


Stability of anisotropic perfect fluid spheres with

electrical charge when the cosmological constant

is included

Arne Ravndal

15.06.2017

1



Part I

The Esculpi/Aloma mystery

1 Abstract

The main task of this thesis is to investigate the stability of anisotropic perfect
fluid spheres with electrical charge when the cosmological constant is included.
However, before we get so far we needed to read articles about the subject.
We have read articles about the stability of anisotropic fluid spheres with and
without charge, we have read articles about the stability of isotropic fluid spheres
with and without cosmological constant, but one of the reasons we’ve taken on
this thesis, is that we could not find any articles covering the stability of all of
these things at the same time.

It was Chandrasekhar who was the first to develop this pulsation equation in
his work from 1964 [1], for an isotropic, uncharged perfect fluid sphere. In 1979
Irving Glazer [2] developed the same pulsation equation for an isotropic charged
fluid sphere. These pulsation equations have been showed to be trustworthy, so
any pulsation equation we reach for the anisotropic charged perfect fluid sphere
with the cosmological constant included should match these equations for the
isotropic charged and uncharged case, without the cosmological constant.

While reading different articles [4] we stumbled over an article written by
M.Esculpi and E.Aloma [3] regarding charged anisotropic fluid spheres. In this
article most of the calculations are left out, which is not necessarily a problem
in itself, but they state that they use the conservation of the energy-momentum
tensor, they site the calculations of the required perturbed quantities, and sim-
ply gives the end result, which is a fairly long pulsation equation. The problem,
however, is that in the few equations given there are several mistakes. They
could very well be simple typos, but we wanted to make sure that the end result
was trustworthy. Since no calculations were shown, we had to reproduce them
and see whether we reach the same result.

After that we shall develop the pulsation equation for an anisotropic charged
fluid sphere when the cosmological constant is included. This is an equation
that, to our knowledge, has not been developed. The last section in this thesis
will be dedicated to develop the Tolman-Oppenheimer-Volkoff equation to go
with the pulsation equation.
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2 The field equations

We shall start by looking at the article of M.Esculpi and E.Aloma.
The line element is given by:

ds2 = eν dt2 − eλ − r2(dθ2 + sin2dφ2). (1)

The Einstein field equations are further given by:

−e−λ
[

1

r2
− λ′

r

]
+

1

r2
= 8πT 0

0 , (2)

−e−λ
[
ν′

r
+

1

r2

]
+

1

r2
= 8πT 1

1 , (3)

−−λ
2

[
ν′′ +

ν′2

2
+

(ν′ − λ′)
r

− ν′λ′

2

]
= 8πT 2

2 , (4)

−e
−λ

r
λ̇ = −8πT 1

0 , (5)

where ν and λ are unknown functions of the radial coordinate r, primes denote
derivatives with respect to the radial coordinate r, and dots denote derivatives
with respect to the time coordinate x0.
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3 The energy-momentum tensor

The gravitational energy part of the energy-momentum tensor reads

T ν(g)µ = (ρ+ pt)uµu
ν − gνµpt + (pr − pt)χµχν , (6)

where ρ is the matter energy density, pr is the radial pressure in the direction
of χµ, pt is the pressure in the two-space orthogonal to χµ , uµ is the velocity
four-vector of the fluid , and χµ is a unit space vector in the radial direction
orthogonal to uµ.
The electromagnetic field tensor is of the form

T ν(em)
µ =

1

4π

(
1

4
fαβf

αβ − gµνgαβfµαfνβ
)
, (7)

where the electromagnetic field tensor fµν is given in terms of the electromag-
netic potentials Aµ

fµν = Aµ;ν −Aν;µ (8)

If we consider the potential vector

Aµ = (A0, 0, 0, 0), (9)

it follows that
f01 = −f10 = A0;1 (10)

The Maxwell equations reads:

1√
−g

∂

∂xν
(√
−gfµν

)
= 4πσuµ, (11)

σ is the charge density, and σuµ is the current vector.
Before we go anywhere we need to establish how the uµ’s and χµ’s are defined:

uµ =
dxµ

ds
(12)

Our line element yields

1 = eν
(
dt

ds

)2

− eλ
(
dr

ds

)2

− r2
((

dθ

ds

)2

+ sin2θ

(
dφ

ds

)2
)

(13)

Since we are only interested in radial motions we will put dθ
ds

= dφ
ds

= 0 so we
get:

1 = eν(u0)2 − eλ(u1)2 (14)

Considering u1 we obtain

u1 =
dr

dx0
× dx0

ds
= u0ξ̇, (15)

3



where we defined ξ̇ = dr
dx0

Solving (5) for u0 and then (6) for u1 to first order we find:

u0 = e−
ν
2 , (16)

and
u1 = ξ̇e−

ν
2 . (17)

Here Esculpi/Aloma has made the first printing mistake, in writing u1 = ξ̇e−
λ
2

Now, the χµ’s are not so obvious, but from the written definition we have what
we need: χµ should be orthogonal to uµ and orthonormal, meaning

χµuµ = 0, (18)

and
χµχµ = −1. (19)

Which leads to the same results as Esculpi/Aloma, namely

χ0 = e
λ
2−ν ξ̇ (20)

χ1 = e−
λ
2 (21)

For the calculation of the electromagnetic field tensor, it helps to know that
under spherical symmetry only f01 and f10 are non-zero, and furthermore:

f10 = −f01. (22)

For the static case, ξ̇ vanishes, and we are left with uµ = (u0, 0, 0, 0) and χµ =
(0, χ1, 0, 0)
From (6) we obtain

T
0(em)
0 =

(f01)2

8π
e−(λ+ν), (23)

T
1(em)
1 =

(f01)2

8π
e−(λ+ν), (24)

T
2(em)
2 = − (f01)2

8π
e−(λ+ν), (25)

T
3(em)
3 = − (f01)2

8π
e−(λ+ν). (26)

From the Maxwell equations, equation (11) we further have

√
−g ∂

∂r

(√
−gf01

)
=
e−

λ+ν
2

r2sinθ

∂

∂r

(
e
λ+ν
2 r2sinθf01

)
= 4πσe−

ν
2 . (27)
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Solving for f01 by integration we get

e
λ+ν
2 r2f01 =

∫
4πσr2e

λ
2 dr. (28)

The right hand side of this equation is merely the total charge within a sphere,
so we call it Q:

Q(r) =

∫ r

0

4πσe
λ
2 τ2dτ. (29)

We then obtain

σ =
Q′(r)

4πr2
eλ+ν . (30)

By lowering the indices, and reversing the order of them, we obtain

e−
λ+ν
2 f10 =

1

r2

∫
4πr2σe

λ
2 dr =

Q(r)

r2
, (31)

which yields

(f10)2 =
Q2(r)

r4
eλ+ν . (32)

We now find the components of the energy-momentum tensor

T νµ = T (m)ν
µ + T (em)ν

µ . (33)

We obtain
T 0
0 = ρ+ η, (34)

T 1
1 = −pr + η, (35)

T 2
2 = −pt − η, (36)

T 3
3 = −pt − η, (37)

where we follow Glazers notation and define

η = T
0(em)
0 =

Q2

8πr2
=

(f01)2

8π
e−(λ+ν), (38)

The pulsation equation itself comes from the covariant divergence of the
energy-momentum tensor, namely

T νµ;ν = 0, (39)

is a necessary identity. By choosing µ = 1 and using that the covariant derivative
can be written as

T νµ;ν =
1√
−g

∂

∂xν
T νµ −

T να

2

∂gνα
∂xµ

. (40)

we get the following relation

∂T 0
1

∂x0
+
∂T 1

1

∂r
+ T 0

1

(
ν̇ − λ̇

2

)
+
ν′

2

(
T 1
1 − T 0

0

)
+

2

r

(
T 1
1 −

T 2
2 − T 3

3

2

)
= 0. (41)
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For the static case, we distinguish the quantities describing this equilibrium state
by a subscript zero. All time derivatives vanish for the equilibrium quantities
by definition. Using equations (34)-(37), equation (41) yields a relation between
the equilibrium values

ν′0
2

(ρ0 + pr0) = (η′0 − p′r0) +
4

r
η0 −

2

r
(pr0 − pt0) . (42)

Subtracting (2) by (3) we get the identity

8π
(
T 0
0 − T 1

1

)
= 8π(ρ+ pr) = e−λ

(
ν′ + λ′

r

)
. (43)
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4 Perturbations

Perturbing the equilibrium state we write

λ = λ0(r) + δλ(r, x0), (44)

ν = ν0(r) + δν(r, x0), (45)

ρ = ρ0(r) + δρ(r, x0), (46)

pr = pr0(r) + δpr0(r, x0), (47)

pt = pt0(r) + δpt0(r, x0), (48)

η = η0(r) + δη(r, x0). (49)

For small perturbations, to first order we have:

eλ0+δλ = eλ0(1 + δλ), (50)

eν0+δν = eν0(1 + δν). (51)

To first order, all Tµµ ’s remain the same, except for these perturbations to the
quantities.

T 0
0 = ρ0 + δρ+ η0 + δη, (52)

T 1
1 = −pr0 − δpr + η0 + δη, (53)

T 2
2 = −pt0 − δpt − η0 + δη, (54)

T 3
3 = −pt0 − δpt − η0 + δη, (55)

Unlike the static case, we now get another non-zero entry in our energy-momentum
tensor. Using equations (6), (16), (17), (20), and (21) we obtain

T 0
1 = −(ρ0 + pr0 + δρ+ δpr)e

(λ0−ν0)(1 + δλ)(1− δν)ξ̇, (56)

which to first order is

T 0
1 = −(ρ0 + pr0)e(λ0−ν0)ξ̇. (57)

Now, the conservation of the energy-momentum-tensor becomes littered with
these perturbed quantities, and it is equation (41) that we will develop into the
pulsation equation:

Tα1;α =
∂T 0

1

∂x0
+T 0

1 (ν̇0+ ˙δν+λ̇0+ ˙δλ)−ν
′
0 + δν′

2
(T 0

0−T 1
1 )+

∂T 1
1

∂r
+

2

r

(
T 1
1 −

T 2
2 + T 3

3

2

)
= 0.

(58)
Inserting equations (52),(53),(54),(55),(57) into equation (58) and keeping only
the first order terms
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− ∂

∂x0

(
eλ0−ν0 ξ̇(ρ0 + pr0)

)
− ν′0

2
(ρ0 + pr0 + δρ+ δpr)−

δν′

2
(ρ0 + pr0)

+
∂

∂r
(η0 − pr0 + δη − δpr) +

2

r
(2η0 + 2δη + pt0 − pr0 + δpt − δpr) = 0.

(59)

Using equation (41) and cancelling the static solution we are left with the equa-
tion

eλ0−ν0 (ρ0 + pr0) ξ̈ = (δη′ − δp′r)−
ν′0
2

(δρ+ δpr)−
δν′

2
(ρ0 + pr0)

+
4

r
δη +

2

r
(δpt − δpr)

(60)

This is the equation that will yield the ”pulsation equation” once we insert
the expressions for these perturbed quantities. Here, Esculpi/Aloma simply
cite ”Chandrasekhar’s work” and claims that δη has been obtain as proposed
by Glazer. The quantities are easily derived, and it is therefore weird that of
the six proposed results, three of them are flawed, and the result for δη is not
usable in the form given. This leaves quite an impact on the pulsation equation
as there are many terms that could have been cancelled, but was not.

Compared to the isotropic case, here we have one extra variable, since the
pressure p now contains two kinds of pressure, the radial pressure pr and the
tangential pressure pt. Hence we will also need an extra equation to solve the
system. We will keep it simple, as Esculpi/Aloma did, and look at the case
where the tangential pressure pt is proportional to the radial pressure pr, i.e.

pt = Cpr, (61)

which immediately yields
δpt = Cδpr. (62)

We now need to show what the other perturbed quantities look like. We
shall start by looking at the field equations. Subtracting (3) from (2) (both
static) we find

8π(T 0
0 − T 1

1 ) =
e−λ0

r
(λ′0 + ν′0), (63)

which we will write as

8πreλ0(ρ0 + pr0) = (ν′0 + λ′0). (64)

Inserting equation (64) into (5), we can integrate

˙δλ = −8πreλ0 ξ̇(ρ0 + pr0), (65)

to find
δλ = −8πreλ0ξ(ρ0 + pr0). (66)
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looking at (64) and (66) we see that we necessarily have

δλ = −ξ(ν′0 + λ′0). (67)

Esculpi/Aloma gives the expression for δλ with an extra factor of r−1.
Taking the first field equation into account, equation (2) reads

−e−λ0(1− δλ)

[
1

r2
− λ′0 + δλ

r

]
+

1

r2
= 8π(ρ0 + η0 + δρ+ δη), (68)

and cancelling the static solution

−e−λ0

[
1

r2
− λ′0

r

]
+

1

r2
= 8π(ρ0 + η0). (69)

We find that the perturbations relate to each other

e−λ0δλ

(
1

r2
− λ′0

r

)
+
e−λ0

r
(δλ)′ = 8π(δρ+ δη). (70)

Multiplying the equation with r2 we simplify the left-hand side

e−λ0δλ(1− λ′0r) + e−λ0r(δλ)′ = (e−rλ0δλ)′ = 8πr2(δρ+ δη) (71)

And using (66) we get

8πr2(δρ+ δη) = (re−λ0 [−8πreλ0ξ(ρ0 + pr0)])′. (72)

Solving equation (72) for δρ we further have

δρ = − 1

r2
(
r2ξ(ρ0 + pr0)

)′ − δη. (73)

Here, Esculpi/Aloma has lost the negative-sign in the first term on the right
hand side.

Finding a useful expression for δη is particularly long-winded, but more
or less straight-forward. While Esculpi/Aloma do give an expression for it, the
expression they give is useless in it’s given form. From their given expression it is
easy to express δη in a way that is very useful since it will simplify the pulsation
equation considerably. Irving Glazer did this in his paper, and Esculpi/Aloma
sited his paper, so they surely shouldn’t be strangers to this simplification.

Let’s just do a quick relabelling to make things less confusing.

f01 = E0 + δE, (74)

where E0 and δE are the equilibrium and perturbed quantities of the elec-
tromagnetic field tensor respectively. The energy-momentum of the field now
becomes

T
0(em)
0 =

e−(λ+ν)

8π
(f10)2 =

e−(λ0+ν0)(1− δλ− δν)

8π
(E0 + δE)2. (75)
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From equation (38) we defined the quantity η to be just this T
0(em)
0 , and so also

in the perturbed state:

η = η0 + δη =
e−(λ0+ν0)

8π
E2

0(1− (δλ+ δν) + 2
δE

E0
)), (76)

to first order. Looking at the Maxwell equations (11) in this perturbed state we
find

1√
−g

∂

∂x0
(√
−gf10

)
= 4πσu1, (77)

which reads

e− (λ0+ν0)
2

r2sinθ

∂

∂x0

(
e−

λ0+ν0
2 (1− δλ+ δν

2
)r2sinθ(E0 + δE)

)
= 4πσ0ξ̇e

−ν0
2 . (78)

Since we this time differentiate with respect to time both r2 and sinθ will cancel.
This equation can be immediately integrated to give(

−δλ+ δν

2

)
E0 + δE = 4πσ0ξe

2λ0+ν0
2 . (79)

Multiplying both sides with 2E0 we find

E2
0

(
−(δλ+ δν) +

2δE

E0

)
= 8πE0σ0ξe

2λ0+ν0
2 (80)

Inserting in (63) we have

η0 + δη =
e−(λ0+ν0)

8π
E2

0(1 +
8πσ0ξe

2λ0+ν0
2

E0
) =

e−(λ0+ν0)

8π
E2

0 + σ0ξE0e
−ν0
2 . (81)

Remembering equations (32) and (38), for the static case we find

η0 =
e−(λ0+ν0)

8π
E2

0 , (82)

By equations (81) and (82) we must have that

δη = σ0ξE0e
− ν02 (83)

This is the expression given in Esculpi/Aloma, but it is not very useful, as it
doesn’t simplify anything. Further investigation however yields a very simple
and powerful expression for δη. Equation (38) can be written

η =
Q2(r)

8πr4
= η0 + δη =

(Q0(r) + δQ)2

8πr4
(84)

To first order we have

δη =
Q0(r)δQ

4πr4
(85)
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we further have

(η0)′ =
2Q0(r)Q′0(r)

8πr4
− Q2

0(r)

2πr5
. (86)

We defined Q0(r) earlier, in equation (29), and from equation (30) we find Q0(r)′

as

Q′0(r) = 4πr2σ0e
λ0
2 . (87)

Equation (86) now reads

(η0)′ =
Q0(r)σ0e

λ0
2

r2
− Q2

0(r)

2πr5
. (88)

From equations (22) and (31) we have

(η0)′ = −σ0E0e
−ν0
2 − Q2

0(r)

2πr5
, (89)

and by employing equation (83), (89) can be written as

(η0)′ = −δη
ξ
− 4

r
η0. (90)

This last equation may also be written in the following way

δη + (η′0 +
4

r
η0)ξ = 0. (91)

If you take a look at the perturbed quantities given by Esculpi/Aloma, you see
that in the expression for δpr, equation (48) in their paper, these terms can be
cancelled. In the pulsation equation that follows this zero-term appears four(!)
times, and could have been avoided altogether. Thus the calculations became
much more complicated than they need to be.

Now all we need is the expression for δpr and we can squeeze out the pul-
sation equation. To produce the expression for δpr we need to make use of a
supplementary condition, the conservation of baryon number i.e.

(Nuα);α = 0. (92)

This means that the total number of particles in the system remain unchanged.
We write

N = N0(r) + δN(r, x0). (93)

The contraction of the covariant derivative of a contra-variant vector Nuα is
given by

(Nuα);α =
∂(Nuν)

∂xν
+Nuµ

∂(ln
√
−g)

∂xµ
. (94)
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We remember equations (16) and (17), that uµ = (e−
ν0
2 , ξ̇e−

ν0
2 , 0, 0). Hence

(71) reads, to first order

(N0)
∂u0

∂x0
+
∂δN

∂x0
u0 + (N0)

∂u1

∂x1
+
∂N0

∂x1
u1

+N0

(
˙δλ+ ˙δν

2

)
u0 +N0

(
λ′0 + ν′0

2
+

2

r

)
= 0.

(95)

Inserting our expressions for uµ we find

−N0e
− ν02

˙δν

2
+ ˙δNe−

ν0
2 + (N0e

− ν02 ξ̇)′ +N0e
−ν0
2

˙δν

2
+N0e

− ν02
˙δλ

2

+N0e
− ν02 ξ̇

(
λ′0 + ν′0

2
+

2

r

)
= 0,

(96)

where the first and the fourth term cancel. We can actually integrate this
equation immediately and solve for δN

δNe−
ν0
2 +

(
N0e

− ν02 ξ
)′

+N0e
− ν02 δλ+N0e

− ν02 ξ

(
λ′0 + ν′0

2
+

2

r

)
= 0. (97)

We find that equation (97) can be simplified to give

δN +
e
ν0
2

r2
(N0e

− ν02 r2ξ)′ +N0

(
δλ+ ξ

(
λ′0 + ν′0

2

))
= 0 (98)

And by (67) the third term here is actually zero, which means we get the very
nice expression

δN = −e
ν0
2

r2
(N0e

− ν02 r2ξ)′. (99)

Now if
N = N(ρ(r, x0), pr(r, x

0)), (100)

is the equation of state, it follows that

δN =
∂N

∂ρ
δρ+

∂N

∂pr
δpr. (101)

By equations (73), (91), and (99), equation (101) reads

∂N

∂pr
δpr = −e

ν0
2

r2
(N0e

− ν02 r2ξ)′ − ∂N

∂ρ

[
− 1

r2
(
r2ξ(ρ0 + pr0)

)′
+ (η′0 +

4

r
η0)ξ

]
.

(102)
Expanding some terms we obtain

∂N

∂pr
δpr = −N ′0ξ−N0

e
ν0
2

r2
(e−

ν0
2 r2ξ)′−∂N

∂ρ

[
−ξ(p′r0 −

4

r
η0 − η′0 + ρ′0) +

ρ0 + pr0
r2

(r2ξ)′
]
.

(103)
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Using equation (42)we can rewrite equation (103) in the following way

∂N

∂pr
δpr =−N ′0ξ −N0

e
ν0
2

r2
(e−

ν0
2 r2ξ)′

− ∂N

∂ρ

[
ξ

(
ν′0
2

(ρ0 + pr0) +
2

r
(pr0 − pt0)

)
− ρ0 + pr0

r2
(r2ξ)′ − ξρ′0

]
.

(104)

We collect the terms in the bracket and obtain

− ∂N

∂ρ

[
ξ

(
ν′0
2

(ρ0 + pr0) +
2

r
(pr0 − pt0)

)
− ρ0 + pr0

r2
(r2ξ)′ − ξρ′0

]
=

− ∂N

∂ρ

[
ξ

2

r
(pr0 − pt0)− (ρ0 + pr0)e

ν0
2

r2
(e−

ν0
2 r2ξ)′ − ξρ′0

]
.

(105)

Using equation (105), equation (104) now reads

∂N

∂pr
δpr = −N ′0ξ−(N0−(ρ0+pr0)

∂N

∂ρ
)
e
ν0
2

r2
(e−

ν0
2 r2ξ)′−∂N

∂ρ

(
2

r
(pr0 − pt0)− ρ′0

)
.

(106)
We further have

N ′0(r, x0) = N ′0(ρ(r, x0), pr(r, x
0)) =

∂N0

∂ρ0

∂ρ0
∂r

+
∂N0

∂pr0

∂pr0
∂r

. (107)

Keeping our analysis to first order, we must only bring ∂N
∂pr

to zero’th order.

∂N

∂pr
δpr =

∂N0

∂pr0
δpr, (108)

and similar for ∂N
∂ρ .

∂N

∂ρ
δρ =

∂N0

∂ρ0
δρ. (109)

Using equations (107), (108), and (109), equation (106) becomes

δpr =− ξ
(
∂N0

∂ρ0

∂ρ0
∂r

+
∂N0

∂pr0

∂pr0
∂r

)
∂pr0
∂N0

− ∂pr0
∂N0

(
N0 − (ρ0 + pr0)

∂N0

∂ρ0

)
e
ν0
2

r2
(e−

ν0
2 r2ξ)′

− ∂N0

∂ρ0

∂pr0
∂N0

(
2

r
(pr0 − pt0)

)
+ ξ

∂pr0
∂N0

∂N0

∂ρ0

∂ρ0
∂r

.

(110)

Here the first and the last term on the right hand side cancel, two factors of the
second term cancel, and we can can recognize one of the factors as the ratio of
specific heats, that is

γ =
1

pr0
∂N0

∂pr0

(
N0 − (ρ0 + pr0)

∂N0

∂ρ0

)
. (111)
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There is also an equivalent definition of this γ,

γ =
(pr0 + ρ0)

pr0

∂pr0
∂ρ0

, (112)

which yields
∂pr0
∂ρ0

=
γpr0

ρ0 + pr0
. (113)

Employing equations (111) and (112), equation (110) can now be written as

δpr = −ξp′r0 −
γpr0e

ν0
2

r2
(e−

ν0
2 r2ξ)′ +

γpr0ξ

ρ0 + pr0

2

r
(pt0 − pr0). (114)

Here Esculpi/Aloma again lost a factor, i.e. e
ν0
2

r2 in the second term and they
also carried along the three terms from equation (91) that cancel.
We now need the perturbed expression for ν′. Equation (3) when perturbed
yields, to first order

−e−λ0(1− δλ)

[
ν′0
r

+
1

r2

]
− e−λ0

[
δν′

r

]
= 8π(−pr0 − δpr + η0 + δη). (115)

The static solution to (3) is:

−e−λ0

[
ν′0
r

+
1

r

]
+

1

r
= 8π (−pr0 + η0) . (116)

Using equation (116) to cancel the static solution from (115) we find

e−λ0

r
(δν′) = −e−λ0

δλ

r

[
ν′0 +

1

r

]
+ 8π(δpr − δη). (117)

Employing equation (66) we find

e−λ0

r
(δν′) = 8π(δpr − δη) + 8π(ρ0 + pr0)ξ

(
ν′0 +

1

r

)
. (118)

Remembering equation (64) we can write the left hand side in the following way:

(δν′)(ρ0 + pr0) =

[
δpr − δη − (ρ0 + pr0)ξ

(
ν′0 +

1

r

)]
(ν′0 + λ′0). (119)

This equation matches equation (50) from Esculpi/Aloma.
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5 The pulsation equation

We shall assume perturbation in the form of radial oscillation,

ξ = eiωx
0

, (120)

which leads to
ξ̈ = −ξω2. (121)

Using equations (61), (62), (73), (91),(114), and (119), equation (60) takes the
following complicated form

eλ0−ν0 (ρ0 + pr0) ξω2 =

(
(η′0 +

4

r
η0 − p′r0)ξ − γpr0e

ν0
2

r2
(e−

ν0
2 r2ξ)′

)′

+

(
γpr0ξ

ρ0 + pr0

2

r
(C − 1)pr0

)′
+
ν′0
2

(
− 1

r2
(
r2ξ(ρ0 + pr0)

)′
+ (η′0 +

4

r
η0)ξ − ξp′r0

)
+
ν′0
2

(
−γpr0e

ν0
2

r2
(e−

ν0
2 r2ξ)′ +

γpr0ξ

ρ0 + pr0

2

r
(C − 1)pr0

)

+

[
(η′0 +

4

r
η0 − p′r0)ξ − (ρ0 + pr0)ξ

(
ν′0 +

1

r

)]
(ν′0 + λ′0)

2

+

[
−γpr0e

ν0
2

r2
(e−

ν0
2 r2ξ)′ +

γpr0ξ

ρ0 + pr0

2

r
(C − 1)pr0

]
(ν′0 + λ′0)

2

+
4

r
(η′0 +

4

r
η0)ξ

− 2

r
(C − 1)

[
−ξp′r0 −

γpr0e
ν0
2

r2
(e−

ν0
2 r2ξ)′

]

− 4

r2
γpr0ξ

ρ0 + pr0
(C − 1)2pr0.

(122)

We shall first look only at the ’isotropic’ terms, the terms that do not involve
(C − 1), thereafter we will look at the terms that do include the term (C − 1).

Starting with the ’isotropic’ terms, in (122) we find

−

(
−(η′0 +

4

r
η0 − p′r0)ξ +

γpr0e
ν0
2

r2
(e−

ν0
2 r2ξ)′

)′
+

4

r
(η′0 +

4

r
η0)ξ

+
ν′0
2

(
− 1

r2
(
r2ξ(ρ0 + pr0)

)′
+ (η′0 +

4

r
η0)ξ − ξp′r0 −

γpr0e
ν0
2

r2
(e−

ν0
2 r2ξ)′

)

+

[
(η′0 +

4

r
η0 − p′r0)ξ − γpr0e

ν0
2

r2
(e−

ν0
2 r2ξ)′ − (ρ0 + pr0)ξ

(
ν′0 +

1

r

)]
(ν′0 + λ′0)

2
.

(123)
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Even this is quite complicated, but we will simplify it step by step. Looking
only at the terms with γ we collect them as follows

−

(
γpr0e

ν0
2

r2
(e−

ν0
2 r2ξ)′

)′
−
(
ν′0
2

)
γpr0e

ν0
2

r2
(e−

ν0
2 r2ξ)′

−
(
ν′0 + λ′0

2

)
γpr0e

ν0
2

r2
(e−

ν0
2 r2ξ)′.

(124)

These can be collected as a single term, i.e.

−e−(ν0+
λ0
2 )

[
e(ν0+

λ0
2 ) γpr0e

ν0
2

r2
(e−

ν0
2 r2ξ)′

]′
. (125)

Remembering equations (42) and (61), we can write

(η′0 +
4

r
η0 − p′r0)ξ =

(
ν′0
2

(ρ0 + pr0)− 2

r
(C − 1)pr0

)
ξ. (126)

Inserting this equation (123) takes the following form[(
ν′0
2

(ρ0 + pr0)− 2

r
(C − 1)pr0

)
ξ

]′
− e−(ν0+

λ0
2 )

[
e(ν0+

λ0
2 ) γpr0e

ν0
2

r2
(e−

ν0
2 r2ξ)′

]

+
ν′0
2

(
ν′0
2

(ρ0 + pr0)− 2

r
(C − 1)pr0

)
ξ

+
(ν′0 + λ′0)

2

[
ν′0
2

(ρ0 + pr0)ξ − 2

r
(C − 1)pr0ξ − (ρ0 + pr0)ξ

(
ν′0 +

1

r

)]
ξ

− ν′0
2

1

r2
(
r2ξ(ρ0 + pr0)

)′
+

4

r

(
η′0 +

4

r
η0

)
ξ.

(127)

Considering the terms in equation (127) containing (ρ0 + pr0)ξ we have[
ν′0
2

(ρ0 + pr0)ξ

]′
+

(
(ν′0)2

4
(ρ0 + pr0)ξ

)
+

λ′0 + ν′0
2

[
ν′0
2
−
(
ν′0 +

1

r

)]
(ρ0 + pr0)ξ − ν′0

2

1

r2
(r2ξ(ρ0 + pr0)′.

(128)

Expanding the first and last terms, factoring the derivative of
ν′0
2 from the first

term, and the derivative of r2 in the last term, we obtain[
ν′′0
2

(ρ0 + pr0)ξ

]
+
ν′0
2

[(ρ0 + pr0)ξ]′ +

(
(ν′0)2

4
(ρ0 + pr0)ξ

)
+

λ′0 + ν′0
2

[
ν′0
2
−
(
ν′0 +

1

r

)]
(ρ0 + pr0)ξ − ν′0

2

2

r

(
ξ(ρ0 + pr0)

)
− ν′0

2

(
(ρ0 + pr0ξ)

)′
.

(129)
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This expression can be drastically simplified, since two terms cancel, and the
remaining terms can be written in the following way:

(ρ0 + pr0)

2
ξ

[
ν′′0 −

λ′0ν
′
0

2
− 3ν′0 + λ′0

r

]
. (130)

We rewrite equation (4) as

1

2

[
ν′′0 +

(ν′0)2

2
+

(ν′0 − λ′0)

r
− λ′0ν

′
0

2

]
− (ν′0)2

8
− 2ν′0

r
=

− 8πeλ0(pt0 + η0)− ν′0
(
ν′0
8

+
2

r

)
.

(131)

We now see that equation (130) can be written as

−8π(ρ0 + pr0)ξeλ0(Cpr0 + η0)− (ρ0 + pr0)ξ
ν′0
4

(
ν′0
2

+
8

r

)
. (132)

The second term here, using (42) reads

ξ

[
1

2

(
(η′0 − p′r0) +

4

r
η0 +

2

r
(C − 1)pr0

)]
×[

2

ρ0 + pr0

(
(η′0 − p′r0) +

4

r
η0 +

2

r
(C − 1)pr0

)
+

8

r

]
.

(133)

Here we separate the isotropic and anisotropic terms to obtain

ξ

ρ0 + pr0

[
((η′0 − p′r0) +

4

r
η0)2

]
+

4ξ

r
(η′0 +

4

r
η0 − p′r0)

+
ξ

ρ0 + pr0

4

r
(C − 1)Pr0(η′0 +

4

r
η0 − p′r0)

+
ξ

ρ0 + pr0

4

r2
(C − 1)2P 2

r0 +
8

r2
ξ(C − 1)pr0.

(134)

Expanding the first term in (34) we have

ξ

ρ0 + pr0

[
(η′0 − p′r0)2 +

8

r
η0(η′0 − p′r0) +

16

r2
η20

]
+

4ξ

r
(η′0 +

4

r
η0)− 4ξ

r
pr0

4

r

ξpr0(C − 1)

ρ0 + pr0

[
(η′0 +

4

r
η0 − p′r0) +

1

r
(C − 1)pr0

]
+

8ξ

r2
(C − 1)p2r0.

(135)

There are still terms in equation (122) that we have not considered, i.e. the
anisotropic terms which read

−
(

2

r
(C − 1)pr0ξ

)′
−
(
ν′0
2

+
ν′0 + λ′0

2

)(
2

r
(C − 1)pr0ξ

)
. (136)
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This expression can be collected to a single derivative,

−e−(ν0+
λ0
2 )

(
e(ν0+

λ0
2 ) 2

r
(C − 1)pr0ξ)

)′
. (137)

Employing expressions (128)-(137), expression (123) reads

− 8π(ρ0 + pr0)ξeλ0(Cpr0 + η0)− e−(ν0+
λ0
2 )

(
e(ν0+

λ0
2 ) 2

r
(C − 1)pr0ξ)

)′
− e−(ν0+

λ0
2 )

[
e(ν0+

λ0
2 ) γpr0e

ν0
2

r2
(e−

ν0
2 r2ξ)′

]′
− ξ

ρ0 + pr0

[
(η′0 − p′r0)2 +

8

r
η0(η′0 − p′r0) +

16

r2
η20

]
− 4ξ

r
(η′0 +

4ξ

r
η0) +

4

r
pr0

− 4

r

ξpr0(C − 1)

ρ0 + pr0

[
(η′0 +

4

r
η0 − p′r0) +

1

r
(C − 1)pr0

]
− 8

r2
(C − 1)p2r0

+
4

r
(η′0 +

4

r
η0)ξ.

(138)

Here some terms cancel, but we are not finished yet. Considering (122) again,
we write the anisotropic terms as

+

(
γpr0ξ

ρ0 + pr0

2

r
(C − 1)pr0

)′
+

γpr0ξ

ρ0 + pr0

2

r
(C − 1)pr0

(
ν′0 + ν′0 + λ′0

2

)
+

2

r
(C − 1)

[
ξp′r0 +

γpr0e
ν0
2

r2
(e−

ν0
2 r2ξ)′ − 2

r

γpr0ξ

ρ0 + pr0

2

r
(C − 1)pr0

]
.

(139)

Here the two first terms can be collected as a single derivative. Hence (139)
reads

+ e−
λ0+2ν0

2

(
e
λ0+2ν0

2
γpr0ξ

ρ0 + pr0

2

r
(C − 1)pr0

)′
+

2

r
(C − 1)

[
ξp′r0 +

γpr0e
ν0
2

r2
(e−

ν0
2 r2ξ)′ − 2

r

γpr0ξ

ρ0 + pr0

2

r
(C − 1)pr0

]
.

(140)

Now, if we use the results from (138) and (140) in (122) we get the pulsation

18



equation.

− 8π(ρ0 + pr0)ξeλ0(pr0 + η0)− e−(ν0+
λ0
2 )

(
e(ν0+

λ0
2 ) 2

r
(C − 1)pr0ξ)

)′
− e−(ν0+

λ0
2 )
[
e

3ν0+λ0
2

γpr0
r2

(e−
ν0
2 r2ξ)′

]′
− ξ

ρ0 + pr0

[
(η′0 − p′r0)2 +

8

r
η0(η′0 − p′r0) +

16

r2
η20

]
+

4

r
pr0

− 4

r

ξpr0(C − 1)

ρ0 + pr0

[
(η′0 +

4

r
η0 − p′r0) +

1

r
(C − 1)pr0

]
− 8

r2
(C − 1)p2r0

+ e−
λ0+2ν0

2

(
e
λ0+2ν0

2
γpr0ξ

ρ0 + pr0

2

r
(C − 1)pr0

)′
+

2

r
(C − 1)

[
ξp′r0 +

γpr0e
ν0
2

r2
(e−

ν0
2 r2ξ)′ − γpr0ξ

ρ0 + pr0

2

r
(C − 1)pr0

]
= eλ0−ν0 (ρ0 + pr0) ξω2.

(141)

Here we separate some terms to compare with the pulsation equations we find in
other papers regarding analysis’ of stability of isotropic, charged perfect fluids.
Equation (136) reads

4

r
p′r0 − 8π(ρ0 + pr0)ξeλ0(Cpr0 + η0)

− e−ν0+
λ0
2

[
e(

3ν0+λ0
2 ) γpr0

r2
(e−

ν0
2 r2ξ)′

]′
− ξ

ρ0 + pr0

[
(η′0 − p′r0)2 +

8

r
η0(η′0 − p′r0) +

16

r2
η20

]
− e−(ν0+

λ0
2 )

(
e(ν0+

λ0
2 ) 2

r
(C − 1)pr0ξ)

)′
− 4

r

ξpr0(C − 1)

ρ0 + pr0

[
(η′0 +

4

r
η0 − p′r0) +

1

r
(C − 1)pr0

]
− 8

r2
(C − 1)p2r0 + e−

λ0+2ν0
2

(
e
λ0+2ν0

2
γp2r0ξ

ρ0 + pr0

2

r
(C − 1)

)′
+

2

r
(C − 1)

[
ξp′r0 +

γpr0e
ν0
2

r2
(e−

ν0
2 r2ξ)′ − 2

r

γp2r0ξ

ρ0 + pr0
(C − 1)

]
= eλ0−ν0 (ρ0 + pr0) ξω2.

(142)

This is the equation we can compare with the pulsation equation of other au-
thors. If we want to compare this equation to the one we find in Glazer. By
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setting C = 1 we can immediately write

eλ0−ν0 (ρ0 + pr0) ξω2 =
4

r
p′r0 − 8π(ρ0 + pr0)ξeλ0(pr0 + η0)

− e−(ν0+
λ0
2 )
[
e

3ν0+λ0
2

γpr0
r2

(e−
ν0
2 r2ξ)′

]′
− ξ

ρ0 + pr0

[
(η′0 − p′r0)2 +

8

r
η0(η′0 − p′r0) +

16

r2
η20

]
.

(143)

This is the very same equation that we find in Glazer’s paper on isotropic
charged fluids. This equation is NOT reproduced in the results given by Es-
culpi/Aloma.
Setting the charge, η0 = 0 as well we are left with the equation

eλ0−ν0 (ρ0 + pr0) ξω2 =
4

r
p′r0 − 8π(ρ0 + pr0)ξeλ0(pr0)

− e−(ν0+
λ0
2 )
[
e

3ν0+λ0
2

γpr0
r2

(e−
ν0
2 r2ξ)′

]′
,

(144)

which is the exact equation given by Chandrasekhar. Esculpi/Aloma do indeed
reproduce this equation for isotropic non-charged fluids, but there is demon-
strably something wrong with the pulsation equation. We found a plethora of
mistakes, which may or may not be printing errors. It is easy to understand that
they may have dropped a term in the rather tedious work to produce the pulsa-
tion equation. Which ever way they did it, an article containing this amount of
mistakes should not make it through the proof-reading, which makes us wonder
who, if any, proof-read this article.

We have done all these calculations that Esculpi/Aloma surely must have
done too, to show how the pulsation equation is supposed to look in the case
where the tangential pressure is proportional to the radial pressure.
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Part II

The most general pulsation
equation
It is now natural to wonder how the equation will look in the most general case.
In the most general case, the tangential pressure will be a function of the radial
pressure. We will include the cosmological constant also, and find the pulsation
equation.

We will now undertake the task to produce this equation. We will start from
scratch. Things will look more or less identical to the above case, until we start
investigating the tangential pressure.
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6 The field equations

Now, what we need to do is generalize this equation even further. We shall
allow the tangential pressure to be any function of the radial pressure.
We have the line element

ds2 = eν dt2 − eλ − r2(dθ2 + sin2dφ2), (145)

and the Einstein field equations are further given by:

−e−λ
[

1

r2
− λ′

r

]
+

1

r2
= 8πT 0

0 , (146)

−e−λ
[
ν′

r
+

1

r2

]
+

1

r2
= 8πT 1

1 , (147)

−−λ
2

[
ν′′ +

ν′2

2
+

(ν′ − λ′)
r

− ν′λ′

2

]
= 8πT 2

2 , (148)

−e
−λ

r
λ̇ = −8πT 1

0 . (149)

ν and λ are unknown functions of the radial coordinate r, primes denote deriva-
tives with respect to the radial coordinate r, and dots denote derivatives with
respect to the time coordinate x0.
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7 The energy-momentum tensor

The gravitational energy part of the energy-momentum tensor reads

T ν(g)µ = (ρ+ pt)uµu
ν − gνµpt + (pr − pt)χµχν + δµνΛ, (150)

where ρ is the matter energy density, pr is the radial pressure in the direction
of χµ, pt is the pressure in the two-space orthogonal to χµ , uµ is the velocity
four-vector of the fluid , and χµ is a unit space vector in the radial direction
orthogonal to uµ. Λ is the cosmological constant.
The electromagnetic field tensor is of the form

T ν(em)
µ =

1

4π

(
1

4
fαβf

αβ − gµνgαβfµαfνβ
)
, (151)

where the electromagnetic field tensor fµν is given in terms of the electromag-
netic potentials Aµ

fµν = Aµ;ν −Aν;µ (152)

If we consider the potential vector

Aµ = (A0, 0, 0, 0), (153)

it follows that
f01 = −f10 = A0;1 (154)

The Maxwell equations reads:

1√
−g

∂

∂xν
(√
−gfµν

)
= 4πσuµ, (155)

where σ is the charge density, and σuµ is the current vector.
The uµ’s and χµ’s are defined:

uµ =
dxµ

ds
(156)

Our line element yields

1 = eν
(
dt

ds

)2

− eλ
(
dr

ds

)2

− r2
((

dθ

ds

)2

+ sin2θ

(
dφ

ds

)2
)

(157)

Considering radial oscillations only we can put dθ
ds

= dφ
ds

= 0 so we get:

1 = eν(u0)2 − eλ(u1)2 (158)

Considering u1 we obtain

u1 =
dr

dt
× dt

ds
= u0ξ̇, (159)
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where we defined ξ̇ = dr
dt

Solving (149) for u0 and then (150) for u1 to first order we find:

u0 = e−
ν
2 , (160)

and
u1 = ξ̇e−

ν
2 . (161)

We define χµ’ as being orthonormal and orthogonal to uµ, yielding

χµuµ = 0, (162)

and
χµχµ = −1 (163)

Solving for χ0 and χ1 we find

χ0 = e
λ
2−ν ξ̇, (164)

and
χ1 = e−

λ
2 (165)

Under spherical symmetry, there are only two non-zero components of the
electromagnetic field tensor, namely f01 and f10, which furthermore are anti-
symmetric:

f10 = −f01 (166)

For the static case ξ̇ vanishes, and we are left with uµ = (u0, 0, 0, 0) and
χµ = (0, χ1, 0, 0)

Our electromagnetic field tensor then reads:

T
0(em)
0 =

(f01)2

8π
e−(λ+ν), (167)

T
1(em)
1 =

(f01)2

8π
e−(λ+ν), (168)

T
2(em)
2 = − (f01)2

8π
e−(λ+ν), (169)

T
3(em)
3 = − (f01)2

8π
e−(λ+ν). (170)

The Maxwell equations further read

√
−g ∂

∂r

(√
−gf01

)
=
e−

λ+ν
2

r2sinθ

∂

∂r

(
e
λ+ν
2 r2sinθf01

)
= 4πσe−

ν
2 , (171)

Solving for f01 by integration we get

e
λ+ν
2 r2f01 =

∫
4πσr2e

λ
2 dr. (172)
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The right hand side of this equation is merely the total charge within a
sphere, so we call it Q:

Q(r) =

∫ r

0

4πσe
λ
2 τ2dτ (173)

We then have

σ =
Q′(r)

4πr2
eλ+ν (174)

By lowering the indices, and reversing the order of them, we obtain

e−
λ+ν
2 f10 =

1

r2

∫
4πr2σe

λ
2 dr =

Q(r)

r2
, (175)

which yields

(f10)2 =
Q2(r)

r4
eλ+ν (176)

We now find the components of the energy-momentum tensor

T νµ = T (m)ν
µ + T (em)ν

µ (177)

We obtain
T 0
0 = ρ+ η + Λ, (178)

T 1
1 = −pr + η + Λ, (179)

T 2
2 = −pt − η + Λ, (180)

T 3
3 = −pt − η + Λ, (181)

where we follow Glazers notation and define

η =
Q2

8πr2
. (182)

The pulsation equation itself comes from the covariant divergence of the
energy-momentum tensor, meaning

T νµ;ν = 0, (183)

which is a necessary identity. By choosing µ = 1 and using that the covariant
derivative can be written as

T νµ;ν =
1√
−g

∂

∂xν
T νµ −

T να

2

∂gνα
∂xµ

(184)

we get the following relation

∂T 0
1

∂x0
+
∂T 1

1

∂r
+ T 0

1

(
ν̇ − λ̇

2

)
+
ν′

2

(
T 1
1 − T 0

0

)
+

2

r

(
T 1
1 −

T 2
2 − T 3

3

2

)
= 0 (185)
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For the static case, we distinguish the quantities describing this equilibtrium
state by a subscript zero. All time derivatives vanish for the equilibrium quan-
tites by definition. Using equations (178)-(181), equation (186) yields a relation
between the quilibrium values

ν′0
2

(ρ0 + pr0) = (η′0 − p′r0) +
4

r
η0 −

2

r
(pr0 − pt0) . (186)

Subtracting equation (147) from equation (146) we get the identity

8π
(
T 0
0 − T 1

1

)
= 8π(ρ+ pr) = e−λ

(
ν′ + λ′

r

)
(187)
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8 Perturbations

Perturbing the equilibrium state, we write

λ = λ0(r) + δλ(r, x0), (188)

ν = ν0(r) + δν(r, x0), (189)

ρ = ρ0(r) + δρ(r, x0), (190)

pr = pr0(r) + δpr0(r, x0), (191)

pt = pt0(r) + δpt0(r, x0), (192)

η = η0(r) + δη(r, x0). (193)

For small perturbations, to first order we have:

eλ0+δλ = eλ0(1 + δλ), (194)

eν0+δν = eν0(1 + δν). (195)

To first order, all Tµµ ’s remain the same, except for these perturbations to the
quantities, but unlike the static case, we have another non-zero entry in our
Energy-Momentum Tensor. Using equations (160), (161), (164), and (165) in
equation (150) we obtain

T 0
1 = −(ρ0 + pr0 + δρ+ δpr)e

(λ0−ν0)(1 + δλ)(1− δν)ξ̇, (196)

which to first order is

T 0
1 = −(ρ0 + pr0)e(λ0−ν0)ξ̇. (197)

Now, the conservation of the energy-momentum-tensor becomes littered with
these perturbed quantities, and it is equation (185) that we will develop into
the pulsation equation:

Tα1;α =
∂T 0

1

∂x0
+T 0

1 (ν̇0+ ˙δν+λ̇0+ ˙δλ)−ν
′
0 + δν′

2
(T 0

0−T 1
1 )+

∂T 1
1

∂r
+

2

r

(
T 1
1 −

T 2
2 + T 3

3

2

)
= 0.

(198)
Inserting equations (178)-(181) and equation (197) into equation (198) and keep-
ing it only to first order

− ∂

∂x0

(
eλ0−ν0 ξ̇(ρ0 + pr0)

)
− ν′0

2
(ρ0 + pr0 + δρ+ δpr)−

δν′

2
(ρ0 + pr0)

+
∂

∂r
(η0 − pr0 + δη − δpr + Λ) +

2

r
(2η0 + 2δη + pt0 − pr0 + δpt − δpr) = 0.

(199)
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Using equation (185) and cancelling the static solution we are left with the
equation

−eλ0−ν0 (ρ0 + pr0) ξ̈+ = (δp′r − δη′) +
ν′0
2

(δρ+ δpr) +
δν′

2
(ρ0 + pr0)

− 4

r
δη − 2

r
(δpt − δpr) .

(200)

This is the equation that will yield the pulsation equation.
We shall allow the tangential pressure to be any function of the radial pres-

sure, so
pt = pt(pr), (201)

and we shall define the difference between the pressures as

π = pt − pr = π(pr), (202)

with equilibrium state
π0 = pt0 − pr0. (203)

It follows that
dπ

dr
=

dπ

dpr
p′r, (204)

and

δpt − δpr = δπ =
dπ

dpr
δpr. (205)

Now, equation (200) reads

−eλ0−ν0 (ρ0 + pr0) ξ̈ = (δp′r − δη′) +
ν′0
2

(δρ+ δpr) +
δν′

2
(ρ0 + pr0)

− 4

r
δη − 2

r
δπ.

(206)

We now need to find the expressions for the other perturbations. We shall start
by looking at the field equations. Subtracting (147) from (146) (both static) we
find

8π(T 0
0 − T 1

1 ) =
e−λ0

r
(λ′0 + ν′0), (207)

which we will write as

8πreλ0(ρ0 + pr0) = (ν′0 + λ′0). (208)

Inserting into (149), we can directly integrate

˙δλ = −8πreλ0 ξ̇(ρ0 + pr0), (209)

to find
δλ = −8πreλ0ξ(ρ0 + pr0), (210)
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and looking at (204) and (206) we see that we necessarily have that

δλ = −ξ(ν′0 + λ′0) (211)

Taking the first field equation, equation (146), into account

−e−λ0(1− δλ)

[
1

r2
− λ′0 + δλ′

r

]
+

1

r2
= 8π(ρ0 + η0 + δρ+ δη + Λ), (212)

and cancelling the static solution

−e−λ0

[
1

r2
− λ′0

r

]
+

1

r2
= 8π(ρ0 + η0 + Λ), (213)

we find that the perturbations relate to each other

e−λ0δλ

(
1

r2
− λ′0

r

)
+
e−λ0

r
(δλ)′ = 8π(δρ+ δη). (214)

Multiplying the equation with r2 we simplify and find

e−λ0δλ(1− λ′0r) + e−λ0r(δλ)′ = (e−rλ0δλ)′ = 8πr2(δρ0 + δη0). (215)

From equation (204) we get

8πr2(δρ0 + δη0) = (re−λ0 [−8πreλ0ξ(ρ0 + pr0)])′. (216)

Solving for δρ we further have

δρ = − 1

r2
(
r2ξ(ρ0 + pr0)

)′ − δη. (217)

We will now start investigating the perturbations, let us start with δη, which
is the most tedious perturbation to find a suitable expression. Let’s just do a
quick relabelling to make things less confusing.

f01 = E0 + δE, (218)

where E0 and δE is the equilibrium, and perturbed quantity of the electromag-
netic field tensor respectively. The energy-momentum of the field now becomes

T
0(em)
0 =

e−(λ+ν)

8π
(f10)2 =

e−(λ0+ν0)(1− δλ− δν)

8π
(E0 + δE)2. (219)

You might recognize that this is also the definition we have for η, which now
becomes

η = η0 + δη =
e−(λ0+ν0)

8π
E2

0(1− (δλ+ δν) + 2
δE

E0
)), (220)
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to first order. Looking at the Maxwell equations (11) in this perturbed state we
find

1√
−g

∂

∂x0
(√
−gf10

)
= 4πσu1, (221)

which reads

e− (λ0+ν0)
2

r2sinθ

∂

∂x0

(
e−

λ0+ν0
2 (1− δλ+ δν

2
)r2sinθ(E0 + δE)

)
= 4πσ0ξ̇e

−ν0
2 . (222)

Since we now differentiate with respect to time both r2 and sinθ will cancel.
This equation can immediately be integrated to give(

−δλ+ δν

2

)
E0 + δE = 4πσ0ξe

2λ0+ν0
2 . (223)

Multiplying both sides of the last equation with 2E0 we find

E2
0

(
−(δλ+ δν) +

2δE

E0

)
= 8πE0σ0ξe

2λ0+ν0
2 . (224)

Inserting in (203) we have

η0 + δη =
e−(λ0+ν0)

8π
E2

0(1 +
8πσ0ξe

2λ0+ν0
2

E0
) =

e−(λ0+ν0)

8π
E2

0 +σ0ξE0e
−ν0
2 . (225)

Remembering equations (176) and (172), for the static case we find

η0 =
e−(λ0+ν0)

8π
E2

0 , (226)

From equations (121) and (122) we must have

δη = σ0ξE0e
− ν02 . (227)

Let’s keep moving forward, equation (182) reads

η =
Q2(r)

8πr4
= η0 + δη =

(Q0(r) + δQ)2

8πr4
. (228)

To first order we have

δη =
Q0(r)δQ

4πr4
, (229)

and we further have

(η0)′ =
2Q0(r)Q′0(r)

8πr4
− Q2

0(r)

2πr5
. (230)

While we defined Q0(r) earlier in equation (175), and from equation (176) we
find Q0(r)′ as
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Q′0(r) = 4πr2σ0e
λ0
2 . (231)

Now equation (230) reads

(η0)′ =
Q0(r)σ0e

λ0
2

r2
− Q2

0(r)

2πr5
. (232)

And it follows from (175), where we are careful with the definition of E0 and
the antisymmetry of fµν so we don’t bring the wrong sign, that

(η0)′ = −σ0E0e
−ν0
2 − Q2

0(r)

2πr5
, (233)

and looking at (226) and (227) we can write this as

(η0)′ = −δη
ξ
− 4

r
η0. (234)

This last equation may also be written in the following way

δη + (η′0 +
4

r
η0)ξ = 0. (235)

We need the expression for δpr, so we can squeeze out the pulsation equation.
To produce the expression for δpr we need to make use of a supplementary
condition, the conservation of baryon number i.e.

(Nuα);α = 0. (236)

This means that the total number of particles in the system remain unchanged.
We write

N = N0(r) + δN(r, x0). (237)

The contraction of the covariant derivative of a contra-variant vector Nuα is
given by

(Nuα);α =
∂(Nuν)

∂xν
+Nuµ

∂(ln
√
−g)

∂xµ
. (238)

We remember uµ = (e−
ν0
2 , ξ̇e−

ν0
2 , 0, 0). Hence (238) becomes to first order

(N0)
∂u0

∂x0
+
∂δN

∂x0
u0 + (N0)

∂u1

∂x1
+
∂N0

∂x1
u1

+N0

(
˙δλ+ ˙δν

2

)
u0 +N0

(
λ′0 + ν′0

2
+

2

r

)
= 0.

(239)

Inserting our expressions for uµ equation (239) reads

−N0e
− ν02

˙δν

2
+ ˙δNe−

ν0
2 + (N0e

− ν02 ξ̇)′ +N0e
−ν0
2

˙δν

2
+N0e

− ν02
˙δλ

2

+N0e
− ν02 ξ̇

(
λ′0 + ν′0

2
+

2

r

)
= 0,

(240)
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where the first and the fourth term cancel, and we can actually integrate this
equation immediately and solve it for δN

δNe−
ν0
2 +

(
N0e

− ν02 ξ
)′

+N0e
− ν02 δλ+N0e

− ν02 ξ

(
λ′0 + ν′0

2
+

2

r

)
= 0. (241)

We find that equation (241) can be simplified to give

δN +
e
ν0
2

r2
(N0e

− ν02 r2ξ)′ +N0

(
δλ+ ξ

(
λ′0 + ν′0

2

))
= 0. (242)

And by (211) the third term here is zero, which means we get the very nice
expression

δN = −e
ν0
2

r2
(N0e

− ν02 r2ξ)′. (243)

If
N = N(ρ(r, x0), pr(r, x

0)), (244)

is the equation of state, it follows that

δN =
∂N

∂ρ
δρ+

∂N

∂pr
δpr. (245)

By equations (217), (235), and (243) this becomes

∂N

∂pr
δpr = −e

ν0
2

r2
(N0e

− ν02 r2ξ)′ − ∂N

∂ρ

[
− 1

r2
(
r2ξ(ρ0 + pr0)

)′
+ (η′0 +

4

r
η0)ξ

]
.

(246)
Expanding some terms we obtain

∂N

∂pr
δpr = −N ′0ξ−N0

e
ν0
2

r2
(e−

ν0
2 r2ξ)′−∂N

∂ρ

[
−ξ(p′r0 −

4

r
η0 − η′0 + ρ′0) +

ρ0 + pr0
r2

(r2ξ)′
]
.

(247)
Using equations (186) and (202) we rewrite equation (247) in the following way

∂N

∂pr
δpr =−N ′0ξ −N0

e
ν0
2

r2
(e−

ν0
2 r2ξ)′

− ∂N

∂ρ

[
ξ

(
ν′0
2

(ρ0 + pr0) +
2

r
π0

)
− ρ0 + pr0

r2
(r2ξ)′ − ξρ′0

]
.

(248)

we collect the terms in the bracket and obtain

− ∂N

∂ρ

[
ξ

(
ν′0
2

(ρ0 + pr0) +−2π0
r

)
− ρ0 + pr0

r2
(r2ξ)′ − ξρ′0

]
=

+
∂N

∂ρ

[
ξ

2π0
r

+
(ρ0 + pr0)e

ν0
2

r2
(e−

ν0
2 r2ξ)′ + ξρ′0

]
.

(249)
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Using equation (249), equation (248) now reads

∂N

∂pr
δpr = −N ′0ξ−(N0−(ρ0+pr0)

∂N

∂ρ
)
e
ν0
2

r2
(e−

ν0
2 r2ξ)′+

∂N

∂ρ

(
2π0
r

+ ρ′0

)
. (250)

We further have

N ′0(r, x0) = N ′0(ρ(r, x0), pr(r, x
0)) =

∂N0

∂ρ0

∂ρ0
∂r

+
∂N0

∂pr0

∂pr0
∂r

. (251)

We only take ∂N
∂pr

to zero’th order. The product ∂N
∂pr

δpr remains first order

∂N

∂pr
=
∂N0

∂pr0
, (252)

and similar for ∂N
∂ρ .

∂N

∂ρ
=
∂N0

∂ρ0
. (253)

Using equations (251), (252), and (253), equation (250) becomes

δpr =− ξ
(
∂N0

∂ρ0

∂ρ0
∂r

+
∂N0

∂pr0

∂pr0
∂r

)
∂pr0
∂N0

− ∂pr0
∂N0

(
N0 − (ρ0 + pr0)

∂N0

∂ρ0

)
e
ν0
2

r2
(e−

ν0
2 r2ξ)′

+
∂N0

∂ρ0

∂pr0
∂N0

(
2π0
r

)
+ ξ

∂pr0
∂N0

∂N0

∂ρ0

∂ρ0
∂r

.

(254)

Here the first and the last term on the right hand side cancel, two factors of the
second term cancel, and we can can recognize one of the factors as the ratio of
specific heats, that is

γ =
1

pr0
∂N0

∂pr0

(
N0 − (ρ0 + pr0)

∂N0

∂ρ0

)
. (255)

There is also an equivalent definition of this γ,

γ =
(pr0 + ρ0)

pr0

∂pr0
∂ρ0

, (256)

which we will write as
∂pr0
∂ρ0

=
γpr0

ρ0 + pr0
. (257)

Employing equations (255) and (256), equation (254) can be written as

δpr = −ξp′r0 −
γpr0e

ν0
2

r2
(e−

ν0
2 r2ξ)′ +

2π0γpr0ξ

r(ρ0 + pr0)
. (258)
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The only perturbed expression we need now is that of ν′, so let’s take a look
at equation (147) when perturbed, to first order

−e−λ0(1− δλ)

[
ν′0
r

+
1

r2

]
− e−λ0

[
δν′

r

]
= 8π(−pr0− δpr + η0 + δη+ Λ). (259)

The static solution to equation (147) is:

−e−λ0

[
ν′0
r

+
1

r

]
+

1

r
= 8π (−pr0 + η0 + Λ) . (260)

Using equation (260) to cancel the static solution from (259) we find

e−λ0

r
(δν′) = −e−λ0

δλ

r

[
ν′0 +

1

r

]
+ 8π(δpr − δη). (261)

Employing equation (210) we find

e−λ0

r
(δν′) = 8π(δpr − δη) + 8π(ρ0 + pr0)ξ

(
ν′0 +

1

r

)
. (262)

Remembering equation (208) we can write equation (262) the following way:

(δν′)(ρ0 + pr0) =

[
δpr − δη − (ρ0 + pr0)ξ

(
ν′0 +

1

r

)]
(ν′0 + λ′0) (263)

In all the expressions for the perturbed quantities, the cosmological constant
has turned out to be irrelevant.
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9 The pulsation equation

We shall assume perturbation in the form of radial oscillation,

ξ = eiωx
0

, (264)

which leads to
ξ̈ = −ξω2. (265)

Using equations (202), (217), (235),(257), and (262), equation (200) takes the
following complicated form

eλ0−ν0 (ρ0 + pr0) ξω2 =

(
(η′0 +

4

r
η0 − p′r0)ξ − γpr0e

ν0
2

r2
(e−

ν0
2 r2ξ)′

)′

+

(
2π0γpr0ξ

r(ρ0 + pr0)

)′
+
ν′0
2

(
− 1

r2
(
r2ξ(ρ0 + pr0)

)′
+ (η′0 +

4

r
η0)ξ − ξp′r0

)
+
ν′0
2

(
−γpr0e

ν0
2

r2
(e−

ν0
2 r2ξ)′ +

2π0γpr0ξ

r(ρ0 + pr0)

)

+

[
(η′0 +

4

r
η0 − p′r0)ξ − (ρ0 + pr0)ξ

(
ν′0 +

1

r

)]
(ν′0 + λ′0)

2

+

[
−γpr0e

ν0
2

r2
(e−

ν0
2 r2ξ)′ +

2π0γpr0ξ

r(ρ0 + pr0)

]
(ν′0 + λ′0)

2

− 2

r

dπ

dpr

[
−ξp′r0 −

γpr0e
ν0
2

r2
(e−

ν0
2 r2ξ)′ +

2π0γpr0ξ

r(ρ0 + pr0)

]

+
4

r
(η′0 +

4

r
η0)ξ.

(266)

We shall look first only at the ’isotropic’ terms, the terms that do not involve
π, thereafter we will look at the terms that do involve π.

Starting with the ’isotropic’ terms, in (266) we find

−

(
−(η′0 +

4

r
η0 − p′r0)ξ +

γpr0e
ν0
2

r2
(e−

ν0
2 r2ξ)′

)′
+

4

r
(η′0 +

4

r
η0)ξ

+
ν′0
2

(
− 1

r2
(
r2ξ(ρ0 + pr0)

)′
+ (η′0 +

4

r
η0)ξ − ξp′r0 −

γpr0e
ν0
2

r2
(e−

ν0
2 r2ξ)′

)

+

[
(η′0 +

4

r
η0 − p′r0)ξ − γpr0e

ν0
2

r2
(e−

ν0
2 r2ξ)′ − (ρ0 + pr0)ξ

(
ν′0 +

1

r

)]
(ν′0 + λ′0)

2
.

(267)
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Even this is quite complicated, but we will simplify it, step by step. Looking
only at the terms with γ we collect them as follows

−

(
γpr0e

ν0
2

r2
(e−

ν0
2 r2ξ)′

)′
−
(
ν′0
2

)
γpr0e

ν0
2

r2
(e−

ν0
2 r2ξ)′

−
(
ν′0 + λ′0

2

)
γpr0e

ν0
2

r2
(e−

ν0
2 r2ξ)′

, (268)

which can be collected as a single term, i.e.

−e−(ν0+
λ0
2 )

[
e(ν0+

λ0
2 ) γpr0e

ν0
2

r2
(e−

ν0
2 r2ξ)′

]′
. (269)

Remembering equations (268) and (202), we can rewrite the following terms in
expression (267)

(η′0 +
4

r
η0 − p′r0)ξ =

(
ν′0
2

(ρ0 + pr0)− 2π0
r

)
ξ. (270)

Now expression (267) takes the following form[(
ν′0
2

(ρ0 + pr0)− 2π0
r

)
ξ

]′
− e−(ν0+

λ0
2 )

[
e(ν0+

λ0
2 ) γpr0e

ν0
2

r2
(e−

ν0
2 r2ξ)′

]

+
ν′0
2

(
ν′0
2

(ρ0 + pr0)− 2π0
r

)
ξ

+
(ν′0 + λ′0)

2

[
ν′0
2

(ρ0 + pr0)ξ − 2π0
r
ξ − (ρ0 + pr0)ξ

(
ν′0 +

1

r

)]
ξ

− ν′0
2

1

r2
(
r2ξ(ρ0 + pr0)

)′

(271)

Considering the terms containing (ρ0 + pr0)ξ in expression (271) we have[
ν′0
2

(ρ0 + pr0)ξ

]′
+

(
(ν′0)2

4
(ρ0 + pr0)ξ

)
+

λ′0 + ν′0
2

[
ν′0
2
−
(
ν′0 +

1

r

)]
(ρ0 + pr0)ξ − ν′0

2

1

r2
(r2ξ(ρ0 + pr0)′.

(272)

Expanding the first and last terms, we obtain[
ν′′0
2

(ρ0 + pr0)ξ

]
+
ν′0
2

((ρ0 + pr0)ξ)
′
+

(
(ν′0)2

4
(ρ0 + pr0)ξ

)
+

λ′0 + ν′0
2

[
ν′0
2
−
(
ν′0 +

1

r

)]
(ρ0 + pr0)ξ − ν′0

2

2

r

(
ξ(ρ0 + pr0)

)
− ν′0

2

(
(ρ0 + pr0ξ)

)′
.

(273)
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This expression becomes quite simple since two terms cancel, and the remaining
terms can be written in the following way:

(ρ0 + pr0)

2
ξ

[
ν′′0 −

λ′0ν
′
0

2
− 3ν′0 + λ′0

r

]
. (274)

By rewriting equation (148) as

−8πeλ0(Λ− pt0 − η0) =
1

2

[
ν′′ +

(ν′0)2

2
+
ν′0 − λ′0

r
− ν′0λ

′
0

2

]
, (275)

we now see that equation (274) can be written as

8πeλ0 (ρ0 + pr0)(pt0 + η0 − Λ)ξ − (ρ0 + pr0)
ν′0
2

(
ν′0 +

8

r

)
ξ. (276)

Employing equation (186), we can write the last term in expression (132) as

ξ

[
1

2

(
(η′0 − p′r0) +

4

r
η0 +

2π0
r

)]
×[

2

ρ0 + pr0

(
(η′0 − p′r0) +

4

r
η0 +

2π0
r

)
+

8

r

]
.

(277)

Here we separate the isotropic and anisotropic terms to obtain

ξ

ρ0 + pr0

[
((η′0 − p′r0) +

4

r
η0)2

]
+

4ξ

r
(η′0 +

4

r
η0 − p′r0)

+
4π0ξ

r(ρ0 + pr0)
(η′0 +

4

r
η0 − p′r0)

+
4π2

0ξ

r2(ρ0 + pr0)
+

8π0
r2

ξ.

(278)

Expanding the square in the first term in (278) we have

ξ

ρ0 + pr0

[
(η′0 − p′r0)2 +

8

r
η0(η′0 − p′r0) +

16

r2
η20

]
+

4ξ

r
(η′0 +

4

r
η0)− 4ξ

r
pr0

4π0ξ

r(ρ0 + pr0)

[
(η′0 +

4π0
r
η0 − p′r0) +

π0
r

]
+

8π0ξ

r2
.

(279)

There are still terms in expression (271) that we have not considered, i.e. the
anisotropic terms which read

−
(

2π0
r
ξ

)′
−
(
ν′0
2

+
ν′0 + λ′0

2

)(
2π0
r
ξ

)
. (280)

These terms can be collected to a single derivative,

−e−(ν0+
λ0
2 )

(
e(ν0+

λ0
2 ) 2π0

r
ξ)

)′
. (281)
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Taking into account expressions (272)-(281), expression (267) reads

− 8π(ρ0 + pr0)ξeλ0(pt0 + η0 − Λ)− e−(ν0+
λ0
2 )

(
e(ν0+

λ0
2 ) 2π0

r
ξ)

)′
− e−(ν0+

λ0
2 )

[
e(ν0+

λ0
2 ) γpr0e

ν0
2

r2
(e−

ν0
2 r2ξ)′

]′
− ξ

ρ0 + pr0
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(η′0 − p′r0)2 +

8

r
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16

r2
η20

]
− 4ξ

r
(η′0 +

4ξ

r
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4

r
pr0

− 4π0ξ

r(ρ0 + pr0)

[
(η′0 +

4

r
η0 − p′r0) +

π0
r

]
− 8π2

0

r2

+
4

r
(η′0 +

4

r
η0)ξ.

(282)

Here some terms cancel, but we are not finished yet. Considering equation (266)
again, we write the anisotropic terms as

+

(
γpr0ξ

ρ0 + pr0

2π0
r

)′
+

γpr0ξ

ρ0 + pr0

2π0
r

(
ν′0 + ν′0 + λ′0

2

)
+

2π0
r

[
γpr0e

ν0
2

r2
(e−

ν0
2 r2ξ)′ − 4π0γpr0ξ

r2(ρ0 + pr0)

]
+

2ξ

r
π′0

. (283)

Here the two first terms can be collected as a single derivative. Hence (283)
reads

+ e−
λ0+2ν0

2

(
e
λ0+2ν0

2
2π0γpr0ξ

r(ρ0 + pr0)

)′
+

2π0
r

[
γpr0e
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2

r2
(e−

ν0
2 r2ξ)′ − 2

r

γpr0ξ

ρ0 + pr0

2π0
r

]
+

2ξ

r
π′0.

(284)

Now, if we use the results from (282) and (284) in (266) we get the pulsation
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equation.

− 8π(ρ0 + pr0)ξeλ0(pt0 + η0 − Λ)− e−(ν0+
λ0
2 )

(
e(ν0+

λ0
2 ) 2π0

r
ξ)

)′
− e−(ν0+
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e
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2
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8

r
η0(η′0 − p′r0) +
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]
+
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− 4ξπ0
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[
(η′0 +

4

r
η0 − p′r0) +
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r

]
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0
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2

(
e
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2
2π0γpr0ξ
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+
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r
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2
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(e−
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r2(ρ0 + pr0)

]
= eλ0−ν0 (ρ0 + pr0) ξω2.

(285)

Here, we separate some terms to compare with the pulsation equations we find
in other papers regarding analysis of stability of isotropic, charged perfect fluids.
Equation (285) reads

4

r
p′r0 − 8π(ρ0 + pr0)ξeλ0(pt0 + η0 − Λ)

− e−ν0+
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2

[
e(
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(e−
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8

r
η0(η′0 − p′r0) +

16

r2
η20

]
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2 )

(
e(ν0+

λ0
2 ) 2π0

r
ξ)

)′
− 4π0ξ

r(ρ0 + pr0)

[
(η′0 +

4

r
η0 − p′r0) +

π0
r

]
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r2
pr0 + e−

λ0+2ν0
2

(
e
λ0+2ν0

2
2γπ0pr0ξ

r(ρ0 + pr0)
)

)′
+

2π′0ξ

r
+
dπ

dpr

[
2γpr0e

ν0
2

r3
(e−

ν0
2 r2ξ)′ − 4π0pr0γξ

r2(ρ0 + pr0)

]
= eλ0−ν0 (ρ0 + pr0) ξω2.

(286)

This is the equation we can compare with the pulsation equation of other au-
thors. Let us compare this equation to the one we find in Glazer’s Ph.D-Thesis
[2]. By setting the cosmological constant Λ = 0, and π0 = 0, equivalent to

39



pt = pr we can immediately write

eλ0−ν0 (ρ0 + pr0) ξω2 =
4

r
p′r0 − 8π(ρ0 + pr0)ξeλ0(pr0 + η0)

− e−(ν0+
λ0
2 )
[
e

3ν0+λ0
2

γpr0
r2

(e−
ν0
2 r2ξ)′

]′
− ξ

ρ0 + pr0

[
(η′0 − p′r0)2 +

8

r
η0(η′0 − p′r0) +

16

r2
η20

]
,

(287)

which matches the equation found by Glazer for isotropic charged fluid spheres.
Setting the charge, η0 = 0 as well we are left with the equation

eλ0−ν0 (ρ0 + pr0) ξω2 =
4

r
p′r0 − 8π(ρ0 + pr0)ξeλ0pr0

− e−(ν0+
λ0
2 )
[
e

3ν0+λ0
2

γpr0
r2

(e−
ν0
2 r2ξ)′

]′
,

(288)

which is, as we expected, the same as Chandrasekhar’s pulsation equation
for an uncharged isotropic fluid sphere [1].

The cosmological constant seemed to be of little importance to how the
pulsation equation looks, only appearing once.However, there is one more thing
we want to investigate i.e. the Tolman-Oppenheimer-Volkoff equation.

Part III

The most general TOV-equation
The Tolman-Oppenheimer-Volkoff equation is developed by inserting the two
first field equations, equations (146) and (147), into the the equation of static
equilibrium, equation (186).

We write equation (146) as

−e−λ0 [1− rλ′0] + 1 = 8π(ρ0 + η0 + Λ)r2, (289)

which can also be written on the following form

d

dr

(
re−λ0

)
= 1− 8πr2(ρ0 + η0 + Λ). (290)

By integrating this equation from 0 to r we find

e−λ0 =
1

r

[∫ r

0

1− 8πr2(ρ0 + η0 + Λ)dr

]
. (291)

which we may write as

e−λ0 =

[
1− 8πr2

3
Λ− 8π

r

∫ r

0

(ρ0 + η0)r2dr

]
(292)
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Now we look at equation (147), and we write

−e−λ0 [ν′0r + 1] + 1 = 8πr2(η0 − pr0 + Λ) (293)

Inserting equation (292) we find

−
[
1− 8πr2

3
Λ− 8π

r

∫ r

0

(ρ0 + η0)r2dr

]
[ν′0r+1]+1 = 8πr2(η0−pr0+Λ), (294)

and solving for ν′0 we obtain
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r
[
1− 8πr2

3 Λ− 8π
r

∫ r
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(ρ0 + η0)r2dr
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r
. (295)

Collecting the two terms, this becomes

ν′0 =
1− 8πr2(η0 − pr0 + Λ)−

[
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r
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] , (296)

which takes the form
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8πr2(pr0 − η0) + 8π

r

∫ r
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Equation (186), solved for p′r0 reads

p′r0 = −ν
′
0

2
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4

r
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2

r
π0. (298)

Inserting equation (297) we obtain

p′r0 =
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r
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(299)

If we were to insert this equation into the pulsation equation we obtained in
equation (286) we would get the rather messy
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4
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(300)

This equation is not a pretty sight. We would much rather write equation (286)
as is, and keep the TOV-equation nearby.
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10 Concluding remarks

We reproduced all the calculations that were left out in the Esculpi/Aloma ar-
ticle, and our pulsation equation turned out different from what Esculpi/Aloma
showed. The article contained several peculiarities, including several mistakes.
Also, they cite the work of Glazer in producing the expression for δη, yet the
expression they give is useless as given, and in the pulsation equation they have
not substituted this expression.

We also developed the pulsation equation for the most general case, where
we have included anisotropy, where the tangential pressure is any function of the
radial pressure, and electrical charge is included, as is the cosmological constant.
At first glance, the cosmological constant is only apparent in a single term in
the pulsation equation. To go with this, we showed what the TOV-equation
looks like in the most general case. We now see that the cosmological constant
affects the pulsation equation in more than just the one term, and we see how all
these parameters, charge, anisotropy, gravitational energy and the cosmological
constant all intertwine to affect the radial pressure-gradient, thereby affecting
the stability of the sphere.
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