| + ﬁ = 87TT1 5 (147)
-\ /2 ! )\/ /A/
- |:V// n % n % _ V2 } = 8712, (148)
e

——A= —8nTy. (149)

v and A are unknown functions of the radial coordinate r, primes denote deriva-
tives with respect to the radial coordinate r, and dots denote derivatives with
respect to the time coordinate 2°.
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7 The energy-momentum tensor

The gravitational energy part of the energy-momentum tensor reads
Ty = (p+ pruyu” — gipe + (pr — po)xux” + LA, (150)

where p is the matter energy density, p, is the radial pressure in the direction
of Xy, Pt is the pressure in the two-space orthogonal to x,, , u, is the velocity
four-vector of the fluid , and x, is a unit space vector in the radial direction
orthogonal to u,. A is the cosmological constant.

The electromagnetic field tensor is of the form

1 /1
Tl/(em) — ~f, af _  pv af ol 151
" o (4f s [ —g" 9" fuatup | s (151)

where the electromagnetic field tensor f,,, is given in terms of the electromag-
netic potentials A,

f}tl/ = A,U,;V - Au;,u, (152)
If we consider the potential vector
AH = (A07O7070)3 (153)
it follows that
for = —fi0 = Aoz (154)
The Maxwell equations reads:
1 0

Vg dz¥ (V=gf") = dmout, (155)

where o is the charge density, and ou* is the current vector.
The u,’s and x,’s are defined:
_dat

w4 1
u I (156)

Our line element yields

2 2 2 2
1=¢" (ZZ) —et <32> —r? <<;lz> + sin*0 (CZ) ) (157)

Considering radial oscillations only we can put g—g = % = 0 so we get:

1=e"(u®)? — e*(u')? (158)

Considering u' we obtain

1 dr_dt

o
== 1
o X g = wk (159)

u
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where we defined ,f = %
Solving (149) for v° and then (150) for u' to first order we find:

u’ =e" R

NN

and

v

ul = f e 2.
We define x*’ as being orthonormal and orthogonal to u*, yielding
XMy =0,
and
X xuw = —1
Solving for x° and x!' we find

and
1 _2
X = e 2

(160)

(161)

(162)

(163)

(164)

(165)

Under spherical symmetry, there are only two non-zero components of the
electromagnetic field tensor, namely fo; and fig, which furthermore are anti-

symmetric:

flO = _f01

(166)

For the static case «f vanishes, and we are left with u* = (u°,0,0,0) and

X" = (0,x,0,0)
Our electromagnetic field tensor then reads:

TO(em) _ (f01)2€,()\+1,)’

0 8

Tl(em) _ (fOl)Qef(Aﬂ/)’

! 8w
2
T22(em) _ (f;lr) 67()\+u),
2
pdem) _ _ (fg;) o)

The Maxwell equations further read

-4 v P
\/Tg% (V=gf") = c 0 (ek; rzsianm) = 4roe” 2,

r2sinf Or
Solving for fO! by integration we get

Atv

A
e 2 7‘2f01=/471'0'7“2€2d7‘.
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(168)
(169)

(170)

(171)

(172)



The right hand side of this equation is merely the total charge within a
sphere, so we call it Q:

Q(r):/ droe> T2dr (173)
0
We then have Q')
= 2D Ay 174
a2 € (174)

By lowering the indices, and reversing the order of them, we obtain

v 1
e fro = - /47T7“20'6%d7” = Q(;), (175)
r r
which yields
2
r

(f10)* = —Qri J v (176)

We now find the components of the energy-momentum tensor
Ty =T\ + T (177)

We obtain

T =p+n+A, 178

Tf = —pr +1+A,
T3 = —pr—n+ A,
T§ = —p—n+A,
where we follow Glazers notation and define
Q2

Ui

The pulsation equation itself comes from the covariant divergence of the
energy-momentum tensor, meaning

TV, =0, (183)

v

which is a necessary identity. By choosing @ = 1 and using that the covariant
derivative can be written as

v

, 10 TV gy
wy =g Ozv T H 2 Oz

(184)

we get the following relation

oT° AT} U=\ v/ 2 T2 T3
1+1+T10< >+(T11_T(§))+T<T11—223)—0 (185)

0z0 or 2 2

25



For the static case, we distinguish the quantities describing this equilibtrium
state by a subscript zero. All time derivatives vanish for the equilibrium quan-
tites by definition. Using equations (178)-(181), equation (186) yields a relation
between the quilibrium values

/

1% 4 2
50 (po + pro) = (My — Pro) + ;770 5 (Pro — Pro) - (186)

Subtracting equation (147) from equation (146) we get the identity

/ /
87 (T9 — T}) = 8m(p+pr) = e (”jA) (187)
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8 Perturbations

Perturbing the equilibrium state, we write

A= Xo(r) + dA(r, 20), (188)
v =v(r) + sv(r, 2°), (189)
p = po(r) + ép(r,z°), (190)
Pr = Pro(r) + 0pro(r, 2°), (191)
pe = peo(r) + Spro(r, 2°), (192)
n=10(r) + on(r,z°). (193)

For small perturbations, to first order we have:
M = Mo (1 4 6N), (194)

etV = oo (1 4 §v). (195)

To first order, all T}"’s remain the same, except for these perturbations to the
quantities, but unlike the static case, we have another non-zero entry in our
Energy-Momentum Tensor. Using equations (160), (161), (164), and (165) in
equation (150) we obtain

T = —(po + pro + 6p + 8p,)ePo™0) (1 4+ 5A) (1 — 6v)E, (196)
which to first order is
T = —(po + pro)eM )€, (197)

Now, the conservation of the energy-momentum-tensor becomes littered with
these perturbed quantities, and it is equation (185) that we will develop into
the pulsation equation:

oT?

vy + ov/'
0z

. . . Tl 9 T2 T3
T, = Sl 4T (Vo 60+ Ng+6A) — oTy (T11_2+3

=T+, 47 >

(198)
Inserting equations (178)-(181) and equation (197) into equation (198) and keep-
ing it only to first order

9 Ao—vo ¢ V(/) 5u/!
~50 (e 0T (g +pro)) Y (po + pro + 6p + opy) — - (po + pro)
0 2
+5 (no — pro + 60 — 0p, + A) + - (2n0 + 20m + pro — pro + Opt — Opy) = 0.

(199)
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Using equation (185) and cancelling the static solution we are left with the
equation

/ /

. 5
=27 (po + pro) €4+ = (09, — 61/) + 2 (3p +3pr) + =5 (po + pro)
A ) (200)
— —0n— — (dpr — Op,) -
r r

This is the equation that will yield the pulsation equation.
We shall allow the tangential pressure to be any function of the radial pres-
sure, so

pt = pe(pr), (201)

and we shall define the difference between the pressures as

=Pt — Pr = W(pr)7 (202)
with equilibrium state
o = Pto — Pro- (203)
It follows that i d
T T,
20 20 204
dr dprpr’ (204)
and J
T
Opy — Op, = O™ = — 0D, 205
Y43 P ™ dp, P ( )

Now, equation (200) reads

. /

, A 1%
=€ (po + pro) § = (0p], = 0n) + 5} (6p + ) + =~ (po + pro)
(206)

We now need to find the expressions for the other perturbations. We shall start
by looking at the field equations. Subtracting (147) from (146) (both static) we

find
e~ Ao

8m(Ty —T})) = — (o + ), (207)
which we will write as
8mre* (po + pro) = (1 + Ap)- (208)
Inserting into (149), we can directly integrate
SA = —81re™E(po + pro), (209)

to find
SA = —81re&(po + pro), (210)
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and looking at (204) and (206) we see that we necessarily have that
SA = —E(U+ N\) (211)
Taking the first field equation, equation (146), into account

1 Ay +6N 1
—e (1 -6A) [7,2 - O—L—,] tE= 8m(po + 1m0+ 0p+n+4A), (212)

and cancelling the static solution

T T 8m(po +mo + A) (213)
r2 r r2 - Po Mo ’

we find that the perturbations relate to each other

vog (L 20 4 Gy sm(ap + o) (214)
© r2 r r = emop T on).

Multiplying the equation with r? we simplify and find

e NN = Nor) + e 20r(0N) = (e7"6N) = 8ar?(5po + dmo). (215)
From equation (204) we get
811 (6po + 01o) = (re”*°[=8mre & (po + pro)])- (216)

Solving for dp we further have

5p =~ (P€(po +pro) — b (217)

We will now start investigating the perturbations, let us start with dn, which
is the most tedious perturbation to find a suitable expression. Let’s just do a
quick relabelling to make things less confusing.

for = Eo +0E, (218)

where Ey and E is the equilibrium, and perturbed quantity of the electromag-
netic field tensor respectively. The energy-momentum of the field now becomes

e~ (A +Y) , e~ Qo) (1 g\ —6v)

7™ — - (f10)? = = (Fo + 6E)>. (219)

You might recognize that this is also the definition we have for 1, which now

becomes (otoo)
—(AoTVo E
¢ E2(1— (51 + ov) + 2°E)), (220)

= 6 =
n=mno+on . o
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to first order. Looking at the Maxwell equations (11) in this perturbed state we

find
1 0

=5 040 (V=gf") = 4mou’, (221)

which reads

— (Qotwo)

e =5 0 _Xotwo I+, 45 . =

S vy (e = (1-— YJresind(Eo + 0F) | = 4mople™™ . (222)
Since we now differentiate with respect to time both r? and sinf will cancel.
This equation can immediately be integrated to give

(_6)\4—61/

2Xg+vg

) Eg+0E =4dmopée™ 2. (223)

Multiplying both sides of the last equation with 2Fy we find

20F Y
E} ((5)\ +ov) + E) = 87TEOUO£6M02+ . (224)
0
Inserting in (203) we have

—(Xo+10) 8 otro ~(Ao+10) »

e mopée e 9 —v
on=———E3(1 = E Epe™2 . (225
7o +0n o o(1+ 7y ) . o tookEoe (225)

Remembering equations (176) and (172), for the static case we find

e*(/\oJrVo)
= 226
Mo ST 0> ( )
From equations (121) and (122) we must have
on = ooEEge™ 7. (227)
Let’s keep moving forward, equation (182) reads
Q*(r) (Qo(r) +6Q)?
= = on=-—-—-7_ 22
gmrd ton 8mrd (228)
To first order we have Qo(r)5Q
oy = 0% 929
7 A (229)
and we further have
2Q0(r) Q% (r 2(y

8mrd 2mrs

While we defined Qo(r) earlier in equation (175), and from equation (176) we
find Qo(r)" as
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2g
2

Qo(r) = dmriage (231)
Now equation (230) reads
(roy = Qolue® @) (232)

r 2mrd

And it follows from (175), where we are careful with the definition of Ey and
the antisymmetry of f,, so we don’t bring the wrong sign, that

2
_ o Qo(r)
(n0)" = —ooEpe ™2 — oy (233)
and looking at (226) and (227) we can write this as
on 4
=22 — Znp. 234
(m0) g 7 (234)
This last equation may also be written in the following way
4
50+ (i + ~10)€ = 0. (235)

We need the expression for dp,., so we can squeeze out the pulsation equation.
To produce the expression for dp, we need to make use of a supplementary
condition, the conservation of baryon number i.e.

(Nu®),a = 0. (236)

This means that the total number of particles in the system remain unchanged.
We write
N = No(r) + 5N (r,2°). (237)

The contraction of the covariant derivative of a contra-variant vector Nu® is
given by

O(Nu") d(lny/—g)
Nu®)., = Nyr XV 9) 2
(Nu®); oxr? AN oxH (238)
We remember u* = (e 2, e~ % ,0,0). Hence (238) becomes to first order
ou® 5N out  ONy 4
(Vo) * go + (NoJgur + (239)
! ’ / / 9
PN [ o (Rt 2Y
2 2 r
Inserting our expressions for u* equation (239) reads
- Noe_%o%/ +6Ne™ 7 + (Noe™ 2€) + Noe%m% + Noe_%o%
vy )\/ +V’ 2 (240)
+Noe_2§< B +> =0,
r
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where the first and the fourth term cancel, and we can actually integrate this
equation immediately and solve it for 6 /V

v vo \/ v v Y L2
SNe= % + (Noe_70£> + Noe~ F oA+ Noe~ F¢ (‘);r”o + ) —0. (241)
r
We find that equation (241) can be simplified to give

ON + 7(N0€ £l T f) Ny ((5/\4—5 (W)) =0. (242)

And by (211) the third term here is zero, which means we get the very nice
expression

ON = =S (Noe= %12 (243)
T
It
N = N(p(r,2°), p,(r,2°)), (244)

is the equation of state, it follows that

ON ON
ON = —6dp+ —0p,. 245
dp - Opr ( )

By equations (217), (235), and (243) this becomes

ON T  _w o, ONT 1 ., ) 4
Tm&pr = —TT(Noe 2rg) — p |:_T2 (r*¢(po + pro)) + (mh + 7]]0)5} .
(246)
Expanding some terms we obtain
ON 61%0 _¥ 9 ON 4 Po +p7‘0 2
aT)T(SPr = —Néf—NOTT(e 2T 6)/_67,0 [—5(19;0 - 77 770 +P )+ —5— 2 (r f)/ .
(247)

Using equations (186) and (202) we rewrite equation (247) in the following way

ON e? w

aT)TCSpr =— Ng& — NO 5 (e EEEI
_ON po + Pro (248)
T 2\ /
- e (B o)+ 2o ) - P 2y g
we collect the terms in the bracket and obtain
ON |: 1/6 27 PO+ DPro, 9.\, ’
- £(p +pro) + =2 ) - TP 2y g =
ap (Pt pro) r 2 (e e (249)
27 + Dr 6’/70 _ro
|FO (po T20) (e 0 7’2§)I+5P6
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Using equation (249), equation (248) now reads

Ny ONye¥ ey ON (2m
aprépr— NiE—(No—(po+pro) ap)r2 (e r€)+ap . + 5 | - (250)
We further have
ONg 0 ONy O
/ 0\ _ A7/ 0 0V _ 0 0pPo 0 UPro
NO(T’I. )*NO(P(Tax ),pr(r,:ﬂ ))* apo ar 8pr0 8T . (251)

We only take gTN to zero’th order. The product gTN

dp, remains first order

ON  ONy
= ) 252
apr 6pr0 ( )
and similar for %[Z
ON 90N
—_— = 253
dp dpo (253)
Using equations (251), (252), and (253), equation (250) becomes
Spy = — € ONo 9po | ONo Opro '\ Ipro
br dpo Or " Opro Or ) DNy
Opro ONo\ e w0 5.,
_ — i 2 254
N, (No (po + Pro) 8po> (e 2% (254)
ONy Opro (2mo " gapro ONo 9po
8p0 (9N0 T 8]\70 6,00 or ’

Here the first and the last term on the right hand side cancel, two factors of the
second term cancel, and we can can recognize one of the factors as the ratio of

specific heats, that is

1 0Ny
Y= N, (NO — (po + pro) 9 ) . (255)
Pro pro Po
There is also an equivalent definition of this -,
, ap,
_ (pro + po) po’ (256)
Pro dpo
which we will write as 9
Pro _ _OPro (257)
dpo Po + Pro

Employing equations (255) and (256), equation (254) can be written as

vo
YPro€ 2
7:2

o o

27'5/

opr = *fp/ro - (e”
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The only perturbed expression we need now is that of v/, so let’s take a look
at equation (147) when perturbed, to first order

Y vy 1 %
—e (1 =60\ |—+ —e 0 - = 8m(—pro — Opr + 1m0 + I+ A). (259)

r r2

The static solution to equation (147) is:

v 1 1
—e M | =4 | +—-=81(—pro+mn+A). (260)

roor| oo
Using equation (260) to cancel the static solution from (259) we find

—Xo
¢ (o) = —e_’\"a?)\ [1/6 + ﬂ + 8 (dp, — 0m). (261)

r

Employing equation (210) we find

—Xo
© o) =snlon,— on) + 810+l (5 +1) . (262)

Remembering equation (208) we can write equation (262) the following way:

50+ o) = [0 = m = (e (v + )06+ 30) 09

In all the expressions for the perturbed quantities, the cosmological constant
has turned out to be irrelevant.
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9 The pulsation equation

We shall assume perturbation in the form of radial oscillation,

0

£ = e, (264)
which leads to B
£ = —&w?. (265)

Using equations (202), (217), (235),(257), and (262), equation (200) takes the
following complicated form

v ’
. 4 Yproe® , _w
X7 (pg + pro) Ew? = ((776 + 2o — Pro)é — 2 (e % r2)

( 270 Yproé )l
+ - =73
7"(/’0 + prO)

V/ 1 / 4
+ 3 (—TQ (%€ (p0 +pro))" + (6 + —m0)€ — 52920)
v
vy YPro€2 , _va o, 2moyproé
e B 2 9 L iR
2 ( r2 ( &) 7(po + pro)
4 1 Vi + A
+ [(776 + ~7o — D)€ — (po + pro)é <V(IJ + rﬂ o 5 0)
Yo
€2 _wo 270 P vy + A
+ _%(e 20r2§)/+ 0ypro€ | (¥4 0)
r T(PO +pr0) 2
2 dr s N 270 Yproé
- = —Ep — 2 (e ? 7“25)/
7 dp; r 7(po + pro)
4 4

+ ;(776 + ;770)5
(266)

We shall look first only at the ’isotropic’ terms, the terms that do not involve
m, thereafter we will look at the terms that do involve 7.
Starting with the ’isotropic’ terms, in (266) we find

1% /
4 Ypro€® |, v 4 4
- (‘(776 + 7o = Pro)é + 7:2 (e 2 ) | + ;(776 + ;770)5

/
)

! ! 4 VY Dr e _ v
+ < (742 (r*€(po +pro)) + (my + ;7;0)5 —eply — 7?2 (e—F 12y

2

4 P €T _wn 1 vy + A
+ |+ 20— plobe — I ) — (ot e (v + 1) | LA
(267)
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Even this is quite complicated, but we will simplify it, step by step. Looking
only at the terms with v we collect them as follows

vg ! , vg
ez v 2 v
_ <7p;02(e—£ 7~2§)’> _ (”20> %(e—% r2¢)
T

, (268)
V(l) +)‘6 71%06%0 X0 9.y
- 2 T2 (e 2T 5)
which can be collected as a single term, i.e.
v !
e+ [e(u0+?)7pf26 2 (6“207,25),1 _ (269)

Remembering equations (268) and (202), we can rewrite the following terms in
expression (267)

’ 4 ’ / 27T0
(6 + =m0 — Pro)é = | =-(po +pro) — — ) & (270)
r 2 T
Now expression (267) takes the following form
v 2m !
K 9 (po + pro) — TO) 5]
Yo
_ 6—(y0+)\70) e(VO"rXTO),yp:?: 2 (6_'/207"25)/‘|
w (% _2m (271)
+ 2 (2(p0+pr0) r 5
vh+ M) [ 1
+ (0?0) [ 2O(P + pro)§ — 75 (po +pro)§ (’/6 + 7,)] 3
vh 1
- 507 ( 5(;00 +pr0))

Considering the terms containing (po + pr0)€ in expression (271) we have

L+ pro»s]' = (2 G+ prase) +

2 4
Iy 1 o (272)
% {20 - <V6 + r)] (po +pro)é — 57( 25(,00 + pro)’.
Expanding the first and last terms, we obtain
I/// / V/ 2
L 0+ rote] + L (0 pse) + (B o+ prre) +
/ + I/l I/, 1 / 2
% [20 - <V6 + r)] (po + pro)€ — 5;(5(00 +pvo)) (273)
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This expression becomes quite simple since two terms cancel, and the remaining
terms can be written in the following way:

I, / /
(po -;pro)f |:V6/ _ /\02VO _ 31/0:_ >‘0:| . (274)
By rewriting equation (148) as
1 A 2 vl — N\ [V
_87'(6)\0(/\ — Dy — 770) = 5 |:V” + ( ;) + 0 . 0 02 0:| 7 (275)

we now see that equation (274) can be written as

v} 8
8meg (po + pro) (Peo + no — A)E — (po + prO)?O (u() + r) €. (276)

Employing equation (186), we can write the last term in expression (132) as

3 {1 ((17 — Pro) + 4770 + 2:()” X

2
(277)
l: 2 (( ) T 4 + 271'0) n 8:|
o+ oo \ 0 o)+ ot rl’
Here we separate the isotropic and anisotropic terms to obtain
5 |: / / 4 2} 45 /
— — o) + = + .
o0t bro (= Pho) + —m0)*| + —= (o no Pro)
4ol / 4 ’
+ ———( + =70 — P, 278
T(po _|_pT0) (770 r770 p O) ( )
4m? 8
270 + TOE'
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Expanding the square in the first term in (278) we have

£ VECIE: 4¢ A€
Po + Pro (o = Pro)™ + 7’0(77 — Pro) + 2770 +— , (mo + 770) S Pro
4mo€ , | 4mo , mo]  8mof
ot o) + M0 = Pro) + |+ :
e [+ S0+ 2] 4 2

(279)

There are still terms in expression (271) that we have not considered, i.e. the
anisotropic terms which read

271'0 v I//+>\/ 27T0
(r) -(e2) () em

These terms can be collected to a single derivative,

!/
_e—(Vo-&-%o) (e(V0+A20)27TO§)> . (281)

r
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Taking into account expressions (272)-(281), expression (267) reads

w20y (ot 20y 2m0 )
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4 4
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Here some terms cancel, but we are not finished yet. Considering equation (266)
again, we write the anisotropic terms as

+( Pro€ 27?0)/
pPo+pro T
S 27T0<V6+V6+/\6>

potpro T 2 (283)
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Here the two first terms can be collected as a single derivative. Hence (283)
reads

+6_A04;2u0 <6A0+22V0 2moyproé )l

T(pO + prO)

v (284)
2mo [Ypro€® v 5., 2 pro€ 2mo | | 2€ ,
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r r rpo+pro T T

Now, if we use the results from (282) and (284) in (266) we get the pulsation
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equation.
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Here, we separate some terms to compare with the pulsation equations we find
in other papers regarding analysis of stability of isotropic, charged perfect fluids.
Equation (285) reads
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This is the equation we can compare with the pulsation equation of other au-
thors. Let us compare this equation to the one we find in Glazer’s Ph.D-Thesis
[2]. By setting the cosmological constant A = 0, and my = 0, equivalent to
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p; = pr we can immediately write

. 4
etomvo (po + pro) Ew? :;P;ﬂo — 87 (po +Pr0)§€/\° (pro +10)
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13 8 16
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(287)

which matches the equation found by Glazer for isotropic charged fluid spheres.
Setting the charge, 179 = 0 as well we are left with the equation

N 4
e (pg + pro) Ew? Z;p;-o — 87 (po + pro)éepro
(288)
7(110“1’)\70) 6% YPro (67'/707,25)/ l’

— €
r2

which is, as we expected, the same as Chandrasekhar’s pulsation equation
for an uncharged isotropic fluid sphere [1].

The cosmological constant seemed to be of little importance to how the
pulsation equation looks, only appearing once.However, there is one more thing
we want to investigate i.e. the Tolman-Oppenheimer-Volkoff equation.

Part 111
The most general TOV-equation

The Tolman-Oppenheimer-Volkoff equation is developed by inserting the two
first field equations, equations (146) and (147), into the the equation of static
equilibrium, equation (186).

We write equation (146) as

—e 21— rXg] + 1 = 8m(po + no + A)r?, (289)

which can also be written on the following form

d _
= (re=?0) =1 —8ar?(po + 1m0 + A). (290)
By integrating this equation from 0 to r we find
1 T
e Mo = - {/ 1 —87r%(po + 10 + A)dr} . (291)
0

which we may write as
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Now we look at equation (147), and we write
—e M hr + 1]+ 1 = 87r%(no — pro + A) (293)

Inserting equation (292) we find

A— . / (po + no)rzdr} [Vor4+1]41 = 87r% (g —pro +A), (294)
0

and solving for v we obtain
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Collecting the two terms, this becomes
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Equation (186), solved for p/ reads
v 4 2
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Inserting equation (297) we obtain
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If we were to insert this equation into the pulsation equation we obtained in
equation (286) we would get the rather messy
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This equation is not a pretty sight. We would much rather write equation (286)
as is, and keep the TOV-equation nearby.
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10 Concluding remarks

We reproduced all the calculations that were left out in the Esculpi/Aloma ar-
ticle, and our pulsation equation turned out different from what Esculpi/Aloma
showed. The article contained several peculiarities, including several mistakes.
Also, they cite the work of Glazer in producing the expression for d7, yet the
expression they give is useless as given, and in the pulsation equation they have
not substituted this expression.

We also developed the pulsation equation for the most general case, where
we have included anisotropy, where the tangential pressure is any function of the
radial pressure, and electrical charge is included, as is the cosmological constant.
At first glance, the cosmological constant is only apparent in a single term in
the pulsation equation. To go with this, we showed what the TOV-equation
looks like in the most general case. We now see that the cosmological constant
affects the pulsation equation in more than just the one term, and we see how all
these parameters, charge, anisotropy, gravitational energy and the cosmological
constant all intertwine to affect the radial pressure-gradient, thereby affecting
the stability of the sphere.
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