

FACULTY OF SCIENCE AND TECHNOLOGY

MASTER'S THESIS

Study program/specialization:

Information Technology - Automation and

Signal Processing

Spring semester, 2017

Confidential

Author: Simon Marnburg Eriksen

…………………………………………
(signature author)

Instructor: Karl Skretting

Supervisor(s): Hafrún Hauksdóttir

Title of Master's Thesis: Visual guided robotic picking system for the grocery industry

Norwegian title: Bruk av robotsyn for plukking av matvarer

ECTS: 30

Subject headings:

pose estimation, ROS, features, motor control,

robotic picking, homography

 Pages: 59

 + attachments/other: 9 + embedded file

 Stavanger, 15th of June/2016

 Date/year

Visual guided robotic picking system for
the grocery industry

Simon Marnburg Eriksen
June 2017

MASTER THESIS

Faculty of Science and Technology
Department of Electrical Engineering and Computer Science

University of Stavanger

Supervisor: Karl Skretting

Abstract

People spend a lot of time and energy doing grocery shopping. Stores have become
bigger and more centralised leading to more people having to use cars for their
grocery shopping.
The market for online grocery shopping has been increasing rapidly, and many
new companies are emerging in a market traditionally ruled by giants. Ordering
groceries online can be convenient for the customer, but in the end, someone has
to do the picking in a warehouse.

This thesis presents a vision guided robotic picking system designed to pick gro-
ceries from vertical shelves. A suggested solution of using the feature detector and
descriptor algorithm SIFT to locate and estimate the objects pose is presented.
By using a known image of each product, four corner points can be located and
used to estimate the homography.
The system is implemented on a vertically mounted 3-axis gantry robot mounted
in front of shelves.
The scope of this project extends to controlling the motors on the robot as well as
an industrial vacuum system that is used together with suction cups to pick items.
A solution for controlling the robot using the open software library SOEM as well
as Robotic Operating System (ROS) is presented.

Results show that the pose estimation algorithm can provide a positional accuracy
within 1cm on items with a flat surface. This is good enough for the robot to place
a suction cup. A short video demonstrating the functionality of the system can be
seen using the following link: https://goo.gl/vQDF44

i

https://goo.gl/vQDF44

Preface

This paper concludes five years at the Department of Electrical Engineering and
Computer Science at the University of Stavanger and five months of work at Au-
tomatmat. I would like to thank my supervisor Karl Skretting as well as my
co-workers at Automatmat who has given me the opportunity to do this exiting
project.

ii

Contents

1 Introduction 1
1.1 The company . 1
1.2 Objective . 2
1.3 Other projects on the same system 3
1.4 Motivation . 4
1.5 System requirements . 5

2 Background 6
2.1 What has been done before . 6
2.2 The pin hole camera . 7
2.3 Camera calibration . 8
2.4 Planar homography . 9
2.5 Outlier rejection . 10
2.6 Features and descriptors . 11
2.7 Feature matching . 12
2.8 Robotic operating system . 13
2.9 The components of ROS . 13
2.10 EtherCAT . 14
2.11 Libraries used . 15

3 Concept development 16
3.1 Selection of camera . 16
3.2 Selection of control library . 18

4 Implementation 19
4.1 The robot . 20
4.2 Motors and drives . 21
4.3 vacuum system . 23
4.4 Camera system . 23
4.5 Motor control . 25
4.6 Pose estimation . 26

iii

4.7 ROS framework . 28
4.7.1 Pose estimation node . 28
4.7.2 Motor control node . 30
4.7.3 Vacuum control node . 33
4.7.4 System control node . 34

4.8 Communication . 36
4.9 Product registration . 37

5 Experiments and results 38
5.1 Preliminary test of various feature detectors 38
5.2 Test on finding pose . 41
5.3 Test of mechanical structure . 45
5.4 Test of motor control . 46
5.5 Pose estimation tests . 49
5.6 Test of actual picking . 52

6 Discussion 54
6.1 Hardware . 54
6.2 Experiments . 55

6.2.1 Preliminary tests and mechanical setup 55
6.2.2 Motor and vacuum control 55
6.2.3 Pose estimation . 56

6.3 Test of actual picking . 56

7 Conclusion and future work 57
7.1 Recommendations for future work 58

8 Appendix 59
8.1 References . 59
8.2 Original task . 60
8.3 System start-up procedure . 61
8.4 List of figures . 62
8.5 List of tables . 63
8.6 Source code . 64
8.7 Training images . 65
8.8 Test images . 67

iv

List of abbreviations
SIFT Scale-invariant feature transform

SURF Speeded up robust features

SOEM Simple Open Ethercat Master

EAL Easy Automation Library

ROS Robot Operating System

FLANN Fast Library for Approximate Nearest Neighbors

DoG Difference of Gaussian

HMI Human-machine interface

v

1. Introduction

This thesis presents a method of using computer vision to guide a robot in picking
grocery items from a shelf, including motor control and a ROS system tying the
parts together. The task was given by the start-up company Automatmat
The overall goal for Automatmat is to make a feasibility prototype robot that can
be used as a demonstration of both hardware and software.

1.1 The company
Automatmat is a lean start-up, and operates as such with minimum overhead.
The vision of the company is to bring the benefit of automation into the grocery
industry and to revolutionize the inventory management. For more info on the
long term vision, please visit www.automatmat.no

Automatmat is currently in phase 2 of its development plan.

� Phase 1 consisted of a market analysis.

� Phase 2 consists of developing a feasibility prototype which this thesis is a
part of. Phase 2 ends 15. July 2017

� Phase 3 will be integration in a warehouse in Norway in corporation with a
pilot customer.

� Phase 4 is full scale commercialisation.

1

CHAPTER 1. INTRODUCTION

1.2 Objective
Due to the agile development methodology used in Automatmat, the objective for
this thesis has been modified over time. The core problem, computer vision guided
picking is the main focus, but it had to be slightly simplified due to the need for
a ROS system and a motor control system. The main topics for this thesis has
therefore been: Vision guided picking, motor and vacuum control, and develop-
ment of a ROS system connecting the two.

For the vision guided picking, the following questions are considered:

� Can pose estimation be done reliable with a single camera

� Is the picking by robot reliable enough

� Can the vision system select the point of contact accurately enough

For the motor control, the following questions are considered:

� Can the motors be controlled using open software

� Is the axis movement smooth

For the ROS system, the following questions are considered:

� Is ROS a suitable platform

Figure 1.1: Thesis outline

2

CHAPTER 1. INTRODUCTION

Figure 1.1 shows the outline of the objective. Three main systems tied together
using ROS.

Delivery

1. Existing technology overview

2. Design proposal for vision guided picking

3. Selection of cameras

4. Algorithm for picking

5. Motor control software

6. Vacuum control software

7. ROS environment

8. Final report

1.3 Other projects on the same system
This thesis is a part of a bigger development project at Automatmat consisting of
two master theses, including this, and one bachelor thesis. The bachelor candi-
date, Henrik Margnussen, was given the task of choosing motors, communication
standards and doing tests on the vacuum system to make an overview of which
suction cups is able to lift which products.
The other master candidate Mikal Berge have been working on computer vision
algorithms for packing groceries using the same robot that is used for picking.

The bigger development project is expected to be finished one month after the
end of this master project. This delay is due to unexpected challenges during
development and delayed deliveries from manufactures.

3

CHAPTER 1. INTRODUCTION

1.4 Motivation
There are some key points that make this project attractive.

� Grocery industry is lagging behind on automation

� The market for online grocery shopping is increasing rapidly

� High minimum wage means automation make sense in Norway

� New technology in computer vision and improved hardware makes it possible
to automate the grocery industry

New technology within computer vision and already established online grocery
stores makes it a possibility to do this kind of project now.

It is possible to order groceries online and have it delivered to your door or to
some pick-up-point. So the user-side has been automated, but on the supplier-
side, people still have to walk between the shelves in the warehouse and manually
sort out each customers items.
The environmental benefits of completely automated stores will be great for the
big cities with fewer cars on the road, less food waste and less wear on the roads
due to fewer heavy vehicles.

Why a vision guided system
Automation of production lines, packing robots or similar systems have a long
history of using automation to streamline efficiency. The grocery industry should
be no exception, but the high variation of items as well as expiration dates and
fragile items makes it difficult.

For this project, adaptability is crucial. Groceries come in countless shapes and
sizes. Building a specialised implementation for each type of product is not feasi-
ble and certainly not scalable. The goal is that the system will be adaptable to a
range of products and scalable with the help of computer vision and gantry robots.

The task
A key part of Automatmat’s project is to make it cheap enough to do this on large
scale. Other solutions use universal robots which is expensive and often slow, but
Automatmat aim to make it cheap by using 3-axis robots that can be scalable
and specialized for handling vertical shelves. A solution that can handle vertical
shelves can be implemented in existing warehouses without a complete re-build.
Items can be stocked from the other side of the shelf.

4

CHAPTER 1. INTRODUCTION

1.5 System requirements
By the given task we can sum up some system requirements:

� Vertical integration of gantry robot

� Able to lift products weighing 1.5kg

� Should position a vacuum cup accurate enough to pick up an item using
computer vision

� Control motors and vacuum system using open libraries

� The system should work on a range of products

5

2. Background

This chapter presents background information to key parts that has been im-
plemented in the solution as well as an overview of what technology has been
implemented in other existing solutions.

2.1 What has been done before
Autostore[1] is a Norwegian company that develops automation for warehouses.
Their solution have robots moving on top of a 3 dimensional grid of boxes full of
product that can be retrieved by the robots to a human picker. As the robot only
picks up the whole box, manual labour is needed to pack specific orders.

IAM robotics uses a wheeled robot that navigates between shelves. The robot
is equipped with a suction cup on the end of a 6-axis arm and 3d-camera used to
locate products.
As stated in [5] "In the long run, speed will be a significant factor in many indus-
trial applications, which may give an advantage to static arms and gantry solutions
over wheeled platforms." speed is an important factor in picking solutions. The
wheeled robot from IAM robotics is slow and target handling items that have a
low throughput like pharmaceuticals.

Ocado is a large online only retailer based in UK that sells groceries and other
items. Ocado has been investing a lot into automation of their warehouses and
is also developing technology in-house. Their existing solutions only handle boxes
and not single items.

As these are all commercial solutions there is not detailed information available
about the systems. Existing technology shows a trend of starting at the other end
of the spectrum with large boxes, and not individual items.

6

CHAPTER 2. BACKGROUND

2.2 The pin hole camera
A monocular camera is often simplified to the pinhole camera model. In theory
all the light passes through a single point, which is the pinhole. In practice this is
not possible, and lenses further distort the image.

Figure 2.1: The pinhole camera [6]

Figure 2.1 demonstrates how the apparent size of the object changes with distance.
This means we can determine the distance by measuring how many pixels the ob-
ject occupy on the image sensor if we have knowledge about the size of the object.

The center axis seen in figure 2.1 is called the optical axis and the intersection
on the camera sensor is called the principal point. The principal point is what
defines the center of the image.
All points seen in the real world by the camera is converted to 2d points on the
image plane. A point in the real world is defined as P = (X, Y, Z) and a point on
the image plane is defined as p = (x, y)

x = f
X

Z
, y = f

Y

Z
(2.1)

As seen in equation 2.1, information about depth is lost on the image plane. This
means you must have multiple points on the image plane and knowledge about an
object to calculate depth information.

7

CHAPTER 2. BACKGROUND

2.3 Camera calibration
A camera calibration needs to be done because it is not possible to have a the-
oretical pinhole camera in the real world and the lens will further distort the image.

ROS has a camera calibration tool built in which has been used in this project to
calculate camera matrix and distortion coefficients A flat chequerboard pattern is
needed to supply the software with data. The chequerboard can be of arbitrary
size, the important thing is that it’s flat. By locating points on the chequerboard
the software calculates the deviation from what it should look like on a pinhole
camera and provides a set of distortion coefficients that can be used to correct for
distortion and get an approximation of the pinhole camera.

Figure 2.2: Before calibration Figure 2.3: After calibration

Figure 2.2 shows an image of a chequerboard. This is one of 14 images used to
calibrate the camera in this project. Figure 2.3 shows the same image that has
been undistorted using the camera matrix and distortion vector that was found
after calibration. Lines that are straight in the real world will now also appear as
straight in the picture. Depending on the method used information can be lost
near the edges and corners as the whole undistorted image is not a rectangle. The
camera matrix is defined as in equation 2.2. fx and fy represent the focal length.
These will be the same in a pinhole camera, but can differ in an actual camera.
cx and cy defines the principal point. Equation 2.3 defines the distortion vector
with 5 coefficients.

M =

fx 0 cx
0 fy cy
0 0 1

 (2.2)

dist =
[
k1 k2 p1 p2 k3

]
(2.3)

8

CHAPTER 2. BACKGROUND

2.4 Planar homography
The purpose of using planar homography in this project is to estimate an objects
6 degree of freedom pose in world coordinates.
To find the unique pose of an object using a calibrated camera, homography and
a known camera location you need four coplanar and no three collinear points[9].
In other words, given we know the location of the camera, have done a camera
calibration and in some way find four points that satisfy the given requirements,
we have enough information to calculate an object’s 6 degree of freedom pose using
planar homography.

The homography matrix describes the relationship between projected point on
two planes. The matrix itself have the dimensions 3x3 and is defined as in equa-
tion2.4 and has 8 degrees of freedom.

H =

h12 h12 h13
h22 h22 h23
h32 h32 h33

 (2.4)

x
′

y′

1

 = H

xy
1

 (2.5)

Equation 2.5 shows how the homography matrix can be used to transform one point
on a plane, to another plane. Figure 2.4 shows an illustration of a transformation
between two camera planes.

Figure 2.4: Homography illustration

9

CHAPTER 2. BACKGROUND

2.5 Outlier rejection
A robust way of rejecting outliers is important when estimating homography using
SIFT as there will always be matches found that are not actually corresponding
points. The algorithm used in this project is called Random Sample Consensus
(RANSAC) and is know to be robust against large quantities of outliers [7]. Imple-
menting RANSAC means randomly sampling a subset of the data and creating a
model based on only the subset. The subset model is evaluated towards the whole
dataset and given a score based on how many datapoints fit the model within
a threshold. This runs for a given amount of iterations and the highest scoring
model is chosen as the estimation.

Figure 2.5: RANSAC iteration 1 [8] Figure 2.6: RANSAC iteration 2 [8]

Figure 2.5 shows the result during an iteration of RANSAC implemented for line-
fitting. The datapoints that fit the model within the threshold are shown in red
while the outliers are blue. It is obvious for a human that this is probably not the
correct model.
Figure 4 shows a different iteration where the random line model contains a lot
more inliers. The model used in figure 2.6 would be chosen over the one in figure
2.5 because it has a higher score.
This line-fitting example demonstrates a simple implementation of the RANSAC
algorithm. More complex models can also be estimated like a plane in 3D space.

10

CHAPTER 2. BACKGROUND

2.6 Features and descriptors
The purpose of a feature detector is to find interesting areas or points in an image.
Interesting points can be corners, edges, texture etc. and are referred to as features
or keypoints. Features are often used for tasks like object detection and tracking.
Figure 2.7 visualises keypoints found by a feature detecting algorithm. Each fea-
ture is assigned a image coordinate, scale and image gradient.

Figure 2.7: Image with keypoints visualised

Descriptors
When a feature has been found, a descriptor will assign a distinct description of
the point based on the surrounding area. The purpose of the descriptor is to
describe the point so that it can be recognised under different circumstances, like
if the same point is rotated or scaled. A good descriptor gives a similar description
independent of scale and rotation.

11

CHAPTER 2. BACKGROUND

2.7 Feature matching
When keypoints have been found by a feature detector and described by a feature
descriptor in two different images. A feature matcher can be used to find keypoints
that have similar descriptors in both images. Points that have similar descriptors
will hopefully be corresponding points.
When looking at large sets of keypoints from a large number of images, which is
usually the case when doing object recognition you can speed up the matching
process by implementing algorithms like KD-tree search or Fast Library for Ap-
proximate Nearest Neighbors(FLANN)[10].
When comparing only two images, the number of keypoints will often be in the
range of a few hundred to a few thousand. It can then make sense to use a brute
force matcher with the advantage of guaranteeing the best match.

Figure 2.8: Corresponding points found

Figure 2.8 shows an example where the keypoints and matches are visualized. A
SIFT feature detector and descriptor has been used and only the best matches are
visible. The product is held upside-down at an angle with a distance that makes
the apparent size about half of the training image to demonstrate the invariance
to scale and rotation. The lines between the two images shows estimation of which
keypoints are corresponding.

12

CHAPTER 2. BACKGROUND

2.8 Robotic operating system
Robotic operating system(ROS) is a software framework designed to develop soft-
ware for robots. It was initially started by Willow garage and Standford Artificial
intelligence Laboratory [4] with the purpose of making it easier to collaborate and
implement others work. Work was often fragmented and ROS was a step towards
unifying and streamlining research and development of robotic and artificial intel-
ligence software.

A new release of ROS is scheduled to be released every year, with a long term
support(LTS) version every second year. The release used in this project is called
Kinetic Kane and was released May 2016 and will reach its end of life May 2021.

2.9 The components of ROS

Ros nodes
A ROS node is a process that do tasks. Each node is a separate executable that
can be compiled and executed independent of other ROS nodes in the system.
A ROS node is basically a program that can communicate with other programs
through the ROS environment.

Ros message
ROS nodes communicates by sending and receiving messages. A message has to be
of a set structure given by what type of message it is. A message type can contain
anything from a single integer to multidimensional arrays. The standard collection
of messages include String, int8, int32, bool and many more. If the message type
you need is not in the standard library, it is easy to create custom message types.

Ros topics
Ros nodes can exchange data by subscribing or publish messages on a topic. The
topic is the name of the bus on which the message is transmitted. Only messages
of the same type should be published on a single topic, but multiple nodes can
publish on the same topic.
Publishing and subscribing is done anonymously so if data of the same type needs
to be separated, it could be solved by publishing on a separate topic.

13

CHAPTER 2. BACKGROUND

The ROS master
The ROS master have an overview of what topics are being published and what
nodes are publishing them. If a node wants to subscribe to a topic it will ask the
master where to find it. Data is not funnelled through the master, but it acts more
like a DNS server telling nodes where to find what they are looking for.

2.10 EtherCAT
Ethercat is a real-time capable communication protocol developed by Beckhoff [2].
It was important during development to focus on low cycle times (<100µs) which
is the rate data can be updated. EtherCAT is based on Ethernet which gives the
advantage of cheap cables up to 100m and hardware that are easily available.
The master sends out a standard Ethernet frame, this frame has a EtherCAT
telegram inside. When the frame reaches a slave, the data inside is read on the
fly and it can also add data to the telegram on the fly. This method of having the
data always "moving" contributes to the high speed. It is only the master that can
send out Ethernet frames.
Ethercat was chosen as the communication protocol of choice for this project as a
result of Henriks study. Figure 2.9 shows the structure of the Ethernet frame with

Figure 2.9: EtherCAT structure. Figure by ETG [2]

the EtherCAT telegram inside.

14

CHAPTER 2. BACKGROUND

2.11 Libraries used
This section will give a brief overview of the software libraries used in this project.

OpenCV
OpenCV is an open source library that is free for commercial and private use fol-
lowing the BSD licence[3]. Its main uses are computer vision and machine learning.
It is written in C/C++ and provides complete python bindings.
OpenCV provide some feature detectors in the standard package and some addi-
tional ones including SIFT and SURF if the library is compiled together with a
contribution package

Simple Open Ethercat Master
Simple Open Ethercat Master(SOEM) is a open software library for creating a
EtherCAT master. It is written in C for use in linux and windows.

Easy Automation Bosch Rexroth
Bosch Rexroth have seen a trend of customers wanting more open software in their
applications and have therefore responded by releasing a software library for their
drives called Easy Automation Library(EAL). It is written in C and supports the
most common operating systems, Windows, Linux and Android. EAL uses the
communication protocol Ethernet/ip which is significantly slower than EtherCAT
with cycle times around 10ms[2].
This library has not been included in the implementation, but it has been converted
to c++ and compiled in a ROS node. This can be used in future development for
a human-machine interface(HMI) in parallel with the ROS/SOEM system.

15

3. Concept development

The following chapter presents different concepts that was assessed in the devel-
opment process. The choice of concept should be expected to be able to satisfy
the system requirements.

3.1 Selection of camera
There where three main concepts of a camera solution that was evaluated during
development.

� Monocular camera

� Stereo camera system

� 3d camera system

Monocular camera
A monocular camera system consists of one image sensor and one lens. Using
only one monocular camera was from the start the preferred solution because this
means the equipment cost goes down together with the simplicity of the system.
A challenge is the limited amount of information the camera provides.

Stereo camera system
When you have a camera mounted on a robot that you know the position of there
are two approaches to obtaining a stereo image. One is to have a traditional dual
camera system and the other takes advantage of the fact that you can move the
robot a known distance such that a stereo pair of images can be obtained from a
single source.

16

CHAPTER 3. CONCEPT DEVELOPMENT

3d camera system
A 3d camera system can provide information about depth. Can not rely solely on
3d pointclouds as many items are of similar shape and size. What separates them
is the texture.

Selection of camera
A decision was made to use a single monocular camera for a few reasons. In a
competition hosted by Amazon with the challenge of making a robot that can
pick items from shelves about half of the teams did not score a single point[5] and
vision was stated as one of the key challenges. Having a simplified vision system
increases increased the chance of being able to test a functional prototype in this
project. The camera chosen was a Intel Realsense SR300 development kit3.1. This
camera also includes structured light based 3d sensor which can be used for future
development.

Figure 3.1: Intel realsense SR300

17

CHAPTER 3. CONCEPT DEVELOPMENT

3.2 Selection of control library
EtherCAT was chosen as communication protocol by Henrik as a result of his
study. Chosing EAL for motor control would go against his recommendation. The
reason this had to be evaluated was because EAL provides abstraction layers and
functions that would simplify getting up and running compared to with SOEM.

SOEM was chosen after the manufacturer of motors and drives offered a work-
shop to get up and running. They could not provide support related to SOEM,
but provided essential information about start-up procedures and what the differ-
ent bits in the input and output registers of the drives represent.

18

4. Implementation

The following chapter describe the implementation of hardware and software. Fig-
ure 4.1 shows an overview of the complete picking system. The blue circles repre-
sent the different ROS nodes while the red boxes represent hardware components.
All software is written in C++ for ROS kinetic Kame on Ubuntu 16.04.

Figure 4.1: System overview

19

CHAPTER 4. IMPLEMENTATION

4.1 The robot
The following section will describe the mechanical setup and the robot used. The
robot was not assembled when delivered from the manufacturer, the building pro-
cess has been a collaboration with the other students at Automatmat. The wiring
was mostly done by the other master candidate Mikal Berge.

The robot is a 3-axis gantry system designed to be placed with the x-y plane
in a horizontal position so that the z axis will move towards the ground. This is a
common setup for most pick and place machines. One critical design question for
this project is how well this type of gantry system will work when implemented
with the x-y plane vertical and the z-axis moving horizontal into the shelves. The
robot has a travel range of 1m in x and y direction, and 0.5m in z direction.

Figure 4.2: CAD drawing of robot supplied by manufacturer together with the
mounting frame shown in green

The robot has been mounted using four 80x80mm aluminium profiles, these are

20

CHAPTER 4. IMPLEMENTATION

Axis mm/Rev
X 65
Y 130
Z 10

Table 4.1: Axis data

shown in figure 4.2 as green bars. The horizontal bars are there to give stability for
the two x-axis actuators, while the two vertical bars give four points that secure
the system to the floor and roof. The horizontal bars have a length of 1350mm
and the vertical 2000mm.
The x-axis is closest to the base of the robot and moves the whole y-axis.

A low weight circular aluminium tube profile has been used to mount the vac-
uum cup on the z-axis to minimize stress introduced on the actuator. This also
made it possible to run the vacuum tube inside the axis as seen in figure 5.13.
It is only the aluminium tube that moves in the z-direction because of how the
z-actuator is mounted.

Table 4.1 shows the amount of axis travel with each revolution of the motor axis.
The Y-axis is directly coupled to the axis with a coupling, while the X-axis has a
belt that reduces the motor input by a factor of 2. The Z-axis is directly coupled
to the screw that runs through the axis. The screw has a pitch of 10 and moves
therefore the axis 10mm with each revolution. This data has been registered by
testing as the documentation provided by the manufacturer was limited.

4.2 Motors and drives
Both motors and drives are produced by Bosch Rexroth. Choosing this type of
motor was a result of the study done by Henrik.
Motors:
x: Has a rated continuous torque of 0.64Nm.
y: Has a rated continuous torque of 1.3Nm. The motor is fitted with a brake that
is applied if the motor looses power. This prevents the axis from falling down and
causing damage.
z: Rated torque of 0.32Nm. This motor is fitted with a brake in case it make
sense to test the robot in a horizontal position with the Z-axis pointing towards
the ground. .
A more detailed illustration of the topology of the drives and motors are shown

in figure 4.3. The nature of EtherCAT allows for using a single Cat5e cable with

21

CHAPTER 4. IMPLEMENTATION

Figure 4.3: Motor connections

rj45 connectors to the first drive which are then connected to the next drive. This
is called line topology.
Each motor is connected to the corresponding drive with a encoder cable and a
three phase power cable.

Gantry robots will often have to do a procedure called homing when starting
from a state of no power. This is often done by moving in one direction until a
limit-switch is triggered. The purpose of this is to establish a known position.

All the motors used in this project contain an absolute encoder with battery to
keep positional data stored when the power is off. This means the motors will
always know how many revolutions and degrees they are from a known point and
homing is not needed. It also enables the possibility to implement travel-limits
using software and not hardware. Travel-limits is important to prevent the robot
from crashing in the mechanical stop point and cause damage.
The travel-limits has been set using the Indraworks DS software, and to a distance
of 4cm from the mechanical stop point of all three axis.

22

CHAPTER 4. IMPLEMENTATION

4.3 vacuum system
The vacuum system consist of two main parts. A valve terminal with PLC func-
tionality and a vacuum generator. A digital output on the valve terminal turns
on or off the vacuum generator by opening and closing a valve inside the vacuum
generator. The generator outputs the actual pressure on the vacuum side as a
0-10v analogue signal. This is read by the valve terminal and transmitted in the
cyclic EtherCAT data. The valve terminal is supplied with pressured air from a
air compressor.

Figure 4.4: Vacuum system

Figure 4.4 shows an overview of the vacuum hardware. Electrical connections are
shown in black, while airflow is shown in blue. Figure 4.5 shows how the vacuum
cup is mounted on the z-axis. It is possible to change vacuum cup by unscrewing
it.

4.4 Camera system
The camera system is a Intel Realsense SR300 development kit which is mounted
on the z-axis. The SR300 contains a RGB-sensor, IR-sensor as well as a depth
sensor. Only the RGB-sensor has been used for this implementation and with
a resolution setting of 680x480(VGA). Communication to the control-pc is done
through USB. Because USB 3.0 has a design limit of 5 meter of cable length an
active cable is required.
The camera system has a mounting point for standard tripod screws and a joint
that can rotate the image sensors from pointing straight forward to 90 degrees

23

CHAPTER 4. IMPLEMENTATION

down. This means it is possible to manually alternate between capturing the shelf
and the ground where the packing box is located.
Figure 4.5 shows how the camera is mounted on the z-axis.

Figure 4.5: Camera system with vacuum cup

24

CHAPTER 4. IMPLEMENTATION

4.5 Motor control
One of the requirements for choice of motors and drives was the possibility of using
of position control. This means by giving the drives a position they will internally
calculate a path and run a closed control loop on the positioning. A high speed
control loop between a ROS node and the drives is therefore not needed and sim-
plifies the control software needed for this projects application.

The motors comes with pre-set parameters for the control loop. These settings
are good enough for roughly 70 percent of all applications according to the man-
ufacturer If control problems are experienced it is possible to do autotuning in a
program provided by Bosch-Rexroth called Indraworks Ds. The software performs
autotuning by moving the chosen axis and measuring its frequency response and
step response.

25

CHAPTER 4. IMPLEMENTATION

4.6 Pose estimation
As the homography describes the relationship between points on two planes, we
can use this to estimate the pose of an object. One of the planes is placed on
the front facing surface of the product, while the other is placed on the image
sensor. This way, the relationship we estimate is the relationship between the
camera and the object. By having the camera mounted on the robot we know its
position and by having an estimate of the relationship between the camera and
the product we can estimate the actual position of the object in world coordinates.

The plane on the products surface is found using SIFT. Each product have one
training image. Keypoints and descriptors from each of the training images are
calculated and stored when starting the program. Depending on what product
should be picked, the keypoints and descriptors from its training image is matched
with keypoints and descriptors from the camera feed.

Listing 4.1: Key functions

Mat H = findHomography (training_kp , camera_kp , CV_RANSAC);
.
.
perspectiveTransform (training_corners , camera_corners , H);
.
.
solvePnP (training_points , camera_corners ,mtx ,dist ,rvec ,tvec);

Listing 4.1 shows three key OpenCV functions that have been used for pose esti-
mation. The homography matrix is first estimated using corresponding matches
from the training and camera image.
The homography matrix is then used to transform the cornerpoints on the training
image, which is on the camera sensor, to the corresponding points on the actual
products location.
The last step calculates the rotation and translation vectors from the cornerpoints
on the image sensor, to the transformed points found in the second step.

Rejecting bad pose estimation When the homography matrix is estimated,
OpenCv can use statistical methods to remove outliers in the dataset. The algo-
rithm used in this thesis is called RANSAC. The implementation of RANSAC in
OpenCV when estimating homography is used in the following way.
A random set of four corresponding points are selected and the homography is
estimated using only those points. This model is now evaluated towards all corre-
sponding points and a score is made depending of how many corresponding points

26

CHAPTER 4. IMPLEMENTATION

fit this model. This goes on a set number of iterations and based on which model
got the highest score, a model is selected and the points outside of the threshold
is considered outliers.

27

CHAPTER 4. IMPLEMENTATION

4.7 ROS framework
The following section will describe the architecture of the ROS system and the
functionality of each node in the system. An overview of the most important
topics the nodes publish and subscribes to is presented in tables.

4.7.1 Pose estimation node
The pose estimation node is started when the value true is published on the topic
start_pose. The node is only started when needed as it is computational expen-
sive. If a good pose estimation is found it will publish the objects position on the
topic object_position which is used by the control node.

To filter out some of the inevitable bad pose estimations, some requirements has
been implemented.

� Distance must be in the range 30-55cm(within the shelf)

� Rotation in all axes must be within 30◦

� No cornerpoint can be far outside the cameras field of view.

As a last step for the node to publish "good pose" there has to be three consecutive
pose estimations within ±1cm in distance and ±1.5cm in x,y translation. If all of
these requirements are fulfilled the topic "good_pose" will read as True.

Figure 4.6: Visualisation of pose estima-
tion

Figure 4.7: Visualisation of pose estima-
tion

Figure 4.6 shows a real-time visualisation of the pose estimation. The green, red
and blue lines shows the estimated outline of the target product based on known

28

CHAPTER 4. IMPLEMENTATION

dimensions. The yellow line represents the pick-point as a normal on the front-
face.
Figure 4.7 visualises pose estimation on a non-rectangular product. The plane
used for homography estimation is then the smallest rectangle fitting the object.
This rectangle is visualised with green bars.

Message type Topic
Start pose bool
stop bool

Table 4.2: Pose estimation node subscribers

Message type Topic
position object_position
bool good_pose

Table 4.3: Pose estimation node publishers

position message
Uint16 x
Uint16 y
Uint16 z

Table 4.4: Contents of position message

29

CHAPTER 4. IMPLEMENTATION

4.7.2 Motor control node
The workflow of the motor control node can be seen in figure 4.8. The main struc-
ture is a switch-case statement. All three motors are controlled from the same
node, but they all have their own switch-case control loop.

Step 0, 10, and 20 are initialization steps and contain a start-up procedure.
In step 0 the target velocity for each motor is set. X and Y is set to 100mm/s
while the z-axis is set to 50mm/s. Any error that is present on the drive is also
reset in this step by enabling bit 5 in the signal control word.
In step 10 we go to pre-operational mode by enabling bit 14 and 15 in the master
control word, and verify the operation before going to step 20.
The drives are set to operational mode in step 20 by also enabling bit 13 in the
master control word. Verification is done before going to step 30.

Step 30 is the main operation mode. It means the motor is in position, not moving
and ready for a new target position. If a new target position is published in the
ROS environment on the topic targetposition, the target position will be written
to the drives and the control sequence goes to step 40.
In step 40 the actual movement is started by toggling bit 0 in the master control
word. If movement is confirmed it will go to step 50.
Step 50 waits for the motor to reach its target position and when reached it goes
back to step 30 ready for a new position command.
A safety feature has been implemented to only allow X and Y axis movement if
the Z axis is not inside the shelves. Moving in X or Y direction while the suction
cup is in the shelf can cause damage by crashing in the shelf.

30

CHAPTER 4. IMPLEMENTATION

Figure 4.8: Motor control structure

The cyclic data contains the current status code, this code can be used to read
error codes. This data is not used in the current implementation, but the drives

31

CHAPTER 4. IMPLEMENTATION

will stop if an error is detected as this is handled internally in the drive.
The motor control structure was made with assistance from Bosch-Rexroth during
a workshop at their headquarters.

Cyclic inputs
16 bit Master control word
16 bit Signal control word
32 bit Target position
32 bit Target velocity

Table 4.5: Cyclic input on drives

The cyclic EtherCAT inputs are shown in table 4.5. It is a total of 96 bits. The
contents of the cyclic data is something that is usually set by the master based on
a XML file, but because SOEM don’t support this type of configuring, the cyclic
data has been set using Indraworks DS. The target position is a signed 32 bit
integer and interpreted by the drives as 10−4mm. This means the value 1000000
has to be written to move to position 100mm. The target velocity is a unsigned
32 bit integer and interpreted by the drives as 10−3mm/s2

Cyclic outputs
16 bit Master status word
16 bit Signal status word
32 bit Actual position
32 bit Actual velocity
32 bit Diagnostics data

Table 4.6: Cyclic outputs on drives

The cyclic outputs are shown in table 4.6. It is a total of 128 bits divided by 5
variables.

Message type Topic
position uint32
stop bool

Table 4.7: Motor control node subscribers

32

CHAPTER 4. IMPLEMENTATION

Message type Topic
Position actual_position
uint32 actual_velocity

Table 4.8: Motor control node publishers

4.7.3 Vacuum control node
The PLC that controls the vacuum generator communicates through EtherCAT.
SOEM is used to send and receive the cyclic data inputs and outputs.
The vacuum generator is activated by writing high to the digital output it is con-
nected to. In addition the PLC has a pressure regulator that needs to be opened
to a target pressure to provide air to the vacuum generator. The pressure of the
air controls how strong vacuum is generated.

The PLC air regulator is opened by publishing a value greater than 0 on the
topic vacuum_signal. A low value means the regulator will provide low pressure.
The vacuum generator is then started by publishing the binary value 0b00000001
on the topic vacuumoutputs. Each bit represent one digital output on the PLC.
The vacuum generator is connected to output 0 which corresponds to bit 0.

Message type Topic
Uint8 vacuum_outputs
uint16 vacum_signal

Table 4.9: Vacuum node subscribers

Message type Topic
bool good_vacuum
uint16 actual_vacuum_level

Table 4.10: Vacuum node publishers

Table 4.12 shows the cyclic input data provided by the PLC and table 4.11 shows
the outputs. The naming can be a bit confusing as it is the cyclic inputs that
controls the PLC outputs and vice versa.

33

CHAPTER 4. IMPLEMENTATION

Cyclic outputs
8 bit Digital inputs
16 bit Analogue 1
16 bit Analogue 2
16 bit Analogue 3

Table 4.11: Cyclic outputs on festo PLC

Cyclic inputs
8 bit Digital outputs
16 bit Regulator set point

Table 4.12: Cyclic input on festo PLC

4.7.4 System control node
The system control node has the job of coordination of the whole system. From
receiving a command of the product-ID that needs to be picked, to picking the
item from the shelf. The working principle is shown in figure 4.9.

34

CHAPTER 4. IMPLEMENTATION

Figure 4.9: System control node

When a new message on the topic "PrID" is published, the control node start by
issuing a command to the motor control node to position the robot in the approx-
imate position of the product. When this position has been reached a command
will be sent to start the vision node which will find a more precise location of
the product and publish that information for the system control node to use. A
relative movement command is then issued based on the positional information
published by the vision node.
The vacuum generator is switched on when the z-axis is 4cm away from the prod-
uct. This is done so close to the product to prevent unnecessary use of pressurised
air.
If the vacuum node publishes that the vacuum is good, it means that the suction
cup has has a good seal and system control node will issue a relative movement
command to retract the z-axis.
At this point when the robot has picked up an item, the packing system is supposed
to start in order to place the item correct in a box.

35

CHAPTER 4. IMPLEMENTATION

4.8 Communication
EtherCAT was chosen as the primary communication protocol used in the system
after a study by Henrik.
Listing 4.2 shows the function to write a 32 bit variable to a EtherCAT slave using
the cylic outputs. Similar functions are used to write 16 and 8 bit variables. The
cyclic data is what connects the ROS software to the internal parameters on the
EtherCAT slaves.

Listing 4.2: Write 32 bit over cyclic data

void set_output_int32 (uint16 slave_no , uint8 module_index , int32
value) // Write 32 bits

{
uint8 * data_ptr ;
data_ptr = ec_slave [slave_no]. outputs ;
data_ptr += module_index * 1;
* data_ptr ++ = (value >> 0) & 0xFF;
* data_ptr ++ = (value >> 8) & 0xFF;
* data_ptr ++ = (value >> 16) & 0xFF;
* data_ptr ++ = (value >> 24) & 0xFF;
}

Listing 4.3 shows how cyclic input data is stored to variables. ec_slave[0].inputs
is the memory address where all input bits are stored. The listing shows how this
is broken up to the correct variables. One byte at a time is read and all bytes
belonging to the given variable is concatenated. The variables read in the listing
is 16 bits, which means each consists of two bytes. As the first variable is 16 bits,
+2 has to be added when reading the first byte of the next variable. +2 means we
go 2 bytes from the input starting address. This offset is increased further when
reading the next variable.

Listing 4.3: Storing cyclic input data

control [0] = (*(ec_slave [0]. inputs)|*(ec_slave [0]. inputs +1) <<8);
status [0] = (*(ec_slave [0]. inputs +2) |*(ec_slave [0]. inputs +3) <<8);

As SOEM is written in C, it had to be converted to be compiled as C++ to be
integrated in the ROS environment.

36

CHAPTER 4. IMPLEMENTATION

4.9 Product registration
A great advantage of going with the monocular pose estimation concept is the low
need for data when adding a new product to the database. In most cases just a
single image of the product will be enough for the SIFT algorithm and matcher to
find the same product in a video stream.
The product registration therefore consist of taking a picture of the product di-
rectly from the front. This is known as a training image. Taking a picture directly
in front of the middle point of the product is difficult without a proper setup.
Most images was therefore taken approximately from the front and then manually
perspective transformed flat using the image editing software GIMP. The pictures
used for this project can be seen in the appendix.
As an alternative to taking pictures and manually editing them, it is possible to
use online databases of groceries to source the required data. Mediastore supplies
a solution for online grocery shops that provide high quality images of a large
group of products. One of the standard images they provide is a picture directly
from the front.
The Mediastore database would be a good and fast solution, but it is currently not
maintained at the level which is needed by the system. A lot of products are not
in the database and some do not have the required front facing picture which is
needed by the pose estimation algorithm. The product registration have therefore
been done by taking pictures manually.

37

5. Experiments and results

This chapter presents the experiments done during this project. All experiments
were conducted at the robotics lab in Automatmat’s office.

5.1 Preliminary test of various feature detectors
The purpose of this test was to get a measurement on how a few different feature
detectors compare to each other when used to find the pose of an object that is of
interest to this project. The following feature detectors was evaluated.

� ORB

� AKAZE

� BRISK

� KAZE

� SIFT

� SURF

38

CHAPTER 5. EXPERIMENTS AND RESULTS

Test setup
A set of 5 images with different qualities was acquired using the a Allied Vision
Manta camera. The resolution on all images was 780x580 pixels. A training image
was taken following the procedure in 4.9.
It should be noted that all experiments was using the OpenCV implementation of
each algorithm. If one algorithm is faster in theory is not that relevant as OpenCV
could use a suboptimal implementation.
The following list gives a description of the five images.

1. Control

2. Underexposed

3. Rotated

4. Out of focus

5. Partially visible product

39

CHAPTER 5. EXPERIMENTS AND RESULTS

Results
Figure 5.1 shows how many keypoints were found in each of the five images with

Figure 5.1: Amount of keypoints found Figure 5.2: Time used to find the key-
points

the respective algorithms. Figure 5.2 shows how much time passed while detecting
features. Each column is the result of looking for keypoints in all five images.

Figure 5.3: Time used to match the key-
points

Figure 5.4: Number of matches foundt

Figure 5.3 shows the time spent matching all keypoints using a brute-force matcher.
Figure 5.4 shows the amount of matches that was found between the corresponding
picture and the training image. It is important to note that the amount of outliers
is not evaluated in this test.

40

CHAPTER 5. EXPERIMENTS AND RESULTS

Analysis
ORB stood out with the highest number of keypoints found and matches found in
four of the five images. SIFT provided the highest number in the most challenging
picture. The results from this test does not provide information about the number
of outliers in the matches.

5.2 Test on finding pose
The purpose of the following test was to get a more realistic measure on how
the various feature detectors and descriptors work in practice by visualising the
estimated outline of a product
Test setup
Using the matches found in the previous test, the homography was estimated and
used to project lines on the target product. The result is evaluated based on how
good the visualised outline of the product fits with the actual outline.
Results

Figure 5.5: ORB

41

CHAPTER 5. EXPERIMENTS AND RESULTS

Figure 5.6: System overview

Figure 5.7: System overview

42

CHAPTER 5. EXPERIMENTS AND RESULTS

Figure 5.8: System overview

Figure 5.9: System overview

43

CHAPTER 5. EXPERIMENTS AND RESULTS

Figure 5.10: System overview

Analysis
AKAZE, SIFT and SURF all provided good estimation of the products outline.
SIFT provided marginally the best result. The other algorithms resulted in a bad
outline on the image that was out of focus. The reason for the bad estimations is
the large amount of outliers in the matches.

44

CHAPTER 5. EXPERIMENTS AND RESULTS

5.3 Test of mechanical structure
As stated in the system requirements it is wanted that the robot is able to process
groceries weighing up to 1.5 Kg. The following test was done with the intention
of figuring out how different loads affect the mechanical structure and robot.

Test setup
A selection of four products weighing 500g, 1000g, 1500g and 3000g was selected
for this experiment. One product at a time was attached to the suction cup at
the end of the z-axis by using the vacuum system. The distance of the movement
downwards on the end of the z-axis due to the added weight was measured. Each
product was applied with the z-axis completely retracted and extended. Results
is evaluated based on how much the endpoint is moved down, compared to when
no weight is applied.

45

CHAPTER 5. EXPERIMENTS AND RESULTS

Results

Endpoint displacement
Weight ap-
plied

Retracted Extended

500g 2mm 2mm
1000g 3mm 4mm
1500g 4mm 5mm
3000g - -

Table 5.1: Endpoint displacement test

Analysis
Table 5.1 shows the displacement measured in the two positions. 3000g was too
much for the motor brake on the y-axis to handle and it started to slip. It is
probable that most of the displacement happens as a result of the aluminium tube
or its joint bending because of the similar the displacement is when retracted and
extended.

5.4 Test of motor control
The motors and drives was ordered separately from the robot it is therefore of in-
terest looking at how well the performance is in stability and positioning accuracy.

Test setup
One axis at a time was moved to a target position. The speed was set to 50mm/s
and acceleration to 100mm/s2. The actual position provided by the motor control
ROS node was plotted against time. Results is evaluated based on how linear the
movement is and how the axis settles at the target position. Results
Figure 5.11 shows the position of the x-axis in mm plotted against time. The
axis was positioned at 500mm and issued a target position of 300mm. Due to
the overshoot seen in figure 5.11 an autotuning procedure was conducted on the
axis using Indraworks DS. Figure 5.12 shows the results after autotuning. The
x-axis drive automatically shut down the motor at 42.5 seconds due to excessive
deviation error.
Figure 5.13 shows a position plot of the z-axis when issued a target position of
150mm.

46

CHAPTER 5. EXPERIMENTS AND RESULTS

Figure 5.11: Before autotuning

Figure 5.12: After autotuning

Analysis Both Z and Y axis showed a linear path and no sign of overshoot or
oscillations. The X axis showed oscillations when reaching the target position and
it was therefore conducted autotuning. The results after autotuning showed even
more oscillations and the axis became unstable and was automatically shut down.
Control parameters was then reverted to standard for use in experiments.

47

CHAPTER 5. EXPERIMENTS AND RESULTS

Figure 5.13: Z-axis movement

The direct cause of the overshoot is bad control parameters, but the underlying
cause is probably the need for a gearbox. The very low rpm the motor has to
operate on, combined with high friction on the x-axis is not optimal for an electric
motor. The manufacturer later confirmed the need for gearboxes.

48

CHAPTER 5. EXPERIMENTS AND RESULTS

5.5 Pose estimation tests
The purpose of these tests was to determine the accuracy of the pose estimation
and also reveal weak areas of the algorithm.
Test setup
A total of ten products with various shapes and size was selected to do experiments
on. Training images was acquired using the SR300 camera mounted on the robot.
The training images used for the experiments can be found in appendix section

For the first distance test one product at a time was placed at the front of the
shelf, 34cm from the camera. The estimated distance was then logged. Then each
item was placed 15cm further back in the shelf, 49cm away from the camera. The
estimated distance was then logged again. The logged value was the first pose
estimation evaluated by the algorithm as good.

For the second distance test one product at a time was placed 34cm directly in
front of the camera, and then moved 15cm in X direction. The estimated x and y
translation together with the distance was then logged.

In the third test each item was placed directly in front of the camera and ro-
tated by 40◦ around the Y-axis. The estimated rotation was then logged.

The results are evaluated based on how close the estimated pose is to the ac-
tual pose.

49

CHAPTER 5. EXPERIMENTS AND RESULTS

Results

Distance test
Product ID Estimated dis-

tance front
Estimated dis-
tance back

0 34.1cm 49.2cm
1 34.0cm 48.8cm
2 34.5cm 49.6cm
3 35.2cm 49.5cm
4 33.9cm 48.5cm
5 35.2cm 40cm - unstable
6 33.6cm 48.8cm
7 34.5cm 49.4cm
8 34.3cm 49.9cm
9 36.7cm 52.5cm

Table 5.2: Distance test 1

50

CHAPTER 5. EXPERIMENTS AND RESULTS

Distance test
Product ID Measured x

translation
Measured y
translation 2

Measured dis-
tance

0 14.8cm 0.2cm 33.5cm
1 14.7cm -0.1cm 33.8cm
2 14.8cm -0.2cm 33.7cm
3 14.5cm -0.4cm 34.3cm
4 14.4cm -0.2cm 33.5cm
5 not stable not stable not stable
6 14.9cm -0.5cm 33.4cm
7 14.8cm -0.4cm 32.0cm
8 15.1cm -0.2cm 34.7cm
9 15.6cm -0.2cm 36.0cm

Table 5.3: Distance test 2

Rotation test
Product ID Estimated rota-

tion
0 39◦
1 37◦
2 38◦
3 -
4 40◦
5 -
6 41◦
7 41◦
8 42◦
9 34◦

Table 5.4: Rotation test

Analysis
Results show that the algorithm struggles with the two objects that are round,
but provide good results on the rest. Results can probably be improved as there
are uncertainties in the accuracy of the manual measured dimensions of the prod-
ucts, also when placing the product manually it is expected to have an uncertainty
±2mm.

51

CHAPTER 5. EXPERIMENTS AND RESULTS

5.6 Test of actual picking
The purpose of these tests was to demonstrate the functionality of the system and
to identify weaknesses.
Test setup
The system was started as instructed in the start-up procedure manual (8.3) and
the test items was placed in the shelf in front of the robot. The approximate posi-
tion of each item was saved in a array in the system control node. The approximate
position was specified so that the product would be in the cameras field of view
when the robot moved to the position, but not directly in front of the suction cup.
The suction cup used is shown in figure 5.14

Results is evaluated based on successful or not successful pick. A successful pick
means the robot is able to locate and pick up the wanted product and retrieve it
out the the shelf.

Figure 5.14: Suction cup

Result analysis
All products that gave a good result in the pose estimation tests was picked suc-
cessfully. Two products was not picked, both of them have a circular shape. The
circular shape makes it difficult for both the pose estimation and for the suction
cup to get a good seal.
Product number 2 was picked successfully, but only with a suction cup that is
better suited for flexible products shown in figure 5.15.

52

CHAPTER 5. EXPERIMENTS AND RESULTS

Picking test
Product ID Successful

pick
0 Yes
1 Yes
2 Yes*
3 No
4 Yes
5 No
6 Yes
7 Yes
8 Yes
9 Yes

Table 5.5: Picking test

Figure 5.15: Suction cup

Video
A short video demonstrating the functionality of the system and a selection of the
picking tests done on the final system can be seen at the following link: https:
//goo.gl/vQDF44
The video starts by showing movement across the x-y plane and then movement of
the z axis. The rest of the clips are experiments on different products. Each test is
initiated by clicking on the wanted product in a simple user interface the publishes
the corresponding productID, the rest of the picking sequence is automated as
described in the implementation chapter. The robots speed was set to a low value
of 50mm/s as a precaution. The last clip demonstrates the speed of the pose
estimation algorithm on a regular laptop.

53

https://goo.gl/vQDF44
https://goo.gl/vQDF44

6. Discussion

In the following chapter contains discussion about the system and results from
experiments.

6.1 Hardware
Mounting the robot sideways have been successful and tests done when running
the robot have shown that the mechanical structure and the robot itself can with-
stand the forces required by the specifications. It is unknown if this mounting
position affects the lifetime of the robot as this is outside the standard operating
conditions, but it should be noted the vertical mounting probably introduces more
stress than a horizontal mounting.

Camera system
The current solution requires the operator to manually change between looking at
the shelf to looking at the ground which is needed for the packing solution. This
implementation has been working fine as the two systems are separated and in
a testing phase. A simple solution of using two cameras is suggested for future
development.
The camera chosen for this project has not been a limitation and is ready for
future development as it also has a structured IR light projector that is used in
combination with IR camera sensor to generate a depth image.

54

CHAPTER 6. DISCUSSION

6.2 Experiments

6.2.1 Preliminary tests and mechanical setup
Two preliminary test was conducted to chose a feature detector for the system.
The results from test 1 did not provide enough information to make a decision
as it did not reveal how many of the features found was actually corresponding
points.
A second test was therefore performed with a more practical approach of doing
actual pose estimation. Three algorithms stood out as the best. SIFT,SURF and
AKAZE. SIFT was chosen as it was the most robust during testing. The high score
of AKAZE is useful finding as it is not licensed like SIFT and SURF. SIFT was
chosen for this project as it provided the best result, licensing was not considered
because it is not a commercial product and it was of interest to see the performance
using the best algorithm available.

6.2.2 Motor and vacuum control
The motor control system has been working as intended, but experiments showed
that the x-axis was not moving smoothly and consistently overshot when moving
to a target position. After tuning the control-loop parameters an improvement was
not registered and it became worse. It is probable that the cause is the gearing
ratio from motor-axis to motor axis.
Y-axis will get a temperature warning from just holding its position. This finding
revealed the potential for improvement in the motor control software. The pro-
posed solution is adding functionality that applies the motor brake when the y-axis
is in its intended position. This should eliminate the high current produced by
the drives needed to maintain its position. When the brake is applied no current
is needed as the brake will cause enough friction to hold the y-axis in place.
Motors overheat. This finding is important and a response is critical as it halts
full-scale testing on the robot. The proposed solution is adding a gearbox on both
the x-axis and y-axis to lower the amount of travel per revolution on the motor
axis.

55

CHAPTER 6. DISCUSSION

6.2.3 Pose estimation
Experiments done have shown good results on the pose estimation given the object
has a flat surface. The positional accuracy is roughly ±1cm.

Having a pose estimation algorithm that can handle items of any shape would
be beneficial, but looking back at the original objective of making a feasibility
prototype, this limitation of the system has been evaluated as not critical at this
stage in the development process. There are a lot of products in a store which has
a flat surface. It makes sense to start with the easy products as the goal is not to
make a single robotic system that can handle all products.

6.3 Test of actual picking
The most important experiment was the actual picking. 8 out of 10 selected
items was picked successfully. The two items that failed has a circular shape and
was known to be difficult. The result of this test is exiting for the project as it
demonstrates actual functionality

56

7. Conclusion and future work

A Vision guided robotic picking system for groceries has been implemented and
tested on a three-axis gantry robot system. With basic knowledge about a product
the position and orientation can be estimated using a monocular camera.
The pose estimation algorithm has been evaluated and confirmed by testing as
accurate enough to guide the robot for picking items, but has the limitation of
being designed to find objects that have a flat surface.

Experiments have shown that the position of items with a flat surface and in
the cameras field of view can generally be found within ±1cm.

Motor control over EtherCAT using open software has been successful and pro-
prietary software is only used when commissioning the drives and motors. Tests
done have shown that gearboxes are needed for the robot to operate continuously
and smoothly.

The vision system, motor control and vacuum control has all implemented in a
single ROS system which simplifies future development.
This project demonstrates the basics of an innovative idea that can have a big
impact on how people do their grocery shopping in the future.

57

CHAPTER 7. CONCLUSION AND FUTURE WORK

7.1 Recommendations for future work
As phase 2 of the bigger development project at Automatmat ends one month
after this master project is complete this section can be divided in two parts, work
that should be done before the end of phase 2 and work that should to be done in
phase 3.

Phase 2
A gearbox should be acquired for both x and y axis. It is not as critical with the
X-axis, but is definitely needed on the Y-axis as just holding the position requires
too much standstill torque and the motor quickly overheats. With the implemen-
tation of a 1:10 ratio gearbox the torque required will have a tenfold reduction and
it should not overheat as the motor will not be close to its maximum torque.

Even with the addition of a gearbox, the software should also be improved to
apply the internal motorbrake of the Y-axis motor when standing still for ex-
tended periods without having to shut off the drives.

Picking and packing algorithms should be implemented to a single system and
a common database for products should be made.

Error reaction and handling using SOEM library should be implemented. The
diagnostics code is part of the cyclic data and is published in the ROS environ-
ment, but is currently not used.

Phase 3
For the system to be able to handle most of the products in a grocery store it
has to be compatible with a large variety in shape and size of products. A pose
estimation algorithm that is capable of this should be developed. The camera
system on the robot has 3D vision that can be used in such a system.
As the system gets more industrialised, EAL could be used to create a human-
machine interface in parallel with ROS.

58

8. Appendix

8.1 References
[1] Autostoresystem.com | THE SYSTEM. http://autostoresystem.com/

thesystem.

[2] EtherCAT Technology Group | EtherCAT. https://www.ethercat.org/en/
technology.html.

[3] License - OpenCV library. http://opencv.org/license.html. [2017-06-14].

[4] ROS.org | History. http://www.ros.org/history/.

[5] N. Correll, S. Member, K. E. Bekris, D. Berenson, O. Brock, S. Member,
A. Causo, K. Hauser, K. Okada, A. Rodriguez, J. M. Romano, and P. R.
Wurman. First Amazon Picking Challenge. pages 1–17, 2016.

[6] DrBob at the English language Wikipedia. File:Pinhole-camera.png
- Wikimedia Commons. https://commons.wikimedia.org/wiki/File:
Pinhole-camera.png.

[7] D. A. Forsyth and J. Ponce. COMPUTER VISION A MODERN AP-
PROACH, volume XXXIII. 2012.

[8] Haldir. File:RANSAC LINIE Animiert.gif - Wikimedia Commons. https:
//commons.wikimedia.org/wiki/File:RANSAC{_}LINIE{_}Animiert.gif.

[9] G. Schweighofer and A. Pinz. Robust pose estimation from a planar tar-
get. IEEE Transactions on Pattern Analysis and Machine Intelligence,
28(12):2024–2030, 2006.

[10] C. Vision, O. Library, A. Kaehler, and G. Bradski. Learning openCV 3.

59

http://autostoresystem.com/thesystem
http://autostoresystem.com/thesystem
https://www.ethercat.org/en/technology.html
https://www.ethercat.org/en/technology.html
http://opencv.org/license.html
http://www.ros.org/history/
https://commons.wikimedia.org/wiki/File:Pinhole-camera.png
https://commons.wikimedia.org/wiki/File:Pinhole-camera.png
https://commons.wikimedia.org/wiki/File:RANSAC{_}LINIE{_}Animiert.gif
https://commons.wikimedia.org/wiki/File:RANSAC{_}LINIE{_}Animiert.gif

CHAPTER 8. APPENDIX

8.2 Original task
Objective
The objective is to develop algorithms for vision guided picking, product location,
and pose estimation of items to be picked as well as selection of point of contact.

For the vision guided picking, the following questions should be had in mind:

� Can items be reliable picked with a single camera setup

� Is the picking by robot reliable enough

� Can the vision system select the point of contact accurately enough

� Is it possible to pick out of supplier boxes from shelf’s

Delivery

1. Literature overview

2. Design proposal for vision guided picking

3. Selection of cameras

4. Identification of available space

5. Architecture proposal for algorithms for bin picking

6. Algorithm for bin picking

7. Final report

60

CHAPTER 8. APPENDIX

8.3 System start-up procedure
In order to perform an item pick the following steps should be followed.

Here follows a description of each step in the process.

1. Connect both ethernet cables leading to the drives and Festo PLC

2. Connect source for pressured air.

3. Power on drives and PLC.

4. Start ROS master by the command roscore in a terminal window.

5. Start control node with the command rosrun ethercat_soem control

6. Start motor control node with the command rosrun ethercat_soem robotcontrol

7. Start vacuum control node with the command rosrun vacuum vacuum

8. Start pose estimation node with the command rosrun pose pose

The system should now be ready to pick up items by publishing productID on the
topic PrID

In case of error:

� F4002: RTD telegram failure. Try to minimize CPU-usage on the control
pc. Restart robotcontrol node.

� F4034: Emergency stop is activated

61

LIST OF FIGURES

8.4 List of figures

1.1 Thesis outline . 2

2.1 The pinhole camera [6] . 7
2.2 Before calibration . 8
2.3 After calibration . 8
2.4 Homography illustration . 9
2.5 RANSAC iteration 1 [8] . 10
2.6 RANSAC iteration 2 [8] . 10
2.7 Image with keypoints visualised . 11
2.8 Corresponding points found . 12
2.9 EtherCAT structure. Figure by ETG [2] 14

3.1 Intel realsense SR300 . 17

4.1 System overview . 19
4.2 CAD drawing of robot supplied by manufacturer together with the

mounting frame shown in green . 20
4.3 Motor connections . 22
4.4 Vacuum system . 23
4.5 Camera system with vacuum cup 24
4.6 Visualisation of pose estimation . 28
4.7 Visualisation of pose estimation . 28
4.8 Motor control structure . 31
4.9 System control node . 35

5.1 Amount of keypoints found . 40
5.2 Time used to find the keypoints . 40
5.3 Time used to match the keypoints 40
5.4 Number of matches foundt . 40
5.5 ORB . 41
5.6 System overview . 42
5.7 System overview . 42
5.8 System overview . 43
5.9 System overview . 43
5.10 System overview . 44
5.11 Before autotuning . 47
5.12 After autotuning . 47
5.13 Z-axis movement . 48
5.14 Suction cup . 52

62

LIST OF FIGURES

5.15 Suction cup . 53

63

LIST OF TABLES

8.5 List of tables

4.1 Axis data . 21
4.2 Pose estimation node subscribers 29
4.3 Pose estimation node publishers . 29
4.4 Contents of position message . 29
4.5 Cyclic input on drives . 32
4.6 Cyclic outputs on drives . 32
4.7 Motor control node subscribers . 32
4.8 Motor control node publishers . 33
4.9 Vacuum node subscribers . 33
4.10 Vacuum node publishers . 33
4.11 Cyclic outputs on festo PLC . 34
4.12 Cyclic input on festo PLC . 34

5.1 Endpoint displacement test . 46
5.2 Distance test 1 . 50
5.3 Distance test 2 . 51
5.4 Rotation test . 51
5.5 Picking test . 53

64

8.6. SOURCE CODE

8.6 Source code

Click on the pin to download the source code, this requires a compatible PDF
reader. Adobe reader has been tested and is known to work.

65

code/ethercat_soem/msg/inputs.msg

int16 control_word
int16 signal_word
int32 actual_position
int32 actual_velocity
int32 diag

code/ethercat_soem/msg/outputs.msg

int16 control_word
int16 signal_word
int32 target_position
int32 target_velocity

code/ethercat_soem/msg/position.msg

int32 x
int32 y
int32 z

code/ethercat_soem/scripts/controlnode.cpp

#include "ros/ros.h"
#include "std_msgs/String.h"
#include "std_msgs/UInt8.h"
#include "std_msgs/UInt16.h"
#include "std_msgs/UInt32.h"
#include "std_msgs/Bool.h"
//#include "matplotlibcpp.h"

#include "ethercat_soem/inputs.h"
#include "ethercat_soem/outputs.h"
#include "pose/position.h"

#include <bitset>

#include <sys/time.h>
#include <unistd.h>
#include <sstream>
#include <iostream>

using namespace std;
uint16_t image_index = 999;
uint16_t image_index_old = 999;
bool in_position = false;
bool good_pose = false;
bool good_vacuum = false;

uint16_t stop = 0;

int32_t offset[3] = {0,0,0};
uint32_t actual_position[3] = {0,0,0};

void index_callback(const std_msgs::UInt16::ConstPtr& msg){
 image_index = msg->data;
}
void in_pos_callback(const std_msgs::Bool::ConstPtr& msg){
 in_position = msg->data;
}
void good_vacuum_callback(const std_msgs::Bool::ConstPtr& msg){
 good_vacuum = msg->data;
}
void good_pose_callback(const std_msgs::Bool::ConstPtr& msg){
 good_pose = msg->data;
}

void pose_callback(const pose::position::ConstPtr& msg){
 offset[0] = msg->x;
 offset[1] = msg->y;
 offset[2] = msg->z;
 std::cout << offset[0]<< endl;
 std::cout << offset[1]<< endl;
 std::cout << offset[2]<< endl;
 std::cout.flush();
}

void position_callback(const pose::position::ConstPtr& msg){
 actual_position[0] = msg->x;
 actual_position[1] = msg->y;
 actual_position[2] = msg->z;
}
void stop_callback(const std_msgs::UInt16::ConstPtr& msg){
 stop = msg->data;
 std::cout << "\nStopping";
 std::cout.flush();
}

int main(int argc, char **argv)
{
 double initial_position[10][2] = {
 {330, 325},
 {360, 325} ,
 {370, 325},
 {380, 325},
 {390, 325},
 {400, 325},
 {350, 325},
 {350, 325}
};

 ros::init(argc, argv, "control");

 ros::NodeHandle n;

 ros::Publisher pos_pub = n.advertise<pose::position>("target_position", 1000);
 ros::Publisher move_pub = n.advertise<pose::position>("relative_move", 1000);
 ros::Publisher vac_pub = n.advertise<std_msgs::UInt16>("vacuum_signal", 1000);
 ros::Publisher vac_start_pub = n.advertise<std_msgs::UInt8>("vacuum_outputs", 1000);
 ros::Publisher pose_start_pub = n.advertise<std_msgs::Bool>("start_pose", 1000);

 ros::Subscriber index_sub = n.subscribe("PrID", 1000, index_callback);
 ros::Subscriber in_pos_sub = n.subscribe("in_position", 1000, in_pos_callback);
 ros::Subscriber pose_sub = n.subscribe("object_position", 1000, pose_callback);
 ros::Subscriber position_sub = n.subscribe("actual_position", 1000, position_callback);
 ros::Subscriber good_vacuum_sub = n.subscribe("good_vacuum", 1000, good_vacuum_callback);
 ros::Subscriber good_pose_sub = n.subscribe("good_pose", 1000, good_pose_callback);

 std_msgs::UInt16 vac_level;
 std_msgs::UInt8 start_vacuum;
 std_msgs::UInt8 stop_vacuum;
 ethercat_soem::inputs inputs;
 ethercat_soem::outputs outputs;

 pose::position initital_pos_msg;
 pose::position pose_pos_msg;
 pose::position drop_pos_msg;

 std_msgs::Bool in_position_msg;
 std_msgs::Bool start_pose;
 std_msgs::Bool stop_pose;

 start_pose.data = true;
 stop_pose.data = false;

 start_vacuum.data = 1;
 stop_vacuum.data = 0;
 vac_level.data = 10;
 int count = 0;

 int STEP = 0;
 int index = 0;

 drop_pos_msg.x = 0;
 drop_pos_msg.y = 0;
 drop_pos_msg.z = -250;

 ros::spinOnce();
 sleep(1);

 while (ros::ok())
 {

 switch(STEP){
 case 0:{
 if(image_index!=999){
 index = image_index;
 image_index = 999;
 std::cout << image_index;
 std::cout.flush();
 STEP = 10;
 }
 break;
 }
 case 10:{
 initital_pos_msg.x = initial_position[index][0]; // Move to aprox position
 initital_pos_msg.y = initial_position[index][1];
 initital_pos_msg.z = 100;
 pos_pub.publish(initital_pos_msg);
 if(actual_position[0]==initial_position[index][0]){
 std::cout << "In POSITION";
 std::cout.flush();
 pose_start_pub.publish(start_pose);
 STEP = 20;
 }

 break;
 }

 case 20:{
 if(good_pose){
 pose_start_pub.publish(stop_pose);
 pose_pos_msg.x = (actual_position[0] + offset[0]);
 pose_pos_msg.y = (actual_position[1] + offset[1]);
 pose_pos_msg.z = offset[2];
 pos_pub.publish(pose_pos_msg);
 STEP = 40;
 }

 break;

 }
 case 30:{
 if(actual_position[0]==pose_pos_msg.x){
 sleep(2);
 pose_pos_msg.x = (actual_position[0] + offset[0]);
 pose_pos_msg.y = (actual_position[1] + offset[1]);
 pose_pos_msg.z = offset[2];
 pos_pub.publish(pose_pos_msg);
 STEP = 40;

 }

 }

 case 40:{
 if(actual_position[2]>300){
 vac_pub.publish(vac_level);
 vac_start_pub.publish(start_vacuum);
	 }
 if(good_vacuum){
 move_pub.publish(drop_pos_msg);
 STEP = 50;
 }
 break;
 }

 }

 if(stop){
 vac_start_pub.publish(stop_vacuum);
 vac_level.data = 0;
 vac_pub.publish(vac_level);
 break;
 }
 std::cout << STEP;
 std::cout.flush();
 ros::spinOnce();

 usleep(50000);

 }

 return 0;
}

code/ethercat_soem/scripts/motorcontrolnode.cpp

code/ethercat_soem/scripts/motorcontrolnode.cpp

//#include <std_msgs/String.h>

//#include "opencv2/core/core.hpp"

#include <ros/ros.h>

#include "std_msgs/String.h"

#include "std_msgs/UInt16.h"

#include "std_msgs/UInt32.h"

#include "std_msgs/Int32.h"

#include "std_msgs/Bool.h"

#include "ethercat_soem/inputs.h"

#include "ethercat_soem/outputs.h"

#include "pose/position.h"

#include <bitset>

#include <iostream>

#include <sstream>

#include <stdio.h>

#include <string.h>

#include <sys/time.h>

#include <unistd.h>

#include <pthread.h>

#include "ethercat_soem/ethercattype.h"

#include "ethercat_soem/nicdrv.h"

#include "ethercat_soem/ethercatbase.h"

#include "ethercat_soem/ethercatmain.h"

#include "ethercat_soem/ethercatdc.h"

#include "ethercat_soem/ethercatcoe.h"

#include "ethercat_soem/ethercatfoe.h"

#include "ethercat_soem/ethercatconfig.h"

#include "ethercat_soem/ethercatprint.h"

#define EC_TIMEOUTMON 500

int CTRL_WORD_ADR[3] = {0,12,24};

int SIGNAL_WORD_ADR[3] = {2,14,26};

int TAR_POS_ADR[3] = {4,16,28};

int TAR_vel_ADR[3] = {8,20,32};

char IOmap[4096];

pthread_t thread1;

int expectedWKC;

boolean needlf;

volatile int wkc;

boolean inOP;

uint8 currentgroup = 0;

uint16_t control_word = 0;

uint16_t signal_word[3] = {0,0,0};

uint32_t target_pos[3] = {1000000,1000000,1000000};

uint32_t target_pos_old[3] = {1000000,1000000,1000000};

uint32_t target_vel = 0;

uint16_t stop = 0;

unsigned int control[3],status[3],diag[3];

int position[3],velocity[3];

int error = 0;

int toggle[3] = {0,0,0};

void set_output_int16 (uint16 slave_no, uint8 module_index, int16 value) // Write 16 bits

 uint8 *data_ptr;

 data_ptr = ec_slave[slave_no].outputs;

 data_ptr += module_index * 1;

 *data_ptr++ = (value >> 0) & 0xFF;

 *data_ptr++ = (value >> 8) & 0xFF;

void set_output_int32 (uint16 slave_no, uint8 module_index, int32 value) // Write 32 bits

{

 uint8 *data_ptr;

 data_ptr = ec_slave[slave_no].outputs;

 data_ptr += module_index * 1;

 *data_ptr++ = (value >> 0) & 0xFF;

 *data_ptr++ = (value >> 8) & 0xFF;

 *data_ptr++ = (value >> 16) & 0xFF;

 *data_ptr++ = (value >> 24) & 0xFF;

}

void set_output_int8 (uint8 slave_no, uint8 module_index, int8 value) // Write 1 byte

{

 uint8 *data_ptr;

 data_ptr = ec_slave[slave_no].outputs;

 data_ptr += module_index * 1;

 *data_ptr++ = (value >> 0) & 0xFF;

}

void reset_error_callback(const std_msgs::UInt16::ConstPtr& msg){

 if(error == 0){

 set_output_int16(0,2,0b0000000000100000);

 error = 1;

 }

 else{

 set_output_int16(0,2,0b0000000000000000);

 error = 0;

 }

}

void stop_callback(const std_msgs::UInt16::ConstPtr& msg){

 stop = msg->data;

}

void control_word_callback(const std_msgs::UInt16::ConstPtr& msg){

 control_word = msg->data;

 set_output_int16(0,0,control_word); // Control word

}

void signal_callback(const std_msgs::UInt16::ConstPtr& msg){

 signal_word[0] = msg->data;

 set_output_int16(0,2,signal_word[0]); // Control word

}

void target_pos_callback(const pose::position::ConstPtr& msg){

 if(msg->x!=0){

 target_pos[0] = msg->x*10000;

 }

 if(msg->y!=0){

 target_pos[1] = msg->y*10000;

 }

 if(msg->z!=0){

 target_pos[2] = msg->z*10000;

 }

 //set_output_int32(0,4,target_pos*10000); // Control word

}

void relative_move_callback(const pose::position::ConstPtr& msg){

 target_pos[0] = position[0]*10000 + msg->x*10000;

 target_pos[1] = position[1]*10000 + msg->y*10000;

 target_pos[2] = position[2]*10000 + msg->z*10000;

 //set_output_int32(0,4,target_pos*10000); // Control word

}

void target_vel_callback(const std_msgs::UInt32::ConstPtr& msg){

 target_vel = msg->data;

 set_output_int32(0,8,target_vel*1000); // Control word

}

int get_bit(int n, int bitwanted){

 int mask = 1 << bitwanted;

 int masked_n = n & mask;

 int thebit = masked_n >> bitwanted;

 return thebit;

}

int set_bit(int n, int pos){

 n |= (1 << pos);

 return n;

}

void simpletest(char *ifname)

{

 ros::NodeHandle n;

 // ******* Subscribers

 ros::Subscriber sub1 = n.subscribe("control_word", 1000, control_word_callback);

 ros::Subscriber sub2 = n.subscribe("signal_word", 1000, signal_callback);

 ros::Subscriber sub3 = n.subscribe("target_position", 1000, target_pos_callback);

 ros::Subscriber sub4 = n.subscribe("target_velocity", 1000, target_vel_callback);

 ros::Subscriber rel_mov_sub = n.subscribe("relative_move", 1000, relative_move_callback);

 ros::Subscriber sub5 = n.subscribe("stop", 1000, stop_callback);

 ros::Subscriber sub6 = n.subscribe("reset_error", 1000, reset_error_callback);

 // ********** Publishers

 ros::Publisher pub1 = n.advertise<std_msgs::UInt16>("control_word_out", 1000);

 ros::Publisher pub2 = n.advertise<std_msgs::UInt16>("signal_word_out", 1000);

 ros::Publisher pub3 = n.advertise<std_msgs::UInt32>("actual_position_out", 1000);

 ros::Publisher pub4 = n.advertise<std_msgs::UInt32>("actual_velocity_out", 1000);

 ros::Publisher pub5 = n.advertise<std_msgs::UInt32>("diag", 1000);

 ros::Publisher in_pos_pub = n.advertise<std_msgs::Bool>("in_position", 1000);

 ros::Publisher pub6 = n.advertise<ethercat_soem::inputs>("inputs", 1000);

 ros::Publisher actual_pos_pub = n.advertise<pose::position>("actual_position", 1000);

 // *********** Initialize messages

 std_msgs::UInt16 control_word_pub;

 std_msgs::UInt16 signal_word_pub;

 std_msgs::UInt32 actual_position_pub;

 std_msgs::UInt32 actual_velocity_pub;

 std_msgs::UInt32 diag_pub;

 std_msgs::Bool in_position_msg;

 ethercat_soem::inputs inputs;

 ethercat_soem::outputs outputs;

 pose::position actual_position;

 int i, j, oloop, iloop, wkc_count, chk;

 int STEP[3] = {0,0,0};

 needlf = FALSE;

 inOP = FALSE;

 printf("Starting SOEM ROS node\n");

 /* initialise SOEM, bind socket to ifname */

 if (ec_init(ifname))

 {

 printf("ec_init on %s succeeded.\n",ifname);

 /* find and auto-config slaves */

 if (ec_config_init(FALSE) > 0)

 {

 printf("%d slaves found and configured.\n",ec_slavecount);

 ec_config_map(&IOmap);

 ec_configdc();

 printf("Slaves mapped, state to SAFE_OP.\n");

 /* wait for all slaves to reach SAFE_OP state */

 ec_statecheck(0, EC_STATE_SAFE_OP, EC_TIMEOUTSTATE * 4);

 printf("segments : %d : %d %d %d %d\n",ec_group[0].nsegments ,ec_group[0].IOsegment[0],ec_group[0].IOsegment[1],ec_group[0].IOsegment[2],ec_group[0].IOsegment[3]);

 printf("Request operational state for all slaves\n");

 expectedWKC = (ec_group[0].outputsWKC * 2) + ec_group[0].inputsWKC;

 printf("Calculated workcounter %d\n", expectedWKC);

 ec_slave[0].state = EC_STATE_OPERATIONAL;

 ec_slave[1].state = EC_STATE_OPERATIONAL;

 ec_slave[2].state = EC_STATE_OPERATIONAL;

 /* send one valid process data to make outputs in slaves happy*/

 ec_send_processdata();

 ec_receive_processdata(EC_TIMEOUTRET);

 /* request OP state for all slaves */

 ec_writestate(0);

 chk = 40;

 /* wait for all slaves to reach OP state */

 do

 {

 ec_send_processdata();

 ec_receive_processdata(EC_TIMEOUTRET);

 ec_statecheck(0, EC_STATE_OPERATIONAL, 50000);

 }

 while (chk-- && (ec_slave[0].state != EC_STATE_OPERATIONAL));

 if (ec_slave[0].state == EC_STATE_OPERATIONAL && ec_group[0].IOsegment[0] == 84)

 {

 printf("Operational state reached for all slaves.\n");

 wkc_count = 0;

 inOP = TRUE;

 /** cyclic loop **/

 while(stop==0)

 {

 ec_send_processdata();

 wkc = ec_receive_processdata(EC_TIMEOUTRET);

 if(wkc >= expectedWKC)

 {

 //printf("Processdata cycle %4d, WKC %d , O:", i, wkc);

 control[0] = (*(ec_slave[0].inputs) | *(ec_slave[0].inputs+1)<<8);

 status[0] = (*(ec_slave[0].inputs+2) | *(ec_slave[0].inputs+3)<<8);

 position[0] = (*(ec_slave[0].inputs+4) | (*(ec_slave[0].inputs+5)<<8)| (*(ec_slave[0].inputs+6)<<16) | *(ec_slave[0].inputs+7)<<24);

 velocity[0] = (*(ec_slave[0].inputs+8) | (*(ec_slave[0].inputs+9)<<8)| (*(ec_slave[0].inputs+10)<<16) | *(ec_slave[0].inputs+11)<<24);

 diag[0] = (*(ec_slave[0].inputs+12) | (*(ec_slave[0].inputs+13)<<8)| (*(ec_slave[0].inputs+14)<<16) | *(ec_slave[0].inputs+15)<<24);

 control[1] = (*(ec_slave[0].inputs+16) | *(ec_slave[0].inputs+17)<<8);

 status[1] = (*(ec_slave[0].inputs+18) | *(ec_slave[0].inputs+19)<<8);

 position[1] = (*(ec_slave[0].inputs+20) | (*(ec_slave[0].inputs+21)<<8)| (*(ec_slave[0].inputs+22)<<16) | *(ec_slave[0].inputs+23)<<24);

 velocity[1] = (*(ec_slave[0].inputs+24) | (*(ec_slave[0].inputs+25)<<8)| (*(ec_slave[0].inputs+26)<<16) | *(ec_slave[0].inputs+27)<<24);

 diag[1] = (*(ec_slave[0].inputs+28) | (*(ec_slave[0].inputs+29)<<8)| (*(ec_slave[0].inputs+30)<<16) | *(ec_slave[0].inputs+31)<<24);

 control[2] = (*(ec_slave[0].inputs+32) | *(ec_slave[0].inputs+33)<<8);

 status[2] = (*(ec_slave[0].inputs+34) | *(ec_slave[0].inputs+35)<<8);

 position[2] = (*(ec_slave[0].inputs+36) | (*(ec_slave[0].inputs+37)<<8)| (*(ec_slave[0].inputs+38)<<16) | *(ec_slave[0].inputs+39)<<24);

 velocity[2] = (*(ec_slave[0].inputs+40) | (*(ec_slave[0].inputs+41)<<8)| (*(ec_slave[0].inputs+42)<<16) | *(ec_slave[0].inputs+43)<<24);

 diag[2] = (*(ec_slave[0].inputs+44) | (*(ec_slave[0].inputs+45)<<8)| (*(ec_slave[0].inputs+46)<<16) | *(ec_slave[0].inputs+47)<<24);

 position[0]=position[0]/10000;

 position[1]=position[1]/10000;

 position[2]=position[2]/10000;

 printf("\n");

 for(int slave = 0;slave<ec_slavecount;slave++){

 switch(STEP[slave]){

 case 0:{

 set_output_int16(0,CTRL_WORD_ADR[slave],0b0000000000000000); // Reset control word

 set_output_int16(0,SIGNAL_WORD_ADR[slave],0b0000000000100000); // Set error bot

 //set_output_int32(0,TAR_POS_ADR[slave],100); // Set target position to 0

 if(slave==0){

 set_output_int32(0,TAR_vel_ADR[slave],50000); // Set a target velocity 50mm/s

 }

 if(slave==1){

 set_output_int32(0,TAR_vel_ADR[slave],50000); // Set a target velocity 50mm/s

 }

 if(slave==2){

 set_output_int32(0,TAR_vel_ADR[slave],50000); // Set a target velocity 50mm/s

 }

 if(get_bit(control[slave],15) && !get_bit(control[slave],14) && !get_bit(control[slave],13)){

 STEP[slave] = 10;

 //STEP[1] = 0;

 }

 break;

 }

 case 10:{

 set_output_int16 (0,CTRL_WORD_ADR[slave],0b1100000000000000); //bDrive_Enable = true;

 set_output_int16(0,SIGNAL_WORD_ADR[slave],0b0000000000000000); // Set error bit back

 set_output_int16 (0,CTRL_WORD_ADR[slave],0b1100000000000000); //bDrive_Enable = true;

 if(get_bit(control[slave],15) && get_bit(control[slave],14)){ // Check bq_Drive_Enable

 STEP[slave] = 20;

 }

 break;

 }

 case 20:{

 set_output_int16 (0,CTRL_WORD_ADR[slave],0b1110000000000000); //Drive_Start = true;

 if(get_bit(control[slave],3) && get_bit(control[slave],15) && get_bit(control[slave],14) &&

 !get_bit(control[slave],8) && !get_bit(control[slave],9) && !get_bit(control[slave],10)){ // bQ_Main_Mode

 STEP[slave] = 30;

 }

 break;

 }

 case 30:{

 if(target_pos[slave] != target_pos_old[slave]){

 STEP[slave] = 40;

 set_output_int32(0,TAR_POS_ADR[slave],target_pos[slave]);

 target_pos_old[slave] = target_pos[slave];

 }

 break;

 }

 case 40:{

 if(toggle[slave] == 0){

 signal_word[slave] = 0b0000000000000001;

 set_output_int16(0,SIGNAL_WORD_ADR[slave],signal_word[slave]); //Drive_Start = true;

 toggle[slave] = 1;

 }

 if(!get_bit(status[slave],4)){ // Check signal status word bit 4 (Position OK)

 STEP[slave] = 50;

 toggle[slave] = 0;

 //bNewValue = false;

 }

 break;

 }

 case 50:{

 signal_word[slave] = 0b0000000000000000;

 set_output_int16(0,SIGNAL_WORD_ADR[slave],signal_word[slave]); //Drive_Start = true;

 if(get_bit(status[slave],4)){ // Check if motor has reached target position

 signal_word[slave] = 0b0000000000000000;

 STEP[slave] = 30;

 }

 if(position[2]>250&&(slave==0||slave==1)){

 printf("POSITION 2 : %d",position[2]);

 set_output_int16(0,CTRL_WORD_ADR[slave],0b0000000000000000);

 set_output_int16(0,SIGNAL_WORD_ADR[slave],0b0000000000000000);

 STEP[slave] = 100;

 }

 }

 break;

 case 100:{

 printf("\n Slave dangerous target position \n");

 if(position[2]<250){

 STEP[slave] = 0;

 }

 }

 }

 if(STEP[0]==30 && STEP[2]==30){

 in_position_msg.data = true;

 }

 else{

 in_position_msg.data = false;

 }

 actual_position.x = position[0];

 actual_position.y = position[1];

 actual_position.z = position[2];

 in_pos_pub.publish(in_position_msg);

 actual_pos_pub.publish(actual_position);

 ec_send_processdata();

 ros::spinOnce();

 usleep(12000);

 //std::cout << " OUTPUTS SLAVE : " << slave;

 //std::cout << " Control_word : "<< std::bitset<16>(outputs.control_word);

 //std::cout << " Status_word : " << std::bitset<16>(outputs.signal_word);

 //std::cout << "\nTarget_position : " << std::dec <<outputs.target_position/10000 << "mm";

 //std::cout << "\nTarger_velocity : " << std::dec << outputs.target_velocity/1000 << "mm/s";

 //std::cout.flush();

 //std::cout << " INPUTS : ";

 //std::cout << "\nControl : "<< std::bitset<16>(control[2]);

 //std::cout << " Status : " << std::bitset<16>(status[2]);

 //std::cout << "\nStatus : " << status;

 //std::cout << "\nActual_position : " << std::dec << position[slave]/10000 << "mm";

 //std::cout << "\nActual_velocity : " << std::dec << velocity[slave]/1000 << "mm/s";

 //std::cout << "\nDiag : " << std::hex << diag << "\n";

 //std::cout.flush();

 }

 /******************************** ROS Publishing ******************************/

 /*

 control_word_pub.data = control;

 signal_word_pub.data = signal;

 actual_position_pub.data = position;

 actual_velocity_pub.data = velocity;

 diag_pub.data = diag;

 pub1.publish(control_word_pub);

 pub2.publish(signal_word_pub);

 pub3.publish(actual_position_pub);

 pub4.publish(actual_velocity_pub);

 pub5.publish(diag_pub);

 pub6.publish(inputs);

 */

 //ec_send_processdata();

 //ros::spinOnce();

 //printf(" T:%lld\r",ec_DCtime);

 //needlf = TRUE;

 }

 //usleep(5000);

 /** cyclic loop **/

 }

 printf("Shutting down robot control node\n");

 for(int slave = 0;slave<ec_slavecount;slave++){

 set_output_int16(0,CTRL_WORD_ADR[slave],0b0000000000000000); // Reset control word

 set_output_int16(0,SIGNAL_WORD_ADR[slave],0b0000000000000000); // Reset signal word

 ec_send_processdata();

 ros::spinOnce();

 usleep(12000);

 }

 inOP = FALSE;

 }

 else

 {

 printf("Not all slaves reached operational state.\n");

 ec_readstate();

 for(i = 1; i<=ec_slavecount ; i++)

 {

 if(ec_slave[i].state != EC_STATE_OPERATIONAL)

 {

 printf("Slave %d State=0x%2.2x StatusCode=0x%4.4x : %s\n",

 i, ec_slave[i].state, ec_slave[i].ALstatuscode, ec_ALstatuscode2string(ec_slave[i].ALstatuscode));

 }

 }

 }

 printf("\nRequest init state for all slaves\n");

 ec_slave[0].state = EC_STATE_INIT;

 /* request INIT state for all slaves */

 ec_writestate(0);

 }

 else

 {

 printf("No slaves found!\n");

 }

 printf("End simple test, close socket\n");

 /* stop SOEM, close socket */

 ec_close();

 }

 else

 {

 printf("No socket connection on %s\nExcecute as root\n",ifname);

 }

}

void* ecatcheck(void *ptr)

{

 int slave;

 while(1)

 {

 if(inOP && ((wkc < expectedWKC) || ec_group[currentgroup].docheckstate))

 {

 if (needlf)

 {

 needlf = FALSE;

 printf("\n");

 }

 /* one ore more slaves are not responding */

 ec_group[currentgroup].docheckstate = FALSE;

 ec_readstate();

 for (slave = 1; slave <= ec_slavecount; slave++)

 {

 if ((ec_slave[slave].group == currentgroup) && (ec_slave[slave].state != EC_STATE_OPERATIONAL))

 {

 ec_group[currentgroup].docheckstate = TRUE;

 if (ec_slave[slave].state == (EC_STATE_SAFE_OP + EC_STATE_ERROR))

 {

 printf("ERROR : slave %d is in SAFE_OP + ERROR, attempting ack.\n", slave);

 ec_slave[slave].state = (EC_STATE_SAFE_OP + EC_STATE_ACK);

 ec_writestate(slave);

 }

 else if(ec_slave[slave].state == EC_STATE_SAFE_OP)

 {

 printf("WARNING : slave %d is in SAFE_OP, change to OPERATIONAL.\n", slave);

 ec_slave[slave].state = EC_STATE_OPERATIONAL;

 ec_writestate(slave);

 }

 else if(ec_slave[slave].state > 0)

 {

 if (ec_reconfig_slave(slave, EC_TIMEOUTMON))

 {

 ec_slave[slave].islost = FALSE;

 printf("MESSAGE : slave %d reconfigured\n",slave);

 }

 }

 else if(!ec_slave[slave].islost)

 {

 /* re-check state */

 ec_statecheck(slave, EC_STATE_OPERATIONAL, EC_TIMEOUTRET);

 if (!ec_slave[slave].state)

 {

 ec_slave[slave].islost = TRUE;

 printf("ERROR : slave %d lost\n",slave);

 }

 }

 }

 if (ec_slave[slave].islost)

 {

 if(!ec_slave[slave].state)

 {

 if (ec_recover_slave(slave, EC_TIMEOUTMON))

 {

 ec_slave[slave].islost = FALSE;

 printf("MESSAGE : slave %d recovered\n",slave);

 }

 }

 else

 {

 ec_slave[slave].islost = FALSE;

 printf("MESSAGE : slave %d found\n",slave);

 }

 }

 }

 if(!ec_group[currentgroup].docheckstate)

 printf("OK : all slaves resumed OPERATIONAL.\n");

 }

 usleep(3000);

 }

}

int main(int argc, char *argv[])

{

 ros::init(argc, argv, "robotcontrol");

 int iret1;

 printf("Starting SOEM robotcontrol\n");

 if (argc > 1)

 {

 /* create thread to handle slave error handling in OP */

 iret1 = pthread_create(&thread1, NULL, &ecatcheck, (void*) &ctime);

 /* start cyclic part */

 simpletest(argv[1]);

 }

 printf("End program\n");

 return (0);

}

code/gui/scripts/image_index.py

#!/usr/bin/env python
import rospy
from ethercat_soem.msg import position
from std_msgs.msg import UInt16,UInt8
import matplotlib.pyplot as plt
from Tkinter import *
import numpy as np

rospy.init_node('image_index_node', anonymous=True)

pub = rospy.Publisher('image_index', UInt16, queue_size=10)
stop_pub = rospy.Publisher('stop', UInt16, queue_size=10)
back_pub = rospy.Publisher('relative_move', position, queue_size=10)

msg = position()
msg.x = 4

def Pressed():
 pub.publish(0)
 print 'Looking for kottkaktesaus familypack'
def Pressed1():
 pub.publish(1)
 print 'Looking for Almond'

def Pressed2():
 pub.publish(2)
 print 'Looking for kjottkakesaus'

def Pressed3():
 pub.publish(3)
 print 'Looking for pizzasaus'
def Pressed4():
 pub.publish(4)
 print 'Looking for bog skinke'
def Pressed5():
 pub.publish(5)
 print 'Looking for erter and gulrotter'
def Pressed6():
 pub.publish(6)
 print 'Looking for nesquick'
def Pressed7():
 pub.publish(7)
 print 'Looking for weetabix'
def Pressed8():
 pub.publish(8)
 print 'Looking for erter'
def Pressed9():
 pub.publish(9)
 print 'Looking for ketchup'
def stop():
 stop_pub.publish(1)
 print 'Stopping'
def backz():
 back_pub.publish(1,2,3)
 print 'Stopping'

root = Tk()
root.wm_title("Select product")
frame = Frame(root)
frame.pack()

bottomframe = Frame(root)
bottomframe.pack(side = BOTTOM)

button = Button(root, text = 'Kjottkakesaus familypack', command = Pressed)
button2 = Button(root, text = 'Almond milk', command = Pressed1)
button3 = Button(frame, text="kjottkakesaus", command = Pressed2)
button4 = Button(frame, text="Pizzasaus", command = Pressed3)
button5 = Button(frame, text="bog skinke", command = Pressed4)
button6 = Button(frame, text="Erter og gulrotter", command = Pressed5)
button7 = Button(frame, text="Nesquick", command = Pressed6)
button8 = Button(frame, text="weetabix", command = Pressed7)
button9 = Button(frame, text="erter", command = Pressed8)
button10 = Button(frame, text="ketchup", command = Pressed9)

stop = Button(frame, text="STOP", command = stop)
back = Button(frame, text="Back up Z", command = backz)

button.pack(pady=10, padx = 40)
button2.pack(pady=10, padx = 40)
button3.pack(pady=10, padx = 40)
button4.pack(pady=10, padx = 40)
button5.pack(pady=10, padx = 40)
button6.pack(pady=10, padx = 40)
button7.pack(pady=10, padx = 40)
button8.pack(pady=10, padx = 40)
button9.pack(pady=10, padx = 40)
button10.pack(pady=10, padx = 40)
stop.pack(pady=10, padx = 40)

x = 0
y = 0
z = 0

def callback(data):
 global x
 global y
 global z
 x = data.x
 y = data.y
 z = data.z
def talker():

 rospy.Subscriber('position', position, callback)

 r = rospy.Rate(30) #10hz

 while not rospy.is_shutdown():

 root.update_idletasks()
 root.update()

 r.sleep()

if __name__ == '__main__':
 try:
 talker()
 except rospy.ROSInterruptException: pass

code/gui/scripts/plot.py

#!/usr/bin/env python
import rospy
from ethercat_soem.msg import position
from std_msgs.msg import UInt16
import matplotlib.pyplot as plt
import time

import numpy as np

x = 0
y = 0
z = 0

rospy.init_node('custom_talker', anonymous=True)
pub = rospy.Publisher('position', position)

error_pub = rospy.Publisher('reset_error', UInt16, queue_size=10)
stop_pub = rospy.Publisher('stop', UInt16, queue_size=10)
go_pub = rospy.Publisher('go_bit', UInt16, queue_size=10)
msg = position()
msg.x = 4

ylist = []
xlist = []
start = time.time()
def callback(data):
 global x
 global y
 global z
 x = data.x
 y = data.y
 z = data.z
 end = time.time()
 xlist.append(end - start)
 ylist.append(x)

def talker():

 rospy.Subscriber('actual_position', position, callback)

 r = rospy.Rate(30) #10hz

 plt.figure(1)

 plt.xlabel('D')
 plt.ylabel('Position [mm]')
 plt.title('Position plot')
 plt.grid(True)
 start = time.time()

 while not rospy.is_shutdown():

 #rospy.loginfo(msg)
 #pub.publish(msg)
	plt.clf()
 plt.plot(xlist[2:],ylist[2:])
 plt.pause(0.1)
	plt.xlabel('Time[s]')
 	plt.ylabel('Distance [mm]')
 	plt.title('Distance plot')
 	plt.grid(True)
 plt.draw()
 r.sleep()
	plt.show()
 #if(len(ylist)>10):
 # break

 plt.show()

if __name__ == '__main__':
 try:
 talker()
 except rospy.ROSInterruptException: pass

code/pose/msg/position.msg

int32 x
int32 y
int32 z

code/pose/src/posenode.cpp

#include "ros/ros.h"
#include "std_msgs/Bool.h"
#include "std_msgs/String.h"
#include "std_msgs/UInt16.h"
#include "std_msgs/UInt32.h"

#include "pose/position.h"

#include <opencv2/features2d.hpp>
#include "opencv2/core/core.hpp"
#include "opencv2/calib3d/calib3d.hpp"
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/xfeatures2d.hpp>
#include <iostream>
#include <math.h>

using namespace cv;
using namespace cv::xfeatures2d;
using namespace std;

uint16_t stop = 0;
uint16_t image_index = 0;
uint16_t image_index_old = -1;
bool start_pose = false;

void stop_callback(const std_msgs::UInt16::ConstPtr& msg){
 stop = msg->data;
 std::cout << "\nStopping";
 std::cout.flush();
}
void index_callback(const std_msgs::UInt16::ConstPtr& msg){
 image_index = msg->data;
}

bool distance_comparator(const DMatch& p1, const DMatch& p2) {
	return p1.distance > p2.distance;
}
void start_pose_callback(const std_msgs::Bool::ConstPtr& msg){
 start_pose = msg->data;
}
bool compare_list(double *l1,int length,double range) {
 double high=0;
 double low=1000;

 for(int i = 0;i<length;i++){
 if(abs(l1[i])>high){
 high = abs(l1[i]);
 }
 if(abs(l1[i])<low){
 low = abs(l1[i]);
 }
 }
 if((high-low)<range)
 return true;
 else
 return false;
}

Mat cube(Mat img, std::vector<Point2d> imgpoints2,int color) { // Draw cube for visualization

 line(img, imgpoints2[4] , imgpoints2[5] , Scalar(255, 0, 0), 3,LINE_AA); // Bakre ramme
 line(img, imgpoints2[5] , imgpoints2[6] , Scalar(255, 0, 0), 3,LINE_AA);
 line(img, imgpoints2[6] , imgpoints2[7] , Scalar(255, 0, 0), 3 ,LINE_AA);
 line(img, imgpoints2[7] , imgpoints2[4] , Scalar(255, 0, 0), 3 ,LINE_AA);

 line(img, imgpoints2[0] , imgpoints2[4] , Scalar(0, 0, 255), 3,LINE_AA); //
 line(img, imgpoints2[1] , imgpoints2[5] , Scalar(0, 0, 255), 3,LINE_AA);
 line(img, imgpoints2[2] , imgpoints2[6] , Scalar(0, 0, 255), 3 ,LINE_AA);
 line(img, imgpoints2[3] , imgpoints2[7] , Scalar(0, 0, 255), 3 ,LINE_AA);

 line(img, imgpoints2[0] , imgpoints2[1] , Scalar(0, 255, 0), 3,LINE_AA); // Front
 line(img, imgpoints2[1] , imgpoints2[2] , Scalar(0, 255, 0), 3,LINE_AA);
 line(img, imgpoints2[2] , imgpoints2[3] , Scalar(0, 255, 0), 3 ,LINE_AA);
 line(img, imgpoints2[3] , imgpoints2[0] , Scalar(0, 255, 0), 3 ,LINE_AA);
 if(color==0){
 line(img, imgpoints2[8] , imgpoints2[9] , Scalar(0, 255, 0), 8 ,LINE_AA); // Normal
 }
 if(color==1){
 line(img, imgpoints2[8] , imgpoints2[9] , Scalar(0, 0, 255), 8 ,LINE_AA); // Normal
 }

	return img;
}

int main(int argc, char **argv)
{
 //*** ROS INIT

 ros::init(argc, argv, "test");
 ros::NodeHandle n;
 ros::Publisher pub1 = n.advertise<pose::position>("object_position", 1000);
 ros::Publisher pub2 = n.advertise<pose::position>("rotation", 1000);
 ros::Publisher good_pose_pub = n.advertise<std_msgs::Bool>("good_pose", 1000);

 pose::position position;
 pose::position rotation;
 std_msgs::Bool good_pose_msg;

 ros::Subscriber sub5 = n.subscribe("stop", 1000, stop_callback);
 ros::Subscriber start_pose_sub = n.subscribe("start_pose", 1000, start_pose_callback);
 ros::Subscriber index_sub = n.subscribe("image_index", 1000, index_callback);

 while(!start_pose&&!stop){
 sleep(1);
 ros::spinOnce();
 }

 Mat des,descam;
 std::vector<KeyPoint> kp,kpcam;

 VideoCapture stream1(1);

 //stream1.set(CV_CAP_PROP_FRAME_WIDTH,1280);
 //stream1.set(CV_CAP_PROP_FRAME_HEIGHT,720);

 if (!stream1.isOpened())
 {
 cout << "cannot open camera";

 }

 sleep(1);

 //Mat img = imread("psausf.png", IMREAD_GRAYSCALE);

 /*********************** PRODUCTS TO LOOK FOR ********************************/
 Mat images[10];
 Mat axis;

 images[0] = imread("/home/automatmat/catkin_ws/images/ksausf.png", IMREAD_GRAYSCALE);
 images[1] = imread("/home/automatmat/catkin_ws/images/almond.png", IMREAD_GRAYSCALE);
 images[2] = imread("/home/automatmat/catkin_ws/images/ksaus.png", IMREAD_GRAYSCALE);
 images[3] = imread("/home/automatmat/catkin_ws/images/pizza.png", IMREAD_GRAYSCALE);
 images[4] = imread("/home/automatmat/catkin_ws/images/bog.png", IMREAD_GRAYSCALE);
 images[5] = imread("/home/automatmat/catkin_ws/images/ert.png", IMREAD_GRAYSCALE);
 images[6] = imread("/home/automatmat/catkin_ws/images/nesquick.png", IMREAD_GRAYSCALE);
 images[7] = imread("/home/automatmat/catkin_ws/images/weetabix.png", IMREAD_GRAYSCALE);
 images[8] = imread("/home/automatmat/catkin_ws/images/erter.png", IMREAD_GRAYSCALE);
 images[9] = imread("/home/automatmat/catkin_ws/images/ketch.png", IMREAD_GRAYSCALE);

 double h,w,d;

 double sizes[20][3] = { // OBJECTS SIZE
 {13.5, 16.5, 3.8},
 {7.3, 18.9, 7.3} ,
 {11.8, 15.8, 1},
 {8.2, 13.5, 8.2},
 {10.2, 14.6, 3.8},
 {7.5, 10.3, 7.5},
 {19.2, 29, 6.8},
 {19, 25.2, 5.1},
 {12.1, 15.2, 4.2},
 {8.8, 20, 6}};

 //double distance_array[3]:
 int pose_index = 0;
 bool good_pose[3] = {false};

 double transx_list[3];
 double transy_list[3];
 double distance_list[3];

 Ptr<SIFT> detector = SIFT::create(); // Initialize SIFT

 while (stop==0)
 {

 if(image_index != image_index_old){

 detector->detectAndCompute(images[image_index], Mat(), kp, des); // Compute training image KPs and descriptors
 image_index_old = image_index;

 w = sizes[image_index][0];
 h = sizes[image_index][1];
 d = sizes[image_index][2];
 }

 Mat cameraFrame;
 stream1.read(cameraFrame);

 detector->detectAndCompute(cameraFrame, Mat(), kpcam, descam); // Compute camera fram KPs and des

 BFMatcher matcher(NORM_L2,true); // Initialize brute force matcher with Norm_L2 window.
 std::vector< DMatch > matches;

 try{
 matcher.match(des, descam, matches); // Match keypoints
 }
 catch(...){
 cout << "matching error" << endl;
 }

 sort(matches.begin(), matches.end(), distance_comparator);

 std::vector<Point2f> obj;
 std::vector<Point2f> scene;

 for(int i = 0; i < matches.size(); i++)
 {
 obj.push_back(kp[matches[i].queryIdx].pt);
 scene.push_back(kpcam[matches[i].trainIdx].pt);
 }

 if(matches.size()>5){
 Mat H = findHomography(obj, scene, CV_RANSAC); // COmpute homography witn RANSAC

 std::vector<Point2f> obj_corners(4);
 obj_corners[0] = cvPoint(0,0); // corner
 obj_corners[1] = cvPoint(images[image_index].cols, 0);
 obj_corners[2] = cvPoint(images[image_index].cols, images[image_index].rows);
 obj_corners[3] = cvPoint(0, images[image_index].rows);

 std::vector<Point2f> scene_corners(4);

 perspectiveTransform(obj_corners, scene_corners, H);

 Mat mtx(3, 3, CV_64FC1);
 Mat dist(5, 1, CV_64FC1);
 Mat rvec;
 Mat tvec;

 mtx = (Mat1d(3, 3) << 618.231993, 0.000000, 336.212703, 0.000000, 616.896287, 230.240143, 0.000000, 0.000000, 1.000000); // VGA
 dist = (Mat1d(1, 5) << 0.131784, -0.277215, -0.004577, 0.011165, 0.000000);

 Mat obj_points(4,3,CV_64FC1);

 /************************* OBJECT DATA *******************/

 //obj_points = (Mat1d(4, 3) << 0,0,0, w,0,0, w,h,0, 0,h,0);
 obj_points = (Mat1d(4, 3) << -w/2,-h/2,0, w/2,-h/2,0, w/2,h/2,0, -w/2,h/2,0); // center

 //axis = (Mat1d(10, 3) << 0,0,0, w,0,0, w,h,0, 0,h,0, 0,0,d, w,0,d, w,h,d, 0,h,d, w/2,h/2,0, w/2,h/2,-5);
 axis = (Mat1d(10, 3) << -w/2,-h/2,0, w/2,-h/2,0, w/2,h/2,0, -w/2,h/2,0, -w/2,-h/2,d, w/2,-h/2,d, w/2,h/2,d, -w/2,h/2,d, 0,0,0, 0,0,-5); // center

 solvePnP(obj_points,scene_corners,mtx,dist,rvec,tvec); // Compute tranlation and rotation vectors

 std::vector<Point2d> imgpoints(4);
 projectPoints(axis,rvec,tvec,mtx,dist,imgpoints); // Used for visualization

 Mat goalR = (Mat1d(3, 3) << 1,0,0, 0,1,0, 0,0,1);
 //Mat goalT = (Mat1d(3, 1) << -w/2,-h/2+5,35);
 Mat goalT = (Mat1d(3, 1) << -6.8,6,34); // center

 std::vector<Point2d> imgpoints2(4);

 //projectPoints(axis,goalR,goalT,mtx,dist,imgpoints2);

 //cube(cameraFrame,imgpoints2,0);

 bool bryt = false;
 for(int a = 0; a < 10; a = a + 1) {
 if(imgpoints[a].x<-200||imgpoints[a].x>840||imgpoints[a].y<-200||imgpoints[a].y>840 || tvec.at<double>(0,2)>80 || tvec.at<double>(0,2)<3
 || rvec.at<double>(0,1)>0.8 || rvec.at<double>(0,1)<-0.8 || rvec.at<double>(0,0)>0.8 || rvec.at<double>(0,0)<-0.8){
 bryt = true;
 }
 }

 if(bryt==false){

 Mat M=H.inv();
 Size s;
 s.height = cameraFrame.size().width;
 s.width = cameraFrame.size().height;

 Mat offset = tvec-goalT;

 position.x = offset.at<double>(0,0)*-10;
 position.y = offset.at<double>(0,1)*-10;
 position.z = tvec.at<double>(0,2)*10;

 rotation.x = rvec.at<double>(0,0)*(180/M_PI);
 rotation.y = rvec.at<double>(0,1)*(180/M_PI);
 rotation.z = rvec.at<double>(0,2)*(180/M_PI);

 double xdist = tvec.at<double>(0,0);
 double ydist = tvec.at<double>(0,1)*-1;
 double dist = tvec.at<double>(0,2);
 std::stringstream strs;
 strs <<"X position " <<xdist;
 std::string str1 = strs.str();

 std::stringstream strs2;
 strs2 <<"Y position " <<ydist;
 std::string str2 = strs2.str();

 std::stringstream strs3;
 strs3 <<"Distance to object " <<dist;
 std::string str3 = strs3.str();

 std::stringstream strs4;
 strs4 <<"Y rotation " <<rotation.y;
 std::string str4 = strs4.str();

 transx_list[pose_index] = xdist;
 transy_list[pose_index] = ydist;
 distance_list[pose_index] = dist;

 good_pose[0] =compare_list(transx_list,3,1); // Compare list with allowance 1
 good_pose[1] =compare_list(transy_list,3,2); // Compare list with allowance 2
 good_pose[2] =compare_list(distance_list,3,2); // Compare list with allowance 2

 pose_index++;
 if(pose_index>2){
 pose_index = 0;
 }

 pub1.publish(position);
 pub2.publish(rotation);

 putText(cameraFrame, str1, Point2f(10,20), FONT_HERSHEY_PLAIN, 1, Scalar(0,255,0),2);
 putText(cameraFrame, str2, Point2f(10,40), FONT_HERSHEY_PLAIN, 1, Scalar(0,255,0),2);
 putText(cameraFrame, str3, Point2f(10,60), FONT_HERSHEY_PLAIN, 1, Scalar(0,255,0),2);
 putText(cameraFrame, str4, Point2f(10,80), FONT_HERSHEY_PLAIN, 1, Scalar(0,255,0),2);

 if(good_pose[0]&&good_pose[1]&&good_pose[2]){

 cube(cameraFrame,imgpoints,0);
 good_pose_msg.data = true;
 }
 else{
 cube(cameraFrame,imgpoints,1);
 }
 }
 else{
 good_pose_msg.data = false;
 }
 good_pose_pub.publish(good_pose_msg);
 imshow("Result",cameraFrame);

 }
 ros::spinOnce();
 if (waitKey(100) == 27)
 break;
 if(!start_pose){
 break;
 }

 }
 return 0;
}

code/vacuum/msg/position.msg

int32 x
int32 y
int32 z

code/vacuum/scripts/vacuumnode.cpp

#include <ros/ros.h>
#include "std_msgs/String.h"
#include "std_msgs/UInt8.h"
#include "std_msgs/UInt16.h"
#include "std_msgs/UInt32.h"
#include "std_msgs/Int32.h"
#include "std_msgs/Bool.h"
#include "ethercat_soem/inputs.h"
#include "ethercat_soem/outputs.h"
#include <bitset>

#include <iostream>
#include <sstream>

#include <stdio.h>
#include <string.h>
#include <sys/time.h>
#include <unistd.h>
#include <pthread.h>

#include "ethercat_soem/ethercattype.h"
#include "ethercat_soem/nicdrv.h"
#include "ethercat_soem/ethercatbase.h"
#include "ethercat_soem/ethercatmain.h"
#include "ethercat_soem/ethercatdc.h"
#include "ethercat_soem/ethercatcoe.h"
#include "ethercat_soem/ethercatfoe.h"
#include "ethercat_soem/ethercatconfig.h"
#include "ethercat_soem/ethercatprint.h"

#define EC_TIMEOUTMON 500

char IOmap[4096];
pthread_t thread1;
int expectedWKC;
boolean needlf;
volatile int wkc;
boolean inOP;

uint8 currentgroup = 0;

uint16_t control_word = 0;
uint16_t signal_word = 0;
uint32_t target_pos = 0;

uint16_t stop = 0;

unsigned int control,status,diag;
int actual_pressure;
int position,velocity;
int error = 0;
int toggle = 0;

void set_output_int16 (uint16 slave_no, uint8 module_index, int16 value) // Write 16 bits
{
 uint8 *data_ptr;

 data_ptr = ec_slave[slave_no].outputs;
 data_ptr += module_index * 1;

 *data_ptr++ = (value >> 0) & 0xFF;

 *data_ptr++ = (value >> 8) & 0xFF;

void set_output_int8 (uint8 slave_no, uint8 module_index, int8 value) // Write 1 byte
{
 uint8 *data_ptr;

 data_ptr = ec_slave[slave_no].outputs;

 data_ptr += module_index * 1;

 *data_ptr++ = (value >> 0) & 0xFF;

}

void stop_callback(const std_msgs::UInt16::ConstPtr& msg){
 stop = msg->data;
}

void vacuum_outputs_callback(const std_msgs::UInt8::ConstPtr& msg){
 control_word = msg->data;
 set_output_int8(0,0,control_word); // Control word
}

void vacuum_signal_callback(const std_msgs::UInt16::ConstPtr& msg){
 signal_word = msg->data;
 if(signal_word>0){
 set_output_int16(0,0,0b0000001); // Control word
 }
 else{
 set_output_int16(0,0,0b000000); // Control word
 }
 set_output_int16(0,2,signal_word); // Control word
}

int get_bit(int n, int bitwanted){
 int mask = 1 << bitwanted;
 int masked_n = n & mask;
 int thebit = masked_n >> bitwanted;
 return thebit;
}

int set_bit(int n, int pos){
 n |= (1 << pos);
 return n;
}

void simpletest(char *ifname)
{

 ros::NodeHandle n;
 // ******* Subscribers
 ros::Subscriber sub1 = n.subscribe("vacuum_outputs", 1000, vacuum_outputs_callback);
 ros::Subscriber sub2 = n.subscribe("vacuum_signal", 1000, vacuum_signal_callback);

 ros::Subscriber sub5 = n.subscribe("stop", 1000, stop_callback);
 // ********** Publishers

 ros::Publisher pub1 = n.advertise<std_msgs::UInt16>("control_word_out", 1000);
 ros::Publisher pub2 = n.advertise<std_msgs::UInt16>("signal_word_out", 1000);
 ros::Publisher pub3 = n.advertise<std_msgs::UInt32>("actual_position_out", 1000);
 ros::Publisher good_vacuum_pub = n.advertise<std_msgs::Bool>("good_vacuum", 1000);

 ros::Publisher pub6 = n.advertise<ethercat_soem::inputs>("inputs", 1000);

 // *********** Initialize messages
 std_msgs::UInt16 control_word_pub;
 std_msgs::UInt16 signal_word_pub;
 std_msgs::UInt32 actual_position_pub;
 std_msgs::UInt32 actual_velocity_pub;
 std_msgs::UInt32 diag_pub;
 ethercat_soem::inputs inputs;
 ethercat_soem::outputs outputs;

 std_msgs::Bool good_vacuum_msg;

 int i, j, oloop, iloop, wkc_count, chk;
 int STEP = 0;
 needlf = FALSE;
 inOP = FALSE;

 printf("Starting SOEM ROS node\n");

 /* initialise SOEM, bind socket to ifname */
 if (ec_init(ifname))
 {
 printf("ec_init on %s succeeded.\n",ifname);

 /* find and auto-config slaves */

 if (ec_config_init(FALSE) > 0)
 {
 printf("%d slaves found and configured.\n",ec_slavecount);

 ec_config_map(&IOmap);

 ec_configdc();

 printf("Slaves mapped, state to SAFE_OP.\n");
 /* wait for all slaves to reach SAFE_OP state */
 ec_statecheck(0, EC_STATE_SAFE_OP, EC_TIMEOUTSTATE * 4);

 oloop = ec_slave[0].Obytes;
 if ((oloop == 0) && (ec_slave[0].Obits > 0)) oloop = 1;
 if (oloop > 8) oloop = 8;
 iloop = ec_slave[0].Ibytes;
 if ((iloop == 0) && (ec_slave[0].Ibits > 0)) iloop = 1;
 if (iloop > 8) iloop = 8;

 printf("segments : %d : %d %d %d %d\n",ec_group[0].nsegments ,ec_group[0].IOsegment[0],ec_group[0].IOsegment[1],ec_group[0].IOsegment[2],ec_group[0].IOsegment[3]);

 printf("Request operational state for all slaves\n");
 expectedWKC = (ec_group[0].outputsWKC * 2) + ec_group[0].inputsWKC;
 printf("Calculated workcounter %d\n", expectedWKC);
 ec_slave[0].state = EC_STATE_OPERATIONAL;
 /* send one valid process data to make outputs in slaves happy*/
 ec_send_processdata();
 ec_receive_processdata(EC_TIMEOUTRET);
 /* request OP state for all slaves */
 ec_writestate(0);
 chk = 40;
 /* wait for all slaves to reach OP state */
 do
 {

 ec_send_processdata();
 ec_receive_processdata(EC_TIMEOUTRET);
 ec_statecheck(0, EC_STATE_OPERATIONAL, 50000);
 }
 while (chk-- && (ec_slave[0].state != EC_STATE_OPERATIONAL));
 if (ec_slave[0].state == EC_STATE_OPERATIONAL)
 {
 printf("Operational state reached for all slaves.\n");
 wkc_count = 0;
 inOP = TRUE;

 /** cyclic loop **/

 while(stop==0)
 {
 ec_send_processdata();
 wkc = ec_receive_processdata(EC_TIMEOUTRET);

 if(wkc >= expectedWKC)
 {
 //printf("Processdata cycle %4d, WKC %d , O:", i, wkc);

 /********* Store variables from cyclic data *********/

 /**** Outputs ****/
 control = (*(ec_slave[0].inputs));
 actual_pressure = (*(ec_slave[0].inputs+1) | *(ec_slave[0].inputs+2)<<8);
 status = (*(ec_slave[0].inputs+3) | *(ec_slave[0].inputs+4)<<8);
 position = (*(ec_slave[0].inputs+5) | *(ec_slave[0].inputs+6)<<8);

 /**** Inputs ****/
 control_word = *(ec_slave[0].outputs+0);
 int pressure = (*(ec_slave[0].outputs+2)) | (*(ec_slave[0].outputs+1)<<8);

 /************* Printing values to CMD **************/

 std::cout << "\n\nOUTPUTS : ";
 std::cout << "\nDigital outputs : "<< std::bitset<8>(control_word);
 std::cout << "\nTarget pressure : " << std::dec << pressure;

 std::cout << "\n\nINPUTS : ";
 std::cout << "\nDigital inputs : "<< std::bitset<8>(control);
 std::cout << "\nActual pressure : "<< std::dec << actual_pressure;
 std::cout << "\nUnknown : " << std::dec << status;
 std::cout << "\nUknown 2 : " << std::dec << position ;
 std::cout.flush();
 if(actual_pressure>1000){
 good_vacuum_msg.data = true;
 }
 else{
 good_vacuum_msg.data = false;
 }
 good_vacuum_pub.publish(good_vacuum_msg);

 ros::spinOnce();

 needlf = TRUE;
 }
 usleep(50000); // CycleTIME
 /** cyclic loop **/

 }

 inOP = FALSE;
 }
 else
 {
 printf("Not all slaves reached operational state.\n");
 ec_readstate();
 for(i = 1; i<=ec_slavecount ; i++)
 {
 if(ec_slave[i].state != EC_STATE_OPERATIONAL)
 {
 printf("Slave %d State=0x%2.2x StatusCode=0x%4.4x : %s\n",
 i, ec_slave[i].state, ec_slave[i].ALstatuscode, ec_ALstatuscode2string(ec_slave[i].ALstatuscode));
 }
 }
 }
 printf("\nRequest init state for all slaves\n");
 ec_slave[0].state = EC_STATE_INIT;
 /* request INIT state for all slaves */
 ec_writestate(0);
 }
 else
 {
 printf("No slaves found!\n");
 }
 printf("End simple test, close socket\n");
 /* stop SOEM, close socket */
 ec_close();
 }
 else
 {
 printf("No socket connection on %s\nExcecute as root\n",ifname);
 }
}

void* ecatcheck(void *ptr)
{
 int slave;

 while(1)
 {
 if(inOP && ((wkc < expectedWKC) || ec_group[currentgroup].docheckstate))
 {
 if (needlf)
 {
 needlf = FALSE;
 printf("\n");
 }
 /* one ore more slaves are not responding */
 ec_group[currentgroup].docheckstate = FALSE;
 ec_readstate();
 for (slave = 1; slave <= ec_slavecount; slave++)
 {
 if ((ec_slave[slave].group == currentgroup) && (ec_slave[slave].state != EC_STATE_OPERATIONAL))
 {
 ec_group[currentgroup].docheckstate = TRUE;
 if (ec_slave[slave].state == (EC_STATE_SAFE_OP + EC_STATE_ERROR))
 {
 printf("ERROR : slave %d is in SAFE_OP + ERROR, attempting ack.\n", slave);
 ec_slave[slave].state = (EC_STATE_SAFE_OP + EC_STATE_ACK);
 ec_writestate(slave);
 }
 else if(ec_slave[slave].state == EC_STATE_SAFE_OP)
 {
 printf("WARNING : slave %d is in SAFE_OP, change to OPERATIONAL.\n", slave);
 ec_slave[slave].state = EC_STATE_OPERATIONAL;
 ec_writestate(slave);
 }
 else if(ec_slave[slave].state > 0)
 {
 if (ec_reconfig_slave(slave, EC_TIMEOUTMON))
 {
 ec_slave[slave].islost = FALSE;
 printf("MESSAGE : slave %d reconfigured\n",slave);
 }
 }
 else if(!ec_slave[slave].islost)
 {
 /* re-check state */
 ec_statecheck(slave, EC_STATE_OPERATIONAL, EC_TIMEOUTRET);
 if (!ec_slave[slave].state)
 {
 ec_slave[slave].islost = TRUE;
 printf("ERROR : slave %d lost\n",slave);
 }
 }
 }
 if (ec_slave[slave].islost)
 {
 if(!ec_slave[slave].state)
 {
 if (ec_recover_slave(slave, EC_TIMEOUTMON))
 {
 ec_slave[slave].islost = FALSE;
 printf("MESSAGE : slave %d recovered\n",slave);
 }
 }
 else
 {
 ec_slave[slave].islost = FALSE;
 printf("MESSAGE : slave %d found\n",slave);
 }
 }
 }
 if(!ec_group[currentgroup].docheckstate)
 printf("OK : all slaves resumed OPERATIONAL.\n");
 }
 usleep(10000);
 }
}

int main(int argc, char *argv[])
{

 ros::init(argc, argv, "Vacuum");
 int iret1;
 printf("SOEM (Simple Open EtherCAT Master)\nSimple test\n");

 if (argc > 1)
 {

 iret1 = pthread_create(&thread1, NULL, &ecatcheck, (void*) &ctime);
 /* start cyclic part */
 simpletest(argv[1]);
 }

 printf("End program\n");
 return (0);
}

8.7. TRAINING IMAGES

8.7 Training images

PrID: 1 PrID: 2

PrID: 3 PrID: 4

66

8.7. TRAINING IMAGES

PrID: 5 PrID: 6

PrID: 7 PrID: 8

PrID: 9 PrID: 10

67

8.8. TEST IMAGES

8.8 Test images

68

	Introduction
	The company
	Objective
	Other projects on the same system
	Motivation
	System requirements

	Background
	What has been done before
	The pin hole camera
	Camera calibration
	Planar homography
	Outlier rejection
	Features and descriptors
	Feature matching
	Robotic operating system
	The components of ROS
	EtherCAT
	Libraries used

	Concept development
	Selection of camera
	Selection of control library

	Implementation
	The robot
	Motors and drives
	vacuum system
	Camera system
	Motor control
	Pose estimation
	ROS framework
	Pose estimation node
	Motor control node
	Vacuum control node
	System control node

	Communication
	Product registration

	Experiments and results
	Preliminary test of various feature detectors
	Test on finding pose
	Test of mechanical structure
	Test of motor control
	Pose estimation tests
	Test of actual picking

	Discussion
	Hardware
	Experiments
	Preliminary tests and mechanical setup
	Motor and vacuum control
	Pose estimation

	Test of actual picking

	Conclusion and future work
	Recommendations for future work

	Appendix
	References
	Original task
	System start-up procedure
	List of figures
	List of tables
	Source code
	Training images
	Test images

