
UNIVERSITY OF STAVANGER

Information Retrieval using applied

Supervised Learning for Personalized

E-Commerce

by

Hellum, Kjell Arne

A thesis submitted in fulfillment for the

degree of Master of Science

in the

Faculty of Electrical Engineering and Computer Science

June 2017

https://www.uis.no/
https://www.uis.no/tn/ide/

UNIVERSITY OF STAVANGER

Abstract

Faculty of Electrical Engineering and Computer Science

Master of Science

by Hellum, Kjell Arne

This paper describes our efforts on a learning to rank problem applied on the topic

of personalized e-commerce. The core of the project comes from the Personalized E-

Commerce Search Challenge issued by the International Conference on Information and

Knowledge Management. By analyzing historical data containing browsing logs, queries,

user interactions, and static data in the domain of an online retail service, we attempt

to extract patterns and derive features from the data collection that will subsequently

improve prediction of relevant products. A selection of supervised learning models will

utilize an assembly of these features to be trained for prediction of test data. Prediction

is performed on the queries given by the data collection, paired with each product item

originally appearing in the query. We experiment with the possible assemblies of features

along with the models and compare the results to achieve maximum prediction power.

Lastly, the quality of the predictions are evaluated towards a ground truth to yield

scores.

https://www.uis.no/
https://www.uis.no/tn/ide/

I.R. using applied Superv. Learning for Personalized E-Commerce 2

Keywords - learning to rank, product search, e-commerce, personalization, machine

learning, supervised learning, regression, cikm cup

Chapter 1

Introduction

This document serves as the author’s Master thesis in Computer Science. The subject

of this thesis builds upon the author’s previous project Information Retrieval using

applied Supervised Learning for Personalized E-Commerce [20]. During the course of

the project, the author has received assistance and direction from Krisztian Balog, Ph.

D., from the Department of Electrical Engineering and Computer Science located at the

University of Stavanger.

The Personalization of e-commerce is a hot topic for researchers as applying it on a

service yields benefits for many businesses and their consumers. Learning insights on

action patterns could prove invaluable for increasing revenue and customer satisfaction,

as tailoring the overall experience for customers leads to higher conversion rates. With

the progression of the internet and the increasing amount of information available, the

possibility of taking advantage of the information becomes significantly better. Through

machine learning methods and analytical decision making, we can extract patterns from

the consumers’ behaviours and discover new and better ways to perform the presentation

of products, marketing strategies, personalization and generally improve the end user’s

experience.

The particular problem of this thesis is classified as a learning to rank problem[34]. The

International Conference on Information and Knowledge Management (CIKM) issued a

competition, the CIKM Cup 2016 1 where entrants, be it academics or researchers or

students alike, could take on the problem of learning to rank. CIKM provides a dataset

for the challenge which contains realistic data on products, users and their respective

relations as purchases, views, clicks and other meta-data. The goal is to find new and

possibly innovative ways to rank items retrieved by a query issued by a user. By utilizing

the information given in the queries, the meta-data from the users and their respective

actions on the products, we can learn features that may reveal correlations in terms

of relevance. The heart of the challenge is to improve the existing rankings through

1http://cikm2016.cs.iupui.edu/cikm-cup/

3

http://cikm2016.cs.iupui.edu/cikm-cup/

Chapter 1 Introduction 4

supervised machine learning methods and custom features. In this paper we will discuss

how we approached this problem and present the features used, the results of evaluating

these, and compare these results with other participants of the competition.

Figure 1.1: Keyword search 2 Figure 1.2: Category browsing 3

1.1 Main Contributions

This thesis contributes to the area of Information Retrieval with emphasis on supervised

learning, and learning to rank in the domain of an online retail business. Specifically, this

thesis introduces custom features that connect products together with meta-data and

history, with the primary objective of improving the ranking function of items retrieved

by given queries.

1.2 Outline

• Chapter 2 introduces parts of relevant theory used as basis for the development

and research of this thesis. This chapter provides basic understanding for the

2http://www.watchshop.com/All-Watches.htmltab5=leather?st=leather
3https://www.amazon.com/gp/site-directory/ref=nav shopall btn

Chapter 1 Introduction 5

Information Retrieval and Machine Learning fields of Computer Science, and is

formally presented with the essential aspects relevant to the problem.

• Chapter 3 contains a detailed overview of the problem itself, including definitions of

the primary objective. Additionally this chapter describes the details and statistics

of the dataset associated with the problem. Lastly we introduce evaluation of our

experiments, alongside its revolving methodology.

• The fourth chapter provides in-depth details of our approach to reach the goal of

this thesis. We present key points as:

– Formalizations of custom features connecting products to meta-data and as-

sociated history

– Assembling features into feature vectors

– Statistical models chosen to train on the feature vectors

– In-depth details of our implementation and setup

• In Chapter 5 the results of our experiments are presented, in comparison with the

baseline score.

• In Chapters 6 and 7 we interpret and discuss the results, and observations made

on them. Lastly, we conclude with opinions and remarks for the contributions of

this thesis.

Chapter 2

Background

2.1 Information Retrieval

The general activity of collecting useful information or resources from a source to satisfy

a specific need is known as Information Retrieval (IR). Information can appear in any

form, such as text, documents, images, audio or video. With the rapid growth of data

appearing on the Internet, an equal growth of possibilities occurs. Search engines, online

retailers, database systems, social media, surveys and many more applications may

contain vast amount of resources that can be explored and utilized for their mathematical

properties, statistical correlations and insights.

Retrieval of information is commonly associated with a user providing queries as input

to a particular system. A query may be expressed in free text (e.g., Google Search)

or structured text (e.g., Structured Query Language). These queries produce outputs

which are expected to satisfy the demands of the query, either as a singular result (e.g.,

searching for a particular book on Amazon) or as a ranked list with respect to relevance

(e.g., search engines).

Determining the relevance of retrieved information is a challenge in itself, as it requires

some understanding of the basic needs of the user. In structured queries, the output

expected is already formulated in the query itself, but in free text queries, the case may

not be trivial. If user Alice performs a search on Google for “John Kennedy”, is she

looking for the biography of the former US president or the contact information of a

coworker similarly named? If user Bob performs a search on eBay for “used car”, how

does the search engine know which cars are interesting and/or affordable to him?

6

Chapter 2 Background 7

2.1.1 Retrieval Evaluation

Most IR applications can determine the relevance of a resource with respect to the

query by assigning a numeric score, which provides basis for the ranking, meaning the

top ranked resources are most relevant. How these scores are derived strongly depends

on the context of the query and the service running, as they are determined by internal

and/or external associative features. It is hard to be determine whether the order of

the output satisfies a given query optimally, let alone all given queries. However, means

of evaluating the results prove themselves valuable as basis for improvement [17], with

the potential of pinpointing specific queries that perform particularly well or poorly. In

order to evaluate the precision of a retrieval system, rank-based evaluation measures can

be used. Let’s consider resources retrieved from an IR system as documents.

Table 2.1: Retrieved list of documents, ranked on relevance

Documents Relevance

d1 Relevant
d2 Relevant
... ...
dn Relevant
dn+1 Non-relevant
... ...
dm−n+1 Non-relevant

List of n relevant documents, with trailing m non-relevant documents

Ideally a ranked list would be in the form as seen in Table 2.1. In this section, we portray

relevance as binary for the sake of simplicity; although, later on we will see examples

where relevance might be more nuanced.

Table 2.2: Possible retrieval outcomes [56]

Action
Retrieved Not retrieved

Doc
Relevant a b
Not relevant c d

Before introducing some useful measures to evaluate the precision of a retrieval, we need

to understand the outcomes of a retrieval. As seen in Table 2.2, there are four distinct

combinations of relevance and retrieval, which are taken into account. A document may

or may not be retrieved, and the same document may or may not be relevant to the

user. Two measures can be extracted from this table, namely precision and recall. These

single-value metrics have proved to be important and are used widely in many other

evaluation problems, e.g., machine translation [38], monitoring of distributed systems

[54] and medicinal image search [16].

Precision can be expressed using Table 2.2 as

Chapter 2 Background 8

Precision =
a

a+ c
(2.1)

Similarly, recall is expressed as

Recall =
a

a+ b
(2.2)

For ideal results, precision = recall = 1.0. Precision can be thought of intuitively as

the ratio of relevance among retrieved documents. If four documents were retrieved, and

three of them are considered relevant, the resulting precision would be equal to 3
4 = 0.75.

Recall tells us about the ratio of retrieved documents out of all relevant documents; if

three documents are relevant, and only two of these are retrieved, the resulting recall

would be equal to 2
3 = 0.67. Maximizing recall is trivial, as all documents could be

retrieved, so this is not a good measure alone for measuring the ratio of non-relevant

documents.

Having the ideal outcome of precision = recall = 1.0 tells us that all relevant docu-

ments are retrieved and equally all retrieved documents are relevant. In reality, having

a high value for recall tends to mean a low value for precision. This is a consequence of

attempting to retrieve as many relevant documents as possible, as going further down

in a list searching for relevant documents, we find even more non-relevant documents.

These metrics may be applied for the entire list of retrieved documents, or on a limited

portion of the list, known as precision at n or P@n. Precision applied to a cutoff portion

of the list only considers the topmost items, preserving the original ranking.

Precision in its simplest form is not a very yielding measure when it comes to evaluating

multiple items retrieved, therefore we introduce a new measure, average precision (AP).

Considering a set (list) consisting of n documents L = {l1, l2, ...ln}, we wish to calculate

the average precision of each li.

AP [57] is defined mathematically as

AP (L) =
1

|Rel|

n∑
i=1

p(i) (2.3)

where L is the ranked list of documents retrieved, p(i) is the precision of the document at

position i and |Rel| denotes the cardinality of the set of relevant documents associated

with the entire collection of documents. Using Eq. (2.3) we can assign a numerical

score being the sum of precision for each document divided by the number of relevant

documents. This gives us the precision of a retrieval performed by a system.

Chapter 2 Background 9

Average precision as a measure is useful for evaluating single retrievals. However, when

there are multiple retrievals performed by a singular system, how can we evaluate the

precision of the system as a whole?

Let’s continue having the mindset of averaging the numbers, and introduce Mean average

precision (MAP). Considering a set of m ranked lists, i.e., retrievals performed by a

system, L = {L1, L2, ...Lm}, we wish to calculate the mean average precision of each

retrieval.

Mean average precision (MAP)[57] is defined mathematically as

MAP (L) =
1

m

m∑
i=1

AP (Li) (2.4)

MAP gives a fair representation of the precision of retrievals performed by a single

system. This measure allows us to compare multiple systems and cross-reference how

the overall precision differs in each system.

Table 2.3: Example of multiple retrievals, with relevance labels, precision and recall

Retrievals

Documents Relevance AP Recall
Ideal d1,d2,d3 r,r,r 1.0 1.0
System A d5,d4,d1,d3,d2 n,n,r,r,r 0.58 1.0
System B d3,d2 r,r 1.0 0.67

It should be noted that shuffling around the order of documents in a retrieval does

not effect the measures for precision and recall, as their (changes in) positions are not

reflected in the equations. In Table 2.3, the hypothetical System A has retrieved all

relevant documents with two non-relevant documents in position 1 and 2. This gives

a good recall score, but having non-relevant documents retrieved decreases the average

precision. System B has only retrieved relevant documents, maximizing precision, but it

does not manage to capture every relevant document available. Which system performed

the retrieval better?

In order to take the position (i.e., the rank) of the document into account, we can

derive a formula to emphasize reward on higher rankings (i.e., lower positions) and

oppositely penalize lower rankings. Figure 2.1 displays one particular function fitting to

our specifications, i.e., f(x) = 1
x .

Reciprocal rank (RR) [6] is mathematically defined as

RR(L) =
1

ranki
(2.5)

where ranki denotes the rank of the first appearing relevant document.

Reciprocal rank is a weighting coefficient to penalize documents with lower rankings,

specifically used with the rank of the first appearing relevant document retrieved. A

Chapter 2 Background 10

1 2 3 4 5 6

1

2

3

4

Rank

Coefficient

Figure 2.1: Continuous representation of reciprocal rank RR = 1/ranki

set of retrieved documents L = {d1, d2, d3} with d3 being the first relevant document

evaluates as RR = 1
3 .

Mean reciprocal rank (MRR)[6] is mathematically defined as

MRR(L) =
1

|L|

|L|∑
i=1

1

ranki
(2.6)

where ranki is the rank of the first appearing relevant document of query i.

Mean reciprocal rank produces an average of the respective reciprocal ranks of a retrieval

set. This measure tells us the average distance to the first relevant document in the

retrievals made by a system. It is a useful measure, as it is proportional to the effort a

user spends on finding a result.

Now we have covered some of the basic measures that come in handy when considering

relevance of documents as either a) relevant or b) non-relevant. However, the way rel-

evance is interpreted may allow for multiple degrees of relevance to exist [21]. Average

precision only operates on binary relevance values, and therefore compressing the rele-

vance degree into a binary one causes information loss. For example, if relevance was

in the range of [1, 3], a compromise of letting 1 be non-relevant and [2, 3] be relevant

would not be beneficial as we lose the information between relevance degrees 2 and 3.

The same problem applies to MAP and MRR. How can we accommodate evaluation of

retrievals when documents have multiple degrees of relevance?

Imagining a user browsing through a list of documents retrieved, he would be mostly

interested in the top results. From the user’s perspective, the relevance comes from the

utility of the document, and is therefore effectively the information gain. Summing the

gain for each document in the top results, we end up with a new measure, Cumulative

Gain (CG) [33] defined as

Chapter 2 Background 11

CG(L) =

n∑
i=1

ri (2.7)

where ri is the gain of document at position i, and n is the cutoff point in the list of

documents the user is looking at. Depending on the number of documents looked at (i.e.,

where we put the cutoff point n), the cumulative gain will correspond to the amount of

effort put in by the user in viewing more documents.

Table 2.4: Example of cumulative gain of top 10 results

Gain (Relevance) Cumulative gain

d1 3 3
d2 1 3 + 1
d3 2 3 + 1 + 2
d4 1 3 + 1 + 2 + 1
d5 1 ...
d6 3
d7 2
d8 1
d9 1
d10 2
... ...

Illustrated in Table 2.4 is an example of applied cumulative gain on a document col-

lection, with cutoff point at n = 10. Note that different retrievals may yield differing

values of CG depending on the quality of the retrieval. However, shuffling the order

of documents retrieved within [0, n] yields the same cumulative gain, similar to average

precision, it does not take rank or position into account. Assuming a retrieval is at best

effort, we can also assume that the highest ranked documents are the most relevant,

even though this is not always the case as seen in Table 2.4. With these assumptions in

mind, we can apply a slight discounting in relation to the positions of the documents.

The first document does not require any discounting as the user always sees this first.

With this, we can build upon CG and introduce discounted cumulative gain (DCG) as

DCG(L) = r1 +
n∑

i=2

ri
log2 i

(2.8)

As we divide every document’s gain by a logarithm of its position in a list, we effectively

get a lower score if a highly relevant document appears lower in the list. Similarly, the

relevant documents higher ranked receive higher score. This measure is maximized when

the order of the documents is optimal, i.e., sorted on relevance. In this manner, we have

improved the previous deficiency and furthermore take the position into account.

Chapter 2 Background 12

Cross-comparison of queries with this measure is at this point not possible as the value

of DCG will differ if the documents retrieved are different. If we normalize the DCG we

solve this problem. The normalized discounted cumulative gain is expressed as:

Normalized discounted cumulative gain (NDCG) [33].

NDCG(L) =
DCG(L)

IDCG
(2.9)

where IDCG is the ideal DCG for a given query, signifying the retrieval is of an optimal

order in terms of relevance. NDCG is widely used and proves to be an accurate evaluation

measure of the quality of a retrieval. It is easily comparable across different queries, as

we expect a value between 0 and 1, with 1 meaning DCG(L) = IDCG.

In this paper, we have chosen NDCG as the method of evaluation.

2.1.2 Vector space models

A vector space is a set of V basis vectors for V dimensions, where each vector is linearly

independent. In Information Retrieval, any text in general can be represented in vectors

describing its presence. Term Vector Models, also known as Vector Space Models [46],

are algebraic models that represent documents by the use of vectors, by having each

term appearing in a vocabulary as its own dimension. This allows for transforming text

as query keywords and terms in a document into term vectors.

Table 2.5: Example of multiple documents with similar terms

Docs Terms Terms (w/o stopwords)

d1 The sky is blue sky blue
d2 The sun is bright today sun bright
d3 The sun in the sky is bright sun sky bright
d4 We can see the shining sun, the bright sun shining sun, bright sun

Consider the documents available in Table 2.5. By counting every term for each docu-

ment, a term vector can be constructed. As each document is different, the correspond-

ing vectors will point in different directions as a result. Similarly if two documents were

equal, they would be point in the exact same direction. This is a result of each basis

vector being dependent on the presence of its designated term in the documents.

Note that the majority of terms in the above documents do not give any information.

Terms as “the”, “is”, “in” etc. are some of the most common words in the english

language, and are known as stopwords. Stopwords have been around for a while, and

were defined as words to be filtered out before processing natural language text [44] to

improve performance of many search engines, depending on the context. In some cases,

these words are important and should not be filtered, e.g., when a user performs a search

for “The Who”. For the sake of emphasizing the important terms in the documents in

Chapter 2 Background 13

Table 2.5, stopword removal is performed. Another procedure applicable to reduce the

number of possible variations of a word include stemming. This is useful for particularly

verbose queries that may occur when a user writes her query in natural text [15].

Displayed in Figure 2.2 is what a term vector would look like for document d3 from

Table 2.5.

sun

sky

bright

sun sky bright [1,1,1]

[1,0,0]
[0,1,0]

[0,0,1]

Figure 2.2: Three-dimensional term vector for “sun sky bright”

These vectors can be measured for similarity between documents, and between document

and query. Cosine similarity [45] is a measure that tells how similar two term vectors are,

based on the presence of terms in each vector. If a user performs a keyword search on

“bright sky”, a similar vector could be constructed based on the terms appearing in the

query. Subsequently, these two vectors can be compared using the following function:

cos(θq,d) =

n∑
j=1

termq,j · termd,j√
n∑

j=1
term2

q,j ·
√

n∑
j=1

term2
d,j

(2.10)

where θq,d denotes the angle between query q and document d, and termq,j and termd,j

represent the components of the term vectors for q and d respectively. This measure

yields a value between 0 and 1, where a higher value indicates higher similarity, with 1

meaning the two vectors are identical.

In the above example, the case is trivial as there are few distinct terms and we can simply

perform raw comparison on queries using only cosine similarity. However, this performs

poorly when the document collection is of a realistic size with an even larger vocabulary

(e.g., Wikipedia entries). Topical relevance can be estimated by determining which

terms are frequent in a document, and which terms appear more in this document than

other documents. This may be done by weighting the documents using Term Frequency

(TF) and Inverse Document Frequency (IDF) [47].

Chapter 2 Background 14

The term frequency can be written as:

TF (t, d) =
ft,d
|d|

(2.11)

where ft,d is the number of times term t appears in document d and |d| denotes the

number of terms in d. The inverse document frequency is defined as:

idft,D = log(
|D|

|d ∈ D : t ∈ d|
) (2.12)

where D is the document collection, and |d ∈ D : t ∈ d| denotes the number of times

the term t appears in the entire document collection. Incrementing the denominator by

1 will prevent a division-by-zero.

TF-IDF is a widely used measure as one of the most popular weighting schemes. This

measure is used in approx. 83% of text-based recommendation systems of digital libraries

[2].

Instead of counting each term in a document and use the raw count in the term vector,

TF-IDF weighting is performed to distinguish documents containing document-unique

terms apart from documents with common terms. The higher value for TF indicates

that the term is more frequent, while the higher value for IDF indicates the term is

rare in the document collection. A high value for combined TF-IDF indicates high term

specificity.

Calculating the Term Frequency for each term in the documents in Table 2.5 yields:

Table 2.6: Example of calculating Term Frequencies

Term Frequency

Terms d1 d2 d3 d4
sky 0.5 0 0.33 0
blue 0.5 0 0 0
bright 0 0.5 0.33 0.25
sun 0 0.5 0.33 0.5
shining 0 0 0 0.25

Furthermore, we can calculate the IDF of each term:

Table 2.7: Example of calculating Inverse Document Frequencies

Terms sky blue bright sun shining

IDF 0.30 0.60 0.125 0.125 0.60

Combining the term frequencies from Table 2.6 and multiplying them with inverse doc-

ument frequencies from Table 2.7 yields:

Chapter 2 Background 15

Table 2.8: Example of calculating TF-IDF

TF-IDF

Terms d1 d2 d3 d4
sky 0.150 0 0.100 0
blue 0.300 0 0 0
bright 0 0.063 0.043 0.031
sun 0 0.063 0.043 0.063
shining 0 0 0 0.150

By applying the weighting scheme, the term vector of d3 becomes (0.043, 0.1, 0.043).

Also introducing a query q = “bright sun”, the vector for this query is (0.063, 0, 0.063).

Vectors for q and d3 are visually represented in Figure 2.3.

sun (x)

sky (y)

bright (z)

sun sky bright
[0.043,0.1,0.043]

bright sun
[0.063,0.0,0.063]

θ

Figure 2.3: TF-IDF weighted term vector for “sun sky bright”

At this point, it is possible to measure how similar the query is to all the documents by

calculating the cosine similarity seen in Eq. (2.10):

Table 2.9: Example of calculating cosine similarity on TF-IDF weighted term vectors

Cosine similarity

Documents d1 d2 d3 d4
Query q 0 1 0.864 0.401

By inspecting the similarities calculated for each document di against the query q, it is

clear that:

• d1 is not similar to q as they do not have any overlapping terms.

• d2 is identical to q as they have equal terms.

• d3 is highly similar to q as they have two overlapping terms.

• d4 is less similar to q as the TF-IDF values for the term “shining” in d4 is over-

shadowing the terms “bright” and “sun”.

Chapter 2 Background 16

Cosine similarity with TF-IDF weighting is a well suited measurement for comparing

segments of text, which we will utilize in this paper as a custom feature for comparing

queries towards product names.

2.2 Machine Learning

Explicitly programming algorithms to extract information or perform tasks has its lim-

itations in certain applications. When the application domain is unknown or volatile,

machine learning can be applied. Machine learning is a sub-field of Computer Science

“that allows computers the ability to learn without being explicitly programmed”[51].

Machine learning has overlapping properties with artificial intelligence, in which it be-

stows principles of intelligent behavior upon machines.

Machine learning covers the development and research of programs and algorithms that

can predict, classify, unravel patterns, and adapt to application domains in ways strictly

static programming would prove to be infeasible. The main family of problems Machine

learning proves to be useful on is of the kind where future (i.e., previously unseen)

data can be classified using similar historic data. Spam filtering [30], optical character

recognition (OCR) [48], and search engines are just a few examples where learning is

important.

Sub-fields of machine learning include supervised learning, unsupervised learning and re-

inforcement learning. Supervised learning can be described as providing a machine with

pairs of example input (predictors) and desired output, in order to learn rules that fit

the end goal [18]. This relies on a human interacting with the system, with a predefined

goal. On the other hand, unsupervised learning does not require a human user and

is single-handedly responsible for establishing relational rules between the data points

with a bigger potential of discovering non-obvious patterns [19]. Lastly, reinforcement

learning is a learning method focused on the intermediate steps of a problem, often

with trial and error [13]. Actions that increase the probability of achieving a specified

goal receive rewards, and oppositely actions that decrease the same probability receive

penalties. The rewards and penalties ultimately makes up a cumulative score (i.e., the

measure of fitness), which should be maximized for best results.

The underlying models and methodologies in machine learning algorithms varies be-

tween the different applications, and should be decided with respect to the end goal.

Methodologies include neural networks[37], linear and logistic regression [23, 28], deci-

sion trees and forests [39, 7], support vector machines (SVMs) [25] and combinations of

these can be incorporated into ensemble models [43].

In Figure 2.4 seen above, the basic notions of Machine Learning is given. It can be

summarized as follows:

Chapter 2 Background 17

Training Dataset

Feature ExtractionModel Selection

Training Labels

Model Training

Model TestingInput Dataset Output

Figure 2.4: Basic overview of Machine Learning

1. Model selection - Selecting a statistical model out of a set of qualifying models.

This involves considering the structure of the data set provided, and how well the

model suits the data.

2. Learning - Observing the data and designing features that connect (portions of)

the data together to facilitate the training of a model. Feature extraction and

the model combined results in a learning algorithm that uses the training data

as input for the model, allowing the model to fit the data. In addition to the

input data, training labels should be provided to indicate how the input should be

classified. This classification procedure plays a vital part in improving the overall

performance of the model.

3. Prediction - With a model trained on the training data, we can apply the model

on new input data (referred to as test data when used for evaluating the model)

to predict or classify the corresponding output.

A problem of the kind where new observations have to be categorized (e.g., small,

medium, large) or labelled (e.g., “income <50k”, “income >50k”), is known as a classi-

fication problem. In Machine Learning, classification is considered supervised learning

and revolves around identifying previously unseen information and giving them correct

labels (i.e., discrete values) based on training. The unsupervised counterpart of classi-

fication is known as clustering. Typical examples of modern classification problems are

speech recognition [49], OCR [48], DNA Sequence classification [3], credit scoring [35]

and more.

One predictive model often used in classification problems is the Decision Tree (DT). A

decision tree is characterized by having a set of choices (i.e., branches) that are based

on conjunctions of features that lead to target classes known as leaf nodes. Decision

trees can be visually drawn to represent explicit decisions in respect to the attributes of

the input data. They are simple by nature, as each decision branches into two or more

Chapter 2 Background 18

decisions or leaf nodes forming a finite set of paths in order to classify data. The input

data can consist of both continuous (numeral) and discrete (categorical) values, without

performing normalization. However, DTs have limitations as they may become overly

complex and perform poorly at generalizing the training data very well. The problem

of constructing an optimal DT is classified as an NP-Complete problem [22]. In general,

they do not perform as accurate as other models [24].

x2

x1

1 0

x3

x1

1 0 0

Y

Y N

N

Y

Y N

N

Figure 2.5: Example of a decision tree 1

Improving on DTs’ limitations, a Random Forest(RF) [7] is an ensemble learning method

that effectively consists of multiple DTs which learn using different features from the

same training data. The forest specifically corrects the overfitting of a singular DT,

by selecting the mode of each individual tree’s output it averages these to reduce the

variance. When a decision tree is used as a stand-alone model, it will use all n features,

while a forest typically uses
√
n features randomly selected for each tree.

Another statistical learning method commonly used is Regression. Regression revolves

around learning the relationship of independent continuous data given as input (i.e.,

predictors or regressors), and its dependent output. The predictors passed in are typi-

cally features derived from the input data, used to map their variance in the relation to

the dependent variable. A common pitfall known to occur while using regression is that

correlation is often mistaken for causation [1]. There are multiple types of regression,

e.g., linear regression [23], polynomial regression [9], logistic regression [28] and more.

Linear regression is the particular case of regression where the mathematical functions

used in predicting the value of dependent variables are linear. It uses the principles of

Ordinary Least Squares (OLS) [42] in terms of minimizing the sum of squared differences

between the learned function and the observed data. This means finding a function f(x)

defined as:

1https://tex.stackexchange.com/questions/289642/how-to-draw-a-proper-decision-tree

https://tex.stackexchange.com/questions/289642/how-to-draw-a-proper-decision-tree

Chapter 2 Background 19

f(x) =

n∑
i=1

aix
i = a0 + a1x+ ...anx

n (2.13)

where every coefficient ai is learned by the model. If this function is a straight line, all

coefficients for ai, i > 1 are 0.

Figure 2.6: Illustration of linear regression 2

In this paper, we run our experiments using linear regression.

2.3 Learning to rank

Learning to rank is becoming an increasingly popular research topic in information

retrieval. By applying machine learning techniques to construct ranking models, we

can solve ranking problems. Meaning, we can rank previously unseen lists based on

familiar lists of the same type. Typically we use training data with labels signifying

the importance of the data (see Fig. 2.4). The main differences between Learning to

Rank and supervised machine learning is; machine learning can solve problems with

predictions (e.g., classification), on a single instance at a time, while Learning to Rank

solves ranking problems on multiple items at a time. It is not of significance what each

value (e.g., relevance estimate) is, as long as the ordering in respect to items in a list is

achieved.

The domain where learning to rank algorithms are applicable is large, including natural

language processing [41], recommender systems [36], machine translation [12], compu-

tational biology [12], and e-commerce to name a few.

2Public Domain licensed, https://commons.wikimedia.org/wiki/File:Linear regression.svg

https://commons.wikimedia.org/wiki/File:Linear_regression.svg

Chapter 2 Background 20

Consider a system maintaining a collection of documents. For any query q, the system

processes this query to locate documents containing all keywords from query q, ranks

them and retrieves a list of the top ranked documents di. Ordinarily, the system performs

this ranking with a function f(q, d) which requires no training. This function is based

on the probability of any particular document being relevant to the query, where the

relevance is derived from words appearing in both q and d.

Document
Collection

Retrieval Systemquery q

top-k document list dq,1, dq,2, ..., dq,nq

Figure 2.7: Overview of a top-k retrieval

In newer applications of learning to rank, especially in web search (e.g., PageRank [31]),

machine learning methods have been applied to compute the ranking function automat-

ically. Learning to rank goes under the category of supervised learning and involves

training and testing of a model. For training models, feature vectors are created that

indicate what makes a document relevant to the query. Each feature is a numerical score

based upon properties and relationships between the document and the query, as seman-

tic similarity, topical relevance and more. Extracting these features and constructing

numerical patterns is known as relevancy engineering [52].

Chapter 2 Background 21

Document

Features

Feature Vector

Figure 2.8: Passing features from a document into feature vectors

Machine-learned ranking constructs ranking models for a retrieval system, and is com-

monly implemented for re-ranking. Let’s say a search engine with indexing and top-k

(for some k, commonly top 10) retrieval already exists, and a user inputs a query, which

prepares a list of all documents from the document collection matching the query. The

list is not directly sent back to the user, but instead the top 10 elements are ordered by

a ranking model before becoming the result page visible to the user.

Document
Collection

Indexer

Index

Top-k
retrieval

User query

Ranking
model

Results
page

Learning
algorithm

Training
data

Figure 2.9: Conceptual overview of machine-learned ranking

Traditional search engines from the past have only been returning with the top-k re-

trieval, as depicted in the leftmost part of Figure 2.9. The machine-learned ranking is

an additional step to improve on the order of documents retrieved, with more relevant

documents first. It is computationally cheaper to perform the ranking on the list after

Chapter 2 Background 22

the top-k retrieval rather than before, due to the possible amount of matches in a large

document collection.

In this paper, we utilize supervised learning with a query-product pair as input to a

learning function, and build features with a calculated relevance score as output, to

learn a ranking model.

2.4 Product Search

The Internet today has grown to have more online retailers, marketing services, li-

braries and e-commerce in general than ever before. The online search for resources is

equally growing, and in particular products in retailer databases. Most online retailers

incorporate search engines into their websites, engines that are based on adaptations of

theoretical models developed for information retrieval.

Google is considered the number one search engine in terms of popularity [32], yet it

was surpassed by Amazon [8]. Amazon attracted a sizable amount of corporate and

indivitual listers (i.e., sellers) to its market place, due to its unique search algorithm.

The difference between the two is; everything ranking-related is contained internally

on Amazon, while Google uses external factors as history, link signals from external

websites and social indicators.

Product search is tightly connected to the principles of information retrieval, with the

key aspect of retrieving relevant and desired products based on what the customer is

looking for. To benefit both the merchant and the customer, the merchant can come

up with ways to enhance this challenge with personalization by utilizing user history as

click-through rates (CTR), buy-through rates (BTR) and other resources of the customer

base.

The data entailed in these collections tend to have the properties of being largely hetero-

geneous, and therefore serve as viable basis for research. However, while such data and

their characteristics are valuable to study, they are in most cases considered sensitive

and legally protected due to privacy laws [50].

Users shopping online tend to enjoy the convenience of lower prices compared to visiting

a local physical retailer. Although this is a benefit to the user, they lack the ability

to physically interact with or inspect products they are interested in. To compensate

for this, resources as images, textual descriptions, retailer/lister reputation and product

reviews play key roles. For applications where users may act as sellers as well as buyers,

trust is essential[26]. Having a good track-record of past transactions with users in terms

of reviews and buyer satisfaction increases the grade of trust.

Chapter 2 Background 23

Studies show that the visual attractiveness of products have high impact on user interest

[10, 5]. In fact, the interest grows for higher quality images. Furthermore, evidence shows

that users feel safer when purchasing products online when the images are sufficient in

numbers, and have reasonably high quality.

Tuning which results are relevant in a retrieval is essential in personalizing web search.

Papers written in this field describe probabilistic field mapping [14], probabilistic mixture

models [11], dirichlet allocation based diversified retrievals [55] to name a few.

Chapter 3

Personalized E-Commerce Search

Challenge

3.1 Task Definition

The problem at hand revolves around personalizing e-commerce in terms of fetching

relevant results for user-issued queries based on the users’ history and by association their

inferred preferences. Given is a collection of data containing browsing logs, a product

catalog and a set of queries. All of the data originates in a real e-commerce environment

and therefore revolves around real users, real products and history. This allows for the

design of custom features from the data, applying machine learning methods to predict

relevance labels and rank products accordingly. Originally the queries contain a ranked

list of products returned by a non-personalized ranker, upon which our goal is to re-

rank. This challenge presents a unique opportunity for academic as well as industrial

researchers to design and utilize methods and techniques to improve the prediction of

relevant search results.

There are two main types of queries in the dataset, queryfull and queryless. Queryfull

queries are recognized as they contain search string tokens (e.g., “Used Car”, or in our

case something along the lines of “1528, 230”) while queryless queries only contain a

category id (e.g., “Books”, or rather “232”). The distinction is important as these are

evaluated separately in accordance to the challenge, in addition to a final (average) score

based on the two.

3.2 Dataset

The collection of data provided consists of 900MB of browsing logs, purchase his-

tory, products and meta data. Although this data is real, it has been obfuscated and

24

Chapter 3 Personalized E-Commerce Search Challenge 25

Queries

Queries
- queryId
- sessionId
- userId
- timeframe
- duration
- eventdate
- items
- is.test

Queryfull
- searchstring.tokens

Queryless
- categoryId

Browsing logs

Purchases
- sessionId
- userId
- timeframe
- eventdate
- ordernum
- itemId

Views
- sessionId
- userId
- itemId
- timeframe
- eventdate

Clicks
- queryId
- timeframe
- itemId

Static Data

Products
- itemId
- pricelog2
- name.tokens

Categories
- itemId
- categoryId

Figure 3.1: Illustration of the entities contained in the dataset

anonymized with the intention of making it impossible to trace the origin, preserving

privacy of the connected retailer and users. Product names, user ids, query search string

tokens, category names, prices, and more attributes have been transformed (hashed) in

a way that preserves the integrity of the data, allowing the same attributes to be iden-

tified across different sources. e.g., a product with name tokens “Macbook Air” might

be transformed to “142,423”, and similarly “Macbook Pro” might be transformed to

“142,512”.

Illustrated in Figure 3.1 the different tables are presented with their associated at-

tributes. The dataset comes as six different comma-separated-values (csv) files and

contains the following:

• Products - Each row represents products in the catalog which are sold by the

retailer with item id, price (transformed logarithmically) and the hashed product

Chapter 3 Personalized E-Commerce Search Challenge 26

name tokens in a list.

Table 3.1: Excerpt from products.csv

itemId pricelog2 product.name.tokens
1 10 4875,776,56689,18212,18212,4896
69585 6 7583,18117,41805,41805,2371
90939 6 604,18117,41805,41805,2371

• Product-categories - Each row contains a mapping between a product and its

respective category id.

Table 3.2: Excerpt from product-categories.csv

itemId categoryId
139578 1096
417975 1096
291805 1096

• Train-clicks - Each row represents a click on a product and contains information

about which query it originated in, the timeframe (milliseconds since the first

query in a session) and the id of the product.

Table 3.3: Excerpt from train-clicks.csv

queryId timeframe itemId
1 16338861 24857
46255 1604912 30792
46689 3831948 8252

• Train-item-views - Each row represents a product being viewed in a session by

a user containing the session id, user id (may be anonymous), item id, timeframe

and the date (i.e., the timestamp) of the viewing.

Table 3.4: Excerpt from train-item-views.csv

sessionId userId itemId timeframe eventdate
1 NA 81766 526309 2016-05-09
1 NA 31331 1031018 2016-05-09
1 NA 32118 243569 2016-05-09

Chapter 3 Personalized E-Commerce Search Challenge 27

• Train-purchases - Each row represents a purchase a user has made on a product

with information about the session, the user id, timeframe, eventdate, item id and

the order number (one or more items purchased simultaneously are group by this

number).

Table 3.5: Excerpt from train-purchases.csv

sessionId userId timeframe eventdate ordernumber itemId
150 18278 17100868 2016-05-06 16421 25911
151 NA 6454547 2016-05-06 16290 175874
156 7 1721689387 2016-05-27 21173 35324

• Train-queries - Each row represents a query issued by a user, be it in the form

of clicking a category or typing in free text. The rows contain data about the

session, the user, timeframe, duration, eventdate, the items originally retrieved by

the non-personalized ranker, and a flag denoting if this query is usable for training

or for test. This flag being assigned the ’test’ value indicates it is part of the test

data, and similarly for training. In addition, depending on what type of query it

is, it contains either search string tokens if it is queryfull or category id if it is

queryless.

Table 3.6: Excerpt from train-queries.csv

queryId sessionId userId timeframe duration eventdate searchstring.tokens categoryId items is.test
1 1 NA 16327074 311 2016-05-09 16655,244087,... 0 7518,71,30311,7837,30792,... FALSE
2 2 NA 705527 314 2016-05-09 528941,529116 0 70095,15964,8627,134850,32754,... FALSE
3 3 NA 0 502 2016-05-09 133713,16655,... 0 59081,51125,9338,9550,32087,... TRUE

Table 3.7: General data and behaviour statistics

#real users 232 816

#anonymous users 333 097

#sessions 573 935

#products 134 319 529

#product-terms 164 774

#views 2 451 565

#clicks 1 877 542

#purchases 68 818

#purchasing real users (distinct) 4 426

Chapter 3 Personalized E-Commerce Search Challenge 28

Table 3.8: Mean behaviour statistics

Avg. #sessions per user 1.608

Avg. #clicks per session 3.271

Avg. #views per session 4.271

Avg. #purchases per session 0.119

Avg. #purchases per real user 1.514

Table 3.9: Query Statistics

#queries 923 127

#query-terms 130 987

#query-item term overlap 37869

#query-item term overlap % 14.68

#query-less queries 869 699

#query-full queries 53 428

#queries by real users 348 240

#queries by anonymous users 574 887

Avg. #queries by real user 1.495

3.3 Evaluation Methodology

The predictions we make and the re-ranking of items is evaluated by a script provided

with the dataset. We must format the predictions as seen in Table 3.10 where each row

contains a query id, followed by the ranked items in order..

Table 3.10: Example of expected prediction result

queryid1 itemid11, itemid12, ...
queryid2 itemid21, itemid22, ...
... ...
queryidn itemidn1, itemidn2, ...

Running the script with our predictions along with the ground truth, results in an

output containing three NDCG scores (see Eq. (2.9)): the query-less NDCG, the query-

full NDCG and a final weighted average. These scores are used as basis for improvement

over the baseline given by CIKM. Meaning, our predictions should produce an NDCG

score higher than those of CIKM, preferably on all three points.

The baseline presented by CIKM is a simple one, but gives a strong starting point for

improvement. It is defined as:

ŷ = 3 ·#purchases+ 2 ·#clicks+ #views (3.1)

Chapter 3 Personalized E-Commerce Search Challenge 29

where ŷ is the estimator to be used in the learning procedure. It is, in itself, a fea-

ture combining the three types of user behaviour upon an arbitrary item with different

weights. As purchases is the strongest indicator of relevance, it has the highest weight

of 3, while clicks and views are respectively 2 and 1, being weaker indicators. Ranking

the items based on Eq. (3.1) provides the scores seen on the last row in Table 3.11.

Note that the weighted NDCG score tends to be closer to the NDCG value of query-less

queries, as they take up 94.2% of all queries. According to the competition rules, the

equation for computing the weighted NDCG score is defined as:

score = 0.8 ·NDCGql + 0.2 ·NDCGqf (3.2)

3.4 CIKM Cup and Participants

The international Conference on Information and Knowledge Management (CIKM) pro-

vides a forum for discussion and presentation on research within information manage-

ment. Every year they hold competitions on problems in the domain targeted towards

both industrial researchers and academia, attracting bright minds to participate and con-

tribute with their experience. In 2016 they issued a data science competition cup, with

multiple tracks, where one in particular was named Personalized E-Commerce Search

Challenge. The challenge had 88 registered participants, with over 600 submissions in 2

months by top 5 teams.

Table 3.11: The top five winners and their results in terms of NDCG score, in com-
parison with the official baseline approach.

final queryfull queryless

1. minerva 0.4262 0.5574 0.3935

2. Dmitrii Nikitko 0.4149 0.5301 0.3861

3. tjy 0.4056 0.4570 0.3928

4. wistuba 0.3769 0.4495 0.3588

5. joaopalotti 0.3712 0.4860 0.3425

...

cikmcup2016 baseline 0.3514 0.3840 0.3433

Following is a brief summary for each of the top ranked participants from the testing

leaderboards, as seen in Table 3.11 (Dmitrii Nikitko’s report was unfortunately never

officially released):

1. minerva (champion) - The winning team of the challenge improved the results

with 14.2% over baseline. Their approach includes use of different models, includ-

ing gradient boosted decision trees, rank svm, logistic regression and lastly a novel

Chapter 3 Personalized E-Commerce Search Challenge 30

deep match model [4]. These models were incorporated into an ensemble that

allowed for an intelligent prediction framework.

Features extracted include statistical features (i.e., static popularity), time-based

features (dynamic popularity over time), query-item features (category-based to-

ken features, cross token features) and session features (emphasis on repetitive

user behaviour patterns).

The proposed factor of success in this team’s approach is the use of a stacking model

ensemble. Layers of models within the ensemble are responsible for different parts

of the prediction, and subsequently are subject to selection from a higher layer

consisting of a model selector. This allows customizing singular models to predict

on isolated product categories, as well as individual features.

2. tjy - Participants in third place of the challenge improved the baseline with an

increase of 0.0542 in the weighted NDCG score. They put emphasis on deep fea-

ture engineering [29]. Focusing on designing clever features, they categorized into

three groups: user features (category period and price preference), item features

(local and global popularity, and category count), and lastly user-item features

also known as personalized features (query-product token comparison, user-item

scores).

The experimental part of team tjy’s approach involved testing the best combination

and order of mentioned feature groups. First they evaluated each feature as an

individual, discovering which feature had most predictive potential. Secondly,

they grouped features together and tested for higher evaluation scores. Lastly

they probed different permutations and combinations of both features internally

and groups of features.

Details surrounding the statistical model that was used for learning are not spec-

ified.

3. wistuba - Taking the fourth place, team wistuba improved with an increase

0.0255 in the weighted NDCG score. Team wistuba’s approach built upon gra-

dient boosted decision trees with hyperparameter optimization, with parameter

configurations originating from other experiments on similar data sets [53].

They employ a vast amount of features, some of which are directly derived from the

dataset, and some which are preprocessed and aggregated into new combinations

of data. These features include TF-IDF of search tokens and product name, click-

through rate, buy-through rate, category-wise normalized clicks and purchases,

and more. In an effort to simplify relevance prediction, they combine purchased

and clicked items into one category marked relevant, and all others into another

category marked non-relevant. They later stated that this simplification was un-

wise, as they lose information in the difference between the clicked and purchased

products.

Chapter 3 Personalized E-Commerce Search Challenge 31

4. jaopalotti - Team joaopalotti made fifth place in the challenge with an increase

in NDCG score of 0.0198. By utilizing a framework named XGboost with gradient

boosted decision trees, he designed a large series of features categorized as follows:

item-dependent, query-dependent, session-dependent, and item-query-dependent

features [40]. Item-dependent features include popularity signs (views, clicks, pur-

chases), ranking signs (original item rank), textual signs, and price signs. Query-

dependent features include ranking signs, textual signs, price signs, and IR mea-

sure signs (NDCG, MRR). Session-dependent features include IR measure signs

(NDCG per session) and length signs (queries per session, average session dura-

tion). Finally, item-query dependent features include popularity signs, ranking

signs, price signs, textual signs, and group signs (category percentage).

He emphasizes his biggest highlights as the large set of features, and his distinction

of query-less and query-full queries into different sets.

3.5 Challenges

This problem comes with some challenging aspects which requires a certain amount

of effort to work around. One of the key aspects is that the dataset is anonymized,

which effectively removes the possibility of applying intuition based on actual product

or category names. It is impossible to make any sense of the product names or the query

string tokens as to what they actually signify, as intended. Though this is to protect the

integrity of the retailer who has donated these data, this urges the challenge participants

to apply generalized features upon user-item interactions instead of taking shortcuts

saying e.g., if a product name contains the word “iPhone” it should immediately be

marked as relevant.

Another challenge is to attempt to personalize the experience of cold-start users, i.e.,

users with no history. If a user just recently registered, and she has not yet purchased,

clicked or even viewed any products, other than token matching on her search criteria

and ranking based on general popularity, how could we know what to present as relevant

for her?

Working with a dataset on this size requires certain memory and processing capabilities,

as the experiments required to get results can be extremely memory-intensive and time-

consuming. Stitching together different segments of data for calculations, depending on

the complexity of the features in question, will easily exceed the limitations of what a

personal home computer can perform.

Chapter 4

Approach

In this chapter, we describe the methods used including the features extracted, the

statistical models selected and the details of how we evaluated our efforts to improve

the relevance prediction.

4.1 Overview

The experiments we perform in this approach can be divided into four main phases:

1. Feature Extraction

2. Model Training

3. Model Testing

4. Prediction Evaluation

The first phase of our involved observing the dataset and experimenting with the pos-

sibilities of features to extract. By inspecting the dataset, we wanted to select a group

of features that intuitively could yield information about relevance. Before doing so, we

need to establish a numeric measure of relevance. From the perspective of e-commerce,

the most important thing is the conversion rates, i.e., users purchasing products. Next,

we define the clicks as second most valuable, as it is in all cases the precursor to a

purchase. Following in this order would be views, but this resource was on dropped as

an indicator of relevance due to its poor performance compared to purchases and clicks.

This leaves us with three relevance indicators, the third being the case where an item

was not either clicked or purchased, which we can use alongside the training data as

training labels. The values for these indicators are matched against query-item pairs

and are defined as:

32

Chapter 4 Approach 33

• r = 2: The item was purchased as a result of the query

• r = 1: The item was clicked as a result of the query

• r = 0: The item was neither purchased or clicked as a result of the query

Using these values, we effectively specify the relevance grade of known results of queries

from the training data. This allows us to train a model to recognize which of the provided

features have significant impact on the relevance.

The features derived from the dataset were composed with a sense of intuition, observa-

tion, and mostly trial and error. For this purpose, an extensive experimental framework

was implemented to facilitate all of the different tasks involved from designing a feature,

and to evaluate its performance. This framework lets us perform feature extraction,

model training and testing, and predictions by entering few command line inputs, al-

lowing us to only focus on implementation of features and their respective evaluations.

In the later phases of the experiments, we provided input in the form of a query-item

pair, and the corresponding output was represented by a relevance label. Intermediately,

depending on what features are used in the models we trained, the feature values are

calculated using the data connected to the query-item pair. Subsequently, these feature

values are incorporated into feature vectors, which consist of the features selected for each

experiment. For all query-item pairs, we build a set of feature vectors and simultaneously

build a set of relevance labels corresponding to each feature vector. A model is finally

fitted requiring the feature vectors and relevance labels as input, and we serialize the

model to disk so we can retrieve it for further operations (e.g., testing).

A list of the final feature groups is displayed in Table 4.1 with a brief explanation of

each feature. In the next section we explain our thought process behind designing these

features, and describe how they are calculated.

4.2 Feature selection

The challenge put strong emphasis on distinguishing between queryless and queryfull

features, so we attempted to design the features accordingly. Considering both types

of queries, we extracted a set of features that allowed improvement on both query fam-

ilies. We have divided our features into three groups, Query-item-dependent features,

Item-dependent features, and User-item-dependent features. Several of our features were

designed exclusively to a designated type of query, yet others yielded value for either

type. When features are selected and subsequently computed, we build a vector con-

taining these features, and we divide the type of vectors into queryfull and queryless so

that we can train a model for each type of query. This allows for more precise learning

in each model of its query type.

Chapter 4 Approach 34

Table 4.1: Table displaying overview of features

Query-item-dependent features Value

category clicks (c, i) Frequency of clicks performed on an item
normalized on total item-clicks in respective
query-category

[0, 1]

category purchases (c, i) Frequency of purchases made on an item
normalized on total item-purchases in re-
spective query-category

[0, 1]

mean prior rank (q, i) Average ranking of an item in respect to
a category in the original list of retrieved
items

[0, 1]

cosine similarity (q, i) Cosine similarity between query search-
string and product name (TFIDF-weighted)
token vectors

[0, 1]

Item-dependent features

clicks normalized (i) Frequency of clicks performed on a given
item, normalized on maximum of all clicks

[0, 1]

purchases normalized (i) Frequency of purchases made on a given
item, normalized on maximum of all pur-
chases

[0, 1]

associated purchases (i) Number of items purchased together with a
given item, normalized on largest order size

[0, 1]

User-item-dependent features

user revisit (u, i) Total number of past clicks a given user has
performed on the given item

[0, inf]

4.2.1 Query-item-dependent features

Query-item-dependent features are, as the description suggests, features that rely on

data connected to the relationship between a query and an item retrieved by the re-

spective query. Following are the four features we selected as part of the query-item-

dependent group.

Our first feature, category clicks, is derived from item clicks in respect to its category. As

queryless queries only contain a category id and no search string, this feature proved to

be of value. Considering a query-item pair (q, i) we can compute this feature as follows:

category clicks(c, i) =
#clicks(i)∑
k∈c #clicks(k)

(4.1)

where c denotes the category provided by the query q, #clicks(i) denotes the number

of clicks for item i, and k denotes an item existing in category c. The ratio given by

this feature is the number of clicks made on an item, divided by the total number of

clicks on all items in the same category. If a category contains a large number of items,

the most clicked items will take up a larger portion of the respective category’s clicks

and Eq. (4.1) reflects this accordingly. Oppositely if the category has a smaller selection

Chapter 4 Approach 35

query, category, items

53454, 480, 205906,88040,156599,268361,193340,18373,149012...

60083, 480, 156599,268361,132892,55772,44931,149016,121979...

61001, 480, 156599,395381,268361,193340,18373,132892,55772...

61123, 480, 156599,268361,18373,132892,55772,44931,141365,...

Figure 4.1: Excerpt from the set of queries, displaying varying permutations of items

of items, the denominator is smaller and thus the feature score will be higher. This

feature is by nature best described as a queryless feature, but c may be substituted with

a category the item is contained in, in order to be applied on queryfull queries as well.

A similar feature is named category purchases, which is expressed as:

category purchases(c, i) =
#purchases(i)∑
k∈c #purchases(k)

(4.2)

This feature applies the same calculations on the purchase resource instead of clicks,

and could therefore also be used as a query type-independent feature.

Upon close inspection of the dataset, an assumption was made that the original rankings

were in some way reflecting the relevance of the items in the retrievals. This possible

reflection was worthy of further investigation, as the rankings themselves could serve

as a feature. However, as all queries have distinct identifiers, there was no way to

reuse a query’s original ranking in its given shape as queries in the training set did

not overlap with any queries in the test set. A workaround was then implemented, by

using the category from each queryfull query instead of the raw query id. Upon further

inspection, it turned out that for all queries in the same category, the rankings had slight

variations.

Figure 4.1 displays an excerpt from the dataset containing multiple queries on the same

category. In most cases the highest ranked items remained in the top spots, although

shuffled. One assumption is that the rankings’ variation could be explained by factors as

decisions made by the retailer over time. Another assumption is that the variations could

be explained as an already existing form of personalization. No conclusions were to be

made, but we managed to construct a feature on this behaviour, named mean prior rank :

mean prior rank(q, i) =

1−
∑

c∈q,i∈q rank(i)

nq,i
, if i ∈ q

0 otherwise
(4.3)

Chapter 4 Approach 36

where rank(i) denotes the normalized rank (i.e., index) of item i with respect to all

items in query q, and nq,i denotes the number of queries item i appear in. We invert

the result of the fraction to get a feature score in the range [0, 1], where a value closer

to 1 indicates it is on average ranked among the top items.

Queryfull features include searchstring terms, which in some cases directly overlap with

product name terms. This is an example of a direct textual match of the search, but as

there is a mere 14.7% overlap between the searchstring terms and product name terms

in total, this does not occur frequently. The next feature, cosine similarity tries to find

items with product name terms similar to the search string terms through the use of

TFIDF weighted values. By using the TFIDF values from the product name tokens and

the query searchstring tokens we can perform a cosine similarity function upon the two

sets. Given vectors containing the presence of terms in a query and a product name,

the cosine similarity is represented on a scale from 0 to 1. The equation is formally

described as:

cosine similarity(q, i) = cos(θq,i) =

n∑
j=1

termq,j · termi,j√
n∑

j=1
term2

q,j ·
√

n∑
j=1

term2
i,j

(4.4)

where θq,i represents the angle between the TFIDF values of the query terms and the

item terms, termq,j and termi,j denotes the TFIDF values of the terms in the query and

the item respectively. This feature effectively represents how well the query matches the

item in terms of tokens.

4.2.2 Item-dependent features

In addition to the query-item dependent features, we also include a set of item-dependent

features. These are features that depend on the item itself and its related behavioural

statistics. Following are the three features selected for the item-dependent group.

By assuming purchases and clicks being the most valuable indicators for relevance, we

focus on features that utilize these resources. The two next features are based on gen-

eral popularity of the items in the product catalog, namely clicks normalized and pur-

chases normalized. They make up two equations as follows:

clicks normalized(i) =
#clicks(i)

max(#clicks(P))
(4.5)

where #clicks(i) denotes the number of clicks on item i, and #clicks(P) denotes the

clicks of products in the product catalog P . The score of this feature is normalized

Chapter 4 Approach 37

as the denominator of Eq. (4.5) selects the number of clicks with respect to the most

frequently clicked item.

purchases normalized(i) =
#purchases(i)

max(#purchases(P))
(4.6)

where the same definitions apply as seen in Eq. (4.5). Both of these features are consid-

ered query type-independent, and relies only on the respective user behaviours. Having

this property, we can include these features in both sets of feature vectors.

Lastly, we try to extract information that could be described as purchases associated

with an item. Items purchased are grouped by an attribute named ordernum which tells

us which items were bought together. By looking at items that are frequently bought

together, an assumption is developed claiming the items bought in the same order as

a given item may be of relevance. Also, this relevance would be proportional to the

frequency of the items coexisting in orders. We perform preprocessing on this feature in

order to count all pairs of items bought together, and group them in a dictionary of bins.

Each key of the dictionary corresponds to an item id, and the value is a bin of items

that were bought with the respective item id. The sizes of these bins tells us about the

range of items that are purchased alongside each item. The feature associated purchases

is defined as:

associated purchases(i) =
ni,o − 1

max(no)
, i ∈ o (4.7)

where ni,o is the number of items in an order o containing item i, and the normalizing

denominator max(no) denotes the order with highest amount of items. We subtract 1

from the size of the order to effectively skip the counting of item i. As a result, this

feature provides a zero value when an item has never been purchased alongside other

items. However, when items have been purchased with other items, we raise the value

proportionately to the number of associated items.

Chapter 4 Approach 38

4.2.3 User-item-dependent features

The last category of features contains one feature, which is named user revisit. The idea

of this feature is that when a user makes a purchase, it is likely that the user has visited

(i.e., clicked) the item one or more times beforehand. Items that have been revisited

by the same user multiple times indicate complex signals [27]; interest and hesitation,

which in turn may serve as basis for a feature. By counting and grouping all clicks made

by a user, we establish a dictionary where the key is a (user id, item id)-tuple, and the

value is the amount of times the user has clicked this item. It is formally defined as:

user revisit(u, i) =

#clicks(u, i) if u ∈ U

0 otherwise
(4.8)

where u is the user id, and i is the item id. This equation is simple where the user id

exists, as we make the assumption that all test queries appear after the train queries.

Meaning, we intuitively think of the train queries as “past” or “history”, while the test

queries represent “present” queries. There is no normalization performed, so this feature

will give raw values for the amount of times an item has been clicked by the same user.

It is often the case that the user is anonymous, in that case the feature provides a zero

value.

4.3 Supervised Learning

To make use of the features extracted, we need to put them into feature vectors. An

example of a feature vector looks as follows:

F = (f1, f2, ..., fn) (4.9)

where F is the feature vector containing n features fi. Note that as we distinguish

between the different query types, we subsequently need to distinguish between two kinds

of feature vectors. This gives us (1) the queryless feature vectors including features that

are queryless or compatible with both and (2) the queryfull feature vectors including

features that are queryfull or compatible with both. This is important as we train two

separate models for each query type.

The performance of these features are evaluated individually and in groups as seen in

Table 4.2.

Having extracted the features and vectorized them, we also need to compute the actual

relevance of our training set. For convenience we performed preprocessing on all the

training queries, and the items contained, in order to label them with a defined measure

Chapter 4 Approach 39

Table 4.2: Features and feature groups subject to performance measuring

Label Feature vector configurations Query target

1 category clicks both (substitute cat. for q.f.)

2 category purchases both (substitute cat. for q.f.)

3 mean prior rank queryless

4 cosine similarity queryfull

5 clicks normalized both

6 purchases normalized both

7 associated purchases both

8 user revisit both

Queryfull + Queryless f. v. config.

Group A 5,6,7,8 + 3,5,6,7,8 mixed

Group B 4,5,6,7,8 + 3,5,6,7,8 mixed

Group C 1,2,4,5,6,7,8 + 1,2,3,5,6,7,8 mixed

of relevance as stated in Section 4.1. These labels are referred to as training labels,

and specify relevance values for the query-item pairs. By providing a vector of feature

vectors as train x and a vector of relevance labels train y where each vector in train x

corresponds to a relevance label in train y as input to the model, we perform the fitting.

The training procedure is explained in Algorithm 1:

Algorithm 1 Training models with feature vectors and relevance labels

1: procedure TrainModel(train queries, train labels, feature dict)
2: model qf ← init LinearRegression
3: model ql ← init LinearRegression
4: f qf ← [] . Vector of queryfull f. vectors
5: f ql ← [] . Vector of queryless f. vectors
6: rel qf ← [] . Vector of queryfull rel. labels
7: rel ql ← [] . Vector of queryless rel. labels
8: for all train query in train queries do
9: for all item in train query do

10: rel val ← relevance label from train labels
11: if train query is queryless then
12: f vector ← queryless feature values from feature dict
13: f ql ← f ql + f vector
14: rel ql ← rel ql + rel val
15: else if train query is queryfull then
16: f vector ← queryfull feature values from feature dict
17: f qf ← f qf + f vector
18: rel qf ← rel qf + rel val

19: trained model qf ← model qf.fit (f qf, rel qf)
20: trained model ql ← model ql.fit (f ql, rel ql)
21: return trained model qf, trained model ql

Chapter 4 Approach 40

where train queries represents all the queries from the train set, train labels is the list

of relevance labels that correspond to each query in train queries, and feature dict is a

preprocessed dictionary with a (feature name, query id, item id) triple as key, and the

feature score as value.

After the models have been successfully fit with training data and training labels, they

are applicable for predicting results of previously unseen queries. The prediction phase

is similar to the training phase, although as we predict scores query by query, we do

not require a vector of feature vectors. Instead, we produce a similar feature vector and

feed it into a model we effectively estimate the relevance as output. The procedure of

predicting is described in Algorithm 2:

Algorithm 2 Predicting and writing results out to file

1: procedure PerformPrediction(model ql, model qf, test queries, feature dict)
2: for all test query in test queries do
3: item score map ← {}
4: for all item in test query do
5: if test query is queryless then
6: f vector ← queryless feature values from feature dict
7: score ← model ql.predict (f vector)
8: else if test query is queryfull then
9: f vector ← queryfull feature values from feature dict

10: score ← model qf.predict (f vector)

11: item score map[item] ← score

12: scorestr ← item score map keys ranked by score sep. by comma
13: writeln (test query + scorestr)

where model ql is a trained queryless model, model qf is a trained queryfull model, and

test queries represents all the queries from the test set.

The fourth and final phase of the experiment revolves around evaluating the predictions

retrieved in phase three. CIKM published their scoring script used in the competition

which we use for our predictions. Alongside the scoring script, a ground truth reference

document is also provided, describing the optimal rankings of the test queries. Iterating

through all of the experimentally predicted queries, each query gets a respective NDCG

scores using an item-relevance look-up from the ground truth reference. The final output

is a set of three NDCG scores; one for queryfull queries, one for queryless queries, and

the weighted average of the two.

4.4 Implementation

The actual implementation is a framework written in Python 3 with Anaconda version 4,

and uses modules as Scikit-Learn for the learning of statistical models, NumPy as basis

for scientific computation, and Pandas for data structures and transformation of these.

Chapter 4 Approach 41

The resulting framework performs single or batch operations for feature extraction,

model training, model testing and prediction evaluation. In other words, every phase of

the main experiments can be executed as a task in the framework.

init

Select task

1: Extract feature(s) 1.1: Select feature(s) 1.2: Compute features

1.3: Export features

2: Train model 2.2: Select model 2.3: Select feature(s) 2.4: Train model

2.5: Export model and meta

3: Test model 3.1 Select model 3.2 Test model

3.3 Export predictions and meta

4: Evaluate predictions 4.1: Select prediction set 4.2: Evaluate predictions

4.3: Export evaluation scores

1

2

3

4

imports

imports

imports

Figure 4.2: Architectural overview of the experimental framework

As displayed in Figure 4.2, each task produces an export of data. Task 1 produces

features extracted, Task 2 produces a trained model and meta-data about features used,

Task 3 exports predictions and similar meta-data (for human readability), and Task 4

exports the scores of prediction evaluation. The strength in dividing the experiments

into these 4 steps is minimizing the amount of work to redo if an exception occurs

because of invalid data, erroneous coding or by running out of memory. As each task

exports the data it has computed, the next task can read this data from disk on demand.

Chapter 4 Approach 42

In addition, we can rerun subsequent tasks as many times as we like as the exported

data from previous tasks is not modified.

This framework has undergone multiple revisions to perform the computational tasks

as efficient as possible with respect to running time and memory usage. Loading one or

several large dataframes into memory and merging them into features has to be done

with caution in order to stay below the memory limitations of the computer running the

experiments. Processing the data loaded from large files in chunks at a time helped by

significantly reducing the memory usage.

In detail, Task 1-4 from Figure 4.2 are summarized as follows:

• Task 1: Extract features - Load and transform data from training files into

features to be used in the model training. The feature-options available in Step 1.1

correspond to scripts that have been written with two key concerns; preprocessing

of data and computation of a specific feature value for a given query-item pair.

All feature-scripts share these two functions, and are responsible for loading and

preprocessing the data required for computation of its feature values, so that we

can efficiently get them on demand when training the model. To achieve this, we

produce intermediate files containing triples of (queryid, itemid, featureval) to be

used in Task 2.

orders = pd.read_csv(os.path.join(feature.options["data_dir"],"train -purchases.csv"),
sep=";"). groupby (["ordernumber","userId"]).agg({’itemId ’: lambda x: ",".join(str(i)
for i in list(x))}). reset_index ()

Figure 4.3: Excerpt from a feature extraction script, mapping purchase orders of
users to lists of items purchased

• Task 2: Train model - Decide upon a model (e.g., linear regression, random

forest regression) and load the intermediate files exported in Task 1. When training

the model, a choice is presented as to which features should be included. This

allows for dynamic selection of features, for either evaluation of individual features

or groups of features. Once the model is trained, it is serialized and stored on

disk alongside a meta-data file containing the names of the features used in the

training. These outputs are used in Task 3.

f_qless.append ([[[c for c in file_row.strip (). split(",")]
for file_row in joint_row][i][-1] for i in qless_indices])

Figure 4.4: Excerpt from model training, appending queryless features to a vector of
feature vectors

• Task 3: Test model - Predict the ranking of the items in a query for all queries

in the test set, using a selected pre-trained model and its related meta-data. The

Chapter 4 Approach 43

meta-data comes into play when we want to recreate feature vectors, as we need to

know which features to include. In a similar fashion to that of Task 1, we extract

features for said vectors, to provide new observations in the same format familiar

to the model. As each query-item pair receives a predicted relevance score, we can

rank all the items within a query. Lastly, all queries and their ranked items are

exported to disk for evaluation in Task 4. The meta-data exported from this is

mainly used by a human to know which combination of model and feature set was

used.

f.write(" ".join([str(query_params [" query_id "]), ",".join([str(x[0]) for x in
sorted(item_scores.items(), key=operator.itemgetter (1), reverse=True)])])+"\n")

Figure 4.5: Excerpt from model testing, writing predictions with leading query id
and a comma separated ranked list of item ids

• Task 4: Evaluate predictions - Run the scoring script with the exported pre-

dictions to receive NDCG scores. This script is provided by CIKM and is slightly

modified to be contained within the framework as a cradle-to-grave solution. The

output of task 4 is written to disk, and is the result of our experiment as a whole,

being the scores of how well the model performed with the extracted features.

Chapter 5

Results

Recall, the goal of this challenge is to re-rank the items retrieved by all queries in the

dataset provided by CIKM. Doing so, we wish to improve the NDCG scores by using our

custom features in combination with a model trained through linear regression. This

chapter provides results for our attempts. Recall that the NDCG measure is calculated

on our predictions with respect to the ground truth, and for this task the score is divided

into three parts; queryfull NDCG, queryless NDCG and a weighted average between the

two.

5.1 Individual Features

The results presented in Figure 5.1 and 5.2 are NDCG scores for evaluating models

trained on individual features, ranked in descending order with respect to the average

NDCG score. The labels of each feature on the horizontal axis correspond to those of

Table 4.2.

44

Chapter 5 Results 45

1 2 3 4

0.1

0.2

0.3

0.4

0.35 0.35 0.34
0.36

0.34

0.31

0.26 0.25

0.34

0.3

0.23 0.23

NDCG scores by feature

Figure 5.1: Q.-I.-dep. features

5 6 7 8

0.1

0.2

0.3

0.4 0.38 0.37
0.36 0.350.35

0.31

0.28
0.25

0.34

0.3

0.25
0.23

NDCG scores by feature

NDCG (Queryfull)

NDCG (Average)

NDCG (Queryless)

Figure 5.2: I.-dep. and U.-I.-
dep. features

Exact values for the individual feature evaluations are displayed in Table 5.1.

Table 5.1: Evaluation scores for models trained on individual features, ranked on
average NDCG

Label NDCG (Final) NDCG (Q.f.) NDCG (Q.l.) Feature

5 .3478 .3818 .3393 clicks normalized

1 .3436 .3481 .3425 category clicks

6 .3129 .3713 .2983 purchases normalized

2 .3082 .3481 .2983 category purchases

7 .2752 .3576 .2546 associated purchases

3 .2563 .3438 .2344 mean prior rank

4 .2548 .3596 .2287 cosine similarity

8 .2525 .3481 .2287 user revisit

Looking at the results of the individual features, clicks normalized performed best on

queryfull with a score of .3818 and on the average score with a score of .3478. The best

performing feature on queryless queries is category clicks with a score of .3425.

Chapter 5 Results 46

5.2 Feature Combinations

The results presented in Figure 5.3 are NDCG scores for evaluating models trained on

feature groups, ranked in descending order with respect to the average NDCG score.

The labels of each feature on the horizontal axis correspond to those of Table 4.2.

Group C Group B Group A

0.1

0.2

0.3

0.4 0.391 0.390 0.380
0.351 0.341 0.3390.341 0.329 0.329

NDCG scores by feature groups

Figure 5.3: Feature Combinations

Exact values for the feature combination evaluations are displayed in Table 5.2

Table 5.2: Evaluation scores for models trained on groups of features, ranked on
average NDCG

Label NDCG (Final) NDCG (Q.f.) NDCG (Q.l.) Feature conf. (Q.f. + Q.l.)

Group C .3511 .3910 .3411 1,2,4,5,6,7,8 + 1,2,3,5,6,7,8

Group B .3413 .3899 .3292 4,5,6,7,8 + 3,5,6,7,8

Group A .3394 .3799 .3292 5,6,7,8 + 3,5,6,7,8

Group C performed best out of the three groups of features.

Chapter 5 Results 47

5.3 Overall Results

The overall results for the top performing features and combinations are displayed in

Table 5.3.

Table 5.3: NDCG scores for best performing feature configurations for queryless and
queryfull features

Label NDCG (Final) NDCG (Q.f.) NDCG (Q.l.) Feature(s)

Best feature (QF) 0.3478 0.3818 0.3393 clicks normalized
Best feature (QL) 0.3436 0.3481 0.3425 category clicks

Best feature group 0.3511 0.3910 0.3411 Group C

CIKM Baseline 0.3514 0.3840 0.3433

Chapter 6

Discussion

The features chosen for this task were developed with a single concern, to act as indi-

cators for whether or not a feature would increase the relevance for an item in relation

to a query it is contained in. Effectively, every feature can be thought of as its own

hypothesis stating e.g., “The similarity of the keyword search entered by a user and the

product names in the results will impact the relevance of the products”. The scores

calculated for each feature then proves the correctness of the hypotheses in a scale from

zero to one, where higher values mean higher correctness.

It is clear that the click-oriented features in Table 5.1 perform best overall. The

clicks normalized feature works well on queryfull features as well as queryless features,

as it is solely derived from the items’ interaction statistics. On the other hand, cate-

gory clicks improves on the queryless queries as intended, but performs worse on the

queryfull queries, which is sensible as this feature normalizes item clicks on the total

amount of clicks in a category specified by the queryless query. Substituting the cat-

egory with an individual item’s respective category may have distorted this feature in

the case where the query returns items within multiple categories, each with significant

differences in the cumulative amounts of clicks.

The purchase-oriented features were expected to have more impact than the click-

oriented features, due to their assumed strong indication of relevance. However, even

though the scores these features received were adequate, they did not surpass the click-

oriented ones. This is most likely a result of having a significantly higher amount of

click events occurring than purchase events, leading to an inadequate amount of basis

data for the model training. Interestingly, the purchase-features received identical scores

on queryless queries whereas the click-features showed improvement when categorizing.

Again, this is probably explained by the insufficient amount of purchase data as shown

in the statistics in Table 3.7.

Looking at the results for the features combined in groups from Table 5.2, the best

results are better than the results of each individual feature. This is not surprising as

48

Chapter 6 Discussion 49

the scoring of individual features acted only as precursors for our main attempts with

the combinations of features. Group A was the first group to be composed with a set

of features that could fit in both query types, along with mean prior rank for queryless

queries. This configuration scored .3394 on the average score, which is just below the

two top performing individual feature-scores.

The key difference from Group A to Group B was to emphasize the queryfull queries,

so the feature cosine similarity was added to the feature vectors. Even though the

cosine similarity scored relatively low compared to the other features individually, this

feature still improved the queryfull score to a value of .3899. The baseline scored .3840

for queryfull queries, so we succeeded in improving the NDCG for this type of queries.

Group C is a continuation of Group B with two added features to further improve

the scores of the queryless queries; category clicks and category purchases. These two

features improved all of the scores, making the average score our best at .3511. Overall

the features ended up being effective towards making the goal of this thesis.

Chapter 7

Conclusion

In this thesis we have addressed the task of learning to rank on an e-commerce domain

acting as our submission to CIKM Cup 2016 Personalized Search Challenge. We have

applied our best efforts in analyzing historical data, browsing logs and user interactions

from the data set and accordingly, we designed custom features. The features extracted

have been applied to train statistical models to predict and maximize relevance of items

in respect to the queries they appear as results.

We have developed an experimental framework that performs each segment of the ex-

periments in tasks for convenience, allowing efficient processing as opposed to taking

greedy approaches prone to memory issues. We have utilized this framework to run

tasks that yielded all the necessary data as basis for insights for this thesis.

We have designed custom features by thorough inspection and observation of the data set

provided. We found that for our selection of features, the click-oriented ones performed

the strongest. All features we have developed proved to be effective in improving the

re-ranking of queries. The scores for the feature groups have successfully shown to be

increasing for added complexity in the experiments. As a result, the baseline has been

surpassed on the queryfull scores.

In future work, more features can be derived with more focus on improving the query-

less features. More advanced machine learning algorithms should be explored to cross-

compare performance. With limited resources available at the time of writing, we have

not performed the experiments on more complex models as the hardware specifications

required for running reasonably large experiments exceeded the capabilities of the hard-

ware we disposed. The experiments we have performed were run on a virtual machine in

Azure Cloud Services, which if we were to continue using, would become too expensive.

Further improvements may also be done on personalizing features as there have been

a list of attributes we have not pursued, as well as an abundance of anonymous users.

50

Chapter 7 Conclusion 51

Time-specific popularity windows, trends and more sophisticated means of finding in-

dications of relevant aspects of the data could be explored. Further exploration could

also be done on sessions, connecting associated user-interactions to the corresponding

sessions to gain new insights. In the case of textual comparison between query and

product, there are methods to deduct semantic relevance between (groups of) tokens

that possibly could overcome the problem of having insufficient overlapping tokens.

Acknowledgement

I would like to thank my mentor and supervisor, Krisztian Balog from the University of

Stavanger, for sharing his expertise and thus providing valuable insights and pointing

me in the right direction in times of need.

I would also like to thank Glenn F. Henriksen from Capgemini for providing access to

state-of-the-art resources through Azure. Running highly memory-intensive experiments

was one of the main challenges over the entire run, however with access to powerful

virtual machines in the cloud, this was no longer a problem. I could not have gotten

nearly as many experiments done without his contribution.

52

Bibliography

[1] J. Scott Armstrong. “Illusions in regression analysis”. In: International Journal of

Forecasting 28.3 (2012), pp. 689–694.

[2] Joeran Beel et al. “Research-paper recommender systems: a literature survey”. In:

International Journal on Digital Libraries 17.4 (2016), pp. 305–338.

[3] Giosué Lo Bosco and Mattia Antonino Di Gangi. “Deep learning architectures

for DNA sequence classification”. In: International Workshop on Fuzzy Logic and

Applications. Springer. 2016, pp. 162–171.

[4] Ming Yan Chen Wu and Luo Si. Ensemble Methods for Personalized E-Commerce

SearchChallenge at CIKM Cup 2016. Tech. rep. 2016.

[5] Sung H. Chung et al. “The Impact of Images on User Clicks in Product Search”. In:

Proceedings of the Twelfth International Workshop on Multimedia Data Mining.

MDMKDD ’12. Beijing, China: ACM, 2012, pp. 25–33.

[6] Nick Craswell. “Mean Reciprocal Rank”. In: Encyclopedia of Database Systems.

Ed. by Ling Liu and M. Tamer Özsu. Boston, MA: Springer US, 2009, pp. 1703–

1703.

[7] Adele Cutler, D. Richard Cutler, and John R. Stevens. “Random Forests”. In:

Ensemble Machine Learning: Methods and Applications. Ed. by Cha Zhang and

Yunqian Ma. Boston, MA: Springer US, 2012, pp. 157–175.

[8] Andrew Davis. Amazon Passes Google as Top Destination for Shopping Research

[Report]. https://searchenginewatch.com/sew/study/2196747/amazon-passes-

google-as-top-destination-for-shopping-research-report. Accessed: 2016-

12-23.

[9] Angela Dean, Daniel Voss, and Danel Draguljić. “Polynomial Regression”. In:

Design and Analysis of Experiments. Springer, 2017, pp. 249–284.

[10] Wei Di et al. “Is a Picture Really Worth a Thousand Words?: - on the Role of

Images in e-Commerce”. In: Proceedings of the 7th ACM International Conference

on Web Search and Data Mining. WSDM ’14. New York, New York, USA: ACM,

2014, pp. 633–642.

53

https://searchenginewatch.com/sew/study/2196747/amazon-passes-google-as-top-destination-for-shopping-research-report
https://searchenginewatch.com/sew/study/2196747/amazon-passes-google-as-top-destination-for-shopping-research-report

BIBLIOGRAPHY 54

[11] Huizhong Duan et al. “A probabilistic mixture model for mining and analyzing

product search log”. In: Proceedings of the 22nd ACM international conference

on Conference on information & knowledge management. CIKM ’13. San

Francisco, California, USA: ACM, 2013, pp. 2179–2188.

[12] Kevin Duh and Katrin Kirchhoff. “Learning to rank with partially-labeled data”.

In: Proceedings of the 31st annual international ACM SIGIR conference on Re-

search and development in information retrieval. SIGIR ’08. Singapore, Singapore:

ACM, 2008, pp. 251–258.

[13] Amir-massoud Farahmand and Csaba Szepesvári. “Model selection in reinforce-

ment learning”. In: Machine Learning 85.3 (2011), pp. 299–332.

[14] Aman Berhane Ghirmatsion and Krisztian Balog. “Probabilistic Field Mapping

for Product Search”. In: CLEF. 2015.

[15] Manish Gupta, Michael Bendersky, et al. “Information retrieval with verbose

queries”. In: Foundations and Trends in Information Retrieval 9.3-4 (2015), pp. 209–

354.

[16] Nadjla Hariri, Zahra Emami, and Mojtaba Malek. “The Precision and Recall of

General Search Engines in Retreival of Images Related to Endocrine Diseases”. In:

Iranian Journal of Endocrinology and Metabolism 17.2 (2015), pp. 97–104.

[17] Eric Harth and Philippe Dugerdil. “Document Retrieval Metrics for Program Un-

derstanding”. In: Proceedings of the 7th Forum for Information Retrieval Evalua-

tion. FIRE ’15. Gandhinagar, India: ACM, 2015, pp. 8–15.

[18] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. “Overview of Supervised

Learning”. In: The Elements of Statistical Learning: Data Mining, Inference, and

Prediction. New York, NY: Springer New York, 2009, pp. 9–41.

[19] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. “Unsupervised Learn-

ing”. In: The Elements of Statistical Learning: Data Mining, Inference, and Pre-

diction. New York, NY: Springer New York, 2009, pp. 485–585.

[20] Kjell Arne Hellum. Information Retrieval using applied Supervised Learning for

Personalized E-Commerce Search at CIKM Cup 2016. Tech. rep. 2016.

[21] Sujuan Hou et al. “Multi-label learning with label relevance in advertising video”.

In: Neurocomputing 171 (2016), pp. 932–948.

[22] Laurent Hyafil and Ronald L. Rivest. “Constructing optimal binary decision trees

is NP-complete”. In: Information Processing Letters 5.1 (1976), pp. 15–17.

[23] Gareth James et al. “Linear Regression”. In: An Introduction to Statistical Learn-

ing: with Applications in R. New York, NY: Springer New York, 2013, pp. 59–

126.

[24] Gareth James et al. “Tree-Based Methods”. In: An Introduction to Statistical

Learning: with Applications in R. New York, NY: Springer New York, 2013, pp. 303–

335.

BIBLIOGRAPHY 55

[25] Thorsten Joachims. “Support Vector Machines”. In: Learning to Classify Text

Using Support Vector Machines. Boston, MA: Springer US, 2002, pp. 35–44.

[26] Dan J. Kim, Donald L. Ferrin, and H. Raghav Rao. “A Trust-based Consumer

Decision-making Model in Electronic Commerce: The Role of Trust, Perceived

Risk, and Their Antecedents”. In: Decis. Support Syst. 44.2 (Jan. 2008), pp. 544–

564.

[27] Khamsum Kinley et al. “Modeling users’ web search behavior and their cognitive

styles”. In: Journal of the Association for Information Science and Technology

65.6 (2014), pp. 1107–1123.

[28] David G. Kleinbaum and Mitchel Klein. “Introduction to Logistic Regression”.

In: Logistic Regression: A Self-Learning Text. New York, NY: Springer New York,

2010, pp. 1–39.

[29] Deqjang Kong et al. Personalized Feature based Re-Ranking Method for E-commerce

Search at CIKM Cup 2016. Tech. rep. 2016.

[30] Santosh Kumar et al. “A Machine Learning Based Web Spam Filtering Approach”.

In: Advanced Information Networking and Applications (AINA), 2016 IEEE 30th

International Conference on. IEEE. 2016, pp. 973–980.

[31] Amy N Langville and Carl D Meyer. Google’s PageRank and beyond: The science

of search engine rankings. Princeton University Press, 2011, pp. 25–30.

[32] Adam Lella. comScore Releases September 2014 U.S. Search Engine Rankings.

http://www.comscore.com/Insights/Rankings/comScore-Releases-September-

2014-US-Search-Engine-Rankings. Accessed: 2016-12-23.

[33] “Normalized Discounted Cumulated Gain (nDCG)”. In: Encyclopedia of Database

Systems. Ed. by Ling Liu and M. Tamer Özsu. Boston, MA: Springer US, 2009,

pp. 1920–1920.

[34] Tie-Yan Liu. “Learning to Rank for Information Retrieval”. In: Proceedings of

the 33rd International ACM SIGIR Conference on Research and Development in

Information Retrieval. SIGIR ’10. Geneva, Switzerland: ACM, 2010, 225–331.

[35] Cuicui Luo, Desheng Wu, and Dexiang Wu. “A deep learning approach for credit

scoring using credit default swaps”. In: Engineering Applications of Artificial In-

telligence (2016).

[36] Yuanhua Lv et al. “Learning to Model Relatedness for News Recommendation”.

In: Proceedings of the 20th International Conference on World Wide Web. WWW

’11. Hyderabad, India: ACM, 2011, pp. 57–66.

[37] Hanspeter A. Mallot. “Artificial Neural Networks”. In: Computational Neuro-

science: A First Course. Heidelberg: Springer International Publishing, 2013, pp. 83–

112.

http://www.comscore.com/Insights/Rankings/comScore-Releases-September-2014-US-Search-Engine-Rankings
http://www.comscore.com/Insights/Rankings/comScore-Releases-September-2014-US-Search-Engine-Rankings

BIBLIOGRAPHY 56

[38] I Dan Melamed, Ryan Green, and Joseph P Turian. “Precision and recall of ma-

chine translation”. In: Proceedings of the 2003 Conference of the North American

Chapter of the Association for Computational Linguistics on Human Language

Technology: companion volume of the Proceedings of HLT-NAACL 2003–short

papers-Volume 2. Association for Computational Linguistics. 2003, pp. 61–63.

[39] M. Narasimha Murty and V. Susheela Devi. “Decision Trees”. In: Pattern Recog-

nition: An Algorithmic Approach. London: Springer London, 2011, pp. 123–146.

[40] Joao Palotti. Learning to Rank for Personalized E-Commerce Search at CIKM

Cup 2016. Tech. rep. 2016.

[41] Generalized Transition-based Dependency Parsing. “Natural language processing”.

In: Proceedings of the ACL Workshop on Statistical NLP and Weighted Automata

(StatFSM). 2016, pp. 32–41.

[42] Michael Patrick Allen. “Assumptions of ordinary least-squares estimation”. In:

Understanding Regression Analysis. Boston, MA: Springer US, 1997, pp. 181–185.

[43] Robi Polikar. “Ensemble Learning”. In: Ensemble Machine Learning: Methods and

Applications. Ed. by Cha Zhang and Yunqian Ma. Boston, MA: Springer US, 2012,

pp. 1–34.

[44] Anand Rajaraman and Jeffrey David Ullman. Mining of Massive Datasets. Cam-

bridge University Press, 2011, pp. 1–17.

[45] Rajnish M Rakholia and Jatinderkumar R Saini. “Information Retrieval for Gu-

jarati Language Using Cosine Similarity Based Vector Space Model”. In: Proceed-

ings of the 5th International Conference on Frontiers in Intelligent Computing:

Theory and Applications. Springer. 2017, pp. 1–9.

[46] G. Salton, A. Wong, and C. S. Yang. “A Vector Space Model for Automatic In-

dexing”. In: Commun. ACM 18.11 (Nov. 1975), pp. 613–620. issn: 0001-0782.

[47] Gerard Salton and Christopher Buckley. “Term-weighting approaches in automatic

text retrieval”. In: Information processing & management 24.5 (1988), pp. 513–

523.

[48] Zuhaib Ahmed Shaikh et al. “Machine Learning based Number Plate Detection

and Recognition”. In: Proceedings of the 5th International Conference on Pat-

tern Recognition Applications and Methods. SCITEPRESS-Science and Technol-

ogy Publications, Lda. 2016, pp. 327–333.

[49] Zuhaib Ahmed Shaikh et al. “Machine Learning based Number Plate Detection

and Recognition”. In: Proceedings of the 5th International Conference on Pat-

tern Recognition Applications and Methods. SCITEPRESS-Science and Technol-

ogy Publications, Lda. 2016, pp. 327–333.

[50] Lidan Shou et al. “Supporting privacy protection in personalized web search”. In:

IEEE transactions on knowledge and data engineering 26.2 (2014), pp. 453–467.

BIBLIOGRAPHY 57

[51] Phil Simon. “The Elements of Persuasion: Big Data Techniques”. In: Too Big to

Ignore. John Wiley Sons, Inc., 2012, pp. 77–109.

[52] Li Sujian. “Research of Relevancy between Sentences Based on Semantic Computa

tion [J]”. In: Computer Engineering and Applications 7 (2002), pp. 75–76.

[53] Martin Wistuba and Lars Schmidt-Thieme. Gradient Boosted Decision Trees for

Personalized E-Commerce Search at CIKM Cup 2016. Tech. rep. 2016.

[54] Sorrachai Yingchareonthawornchai et al. “Precision, recall, and sensitivity of moni-

toring partially synchronous distributed systems”. In: International Conference on

Runtime Verification. Springer. 2016, pp. 420–435.

[55] Jun Yu et al. “Latent Dirichlet Allocation Based Diversified Retrieval for e-Commerce

Search”. In: Proceedings of the 7th ACM International Conference on Web Search

and Data Mining. WSDM ’14. New York, New York, USA: ACM, 2014, pp. 463–

472.

[56] ChengXiang Zhai and Sean Massung. Text Data Management and Analysis: A

Practical Introduction to Information Retrieval and Text Mining. New York, NY,

USA: Association for Computing Machinery and Morgan & Claypool, 2016,

172–172.

[57] Ethan Zhang and Yi Zhang. “Average Precision”. In: Encyclopedia of Database

Systems. Ed. by Ling Liu and M. Tamer Özsu. Boston, MA: Springer US, 2009,

pp. 192–193.

Appendices

58

Appendix A

Attachments

Attached in this document is all relevant source code in a zipped (.zip format) file, and

a readme.txt describing details on how to run the code.

59

computation/__pycache__/_prettyprogress.cpython-35.pyc

computation/__pycache__/_prettyprogress.cpython-36.pyc

computation/__pycache__/mappify.cpython-35.pyc

computation/__pycache__/mappify.cpython-36.pyc

computation/__pycache__/test.cpython-35.pyc

computation/__pycache__/test.cpython-36.pyc

computation/__pycache__/test_qdist.cpython-35.pyc

computation/__pycache__/train.cpython-35.pyc

computation/__pycache__/train.cpython-36.pyc

computation/__pycache__/train_qdist.cpython-35.pyc

computation/mappify.py

import numpy as np
import pandas as pd
import os
import sys
import datetime
import marshal

from sklearn import linear_model
from sklearn import ensemble
from sklearn.externals import joblib

from utils.prettyprogress import PrettyProgress

class Mappifier:

 def __init__(self, options):
 self.options = options

 def save_as_map(self, feature_filename, out_filename, keyindices, valueindex):
 fmap = {}

 target = 92271275
 progress = PrettyProgress(target, self.options["print_step"])

 out_path = os.path.join(self.options["out_dir"], "features", "maps", "{}.pkl".format(out_filename))

 print("Saving '{}' to '{}'...".format(feature_filename, out_path))
 print("\n- Step 1 of 2: Building map ...")
 feature_path = os.path.join(self.options["out_dir"], "features", "{}.csv".format(feature_filename))
 for chunk in pd.read_table(feature_path, sep=",", chunksize=self.options["chunksize"]):
 for row in chunk.values:
 keyelements = [str(int(row[x])) if row[x] != 'None' else "0" for x in keyindices]
 key = "#".join(keyelements)
 fmap[key] = float(row[valueindex])
 progress.update()
 print("\n- Step 2 of 2: Saving map ...")
 self.save_map(fmap, out_path)
 print("DONE!")

 def save_map(self, themap, out_path):
 with open(out_path, 'wb') as f:
 marshal.dump(themap, f)

 def load_map(self, filename):
 with open(os.path.join(self.options["out_dir"], "features", "maps", "{}.pkl".format(filename)), 'rb') as f:
 return marshal.load(f)

computation/test.py

import numpy as np
import pandas as pd
import os
import sys
import datetime
import operator
from sklearn import linear_model
from sklearn import ensemble
from sklearn.externals import joblib

from .mappify import Mappifier
from utils.prettyprogress import PrettyProgress

class ModelTester:
 def __init__(self, options, model_name):
 self.options = options
 self.model_name = model_name

 def load_model(self):
 self.meta = [x.strip() for x in open(os.path.join(self.options["out_dir"], "train_temp", "meta.txt"), 'r').readlines()]
 self.model = joblib.load(os.path.join(self.options["out_dir"], "models", "{}.pkl".format(self.model_name)))
 print("Model successfully loaded!")

 def start(self):
 print("Starting test...")
 self.load_model()

 print("\n\nStep 1 of 3: Preparing data needed for feature vectors...")
 # build maps with data for lookups

 target_per_file = 92271275
 target = target_per_file * len(self.meta)
 progress = PrettyProgress(target, int(self.options["print_step"]))

 # Build a supermap!!!

 maps = {}
 for i, filename in enumerate(self.meta):
 for chunk in pd.read_table(os.path.join(self.options["out_dir"], "features", filename + ".csv"), sep=",", chunksize=self.options["chunksize"]):
 for row in chunk.values:
 if filename == "user_revisit":
 maps[filename, row[1], row[2]] = row[3]
 elif filename == "mean_original_cat_rank":
 maps[filename, row[1], row[2]] = row[3]
 else:
 maps[filename, row[1]] = row[2]
 progress.update(1, "Building map {} of {}".format(i+1, len(self.meta)))
 #End

 print("\n\nStep 2 of 3: Writing metadata...")

 timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M")
 out_name = "{}_{}".format(self.model_name, timestamp)
 meta_out_path = os.path.join(self.options["out_dir"], "predictions", "{}.meta.txt".format(out_name))
 out_path = os.path.join(self.options["out_dir"], "predictions", "{}.txt".format(out_name))
 with open(meta_out_path, "w") as f:
 f.write("\n".join(self.meta))

 print("\n\nStep 3 of 3: Predicting relevance and writing results to '{}'...".format(out_path))

 target = 923127
 progress = PrettyProgress(target, int(self.options["print_step"]))

 with open(out_path, "w") as f:
 for chunk in pd.read_table(self.options["data_dir"] + "/train-queries.csv", sep=";", chunksize=self.options["chunksize"]):
 for row in chunk.values:
 # queryId;sessionId;userId;timeframe;duration;eventdate;searchstring.tokens;categoryId;items;is.test
 isTest = row[9]
 if isTest == False or isTest == "False":
 continue

 query_params = {
 "query_id": row[0],
 "user_id": row[2],
 "category_id": row[7],
 "query_items": row[8].split(',')
 }

 result = self.process_query(self.meta, maps, query_params)
 f.write(result)
 progress.update()

 for i in range(10):
 print("###")
 print("===")

 print("\n\n! ! ! ! ! ! ! ! ! ! D O N E ! ! ! ! ! ! ! ! ! ! ! \n\n")

 for i in range(10):
 print("===")
 print("###")

 def process_query(self, feature_names, maps, query_params):
 item_scores = {}
 for item_id in query_params["query_items"]:
 f_vector = self.build_feature_vector(feature_names, maps, item_id, query_params)
 score = self.model.predict([f_vector])[0]
 item_scores[item_id] = score

 outstr = " ".join([str(query_params["query_id"]), ",".join([str(x[0]) for x in sorted(item_scores.items(), key=operator.itemgetter(1), reverse=True)])])+"\n"
 return outstr

 def build_feature_vector(self, feature_names, maps, item_id, query_params):
 # do lookups on each map differently
 f_vector = []
 for key in feature_names:
 if key == "user_revisit":
 user_id = query_params["user_id"]
 f_val = maps.get((key, item_id, user_id), 0)
 elif key == "mean_original_cat_rank":
 cat_id = query_params["category_id"]
 f_val = maps.get((key, item_id, cat_id), 0)
 else:
 f_val = maps.get((key, item_id), 0)
 f_vector.append(f_val)
 return f_vector

computation/test_qdist.py

import numpy as np
import pandas as pd
import os
import sys
import datetime
import operator
import math

import features.tfidf as TFIDF

from sklearn import linear_model
from sklearn import ensemble
from sklearn.externals import joblib

from .mappify import Mappifier
from utils.prettyprogress import PrettyProgress

class ModelTester:
 def __init__(self, options, model_name):
 self.options = options
 self.model_name = model_name

 def load_model(self):
 self.model_qfull = joblib.load(os.path.join(self.options["out_dir"], "models", "{}_qfull.pkl".format(self.model_name)))
 self.model_qless = joblib.load(os.path.join(self.options["out_dir"], "models", "{}_qless.pkl".format(self.model_name)))

 meta_raw = [row.split(" ") for row in open(os.path.join(self.options["out_dir"], "models", "{}.meta".format(self.model_name)), 'r').read().strip().split("\n")]
 if len(meta_raw[0]) > 1:
 self.meta_qfull = [x for x in meta_raw[0][1].strip().split(",") if len(x) > 0]
 else:
 self.meta_qfull = []

 if len(meta_raw[1]) > 1:
 self.meta_qless = [x for x in meta_raw[1][1].strip().split(",") if len(x) > 0]
 else:
 self.meta_qless = []

 print("QLESS:")
 if len(self.meta_qless) > 0:
 print(" - {}".format(",".join(['"{}"'.format(x) for x in self.meta_qless])))
 else:
 print(" - (None)")

 print("QFULL:")
 if len(self.meta_qfull) > 0:
 print(" - {}".format(",".join(['"{}"'.format(x) for x in self.meta_qfull])))
 else:
 print(" - (None)")
 print("Models successfully loaded!")

 def start(self):
 print("Starting test...")
 self.load_model()

 print("\n\nStep 1 of 3: Preparing data needed for feature vectors...")
 # build maps with data for lookups

 all_feature_files = set(self.meta_qfull + self.meta_qless)

 target_per_file = 92271275
 target = target_per_file * len(all_feature_files)
 progress = PrettyProgress(target, int(self.options["print_step"]))

 # Build a supermap!!!

 maps = {}
 if len(all_feature_files) == 1 and "tfidf" in all_feature_files:
 pass # skip map reading
 else:
 for i, filename in enumerate(all_feature_files):
 for chunk in pd.read_table(os.path.join(self.options["out_dir"], "features", filename + ".csv"), sep=",", chunksize=self.options["chunksize"]):
 for row in chunk.values:
 if filename == "user_revisit":
 # include userid
 maps[filename, row[1], row[2]] = row[3]
 elif filename in ["mean_original_cat_rank", "clicks_cat", "purchases_cat"]:
 # include catid
 maps[filename, row[1], row[2]] = row[3]
 elif filename == "tfidf":
 # don't include anything
 pass
 else:
 maps[filename, row[1]] = row[2]
 progress.update(1, "Building map {} of {}".format(i+1, len(all_feature_files)))

 if "tfidf" in self.meta_qfull:
 print("Fetching data required for tfidf feature...")
 item_terms, item_tf, qfull_map, term_idf = TFIDF.prepare_tfidf_data(self.options)
 maps["item_terms"] = item_terms
 maps["item_tf"] = item_tf
 maps["qfull_map"] = qfull_map
 maps["term_idf"] = term_idf
 #End

 print("\n\nStep 2 of 3: Writing metadata...")

 timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M")
 out_name = "{}_{}_qdist".format(self.model_name, timestamp)
 meta_out_path = os.path.join(self.options["out_dir"], "predictions", "{}.meta".format(out_name))
 out_path = os.path.join(self.options["out_dir"], "predictions", "{}.txt".format(out_name))
 with open(meta_out_path, "w") as f:
 f.write("qfull " + ",".join(self.meta_qfull)+"\n")
 f.write("qless " + ",".join(self.meta_qless)+"\n")

 print("\n\nStep 3 of 3: Predicting relevance and writing results to '{}'...".format(out_path))

 target = 923127
 progress = PrettyProgress(target, int(self.options["print_step"]))

 with open(out_path, "w") as f:
 for chunk in pd.read_table(self.options["data_dir"] + "/train-queries.csv", sep=";", chunksize=self.options["chunksize"]):
 for row in chunk.values:
 # queryId;sessionId;userId;timeframe;duration;eventdate;searchstring.tokens;categoryId;items;is.test
 progress.update()

 isTest = row[9]
 if isTest == False or isTest == "False":
 continue

 query_params = {
 "query_id": int(row[0]),
 "user_id": int(row[2]) if not math.isnan(row[2]) else -1,
 "category_id": int(row[7]),
 "query_items": row[8].split(',')
 }

 result = self.process_query(self.meta_qless, self.meta_qfull, maps, query_params)
 f.write(result)

 for i in range(10):
 print("###")
 print("===")

 print("\n\n! ! ! ! ! ! ! ! ! ! D O N E ! ! ! ! ! ! ! ! ! ! ! \n\n")

 for i in range(10):
 print("===")
 print("###")

 def process_query(self, qless_feature_names, qfull_feature_names, maps, query_params):
 item_scores = {}
 for item_id_str in query_params["query_items"]:
 item_id = int(item_id_str)
 f_vector = self.build_feature_vector(qless_feature_names, qfull_feature_names, maps, item_id, query_params)

 if query_params["category_id"] > 0 and len(self.meta_qless) > 0:
 score = self.model_qless.predict([f_vector])[0]
 elif query_params["category_id"] == 0 and len(self.meta_qfull) > 0:
 score = self.model_qfull.predict([f_vector])[0]
 else:
 score = 0
 item_scores[item_id] = score

 outstr = " ".join([str(query_params["query_id"]), ",".join([str(x[0]) for x in sorted(item_scores.items(), key=operator.itemgetter(1), reverse=True)])])+"\n"
 return outstr

 def build_feature_vector(self, qless_feature_names, qfull_feature_names, maps, item_id, query_params):
 # do lookups on each map differently
 f_vector = []
 feature_vector_names = qless_feature_names if query_params["category_id"] > 0 else qfull_feature_names
 for key in feature_vector_names:
 if key == "user_revisit":
 user_id = query_params["user_id"]
 f_val = maps.get((key, item_id, user_id), 0)
 elif key in ["mean_original_cat_rank", "clicks_cat", "purchases_cat"]:
 cat_id = query_params["category_id"]
 f_val = maps.get((key, item_id, cat_id), 0)
 elif key == "tfidf":
 f_val= TFIDF.similarity(maps["qfull_map"], maps["item_terms"], maps["item_tf"], maps["term_idf"], query_params["query_id"], item_id)
 else:
 f_val = maps.get((key, item_id), 0)
 f_vector.append(f_val)
 return f_vector

computation/train.py

import numpy as np
import pandas as pd
import os
import sys
import datetime
from sklearn import linear_model
from sklearn import ensemble
from sklearn.externals import joblib

from utils.prettyprogress import PrettyProgress

class ModelTrainer:

 def __init__(self, options, model_type):
 self.options = options
 self.model_type = model_type

 # Verify model will use model.fit(), else implement what is neccessary.
 try:
 self.model = self.select_model(model_type)
 self.model.fit(np.array([[0, 1, 2, 3], [4,5,6,7]]), np.array([[0],[1]]))
 print("Model valid for training")
 except:
 print("Something went wrong with using the model", self.name)
 sys.exit()

 # select type of model to train
 def select_model(self, model_type):
 if model_type == 0:
 self.name = "LinearRegression"
 return linear_model.LinearRegression()
 elif model_type == 1:
 self.name = "LogisticRegression"
 return linear_model.LogisticRegression(solver="sag")
 elif model_type == 2:
 self.name = "RandomForestTree"
 return ensemble.RandomForestTree()
 else:
 print("Invalid model type or not implemented yet!")

 def train(self, feature_filenames, from_existing=False):
 # Get feature values and relevance labels for given features
 f_np, rel_np = self.load_traindata("f.numpy", "rel.numpy") if from_existing else self.read_data(feature_filenames)

 # Save the training data to disk
 if not from_existing:
 self.save_traindata(f_np, rel_np, feature_filenames)

 # Attempt training the model
 self.do_train(f_np, rel_np)

 # Save model for reuse
 self.save_model()

 # read values from generated feature files and build feature vector
 def read_data(self, feature_filenames):

 full_filenames = []
 print("Reading from: ")
 for i, filename in enumerate(feature_filenames):
 print(" - ", filename)
 full_filenames.append(os.path.join(self.options["out_dir"], "features", filename + ".csv"))

 # pretty print variables
 target_per_file = 92271275
 target = target_per_file * len(feature_filenames)
 progress = PrettyProgress(target, int(self.options["print_step"]))

 # Prepare feature vector
 print("\nPreparing feature vector. This may take some time...")
 f = [[-1 for x in range(len(feature_filenames))] for y in range(target_per_file)]

 # Read values from feature files
 print("\nReading values from feature files...")

 for i, full_filename in enumerate(full_filenames):
 j = 0
 for chunk in pd.read_table(full_filename, sep=",", chunksize=self.options["chunksize"]):
 for row in chunk.values:
 qid = row[0] # not used
 iid = row[1] # not used
 val = row[-1]
 f[j][i] = val
 j += 1
 progress.update()

 # Verify f[0] is array of n elements, n being number of features
 print("\nFirst row: ",f[0])

 # Prepare relevance vector
 print("\nPreparing relevance vector. This may take some time...")
 rel = [[-1] for x in range(target_per_file)]

 # Append relevance labels separately
 print("Appending relevance labels...")
 progress = PrettyProgress(target_per_file, int(self.options["print_step"]))

 i = 0
 for chunk in pd.read_table(os.path.join(self.options["data_dir"], "generated_train-labels.csv"), sep=";", chunksize=self.options["chunksize"]):
 for row in chunk.values:
 qid = row[0] # not used
 iid = row[1] # not used
 rel_val = row[2]
 rel[i] = rel_val
 i += 1
 progress.update()

 print("\nFinishing preparation of feature and relevance vectors...")

 print("Step 1 - Numpifying feature vector...")
 f_np = np.array(f)
 print("Deleting old feature vector (memory reasons)...")
 del(f)
 print("Deleted old feature vector!")

 print("Step 2 - Numpifying relevance vector...")
 rel_np = np.array(rel)
 print("Deleting old relevance vector (memory reasons)...")
 del(rel)
 print("Deleted old relevance vector!")

 return f_np, rel_np

 def do_train(self, f_np, rel_np):
 print("Fitting model... This might take some time!")
 self.model.fit(f_np, rel_np)
 print('Coefficients: \n', self.model.coef_)

 def save_traindata(self, f_np, rel_np, feature_filenames):
 print("Saving metadata to file... (1/3)")
 with open(os.path.join(self.options["out_dir"], "train_temp", "meta.txt"), 'w') as meta_filehandle:
 for f_name in feature_filenames:
 meta_filehandle.write(f_name+"\n")

 print("Saving training data vectors to file... (2/3)")
 f_filehandle = open(os.path.join(self.options["out_dir"], "train_temp", "f.numpy"), 'wb')
 np.save(f_filehandle, f_np)

 print("Saving training data vectors to file... (3/3)")
 rel_filehandle = open(os.path.join(self.options["out_dir"], "train_temp", "rel.numpy"), 'wb')
 np.save(rel_filehandle, rel_np)

 def load_traindata(self, f_name, rel_name):
 with open(os.path.join(self.options["out_dir"], "train_temp", "meta.txt"), 'r') as meta_filehandle:
 feature_filenames = [x.strip('\n') for x in meta_filehandle.readlines()]

 print("Loading training data vectors from file... (2/3)")
 f_np = np.load(open(os.path.join(self.options["out_dir"], "train_temp", f_name), 'rb'))
 print("Loading training data vectors from file... (3/3)")
 rel_np = np.load(open(os.path.join(self.options["out_dir"], "train_temp", rel_name), 'rb'))
 return f_np, rel_np

 def save_model(self):
 print("\nDumping model...")
 timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M")
 model_outname = os.path.join(self.options["out_dir"], "models", "model_{}_{}.pkl".format(self.name, timestamp))
 joblib.dump(self.model, model_outname)
 print("Dumped model to", model_outname)

computation/train_qdist.py

import numpy as np
import pandas as pd
import os
import sys
import datetime
import traceback
from sklearn import linear_model
from sklearn import ensemble
from sklearn.externals import joblib

from utils.prettyprogress import PrettyProgress

class ModelTrainer:

 def __init__(self, options, model_type):
 self.options = options
 self.model_type = model_type

 # Verify model will use model.fit(), else implement what is neccessary.
 try:
 self.model_qfull = self.select_model(model_type)
 self.model_qless = self.select_model(model_type)
 print("Model valid.")
 except:
 print(traceback.format_exc())
 print("Something went wrong with using the model", self.name)
 sys.exit()

 # select type of model to train
 def select_model(self, model_type):
 if model_type == 0:
 self.name = "LinearRegression"

 # validate model
 linear_model.LinearRegression(n_jobs=-1).fit(np.array([[0, 1, 2, 3], [4,5,6,7]]), np.array([[0],[1]]))
 return linear_model.LinearRegression(n_jobs=-1)
 elif model_type == 1:
 self.name = "LogisticRegression"
 # validate model
 linear_model.LogisticRegression(solver="sag").fit(np.array([[0, 1, 2, 3], [4,5,6,7]]), np.array([0,1]))
 return linear_model.LogisticRegression(solver="sag")
 elif model_type == 2:
 self.name = "RandomForestRegressor"
 return ensemble.RandomForestRegressor(n_estimators=100, max_features=2)
 else:
 print("Invalid model type or not implemented yet!")

 def train(self, feature_filenames, feature_types):
 # Get feature values and relevance labels for given features
 f_qfull_np, rel_qfull_np, f_qless_np, rel_qless_np = self.read_data(feature_filenames, feature_types)

 # Save the training data to disk
 #if not from_existing:
 # self.save_traindata(f_np, rel_np, feature_filenames)

 # Attempt training the model
 self.do_train(f_qfull_np, rel_qfull_np, f_qless_np, rel_qless_np)

 # Save models for reuse
 self.save_models_and_meta()

 # read values from generated feature files and build feature vector
 def read_data(self, feature_filenames, feature_types):

 print("Reading from: ")
 for i, filename in enumerate(feature_filenames):
 print(" - ", filename)

 # Build a lookup for queryless features for reference
 print("Mapping queryless features for reference...")
 print(" Loading queries...")
 qless_raw = pd.read_csv(os.path.join(self.options["data_dir"], "train-queries.csv"), sep=";")
 qless_raw = qless_raw[qless_raw["categoryId"] > 0][['queryId']]
 qless = {}

 target = len(qless_raw)
 progress = PrettyProgress(target, int(self.options["print_step"]))

 for i, q in enumerate(qless_raw.iterrows()):
 qless[int(q[1])] = True
 progress.update()
 progress.end()

 del(qless_raw)

 # Prepare feature vectors

 print("\nPreparing feature vectors...")

 self.qfull_feature_names = [f for i, f in enumerate(feature_filenames) if feature_types[i] in ["qfull", "both"]]
 qfull_indices = [feature_filenames.index(f) for f in self.qfull_feature_names]
 self.qless_feature_names = [f for i, f in enumerate(feature_filenames) if feature_types[i] in ["qless", "both"]]
 qless_indices = [feature_filenames.index(f) for f in self.qless_feature_names]

 print("Queryfull features to process: ", ",".join(self.qfull_feature_names))
 print("Queryless features to process: ", ",".join(self.qless_feature_names))

 f_qfull = []
 f_qless = []
 rel_qfull = []
 rel_qless = []

 # pretty print variables
 target_per_file = 92271275
 target = target_per_file
 progress = PrettyProgress(target, int(self.options["print_step"]))

 # Read values from feature files
 print("\nReading values from feature files...")

 filehandles = []
 for filename in feature_filenames:
 filehandles.append(open(os.path.join(self.options["out_dir"], "features", filename + ".csv"), 'r'))

 row_index = -1
 for joint_row in zip(*filehandles): # (<row_from_file1>, <row_from_file2>) as tuple
 row_index += 1
 if row_index == 0:
 continue # skip headers

 rows = [[c for c in file_row.strip().split(",")] for file_row in joint_row] # [[qid,iid,val], [qid,iid,val], ...] for each feature
 qid = int(rows[0][0])
 iid = int(rows[0][1])

 if qid in qless and len(self.qless_feature_names) > 0:
 f_qless.append([rows[i][-1] for i in qless_indices])
 elif len(self.qfull_feature_names) > 0:
 f_qfull.append([rows[i][-1] for i in qfull_indices])
 progress.update()
 progress.end()
 for f in filehandles:
 f.close()

 print("Queryfull features processed: {}".format(len(f_qfull)))
 print("Queryless features processed: {}".format(len(f_qless)))
 # Append relevance labels separately
 print("Appending relevance labels...")
 progress = PrettyProgress(target_per_file, int(self.options["print_step"]))

 for chunk in pd.read_table(os.path.join(self.options["data_dir"], "generated_train-labels.csv"), sep=";", chunksize=self.options["chunksize"]):
 for row in chunk.values:
 qid = row[0] # not used
 iid = row[1] # not used
 rel_val = row[2]
 if qid in qless and len(self.qless_feature_names) > 0:
 rel_qless.append([rel_val])
 elif len(self.qfull_feature_names) > 0:
 rel_qfull.append([rel_val])
 progress.update()
 progress.end()

 print("Queryfull labels appended: {}".format(len(rel_qfull)))
 print("Queryless labels appended: {}".format(len(rel_qless)))

 print("\r\nNumpifying f (1/2)...")
 if len(self.qfull_feature_names) > 0:
 f_qfull_np = np.array(f_qfull)
 else:
 f_qfull_np = np.array([])
 print("Skipping f for qfull, no qfull features")
 del(f_qfull)

 print("\r\nNumpifying f (2/2)...")
 if len(self.qless_feature_names) > 0:
 f_qless_np = np.array(f_qless)
 else:
 f_qless_np = np.array([])
 print("Skipping f for qless, no qless features")
 del(f_qless)

 if self.model_type in [1,2]:
 print("\r\nFlattening r for the model chosen (1/2)")
 if len(self.qfull_feature_names) > 0:
 rel_qfull = [rv for sublist in rel_qfull for rv in sublist]
 else:
 print("Skipping r for qfull, no qfull features")

 print("\r\nFlattening r for the model chosen (2/2)")
 if len(self.qless_feature_names) > 0:
 rel_qless = [rv for sublist in rel_qless for rv in sublist]
 else:
 print("Skipping r for qless, no qless features.")

 print("\nNumpifying r (1/2)...")
 if len(self.qfull_feature_names) > 0:
 rel_qfull_np = np.array(rel_qfull)
 else:
 rel_qfull_np = np.array([])
 print("Skipping r for qfull, no qfull features")
 del(rel_qfull)

 print("\nNumpifying r (2/2)...")
 if len(self.qless_feature_names) > 0:
 rel_qless_np = np.array(rel_qless)
 else:
 rel_qless_np = np.array([])
 print("Skipping r for qless, no qless features.")
 del(rel_qless)

 print("\nFinishing preparation of feature and relevance vectors...")

 return f_qfull_np, rel_qfull_np, f_qless_np, rel_qless_np

 def do_train(self, f_qfull_np, rel_qfull_np, f_qless_np, rel_qless_np):
 print("Step 1 / 2: Fitting queryfull model... This might take some time!")
 print("Lengths should be equal: {} == {} ? {}".format(len(f_qfull_np), len(rel_qfull_np), len(f_qfull_np) == len(rel_qfull_np)))
 if len(self.qfull_feature_names) > 0:
 self.model_qfull.fit(f_qfull_np, rel_qfull_np)
 else:
 print("Skipping. No queryfull features for this model")

 print("Step 2 / 2 : Fitting queryless model... This might take some time!")
 print("Lengths should be equal: {} == {} ? {}".format(len(f_qless_np), len(rel_qless_np), len(f_qless_np) == len(rel_qless_np)))
 if len(self.qless_feature_names) > 0:
 self.model_qless.fit(f_qless_np, rel_qless_np)
 else:
 print("Skipping. No queryless features for this model")

 if self.model_type in [0,1]:
 if len(self.qfull_feature_names) > 0:
 print('Queryfull Coefficients: \n',self.model_qfull.coef_)
 if len(self.qless_feature_names) > 0:
 print('Queryless Coefficients: \n',self.model_qless.coef_)
 elif self.model_type == 2:
 if len(self.qfull_feature_names) > 0:
 print('Queryfull params: \n',self.model_qfull.get_params(deep=True))
 if len(self.qless_feature_names) > 0:
 print('Queryless params: \n',self.model_qless.get_params(deep=True))

 def save_models_and_meta(self):
 print("\nDumping models to file (1/2)...")
 timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M")
 model_qfull_outname = os.path.join(self.options["out_dir"], "models", "model_{}_{}_qfull.pkl".format(self.name, timestamp))
 joblib.dump(self.model_qfull, model_qfull_outname)
 model_qless_outname = os.path.join(self.options["out_dir"], "models", "model_{}_{}_qless.pkl".format(self.name, timestamp))
 joblib.dump(self.model_qless, model_qless_outname)

 print("Saving metadata to file... (2/2)")
 meta_outname = os.path.join(self.options["out_dir"], "models", "model_{}_{}.meta".format(self.name, timestamp))
 with open(meta_outname, 'w') as meta_filehandle:
 meta_filehandle.write("qfull {}\n".format(",".join(f_name for f_name in self.qfull_feature_names)))
 meta_filehandle.write("qless {}".format(",".join(f_name for f_name in self.qless_feature_names)))

 print("Dumped models to", " and ".join([model_qfull_outname, model_qless_outname]))

'''
 def save_traindata(self, f_np, rel_np, feature_filenames):
 print("Saving metadata to file... (1/3)")
 with open(os.path.join(self.options["out_dir"], "train_temp", "meta.txt"), 'w') as meta_filehandle:
 for f_name in feature_filenames:
 meta_filehandle.write(f_name+"\n")

 print("Saving training data vectors to file... (2/3)")
 f_filehandle = open(os.path.join(self.options["out_dir"], "train_temp", "f.numpy"), 'wb')
 np.save(f_filehandle, f_np)

 print("Saving training data vectors to file... (3/3)")
 rel_filehandle = open(os.path.join(self.options["out_dir"], "train_temp", "rel.numpy"), 'wb')
 np.save(rel_filehandle, rel_np)

 def load_traindata(self, f_name, rel_name):
 with open(os.path.join(self.options["out_dir"], "train_temp", "meta.txt"), 'r') as meta_filehandle:
 feature_filenames = [x.strip('\n') for x in meta_filehandle.readlines()]

 print("Loading training data vectors from file... (2/3)")
 f_np = np.load(open(os.path.join(self.options["out_dir"], "train_temp", f_name), 'rb'))
 print("Loading training data vectors from file... (3/3)")
 rel_np = np.load(open(os.path.join(self.options["out_dir"], "train_temp", rel_name), 'rb'))
 return f_np, rel_np
'''

config.txt

..

features/__init__.py

features/__init__.pyc

features/__pycache__/__init__.cpython-35.pyc

features/__pycache__/__init__.cpython-36.pyc

features/__pycache__/_feature.cpython-35.pyc

features/__pycache__/_feature.cpython-36.pyc

features/__pycache__/_featurepool.cpython-35.pyc

features/__pycache__/_featurepool.cpython-36.pyc

features/__pycache__/_prettyprogress.cpython-35.pyc

features/__pycache__/_prettyprogress.cpython-36.pyc

features/__pycache__/associated_purchase.cpython-35.pyc

features/__pycache__/binary_querytype.cpython-35.pyc

features/__pycache__/clicks.cpython-35.pyc

features/__pycache__/clicks_cat.cpython-35.pyc

features/__pycache__/clicks_normalized.cpython-35.pyc

features/__pycache__/clicks_normalized.cpython-36.pyc

features/__pycache__/example_feature.cpython-35.pyc

features/__pycache__/feature.cpython-35.pyc

features/__pycache__/mean_original_cat_rank.cpython-35.pyc

features/__pycache__/mean_original_cat_rank.cpython-36.pyc

features/__pycache__/original_rank.cpython-35.pyc

features/__pycache__/original_rank.cpython-36.pyc

features/__pycache__/original_rank_cat.cpython-35.pyc

features/__pycache__/purchases.cpython-35.pyc

features/__pycache__/purchases_cat.cpython-35.pyc

features/__pycache__/purchases_normalized.cpython-36.pyc

features/__pycache__/query_type.cpython-35.pyc

features/__pycache__/query_type.cpython-36.pyc

features/__pycache__/tfidf.cpython-35.pyc

features/__pycache__/user_revisit.cpython-35.pyc

features/__pycache__/user_revisit.cpython-36.pyc

features/_feature.py

"""
Class for features

__init__(name, options, pre_function, compute_function):
 Constructor taking in options object, preprocessing function and compute function.
prepare():
 Sets the out_filename and starts preprocessing
compute_single(queryid, itemid):
 Computes the feature score from the given computation function <Feature>.compute_function
"""

class Feature:

 # Constructor
 # Requires name of feature, root directory for input/output files and predefined preprocessing and compute functions
 def __init__(self, name, options, pre_function, compute_function):
 self.name = name
 # self.resource_names = resource_names
 self.options = options
 self.resources = {}
 self.pre_function = pre_function
 self.compute_function = compute_function

 def prepare(self):
 self.out_filename = "{}/{}.csv".format(self.options["feature_dir"], self.name)
 self.pre_function(self)

 # Computation function
 # Computes the feature score from the given computation function <Feature>.compute_function
 def compute_single(self, queryid, itemid):
 ftr_score = self.compute_function(self, queryid, itemid)
 return ftr_score
 # End of class

features/_featurepool.py

"""
Class for computing multiple features simultaneously.
"""

#imports
import os
import numpy as np
import pandas as pd
import time
import pprint
from utils.prettyprogress import PrettyProgress
from datetime import datetime

Defining shorthand function for getting current time represented as a string
def now():
 return str(datetime.now())[0:19]

class FeaturePool:
 def __init__(self, options, features):
 self.options = options
 self.features = features

 # Batch computation function
 # Calls the computation function compute_single with all queryid-itemid pairs
 def compute(self, limit = 0):
 start = time.time()
 print("####\n\n[FeaturePool] Initiating computation of features {} at {}\n\n####\n".format(", ".join(["'{}'".format(f.name) for f in self.features]), now()))
 print(" Options used:")

 pp = pprint.PrettyPrinter(indent=4)
 print(" {}\n\n\n".format(pp.pformat(self.options)))

 for f in self.features:
 print(" Performing preprocessing for feature '{}'...".format(f.name))
 f.prepare()
 print(" Preprocessing done for feature '{}' at {}".format(f.name, now()))

 # pretty print variables
 target = 92271275 if limit <= 0 else limit
 progress = PrettyProgress(target, int(self.options["print_step"]))

 # filehandles
 handles = [open(f.out_filename, 'w') for f in self.features]

 # write headers
 for j, f in enumerate(self.features):
 # special cases may return more required values for the feature
 if f.name == "user_revisit":
 handles[j].write("queryid,itemid,userid,{}\n".format(f.name))
 elif f.name in ["mean_original_cat_rank", "clicks_cat", "purchases_cat"]:
 handles[j].write("queryid,itemid,categoryid,{}\n".format(f.name))
 else:
 handles[j].write("queryid,itemid,{}\n".format(f.name))

 # computing chunkwise and writing to file
 print("____________________________________\n\n Computing features:{}\n and saving the respective results to {}\n Progress:".format(", ".join(["\n - '{}'".format(f.name) for f in self.features]), ", ".join(["\n - '{}'".format(f.out_filename) for f in self.features])))
 for chunk in pd.read_table(self.options["data_dir"] + "/generated_train-labels.csv", sep=";", chunksize=self.options["chunksize"]):
 for row in chunk.values:
 if progress.counter > limit and limit > 0:
 break

 qid, iid, _ = row
 for j, f in enumerate(self.features):
 # compute score for the feature, given the qid and iid
 score_single = f.compute_single(qid, iid)

 # special cases may return more required values for the feature
 if f.name == "user_revisit":
 scorestr = "{},{},{},{:.3f}\n".format(qid, iid, score_single[0], float(score_single[1]))
 elif f.name in ["mean_original_cat_rank", "clicks_cat", "purchases_cat"]:
 scorestr = "{},{},{},{:.3f}\n".format(qid, iid, score_single[0], float(score_single[1]))
 else:
 scorestr = "{},{},{:.3f}\n".format(qid,iid, float(score_single))

 # write scorestr to csv file
 handles[j].write(scorestr)

 progress.update()
 if progress.counter > limit and limit > 0:
 break
 progress.end()
 print("Features {} finished writing results at {}".format(", ".join(["'{}'".format(f.name) for f in self.features]), now()))
 end = time.time()
 duration = end - start
 print("Done in {} seconds!".format(duration))
 for handle in handles:
 handle.close()

features/_featurepool.pyc

features/associated_purchase.py

import libs needed

import numpy as np
import pandas as pd
import time
import os
from datetime import datetime

build upon feature framework
from ._feature import Feature

preprocessing of feature
def pre_ap(feature):
 # Load purchases
 purchases = pd.read_csv(os.path.join(feature.options["data_dir"],"train-purchases.csv"), sep=";")

 # Grouping purchases by order numbers
 orders = purchases.groupby(["ordernumber","userId"]).agg({'itemId': lambda x: ",".join(str(i) for i in list(x))}).reset_index()

 # Binning items that have been purchased together. (Two way connection)
 bins = {}
 biggest_bin = -1
 for index, order in orders.iterrows():
 # print(order["ordernumber"], order["userId"], order["itemId"])
 items = [int(x) for x in order["itemId"].split(",")]
 for item in items:
 if item not in bins:
 bins[item] = set(items)
 bins[item].remove(item)
 else:
 bins[item].update(items)
 bins[item].remove(item)
 if len(bins[item]) > biggest_bin:
 biggest_bin = len(bins[item])

 feature.resources['biggest_bin'] = biggest_bin
 feature.resources['bins'] = bins

computation of a single query-item pair
def compute_ap(feature, queryid, itemid):
 associated = feature.resources['bins'].get(itemid, None)
 if associated is None:
 return 0

 score = len(associated) / feature.resources['biggest_bin']

 return score

def build(options):
 return Feature("associated_purchase", options, pre_ap, compute_ap)

features/clicks_cat.py

import libs needed

import numpy as np
import pandas as pd
import time
from datetime import datetime

build upon feature framework
from ._feature import Feature

preprocessing of feature
def pre_click_cat(feature):
 print("Reading files (1 / 3)")
 products = pd.read_csv(feature.options["data_dir"] + "/products.csv", sep=";")
 print("Reading files (2 / 3)")
 prod_cats = pd.read_csv(feature.options["data_dir"] + "/product-categories.csv", sep=";")
 print("Reading files (3 / 3)")
 clicks = pd.read_csv(feature.options["data_dir"] + "/train-clicks.csv", sep=";")
 print("Mapping product to category for convenience")
 prod_cat = pd.Series(prod_cats.apply(lambda x: x["categoryId"], axis=1).values,index=prod_cats.itemId).to_dict()
 print("Mapping item-clicks to categories")
 click_cat_table = clicks.merge(prod_cats, on="itemId").merge(clicks, on="itemId")[["itemId","categoryId"]]
 click_cat_groups = click_cat_table.groupby(by=["itemId", "categoryId"])
 print("Mapping total-clicks to categories")
 cat_clicks = click_cat_table.groupby("categoryId").size()
 print("Normalizing...")
 click_cat_groups_norm = pd.DataFrame(click_cat_groups.size())
 click_cat_groups_norm.reset_index(inplace=True)
 click_cat_groups_norm.drop("categoryId",axis=1)

 click_cat_groups_norm = pd.Series(click_cat_groups_norm.apply(lambda x: x[2] / cat_clicks[x[1]], axis=1).values,index=[click_cat_groups_norm.itemId, click_cat_groups_norm.categoryId])

 feature.resources["prod_cat"] = prod_cat
 feature.resources["click_cat"] = click_cat_groups_norm
computation of a single query-item pair
def compute_click_cat(feature, queryid, itemid):
 cat = feature.resources["prod_cat"][itemid]
 val = feature.resources["click_cat"].get((itemid, cat), 0)
 return cat, val

def build(options):
 return Feature("clicks_cat", options, pre_click_cat, compute_click_cat)

features/clicks_normalized.py

import libs needed

import numpy as np
import pandas as pd
import time
from datetime import datetime

build upon feature framework
from ._feature import Feature

Convenience function of retrieving possible non-existing value, with default fallback
def safe_get (l, idx, default):
 try:
 ret = l[idx]
 return ret
 except:
 return default

preprocessing of feature
def pre(feature):
 # Read clicks from file
 clicks = pd.read_csv(feature.options['data_dir'] + '/train-clicks.csv', sep=';')[['itemId']]
 # Map itemid to amount of occurences of the item id (i.e. clicks)
 clicks_map = clicks.groupby(['itemId']).size()
 # Normalize all clicks on the most clicked item
 max_clicks = max(clicks_map)
 norm_clicks_map = clicks_map.apply(lambda x: x / max_clicks)
 # Store map of clicks in feature's resources for computation
 feature.resources['norm_clicks_map'] = norm_clicks_map

computation of a single query-item pair
def compute(feature, queryid, itemid):
 clicks_normalized = safe_get(feature.resources['norm_clicks_map'], itemid, 0)
 return "%.2f" % clicks_normalized

def build(options):
 return Feature("clicks_normalized", options, pre, compute)

features/example_feature.py

import libs needed

import numpy as np
import pandas as pd
import time
from datetime import datetime

build upon feature framework
from ._feature import Feature

preprocessing of feature
def pre_ex(feature):
 pass

computation of a single query-item pair
def compute_ex(feature, queryid, itemid):
 return 1

def build(options):
 return Feature("example_feature", options, pre_ex, compute_ex)

features/mean_original_cat_rank.py

import libs needed

import numpy as np
import pandas as pd
import time
from datetime import datetime
from utils.prettyprogress import PrettyProgress

build upon feature framework
from ._feature import Feature

preprocessing of feature
def pre_rank(feature):

 # pretty print variables
 target = 923127
 progress = PrettyProgress(target, int(feature.options["print_step"]))

 query_category = {}
 qci_list = {}

 for chunk in pd.read_table(feature.options["data_dir"] + "/train-queries.csv", usecols = ["queryId", "items", "categoryId", "is.test"], sep=";", chunksize=feature.options["chunksize"]):
 for row in chunk.values:
 progress.update()
 # skip test queries
 if row[3] == True:
 continue

 queryId = row[0]
 items = row[2].split(",")
 categoryId = row[1]

 query_category[queryId] = categoryId

 for item_rank, item_id in enumerate(items):
 item_id = int(item_id)
 if (categoryId, item_id) not in qci_list:
 qci_list[categoryId, item_id] = []
 qci_list[categoryId, item_id].append((item_rank + 1) / len(items))
 progress.end()

 target = len(qci_list)
 progress = PrettyProgress(target, int(feature.options["print_step"]))

 print("Building mean original category rank map...")
 mean_category_item_rank = {}
 for c, i in qci_list:
 progress.update()
 item_ranks = qci_list[c,i]
 mean = sum(item_ranks) / len (item_ranks)
 mean_category_item_rank[c,i] = mean
 progress.end()

 feature.resources["mean_category_item_rank"] = mean_category_item_rank
 feature.resources["query_category"] = query_category

 # feature.resources['qi_list'] = qi_list

computation of a single query-item pair
def compute_rank(feature, queryid, itemid):
 cat = feature.resources["query_category"][queryid]
 res = 1 - feature.resources["mean_category_item_rank"].get((cat, itemid), 1)
 return cat, res

def build(options):
 return Feature("mean_original_cat_rank", options, pre_rank, compute_rank)

features/original_rank.py

import libs needed

import numpy as np
import pandas as pd
import time
from datetime import datetime
from utils.prettyprogress import PrettyProgress

build upon feature framework
from ._feature import Feature

preprocessing of feature
def pre_rank(feature):

 # pretty print variables
 target = 923127
 progress = PrettyProgress(target, int(feature.options["print_step"]))

 qi_list = {}

 for chunk in pd.read_table(feature.options["data_dir"] + "/train-queries.csv", usecols =["queryId", "items", "is.test"], sep=";", chunksize=feature.options["chunksize"]):
 for row in chunk.values:

 progress.update()
 # skip test queries
 if row[2] == True:
 continue

 qi_list[row[0]] = row[1].split(",")
 progress.end()
 feature.resources['qi_list'] = qi_list

computation of a single query-item pair
def compute_rank(feature, queryid, itemid):
 item_list = feature.resources['qi_list'][queryid]
 res = 1 - item_list.index(str(itemid)) / len(item_list)
 return res

def build(options):
 return Feature("original_rank", options, pre_rank, compute_rank)

features/purchases_cat.py

import libs needed

import numpy as np
import pandas as pd
import time
from datetime import datetime

build upon feature framework
from ._feature import Feature

preprocessing of feature
def pre_purchase_cat(feature):
 print("Reading files (1 / 3)")
 products = pd.read_csv(feature.options["data_dir"] + "/products.csv", sep=";")
 print("Reading files (2 / 3)")
 prod_cats = pd.read_csv(feature.options["data_dir"] + "/product-categories.csv", sep=";")
 print("Reading files (3 / 3)")
 purchases = pd.read_csv(feature.options["data_dir"] + "/train-purchases.csv", sep=";")
 print("Mapping product to category for convenience")
 prod_cat = pd.Series(prod_cats.apply(lambda x: x["categoryId"], axis=1).values,index=prod_cats.itemId).to_dict()
 print("Mapping item-purchases to categories")
 purchase_cat_table = products.merge(prod_cats, on="itemId").merge(purchases, on="itemId")[["itemId","categoryId"]]
 purchase_cat_groups = purchase_cat_table.groupby(by=["itemId", "categoryId"])
 print("Mapping total-purchases to categories")
 cat_purchases = purchase_cat_table.groupby("categoryId").size()
 print("Normalizing...")
 purchase_cat_groups_norm = pd.DataFrame(purchase_cat_groups.size())
 purchase_cat_groups_norm.reset_index(inplace=True)
 purchase_cat_groups_norm.drop("categoryId",axis=1)

 purchase_cat_groups_norm = pd.Series(purchase_cat_groups_norm.apply(lambda x: x[2] / cat_purchases[x[1]], axis=1).values,index=[purchase_cat_groups_norm.itemId, purchase_cat_groups_norm.categoryId])

 feature.resources["prod_cat"] = prod_cat
 feature.resources["purchase_cat"] = purchase_cat_groups_norm
computation of a single query-item pair
def compute_purchase_cat(feature, queryid, itemid):
 cat = feature.resources["prod_cat"][itemid]
 val = feature.resources["purchase_cat"].get((itemid, cat),0)
 return cat, val

def build(options):
 return Feature("purchases_cat", options, pre_purchase_cat, compute_purchase_cat)

features/purchases_normalized.py

import libs needed

import numpy as np
import pandas as pd
import time
from datetime import datetime

build upon feature framework
from ._feature import Feature

Convenience function of retrieving possible non-existing value, with default fallback
def safe_get (l, idx, default):
 try:
 ret = l[idx]
 return ret
 except:
 return default

preprocessing of feature
def pre(feature):
 # Read purchases from file
 purchases = pd.read_csv(feature.options['data_dir'] + '/train-purchases.csv', sep=';')[['itemId']]
 # Map itemid to amount of occurences of the item id (i.e. purchases)
 purchases_map = purchases.groupby(['itemId']).size()
 # Normalize all clicks on the most clicked item
 max_purchases = max(purchases_map)
 norm_purchases_map = purchases_map.apply(lambda x: x / max_purchases)
 # Store map of clicks in feature's resources for computation
 feature.resources['norm_purchases_map'] = norm_purchases_map

computation of a single query-item pair
def compute(feature, queryid, itemid):
 purchases_normalized = safe_get(feature.resources['norm_purchases_map'], itemid, 0)
 return "%.2f" % purchases_normalized

def build(options):
 return Feature("purchases_normalized", options, pre, compute)

features/query_type.py

import libs needed

import numpy as np
import pandas as pd
import time
import os
from datetime import datetime

build upon feature framework
from ._feature import Feature
from utils.prettyprogress import PrettyProgress

preprocessing of feature
def pre_query_type(feature):
 # Mapping users to their queries (<UserId>: [<QueryId_0>, ..., <QueryId_n>])
 query_queryless = {}

	# Pretty progress printer object
 progress = PrettyProgress(923127, int(feature.options["print_step"]))

 for chunk in pd.read_table(os.path.join(feature.options["data_dir"], 'train-queries.csv'), sep=";", chunksize=feature.options["chunksize"], low_memory=False):
 for row in chunk.values:
 queryId = row[0]
 isQueryless = row[7] > 0
 query_queryless[queryId] = 1 if isQueryless else 0
 progress.update()
 progress.end()

 feature.resources["query_queryless"] = query_queryless

computation of a single query-item pair
def compute_query_type(feature, queryid, itemid):
 return feature.resources["query_queryless"][queryid]

def build(options):
 return Feature("query_type", options, pre_query_type, compute_query_type)

features/tfidf.py

import libs needed

import numpy as np
import pandas as pd
import os
import time
from math import pow, sqrt, log
from datetime import datetime

build upon feature framework
from ._feature import Feature

preprocessing of feature
def pre_tfidf(feature):
 item_terms, item_tf, qfull_map, term_idf = prepare_tfidf_data(feature.options)

 feature.resources["item_terms"] = item_terms
 feature.resources["item_tf"] = item_tf
 feature.resources["qfull_map"] = qfull_map
 feature.resources["term_idf"] = term_idf

def prepare_tfidf_data(options):
 print("TF-IDF is a queryfull only feature!")
 print(" (1 /) Mapping item ids to term-frequency ...")
 items = pd.read_csv(os.path.join(options["data_dir"], 'products.csv'), sep=';')
 # keep item_terms map
 item_terms = pd.Series(items.apply(lambda x: [int(y) for y in x[2].split(",")], axis=1).values ,index=items.itemId).to_dict()
 # keep item_tf map
 item_tf = {(item,term): item_terms[item].count(term) / len(item_terms[item]) for item in item_terms for term in item_terms[item]}

 print(" (2 /) Mapping all queryfull queries to searchstring tokens...")
 qall = pd.read_csv(os.path.join(options["data_dir"], "train-queries.csv"), sep=';')[['queryId','searchstring.tokens']]
 qfull = qall[pd.isnull(qall['searchstring.tokens']).apply(lambda x: not x)][['queryId', 'searchstring.tokens']]
 # keep qfull_map
 qfull_map = pd.Series(qfull.apply(lambda x: [int(y) for y in x["searchstring.tokens"].split(",")], axis=1).values ,index=qfull.queryId).to_dict()

 print(" (3 /) Counting all term occurences")
 term_collection = {}

 for item in item_terms:
 for t in set(item_terms[item]):
 term_collection[t] = term_collection.get(t, 0) + 1

 print(" (4 /) Calculating IDF for all item terms")
 # keep term_idf
 term_idf = {}

 n_products = len(items.values)

 for t in term_collection:
 term_idf[t] = log(n_products / term_collection[t])

 return item_terms, item_tf, qfull_map, term_idf

Utility function for computing similarity
def cosine_sim(query, item):
 numerator = 0
 denominator_q = 0
 denominator_i = 0

 # construct union of terms
 union = list(set().union([term for term in query], [term for term in item]))

 # constructing new vectors to match the dimensions of the union
 q = [query[term] if term in query else 0 for term in union]
 i = [item[term] if term in item else 0 for term in union]

 for t in range(len(union)):
 numerator += q[t] * i[t]
 denominator_q += q[t]**2
 denominator_i += i[t]**2
 denominator = sqrt(denominator_q)*sqrt(denominator_i)

 score = 0 if denominator == 0 else numerator / denominator

 return score

Utility function for computing similarity
def similarity(qfull_map, item_terms, item_tf, term_idf, qid, iid):

 q_terms = qfull_map.get(qid, [])
 q_tfidf = {x: q_terms.count(x) / len(q_terms) * term_idf.get(x, 0) for x in q_terms}

 p_terms = item_terms[iid]
 p_tfidf = {x: item_tf[iid, x] * term_idf.get(x, 0) for x in p_terms}

 return cosine_sim(q_tfidf, p_tfidf)

computation of a single query-item pair
def compute_tfidf(feature, queryid, itemid):
 sim = similarity(feature.resources["qfull_map"], feature.resources["item_terms"], feature.resources["item_tf"], feature.resources["term_idf"], queryid, itemid)
 return sim

def build(options):
 return Feature("tfidf", options, pre_tfidf, compute_tfidf)

features/user_revisit.py

import libs needed
import os
import numpy as np
import pandas as pd
import time
import math
from datetime import datetime
from utils.prettyprogress import PrettyProgress

build upon feature framework
from ._feature import Feature

preprocessing of feature
def pre_user_revisit(feature):
 # Mapping users to their queries (<UserId>: [<QueryId_0>, ..., <QueryId_n>])
 user_queries = {}
 query_users = {}
 query_items = {}

	# Pretty progress printer object
 progress = PrettyProgress(923127, int(feature.options["print_step"]))

 print(" Mapping users to queries (1 / 3):")
 for chunk in pd.read_table(os.path.join(feature.options["data_dir"], 'train-queries.csv'), sep=";", chunksize=feature.options["chunksize"], low_memory=False):
 for row in chunk.values:
 queryId = row[0]
 sessionId = row[1]
 userId = None if math.isnan(row[2]) else int(row[2])
 items = row[8]
 test = row[9]
 if userId not in user_queries:
 user_queries[userId] = set()
 user_queries[userId].add(queryId)
 query_items[queryId] = items.split(',')
 query_users[queryId] = userId
 progress.update()
 progress.end()
 # Mapping clicked items to their origin query
 print(" Mapping clicked items to their origin query (2 / 3):")
 clicks = pd.read_csv(feature.options["data_dir"] + '/train-clicks.csv', sep=';')
 query_clicked_items = clicks.groupby(by = ['queryId'], as_index=False)

 # Mapping users to clicked items, with items mapping to click count ({<UserId_0>:{<ItemId_00>: <ClickCount_ItemId_00>, ...}, ..., })
 print(" Mapping users to items, with click count (3 / 3):")

 progress = PrettyProgress(len(user_queries), int(feature.options["print_step"]))

 user_item_clicks = {}
 for user in user_queries:
 if user is None:
 continue
 u_queries = user_queries[user]
 for query in u_queries:
 items = []
 try:
 items = query_clicked_items.get_group(query)[['itemId']].values
 except:
 pass
 for item in items:
 item = int(item)
 user_item_clicks[user] = user_item_clicks.get(user, {item: 0})
 user_item_clicks[user][item] = user_item_clicks.get(user, {item: 0}).get(item, 0) + 1
 progress.update()
 progress.end()

 feature.resources["user_item_clicks"] = user_item_clicks
 feature.resources["query_users"] = query_users

computation of a single query-item pair
def compute_user_revisit(feature, queryid, itemid):
 userId = feature.resources["query_users"].get(queryid, -1)

 if userId == -1:
 return -1, 0

 items_clicked = feature.resources["user_item_clicks"].get(userId, None)
 if items_clicked is None:
 return userId, 0

 return userId, items_clicked.get(itemid, 0)

def build(options):
 return Feature("user_revisit", options, pre_user_revisit, compute_user_revisit)

main.py

"""
Main file for running different tasks
"""
import sys
import os
import importlib
import winsound
import traceback
from features import _featurepool
from computation import train_qdist
from computation import test_qdist
from computation import mappify
from utils import mailer
from scoring import score

Store path to this script as dependent files should be located relative to this script.
file_dir = os.path.dirname(os.path.abspath(__file__))

TODO Load options from config?

def default_options():

 root_dir = os.path.join(file_dir,open(os.path.join(file_dir, "config.txt"), 'r').read())

 options = { "chunksize": 10**6,
 "root_dir": root_dir,
 "code_dir": os.path.join(root_dir, "code"),
 "data_dir": os.path.join(root_dir, "dataset-train"),
 "out_dir": os.path.join(root_dir, "output"),
 "feature_dir": os.path.join(root_dir, "output", "features"),
 "print_step": 1 }
 return options

def init_featurepool(options, feature_modules):
 clear()
 features = []

 for fm_name in feature_modules:
 fm =__import__("features", fromlist=feature_modules)
 feature = getattr(fm, fm_name)
 features.append(feature.build(options))

 print("Building feature pool...")
 pool = _featurepool.FeaturePool(options, features)
 pool.compute()

def init_model_training(model, options, feature_filenames, feature_types):
 clear()
 features = []
 print("Initializing model training")
 model.train(feature_filenames, feature_types)

def clear():
 os.system('cls')

def selectAction(actions):
 print("____________________________________\n")
 print("Available Actions: \n")
 for i, action in enumerate(actions):
 print("\t [{}] - {}".format(i, action))
 print("____________________________________\n")
 while True:
 choice = int(input("> Select your action ({}-{}): ".format(0, len(actions)-1)))
 if choice in range(len(actions)):
 break
 return choice

def selectTrainModel():

 print("____________________________________\n")
 print("Available Models: \n")
 print("\t 0 - Linear Regression")
 print("\t 1 - Logistic Regression (broken)")
 print("\t 2 - Random Forest Regressor")
 print("\t 3 - Gradient Boosted Decision Tree (not impl.)")
 print("____________________________________\n")
 model_choice = -1
 while True:
 model_choice = int(input("> Select a model to train ({}-{}): ".format(0,3)))
 if model_choice in [0,1,2,3]:
 break

 options = default_options()
 model = train_qdist.ModelTrainer(options, model_choice)

 features = []
 for (dirpath, dirnames, filenames) in os.walk(os.path.join(options["out_dir"],"features")):
 features = [fn[:-4] for fn in filenames if fn[0] != "_" and fn[-4:] == ".csv"]
 break

 # select features if not from existing data
 print("____________________________________\n")
 print("Available features (",len(features),"):\n")
 for i, feature in enumerate(features):
 print("\t [{}] - {}".format(i, feature))

 print("____________________________________\n")
 selected = set([int(i) for i in input("> Select one or more features, separated with space ({}-{}): ".format(0, len(features) - 1)).split(" ")])
 print("Selected features: {}".format(", ".join(features[x] for x in selected)))
 while True:
 confirm = input("> Proceed? (y/n): [y] ") or "y"
 if confirm in ["y","Y"]:
 break
 elif confirm in ["n", "N"]:
 print("Exiting...")
 sys.exit()
 feature_filenames = ["{}".format(features[x]) for x in selected]

 feature_types = []
 print("____________________________________\n")
 print("Query type selection")
 print("____________________________________\n")
 for i, f in enumerate(feature_filenames):
 while True:
 f_type = input("> Enter the type of feature {} ('qless', 'qfull' or 'both'): [both] ".format(f)) or "both"
 if f_type in ["qfull", "qless", "both"]:
 break
 feature_types.append(f_type)

 init_model_training(model, options, feature_filenames, feature_types)

 winsound.PlaySound(os.path.join(options["root_dir"], 'code','pythondone.wav'), winsound.SND_FILENAME)

def selectFeatures():
 # Discover available features
 features = []
 options = default_options();

 for (dirpath, dirnames, filenames) in os.walk(os.path.join(options["code_dir"], "features")):
 features = [fn[:-3] for fn in filenames if fn[0] != "_" and fn[-3:] == ".py"]
 break

 print("____________________________________\n")
 print("Available features: \n")
 for i, feature in enumerate(features):
 print("\t [{}] - {}".format(i, feature))

 print("____________________________________\n")

 selected = set([int(i) for i in input("> Select one or more features, separated with space ({}-{}): ".format(0, len(features) - 1)).split(" ")])
 print("Selected features: {}".format(", ".join(features[x] for x in selected)))
 while True:
 confirm = input("> Proceed? (y/n): [y] ") or "y"
 if confirm in ["y","Y"]:
 print("Starting computation of features")
 break
 elif confirm in ["n", "N"]:
 print("Exiting...")
 sys.exit()

 feature_modules = ["{}".format(features[x]) for x in selected]
 init_featurepool(options, feature_modules)

 winsound.PlaySound(os.path.join(options["root_dir"], 'code','pythondone.wav'), winsound.SND_FILENAME)

def selectTestModel():
 models = []
 options = default_options();

 models_meta = {}
 for (dirpath, dirnames, filenames) in os.walk(os.path.join(options["out_dir"], "models")):
 models = [fn[:-10] for fn in filenames if fn[-10:] == "_qfull.pkl"]
 meta_files = [model_name+".meta" for model_name in models]
 for meta_file in meta_files:
 meta_content = [row.split(" ") for row in open(os.path.join(options["out_dir"], "models", meta_file), 'r').read().strip().split("\n")]
 if len(meta_content[0]) > 1:
 models_meta[meta_file[:-5], 'qfull'] = ", ".join(meta_content[0][1].split(","))
 if len(meta_content[1]) > 1:
 models_meta[meta_file[:-5], 'qless'] = ", ".join(meta_content[1][1].split(","))
 break

 if len(models) == 0:
 print("No models available, exiting...")
 sys.exit()

 print("____________________________________\n")
 print("Available models: \n")
 for i, model in enumerate(models):
 print("\t[{}] - {}\n\t\t - qfull: {}\n\t\t - qless: {}".format(i, model, models_meta.get((model, 'qfull'), "None"), models_meta.get((model, 'qless'), "None")))
 print("____________________________________\n")

 selected_model = None
 while True:
 idx = int(input("> Select model to use ({}-{}): ".format(0, len(models)-1)))
 if idx >= 0 and idx < len(models):
 selected_model = models[idx]
 break

 print("Selected model: ", selected_model)
 while True:
 confirm = input("Proceed? (y/n): [y]") or "y"
 if confirm in ["y","Y"]:
 break
 elif confirm in ["n", "N"]:
 print("Exiting...")
 sys.exit()
 clear()
 model_tester = test_qdist.ModelTester(options, selected_model)
 model_tester.start()
 winsound.PlaySound(os.path.join(options["root_dir"], 'code','pythondone.wav'), winsound.SND_FILENAME)

def init_mappification(options, features_selected):
 mappifier = mappify.Mappifier(options)

 for i, feature_name in enumerate(features_selected):
 print("#################\nMappifying {} ({} of {})...\n#################\n\n".format(feature_name,i+1, len(features_selected)))
 if feature_name == "user_revisit":
 keyindices = [1,2] #itemid#userid
 else:
 keyindices = [0,1] #queryid#itemid
 valueindex = -1
 mappifier.save_as_map(feature_name, feature_name, keyindices, valueindex)

NOT USED
def selectMappify():
 options = default_options();
 features = []

 for (dirpath, dirnames, filenames) in os.walk(os.path.join(options["code_dir"], "features")):
 features = [fn[:-3] for fn in filenames if fn[0] != "_" and fn[-3:] == ".py"]
 break

 print("____________________________________\n")
 print("Available features: \n")
 for i, feature in enumerate(features):
 print("\t [{}] - {}".format(i, feature))

 print("____________________________________\n")

 selected = set([int(i) for i in input("> Select one or more features, separated with space ({}-{})".format(0, len(features) - 1)).split(" ")])
 print("Selected features: {}".format(", ".join(features[x] for x in selected)))
 while True:
 confirm = input("> Proceed? (y/n): [y] ") or "y"
 if confirm in ["y","Y"]:
 break
 elif confirm in ["n", "N"]:
 print("Exiting...")
 sys.exit()

 clear()
 features_selected = ["{}".format(features[x]) for x in selected]
 init_mappification(options, features_selected)

 winsound.PlaySound(os.path.join(options["root_dir"], 'code','pythondone.wav'), winsound.SND_FILENAME)

def selectEvaluation():
 options = default_options();
 predictions = []
 predictions_meta = {}

 for (dirpath, dirnames, filenames) in os.walk(os.path.join(options["out_dir"], "predictions")):
 predictions = [fn[:-4] for fn in filenames if fn[-10:] == "_qdist.txt"]
 predictions_meta_files = [fn[:-5] for fn in filenames if fn[-11:] == "_qdist.meta"]
 for i, meta_file in enumerate(predictions_meta_files):
 meta_content = [row.split(" ") for row in open(os.path.join(options["out_dir"], "predictions", meta_file+".meta"), 'r').read().strip().split("\n")]
 if len(meta_content[0]) > 1:
 predictions_meta[meta_file, 'qfull'] = ", ".join(meta_content[0][1].split(","))
 if len(meta_content[1]) > 1:
 predictions_meta[meta_file, 'qless'] = ", ".join(meta_content[1][1].split(","))
 break

 print("____________________________________\n")
 print("Available predictions: \n")
 for i, prediction in enumerate(predictions):
 print("\t [{}] - {} \n\t\t - qfull: {}\n\t\t - qless: {}".format(i, prediction, predictions_meta.get((prediction, 'qfull'), "None"), predictions_meta.get((prediction, 'qless'), "None")))

 print("____________________________________\n")

 selected = int(input("> Select a prediction to evaluate ({}-{}): ".format(0, len(predictions) - 1)))
 print("Selected prediction: {}".format(predictions[selected]))
 while True:
 confirm = input("> Proceed? (y/n): [y] ") or "y"
 if confirm in ["y","Y"]:
 break
 elif confirm in ["n", "N"]:
 print("Exiting...")
 sys.exit()
 clear()
 input_filename = os.path.join(options["out_dir"], "predictions", predictions[selected] + ".txt")
 output_dir = os.path.join(options["out_dir"], "predictions", predictions[selected] + "_results")
 os.makedirs(output_dir)
 score.evaluate(options, input_filename, output_dir)

def main():
 clear()

 mail_on_completion = False
 while True:
 choice = input("\n> Login with gmail to receive mail on completed execution? (y/n): [n] ") or "n"
 if choice in ["y","Y"]:
 mail_on_completion = True
 break
 elif choice in ["n", "N"]:
 break

 if mail_on_completion:
 m = mailer.Mailer()
 m.login()
 print("\nWorking directory forced: ", file_dir)
 # print(default_options()["root_dir"])

 actions = ["Feature Extraction", "Model Training", "Model Testing", "Prediction Evaluation"]

 try:
 action = selectAction(actions)

 # generate feature scores
 if action == 0:
 selectFeatures()
 # train model
 elif action == 1:
 selectTrainModel()
 # test model
 elif action == 2:
 selectTestModel()
 # evaluate predictions
 elif action == 3:
 selectEvaluation()

 if mail_on_completion:
 print("Sending completion mail")
 m.send_to_self_once("[COMPLETE] {}".format(actions[action]), ":D:D:D:D")
 except Exception as e:
 print(traceback.format_exc())
 if mail_on_completion:
 print("Sending fail mail")
 m.send_to_self_once("[FAILED] {}".format(actions[action]), "Surprise surprise...\n\n{}".format(traceback.format_exc()))
 except (KeyboardInterrupt, EOFError) as i:
 print("Stopping...")

if __name__ == "__main__":
 main()

scoring/__MACOSX/._data_io.py

scoring/__MACOSX/._data_io.pyc

scoring/__MACOSX/._metadata

scoring/__MACOSX/._score.py

scoring/__pycache__/data_io.cpython-35.pyc

scoring/__pycache__/data_io.cpython-36.pyc

scoring/__pycache__/score.cpython-35.pyc

scoring/__pycache__/score.cpython-36.pyc

scoring/data_io.py

#!/usr/bin/env python

Data IO library
Isabelle Guyon, ChaLearn, March-September 2014

ALL INFORMATION, SOFTWARE, DOCUMENTATION, AND DATA ARE PROVIDED "AS-IS".
ISABELLE GUYON, CHALEARN, AND/OR OTHER ORGANIZERS OR CODE AUTHORS DISCLAIM
ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ANY PARTICULAR PURPOSE, AND THE
WARRANTY OF NON-INFRINGEMENT OF ANY THIRD PARTY'S INTELLECTUAL PROPERTY RIGHTS.
IN NO EVENT SHALL ISABELLE GUYON AND/OR OTHER ORGANIZERS BE LIABLE FOR ANY SPECIAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF SOFTWARE, DOCUMENTS, MATERIALS,
PUBLICATIONS, OR INFORMATION MADE AVAILABLE FOR THE CHALLENGE.

import csv
import numpy as np
import os
import pandas as pd
import pickle
import shutil

from sys import stderr
from sys import version
from glob import glob as ls
from os import getcwd as pwd
from pip import get_installed_distributions as lib

import yaml

if (os.name == "nt"):
 filesep = '\\'
else:
 filesep = '/'

swrite = stderr.write

def write_list(lst):
 for item in lst:
 swrite(item + "\n")
	
Create a directory if it does not exist
def mkdir(d):
 if not os.path.exists(d):
 os.makedirs(d)

def rmdir(d):
 if os.path.exists(d):
 shutil.rmtree(d)

def inventory_data_nodir(input_dir):
	# THIS IS THE OLD STYLE WITH NO SUB-DIRECTORIES
 training_names = ls(os.path.join(input_dir, '*_train.data'))
 for i in range(0,len(training_names)):
 name = training_names[i]
 training_names[i] = name[-name[::-1].index(filesep):-name[::-1].index('_')-1]
 check_dataset(input_dir, training_names[i])
 return training_names

def check_dataset(dirname, name):
	# Check the test and valid files are there
	valid_file = os.path.join(dirname, name + '_valid.data')
	if not os.path.isfile(valid_file):
		print('No validation file for ' + name)
		exit(1)
	test_file = os.path.join(dirname, name + '_test.data')
	if not os.path.isfile(test_file):
		print('No test file for ' + name)
		exit(1)
	# Check the training labels are there
	training_solution = os.path.join(dirname, name + '_train.solution')
	if not os.path.isfile(training_solution):
		print('No training labels for ' + name)
		exit(1)
	return True
	
def inventory_data(input_dir):
 training_names = ls(input_dir + '/*/*_train.data')
 for i in range(0,len(training_names)):
 name = training_names[i]
 training_names[i] = name[-name[::-1].index(filesep):-name[::-1].index('_')-1]
 check_dataset(os.path.join(input_dir, training_names[i]), training_names[i])
 return training_names

#def data(filename):
return pd.read_csv(filename, sep=' ')

def data(filename):
 return np.genfromtxt(filename)

def write(filename, predictions):
 with open(filename, "w") as output_file:
 for val in predictions:
 output_file.write('{:5.4g}\n'.format(val))

def show_io(input_dir, output_dir):
	swrite('\n=== DIRECTORIES ===\n\n')
	# Show this directory
	swrite("-- Current directory " + pwd() + ":\n")
	write_list(ls('.'))
	write_list(ls('./*'))
	write_list(ls('./*/*'))
	swrite("\n")
	
	# List input and output directories
	swrite("-- Input directory " + input_dir + ":\n")
	write_list(ls(input_dir))
	write_list(ls(input_dir + '/*'))
	write_list(ls(input_dir + '/*/*'))
	write_list(ls(input_dir + '/*/*/*'))
	swrite("\n")
	swrite("-- Output directory " + output_dir + ":\n")
	write_list(ls(output_dir))
	write_list(ls(output_dir + '/*'))
	swrite("\n")

 # write meta data to sdterr
	swrite('\n=== METADATA ===\n\n')
	swrite("-- Current directory " + pwd() + ":\n")
	try:
		metadata = yaml.load(open('metadata', 'r'))
		for key,value in metadata.items():
			swrite(key + ': ')
			swrite(str(value) + '\n')
	except:
		swrite("none\n");
	swrite("-- Input directory " + input_dir + ":\n")
	try:
		metadata = yaml.load(open(os.path.join(input_dir, 'metadata'), 'r'))
		for key,value in metadata.items():
			swrite(key + ': ')
			swrite(str(value) + '\n')
		swrite("\n")
	except:
		swrite("none\n");
	
def show_version():
	# Python version and library versions
	swrite('\n=== VERSIONS ===\n\n')
	# Python version
	swrite("Python version: " + version + "\n\n")
	# Give information on the version installed
	swrite("Versions of libraries installed:\n")
	map(swrite, sorted(["%s==%s\n" % (i.key, i.version) for i in lib()]))

scoring/data_io.pyc

scoring/diginetica_baseline.py

This is sample baseline for CIKM Personalization Cup 2016
by Alexander Laktionov & Vladislav Grozin

import numpy as np
import pandas as pd
import datetime

start_time = datetime.datetime.now()
print("Running baseline. Now it's", start_time.isoformat())

Loading queries (assuming data placed in <dataset-train/>
queries = pd.read_csv('dataset-train/train-queries.csv', sep=';')[['queryId', 'items', 'is.test']]
print('Total queries', len(queries))

Leaving only test queries (the ones which items we have to sort)
queries = queries[queries['is.test'] == True][['queryId', 'items']]
print('Test queries', len(queries))
queries.reset_index(inplace=True)
queries.drop(['index'], axis=1, inplace=True)

Loading item views; taking itemId column
item_views = pd.read_csv('dataset-train/train-item-views.csv', sep=';')[['itemId']]
print('Item views', len(item_views))

Loading clicks; taking itemId column
clicks = pd.read_csv('dataset-train/train-clicks.csv', sep=';')[['itemId']]
print('Clicks', len(clicks))

Loading purchases; taking itemId column
purchases = pd.read_csv('dataset-train/train-purchases.csv', sep=';')[['itemId']]
print('Purchases', len(purchases))

Calculating popularity as [Amount of views] * 1 + Amount of clicks * 2 + [Amount of purchases] * 3
print('Scoring popularity for each item ...')
prod_pop = {}
for cost, container in enumerate([item_views, clicks, purchases]):
 for prod in container.values:
 product = str(prod[0])
 if product not in prod_pop:
 prod_pop[product] = cost
 else:
 prod_pop[product] += cost

print('Popularity scored for', len(prod_pop), 'products')

For each query:
parse items (comma-separated values in last column)
sort them by score;
write them to the submission file.
This is longest part; it usually takes around 5 minutes.
print('Sorting items per query by popularity...')

answers = []
step = int(len(queries) / 20)

with open('submission.txt', 'w+') as submission:
 for i, q in enumerate(queries.values):

 # Fancy progressbar
 if i % step == 0:
 print(5 * i / step, '%...')

 # Splitting last column which contains comma-separated items
 items = q[-1].split(',')
 # Getting scores for each item. Also, inverting scores here, so we can use argsort
 items_scores = list(map(lambda x: -prod_pop.get(x, 0), items))
 # Sorting items using items_scores order permutation
 sorted_items = np.array(items)[np.array(items_scores).argsort()]
 # Squashing items together
 s = ','.join(sorted_items)
 # and writing them to submission
 submission.write(str(q[0]) + " " + s + "\n")

end_time = datetime.datetime.now()
print("Done. Now it's ", end_time.isoformat())
print("Calculated baseline in ", (end_time - start_time).seconds, " seconds")

scoring/metadata

command: python $program/score.py $input $output
description: Compute scores for the competition

scoring/score.py

#!/usr/bin/env python

Program substituting itself to the scoring program to test python configuration
Isabelle Guyon, ChaLearn, September 2014

ALL INFORMATION, SOFTWARE, DOCUMENTATION, AND DATA ARE PROVIDED "AS-IS".
ISABELLE GUYON, CHALEARN, AND/OR OTHER ORGANIZERS OR CODE AUTHORS DISCLAIM
ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ANY PARTICULAR PURPOSE, AND THE
WARRANTY OF NON-INFRINGEMENT OF ANY THIRD PARTY'S INTELLECTUAL PROPERTY RIGHTS.
IN NO EVENT SHALL ISABELLE GUYON AND/OR OTHER ORGANIZERS BE LIABLE FOR ANY SPECIAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF SOFTWARE, DOCUMENTS, MATERIALS,
PUBLICATIONS, OR INFORMATION MADE AVAILABLE FOR THE CHALLENGE.
import json
import os
from sys import argv
from scoring import data_io
from utils.prettyprogress import PrettyProgress
from glob import glob
from numpy import genfromtxt, log, log2
import yaml

if (os.name == "nt"):
	filesep = '\\'
else:
	filesep = '/'

IMPORTANT: This script has been modified to adapt to existing framework. No evaluation-specific code has been edited,
only redirection of input and output files has been modified.

def evaluate(options, input_filename, output_dir, out_name = 'scores.txt'):

	score_filename = os.path.join(output_dir, out_name)
	score_file = open(score_filename, 'w')

	target = 286967
	progress = PrettyProgress(target, options["print_step"])

	print("> Evaluating {}\n and producing scores to {}...".format(input_filename, score_filename))

	try:
		# Compute "real scores"
		# Get all the solution files from the solution directory
		solution_name = os.path.join(options["data_dir"], 'reference', 'valid.solution.csv')
		submission_name = os.path.join(options["out_dir"], 'predictions', input_filename)
		with open(solution_name, 'r') as real_answer, \
				open(submission_name, 'r') as submission:
			answer_lines, sub_lines = iter(real_answer), iter(submission)
			current_ans = next(answer_lines) # skip column names
			# Setting up NDCG sum variables and counters
			NDCG_search = 0.0
			NDCG_category = 0.0
			counter_search = 0.0
			counter_category = 0.0
			current_search = True
			skipped_lines = 0
			while True:
				try:
					progress.update(1, "Evaluating results...")
					current_ans = next(answer_lines)
					current_sub = next(sub_lines)
					current_ans_split = current_ans.split(';')
					current_sub_split = current_sub.split(' ')

					# print(current_ans_split[1])
					# id mismatch check
					while current_ans_split[1] != current_sub_split[0]:

						if int(current_ans_split[1]) < int(current_sub_split[0]):
							print("Missing query: ", current_sub_split[1])
							raise Exception()
							# current_ans = next(answer_lines)
						else:
							skipped_lines += 1
							# print("Extra query: ", current_ans_split[1])
							# raise Exception()
							current_sub = next(sub_lines)

						# current_ans_split = current_ans.split(';')
						current_sub_split = current_sub.split(' ')

					# Increase counters
					current_search = (current_ans_split[3] == "TRUE")
					if current_search:
						counter_search += 1
					else:
						counter_category += 1

				except StopIteration:
					answer = next(answer_lines, None)
					if answer is not None:
						print("Submission file not complete!")
						raise Exception()
					break

				scores_raw_string = current_ans_split[4].replace('""', '"')
				if scores_raw_string[-1] == '\n':
					scores_raw_string = scores_raw_string[:-1]
				scores_raw_string = scores_raw_string[1:-1] # remove quotes
				ans_json = json.loads(scores_raw_string)
				sub_items = current_sub_split[1].replace("\n", "").split(',')

				dcg = 0.
				counted_items = {}
				for i, sub_item in enumerate(sub_items):
					if sub_item not in counted_items:
						counted_items[sub_item] = True # count only first entry of item per query in submission
						dcg += ((2. ** ans_json.get(sub_item, 0)) - 1.) / log2(i + 2.)

				idcg_raw = current_ans_split[5].replace(',', '.')
				idcg = float(idcg_raw)

				if current_search:
					NDCG_search += dcg / idcg
				else:
					NDCG_category += dcg / idcg
			NDCG_search = NDCG_search / counter_search
			NDCG_category = NDCG_category / counter_category
			NDCG_total = NDCG_category * 0.8 + NDCG_search * 0.2
			score_file.write("search_NDCG: %0.6f\n" % NDCG_search)
			score_file.write("category_NDCG: %0.6f\n" % NDCG_category)
			score_file.write("avg_NDCG: %0.6f\n" % NDCG_total)
	except:
		score_file.write("search_NDCG: 0\n")
		score_file.write("category_NDCG: 0\n")
		score_file.write("avg_NDCG: 0\n")
		print('Something went wrong, e.g. the submission file name is not correct or the file format is not correct. Please, see the "Evaluation" for details.')

	score_file.close()
	print("Skipped lines:", skipped_lines)

	# Lots of debug stuff
	# data_io.show_io(input_dir, output_dir)
	# data_io.show_version()

	# Example html file
	with open(os.path.join(output_dir, 'scores.html'), 'w') as html_file:
		html_file.write("<h1>Example HTML file</h1>\nThis shows that we can also have an html file to show extra data.")

utils/__pycache__/mailer.cpython-35.pyc

utils/__pycache__/mailer.cpython-36.pyc

utils/__pycache__/prettyprogress.cpython-35.pyc

utils/mailer.py

import smtplib
import getpass

class Mailer:
 def __init__(self):
 pass

 def login(self):
 self.email = input("> Gmail: [kjehe91@gmail.com] ") or "kjehe91@gmail.com"
 self.pw = getpass.getpass("> Enter password: ")

 def send_to_self_once(self, subject, body):
 message = message = """From: %s\nTo: %s\nSubject: %s\n\n%s""" % (self.email, self.email, subject, body)

 self.server = smtplib.SMTP('smtp.gmail.com:587')
 self.server.ehlo()
 self.server.starttls()
 self.server.login(self.email, self.pw)
 self.server.sendmail(self.email, self.email, message)
 self.server.close()

utils/prettyprogress.py

"""

Class for reuse of pretty progress printing

"""

import time

def printProgressBar (iteration, total, prefix = '', suffix = '', decimals = 2, length = 20, fill = '#'):
 """
 Call in a loop to create terminal progress bar
 @params:
 iteration - Required : current iteration (Int)
 total - Required : total iterations (Int)
 prefix - Optional : prefix string (Str)
 suffix - Optional : suffix string (Str)
 decimals - Optional : positive number of decimals in percent complete (Int)
 length - Optional : character length of bar (Int)
 fill - Optional : bar fill character (Str)
 """
 percent = ("{0:." + str(decimals) + "f}").format(100 * (iteration / float(total)))
 filledLength = int(length * iteration // total)
 bar = fill * filledLength + ' ' * (length - filledLength)
 print('\r %s |%s| %s%% %s' % (prefix, bar, percent, suffix), end = '\r')
 # Print New Line on Complete
 if iteration == total:
 print()

class PrettyProgress:

 def __init__(self, target, print_step):
 self.previous_times = []
 self.prevcounter = 0
 self.counter = 0
 self.target = target
 self.step = target / 1000
 self.print_step = print_step
 self.timer = -1
 self.suffix = ''

 def update(self, inc = 1, extra_suffix = ''):
 # pretty print progress

 if self.counter > self.prevcounter + self.step or self.counter == 0:
 self.prevcounter += self.step
 if self.timer == -1:
 self.timer = time.time()
 if self.timer > 0 or self.counter == 0:
 self.suffix = extra_suffix
 time_elapsed = time.time() - self.timer
 self.previous_times.append(time_elapsed)
 self.timer = time.time()
 avg_time = sum(self.previous_times) / len(self.previous_times)

 remains = avg_time * (self.target - self.counter)/ self.step
 est_hours = int(remains / (60*60))
 est_minutes = int(remains / 60) % 60
 est_seconds = int(remains) % 60

 printProgressBar(self.counter, self.target, prefix = 'Progress:', suffix = 'Complete (%02d:%02d:%02d remaining) - ' % (est_hours, est_minutes, est_seconds) + self.suffix , length = 20)
 self.counter += inc

 def end(self):
 print("\n")

kjehe
File Attachment
sources.zip

Attached is the source code of the experimental framework used for all experiments related to Information Retrieval using Supervised Learning for Personalized E-Commerce.

Run main.py to start the task selection.
Before running, ensure that the config.txt points to the parent folder of your working directory.

Dataset can be downloaded from google drive, linked here:
https://drive.google.com/drive/folders/0B7XZSACQf0KdXzZFS21DblRxQ3c

kjehe
File Attachment
Readme.txt

	1 Introduction
	1.1 Main Contributions
	1.2 Outline

	2 Background
	2.1 Information Retrieval
	2.1.1 Retrieval Evaluation
	2.1.2 Vector space models

	2.2 Machine Learning
	2.3 Learning to rank
	2.4 Product Search

	3 Personalized E-Commerce Search Challenge
	3.1 Task Definition
	3.2 Dataset
	3.3 Evaluation Methodology
	3.4 CIKM Cup and Participants
	3.5 Challenges

	4 Approach
	4.1 Overview
	4.2 Feature selection
	4.2.1 Query-item-dependent features
	4.2.2 Item-dependent features
	4.2.3 User-item-dependent features

	4.3 Supervised Learning
	4.4 Implementation

	5 Results
	5.1 Individual Features
	5.2 Feature Combinations
	5.3 Overall Results

	6 Discussion
	7 Conclusion
	Bibliography
	Appendices
	A Attachments

