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A Theoretical look at Ensemble-Based Optimization
in Reservoir Management

Andreas S. Stordal, Slawomir P. Szklarz, Olwijn Leeuwenburgh

Abstract Ensemble-based optimization has recently received great attention as a 
potentially powerful technique for life-cycle production optimization, which is a cru-
cial element of reservoir management. Recent publications have increased both the 
number of applications and the theoretical understanding of the algorithm. 
However, there is still ample room for further development since most of the theory 
is based on strong assumptions. Here, the mathematics (or statistics) of Ensemble 
Optimization is studied, and it is shown that the algorithm is a special case of an 
already well-defined natural evolution strategy known as Gaussian Mutation. A 
natural description of uncertainty in reservoir management arises from the use of an 
ensemble of history-matched geological realizations. A logical step is therefore to 
incorporate this uncertainty description in robust life-cycle production optimization 
through the expected objective function value. The expected value is approximated 
with the mean over all geological realizations. It is shown that the frequently 
advocated strategy of applying a different control sample to each reservoir realization 
delivers an unbiased estimate of the gradient of the expected objective function. 
However, this procedure is more variance prone than the deterministic strategy of 
applying the entire ensemble of perturbed control samples to each reservoir model 
realization. In order to reduce the variance of the gradient estimate, an importance 
sampling algorithm is proposed and tested on a toy problem with increasing 
dimensionality.
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1 Introduction

Reservoir management could be defined as the collection of activities aimed at 
making decisions on field development including operating strategies and placement 
of wells. In order to make these decisions with confidence, one has to be able to make 
reliable predictions of the consequences of such decisions, and to quantify the 
associated risks. The basis for this is a good description of the reservoir, as captured 
by a numerical flow model. This model should be able to reproduce the past 
production history with accept-able accuracy given the uncertainty in the data (which 
is achieved through the process of history matching). If this condition is met, the 
model is generally assumed to be capable of capturing the future behavior of the 
reservoir within reasonable uncertainty and can then be used as the basis for 
production optimization. The repeated exercise of history matching and optimizing 
production on a numerical reservoir model is often referred to as closed loop 
reservoir management (Brouwer et al. 2004; Jansen et al. 2004; Sarma et al. 2006). It 
has been demonstrated that significant scope exists for improved reservoir 
management through the use of numerical optimization methods in conjunction with 
reservoir simulation models (Peters 2011). While the focus so far has primarily been 
on water flooding optimization, polymer injection optimization (Raniolo et al. 2013) 
and optimization under gas coning conditions (Hasan et al. 2013) have also been 
explored.

The most efficient method for gradient-based life-cycle optimization is the so-
called adjoint technique. An overview of applications to reservoir management can 
be found in the review paper by Jansen (2011). While the adjoint technique is 
computationally very efficient, it is unfortunately an intrusive method that requires 
access to the simulator source code. In addition to the complexity of 
implementation, this limits applicability to mostly academic research codes. The 
need therefore arises for alterna-tive optimization methods wherein the simulator is 
used as a black box. In optimization literature there exist numerous examples of such 
methods including evolutionary algorithms, genetic algorithms, and approximate 
gradient methods. The focus here is on the approximate gradient method known as 
the Ensemble Optimization technique (EnOpt) (Chen et al. 2009; Lorentzen et al. 
2006; Nwaozo 2006). The gradient approximation in EnOpt is based on a linear 
regression between an ensemble of control samples and their corresponding 
objective function values. The control samples are drawn from a multivariate 
Gaussian distribution with a user-defined (constant) covariance matrix and a known 
mean. Several publications (Chen 2008; Chen and Oliver 2012; Leeuwenburgh et al. 
2010; Su and Oliver 2010) have shown that EnOpt can achieve good results of 
practical value on a variety of different reservoir models and recovery techniques. A 
major drawback, however, is the significantly lower computational efficiency and 
accuracy compared to the adjoint method. Recently, Fonseca et al.(2013) showed 
that improved results can be obtained with EnOpt when the covariance matrix is 
allowed to adapt according to the best samples from the ensemble of con-trols. This 
modification was called CMA-EnOpt, where CMA stands for Covariance



Matrix Adaptation. The CMA-EnOpt technique is based on an evolutionary strategy, 
developed in the machine-learning community, called Covariance Matrix Adaptation-
Evolutionary Strategy (CMA-ES) (Hansen and Ostermeier 1996, 2001; Lozano et al. 
2006). The main principle of CMA-ES is to modify the covariance matrix in the direc-
tions that have proven to be successful. While the CMA-ES algorithm has recently 
been applied to a number of low-dimensional reservoir optimization applications such 
as well-placement optimization (Ding 2008; Bouzarkouna et al. 2011), and smart well 
optimization (Schulze-Riegert et al. 2011; Pajonk et al. 2011), it is not considered 
to be a practical approach for the more realistically complex and high-dimensional 
problems often encountered in reservoir optimization.

With increased focus on ensemble-based solutions in reservoir history matching 
over the last decade, a natural treatment of the uncertainty has been the use of mul-
tiple reservoir models arising from different geological realizations. It is natural to 
incorporate this uncertainty in the production optimization as well, as proposed by 
van Essen et al. (2006). The situation, where the objective function is defined as the 
mean objective function over all geological realizations, is also known as robust opti-
mization. In Chen (2008), a method to achieve robust optimization with EnOpt was 
introduced in which the robust gradient is estimated by pairing each control sample to 
a different member of an ensemble of geological realizations. Using a new mathemat-
ical perspective on EnOpt, it is proven here that this strategy is an unbiased approach, 
albeit more variance prone than the strategy of applying the entire ensemble of 
control parameters to each of the geological realizations separately.

Although the number of applications has started to grow, the mathematical 
treatment and the understanding of EnOpt are based on strong assumptions of 
smoothness and bounded higher-order derivatives of the objective function and are 
therefore somewhat incomplete. This paper focuses on the mathematics (or statistics) 
of EnOpt and it is shown that it is a version of an already well-defined natural 
evolution strategy known as Gaussian Mutation (Amari 1998). Furthermore, the 
mathematical treatment is extended to include uncertainty. The importance of 
variance reduction techniques for improved algorithm performance is also studied. 
New and old concepts are illustrated on some simple toy models with increasing 
dimensionality. The paper is concluded with a summary and discussion.

2 Ensemble-Based Production Optimization

The aim of optimization in the context of reservoir management is to maximize the 
economic value, for example the net present value (NPV), which is usually expressed 
as

J (x) =
T∑

j=1

([qo, j · r0 − qwp, j · rwp] − [qwi, j · rwi ]
)
�t j

(1 + d)t j /τt
,

where the oil production, qo, j , water production, qwp, j , and water injection rates,
qwi, j , at time j change as a function of the control variables x (typically flow rates or
bottom hole pressure). The costs of water injection and water production are denoted



k

rwp and rwi respectively, while ro is the oil price. The discount factor is denoted by d, 
and τt is the reference period for discounting. Optimal values of the controls x can be 
found iteratively using an update scheme. In Chen et al. (2009), EnOpt was derived 
as an approximation of the preconditioned steepest ascend method (Tarantola 2005)

xk+1 = xk + βk�Gk ,

where k denotes the iteration number, xk is the current control, � is a preconditioning 
matrix and Gk is the sensitivity of the objective function evaluated at xk . The step size is

denoted βk . At iteration k of the EnOpt algorithm, an ensemble of N controls, {X i
 }iN 

1, 
is sampled from a multivariate Gaussian distribution with mean μk and covarianc

=
e 

matrix �. The product �Gk is then approximated by the sample-based cross covariance

Cxk ,J = (N − 1)−1
N∑

i=1

(
Xi
k − Xk

) (
J

(
Xi
k

)
− J k

)
, (2.1)

where · denotes the arithmetic mean. In order to derive the approximation Cxk ,J ≈ �Gk
a linearization is used together with the approximations X k ≈ μk and J k ≈ J (X k ). 
The first approximation is always valid, as long as each ensemble member is not 
affected by bound constraints. The second approximation, however, depends on � and 
the behavior of J (x) around μk . In general, the statement J k ≈ J (X k ) is statistically 
equivalent to E[J (X)] ≈  J (E[X ]). This approximation is good if J is nearly linear or 
if diagonal elements of � are small. Hence, the quality of the EnOpt approximation of 
the preconditioned steepest ascend depends on both the objective function and the 
user-defined preconditioning matrix. Do and Reynolds (2013) used the same 
linearization to show the connection between EnOpt and Simultaneous Perturbation 
Stochastic Approximation (SPSA) of the gradient.

Chen et al. (2009) applied a second preconditioning to the gradient approximation 
by multiplying Cx,J by � from the left. The preconditioned gradient approximation 
is then given by

�2Gk ≈ (N − 1)−1
N∑

i=1

�
(
Xi
k − Xk

) (
J

(
Xi
k

)
− J k

)
. (2.2)

While the above approximation seems justified in many applications, the aim of this 
paper is to establish convergence properties of the EnOpt gradient in a probabilistic 
sense. A simple investigation of the asymptotic properties of Eq. (2.2) results in the 
following lemma.

Lemma 1 Assume that x ∈ Rd . The preconditioned EnOpt gradient formulation in 
Eq. (2.2) converges almost surely to

�2∇μk

∫

Rd
J (x)� (x |μk, �) dx,

where �(·|μk, �)  is a multivariate Gaussian density with mean μk and covariance 
matrix �.



Proof For notational convenience the integral limits are discarded. The sample
{X i

k }iN=1 is an i.i.d. sample from �(x |μk, �). The strong law of large numbers and 
Slutsky’s theorem (in vector form) can therefore be applied to Eq. (2.2) to get

(N − 1)−1
N∑

i=1

�
(
Xi
k − Xk

) (
J

(
Xi
k

)
− J k

)

a.s−→ �

∫
(J (x) − E[J ])(x − μk)� (x |μk, �) dx

= �

∫
J (x)(x − μk)� (x |μk, �) dx

= �2
∫

J (x)∇μk log�(x |μk, �) � (x |μk, �) dx

= �2∇μk

∫
J (x)�(x |μk, �) dx,

where the following equalities are used

∇μk log�(x |μ,�) = �−1(x − μ),(∇μk log�(x |μ,�)
)
�(x |μ,�) = ∇μk�(x |μ,�).

An alternative gradient estimate was presented in Fonseca et al. (2013). Let Sxk
denote the sample covariance matrix of {Xi

k}Ni=1. The alternative ensemble gradient
formulation is given by

S
−1
xk Cx,J .

Since Sx−k
1 converges almost surely to �−1, Lemma 1 can be combined with Slutsky’s 

theorem to show that this implementation of EnOpt approximates the gradient

∇μk 

∫
J (x)�(x |μk, �) dx .

The EnOpt algorithm can therefore be summarized in the following corollary. 

Corollary 1 The EnOpt algorithm searches for the optimum of the objective function

L(μ) =
∫

J (x)�(x |μ,�) dx, (2.3)

with respect to μ.

Let x̂ be the maximizer of J (x), that is, x̂ = arg max J (x). It then follows that

J (x̂) =
∫

J (x)δx̂ (x) dx,



where δ is theDirac delta function. Hence, optimizing J (x) is equivalent to optimizing

J̃ (λ) =
∫

J (x)δλ(x) dx,

with respect to λ. Since J̃ (λ) ≥ L(λ) and L(λ) → J̃ (λ) as � → 0, it seems natural
to also optimize the right hand side of Eq. (2.3) with respect to � in order to obtain 
improved results with EnOpt. The new objective function is defined as

L(λ) =
∫

J (x)�(x |λ) dx, (2.4)

where λ = [μ  �]. This idea has already been proved useful in experiments by 
Fonseca et al. (2013), where covariance matrix adaptation (CMA) was incorporated 
into EnOpt. However, no mathematical foundation was provided for using CMA in 
conjunction with EnOpt. In order to minimize Eq. (2.4), the gradients with respect 
to both μ and � are required. These gradients are already provided in the literature 
in the development of a Gaussian Mutation Optimization (GMO) algorithm (Amari 
1998; Sun et al. 2009). The gradient of Eq. (2.4) with respect to λ is computed in 
Amari (1998) as

∇λ L(λ) = 
∫ 

�(x |λ)J (x)∇λ log �(x |λ)dx,where

∇λ log�(x |λ) =
[
�−1(x − μ)

1

2
vec

(
�−1(x − μ)(x − μ)T�−1 − �−1

)]
,

and where vec denotes vectorization of a matrix. Since the Gaussian parameter space 
is not Euclidean, but has a Riemannian metric structure, the steepest ascend direction 
is given by the natural gradient (Amari 1998; Sun et al. 2009)

∇λ L(λ) = I(λ)∇λ L(λ),

where I(λ) is the inverse of the Fisher information matrix. For Gaussian densities, I(λ) 
is a diagonal block matrix with diagonal elements � and � ⊗�, where ⊗ denotes the 
Kronecker product. The natural gradient is then given by

∇λL(λ) =
∫

�(x |λ)J (x)∇λI(λ) log�(x |λ)dx

= [E[J (X)(X − μ)] E
[
vec

(
J (X)

(
(X − μ)(X − μ)T − �

)])] ,

where the expectation is with respect to�(x |λ). AMonte Carlo approximation of this
expectation at iteration k, with λk = [μk �k] is defined by the mean gradient

N−1

[
N∑

i=1

J
(
Xi
k

) (
Xi
k−μk

)
vec

(
N∑

i=1

J (Xi
k)

((
Xi
k−μk

) (
Xi
k−μk

)T −�k

))]
,

(2.5)



where {Xi
k}Ni=1 is a sample from �(x |λk). A more general formulation is given by

[
N∑

i=1

Wi
k

(
Xi
k − μk

)
vec

(
N∑

i=1

Wi
k

((
Xi
k − μk

) (
Xi
k − μk

)T − �k

))]
,

where Wk
i = N−1 J (X i

k ). Other choices for the weights {Wk
i }iN=1 are possible as 

well. For example, it is possible to give more weight to the best samples by simply 
using ranks or logarithmic ranks. However, these approaches are ad hoc and more of 
practical interest. They will not be discussed further since the focus here is on the 
theoretical aspects. It is also possible to impose a certain structure on �. For example, 
if � is a diagonal matrix, it is straight forward to compute ∇λ log �(x |λ). The 
sample  approximation of the gradient in Eq. (2.5) then becomes

N−1

[
N∑

i=1

J
(
Xi
k

) (
Xi
k − μk

)
vec

(
N∑

i=1

J
(
Xi
k

)(
diag

((
Xi
k − μk

) (
Xi
k − μk

)T
)

− �k

))]
.

The Gaussian Mutation algorithm evolves according to

μk+1 = μk + β1
k

∑N
i=1 Wi

(
Xi
k − μk

)
,

�k+1 = �k + β2
k

∑N
i=1 Wi

((
Xi
k − μk

) (
Xi
k − μk

)T − �k

)
,

where {Xi
k}Ni=1 is a sample from �(x |λk) and β1

k and β2
k are step sizes. Hence, with

the choice Wk
i = N−1(J (X i

k ) − J ) we see from Eq. (2.1) that EnOpt is a special case 
of Gaussian Mutation without evolution of �. It is worth noting that subtracting
J from J (X i

k ) does not change the expected value of the gradient estimate. In other 
words, the gradient estimate of EnOpt is statistically equivalent to that of GMO. In
addition, GMO is very similar to the governing equations of CMA-EnOpt as presented
in Fonseca et al. (2013). The differences between GMO and CMA-EnOpt are

1. In CMA-EnOpt there is an additional rank one update, which does not show up in
the mathematics of GMO.

2. A different weighting scheme is used for the covariance matrix update in CMA-
EnOpt compared to GMO.

3. A slightly different gradient formulation is used in CMA-EnOpt that corresponds
to selecting Wi = N−1 Sx

−1(J (Xi ) − J ) in the GMO. Details can be found in
Fonseca et al. (2013)

4. The entire ensemble of controls is used to adapt the covariance matrix in GMO
whereas in CMA-EnOpt the number of ensemble members used to update the
covariance matrix is a user-defined choice. 

It was shown in Akimoto et al. (2010) that CMA-ES with global weighted 
recombina-tion and rank-μ update (not to be confused with the mean vector μ) can 
be formulated as a GMO algorithm. Further, it was shown that the performance of the 
different algo-rithms is problem dependent. Sometimes CMA-ES performs better 
than GMO and vice versa. Since the focus here is on the mathematical properties of 
GMO and EnOpt, these performance differences will not be further discussed.



3 Geological Uncertainty

In closed loop reservoir management, multiple geological realizations, {Yi }iN=1, are
often available (e.g., from an ensemble of history-matched reservoir models). A robust 
optimization procedure is typically implemented in order to find one optimal produc-
tion strategy. The objective function in robust optimization is given by the mean 
objective function (van Essen et al. 2006) over all geological realizations

J (x) = N−1
N∑

i=1

J (x, Yi ). (3.1)

For simplicity, the covariance matrix is ignored for a moment and the focus is only on 
the mean control vector μ. The GMO gradient approximation with respect to μ for 
the robust objective function in Eq. (3.1) is given by

N−1
N∑

i=1

J (Xi )(Xi − μ) = N−2
∑

i

∑

j

J (Xi , Y j )(Xi − μ).

Unfortunately, this formulation requires N × N simulations at each iteration, since 
each of the N control strategies is implemented for every single geological 
realization. To overcome this computational bottle neck, Chen et al. (2009) proposed 
approximat-ing the gradient of J (x) using the cross covariance between the objective 
function and the controls, but with each control sample applied to only one, and not 
all, of the individual geological realizations. This approach requires only N 
simulations. Other approaches are possible as well. For example, one could apply 
multiple (but less than N ) control samples to each single reservoir model realization. 
There is no clear math-ematical justification for this approach in the literature, but 
with the new mathematical insights described in the previous section, this approach 
can be justified. In order to unify this modified approach with the theory of natural 
evolution, it is better to inter-pret Eq. (3.1) as a Monte Carlo approximation of EY [J 
(x, Y )]. The new objective function, J , is then given by

J̃ (x) = EY [J (x, Y )].

A straightforward generalization of Corollary 1 shows that the robust EnOpt algorithm 
as presented in Chen et al. (2009) searches for the optimum of

L(μ) = 
∫ ∫

EY [J (X, Y )]�(x |μ, �) dx = EX,Y [J (X, Y )].

The robust formulation of EnOpt can now be extended to GMO by again defining 
λ = [μ �]. Let  f (y) be the density of Y representing the geological uncertainty. 
Since X and Y are independent



∇λL(λ) = ∇λ

∫
J (x, y) f (y)�(x |λ) dx dy,

with Monte Carlo estimate

N−1
N∑

i=1

J (Xi , Yi )∇λ log�(Xi |λ),

where Xi ∼ �(x, |λ) and Yi ∼ f (y). This is a simple consequence of the fact that
the gradient approximated in EnOpt with geological uncertainty is the expected value
of a random variable Z = (X, Y ) for which the joint density f (z) = f (y)�(x |λ) is
known. Note that applying all controls to each geological realization is only valid if the
control samples and geological samples are statistically independent, which of course
is the case in reality. Hence, using the same argument as above, the gradient under
geological uncertainty can be approximated using a different control variable for each
geological realization. In fact, due to the statistical independence of the geological
variables and the control variables, a statistically unbiased estimate of the gradient
can be obtained by applying any number of control variables to each geological real-
ization. Ideally, in addition to sampling new controls at each iteration one should also
sample new geological realizations from f (y). However, in practice, with only a finite
number of samples from f (y) available due to the vast computational time required for
history matching, the same set of realizations is used throughout the optimization. It is
therefore natural to believe that premature convergence is difficult to avoid in practice.

3.1 Variance Reduction

In addition to the (possible) high dimension of the control vector, the geological uncer-
tainty makes GMO more prone to Monte Carlo sampling errors. A large variance in
the gradient estimate typically leads to premature convergence. The gradient estimate
may be improved through variance reduction techniques that can be applied at each
iteration of the algorithm. For simplicity and ease of notation, the focus in the fol-
lowing is on the variance of the gradient estimate with respect to μ. The theory is the
same for the variance of the gradient with respect to �. For notational convenience,
the geological uncertainty is ignored in the following without loss of generality.

At iteration k, the Monte Carlo estimate of the gradient in GMO is given by∑N
i=1 Wi (Xi

k − μk). In the GMO formulation Wi
k = N−1 J (Xi

k) whereas in the orig-
inal formulation of EnOpt Wi

k = N−1
(
J (Xi

k) − J
)
. Sun et al. (2009) showed that

for any scalar b, E [∇(J (X) − b)] = E [∇ J (X)], whereas Var [∇(J (X) − b)] is a
function of b. It is therefore possible to minimize the variance with respect to b. The
optimal variance reduction coefficient (Sun et al. 2009) satisfies

b = E
[
(I(λ)∇λ log�(X |λ)J (X))T (I(λ)∇λ log�(X |λ))

]

E
[
(I(λ)∇λ log�(X |λ))T (I(λ)∇λ log�(X |λ))

] ,

with Monte Carlo estimate at iteration k given by



b̂ =
∑N

i=1 J
(
Xi
k

) (
I(λ)∇λ log(�

(
Xi
k |λ

))T (
I(λ)∇λ log(�

(
Xi
k |λ

))

∑N
i=1

(
I(λ)∇λ log(�

(
Xi
k |λ

))T (
I(λ)∇λ log(�

(
Xi
k |λ

)) . (3.2)

It will be shown later that the Monte Carlo estimate of b is not a good choice for the
background term, especially when the sample size is small compared to the dimension
of the search space. The reason for this is that the ratio of the two estimators in Eq. (3.2)
introduces bias in the gradient estimate. For the value of b in Eq. (3.2) the equality
E [∇(J (X) − b)] = E [∇ J (X)] is no longer satisfied. It is straight forward to show
that b = J (μk) also reduces the variance of the gradient estimate without changing
the expected value. Hence a suggestion is to use Wt = N−1 ∑N

i=1

(
J (Xi

k) − J (μk)
)

in the gradient estimate. The results reported in Do and Reynolds (2013) also suggest
that using J (μk) instead of J leads to improved results.

An expensive way to reduce the variance of the gradient estimate is simply to
increase the number of control samples. This may not be a practical option in all cases,
especially when parallel computing capacity is limited. Instead, at iteration k, one may
take advantage of all the samples from the k−1 previous iterations. These samples can
be used to construct a weighted gradient estimate in an importance sampling frame-
work. The idea is similar to the conjugate gradient method and the rank one update in
CMA-ES in the sense that the goal is to improve the gradient using information from
past iterations. The gradient at iteration k may be re-written using the identity

∫
(J (x) − J (μk))�(x |μk, �k) dx =

∫
(J (x) − J (μk)) w

j
k (x)�

(
x |μ j , � j

)
dx,

(3.3)
where

w
j
k (x) = �(x;μk, �k)

�
(
x;μ j , � j

) ,

for all j from 1 to k. Since the samples from �(·|μ j ) for all j up to k − 1 are already 
available, an unbiased importance sampling estimate of Eq. (3.3) can be computed, 
without additional numerical simulation, as

(Nk)−1
k∑

j=1

N∑

i=1

((
J

(
Xi

j

)
− J (μk)

) (
Xi

j − μk

)
w

j
k

(
Xi

j

))
.

However, it is not necessarily a good idea to apply the importance sampling using the
samples from all the previous iterations since the variance might actually increase.
The following theory is presented in one dimension, but it is easily generalized to
higher dimensions.

Assume that all samples from iteration 	 to k are used in the importance sampling
algorithm. The quantities of interest are

Var

⎡

⎣(N (k − 	 + 1))−1
k∑

j=	

N∑

i=1

((
J

(
Xi

j

)
− J (μk)

) (
Xi

j − μk

)
w

j
k

(
Xi

j

))
⎤

⎦ ,



and

Var

[
N−1

N∑

i=1

((
J

(
Xi
k

)
− J (μk)

) (
Xi
k − μk

))]
.

For the former to be smaller than the latter (a smaller variance of the gradient estimate)
the following strict inequality must be satisfied

∑k−1
j=	 Var

((
J (X j ) − J (μk)

) (
X j − μk

)
w

j
k

(
X j

))

<
[
(k − 	)2 + 2(k − 	)

]
Var ((J (Xk) − J (μk)) (Xk − μk)) .

(3.4)

Let 	 = k −1 in Eq.  (3.4). The variance of the importance sampling gradient is 
reduced using the sample from the previous iteration if

Var
(
(J (Xk−1) − J (μk))(Xk−1 − μk)w

k−1
k (Xk−1)

)

< 3Var ((J (Xk) − J (μk))(Xk − μk)) .

Since the variance is not known analytically, the above result is not very useful. It
is possible, however, to provide a conservative alternative as follows. Define γk =∫
(J (x)− J (μk))(x−μk)�(x;μk, �k) dx and�k(x) = ((J (x) − J (μk))(x − μk))

2.
Then

Var
(
(J (X j ) − J (μk))(X j − μk)wk(X j )

) =
∫

�k(x)w
j
k (x)

2�(x;μk, �k) dx − γ 2
k .

The variance of the importance sampling estimate can then be expressed as

k−1∑

j=	

E
(
�k(X j )w

j
k (X j )

2
)

− γ 2
k ≤

k−1∑

j=	

∣∣∣
∣∣∣w j

k

∣∣∣
∣∣∣∞ E (�k(Xk)) − γ 2

k ,

and from Eq. (3.4) the variance reduction criterion is given by

k−1∑

j=	

∣∣∣
∣∣∣w j

k

∣∣∣
∣∣∣∞ < (k − l)2 + 2(k − l). (3.5)

The expression in Eq. (3.5) is also valid for control vectors in higher dimensions. If
	 = k − 1 the sample from the previous iteration can be used if ||wk

k−1||∞ < 3. This 
approach may also be combined with the importance mixing approach (Sun et al. 
2009) to reduce the computational cost. It must be noted, however, that the random 
variables in the importance mixing samples are not independent and the algorithm 
may therefore require a larger sample size. A summary of the proposed changes to the 
EnOpt algorithm is presented in Algorithm 1.



4 Numerical Examples

4.1 The Rosenbrock Function

The first example is included to show the potential improvement of GMO with respect 
to the original EnOpt algorithm. The two algorithms are implemented and compared 
on the well-known Rosenbrock (1960) function. The Rosenbrock function is a non-
convex function given by

f (x) = (1 − x1)2 + 100 
(
x2 − x1

2
)2 

.

The function has a global minimum at xmin = (1, 1) inside a flat and narrow valley as 
shown in Fig. 1.

The starting point for the optimization is x0 = (−1.5, 0.5), and the same random 
seed is used for both the GMO and the EnOpt algorithm. The step sizes are selected

as β1
k = 1, and β2

k = 0.1 for the mean and covariance matrix respectively. Simple
backtracking is implemented, where the step size is chopped in half if the objective 
function increases after the update. The initial covariance diagonal has a value of 0.1 
for both diagonal elements. The algorithms are run until ||xk − xmin|| < 10−3.

It is clear from Fig. 2 that the result from GMO is a significant improvement over 
EnOpt with almost 20 times fewer iterations required to find the global minimum. 
This is due to the fact that GMO adapts the covariance to the shape of the objective 
function and hence samples more strategically than the EnOpt algorithm (i.e., avoids



Fig. 1 The two-dimensional Rosenbrock function with global minimum at (1, 1)

regions with high objective function values). Fonseca et al. (2013) obtained similar 
results with the CMA-EnOpt algorithm.

4.2 Variance Reduction on a Modified Rosenbrock Function

The second example has a simpler objective function than the first example. The 
Rosenbrock function is modified so that it is possible to analytically compute the 
mean and variance of gradients along with the optimal background coefficient. 
The new objective function is given by

J (x, y) = (1 − x)2 + (y − x)2.

The EnOpt gradient is evaluated both with and without variance reduction for two 
different scenarios. First, y = 0 is assumed to be a known parameter. In the second 
scenario, y is a standard normal random variable (mimicking geological uncertainty 
of the model). Initially, the mutation density is the standard normal density and the 
natural gradient for μ is estimated using samples of size N = 10, 102, 103. For  the
case where y is random, the gradient is first estimated with all x samples applied to 
each y, and then with the more standard pairing of samples (one to one). The true 
natural gradient with respect to μ in all cases is −2. For the optimal background term, 
the values are b = 7 when y = 0, and b = 8 when y is random. These values for b 
are used for all the runs in Table 3. For the runs in Table 2, the optimal background 
term is estimated [Eq. (3.2)], while Table 1 shows the results for the runs without any 
variance reduction. When y is uncertain, the gradient estimate is said to be permuted if 
all x samples are evaluated for each y sample. That is for each i we evaluate J (x j , yi )



Fig. 2 Minimizing the Rosenbrock function with and without covariance update

for all j from 1 to N . The experiments are repeated 1000 times in order to get a good 
estimate of the mean and variance of the different gradient methods.

It is clear that, for this model, estimating the optimal variance reduction term leads 
to severe bias in the gradient for small sample sizes (Table 2). The strategy of applying 
one control vector to one model leads to an unbiased estimate of the gradient, although 
a reduction in the variance is observed if all control samples are applied to each of 
the model samples (Table 3). The difference in variance is relatively small here, but 
it is reasonable to believe that the difference will increase with the dimension of the



Table 1 Natural gradient estimation without variance reduction, 1000 repetitions

Sample size y input Permuted Mean Variance

10 y = 0 NA −2.025 8.050

10 y = N (0, 1) No −1.981 10.995

10 y = N (0, 1) Yes −1.965 9.964

100 y = 0 NA −1.993 0.314

100 y = N (0, 1) No −2.007 1.118

100 y = N (0, 1) Yes −2.005 1.016

1,000 y = 0 NA −1.998 0.031

1,000 y = N (0, 1) No −1.997 0.110

1,000 y = N (0, 1) Yes −1.997 0.100

Table 2 Natural gradient estimation with estimated background term, 1000 repetitions

Sample size y input Permuted Mean Variance

10 y = 0 NA −1.486 1.347

10 y = N (0, 1) No −1.468 3.783

10 y = N (0, 1) Yes −1.468 3.595

100 y = 0 NA −1.947 0.176

100 y = N (0, 1) No −1.943 0.592

100 y = N (0, 1) Yes −1.941 0.504

1,000 y = 0 NA −1.992 0.017

1,000 y = N (0, 1) No −1.994 0.064

1,000 y = N (0, 1) Yes −1.993 0.053

Table 3 Natural gradient estimation with optimal background term, 1000 repetitions

Sample size y input Permuted Mean Variance

10 y = 0 NA −2.011 3.279

10 y = N (0, 1) No −2.035 4.606

10 y = N (0, 1) Yes −2.034 3.762

100 y = 0 NA −2.004 0.317

100 y = N (0, 1) No −1.993 0.046

100 y = N (0, 1) Yes −1.998 0.361

1,000 y = 0 NA −2.000 0.032

1,000 y = N (0, 1) No −2.000 0.045

1,000 y = N (0, 1) Yes −2.005 0.035

problem. From the results in Tables 1 and 2, it seems that for small sample sizes it is 
better to use the original gradient than to estimate the optimal background term.

Next, the same model with y = 0 is studied. This time, however, the mutation 
distribution is changed a few times in order to mimic iterations. It is then possible to
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Fig. 3 Variance of gradient estimate using importance sampling

implement the importance sampling strategy. At iteration k, the mutation distribution 
has mean μk where μk = μk−1 +0.25, starting with μ1 = −1 and finishing at μ9 = 1. 
The variance of a single realization of the natural gradient estimate at iteration k is

Var [J (Xk )(Xk − μk )] = 81 − 60μk + 64μ − 8μ + 4μ .

The variance of the gradient estimates is therefore divided by this number at each 
iteration in order for them to be compared. To isolate the effect of importance 
sampling on the variance, the background term is set to zero. In other words, J (X i

j ) 
is used instead of J (X i

j ) − J (μk ) in the gradient estimate. From Fig. 3, it is clear 
that there is both a potential advantage and a disadvantage of using importance 
sampling. When all the previous samples are used, the gradient esti-mate deteriorates 
after six iterations. However, it is also seen that only using the samples from the 
previous iteration consistently improves the gradient estimate in terms of variance 
reduction. Next, the adaptive importance sampling scheme (Algo-rithm 1) is 
implemented on a generalized Rosenbrock function with increasing dimensionality.

4.3 Increasing Dimensionality

In this section, the GMO algorithm is implemented with and without the adaptive 
importance sampling scheme (Algorithm 1) on a generalized Rosenbrock function 
with increasing dimensionality. The objective function is given by

J (x) = J (x1, . . . , xd) =
d/2∑

i=1

[
100

(
x22i−1 − x2i

)2 + (x2i−1 − 1)2
]

,



Fig. 4 Average number of iterations for the generalized Rosenbrock

for an even integer d. The global optimum is located at xo = (1, 1, . . .  ,  1). The gra-
dients with respect to both μ and � are calculated according to Algorithm 1 with 
W (x) = J (x) − J (μ). The gradient with respect to � is normalized in order to avoid 
tuning of the step size when the dimension increases. The step sizes are fixed with 
β1 = 1 and β2 = 0.15 for all runs. For each dimension, d = (6, 10, 20, 30, 50), 
a sample size of N = 10 is used to estimate the gradient. The algorithm stops 
when ‖μ − xo‖ < 10−2(d − 1). The starting point is the d-dimensional vector,
(−1.5, −1, 5, . . .  ,  0.5, 0.5), with d/2 entries equal to −1.5 and d/2 entries equal to 
0.5. Each run is repeated with 50 different random seeds and the average number of 
iterations for the first four dimensions is reported in Fig. 4. The results clearly show 
the benefit of using importance sampling for this particular objective function. Note 
that the ratio of the average number of iterations required with and without impor-
tance sampling seems to be independent of the dimension. For d = 50, the results 
of each individual iteration are also shown (Fig. 5) in order to demonstrate that also 
the variance of the number of iterations required is smaller when adaptive importance 
sampling is used. The average number of iterations required with importance sampling 
is 73.5 % of that without importance sampling for this particular objective function.

5 Conclusions

In this paper, it was shown that the ensemble-based optimization algorithm is equiva-
lent to a natural evolution strategy with a fixed covariance matrix and with a Gaussian 
sampling density. Furthermore, it was also shown that including the gradient of the 
covariance matrix of the distribution, the natural evolution strategy known as Gaussian 
Mutation is an ensemble-based optimization technique with a link to evolutionary 
strategies with covariance matrix adaptation as discussed by Akimoto et al. (2010).



Fig. 5 Number of iterations for 50 runs with the 50-dimensional Rosenbrock function

The relationship with ensemble optimization with covariance matrix adaptation 
(Fonseca et al. 2013) was clarified as well. Furthermore, the mathematical framework 
of Gaussian Mutation was used to justify the application of EnOpt in robust 
optimization under geological uncertainty. Some variance reduction techniques were 
discussed and it was demonstrated on a simple example that estimating an optimal 
variance reduction term may lead to severe bias in the gradient estimate. An 
alternative, unbiased, variance reduction technique in terms of an adaptive 
importance sampling strategy was suggested and successfully implemented in a 
simple example for dimension up to 50. The resulting strategy reduced the variance 
of the gradient estimate with approximately 30 %.
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