


Classification of histological images of
bladder cancer using deep learning

by
Rune Wetteland

Master’s Thesis

June 2017

Faculty of Science and Technology
Department of Electrical Engineering and Computer Science

Under the Supervision of Professor Kjersti Engan



Abstract

In Norway bladder cancer is the fourth most common cancer type among men, with
an almost 70 % increase in incidence the past four decades. For women, the increase
has been about 40 %.

The histological images of bladder cancer are investigated by a pathologist to de-
termine the grade and stage of cancer. In addition, the risk of recurrence and
progression are also diagnosed. This is done manually by studying the histological
images, but reproducibility of these results are low. To aid the pathologist, a pro-
posed automatic system have been designed in this thesis consisting of six steps.
Step one to four have been studied and experimented in detail, and step five and
six are considered as future work.

The histological images are divided into smaller tiles, where each tile consists of one
of several different categories; cancer tissue, damaged tissue, other tissue, blood or
background. The aim is to make a system which automatically separates all tiles
containing cancer tissue from the rest, as these have the potential to diagnose the
cancer grade, stage, recurrence and progression.

To distinguish the different categories from each other, a classification system was
constructed consisting of an autoencoder and a classifier trained in a semi-supervised
fashion. The autoencoder was trained on 943,127 unlabeled tiles, extracted from
seven histological images. Next, the encoder part of the autoencoder was connected
to the classifier which was fine-tuned on 152,312 labeled images.

For evaluating the performance of the classifier, 10-fold cross-validation was cal-
culated. Accuracy of the best classifier on a five class dataset was 97.7 % with a
standard deviation of 3.2 %.

i



Preface

This thesis marks the end of the Master of Science degree at University of Stavanger,
Department of Electrical Engineering and Computer Science. The thesis was con-
ducted during the spring semester of 2017, and has not only been challenging, but
also educational and exciting.

I am grateful for the opportunity I have gotten to be able to work with new tech-
nology, state-of-the-art hardware at my disposal at the University, and surrounded
by people from several disciplines for continuous support.

I want to give a big thanks to my head supervisor professor Kjersti Engang for her
excellent support and guidance during the thesis, and much-appreciated feedback
throughout the entire master period.

Also, I would like to thank my co-supervisor Jonatan S. Dyrstad for his time
and valuable inputs. Furthermore, I would like to thank Emiel A.M. Janssen and
Vebjørn Kvikstad from Stavanger University Hospital for their help regarding the
dataset and medical knowledge. At last, I would like to thank Theodor Ivesdal
for his help and support with the UNIX network.

Stavanger, 15. June 2017
Rune Wetteland

ii



Contents

1 Introduction 1

1.1 Motivation and previous work . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Image processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 A brief history of artificial intelligence . . . . . . . . . . . . . . . . . 3

1.4 Deep learning in medicine . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Thesis objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background theory 10

2.1 Bladder cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 TNM Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 WHO Grading . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Artificial vs. biological neurons . . . . . . . . . . . . . . . . . 12

2.2.2 Convolutional layers . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.3 Pooling layers . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.4 Fully-connected layers . . . . . . . . . . . . . . . . . . . . . . 17

2.2.5 Activation function . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.6 Neural network Learning . . . . . . . . . . . . . . . . . . . . . 19

2.2.7 Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.8 Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.9 Cross-validation . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.10 Confusion matrix . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.11 Tensorflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.2 SCN image format . . . . . . . . . . . . . . . . . . . . . . . . 27

iii



2.3.3 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.4 Data augmentation . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Method 31

3.1 Proposed system overview . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Experiments and results 41

4.1 Preprocessing of SCN images . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Consistency of autoencoder . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Finding the best autoencoder . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Training autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5 Finding the best classifier . . . . . . . . . . . . . . . . . . . . . . . . 48

4.6 Verification of best result . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Discussion 53

5.1 Analysis of the Python scripts . . . . . . . . . . . . . . . . . . . . . . 53

5.1.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1.2 Autoencoder and classifier . . . . . . . . . . . . . . . . . . . . 53

5.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2.2 Consistency of autoencoder . . . . . . . . . . . . . . . . . . . 54

5.2.3 Selecting the best autoencoder . . . . . . . . . . . . . . . . . . 54

5.2.4 Selecting the best classifier . . . . . . . . . . . . . . . . . . . . 55

5.2.5 Verification of the best model . . . . . . . . . . . . . . . . . . 55

5.3 Suggested improvement . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

iv



6 Conclusion 58

7 References 59

A Python code 64

B Encoder structure 66

C Autoencoder 48 models 67

D Consistency of autoencoder 68

E Average models of different latent vector size 69

v



List of abbreviations and nomenclature

CNN Convolutional Neural Network

Conv Convolution

DL Deep Learning

Epoch One forward pass and one backward pass of all the training

examples

FC Fully-connected

Hyperparameter Parameters used to alter settings of network

Image tile Small part of the original image

NN Neural Network

PUNLMP Papillary urothelial neoplasm of low malignant potential

px Image Pixel

ReLU Rectified linear unit

SGD Stochastic gradient descent

Tensor Multidimensional array

TensorFlow An open-source software library for machine intelligence

TNM Tumor, Node, Metastasis classification

WHO73 1973 World Health Organization classification of papillary

urothelial neoplasms

WHO04 2004 World Health Organization classification of papillary

urothelial neoplasms

vi



1 Introduction

This chapter gives a motivation to the work of this thesis, as well as a brief history
of artificially intelligence and use of this technology in medicine. Thesis objectives
and structures are also presented.

1.1 Motivation and previous work

In 2015, 1626 people were diagnosed with bladder cancer in Norway. Of these, 1208
were men and 418 women. Bladder cancer is the fourth most common cancer type
among men after prostate, lung and colorectal carcinomas [1]. Bladder cancer rarely
develops for people below the age of 50, and usually the first diagnostic happens at
the age 60-80 with median age of 70-74 years [2].

In Norway there has been an almost 70 % increase in bladder cancer incidence
among men the past four decades, and approximately 40 % increase for women [2].
Globally bladder cancer resulted in 114,000 deaths in 1990. In 2010 this number
was 170,000, which is an increase of 49 % [3].

For patients diagnosed with bladder cancer, 50-70 % will experience one or more
recurrences, and 10-30 % will have disease progression to a higher stage [2]. Patient
treatment, follow-up and calculating the risk of recurrence and disease progression
depend largely on the histological grade and stage of the cancer. Correct prognosis
of recurrence and progression is important to avoid under- or over-treatment of the
patient, as well as unnecessary suffering and cost [4].

To correctly advise the cancer stage and grade, the histological images is a valuable
resource. These images are analyzed manually by a pathologist, but due to the
vast amount of information in the images it is both time consuming and difficult
to process everything manually to retrieve the relevant information that is needed.
Another problem is that the prognosis is both subjective and not very reproducible
between pathologist. As stated by O.M. Mangrud ”In conclusion, the challenges
of reproducibility and prediction of disease progression have not been resolved” [2,
p.61].

Development of computer systems that are more objective and reproducible are
wanted to assist diagnosing of histological images [2]. As also stated by O.M. Man-
grud “Efforts to improve reproducibility have been made, but no new methods or
additional biomarkers have gained wide accept for use in a clinical setting. It is
therefore still important to search for methods which can enhance reproducibility
and prognostic strength of the histological examination” [2, p.13].

The traditional method of examination has been done by using a microscope, but
have later been exchanged to digital microscope images. The whole-slide containing
the cancer tumor is scanned using a digital slide scanner and the pathologist can

1



view the images on a computer. These images are capable of zooming in to 400x
magnification like a traditional microscope. Tools have been developed to help the
pathologist in their work, including image processing to automate some of the work.
Examples are tools for counting cells, measure distance and mark specific areas and
put comments on the image. However, no automatic detection and classification of
cancer grade or stage have been developed.

Previous work
The problem of automatic classification of cancer grade or stage based on the his-
tological images has been tried solved earlier. In 2016 a master thesis had the same
dataset and faced the problem of trying to predict recurrence and disease progres-
sion. This thesis used an image processing technique called local binary pattern
to predict recurrence and progression based on the texture in the images, but the
overall results were low. This work is described in both [5] and an approved but not
yet published article here [6].

The article “Automatic staging of bladder cancer on CT urography” [7] from 2016
describes a system which extracts morphological features and uses a linear discrim-
inant analysis (LDA) classifier to predict the cancer stage. This study used CT
urography images, and not histological images. The method achieved an 85 % ac-
curacy based on images from 42 patients.

1.2 Image processing

Traditional digital image processing and computer vision use computer algorithms or
software to change an image or to extract information. The goal of the processing
can be to alter the appearance of the image by e.g. denoising or enhancement
techniques. Other tasks can be to segment region of interest from images, and
extract features from such regions by feature extraction techniques. Such features
can be used together with classification and machine learning techniques to label
images or regions of images.

ImageNet is an image dataset consisting of millions of photography images of dif-
ferent objects divided into 1000 different classes. The dataset is created to provide
data for researchers to help develop more sophisticated models and algorithms, pri-
marily in computer vision. Since 2010 ImageNet has arranged an annual contest
called ImageNet Large Scale Visual Recognition Challenge (ILSVRC), where teams
compete to classify objects and scenes [8].

In the first years of the competition, all entries were based on traditional computer
vision utilizing image processing, feature extraction, and classification schemes. In
2012 one team decided to try a new method called deep learning neural networks.
This is a technique which utilizes machine learning for feature extraction and classi-
fication. As shown in Figure 1.1, the team was superior compared to its competitors.

2



The following years almost all entries were based on this technology.

Figure 1.1: Traditional image processing vs. deep learning classification accuracy at
the 2012 ImageNet competition. Chart is made with results available at www.image-
net.org/

1.3 A brief history of artificial intelligence

Artificial intelligence is a field of computer science which tries to mimic human
intelligence and behavior. Another field called machine learning, which is a subfield
of artificial intelligence, was defined by Arthur Samuel in 1959 as the “field of study
that gives computers the ability to learn without being explicitly programmed” [9,
p.1]. An under-field of machine learning again called deep learning uses multiple
layers neural networks for feature extraction and transformation [10]. Figure 1.2
visualizes how the different fields relate to each other [11].

According to Figure 1.1, deep learning may seem like a recent technology. But
artificial intelligence, which deep learning is a subfield of, has a long history. In this
chapter, some of the key moments of this history will be presented.

In 1943 the paper ”A logical calculus of the ideas immanent in nervous activity”
[12] was published by Walter Pitts and Warren McCulloch who had developed a
technique called “thresholded logic unit” which was designed to mimic the neurons
in the brain [12, 13].

In 1949 a small informal dining club called the Ratio Club was formed in Britain
by the psychiatrist W. Ross Ashby. In his journal he wrote, “We have formed a
cybernetics group for discussion – no professors and only young people allowed in.”
[14, p.1]. It consisted of about twenty outstanding scientists and carefully selected

3



Figure 1.2: Artificial intelligence, machine learning, deep learning and how they
relate to each other.

members of young psychiatrists, psychologists, physiologists, mathematicians and
engineers [14]. Several of its members did research related to machine intelligence
and brain modeling, and it is also stated that “it is clear that the centre of gravity
of the club was in the brain sciences.” [14, p.6].

One of its members, mathematician Alan Turing, tackled the challenges of intelli-
gent machines and in 1950 published his seminal paper ”Computing Machinery and
Intelligence” [15]. In the paper, Turing introduced the Turing test which is a set of
criteria to see if a machine can be said to be intelligent. Alan Turing is universally
regarded as one of the fathers of both computer science and artificial intelligence
[14, 15].

In 1958 the psychologist Frank Rosenblatt published the paper “The perceptron: A
probabilistic model for information storage and organization in the brain” [16] where
he introduced the perceptron model. The perceptron was a simplified mathematical
model of how the neurons in the brains operate, and was the first real precursor to
modern neural networks. The perceptron consisted of one or more inputs, a pro-
cessor, and a single output. Each input had randomly initialized weights associated
with them, and by updating these weights during training the model could learn to
converge to the correct solution of linear problems [13, 11]. An illustration of the
original perceptron is shown in Figure 1.3.

Development of the perceptron continued through the 1960s, but in 1969 the book
entitled “Perceptrons: An introduction to computational geometry” [17] was pub-
lished by Marvin Minsky and Seymour Papert which put an end to this. Minsky
and Seymour proved that the perceptron was theoretically incapable of learning
non-linear functions like the XOR-function, no matter how long the model trained.
This proof put a stop to research regarding neural nets, and the field entered a
period known as the AI winter [11, 18].

4



Figure 1.3: Frank Rosenblatt’s original perceptron1 [17]. The boxes to the right says
sum and threshold.

In 1986, G. Hinton co-authored a paper along with D.Rumelhart and R. Williams
entitled “Learning representations by back-propagating errors” [19]. They showed
that neural networks with many hidden layers could effectively be trained using
backpropagation, which would vastly improve the performance [18, 19].

In 1989 K. Hornik et al. published the paper “Multilayer feedforward networks
are universal approximators” [20] which mathematically proved that using multiple
layers would allow neural networks to learn any function, including non-linear func-
tions like XOR. The results of this paper are known as the universal approximation
theorem. In another paper by Hornik in 1991 he stated the following “Hence, we
conclude that it is not the specific choice of the activation function, but rather the
multilayer feedforward architecture itself which gives neural networks the potential
of being universal learning machines.” [21, p.2] [11, 18].

In the late 1980s and early 1990s when Yann LeCun was working at Bell Labs, he
utilized backpropagation to train a convolutional neural network called LeNet. The
system was used to classify machine-printed and handwritten characters. Bell Labs
deployed several of these systems in banks to automatically read checks, making it
the first commercial application of a convolutional neural network. In an interview,
LeCun said that “At some point in the late 1990s, one of these systems was reading
10 to 20 % of all the checks in the US” [22, p.1] [23].

In 2006, G. Hinton, Simon Osindero, and Yee-Whye Teh made a breakthrough with
their paper “A fast learning algorithm for deep belief nets” [24]. They introduced
the idea of unsupervised pre-training each layer as a Restricted Boltzmann Machine,
before stacking all layers together as a deep belief net. This strategy allowed for
deeper networks than before and achieved even better results [11, 24].

1Reprint permission granted by the MIT Press Subsidiary Rights Manager.

5



Figure 1.4: Architecture of LeNet, a convolutional neural network used for digits
recognition2. Copyright 1998 IEEE [23].

By now, the core concepts behind deep learning was well established. As training
dataset got larger and computers got faster, models got deeper and results better.
In 2009 the first paper which utilized GPU’s to train networks was published. They
wrote that “Our implementation of DBN learning is up to 70 times faster than a
dual-core CPU implementation for large models” [25, p.1].

In 2012 the paper “ImageNet Classification with Deep Convolutional Neural Net-
works” [26] was published by Alex Krizhevsky, I. Sutskever and G. Hinton. The
paper described a deep convolutional neural network called AlexNet, which is the
one used in the ILSVRC-2012 ImageNet competition. The architecture of the net-
work is shown in Figure 1.5 below. In Figure 1.1 it is the only entry in 2012 using
deep learning, and won far ahead of its opponents. This victory marked the aban-
donment of feature engineering, in favor of feature learning in computer vision tasks
[11].

Figure 1.5: AlexNet, architecture of the convolutional neural network that won the
ImageNet competition in 20123 [26].

2Reprinted according to general guidelines from IEEE
3Figure free to reprint without permission as according to Alex Krizhevsky webpape www.cs.

toronto.edu/~kriz/

6

www.cs.toronto.edu/~kriz/
www.cs.toronto.edu/~kriz/


A summary of the key historical moments are presented in Figure 1.6. This brief
history of artificial intelligence is by far inadequate of mentioning all events that
have occurred and people who have contributed to the field.

Figure 1.6: Timeline of artificial intelligence showing some of the key moments

1.4 Deep learning in medicine

The article “Dermatologist-level classification of skin cancer with deep neural net-
works” [27] trained a deep convolutional neural network on 129,450 clinical images
of skin lesions. The system achieves performance equal to a dermatologist with AUC
results ranging from 91 % to 96 % [27].

Another interesting topic is a new research project in Norway named DoMore!. The
Norwegian Research Council has selected the project as one of the three winners of
the prestigious Lighthouse Project grants [28]. The project says they “Will teach
computers, through Deep Learning and Big Data utilization to establish more ro-
bust grading systems in cancer types where pathology has failed. We will do so in
an objective and reproducible way, reducing human error and removing subjective
analyses, suboptimal diagnosis, and ultimately suboptimal treatment of cancer.” [29,
p.1].

A study using deep learning to automatically detect metastatic breast cancer in
whole-slide images compared the results against diagnosis assigned by a patholo-
gist. The software obtained an area under the receiver operating curve (AUC) of
0.925 for whole-slide classification, while the pathologist got a AUC of 0.966. They
then combined the pathologist with the software and stated: ”the errors made by
our deep learning system were not strongly correlated with the errors made by a hu-
man pathologist. Thus, although the pathologist alone is currently superior to our
deep learning system alone, combining deep learning with the pathologist produced a
major reduction in pathologist error rate” [30, p.6]. Combining the pathologist and
software increased the AUC to 0.995. It concludes with ”These results demonstrate

7



the power of using deep learning to produce significant improvements in the accuracy
of pathological diagnoses” [30, p.1].

Even though the goal for this thesis is to make a deep learning system to be used
alone on histological images, the long-term aim should probably not be to try and
replace the pathologist with a computer software, but rather provide them with the
correct tools to improve their work.

1.5 Thesis objective

The primary objective is to make a system which utilizes deep learning techniques to
automatically predict bladder cancer grade, stage, recurrence and disease progression
based on the histological images.

A proposed system consisting of six dependent steps are presented in this thesis.
Step one to four will be the main focus of this thesis, with step five and six as
relevant future work.

The histological images mainly consist of cancer cells. However, some unwanted
parts, which may influence the prediction of cancer grade and stage in a negative
matter, are also present. Examples of these unwanted parts are damaged tissue,
connective tissue, muscle tissue, blood, background, debris and similar. The main
objective of step one to four is to design a system which is capable of distinguishing
between these classes, and thus separate out all classes consisting of cancer cells.

1.6 Thesis structure

Chapter 2 - Background theory
This chapter provides an overview of relevant background theory used in this thesis.
Bladder cancer and various deep learning techniques are reviewed. In chapter 2.3
the data material used in the thesis is presented.

Chapter 3 - Method
An overview of the proposed system developed during this thesis work is presented.

Chapter 4 - Experiments and results
This chapter presents the experiments conducted. The choice of each experiment is
based on the result of the previous experiment, thus both experiment and results
are presented together.

Chapter 5 - Discussion
An analysis of the Python script used is presented here. Afterward, the experimen-

8



tal results from the previous chapter are discussed. Suggested improvements and
recommendations for further work are also included here.

Chapter 6 - Conclusion
The final conclusions of this thesis work is presented in Chapter 6.

9



2 Background theory

This chapter provides an overview of relevant background theory used in this thesis.
Bladder cancer and various deep learning techniques are reviewed. In chapter 2.3
the data material used in the thesis is presented.

2.1 Bladder cancer

Bladder cancer is a disease in which abnormal cells multiply without control and form
tumors in the urinary bladder. Tumors may be found anywhere within the bladder,
but are most common along the lateral walls [2]. The majority of bladder cancer
incidents are urothelial carcinoma with as much as 90 % in some regions. Other, and
less common, bladder cancer types are squamous cell carcinomas, adenocarcinomas
and neuroendocrine carcinomas [2].

When a patient is diagnosed with urothelial carcinoma, the whole tumor or sus-
picious area is removed. This procedure is called an excisional biopsy, and the
extracted tumor tissue is then examined under a microscope by a pathologist to
determine both which stage and grade the cancer is at [2].

When determining the correct treatment for the patient, several factors called biomark-
ers are taken into account. The cancer stage and grade are two of these biomarkers
and play a major role. If wrong diagnosis is determined, it could lead to under- or
over-treatment of the patient, as well as unnecessary suffering and cost [4].

2.1.1 TNM Stage

To determining the current stage of the cancer the classification of malignant tumors
(TNM) system is used. The stage of the tumor is determined based on its size and
whether it has invaded nearby tissue. Figure 2.1 shows the different stages a tumor
may have.

The tumors may form papillary protrusions into the bladder lumen, solid nodules,
or grow diffusely within the bladder wall. However, approximately 70 % of patients
have non-muscle-invasive tumors (Ta or T1) [2].

When a surgeon removes the tumor, it is normal that some of the tissue close to the
tumor is also extracted. Muscle, connective tissue and other are quite common to
see in the histological images.

4Image by Cancer Research UK, used under Creative Commons BY-SA 4.0 license

10



Figure 2.1: The urinary bladder with each of the T-stage tumors4 [31].

2.1.2 WHO Grading

Another biomarker used to diagnose bladder cancer, is grading of the tumor accord-
ing to the WHO grading system. There are two grading system which both are in
use today, WHO73 and WHO04.

The grade of each system is based on the tissue architecture, nuclear arrangement,
proliferation and nuclear atypia. Each of these categories has several subcategories
to describe the tumor in detail. All of these subcategories are examined to determine
the final grade of the tumor [2].

The WHO73 system classifies the tumors as grade 1, 2 or 3, while WHO04 classifies
the tumors as PUNLMPs, low or high grade. There are some correlation between
the two systems, but they are not directly interchangeable, so both systems coexist
[2].

11



2.2 Neural networks

This chapter will introduce all the individual building blocks that a neural network
consists of, and how to measure their performance.

2.2.1 Artificial vs. biological neurons

Artificial neural networks were developed to mimic the learning process of the human
brain. The idea is to try and understand how a single biological neuron works
mathematically, and then group them together in a large interconnected network
similar to the biological networks in the brain [32].

W. McCulloch and W. Pitts were the first to introduce such an analogy between
the biological neurons and a logical gate. This idea was further developed by Frank
Rosenblatt who published the first concept of the perceptron learning rule. Artificial
neurons are often referred to as perceptrons.

Biological neuron
The human brain consists of a large interconnected network of biological neurons. A
neuron has multiple inputs called dendrites, and one primary output called an axon.
Each neuron receives electrical input signals from several other neurons through its
dendrites. The neuron controls the contribution of each input and accumulates them
in the cell body, and if the resulting signal exceeds some threshold the neuron fires.
When a neuron fires, a signal is sent through its axon to its boutons. The boutons are
connected to thousands of other neurons using connections called synapses [33, 32].

Figure 2.2: The biological neuron is the inspiration for the artificial neuron5 [34].

5Image by Notjim and Looxix, used under Creative Commons BY-SA 4.0 license, text have
been altered from original.

12



Artificial neuron
The construction of the artificial neuron is quite similar to its biological counterpart.
It consists of several weighted inputs and a primary output according to Figure 2.3.
The inputs are summed together and fed through an activation function which has
a threshold to determine if the output should be weak or strong. The weights are
then adjusted to minimize the error, which effectively emulates the strengthening
and weakening of the synaptic connections found in the brain [32].

Frank Rosenblatt’s idea of the perceptron was to create an algorithm that would
learn the weights for the input signals in order to draw linear decision boundaries.
The original perceptron used a step function as the activation function, which only
allowed it to produce linear decision boundaries. As we will see later in Chapter
2.2.5 non-linear activation functions will be introduced which makes it possible to
produce non-linear decision boundaries.

Figure 2.3: The artificial neuron, also called a perceptron.

2.2.2 Convolutional layers

Convolutional neural networks are a particular kind of neural network for processing
multidimensional data. Images are multidimensional arrays consisting of height,
width and depth. Height and width described the image size, and depth describes
the color information. The images used in this thesis are RGB images consisting of
three color channels, red, green and blue. Each color channel corresponds to one
depth layer, meaning an RGB image has three depth layers.

In conventional neural networks, the input is a vector. If an image should be used
as input for such a network, the image array has to be reshaped into a vector.
The disadvantage of this is that the reshape operation would remove the spatial
structure of input data. Instead, convolutional neural network utilizes the spatial
correlation in the image and uses a small filter kernel which slides over the input

13



image. Example of this sliding operation is shown in Figure 2.4.

Figure 2.4: Example of convolution on an image. 3x3 filter kernel using stride of
1x1 applied to an 4x4 input image padded with a 1x1 boarder of zeros.

Biological
Continuing from the previous chapter regarding the biological analogy, convolutional
neural networks are inspired by the animal visual perception, and thus can be applied
to visual recognition tasks.

Neurophysiologists D. Hubel and T. Wiesel worked together for many years in the
1950s and 1960s to figure out the mystery of the animal visual cortex. Three of their
published papers [35, 36, 37] studied the visual perception of cats and monkeys.
They observed how neurons in the brain responded to images projected in precise
locations on a screen [11].

They found that the part of the brain which process visual information called the
visual cortex, contained neurons that individually responded in specific regions of
the visual field known as the receptive field. These neurons responded only to the
presence of edges of a certain orientation, e.g. horizontal, vertical or diagonal edges
[11].

Their 1968 paper identified two basic visual cell types in the brain referred to as
’simple cells’ and ’complex cells’. These cells act as local filters over the input space
and are well-suited to exploit the strong spatially local correlation present in images
[11].

Their accomplishments were eventually recognized with a Nobel prize in 1981 ”for
their discoveries concerning information processing in the visual system” [38].

14



Convolution operator
When applying convolutional neural networks, a multidimensional discrete convolu-
tion operator is applied to the input and filter kernel. It is necessary to use discrete
convolution because both the input image and filter kernel are discrete.

The images are 3-dimensional with height, width and depth. But the convolution
operation is only applied to one depth channel at the time, which results is a 2-
dimensional convolution. A distinct kernel is used for each depth channel. A 2-
dimensional convolution applied to an image I with a filter kernel K is defined
as

s(i, j) = I ∗K =
∑
m

∑
n

I(i−m, j − n)K(m,n) (1)

The output of an convolutional operation results in the same dimension as the
inputs, e.g. 2-dimensional in this case. The convolutional operation is typically
denoted with an asterisk: s(i, j) = K ∗ I [11].

The convolution operation essentially calculates the dot product between the filter
kernel and parts of the input image. In machine learning libraries, like Tensorflow,
usually takes advantages of this and implement the calculations as matrix multipli-
cation [11].

After the filter kernel has convoluted across the entire image and the bias have been
added and put through the activation function, the final output produces what is
called a feature map. One feature map will be produced for each filter and stacked
together along the depth dimension to produce a volume [11, 39].

Each filter kernel consists of weights which are initialized randomly, and then up-
dated through the learning process. All weights used in each layer are generated
randomly from a normal distribution with mean zero and standard deviation 1, ex-
cept values which are more than two standard deviations from the mean are dropped
and re-picked. The biases are all initially set as zero [40].

Parameters
There are several parameters that needs to be determined for the convolutional
layer. The filter kernel size, number of filters, zero padding and stride all needs to
be set.

Kernel size is usually square, with typical size of 3x3 or 5x5, but other sizes are
also used in advanced networks. The number of filters determines how many feature
maps is created. Zero padding can be put around the border. Stride is a measure
of how much the kernel is translated in each step across the image [39].

To calculate the output size of the convolution layer all of these parameters needs
to be taken into account. Output size can be calculated as follows:

15



Output size =
Input− filter + 2× padding

stride
+ 1 (2)

As an example, consider an input image with size 128x128x3 convoluted with a 5x5
filter kernel with a stride of 2 and no zero padding. The output would become:

128− 5 + 2× 0

2
+ 1 = 62.5 (3)

This output size is not an integer, and therefore not a valid size. Implementing this
solution would result in an error. So either the input size or the parameters will
have to change until a valid result is achieved. Changing the stride to 1 would result
in:

128− 5 + 2× 0

1
+ 1 = 124 (4)

Which is a valid output size. This example has illustrated two things. Finding the
right set of parameters can sometimes be challenging, specially if a certain output
size is needed. And secondly, a minor change in one parameter may have a large
impact on the resulting size.

Deconvolution
Deconvolution is the reverse operation of convolution, and is used to reverse or undo
the effect of a previous convolution operation [41, 42].

There are several mathemathically techniques described to do this, e.g. Richard-
son–Lucy deconvolution method. However, Tensorflow which is the machine learning
library used in the experiments, they state that ”This operation is sometimes called
”deconvolution” after Deconvolutional Networks [41], but is actually the transpose
(gradient) of 2-dimensional convolution rather than an actual deconvolution.” [43,
p.1].

2.2.3 Pooling layers

Pooling layers are used for down-sampling the images. This is done to both reduce
the amount of parameters and to prevent overfitting. The pooling layers are of
particular importance in an autoencoder where reducing the size of the input is
essential.

Pooling layers have two parameters to control their behavior, filter size and stride.
Filter size is the size of the kernel, and the stride is how far the filter kernel is moved
across the input. The most common setting for these is to use a filter of size 2x2
with a stride of two.

16



There are several different kinds of pooling layers used. There are average pooling,
L2-norm pooling or a weighted average based on the distance from the central pixel,
but the most common are max pooling. Max pooling keeps the maximum value
within a neighborhood and discards the rest. Using a filter size of 2x2, 75 % of the
input are discarded. An example of this is shown in Figure 2.5. The reduction in
size results in efficiency for the network as well as reduced memory requirements for
storing the parameters [11].

Figure 2.5: Example of max pooling with a 2x2 filter and stride of 2

Unpooling
Some networks structures, like the decoder part of the autoencoder, needs to add
information to the input instead of discarding it. As the pooling function is not in-
vertible [11], there is no such thing as an un-pooling function available in Tensorflow
(the machine learning library used to program the neural networks).

2.2.4 Fully-connected layers

A fully-connected layer is like a conventional neural network. Each input node is
connected to each output. Figure 2.6 illustrates a simple fully-connected network.

Fully-connected layers are none-spatial functions, meaning they do not take a local
neighbourhood into account like a convolutional operation. Because of this, fully-
connected layers have to be added after all the convolutional layers to not destroy
the semantic information in the image before convolution. Fully-Connected layers
are therefore always located in the last layers of a deep neural network [39].

Several fully-connected layers can be stacked after one another. Each layer can have
different size, meaning that fully-connected layers can be used to both compress and
expand the data.

17



Figure 2.6: Example of a fully-connected neural network with four input nodes, one
hidden layer and two output nodes. Each connection have a weight associated with
it.

2.2.5 Activation function

The last part of an individual node is called the activation function. All the inputs
are summed together and then put into the activation function to determine the
output of the node. If the sum of the input were sent directly to the output, it would
be a linear activation function. This was the main problem of Frank Rosenblatt’s
perceptron back in 1959. Minsky et al. proved that it was theoretically impossible
for it to learn the XOR function, which is non-linear.

This makes non-linearity an important property of the activation function. Another
desirable property is for the function to be continuously differentiable to be able to
use its gradient based optimization methods. Together with some other necessary
properties, a list of activation functions has unfolded over the years. A common
connection between them is that they are all inspired by the biological workings of
neurons in the brain, in addition to possessing some different mathematical proper-
ties to make them mathematical convenient to use in neural networks [11, 44].

ReLU
In modern neural networks, and especially convolutional networks, the default rec-
ommendation is to use the rectified linear unit called ReLU [11, 45]. The ReLU
function adds non-linearity to the equation and allows the network to compute non-
trivial problems [11]. The ReLU activation function is given as:

f(x) = max(0, x) (5)

18



Softmax
Softmax is another useful activation function most often used as the output of a
multiclass classifier. The softmax function makes sure that each element of the
output lays between 0 and 1, and the entire vector sums to 1. These properties
makes the output represents a valid probability distribution. The following formula
gives the softmax function:

Softmax(x)i =
exi∑K
k=1 e

xk

for i = 1, .., K (6)

2.2.6 Neural network Learning

In the context of neural networks, learning refers to the process of updating a set
of parameters. The parameters determine the output of the system, which is used
to calculate the error. The parameters are then updated in such a way that it
reduces this error. The learning process is an iterative process performed multiple
times until convergence. The most common learning technique is stochastic gradient
descent algorithm which calculates the gradient and uses this to determine how to
update the parameters. Learning is divided into three subcategories; supervised,
unsupervised and reinforcement learning, where the two former play a major role in
this thesis.

In supervised learning the dataset is labeled, meaning that each sample that goes
into the system has a label or integer assign to itself referring to which category it
belongs. This label is used as the target for the system, and the error between the
system output and target is computed. This error is then used to tell the system
how to update its weights [46, 11]. In this thesis, supervised learning is used to train
the classifier.

The largest drawback of supervised learning is the process of labeling the dataset,
which is very time-consuming. Gathering hundred thousands of images takes a lot of
time, but going through every single image and assigning each of them to a category
is unbearable.

In unsupervised learning, the input samples don’t have any labels assigned to them.
The system only has the input to work with and its features [46]. Unsupervised
learning is used to train the autoencoder in this thesis, which is the majority of this
project.

In May 2015, an article by Y. LeCun, Y. Bengio and G. Hinton wrote a review of
deep learning. In their conclusion they mentioned ”..we expect unsupervised learning
to become far more important in the longer term. Human and animal learning is
largely unsupervised: we discover the structure of the world by observing it, not by
being told the name of every object” [47, p.7].

The dataset used in this thesis is labeled according to their cancer grade, stage and

19



if the patients turn out to have recurrence and potential progression at a later stage
in time. However, in this thesis the classifier will choose between images based on
their texture, which is not labeled. Therefore the dataset is considered unlabeled,
with only a proportion of it labeled. This means that majority of the thesis consist
of unsupervised learning, with some supervised learning to fine-tune the classifier.

2.2.7 Autoencoder

An autoencoder is a neural network with a special structure. It receives an image
as an input, compresses it, and then reconstructs it. An autoencoder consists of two
main parts; the encoder and the decoder. The encoder part will transform the input
image into a latent vector. A latent vector is one which is not directly observable,
meaning it can not instantly be reconstructed into an image. To reconstruct it, the
decoder part is needed. The latent vector is a representation of the input image,
but of a much lower dimensional space. The main idea of an autoencoder is for it to
extract the most important features of the image, and preserve these in the latent
vector [11].

Figure 2.7: Basic principle of an autoencoder

An autoencoder which reconstructs the image almost perfectly can easily be con-
structed by setting the latent vector large enough. However, the network will learn
all of the images features, and the latent vector space will not be of a low dimen-
sional space relative to the input image. Such a latent vector would perform poorly
on a classification task afterward.

Instead, a small latent space is chosen. This will force the network to compress the
input image during training and learn to keep the most important features. One

20



way to reduce the size of a representation is to find and remove redundancies. Iden-
tifying and removing more redundancy enables the dimensional reduction algorithm
to achieve more compression while discarding less information [11].

Figure 2.8 is a visualization of the latent vector, and how it relates to the encoder,
decoder and classifier. The latent vector contains all the features from the image
and is used as input to the classifier.

Figure 2.8: The input image is compressed by the encoder into a latent vector. The
decoder will then reconstruct the image using the latent vector. The latent vector is
also used as the input to the classifier. This is the actual latent vector to the image
shown, but have been scaled up for more convenient visualization.

During training, the network looks at the squared difference between the input image
and the reconstructed output image as given by the loss function:

Loss =
∑

(input− output)2 (7)

After training, the encoder have learnt to extract the most important features of the
input images. These features are now stored in the latent vector. To do classification,
the structure of the network is altered. The decoder part is discarded and exchanged
with a classifier. The classifier usually consists of several fully-connected layers
connected to the output of the encoder. These layers need to be trained as well to
be able to classify input images.

2.2.8 Classifier

In short terms, a classifier is a function that takes an unlabeled input and maps it
to an labeled instance. The input to the classifier is the feature vector provided by

21



the feature extractor. The feature extractor in this case being the autoencoder. The
classifiers task is to assign the input object to a particular class or category [46].

Because perfect classification performance is often impossible, it is often more rea-
sonable to determine the probability for each of the possible categories [46]. This is
why the softmax activation function is used on the output of the classifier. The clas-
sifier observes several random objects x, which has assigned a label y. The classifier
then learns to predict y from x by estimating p(y|x) [11].

Examples of a binary classifier is a system used to determine if an incoming email
is ’mail’ or ’spam’. There are also multiclass classifiers, which have more than two
categories to chose between. An example of this is a system to determine the blood
type (’A’, ’B’, ’AB’ or ’O’).

2.2.9 Cross-validation

When a model is trained multiple times on a dataset, the model is optimized to fit
that data. When new data is introduced to the model, the performance may be
poor. In such a case the model may be overfitted, meaning that the model fits the
training data well, but does not fit the validation data. This is particularly likely
to happen when the training dataset is small, or when the model consists of a vast
number of parameters.

Validation is used to estimate how well the model generalizes to new independent
data. To compute this estimate, the dataset has to be partitioned into subsets.
Conventional validation would be to split the dataset into two subsets, one training
set (e.g. 70 %) and validation set (30 %). The model would then be trained on the
training set and evaluated on the validation set to check the model’s performance.

One of several drawbacks of this method is that the model is not trained on the
validation data, and may not learn patterns or features that only appear there.
Also with small datasets, there may not be enough data to be able to split the
dataset without losing significant modeling or testing capability.

A better technique is to use K-fold cross-validation. This method will randomly
shuffle the data and divide the dataset into K separate subsets of approximately
equal size. One subset will be chosen as validation data and the other K-1 subsets
as training data. The model is trained on the training data and evaluated on the
validation data. After training and evaluation the process starts over again, but
now with a new training and validation set. This process is repeated K times until
all elements in the dataset have been part of the validation data once as shown in
Figure 2.9.

22



Figure 2.9: Example of how to split the dataset between training and validation set
when using k-fold cross validation. The accuracy results are arbitrary numbers for
illustration only.

After each individual run the accuracy is stored. These are shown in Figure 2.9 as a1,
a2 etc. After all K runs are finished, the accuracy is estimated as the average of all
K runs according to Formula 8. In addition, it is common practice to accommodate
the accuracy with a standard deviation based on the results from each run.

AccuracyCV =
1

K

K∑
j=1

aj (8)

The main advantage of K-fold cross-validation is that all data is used both as training
and validation. The downside however, is that it requires K times longer to calculate
the estimated accuracy. When training deep neural networks which may require
many hours or even days to finish, multiplying this time by e.g. ten times is notable
to say at least.

The paper ”A study of cross-validation and bootstrap for accuracy estimation and
model selection” [48] compares several validation techniques on large scale real-world
dataset. For estimating the accuracy of a classifier, an estimation method with low
bias and low variance is preferable. Results in the paper showed that k-fold cross-
validation was pessimistically biased for low values of K. ”Most of the estimates are
reasonably good at 10 folds and at 20 folds they are almost unbiased” [48, p.5]. It
further states that ”there is almost no change in the variance of the cross-validation
estimate when the number of folds is varied” [48, p.3].

They then conclude with the following statement ”Our results indicate that for real-
world datasets similar to ours, the best method to use for model selection is 10-fold
stratified cross-validation, even if computation power allows using more folds.” [48,
p.1].

Stratified cross-validation means that the folds are stratified so that they contain
approximately the same proportions of labels as the original dataset. This has not

23



been tried to accomplish in this thesis, but the recommendation to use 10-folds is
followed.

2.2.10 Confusion matrix

To easily visualize the result and performance of a classifier, a confusion matrix is
often used. This uses a specific table layout to present the data from the classifier.
It is useful whenever supervised learning is used, as the true label of each class is
needed. The true classes are located along the rows of the table, and the predicted
classes along the columns as showed in Figure 2.10.

Figure 2.10: Confusion matrix example. TC = True Class. FC = False Class. SC
= Sensitivity Class. PC = Precision Class.

The green fields along the diagonal indicates the number of correctly identified
items of each class. Whereas the red fields indicate wrong classification, and also
shows what class it is wrongly classified as. The gray and blue fields are sensitivity,
precision and accuracy which all help measure the performance of the classifier. The
two former values are calculated for each class to give a more detailed analysis of
the individual class performance, as accuracy alone can sometimes give a misleading
result, especially if the datasets are unbalanced [46].

An easy example of this is as follows, given a two-class problem with 95 items of
class 1 and five items of class 2. If the classifier is biased and classifies all items as
class 1 the accuracy becomes 95 % which sounds good, but this does not reflect the
0 % classification for class 2. A confusion matrix makes it easy to see if an algorithm
confuses two or more classes, meaning commonly mislabeling one class as another,
hence the name confusion matrix [46].

24



Sensitivity
Sensitivity is a measure of the proportion of a given class that is correctly predicted
as such. The percentage in the gray box is how large proportion of e.g. class 1 that
is predicted as class 1. Sensitivity is also known as True Positive Rate (TPR) or
Recall, and is calculated according to Formula 9 [46].

Sensitivity class 1 (SC1) =
TC11

TC11 + FC12 + FC13

(9)

Precision
Precision is a measure of how the proportion of predicted classes is correctly iden-
tified within one class. Precision looks at all values that the classifier has classified
as e.g. class 1, and then calculates how large proportion of these that are correctly
predicted. Calculation of precision is shown in Formula 10 [46].

Precision class 1 (PC1) =
TC11

TC11 + FC21 + FC31

(10)

Accuracy
Accuracy is the proportion of total number of correctly predicted classes, and is an
overall measure of how well the classifier is. Accuracy can also be used as the prob-
ability of correctly classifying a randomly selected instance. Accuracy is calculated
as shown in Formula 11 [46].

Accuracy =
TC11 + TC22 + TC33

Total population
(11)

2.2.11 Tensorflow

Tensorflow is an machine learning library developed by Google. It were realesed as
an open-source package under the Apache 2.0 license in November, 2015. Operations
of neural networks are done on multidimensional data arrays called tensors, hence
the name Tensorflow. It is used both by researchers and production at Google.
TensorFlow provides a Python API, as well as C++, Haskell, Java and Go APIs.
In this thesis, the Python API has been used [40].

25



Figure 2.11: Tensorflow logo [40]

2.3 Material

This chapter gives an small overview of the material used in this thesis, the histo-
logical images. In addition, a review of the file format and the data augmentation
scheme is presented.

2.3.1 Dataset

The dataset consist of histological images from about 360 patients taken between
2002 and 2010. Digitalization of the tissue samples were done at the Department
of Pathology at Stavanger University Hospital using an SCN400 histological slide
scanner from Leica. In addition to the images, metadata regarding cancer grade,
stage, recurrence and disease progression are also available.

Tissue classes
During biopsy, several other parts surrounding the cancer tissue are also extracted.
These parts are visible in the images, and creates small regions of the individual
parts. The histological images may have regions with cancer cells grouped together,
next to it a region with blood and another region with damages tissue. Table 1 lists
the five main classes used in this thesis. Note that the images may contain other
classes not listed here.

Table 1: An overview of the different classes within the dataset

Class Name Description
Class 1 Cancer tissue Tissue consisting of cancer cells
Class 2 Other tissue Other tissue like connective tissue, muscle tissue or similar.
Class 3 Damage tissue Tissue that have been damage due to e.g. heat or physical
Class 4 Blood Red blood cells
Class 5 Background Tiles of background with small parts of debris, tissue or similar

Only class 1 is useful when trying to diagnose the cancer grade/stage. Class 2-5

26



may be regarded as noise, as they do not provide any information relating to the
cancer grade/stage.

Figure 2.12 shows some example tiles of each class.

Figure 2.12: Whole-slide histological images consists of multiple classes each with
different textures. 1) Cancer tissue. 2) Other tissue. 3) Damage tissue. 4) Blood.
5) Background.

2.3.2 SCN image format

After the tissue has been removed from the patient and placed on a microscope slide,
it is scanned using a Leica SCN400 Slide Scanner. This scanner saves the image
using Leica’s own SCN image format. The SCN format is a single-file pyramidal
tiled BigTIFF image. The bigTIFF format is the same as the tiff format, but uses
64-bit offset rather than 32-bit to be able to save larger files. The images being
pyramidal tiled means they are deep zoom capable, meaning it is possible to view
the slide at zero magnification, or zoom all the way in at 400x magnification [49].

To open and view an SCN image Leica’s ImageScope SCN viewer, or another SCN
viewer program, is needed. To be able to process them, OpenSlide is used. OpenSlide
is a vendor-neutral software designed for digital pathology. It supports several med-
ical image formats, including SCN. OpenSlide is released as an open-source software
under the LGPL v2.1 license [50].

To be able to do image processing on the SCN images, another library named Vips

27



(VASARI Image Processing System) was chosen. Vips can not read the SCN images
directly, but uses the OpenSlide library for this. Vips is also an open-source software
released under the LGPL license [51, 52].

Vips was introduced by J. Cupitt and K. Martinez [51, 52], and is a result of several
EU-funded projects (VASARI (1989-1992), MARC (1992-1995), ACOHIR, Viseum)
whose primary objective was to build a system capable of measuring long-term color
change in old master paintings. In 2005 the research and development effort of Vips
was changed to medical images, and are currently being used for scientific analysis,
general research and development [51].

Vips handle large images very memory efficient. Usually when doing image pro-
cessing, the whole image is loaded into the computer memory. Due to the size of
the SCN images, this is not possible. The Vips library only loads the part of the
image that is currently being processed into memory. In addition to being memory
efficient, it is also very fast. This is primarily due to its architecture which auto-
matically parallelises the workflows. In a benchmark comparison Vips showed to
be 5.6 times faster that Pillow (Python Imaging Library) and 6.7 times faster that
OpenCV [53].

2.3.3 Preprocessing

Tile size
A histological image is far to large to be feed into the autoencoder, and has to be
split into smaller tiles. If the size of the tiles is chosen to be small, the amount of
weights necessary in the autoencoder is lower, which requires less memory to store.
However, a smaller amount of information is present in the tile and it may not be
possible to learn any features regarding the grade of the cancer type. If a larger tile
size is chosen, more cancer cell is present in each tile, but larger memory space is
required.

A similar study by Litjens et al. [54] using deep learning on histological images made
the following statement regarding tile size: ”Patch size in pixels was determined
empirically during initial experiments. We tried 64 x 64, 128 x 128 and 256 x 256
pixel patches. The 64 x 64 sized patches performed substantially worse on patch-
based accuracy and 256 x 256 sized patches limited convolutional networks depth due
to memory limitations of the GPU. As such, we settled on a patch size of 128 x
128.” [54, p. 8].

Based on the conclusion of Litjens et al. [54], a tile size of 128 x 128 was chosen for
the experimental work of this thesis.

Removing background
Whole-slide images consist of a lot of background. To reduce unnecessary computa-
tional time in future steps, most of the background is removed during preprocessing.

28



The background has a uniformly distributed gray color, and several advanced tech-
niques exist to remove this with high precision. Due to the vast amount of data,
the main issue is computational time rather than accuracy. In fact, it is important
to let some of the background images through, or else the autoencoder would not
be able to learn its features.

When a tile is extracted from the whole-slide image, the algorithm has to determine
if the current tile consists of mostly background or tissue. To do this, the histogram
of the tile is computed. Next, the threshold where 10 % of the histogram is lo-
cated, is calculated. All of this can easily be calculated in Vips using the command
Vips.percent(10). The command can calculate the threshold for any percent value,
but 10 % was found to produce the best result.

In Figure 2.13 this threshold is shown with the red arrow. For a tile containing
tissue like 2.13a the histogram is evenly distributed across the specter and the 10 %
threshold is usually somewhere in the middle. For the tile in 2.13b which includes
mostly background, the histogram is heavily shifted towards the right end of the
specter which will also move the threshold in the same direction.

If the threshold lands within the region marked with the black arrow, the tile is
considered as background and therefore not saved.

Figure 2.13: Comparison of histogram from two different tiles. Red arrow indicates
where the 10 % threshold is. The black arrow indicates the interval which, if the red
arrow falls within, that tile will be considered as background and therefor discarded.

A similar setup is used to determine if the current tile consists of mostly black,

29



which indicated that a binary mask has been applied to that part of the image.
Since black has a pixel value of 0, most of the histogram is located to the far left
of the plot, and the 10 % threshold will be located here as well, and these tiles are
easily filtered out.

2.3.4 Data augmentation

Data augmentation is useful when the available dataset is too small. Common
augmentation techniques are to either systematically or randomly rotate and flip the
images. This has two advantages. First, more training data is produced. Secondly,
the system is trained to become rotational invariant because the texture in the
images can be found at any angle.

The semantic information of a histological image is not altered by flipping of rotating
the image. As seen in Figure 2.14 some combinations of rotation and flipping produce
the same results and are therefore excluded. This augmentation scheme results in
an 8x increase in data.

Figure 2.14: Augmentation scheme. The dark-green square marks the input image.
This image is then rotated and flipped to produce more data. Some combinations
of rotation/flipping produces redundant images and are excluded.

30



3 Method

This chapter explains how the individual building blocks from the previous chapter
are put together to produce the system. First the proposed system is presented,
which consists of six steps. Next the preprocessing, autoencoder and classifier will
be explained in details.

3.1 Proposed system overview

The proposed system consists of six parts that have to be executed separately. Each
step in the process builds on the previous step, so the order is also important. To best
illustrate the system, several figures are used to present the system. As an example,
the figures shows how the system can be used to predict cancer stage, but the system
is also capable of predicting cancer grade, recurrence or disease progression. How
the system performs in each case needs to be evaluated by experiments, but is not
a part of this thesis.

Step 1-4 is the basis for this thesis. Step 5 and 6 are not part of this master thesis
work, but can be considered as relevant future work. They are still included so the
reader gets the full picture of the system.

Step 1 - Preprocess images
The first step of the system is to preprocess the input image. Due to its large size,
it is not possible to feed the image directly into the autoencoder. The preprocessing
algorithm turns the large input image into smaller tiles of size 128x128 px. It also
checks each tile and removes them if they consist of mostly background. The cancer
grade for the input image is also stored for later references.

Figure 3.1: Preprocess input image. Note that the input image is shown here without
the white boarder, but the pixel size is with the boarder.

31



Step 2 - Train autoencoder
The output tiles from step 1 is now used as input images to the autoencoder. Each
image will go through both the encoder and decoder. The output of the autoencoder
is the reconstructed image of the original input. These two images are then compared
to each other using the loss function described by equation 7. The autoencoder will
train itself to be able to reconstruct the images. Note that the reconstructed images
in Figure 3.2 are slightly blurred. This is because the autoencoder acts as a lossy
compression algorithm and some of the information is lost. Since the input images
don’t have any label, this is called unsupervised learning.

Figure 3.2: Train autoencoder

Step 3 - Train classifier
After the autoencoder have been trained to reconstruct the input images, the next
step is to train the classifier. In this step the classifier has to know what each input
image is, to be able to learn to recognize the different images. The input dataset
now consist of several hundred-thousand of tiles, and it is not possible to label them
all, so only a small subsample dataset is created with a label for each image. This
small labeled dataset is then used to train the classifier. Each input image is fed
through the encoder part of the autoencoder, and the output of the encoder is then
fed into the classifier. The classifier will give a prediction whether to which class it
thinks the current image belongs to. This prediction is compared to the true class
of the image and the classifier will update its weights accordingly.

32



Figure 3.3: Train classifier

Step 4 - Categorize tiles using texture classifier
After the autoencoder has been trained and the classifier has been fine-tuned, the
next step is to categorize each input image based on its texture. Each image is
fed trough the system, and the classifier will predict which class the current image
belongs. Only images which are classified as cancer tissue are saved, all other images
are discarded.

Figure 3.4: Sort tiles using texture classifier

33



Step 5 - Train convolution neural network
This step is not part of this master thesis work, but can be considered as relevant
future work. The cancer type label collected in step 1 and the images classified
as cancer tissue in step 4 can be combined and used to train a convolution neural
network. The images are first augmented, meaning they are both rotated and flipped
to produce more data out of the dataset. This process also makes sure the network
becomes rotational invariant.

Figure 3.5: Train convolution neural network

Step 6 - Use system on new histological images
This step is not part of this master thesis work, but can be considered as relevant
future work. The last step can be used to predict cancer type on new images.
Whenever a biopsy is taken from a new patient, the tumor is sliced and scanned to
produce the whole-slide image. This image can be fed through the system suggested
in Figure 3.6. The system will then provide a prediction of the cancer grade.

Figure 3.6: Use system on new histological images

34



3.2 Preprocessing

A histological image is far too large to be feed directly into the autoencoder, and
needs to be divided into several smaller images. To do this an automated program
has been developed. An overview of the preprocessing program is shown in Figure
3.7.

Figure 3.7: Overview of the preprocessing program

Around the histological images there is a large white boarder which contains no
information. This is not visible if the image is opened in an SCN-viewer program,
but has to be taken into account when working with the images in Python. This
white border exists because the scanning area is larger than the microscope slide (its
the same thing as when a receipt is scanned using a traditional scanner which is set to
scan in A4 format, a white border will appear around the receipt). A binary search
algorithm has been implemented which searched from the edge towards the center
of the image of each of the four sides. This algorithm searches for the transition
between the white border and the actual histological image. When this border has
been found the image is cropped to contain only the histological image.

It is possible to mark unwanted areas of the image. This is done using the Im-
ageScope SCN viewer from Leica. This program contains tools to draw freehand
polygons in the image. Coordinates of these polygons are stored in an XML-file to-
gether with the image. The program reads the XML-file and creates a binary mask
with the same size as the histological image and consists of only 1’s. The polygons
in the XML-file is then transferred to the binary mask and given pixel values of
0. The binary mask is then multiplied element-wise with the image which will set
the marked areas as black polygons in the image. These are then removed later in

35



the program. There is an option in the program to inverse this function, which will
mark everything outside the polygon instead of inside. This makes it possible to
mark out regions of interest in the image. This function was useful when making
the labeled dataset, as will be explained later in Chapter 4.5.

When a histological image is split into tiles of size 128 x 128, one image can consist
of as much as 2,887,680 different tiles (using image H3395 as an example). Each
of these tiles needs to be both cropped out, processed and saved which all adds up
and takes a lot of time. And since the majority of the histological image consist of
only background, a search block is first used to filter out large areas of background.
The search block has a much larger size (1024x1024) than the individual tiles, and
therefore can cover the whole image in less time. The search block loops through each
row and column of the image in a systematically fashion and checks each block. If
the current search block position consists of only background, that position is never
processed again. If any tissue is present, the coordinated are saved and the tiles will
check it more closely afterward.

Next, all the saved search blocks are divided into tiles and checked. Tiles that
consists of background will be discarded, while all other tiles will be saved. The
tiles are saved as JPEG images which is a lossy compression format, where the
compression rate is controlled by the Q-factor. Q-factor is a value chosen between
0-100 which determines how much compression to apply to an image. A low Q-factor
will compress the image a lot so it takes up less storage space, but will remove most
of the details in the image. To preserve as much of the raw pixel values as possible
the Q-factor is therefore set to 100.

3.3 Autoencoder

One of the main parts of the system is the autoencoder. This has been implemented
using the Tensorflow library and Python programming language.

As mentioned in Chapter 2.2.3, there is no unpooling function available in the Ten-
sorflow library. To solve this issue, regular image resizing with bilinear interpolation
was used to expand the inputs by a factor of two in both directions. The name
’unpooling’ is still kept to better represent that the operation is a counterpart of the
pooling operation applied earlier.

An autoencoder consists of several convolutional, pooling and fully-connected layers.
Using these layers, the autoencoder will first compress the input image down into
a small vector called latent vector. Afterward, it will decode and reconstruct the
image from the latent vector. An example of an autoencoder is shown in Figure 3.8.

36



Figure 3.8: One possible architecture of an autoencoder. The encoder will compress
the input image into the latent vector. The decoder is a mirror copy of the encoder,
and will reconstruct the image from the latent vector. Data flows from left and to
the right.

Latent vector size
One of the importaint criteria of the autoencoder, is the size of the latent vector. If
this is too large or small, the autoencoder may not properly learn the features. The
optimal size is highly dependent on the input images, and how many features that
are present. It is therefore not straightforward setting a useful size.

The paper ”Learning deconvolution network for semantic segmentation” [42] uses
an autoencoder for feature extraction. Table 2 on page 9 contains a detailed list of
the size of each layer. The paper uses a different input size of the images than used
in this thesis, but the ratio can be calculated and applied. In data compression,
the space saving is often useful, and defines the reduction in size relative to the
uncompressed size. The paper uses input images of 224x224x3 = 150, 528, and the
latent vector has the size 4096. The space saving is then given as:

Space saving used in [42] = 1− 4096

150528
= 0.973 (12)

This gives a 97 % compression of the input image, and will be the area of aim for the
autoencoders used in the experiments in this thesis. The input images used in this
thesis have the dimension 128x128x3 = 49, 152. A 97 % reduction in size results in:

49152× (1− 0.973) = 1327 (13)

This exact size is hard to achieve since the reduction between layers are determined
by the pooling and fully-connected layers. But it acts as a guideline to how many
layers to use. Both smaller and larger vectors will be experimented on.

37



Architecture
The convolutional layers contain the weights and biases which are the parameters
that learns the features in the image. Pooling layers are used for reducing the size
in the system. The reshape layer is a functions that maps a 3-dimensional volume
into a 1-dimensional vector. And the fully-connected layers are network where all
outputs are connected to all the inputs of the next layer.

Autoencoder hyperparameters
The convolutional layers could also have been used to reduce the size if the param-
eters (stride, filter kernel etc.) had been chosen accordingly. However, the program
developed in this thesis is made to automatically test a multitude of different models
with different hyperparameters. To avoid any architectural problems, zero-padding
is added to the convolutional layers, and only pooling and fully-connected layers
is used to reduce the size. Both stride and kernel size is kept constant at 1 and 3
respectively.

In addition, some other limitations have been chosen. All input images are square
and of size 128. The filter kernel size is also square. Stride is equal along both axis.
And the same padding is added along both axis. Based on these restrictions, the
output size of a convolutional layer is:

Convolution output size =
128− 3 + 2× 1

1
+ 1 = 128 (14)

Which means that the size is preserved, the output size is the same as the input
size.

The most common settings for pooling layers are to use max pooling with kernel
size 2x2 and stride 2. This is also used in this system.

Layer structure
When combining the different layer types into a structure, the order they are stacked
together may influence the result. It is not trivial to find the best order, and therefore
several different autoencoder-structures are made and experimented on.

The layers were stacked together in an altering fashion, where each model had one
more layer than the previous model. In total 19 different structures were designed
in the beginning. A complete list of these are located in Appendix B.

The green half of the structures in Appendix B follows the pattern convolution-
pooling pairs, followed by fully-connected layers. This is a basic convolutional neural
network pattern often used, and was used by LeCun in 1989 in his LeNet as shown
in Figure 1.4.

The other blue half follows the pattern convolution-convolution-pooling pairs, fol-
lowed by fully-connected layers. This structure is used in e.g. [42], and AlexNet

38



shown in Figure 1.5 also have several connected convolution layers before pooling.

Next, four of these structures were chosen to experiment on. Most of the shallow
structures were discarded because they only contain a few pooling layers, resulting
in a large latent vector. Two structures from each half was chosen. Within each half,
one structure with many conv-pool pairs and few fully-connected pairs was chosen.
And one structure with fewer conv-pool pairs, and more fully-connected pairs was
chosen.

This way a multitude of different structures is experimented on. Worried that some
structures may give a bad result, experimenting on several kinds may raise the
probability to find a good model. In Figure 3.9 below the four chosen structures are
shown. Note that only the encoder structure is shown. The decoder structure is a
clean mirror copy of the encoder, but uses deconvolution and unpooling instead of
convolution and pooling.

Figure 3.9: Architecture of the encoder part of the four different autoencoders used
in the experiments. The decoder is a mirror copy of the encoder. Conv = convolu-
tional layers, pool = pooling layers, FC = fully-connected layers.

By changing the number of filters used in the convolution layers, the volume changes
which again result in a different latent vector size. By adjusting the number of filters,
the latent vector can be adjusted. Since the correct latent vector size is unknown,
several different numbers of filters will be experimented on.

For the fully-connected layers, the output size has been chosen to be half the size of
the input. Meaning that each fully-connected layer reduces the current vector size
by a factor of two.

3.4 Classifier

After the autoencoder has been trained, the structure is slightly altered. The decoder
part is disconnected, and a set of three fully-connected layers are connected to the
output of the encoder as shown in Figure 3.10. These three layers serve as the
classifier and will output a prediction of how confident it is in the input image

39



belonging to each class. The class with the highest confidence is selected as the
class the input belongs. Even though the autoencoder have been trained, these new
layers are initiated randomly and need to be trained to be able to classify.

Figure 3.10: Encoder and classifier structure. The classifier will output a prediction
of which class the input belongs.

To use three fully-connected layers in the end seems like a typical structure to use. It
can be seen on both LeNet in Figure 1.4 and AlexNet in Figure 1.5, it was also used
by Hinton in his deep belief net [24]. Even though it is not entirely comparable, as
the encoder structures used in this thesis already have some fully-connected layers,
as seen in Figure 3.9.

The two first layers are using the ReLU activation function, and the output layer are
using the softmax activation function. It is this function that allows the network to
predict between classes. The size of the output layer is determined by the number
of unique classes in the dataset. The size of the two other layers are unknown and
may affect the classification results, and are therefore experimented on.

40



4 Experiments and results

In this chapter the performance of the proposed system will be tested by conducting
a set of experiments. Since the results of one experiment are the foundation of
the next, both setup and results are presented in the same chapter. Some of the
results will also be discussed here, to elaborate which options to use in the next
experiments. All results will also be summarized and discussed in Chapter 5.

4.1 Preprocessing of SCN images

The first step of the proposed system is to preprocess the histological images. The
process is shown in Figure 3.1. The SCN image is loaded into the preprocessing
program, which divides the image into smaller tiles. Search block size of 1024x1024,
and tile size of 128x128 are used. This means that each search blocks size is equal
to 64 tiles.

In total seven histological images were preprocessed. Results from each run are
displayed below in Table 2.

Table 2: Results after histological images are preprocessed.

Image Size (px) Search
block
saved

Search
block
discarded

Tiles
saved

Tiles
discarded

Time
(H:M:S)

H671 129,410 x 86,276 291 360 192,640 105,344 03:21:57
H1722 89,474 x 84,228 195 225 117,137 82,543 02:55:37*
H2270 104,548 x 82,114 150 350 91,883 61,717 02:18:41*
H3137 78,252 x 52,610 73 155 47,933 26,819 00:54:14
H3395 108,416 x 85,250 265 255 168,995 102,365 03:54:32*
H5407 92,610 x 77,890 299 119 248,540 57,636 03:54:19
H7191 59,970 x 46,340 110 44 75,999 36,641 01:10:16

Total N/A 1,383 1,508 943,127 473,065 18:29:36

Times in the table indicated by an asterisk(*) are runs where the discarded tiles is
saved as a JPEG file. This is done to evaluate the categorization manually afterward.
This extra saving of discarded tiles takes time, and therefore these runs have a higher
runtime (relative to the size of the image).

The column size in Table 2 are referred to the size of the image after the white
border have been removed by the program, and is the actual size of the image.
All SCN images in the table have a default size of 306,939 x 106,259 px. before
preprocessing.

After preprocessing of all seven images, a total of 943,127 tiles have been extracted

41



and will be used as dataset for upcoming experiments.

Some example of both saved and discarded tiles are shown below in Figure 4.1.

Figure 4.1: (a) and (b) are examples of tiles that are saved. (c) show tiles that are
discarded.

4.2 Consistency of autoencoder

Since the weights are initialized at random, it is reasonable to think that the same
model will produce different results if run multiple times. To test the consistency,
the same model was trained ten times.

The model run in this experiment were structure ID 19 from Appendix B. It was
run for 200 epochs on 40,000 tiles using learning rate 0.001, batch size 16 and ten
filters. This model was trained ten individual times, where the cost for each epoch
was saved.

In Figure 4.2 below, the average of all ten models have been calculated and plotted.
In addition, the standard deviation of all models have been computed and are shown
as red error bars around the average. For the original plot with all models, see
Appendix D.

42



Figure 4.2: Blue curve shows average results from ten autoencoders of the exact
same model. The red error bars shows the standard deviation.

4.3 Finding the best autoencoder

When training an autoencoder, several parameters needs to be determined. Some
of these were restricted to certain values in Chapter 3.3, while others need to be
found via experiments. The four autoencoder models described in Figure 3.9 will be
trained with a multitude of different parameters to try and find the best combination
of these.

To greatly reduce the computational time when training all of these models, the
dataset were reduced to contain only 50,000 images and each model was trained for
100 epochs. The models will not have converged to a final state with this scheme,
but it should be enough to separate the good models vs. the poor.

In total 48 different models were trained, all based on the four main models from
Figure 3.9. Both learning rate, batch size and number of filters were changed to try
and find the best parameters. A complete list of results for each model are shown
in Appendix C.

Learning rate
Initial models were trained using learning rate of 0.01 and 0.001. However, due
to the poor performance of the highest learning rate, this was abandoned for the
benefit of lower learning rates of 0.001 and 0.0001.

To compare the performance, the models from Appendix C with similar parameters
are compared. For instance, ID no. 5, 7 and 9 are the same model with the same
parameters, except for learning rate. This allows us to evaluate the performance
of learning rate. Similar, five other models that were trained on all three learning
rates with other parameters constant were selected. The results of these models are

43



plotted in Figure 4.3.

(a) Learning rate 0.01.

(b) Learning rate 0.001.

(c) Learning rate 0.0001.

Figure 4.3: Result of autoencoder models trained on different learning rates.

44



It is quite obvious that a lower learning rate produces better results, and so the
learning rate of 0.0001 is chosen for upcoming experiments.

Batch size
Two main batch sizes were used during testing, 64 and 128. In a similar fashion as
for learning rate, all models with each batch size is combined together and plotted
in Figure 4.4.

(a) Batch size 64

(b) Batch size 128

Figure 4.4: Result of autoencoder models trained with different batch sizes.

The differences are not as distinct as for the learning rate case, but there is still some
minor details to notice. For instance, the green model which seem to be stuck in
a local minimum and suddenly drops vertically down. This happens in both plots,
but for batch size 64 it happens about ten epochs earlier. Also, looking closely at
epoch 1, several of the models for 128 batch size are starting with a higher cost than
for the batch size 64 case.

45



These two minor details suggest that using a batch size of 64 is somewhat better
that 128.

Number of filters
Comparing the number of filters is a bit differently than the two previous cases.
Since a larger amount of filters produces a greater volume, it results in a larger
latent vector. The larger the latent vector is, the more information is available for the
decoder to produce a more accurate reconstructed image, which will produce a lower
error. However, as mentioned in Chapter 2.2.7, it is not necessarily the autoencoder
which produces the best reconstructed image which is the best foundation for the
classifier.

In the experiment the following number of filters were used; 8, 10, 12, 16, 32 and
40. These, in combination with the different autoencoder models, produced latent
vectors of four different sizes; 512, 1024, 1280 and 1536. Each of these vector sizes
corresponds to a compression of 98.9 %, 97.9 %, 97.4 %, 96.8 % respectively.

It makes more sense to compare models of equal latent vector size, than an equal
amount of filters. To compare these models, an average of all models were calculated
and plotted. Seven of the 48 models were not included in the average due to poor
performance. For a list of which models were included, see Appendix E. The results
are shown in Figure 4.5.

Figure 4.5: Average size of models with four different latent vector sizes. Note that
the Y-axis have been reduced to emphasize the lower Y-values.

Not surprisingly, the models with larger latent vector reconstructed the images with
a lower error on average. Moreover, for each step up in latent vector size, the
average error increased slightly. This experiment shows that all four vector sizes are
capable of reconstructing the input images, meaning that the latent vector contains
important feature information in all cases. The 1536 and 1280 sizes are therefore

46



discarded, and further experiments will be conducted on models with latent vector
of size 512 and 1024.

Model structure
Until now, a learning rate of 0.0001, batch size of 64 and number of filters which
produces latent vector size of 512 and 1024 have been chosen. Figure 4.6 shows the
result of each model trained using these parameters (using latent vector 1024 only).

Figure 4.6: Four autoencoders trained using the same parameters. Learning rate
0.0001, batch size 64 and latent vector of size 1024.

It seems like model A1 manages to reconstruct the images with marginally lower
error than the other models. However, this is only the result of one trained model
for each case. Reproducing the results in Figure 4.6 multiple times could maybe
produce another best model. Nevertheless, model A1 is chosen. As shown in Figure
3.9, the four models came in pairs of two. So it is natural to bring along model A2
together with model A1 for further experimenting.

4.4 Training autoencoders

This chapter is a continuing from previous chapter where the parameters for the
autoencoders were determined. Training an autoencoder corresponds to step 2 of
the proposed system as shown in Figure 3.2.

47



The four autoencoders were trained for 200 epochs on the full dataset of 943,127
tiles. An overview of the trained autoencoders are shown in Table 3 and the training
results are shown in Figure 4.7.

Table 3: Four main autoencoders trained on the full dataset

Model Learning
rate

Batch size Filters Latent
vector

Epochs Time

A1 0.0001 64 4 512 200 41:31:05
A2 0.0001 64 16 512 200 58:00:03
A1 0.0001 64 8 1024 200 54:17:23
A2 0.0001 64 32 1024 200 76:35:47

Figure 4.7: Four autoencoders trained on the full dataset. Model A1 and A2 was
trained using both latent vector size of 512 and 1024 for this experiment.

4.5 Finding the best classifier

In this chapter the decoder of the autoencoder will be exchanged with a classifier
and trained on a labeled dataset. This chapter corresponds to step 3 and 4 of the
proposed system as shown in Figure 3.3.

Labeled dataset
As shown in Figure 3.3, a small labeled dataset is necessary to train the classifier.
Since the texture inside each class varies quite much, a lot of data is needed to create

48



a useful classifier. The labeled dataset was manually picked using the ImageScope
software to mark small regions consisting of the same class and then using the
preprocessing program to extract tiles from this region. Tiles of each class were put
into folders, where each folder represented the label for its class. The data were
then augmented before used to train the classifier. Total number of labeled tiles are
shown in Table 4.

Table 4: Labeled dataset

Name of class No. tiles After augmentation Percent of dataset
Cancer tissue 6,817 54,536 36 %
Other tissue 2,004 16,032 11 %
Damaged tissue 5,535 44,280 29 %
Blood 3,016 24,128 16 %
Background 1,667 13,336 9 %

Total 19,039 152,312 100 %

Calculation of the number of tiles extracted before augmentation in comparison to
the full dataset is given as:

19039

943127
= 0.02 (15)

Which shows that the extracted dataset is equivalent to only 2 % of the full dataset.

Classifiers
As described in Chapter 3.4, the classifier consists of three fully-connected layers.
The size of the output layer is set equal to the number of classes to predict on, five
in this case. The size of the two first layers are unknown and experimented on in
this chapter.

The result from training the autoencoder revealed that a lower learning rate per-
formed better, therefore an even lower learning rate of 0.000001 was used to train
the classifiers.

Two different sizes will be tested for each of the two layers. This results in four
different classifiers to test as shown in Table 5.

49



Table 5: Four different classifiers used in the experiments

Classifier Learning rate Filters 1th Filters 2nd Epochs
C1 0.000001 128 256 40
C2 0.000001 128 256 40
C3 0.000001 256 512 40
C4 0.000001 256 512 40

Experiment
With four classifiers trained on each autoencoder results in a total of 16 different
models. These classifiers will be trained on the full labeled dataset, using 4-fold
cross validation. 4-fold is used instead of 10-fold to save time, and allow us to see
how each model perform. The best models will then trained once more using 10-fold
cross validation to confirm its performance.

Table 6 shows the result for the 16 classifiers.

Table 6: Results from 16 classifiers trained on full labeled dataset. Average accuracy
after 4-fold cross-validation are shown together with standard deviation. Best result
is ID 11.

ID Autoencoder
model

Latent
vector size

Classifier
model

Accuracy Standard
deviation

1 A1 512 C1 72.3 % ± 13.0 %
2 A1 512 C2 29.1 % ± 0.2 %
3 A1 512 C3 33.1 % ± 7.6 %
4 A1 512 C4 70.2 % ± 16.9 %
5 A1 1024 C1 47.0 % ± 4.5 %
6 A1 1024 C2 57.5 % ± 13.2 %
7 A1 1024 C3 29.1 % ± 0.3 %
8 A1 1024 C4 72.9 % ± 7.4 %
9 A2 512 C1 29.1 % ± 0.2 %
10 A2 512 C2 77.5 % ± 23.0 %
11 A2 512 C3 97.9 % ± 0.8 %
12 A2 512 C4 37.0 % ± 9.1 %
13 A2 1024 C1 37.0 % ± 8.8 %
14 A2 1024 C2 47.0 % ± 4.4 %
15 A2 1024 C3 47.3 % ± 25.3 %
16 A2 1024 C4 33.0 % ± 7.8 %

50



4.6 Verification of best result

This chapter used the best model found in the previous experiment, and trained it
once more to verify its performance. The model used is autoencoder model A2 with
latent vector size 512, using classifier model C3. The classifier was be trained on full
labeled dataset for 80 epochs with 10-fold cross-validation to evaluate it. Result of
the model are listed in Table 7.

Table 7: Final result on the best model evaluated using 10-fold cross-validation.

Autoencoder
model

Latent
vector
size

Classifier
model

Epoch Time
(H:M:S)

Accuracy Standard
deviation

A2 512 C3 80 18:56:27 97.7 % ± 3.2 %

To see how the model performed on individual inputs, some example prediction by
the classifier are shown in Figure 4.8. The blue bars below each input image shown
how confident the model is in its prediction. Confidence is shown as 0 % to the left,
and rises toward the right end.

Figure 4.8: The classifier outputs a confidence percentage for each input image. If
the blue bar is further to the right, the model is more confident in its prediction.

To further analyze the models performance the confusion matrix is shown in Figure
4.9. The confusion matrix is the total confusion matrix, meaning that the results
from each of the ten runs are combined.

51



Figure 4.9: Confusion matrix for autoencoder model A2 with latent vector size 512,
using classifier model C3 and 10-fold cross-validation.

52



5 Discussion

This chapter includes a short review of the python scripts used in the experiments.
The experimental results and the system performance is summarized and discussed.
Suggested improvements and future work will also be presented.

5.1 Analysis of the Python scripts

This chapter contains a small review of the Python scripts written during this thesis.
Appendix A contains a complete list of all features available for the Python scripts.

5.1.1 Preprocessing

The preprocessing program is very flexible and can be used on any image format of
any size. A small amount of user input is necessary to be able to run the program.
As the program is running, it is continuous giving feedback to the user about the
current step and an estimate of how long until the program is finished. Going over
the entire image with block search greatly reduces the total running time of each
image.

The major problem is when using binary masks, as used to extract a region of
interests to make the labeled dataset. It is a computational heavy and inefficient
operation to run on the large SCN images, and crashed the program on the largest
images. To avoid this, the images were first cropped to reduce its size, and then the
regions where extracted.

5.1.2 Autoencoder and classifier

The program used to train both the autoencoder and classifier has proven to work
very well. A considerable amount of time has been dedicated to making the program
able to run uninterrupted for extended periods of time. The program can train
multiple models in sequence, automatically restarts the program where it stopped
if an interrupt should occur, and e-mail notification to inform the user of progress
have been set up.

5.2 Experimental results

The chapter will summarize and discuss the experimental results.

53



5.2.1 Preprocessing

Seven histological images were preprocessed, resulting in a total of 943,127 saved
tiles.

Three of the preprocessing runs saved the discarded tiles in a separate folder. These
were manually studied to see if any tiles with a lot of tissue had wrongly been
discarded. The program did a decent job, and no tiles were found that could be
considered as a useful tile.

The folder containing the saved tiles was also manually studied, and a small propor-
tion of background tiles had wrongly been saved as useful tiles. Figure 4.1 illustrates
some example tiles of each case. The tiles which are incorrectly saved as useful tiles
are quite similar to the ones that were discarded. However, they have debris/tissue
of a darker color. This dark color shifts the histogram of the tile, and the program
therefore saves it. This is not a critical issue, as the autoencoder needs background
tiles to be able to learn its features.

5.2.2 Consistency of autoencoder

One model was trained ten individual times to check the consistency of an autoen-
coder. Average results with standard deviation error bars are shown in Figure 4.2,
and a plot with all ten models are shown in Appendix D.

The standard deviation stays approximately the same throughout all epochs. Mean-
ing that on average, the models does not slide further away from each other, or
converges closer to each other. It seems like the models which start out with a
lower error compared to the other models also ends up with a smaller error after 200
epochs compared to the other models, and vice verse for the models with a higher
error.

5.2.3 Selecting the best autoencoder

In total 19 models were originally designed, a list of these can be found in Ap-
pendix B. From these, four models were chosen for further investigation. To find
the best combination of hyperparameters, 48 different models were trained on a
limited dataset. Results for all 48 models are listed in Appendix C.

An analysis of these models showed that the best hyperparameters were learning rate
of 0.0001 and batch size of 64. The 48 models produced results with four different
latent vector size; 512, 1024, 1280 and 1536. The two smallest sizes were chosen for
further experimentation.

Model A1 looked slightly more promising than the other and was therefore chosen.
Together with model A1, model A2 was also selected as these two models have the

54



same structure, but different amount of convolutional/fully-connected layers. Model
A1 and A2 were trained on the full dataset for 200 epochs using two latent vector
sizes, producing four models in total.

Analyzing the training graph in Figure 4.7, all four models did a similar and good
job. Three of the models training is almost equal, but model A1 with latent vector
1024 is slightly better than the others with a smaller error. However, as emphasized
earlier, a smaller reconstruction error does not necessarily mean better classification
results.

5.2.4 Selecting the best classifier

For each of the four autoencoders, four different classifiers were trained to produce
a total of 16 different classifiers. Each classifier was validated using 4-fold cross-
validation. Results are presented in Table 6 and show that majority of the classifiers
performed poorly, with 11 out of the 16 classifiers getting an accuracy below 60 %.
Four of the classifiers performed mildly better, with accuracy around 70-79 %.

The best model got an accuracy of 97.9 % and a standard deviation of only 0.8 %.
This model consists of autoencoder model A2 with latent space 512 and classifier
model C3.

5.2.5 Verification of the best model

Since the previous experiments were only conducted using 4-fold cross-validation,
the best model was run once more to verify its performance. This time the model
was evaluated using 10-fold cross-validation.

In this re-evaluation the model got an average accuracy of 97.7 % with a standard
deviation of 3.2 %.

Some individual predictions are shown in Figure 4.8. On nine of the examples the
model shows a 100 % confident in its prediction, and was correct on these samples.
On the first case however, the model gives about a 40/60 % confident to class 1 and
3 respectively. The model predicts the class with the highest confidence, so it picks
class 3. The true class however was class 1, so the model was wrong in this case.

These are only a few samples of the prediction done by the model. To see the overall
performance of predictions done by the model, all predictions are combined in the
confusion matrix in Figure 4.9. This allows us to analyze the classifier even further.

The classifier did an excellent job classifying tiles of blood, with both a sensitivity
and precision of 99.9 %.

Another great performance is classification of cancer and background tiles. Both
classes have sensitivity and precision in the range 98.2-98.9 %.

55



Almost all tiles consisting of damaged tissue was correctly classified as so, giving it
a sensitivity of 98.9 %. However, a lot of tiles belonging to other classes were also
wrongly classified as damaged tissue, giving it a precision of 95.5 %.

The poorest performance of the classifier was with tiles belonging to the class other
tissue were only 86.2 % of the tiles were correctly classified. All wrongly predicted
samples were either misclassified as cancer tiles or damaged tiles. The precision of
the class was somewhat higher, with a 97.7 %.

5.3 Suggested improvement

As the histological images are split up into tiles during preprocessing, the spatial
correlation between tiles is lost. When classifying one tile as cancer tissue, there is a
larger probability that the next tile also will be cancer tissue. But the system does
not know this.

Maybe this could be solved by implementing a Bayesian probability algorithm. Be-
fore classifying a tile, there is a prior knowledge given by the tile’s neighborhood.
This prior probability is then updated to a posterior probability as new relevant
data (the evidence) is presented by the classifier.

One way to solve this, is to classify each tile in the image and only keep the classes
where the classifier is confident about the class. All tiles which have an approxi-
mately equal probability to be one of several classes are rescanned using the Bayesian
approach given the prior knowledge from the first scan. This would be more time
consuming, but may help remove misclassification of those difficult-to-classify tiles.

5.4 Future work

New structures
Even though this thesis have experimented with a range of models, it is not obvious
that the structure of either autoencoder or classifier is optimal. Experimentation
with different structures, or hyperparameters, could reveal better models.

More data
The key to a good model is available training data. Only seven of the total 360
histological images were utilized to create the unlabeled training dataset for the
autoencoder. Preprocessing more of the histological images creates a larger dataset,
which could contribute to train more robust models.

The classifier was trained on a small labeled dataset compared to the large unlabeled
dataset. The classifier from Chapter 4.6 could be used to extract and automatically
label more data. This larger labeled dataset could be used to further train the
classifier model and maybe reveal even better results.

56



Create heat maps
Since the classifier made in this thesis is capable of distinguishing between several
classes in the histological images, the results could be used to create a heat map
of the histological image. If the location of each extracted tile is saved, the class
prediction could be linked back to its location. By giving each class a different color,
the heat map will give the pathologist a graphical representation of the data and
where the different classes are located in the image.

Predict relevant cancer information
This thesis has proposed a system consisting of six steps to classify stage, grade,
recurrence or progression of histological images. However, only step one until four
have been experimented and tested. Future work involves using the results of this
thesis and conducting experiments on step five as shown in Figure 3.5, and finally
test step six as shown in Figure 3.6.

57



6 Conclusion

This thesis proposes a new system to automatically predict cancer’s grade, stage,
recurrence and progression based on histological images. The system consists of six
steps, where four of the steps have been analyzed and experimented on in detail in
this thesis and the two remaining steps noted as future work.

The histological images contain texture of several different classes which were cate-
gorized as; cancer tissue, damaged tissue, other tissue, blood and background. The
aim of this thesis was to make a classifier capable of categorizing tiles into these
classes.

A set of experiments was conducted to find an optimal set of parameters and struc-
tures of the classifier. The steps of training the classifier consist of first pre-training
a deep autoencoder on an unlabeled dataset, and afterward fine-tuning a classifier
on a labeled dataset.

The best classifier was evaluated using 10-fold cross-validation and got a final result
of 97.7 % accuracy with a standard deviation of only 3.2 %.

Based on the results presented in this thesis, future work on step five and six seems
both interesting and promising.

58



7 References

[1] I. K. Larsen, Cancer incidence, mortality, survival and prevalence
in Norway, 2016. [Online]. Available: https://www.kreftregisteret.no/
globalassets/cancer-in-norway/2015/cin-2015.pdf

[2] O. M. Mangrud, Identification of patients with high and low risk of progression
of urothelial carcinoma of the urinary bladder stage Ta and T1, 2014.

[3] R. Lozano, M. Naghavi, K. Foreman, and S. Lim, “Global and regional
mortality from 235 causes of death for 20 age groups in 1990 and 2010:
A systematic analysis for the Global Burden of Disease Study 2010,”
The Lancet, vol. 380, no. 9859, pp. 2095–2128, 2012. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0140673612617280

[4] E. A. Janssen and V. Kvikstad, “Bedre diagnostikk av TaT1-uroteliale karsi-
nomer i urinblære,” 2015.

[5] J. Urdal, Image processing and classification of urothelial carcinoma using
tissue sample images, 2016. [Online]. Available: https://brage.bibsys.no/
xmlui/bitstream/handle/11250/2414014/Urdal Jarle.pdf?sequence=1

[6] J. Urdal, K. Engan, V. Kvikstad, and E. A. Janssen, “Prognostic prediction
of histopathological images by local binary patterns and RUSBoost,” Accepted
for publication in Proceedings of EUSIPCO 2017, Greece, August, 2017.

[7] S. S. Garapati, L. M. Hadjiiski, K. H. Cha, H.-P. Chan, E. M. Caoili, R. H.
Cohan, A. Weizer, A. Alva, C. Paramagul, J. Wei, and C. Zhou, “Automatic
staging of bladder cancer on CT urography,” SPIE, 2016. [Online]. Available:
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=2507203

[8] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei,
“ImageNet Large Scale Visual Recognition Challenge,” International Journal
of Computer Vision, vol. 115, no. 3, pp. 211–252, 2015. [Online]. Available:
http://dx.doi.org/10.1007/s11263-015-0816-y

[9] A. Munoz, “Machine Learning and Optimization,” Courant Institute of
Mathematical Sciences, 2014. [Online]. Available: https://www.cims.nyu.edu/
∼munoz/files/ml optimization.pdf

[10] L. Deng and D. Yu, “Deep Learning: Methods and Applications,” Foundations
and Trends R© in Signal Processing, vol. 7, no. 3-4, pp. 197—-387, 2013.
[Online]. Available: https://www.microsoft.com/en-us/research/publication/
deep-learning-methods-and-applications/#

[11] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning, 2016.

59

https://www.kreftregisteret.no/globalassets/cancer-in-norway/2015/cin-2015.pdf
https://www.kreftregisteret.no/globalassets/cancer-in-norway/2015/cin-2015.pdf
http://www.sciencedirect.com/science/article/pii/S0140673612617280
https://brage.bibsys.no/xmlui/bitstream/handle/11250/2414014/Urdal_Jarle.pdf?sequence=1
https://brage.bibsys.no/xmlui/bitstream/handle/11250/2414014/Urdal_Jarle.pdf?sequence=1
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=2507203
http://dx.doi.org/10.1007/s11263-015-0816-y
https://www.cims.nyu.edu/~munoz/files/ml_optimization.pdf
https://www.cims.nyu.edu/~munoz/files/ml_optimization.pdf
https://www.microsoft.com/en-us/research/publication/deep-learning-methods-and-applications/#
https://www.microsoft.com/en-us/research/publication/deep-learning-methods-and-applications/#


[12] W. S. McCulloch and W. Pitts, “A Logical Calculus of the Idea Immanent
in Nervous Activity,” Bulletin of Mathematical Biophysics, vol. 5, pp.
115–133, 1943. [Online]. Available: http://www.cse.chalmers.se/∼coquand/
AUTOMATA/mcp.pdf

[13] J. L. G. Rosa, “Biologically Plausible Artificial Neural Networks,” InTechOpen,
2013. [Online]. Available: https://cdn.intechopen.com/pdfs-wm/41965.pdf

[14] P. Husbands and O. Holland, “The Ratio Club: A Hub of British Cybernetics,”
The Mechanical Mind in History, no. September 1949, pp. 91–148, 2008.
[Online]. Available: http://users.sussex.ac.uk/∼philh/pubs/Ratio2.pdf

[15] A. M. Turing, “Turing. Computing machinery and intelligence,” Mind, vol. 59,
no. 236, pp. 433–460, 1950. [Online]. Available: www.jstor.org/stable/2251299

[16] F. Rosenblatt, “The perceptron: A probabilistic model for information
storage and organization in the brain,” Psychological Review, vol. 65, no. 6,
pp. 386–408, 1958. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.588.3775

[17] M. Minsky and S. Papert, “Perceptrons: an introduction to computational
geometry,” no. MIT Press, 1969. [Online]. Available: https://mitpress.mit.
edu/books/perceptrons

[18] J. Schmidhuber, “Deep Learning in neural networks: An overview,”
Neural Networks, vol. 61, pp. 85–117, 2015. [Online]. Available: https:
//arxiv.org/abs/1404.7828

[19] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learining Internal
Representations by Error Propagation,” pp. 318–362, 1986. [Online]. Available:
http://www.cs.toronto.edu/∼fritz/absps/pdp8.pdf

[20] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks
are universal approximators,” Neural Networks, vol. 2, no. 5, pp. 359–366,
1989. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
0893608089900208

[21] K. Hornik, “Approximation capabilities of multilayer feedforward networks,”
Neural Networks, vol. 4, no. 2, pp. 251–257, 1991. [Online]. Available:
http://zmjones.com/static/statistical-learning/hornik-nn-1991.pdf

[22] G. Piatetsky, “Interview with Yann LeCun, Deep Learning Expert, Director
of Facebook AI Lab,” 2014. [Online]. Available: http://www.kdnuggets.com/
2014/02/exclusive-yann-lecun-deep-learning-facebook-ai-lab.html

[23] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-Based
Learning Applied to Document Recognition,” IEEE, 1998. [Online]. Available:
http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

60

http://www.cse.chalmers.se/~coquand/AUTOMATA/mcp.pdf
http://www.cse.chalmers.se/~coquand/AUTOMATA/mcp.pdf
https://cdn.intechopen.com/pdfs-wm/41965.pdf
http://users.sussex.ac.uk/~philh/pubs/Ratio2.pdf
www.jstor.org/stable/2251299
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.588.3775
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.588.3775
https://mitpress.mit.edu/books/perceptrons
https://mitpress.mit.edu/books/perceptrons
https://arxiv.org/abs/1404.7828
https://arxiv.org/abs/1404.7828
http://www.cs.toronto.edu/~fritz/absps/pdp8.pdf
http://www.sciencedirect.com/science/article/pii/0893608089900208
http://www.sciencedirect.com/science/article/pii/0893608089900208
http://zmjones.com/static/statistical-learning/hornik-nn-1991.pdf
http://www.kdnuggets.com/2014/02/exclusive-yann-lecun-deep-learning-facebook-ai-lab.html
http://www.kdnuggets.com/2014/02/exclusive-yann-lecun-deep-learning-facebook-ai-lab.html
http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf


[24] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A Fast Learning Algorithm for
Deep Belief Nets,” Neural Computation, vol. 18, no. 7, pp. 1527–1554, 2006.
[Online]. Available: http://www.mitpressjournals.org/doi/10.1162/neco.2006.
18.7.1527

[25] R. Raina, A. Madhavan, and A. Y. Ng, “Large-scale deep unsupervised learning
using graphics processors,” Proceedings of the 26th Annual International
Conference on Machine Learning - ICML ’09, pp. 1–8, 2009. [Online].
Available: http://portal.acm.org/citation.cfm?doid=1553374.1553486

[26] A. Krizhevsky, I. Sutskever, and H. Geoffrey E., “ImageNet
Classification with Deep Convolutional Neural Networks,” Ad-
vances in Neural Information Processing Systems 25 (NIPS2012),
pp. 1–9, 2012. [Online]. Available: https://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

[27] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M.
Blau, and S. Thrun, “Dermatologist-level classification of skin cancer
with deep neural networks,” Nature, 2017. [Online]. Available: https:
//www.nature.com/nature/journal/v542/n7639/full/nature21056.html

[28] “DoMore! receives Lighthouse project grant from the Norwegian Research
Council,” 2016. [Online]. Available: http://oslocancercluster.no/2016/04/27/
domore-receives-lighthouse-project-grant-from-the-norwegian-research-council/

[29] “DoMore Project - Improving diagnosis by utilizing Big Data and
software-driven automation of pathology.” [Online]. Available: http:
//domore.no/Projects/utilize-big-data

[30] D. Wang, A. Khosla, R. Gargeya, H. Irshad, and A. H. Beck, “Deep Learning
for Identifying Metastatic Breast Cancer,” pp. 1–6, 2016. [Online]. Available:
http://arxiv.org/abs/1606.05718

[31] W. Commons, “T-stage cancer diagram by Cancer Re-
search UK (Original email from CRUK) [CC BY-SA 4.0
(http://creativecommons.org/licenses/by-sa/4.0)], via Wikimedia Com-
mons,” 2014. [Online]. Available: https://commons.wikimedia.org/wiki/File:
Diagram showing the T stages of bladder cancer CRUK 372.svg

[32] T. Dettmers, “The brain vs. deep learning — a comparative anal-
ysis,” 2015. [Online]. Available: http://timdettmers.com/2015/07/27/
brain-vs-deep-learning-singularity/

[33] V. M. Goncalves, K. M. Honorio, and A. B. Ferreira da
Silva, “Applications of Artificial Neural Networks in Chemi-
cal Problems,” 2016. [Online]. Available: https://www.intechopen.
com/books/artificial-neural-networks-architectures-and-applications/
applications-of-artificial-neural-networks-in-chemical-problems

61

http://www.mitpressjournals.org/doi/10.1162/neco.2006.18.7.1527
http://www.mitpressjournals.org/doi/10.1162/neco.2006.18.7.1527
http://portal.acm.org/citation.cfm?doid=1553374.1553486
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://www.nature.com/nature/journal/v542/n7639/full/nature21056.html
https://www.nature.com/nature/journal/v542/n7639/full/nature21056.html
http://oslocancercluster.no/2016/04/27/domore-receives-lighthouse-project-grant-from-the-norwegian-research-council/
http://oslocancercluster.no/2016/04/27/domore-receives-lighthouse-project-grant-from-the-norwegian-research-council/
http://domore.no/Projects/utilize-big-data
http://domore.no/Projects/utilize-big-data
http://arxiv.org/abs/1606.05718
https://commons.wikimedia.org/wiki/File:Diagram_showing_the_T_stages_of_bladder_cancer_CRUK_372.svg
https://commons.wikimedia.org/wiki/File:Diagram_showing_the_T_stages_of_bladder_cancer_CRUK_372.svg
http://timdettmers.com/2015/07/27/brain-vs-deep-learning-singularity/
http://timdettmers.com/2015/07/27/brain-vs-deep-learning-singularity/
https://www.intechopen.com/books/artificial-neural-networks-architectures-and-applications/applications-of-artificial-neural-networks-in-chemical-problems
https://www.intechopen.com/books/artificial-neural-networks-architectures-and-applications/applications-of-artificial-neural-networks-in-chemical-problems
https://www.intechopen.com/books/artificial-neural-networks-architectures-and-applications/applications-of-artificial-neural-networks-in-chemical-problems


[34] W. Commons, “Diagram of a neuron [CC BY-SA 4.0
(http://creativecommons.org/licenses/by-sa/4.0)], via Wikimedia Com-
mons,” 2008. [Online]. Available: https://commons.wikimedia.org/wiki/File:
Neuron - annotated.svg

[35] D. H. Hubel and T. N. Wiesel, “Receptive fields of single neurones in the cat’s
striate cortex,” The Journal of Physiology, vol. 148, no. 3, pp. 574–591, 1959.
[Online]. Available: http://doi.wiley.com/10.1113/jphysiol.1959.sp006308

[36] ——, “Receptive of cells in striate cortex of very young , visually inexperienced
kittens,” 1963. [Online]. Available: http://hubel.med.harvard.edu/papers/
HubelWiesel1963Jneurophysiol.pdf

[37] ——, “Receptive fields and functional architecture of monkey striate cortex,”
The Journal of Physiology, vol. 195, no. 1, pp. 215–243, 1968. [Online].
Available: http://doi.wiley.com/10.1113/jphysiol.1968.sp008455

[38] Nobelprize.org, “The Nobel Prize in Physiology or Medicine 1981,”
1981. [Online]. Available: http://www.nobelprize.org/nobel prizes/medicine/
laureates/1981/

[39] A. Karpathy, “Convolutional Neural Networks for Visual Recognition -
Stanford University,” 2017. [Online]. Available: http://cs231n.github.io/
convolutional-networks/

[40] GoogleResearch, “TensorFlow: Large-scale machine learning on heterogeneous
systems,” 2015. [Online]. Available: http://download.tensorflow.org/paper/
whitepaper2015.pdf

[41] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus, “Deconvolutional
networks,” Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, pp. 2528–2535, 2010. [Online]. Available:
http://www.matthewzeiler.com/pubs/cvpr2010/cvpr2010.pdf

[42] H. Noh, S. Hong, and B. Han, “Learning deconvolution network for
semantic segmentation,” Proceedings of the IEEE International Conference on
Computer Vision, vol. 11-18-Dece, pp. 1520–1528, 2016. [Online]. Available:
https://arxiv.org/abs/1505.04366

[43] Tensorflow, “Tensorflow deconvolutional operation,” 2017. [Online]. Available:
https://www.tensorflow.org/api docs/python/tf/layers/conv2d transpose

[44] P. Sibi, S. Jones, and P. Siddarth, “Analysis of different activation functions
using back propagation neural networks,” Journal of theoretical and applied
Information Technology, vol. 47, no. 3, pp. 1264–1268, 2013. [Online].
Available: http://www.jatit.org/volumes/Vol47No3/61Vol47No3.pdf

62

https://commons.wikimedia.org/wiki/File:Neuron_-_annotated.svg
https://commons.wikimedia.org/wiki/File:Neuron_-_annotated.svg
http://doi.wiley.com/10.1113/jphysiol.1959.sp006308
http://hubel.med.harvard.edu/papers/HubelWiesel1963Jneurophysiol.pdf
http://hubel.med.harvard.edu/papers/HubelWiesel1963Jneurophysiol.pdf
http://doi.wiley.com/10.1113/jphysiol.1968.sp008455
http://www.nobelprize.org/nobel_prizes/medicine/laureates/1981/
http://www.nobelprize.org/nobel_prizes/medicine/laureates/1981/
http://cs231n.github.io/convolutional-networks/
http://cs231n.github.io/convolutional-networks/
http://download.tensorflow.org/paper/whitepaper2015.pdf
http://download.tensorflow.org/paper/whitepaper2015.pdf
http://www.matthewzeiler.com/pubs/cvpr2010/cvpr2010.pdf
https://arxiv.org/abs/1505.04366
https://www.tensorflow.org/api_docs/python/tf/layers/conv2d_transpose
http://www.jatit.org/volumes/Vol47No3/61Vol47No3.pdf


[45] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,”
AISTATS ’11: Proceedings of the 14th International Conference on Artificial
Intelligence and Statistics, vol. 15, pp. 315–323, 2011. [Online]. Available:
http://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf

[46] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, second edi-
tion ed., 2001.

[47] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature,
vol. 521, no. 7553, pp. 436–444, 2015. [Online]. Available: http:
//dx.doi.org/10.1038/nature14539

[48] R. Kohavi, “A Study of Cross-Validation and Bootstrap for Accuracy
Estimation and Model Selection A Study of Cross-Validation and Bootstrap
for Accuracy Estimation and Model Selection,” no. March 2001, 2016. [Online].
Available: http://robotics.stanford.edu/∼ronnyk/accEst.pdf

[49] V. Mnih, N. Heess, A. Graves, and K. Kavukcuoglu, “Recurrent Models
of Visual Attention,” Advances in Neural Information Processing Systems
27, vol. 27, pp. 1–9, 2014. [Online]. Available: http://papers.nips.cc/paper/
5542-recurrent-models-of-visual-attention.pdf

[50] M. Satyanarayanan, A. Goode, B. Gilbert, J. Harkes, and D. Jukic,
“OpenSlide: A vendor-neutral software foundation for digital pathology,”
Journal of Pathology Informatics, vol. 4, no. 1, p. 27, 2013. [Online]. Available:
http://www.jpathinformatics.org/text.asp?2013/4/1/27/119005

[51] J. Cupitt and K. Martinez, “VIPS: An image processing system for large
images,” Proc. SPIE, vol. 2663, pp. 19–28, 1996. [Online]. Available:
https://eprints.soton.ac.uk/252227/1/vipsspie96a.pdf

[52] K. Martinez and J. Cupitt, “VIPS - A highly tuned image processing
software architecture,” Proceedings - International Conference on Image
Processing, ICIP, vol. 2, pp. 574–577, 2005. [Online]. Available: https:
//eprints.soton.ac.uk/262371/1/martinezcupitt13.pdf

[53] J. Cupitt, “Vips - Speed and Memory Use,” 2017. [Online]. Available:
http://www.vips.ecs.soton.ac.uk/index.php?title=Speed and Memory Use

[54] G. Litjens, C. I. Sánchez, N. Timofeeva, M. Hermsen, I. Nagtegaal, I. Kovacs,
C. Hulsbergen - van de Kaa, P. Bult, B. van Ginneken, and J. van der
Laak, “Deep learning as a tool for increased accuracy and efficiency of
histopathological diagnosis,” Scientific Reports, vol. 6, no. 1, p. 26286, 2016.
[Online]. Available: http://www.nature.com/articles/srep26286

63

http://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1038/nature14539
http://robotics.stanford.edu/~ronnyk/accEst.pdf
http://papers.nips.cc/paper/5542-recurrent-models-of-visual-attention.pdf
http://papers.nips.cc/paper/5542-recurrent-models-of-visual-attention.pdf
http://www.jpathinformatics.org/text.asp?2013/4/1/27/119005
https://eprints.soton.ac.uk/252227/1/vipsspie96a.pdf
https://eprints.soton.ac.uk/262371/1/martinezcupitt13.pdf
https://eprints.soton.ac.uk/262371/1/martinezcupitt13.pdf
http://www.vips.ecs.soton.ac.uk/index.php?title=Speed_and_Memory_Use
http://www.nature.com/articles/srep26286


A Python code

PreProcessing.py
This file is used to preprocess the whole-slide SCN images. It have several features
that can be turned on/off inside the file. The program outputs tiles of the input
image. Some of the features available:

• Supported input file format: SCN, JPEG, PNG, TIFF, BMP.

• Specify both tile-size and search block size.

• The program can handle any amount of images in one run. Locate all the
images that need processing in the appropriate folder. If the dataset consists
of several classes that needs to be separated, create one folder for each class
and the program will save the tiles in corresponding folders.

• The program can remove any white border around SCN images.

• If an XML-file is present, the program will read the file and draw the region
on the image. The user can specify if the region inside or outside the border
should be masked out.

• User can chose to save the deleted tiles or not.

• The program calculates an estimate of how long time remains until finished.

• Useful information about the current state of the program is presented to the
user.

• Logging is saved to text-file.

Augmentation.py
This program will use augmentation techniques to increase a dataset 8 times. Specify
a input-folder which contains the dataset to augment. The program will augment
the data and save them in the output folder specified by the user. Augmentation is
applied as explained in augmentation chapter.

Autoencoder.py
This program is used to train both the autoencoder and classifier. Main features of
the program:

• Specify an array of different hyperparameters. The program will then train
one model for each parameter combination.

• Turn shuffling of the dataset on/off.

64



• Set requirements for training which will stop the training if not fulfilled.

• Run on single or multiple GPU’s.

• Saving and restoring models.

• Supported input file format: JPEG, PNG.

• Support both grayscale and color images.

• Logging is saved to both text- and Excel-files.

• The program produces example images at the end of each epoch.

• K-fold cross validation is implemented when training classifier, K value can be
set to any integer larger than 2.

• Confusion matrix is calculated and saved every epoch when training classifier.

• E-mail notification to notify user of progress during program runs.

• A separate watchdog program is implemented that automatically restarts and
restore the program if the program should stop due to an unexpected server
issue or similar.

65



B Encoder structure

66



C Autoencoder 48 models

67



D Consistency of autoencoder

68



E Average models of different latent vector size

Latent size Average is calculated using model ID from Appendix C
512 16, 19, 23, 25, 27, 28
1024 3, 6, 8, 13, 14, 15, 20, 22, 24, 33, 34, 36, 44, 45, 46
1280 4, 5, 7, 11, 12, 17, 18, 21, 26, 30, 32, 35, 39, 41, 43
1536 1, 2, 29, 31, 40, 42

Model ID 9, 10, 30, 32, 37, 38 and 47 were discarded due to poor performance.

69


	Introduction
	Motivation and previous work
	Image processing
	A brief history of artificial intelligence
	Deep learning in medicine
	Thesis objective
	Thesis structure

	Background theory
	Bladder cancer
	TNM Stage
	WHO Grading

	Neural networks
	Artificial vs. biological neurons
	Convolutional layers
	Pooling layers
	Fully-connected layers
	Activation function
	Neural network Learning
	Autoencoder
	Classifier
	Cross-validation
	Confusion matrix
	Tensorflow

	Material
	Dataset
	SCN image format
	Preprocessing
	Data augmentation


	Method
	Proposed system overview
	Preprocessing
	Autoencoder
	Classifier

	Experiments and results
	Preprocessing of SCN images
	Consistency of autoencoder
	Finding the best autoencoder
	Training autoencoders
	Finding the best classifier
	Verification of best result

	Discussion
	Analysis of the Python scripts
	Preprocessing
	Autoencoder and classifier

	Experimental results
	Preprocessing
	Consistency of autoencoder
	Selecting the best autoencoder
	Selecting the best classifier
	Verification of the best model

	Suggested improvement
	Future work

	Conclusion
	References
	Python code
	Encoder structure
	Autoencoder 48 models
	Consistency of autoencoder
	Average models of different latent vector size




Augmentation/augment_data.py

from gi.overrides import Vips

import os



# Dataset to augment

DATASET_CF_LABELED     = '../../Dataset/Labeled_dataset_02_fiveClasses/'



# Path to save new dataset to

SAVE_PATH = '../../Dataset/Labeled_dataset_02_fiveClasses_Augmented/'



# Check if directory for SAVE_PATH exist, if not, create one.

if not os.path.exists(SAVE_PATH):

    os.makedirs(SAVE_PATH)



dataset_classes = os.listdir(DATASET_CF_LABELED)



for index1, current_class in enumerate(dataset_classes):

    current_path = os.listdir(DATASET_CF_LABELED + current_class)



    # Check if directory for SAVE_PATH exist, if not, create one.

    if not os.path.exists(SAVE_PATH + current_class):

        os.makedirs(SAVE_PATH + current_class)



    print('Processing folder: {}'.format(current_class))



    for index2, current_filename in enumerate(current_path):

        current_image = Vips.Image.jpegload(DATASET_CF_LABELED + current_class + '/' + current_filename)



        fileName = '{}{}/{}.jpg'.format(SAVE_PATH, current_class, current_filename[:-4])

        current_image.jpegsave(fileName, Q=100)



        current_image_rot90 = current_image.rot(1)

        fileName = '{}{}/{}-rot90.jpg'.format(SAVE_PATH, current_class, current_filename[:-4])

        current_image_rot90.jpegsave(fileName, Q=100)



        current_image_rot180 = current_image.rot(2)

        fileName = '{}{}/{}-rot180.jpg'.format(SAVE_PATH, current_class, current_filename[:-4])

        current_image_rot180.jpegsave(fileName, Q=100)

        

        current_image_rot270 = current_image.rot(3)

        fileName = '{}{}/{}-rot270.jpg'.format(SAVE_PATH, current_class, current_filename[:-4])

        current_image_rot270.jpegsave(fileName, Q=100)

        

        current_image_rot90_flipHoriz = current_image_rot90.flip(0)

        fileName = '{}{}/{}-rot90_flipHoriz.jpg'.format(SAVE_PATH, current_class, current_filename[:-4])

        current_image_rot90_flipHoriz.jpegsave(fileName, Q=100)

        

        current_image_rot270_flipHoriz = current_image_rot270.flip(0)

        fileName = '{}{}/{}-rot270_flipHoriz.jpg'.format(SAVE_PATH, current_class, current_filename[:-4])

        current_image_rot270_flipHoriz.jpegsave(fileName, Q=100)

        

        current_image_flipVert = current_image.flip(1)

        fileName = '{}{}/{}-flipVert.jpg'.format(SAVE_PATH, current_class, current_filename[:-4])

        current_image_flipVert.jpegsave(fileName, Q=100)

        

        current_image_rot180_flipVert = current_image_rot180.flip(1)

        fileName = '{}{}/{}-rot180_flipVert.jpg'.format(SAVE_PATH, current_class, current_filename[:-4])

        current_image_rot180_flipVert.jpegsave(fileName, Q=100)



print('Program finished')








Autoencoder/autoencoder.py

import matplotlib.pyplot as plt

import tensorflow as tf

import my_functions

import numpy as np

import datetime

import time

import math

import csv

import os

import PIL.Image

#import scipy.io

from layer_files import *



def autoencoder_function(batch_size_AE, BATCH_SIZE_CF_TEST, BATCH_SIZE_CF_TRAIN, learning_rate, TENSORBOARD_PATH,

                         IMAGE_SIZE, DATASET_AE, FILENAME_QUEUE_SHUFFLE,

                         QUEUE_CAPACITY_AE, QUEUE_CAPACITY_CF_TEST, QUEUE_CAPACITY_CF_TRAIN, NUM_QUEUE_THREADS,

                         MIN_AFTER_DEQUEUE, N_EPOCH_AE_TOTAL,

                         FIGURE_PATH, current_model_path, N_MODEL_TO_KEEP_AE, MODEL_PATH,

                         REQUIRE_IMPROVEMENT, layer_config, RUN_ON_MULTIPLE_GPU, n_filter,

                         N_INPUT_CH, K_SIZE_AE, DATASET_CF_LABELED, DATASET_TEST_IMAGES,

                         N_FILTERS_CF_1, N_FILTERS_CF_2, CURRENT_HPARAM_STR_AE, REQUIRE_COST_COUNTER_LIMIT,

                         REQUIRED_COST_LIMIT, IMAGE_TYPE, N_CLASSES_CF):

    #with tf.Graph().as_default(), tf.Session(config=tf.ConfigProto(log_device_placement=True)) as sess:

    with tf.Graph().as_default(), tf.Session() as sess:









        # tf Graph input

        input_img = tf.placeholder(tf.float32, shape=[None, IMAGE_SIZE, IMAGE_SIZE, N_INPUT_CH], name='input_images')



        # Target output (prediction). For MODEL_MODE=2/3

        class_target = tf.placeholder(tf.int32, shape=[None], name='output_prediction')



        # Construct the graph model

        trainable = True

        if layer_config == 'layer1':

            encoder_op, reshape_shape, size_last_layer = my_layer1.encoder(input_img, n_filter, K_SIZE_AE, trainable)

            decoder_op = my_layer1.decoder(encoder_op, n_filter, N_INPUT_CH, reshape_shape, K_SIZE_AE)

            for filt1 in N_FILTERS_CF_1:

                for filt2 in N_FILTERS_CF_2:

                    classifier_output = my_layer1.classify(encoder_op, filt1, filt2, str(filt1), str(filt2), N_CLASSES_CF)

                    loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=classifier_output, labels=class_target, name='loss_function_' + str(filt1) + '_' + str(filt2)))

                    tf.train.AdamOptimizer(1).minimize(loss)

        elif layer_config == 'layer2':

            encoder_op, reshape_shape, size_last_layer = my_layer2.encoder(input_img, n_filter, K_SIZE_AE, trainable)

            decoder_op = my_layer2.decoder(encoder_op, n_filter, N_INPUT_CH, reshape_shape, K_SIZE_AE)

            #for filt1 in N_FILTERS_CF_1:

                #for filt2 in N_FILTERS_CF_2:

                    #classifier_output = my_layer2.classify(encoder_op, filt1, filt2, str(filt1), str(filt2), N_CLASSES_CF)

                    #loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=classifier_output, labels=class_target, name='loss_function_' + str(filt1) + '_' + str(filt2)))

                    #tf.train.AdamOptimizer(1).minimize(loss)

        elif layer_config == 'layer3':

            encoder_op, reshape_shape, size_last_layer = my_layer3.encoder(input_img, n_filter, K_SIZE_AE, trainable)

            decoder_op = my_layer3.decoder(encoder_op, n_filter, N_INPUT_CH, reshape_shape, K_SIZE_AE)

            for filt1 in N_FILTERS_CF_1:

                for filt2 in N_FILTERS_CF_2:

                    classifier_output = my_layer3.classify(encoder_op, filt1, filt2, str(filt1), str(filt2), N_CLASSES_CF)

                    loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=classifier_output, labels=class_target, name='loss_function_' + str(filt1) + '_' + str(filt2)))

                    tf.train.AdamOptimizer(1).minimize(loss)

        elif layer_config == 'layer4':

            encoder_op, reshape_shape, size_last_layer = my_layer4.encoder(input_img, n_filter, K_SIZE_AE, trainable)

            decoder_op = my_layer4.decoder(encoder_op, n_filter, N_INPUT_CH, reshape_shape, K_SIZE_AE)

            for filt1 in N_FILTERS_CF_1:

                for filt2 in N_FILTERS_CF_2:

                    classifier_output = my_layer4.classify(encoder_op, filt1, filt2, str(filt1), str(filt2), N_CLASSES_CF)

                    loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=classifier_output, labels=class_target, name='loss_function_' + str(filt1) + '_' + str(filt2)))

                    tf.train.AdamOptimizer(1).minimize(loss)

        elif layer_config == 'layer5':

            encoder_op, reshape_shape, size_last_layer = my_layer5.encoder(input_img, n_filter, K_SIZE_AE, trainable)

            decoder_op = my_layer5.decoder(encoder_op, n_filter, N_INPUT_CH, reshape_shape, K_SIZE_AE)

            for filt1 in N_FILTERS_CF_1:

                for filt2 in N_FILTERS_CF_2:

                    classifier_output = my_layer5.classify(encoder_op, filt1, filt2, str(filt1), str(filt2), N_CLASSES_CF)

                    loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=classifier_output, labels=class_target,name='loss_function_' + str(filt1) + '_' + str(filt2)))

                    tf.train.AdamOptimizer(1).minimize(loss)

        elif layer_config == 'layer6':

            encoder_op, reshape_shape, size_last_layer = my_layer6.encoder(input_img, n_filter, K_SIZE_AE, trainable)

            decoder_op = my_layer6.decoder(encoder_op, n_filter, N_INPUT_CH, reshape_shape, K_SIZE_AE)

            for filt1 in N_FILTERS_CF_1:

                for filt2 in N_FILTERS_CF_2:

                    classifier_output = my_layer6.classify(encoder_op, filt1, filt2, str(filt1), str(filt2), N_CLASSES_CF)

                    loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=classifier_output,labels=class_target, name='loss_function_' + str(filt1) + '_' + str(filt2)))

                    tf.train.AdamOptimizer(1).minimize(loss)

        elif layer_config == 'layer7':

            encoder_op, reshape_shape, size_last_layer = my_layer7.encoder(input_img, n_filter, K_SIZE_AE, trainable)

            decoder_op = my_layer7.decoder(encoder_op, n_filter, N_INPUT_CH, reshape_shape, K_SIZE_AE)

            for filt1 in N_FILTERS_CF_1:

                for filt2 in N_FILTERS_CF_2:

                    classifier_output = my_layer7.classify(encoder_op, filt1, filt2, str(filt1), str(filt2), N_CLASSES_CF)

                    loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=classifier_output, labels=class_target, name='loss_function_' + str(filt1) + '_' + str(filt2)))

                    tf.train.AdamOptimizer(1).minimize(loss)

        elif layer_config == 'layer8':

            encoder_op, reshape_shape, size_last_layer = my_layer8.encoder(input_img, n_filter, K_SIZE_AE, trainable)

            decoder_op = my_layer8.decoder(encoder_op, n_filter, N_INPUT_CH, reshape_shape, K_SIZE_AE)

            for filt1 in N_FILTERS_CF_1:

                for filt2 in N_FILTERS_CF_2:

                    classifier_output = my_layer8.classify(encoder_op, filt1, filt2, str(filt1), str(filt2), N_CLASSES_CF)

                    loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=classifier_output, labels=class_target, name='loss_function_' + str(filt1) + '_' + str(filt2)))

                    tf.train.AdamOptimizer(1).minimize(loss)

        elif layer_config == 'layer9':

            encoder_op, reshape_shape, size_last_layer = my_layer9.encoder(input_img, n_filter, K_SIZE_AE, trainable)

            decoder_op = my_layer9.decoder(encoder_op, n_filter, N_INPUT_CH, reshape_shape, K_SIZE_AE)

            for filt1 in N_FILTERS_CF_1:

                for filt2 in N_FILTERS_CF_2:

                    classifier_output = my_layer9.classify(encoder_op, filt1, filt2, str(filt1), str(filt2), N_CLASSES_CF)

                    loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=classifier_output, labels=class_target, name='loss_function_' + str(filt1) + '_' + str(filt2)))

                    tf.train.AdamOptimizer(1).minimize(loss)

        elif layer_config == 'layer10':

            encoder_op, reshape_shape, size_last_layer = my_layer10.encoder(input_img, n_filter, K_SIZE_AE, trainable)

            decoder_op = my_layer10.decoder(encoder_op, n_filter, N_INPUT_CH, reshape_shape, K_SIZE_AE)

            for filt1 in N_FILTERS_CF_1:

                for filt2 in N_FILTERS_CF_2:

                    classifier_output = my_layer10.classify(encoder_op, filt1, filt2, str(filt1), str(filt2), N_CLASSES_CF)

                    loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=classifier_output, labels=class_target, name='loss_function_' + str(filt1) + '_' + str(filt2)))

                    tf.train.AdamOptimizer(1).minimize(loss)

        elif layer_config == 'layer11':

            encoder_op, reshape_shape, size_last_layer = my_layer11.encoder(input_img, n_filter, K_SIZE_AE, trainable)

            decoder_op = my_layer11.decoder(encoder_op, n_filter, N_INPUT_CH, reshape_shape, K_SIZE_AE)

            for filt1 in N_FILTERS_CF_1:

                for filt2 in N_FILTERS_CF_2:

                    classifier_output = my_layer11.classify(encoder_op, filt1, filt2, str(filt1), str(filt2), N_CLASSES_CF)

                    loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=classifier_output, labels=class_target, name='loss_function_' + str(filt1) + '_' + str(filt2)))

                    tf.train.AdamOptimizer(1).minimize(loss)

        elif layer_config == 'layer12':

            encoder_op, reshape_shape, size_last_layer = my_layer12.encoder(input_img, n_filter, K_SIZE_AE, trainable)

            decoder_op = my_layer12.decoder(encoder_op, n_filter, N_INPUT_CH, reshape_shape, K_SIZE_AE)

            for filt1 in N_FILTERS_CF_1:

                for filt2 in N_FILTERS_CF_2:

                    classifier_output = my_layer12.classify(encoder_op, filt1, filt2, str(filt1), str(filt2), N_CLASSES_CF)

                    loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=classifier_output, labels=class_target, name='loss_function_' + str(filt1) + '_' + str(filt2)))

                    tf.train.AdamOptimizer(1).minimize(loss)

        elif layer_config == 'layer13':

            encoder_op, reshape_shape, size_last_layer = my_layer13.encoder(input_img, n_filter, K_SIZE_AE, trainable)

            decoder_op = my_layer13.decoder(encoder_op, n_filter, N_INPUT_CH, reshape_shape, K_SIZE_AE)

            for filt1 in N_FILTERS_CF_1:

                for filt2 in N_FILTERS_CF_2:

                    classifier_output = my_layer13.classify(encoder_op, filt1, filt2, str(filt1), str(filt2), N_CLASSES_CF)

                    loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=classifier_output, labels=class_target, name='loss_function_' + str(filt1) + '_' + str(filt2)))

                    tf.train.AdamOptimizer(1).minimize(loss)

        elif layer_config == 'layer14':

            encoder_op, reshape_shape, size_last_layer = my_layer14.encoder(input_img, n_filter, K_SIZE_AE, trainable)

            decoder_op = my_layer14.decoder(encoder_op, n_filter, N_INPUT_CH, reshape_shape, K_SIZE_AE)

            for filt1 in N_FILTERS_CF_1:

                for filt2 in N_FILTERS_CF_2:

                    classifier_output = my_layer14.classify(encoder_op, filt1, filt2, str(filt1), str(filt2), N_CLASSES_CF)

                    loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=classifier_output, labels=class_target, name='loss_function_' + str(filt1) + '_' + str(filt2)))

                    tf.train.AdamOptimizer(1).minimize(loss)

        elif layer_config == 'layer15':

            encoder_op, reshape_shape, size_last_layer = my_layer15.encoder(input_img, n_filter, K_SIZE_AE, trainable)

            decoder_op = my_layer15.decoder(encoder_op, n_filter, N_INPUT_CH, reshape_shape, K_SIZE_AE)

            for filt1 in N_FILTERS_CF_1:

                for filt2 in N_FILTERS_CF_2:

                    classifier_output = my_layer15.classify(encoder_op, filt1, filt2, str(filt1), str(filt2), N_CLASSES_CF)

                    loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=classifier_output, labels=class_target, name='loss_function_' + str(filt1) + '_' + str(filt2)))

                    tf.train.AdamOptimizer(1).minimize(loss)

        elif layer_config == 'layer16':

            encoder_op, reshape_shape, size_last_layer = my_layer16.encoder(input_img, n_filter, K_SIZE_AE, trainable)

            decoder_op = my_layer16.decoder(encoder_op, n_filter, N_INPUT_CH, reshape_shape, K_SIZE_AE)

            for filt1 in N_FILTERS_CF_1:

                for filt2 in N_FILTERS_CF_2:

                    classifier_output = my_layer16.classify(encoder_op, filt1, filt2, str(filt1), str(filt2), N_CLASSES_CF)

                    loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=classifier_output, labels=class_target, name='loss_function_' + str(filt1) + '_' + str(filt2)))

                    tf.train.AdamOptimizer(1).minimize(loss)

        elif layer_config == 'layer17':

            encoder_op, reshape_shape, size_last_layer = my_layer17.encoder(input_img, n_filter, K_SIZE_AE, trainable)

            decoder_op = my_layer17.decoder(encoder_op, n_filter, N_INPUT_CH, reshape_shape, K_SIZE_AE)

            for filt1 in N_FILTERS_CF_1:

                for filt2 in N_FILTERS_CF_2:

                    classifier_output = my_layer17.classify(encoder_op, filt1, filt2, str(filt1), str(filt2), N_CLASSES_CF)

                    loss = tf.reduce_mean(

                        tf.nn.sparse_softmax_cross_entropy_with_logits(logits=classifier_output, labels=class_target, name='loss_function_' + str(filt1) + '_' + str(filt2)))

                    tf.train.AdamOptimizer(1).minimize(loss)

        elif layer_config == 'layer18':

            encoder_op, reshape_shape, size_last_layer = my_layer18.encoder(input_img, n_filter, K_SIZE_AE, trainable)

            decoder_op = my_layer18.decoder(encoder_op, n_filter, N_INPUT_CH, reshape_shape, K_SIZE_AE)

            for filt1 in N_FILTERS_CF_1:

                for filt2 in N_FILTERS_CF_2:

                    classifier_output = my_layer18.classify(encoder_op, filt1, filt2, str(filt1), str(filt2), N_CLASSES_CF)

                    loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=classifier_output, labels=class_target, name='loss_function_' + str(filt1) + '_' + str(filt2)))

                    tf.train.AdamOptimizer(1).minimize(loss)

        elif layer_config == 'layer19':

            encoder_op, reshape_shape, size_last_layer = my_layer19.encoder(input_img, n_filter, K_SIZE_AE, trainable)

            decoder_op = my_layer19.decoder(encoder_op, n_filter, N_INPUT_CH, reshape_shape, K_SIZE_AE)

            for filt1 in N_FILTERS_CF_1:

                for filt2 in N_FILTERS_CF_2:

                    classifier_output = my_layer19.classify(encoder_op, filt1, filt2, str(filt1), str(filt2), N_CLASSES_CF)

                    loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=classifier_output, labels=class_target, name='loss_function_' + str(filt1) + '_' + str(filt2)))

                    tf.train.AdamOptimizer(1).minimize(loss)

        elif layer_config == 'layer20':

            encoder_op, reshape_shape, size_last_layer = my_layer20.encoder(input_img, n_filter, K_SIZE_AE, trainable)

            decoder_op = my_layer20.decoder(encoder_op, n_filter, N_INPUT_CH, reshape_shape, K_SIZE_AE)

            for filt1 in N_FILTERS_CF_1:

                for filt2 in N_FILTERS_CF_2:

                    classifier_output = my_layer20.classify(encoder_op, filt1, filt2, str(filt1), str(filt2), N_CLASSES_CF)

                    loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=classifier_output, labels=class_target, name='loss_function_' + str(filt1) + '_' + str(filt2)))

                    tf.train.AdamOptimizer(1).minimize(loss)

        elif layer_config == 'layer21':

            encoder_op, reshape_shape, size_last_layer = my_layer21.encoder(input_img, n_filter, K_SIZE_AE, trainable)

            decoder_op = my_layer21.decoder(encoder_op, n_filter, N_INPUT_CH, reshape_shape, K_SIZE_AE)

            for filt1 in N_FILTERS_CF_1:

                for filt2 in N_FILTERS_CF_2:

                    classifier_output = my_layer21.classify(encoder_op, filt1, filt2, str(filt1), str(filt2), N_CLASSES_CF)

                    loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=classifier_output, labels=class_target, name='loss_function_' + str(filt1) + '_' + str(filt2)))

                    tf.train.AdamOptimizer(1).minimize(loss)

        else:

            my_functions.myPrint('Error in layer_config. Please choose another layer.', error=True)

            exit()



        # Prediction

        y_pred = decoder_op



        # Targets (labels) are the input data

        y_true = input_img









        if RUN_ON_MULTIPLE_GPU:

            # Define loss and optimizer, minimize the squared error

            with tf.device('/gpu:0'):

                with tf.name_scope('Cost'):

                    with tf.name_scope('total'):

                        cost = tf.reduce_mean(tf.pow(y_true - y_pred, 2))

                        #cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(y_pred, y_true))

            tf.summary.scalar('Cost', cost)



            with tf.device('/gpu:1'):

                with tf.name_scope('Optimizer'):

                    # optimizer = tf.train.RMSPropOptimizer(LEARNING_RATE).minimize(cost)

                    optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost)



        elif not RUN_ON_MULTIPLE_GPU:

            # Define loss and optimizer, minimize the squared error

            with tf.name_scope('Cost'):

                with tf.name_scope('total'):

                    cost = tf.reduce_mean(tf.pow(y_true - y_pred, 2))

                    #cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(y_pred, y_true))

                tf.summary.scalar('Cost', cost)



            with tf.name_scope('Optimizer'):

                # optimizer = tf.train.RMSPropOptimizer(LEARNING_RATE).minimize(cost)

                optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost)

        else:

            my_functions.myPrint('Not valid option for RUN_ON_MULTIPLE_GPU')



        '''

        # Create a queue of labeled training images (SHUFFLED) (MODE 2)

        image_queue, label_queue = my_functions.my_queue_labeled_data(DATASET_FILE_PATH=DATASET_CF_LABELED,

                                                                        IMAGE_SIZE=IMAGE_SIZE,

                                                                        N_INPUT_CH=N_INPUT_CH,

                                                                        QUEUE_CAPACITY_CF=QUEUE_CAPACITY_CF_TRAIN,

                                                                        BATCH_SIZE_CF_TRAIN=BATCH_SIZE_CF_TRAIN,

                                                                        NUM_QUEUE_THREADS=NUM_QUEUE_THREADS,

                                                                        IMAGE_TYPE=IMAGE_TYPE,

                                                                        SHUFFLE=True)



        # Create a queue of labeled test images (NOT SHUFFLED) (MODE 2)

        plot_image_queue, plot_label_queue = my_functions.my_queue_labeled_data(DATASET_FILE_PATH=DATASET_CF_LABELED,

                                                                        IMAGE_SIZE=IMAGE_SIZE,

                                                                        N_INPUT_CH=N_INPUT_CH,

                                                                        QUEUE_CAPACITY_CF=QUEUE_CAPACITY_CF_TEST,

                                                                        BATCH_SIZE_CF_TRAIN=BATCH_SIZE_CF_TEST,

                                                                        NUM_QUEUE_THREADS=1,

                                                                        IMAGE_TYPE=IMAGE_TYPE,

                                                                        SHUFFLE=False)

        '''

        test_set = []

        test_label = []

        train_set = []

        train_label = []

        test_image_queue, test_label_queue = my_functions.my_queue_labeled_data(image_path_list=test_set,

                                                                                label_path_list=test_label,

                                                                                IMAGE_SIZE=IMAGE_SIZE,

                                                                                N_INPUT_CH=N_INPUT_CH,

                                                                                QUEUE_CAPACITY_CF=QUEUE_CAPACITY_CF_TEST,

                                                                                BATCH_SIZE_CF=BATCH_SIZE_CF_TEST,

                                                                                NUM_QUEUE_THREADS=NUM_QUEUE_THREADS,

                                                                                IMAGE_TYPE=IMAGE_TYPE,

                                                                                SHUFFLE=True)



        train_image_queue, train_label_queue = my_functions.my_queue_labeled_data(image_path_list=train_set,

                                                                                  label_path_list=train_label,

                                                                                  IMAGE_SIZE=IMAGE_SIZE,

                                                                                  N_INPUT_CH=N_INPUT_CH,

                                                                                  QUEUE_CAPACITY_CF=QUEUE_CAPACITY_CF_TRAIN,

                                                                                  BATCH_SIZE_CF=BATCH_SIZE_CF_TRAIN,

                                                                                  NUM_QUEUE_THREADS=NUM_QUEUE_THREADS,

                                                                                  IMAGE_TYPE=IMAGE_TYPE,

                                                                                  SHUFFLE=True)



        # Create a queue of training images

        train_images = my_functions.my_queue_unlabeled_data(DATASET=DATASET_AE,

                                                           FILENAME_QUEUE_SHUFFLE=FILENAME_QUEUE_SHUFFLE,

                                                           FILENAME_QUEUE_CAPACITY=QUEUE_CAPACITY_AE,

                                                           IMAGE_SIZE=IMAGE_SIZE,

                                                           N_INPUT_CH=N_INPUT_CH,

                                                           batch_size=batch_size_AE,

                                                           NUM_QUEUE_THREADS=NUM_QUEUE_THREADS,

                                                           MIN_AFTER_DEQUEUE=MIN_AFTER_DEQUEUE,

                                                           IMAGE_TYPE=IMAGE_TYPE)



        # Create a queue of test images used when making plots

        plot_test_images = my_functions.my_queue_unlabeled_data(DATASET=DATASET_TEST_IMAGES,

                                                            FILENAME_QUEUE_SHUFFLE=False,

                                                            FILENAME_QUEUE_CAPACITY=10,

                                                            IMAGE_SIZE=IMAGE_SIZE,

                                                            N_INPUT_CH=N_INPUT_CH,

                                                            batch_size=10,

                                                            NUM_QUEUE_THREADS=1,

                                                            MIN_AFTER_DEQUEUE=10,

                                                            IMAGE_TYPE=IMAGE_TYPE)



        # Merge all the summaries and write them

        merged = tf.summary.merge_all()



        # Create a model folder

        if not os.path.exists(current_model_path + MODEL_PATH + CURRENT_HPARAM_STR_AE + '/'):

            os.makedirs( current_model_path + MODEL_PATH + CURRENT_HPARAM_STR_AE + '/')





        # Create global variables (These variables are saved by tensorflow to the model, and will be restored).

        with tf.name_scope('my_global_variables'):

            glb_AE_epoch           = tf.Variable(0,     name='glb_epoch',           dtype=tf.int32,     trainable=False)  # Keeps track of epochs

            glb_AE_bestModel_cost  = tf.Variable(150000, name='glb_bestModel_cost',  dtype=tf.float32,   trainable=False)  # Cost for best model

            glb_AE_bestModel_epoch = tf.Variable(1,     name='glb_bestModel_epoch', dtype=tf.int32,     trainable=False)  # What epoch best model was found at



            glb_AE_high_cost_counter = tf.Variable(0,   name='glb_AE_high_cost_counter', dtype=tf.int32, trainable=False)  # Counter for high_cost_counter

            glb_AE_last_improvement  = tf.Variable(0,   name='glb_AE_last_improvement' , dtype=tf.int32, trainable=False)  # Counter for last_improvement



            glb_CF_epoch           = tf.Variable(0,     name='glb_epoch',           dtype=tf.int32,     trainable=False)  # Keeps track of epochs

            glb_CF_bestModel_acc  = tf.Variable(0, name='glb_bestModel_cost',  dtype=tf.float32,   trainable=False)  # Cost for best model

            glb_CF_bestModel_epoch = tf.Variable(0,     name='glb_bestModel_epoch', dtype=tf.int32,     trainable=False)  # What epoch best model was found at



        # Call this after declaring all tf.Variables.

        saver = tf.train.Saver(max_to_keep=N_MODEL_TO_KEEP_AE)



        # Load latest model, if not exist, start a new model.

        ckpt = tf.train.get_checkpoint_state(current_model_path + MODEL_PATH + CURRENT_HPARAM_STR_AE)



        if ckpt and ckpt.model_checkpoint_path:

            # Restore all variables of latest model

            saver.restore(sess, ckpt.model_checkpoint_path)

            my_functions.myPrint('\tSuccessfully restored (latest) model: {}, Epoch: {}'.format(CURRENT_HPARAM_STR_AE, glb_AE_epoch.eval()))

        else:

            my_functions.myPrint('\tNo model found. Starting a new model.')

            sess.run(tf.global_variables_initializer())





        # Coordinate the loading of image files.

        coord = tf.train.Coordinator()

        threads = tf.train.start_queue_runners(sess=sess, coord=coord)



        # Create a summary writer

        train_writer = tf.summary.FileWriter(current_model_path + TENSORBOARD_PATH + CURRENT_HPARAM_STR_AE, sess.graph)



        # Calculate total number of batches

        TOTAL_BATCH = QUEUE_CAPACITY_AE // batch_size_AE



        # Get global_epoch

        epoch_start = glb_AE_epoch.eval() + 1



        # Set the break-flag

        break_flag = 'Finished training'



        # training cycle

        for current_epoch in range(epoch_start, (N_EPOCH_AE_TOTAL + 1)):



            # Update global variable

            glb_AE_epoch.assign(current_epoch).eval()



            # Loop over all batches

            for i in range(TOTAL_BATCH):

                # Load a batch of training images

                current_batch = sess.run([train_images])



                # Run optimization

                summary, _, current_cost = sess.run([merged, optimizer, cost], feed_dict={input_img: current_batch[0]})





            with open(current_model_path + CURRENT_HPARAM_STR_AE + '.csv', 'a', newline='') as csvfile:

                csv_writer = csv.writer(csvfile, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL)

                csv_writer.writerow([current_cost])



            if current_cost > REQUIRED_COST_LIMIT and current_cost < glb_AE_bestModel_cost.eval():

                # current_cost is above the limit, add 1 to the counter.

                #high_cost_counter += 1

                glb_AE_high_cost_counter.assign(glb_AE_high_cost_counter.eval() + 1).eval()



                # current_cost is lower, update best model variable.

                my_functions.myPrint('\tEpoch {0} of {1}, Cost: {2:.0f}. Best cost: {3:.0f}, New best model. High cost counter: {4}/{5}'.format(

                                                                        current_epoch, N_EPOCH_AE_TOTAL,

                                                                        current_cost, glb_AE_bestModel_cost.eval(),

                                                                        glb_AE_high_cost_counter.eval(), REQUIRE_COST_COUNTER_LIMIT))

                glb_AE_bestModel_cost.assign(current_cost).eval()

                glb_AE_bestModel_epoch.assign(current_epoch).eval()



            elif current_cost > REQUIRED_COST_LIMIT and current_cost > glb_AE_bestModel_cost.eval():

                # current_cost is above the limit, add 1 to the counter.

                #high_cost_counter += 1

                glb_AE_high_cost_counter.assign(glb_AE_high_cost_counter.eval() + 1).eval()



                # Not a new best model. Update last_improvment variable

                #last_improvement += 1

                glb_AE_last_improvement.assign(glb_AE_last_improvement.eval() + 1).eval()



                my_functions.myPrint('\tEpoch {0} of {1}, Cost: {2:.0f}. Best cost: {3:.0f}, Last improvment:{4}/{5}. High cost counter: {6}/{7}'.format(

                                                                        current_epoch, N_EPOCH_AE_TOTAL, current_cost,

                                                                        glb_AE_bestModel_cost.eval(), glb_AE_last_improvement.eval(),

                                                                        REQUIRE_IMPROVEMENT, glb_AE_high_cost_counter.eval(), REQUIRE_COST_COUNTER_LIMIT))

            elif current_cost < REQUIRED_COST_LIMIT and current_cost < glb_AE_bestModel_cost.eval():

                # current_cost is below limit, reset counter

                #high_cost_counter = 0

                glb_AE_high_cost_counter.assign(0).eval()



                # New best (lowest) cost, reset last_improvement counter

                #last_improvement = 0

                glb_AE_last_improvement.assign(0).eval()



                # current_cost is lower, update best model variable.

                my_functions.myPrint('\tEpoch {0} of {1}, Cost: {2:.0f}. Best cost: {3:.0f}, New best model.'.format(

                                                                        current_epoch, N_EPOCH_AE_TOTAL,

                                                                        current_cost, glb_AE_bestModel_cost.eval()))

                glb_AE_bestModel_cost.assign(current_cost).eval()

                glb_AE_bestModel_epoch.assign(current_epoch).eval()



            elif current_cost < REQUIRED_COST_LIMIT and current_cost > glb_AE_bestModel_cost.eval():

                # current_cost is below limit, reset counter

                #high_cost_counter = 0

                glb_AE_high_cost_counter.assign(0).eval()



                # Not a new best model. Update last_improvment variable

                #last_improvement += 1

                glb_AE_last_improvement.assign(glb_AE_last_improvement.eval() + 1).eval()

                my_functions.myPrint('\tEpoch {0} of {1}, Cost: {2:.0f}. Best cost: {3:.0f}, Epochs since last best model:{4}/{5}'.format(

                                                                        current_epoch, N_EPOCH_AE_TOTAL, current_cost,

                                                                        glb_AE_bestModel_cost.eval(), glb_AE_last_improvement.eval(),

                                                                        REQUIRE_IMPROVEMENT))



            # Write tensorbord summary

            train_writer.add_summary(summary, current_epoch)



            # Save model

            try:

                save_path = saver.save(sess, current_model_path + MODEL_PATH + CURRENT_HPARAM_STR_AE + "/model.ckpt", global_step=glb_AE_epoch)

                # my_functions.myPrint('\t\tSuccessfully saved model to path: {}'.format(save_path))

            except Exception as e:

                # e = sys.exc_info()[0]

                my_functions.myPrint('\tError saving model', error=True)

                my_functions.myPrint(e, error=True)



            # Update watchdog file

            with open('watchdog.txt', 'w') as file:

                file.write(str(time.time()))



            # SAVE FIGURE

            # Apply encode and decode over test set



            plot_test_images_batch = sess.run([plot_test_images])

            reconstructed_image, latent_representation  = sess.run([y_pred, encoder_op], feed_dict={input_img: plot_test_images_batch[0]})



            if N_INPUT_CH == 1:

                # Save grayscale image

                f, a = plt.subplots(2, 10, figsize=(10,3))

                a[0][0].set_title('Input images (epoch {})'.format(current_epoch), loc='left')

                a[1][0].set_title('Reconstructed images', loc='left')

                for i in range(10):

                    a[0][i].imshow(plot_test_images_batch[0][i].reshape(28, 28), cmap='gray')

                    #a[0][i].imshow(np.reshape(test_images[0][i], (28, 28, 3)), cmap='gray')

                    a[1][i].imshow(reconstructed_image[i].astype(np.int8).reshape(28, 28), cmap='gray')

                    #a[1][i].imshow(np.reshape(encode_decode[i].astype(np.int8), (28, 28, 3)), cmap='gray')

                    a[0][i].axis('off')

                    a[1][i].axis('off')

            elif N_INPUT_CH == 3:



                # Save 10 RGB images

                f, a = plt.subplots(2, 10, figsize=(10, 3))

                a[0][0].set_title('Input images (epoch {})'.format(current_epoch), loc='left')

                a[1][0].set_title('Reconstructed images', loc='left')

                for i in range(10):

                    a[0][i].imshow(plot_test_images_batch[0][i])

                    a[1][i].imshow(reconstructed_image[i].astype(np.uint8))

                    a[0][i].axis('off')

                    a[1][i].axis('off')



            plot_timestamp = datetime.datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H-%M-%S')

            plot_filepath = '{0}{1}/{2}/'.format(current_model_path, FIGURE_PATH, CURRENT_HPARAM_STR_AE)

            if not os.path.exists(plot_filepath):

                os.makedirs(plot_filepath)

            f.savefig(plot_filepath + plot_timestamp + '.png', dpi=200)

            plt.close(f)

            plt.cla()





            # Save image of latent vector

            im_size1, im_size2 = my_functions.image_size_factors(len(latent_representation[0]))



            f, a = plt.subplots(2, 10, figsize=(10, 3))

            a[0][0].set_title('Input images (epoch {})'.format(current_epoch), loc='left')

            a[1][0].set_title('Latent space representation', loc='left')

            for i in range(10):

                a[0][i].imshow(plot_test_images_batch[0][i])

                #a[1][i].imshow(latent_representation[i].reshape(im_size, im_size).astype(np.uint8).T, cmap='gray')

                a[1][i].imshow(latent_representation[i].reshape(im_size1, im_size2).astype(np.uint8), cmap='gray')

                a[0][i].axis('off')

                a[1][i].axis('off')



            plot_timestamp = datetime.datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H-%M-%S')

            plot_filepath = '{0}{1}/{2}_{3}/'.format(current_model_path, FIGURE_PATH, CURRENT_HPARAM_STR_AE, 'Latent_space/')

            if not os.path.exists(plot_filepath):

                os.makedirs(plot_filepath)

            f.savefig(plot_filepath + plot_timestamp + '.png', dpi=200)

            plt.close(f)

            plt.cla()



            # Save one image only in a separate folder

            for p in range(10):

                plt.imshow(reconstructed_image[p].astype(np.uint8))

                plt.axis('off')

                filename = '{0}{1}/{2}_{3}/{4}/'.format(current_model_path, FIGURE_PATH, CURRENT_HPARAM_STR_AE, 'singleImage/', str(p))

                if not os.path.exists(filename):

                    os.makedirs(filename)

                plt.savefig(filename + str(current_epoch) + '_' + plot_timestamp + ".png", bbox_inches='tight', dpi=400)

                plt.close()

                plt.cla()



        # If no improvement found in the required number of epochs, or cost is too high, stop training.

            if glb_AE_last_improvement.eval() >= REQUIRE_IMPROVEMENT:

                my_functions.myPrint("\tNo improvement found in {} epochs, stopping optimization.".format(REQUIRE_IMPROVEMENT))

                # Set the break-flag

                break_flag = 'No improvement'

                # Break out from the loop.

                break

            elif glb_AE_high_cost_counter.eval() >= REQUIRE_COST_COUNTER_LIMIT:

                my_functions.myPrint('Cost has stayed over limit for {} epoches. Bad model, stopping optimization.'.format(REQUIRE_COST_COUNTER_LIMIT))

                # Set the break-flag

                break_flag = 'High cost'

                # Break out from the loop.

                break



            if current_epoch % 50 == 0:

                msg = 'Autoencoder, current epoch: {}'.format(current_epoch)

                my_functions.sendemail(to_addr_list='runewetteland@hotmail.com', message=msg)





        # Finish off the filename queue coordinator. When done, ask the threads to stop.

        coord.request_stop()

        # And wait for them to actually do it.

        coord.join(threads)



        # Return model name and lowest cost

        return int(glb_AE_bestModel_cost.eval()), break_flag, size_last_layer, glb_AE_epoch.eval()








Autoencoder/classifier_eval.py

from sklearn.model_selection import KFold

#import matplotlib.pyplot as plt

import tensorflow as tf

import my_functions

import numpy as np

#import datetime

import random                                       # Used to shuffle list of images/labels

import time

#import math

import csv

import os

#import PIL.Image

#import scipy.io

from layer_files import *

from sklearn.metrics import confusion_matrix





def evaluate_my_classifier(BATCH_SIZE_CF_TEST, BATCH_SIZE_CF_TRAIN, TENSORBOARD_PATH, IMAGE_SIZE, FILENAME_QUEUE_SHUFFLE,

                            QUEUE_CAPACITY_CF_TEST, QUEUE_CAPACITY_CF_TRAIN, NUM_QUEUE_THREADS, MIN_AFTER_DEQUEUE,

                            N_EPOCH_CF_TOTAL, FIGURE_PATH, current_model_path, N_MODEL_TO_KEEP_CF, MODEL_PATH,

                            REQUIRE_IMPROVEMENT, layer_config, n_filter, N_INPUT_CH, K_SIZE_AE, DATASET_CF_LABELED,

                            LEARNING_RATE_CF, CURRENT_HPARAM_STR_AE, CURRENT_HPARAM_STR_CF, N_FILTERS_CF_1,

                            N_FILTERS_CF_2, IMAGE_TYPE, N_CLASSES_CF, NAME_OF_CLASSES, N_KFOLDS_SPLITS):

    # Read data

    image_path_list_unshuffled, label_path_list_unshuffled = my_functions.my_read_labeled_image_list(DATASET_CF_LABELED)



    # Shuffle both lists

    temp_list = list(zip(image_path_list_unshuffled, label_path_list_unshuffled))

    random.shuffle(temp_list)

    image_path_list, label_path_list = zip(*temp_list)



    kf = KFold(n_splits=N_KFOLDS_SPLITS)

    kf.get_n_splits(image_path_list)



    current_ksplit = 0

    test_acc_array = []



    # Get list of all model folders. We need this to continue training from latest model.

    if os.path.exists(current_model_path + MODEL_PATH + CURRENT_HPARAM_STR_CF):

        CF_models = os.listdir(current_model_path + MODEL_PATH + CURRENT_HPARAM_STR_CF)

    else:

        CF_models = None



    # K-Fold cross validation

    for train_index, test_index in kf.split(image_path_list):



        # Start timer

        current_kfold_start_time = time.time()



        current_ksplit += 1



        # Check if we have trained this model before

        if CF_models == None or not str(current_ksplit+1) in CF_models:



            my_functions.myPrint('\tStarting k-fold validation no. {} of {}'.format(current_ksplit, N_KFOLDS_SPLITS))



            my_functions.sendemail(to_addr_list='runewetteland@hotmail.com', message='Starting k-fold no. {} of {}'.format(current_ksplit, N_KFOLDS_SPLITS))



            test_set = []

            test_label = []

            for num in test_index:

                test_set.append(str(image_path_list[num]))

                test_label.append(int(label_path_list[num]))



            train_set = []

            train_label = []

            for num2 in train_index:

                train_set.append(str(image_path_list[num2]))

                train_label.append(int(label_path_list[num2]))



            my_functions.myPrint('\tTraining set size: {}, Validation set size: {}'.format(len(train_set), len(test_set)))



            summary_folder = current_model_path + '/Classifier_summary/' + CURRENT_HPARAM_STR_CF + '/'



            # Check if folder exist, create if not.

            if not os.path.exists(summary_folder):

                os.makedirs(summary_folder)



            # Create a new modelX-train.csv file

            if not os.path.isfile(summary_folder + 'model{}-train.csv'.format(current_ksplit)):

                try:

                    with open(summary_folder + 'model{}-train.csv'.format(current_ksplit), 'w') as csvfile:

                        csv_writer = csv.writer(csvfile, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL)

                        csv_writer.writerow(['COST'])

                except Exception as e:

                    my_functions.myPrint('Error writing to file', error=True)

                    my_functions.myPrint(e, error=True)





            # Create a new modelX-validate.csv file

            if not os.path.isfile(summary_folder + 'model{}-validate.csv'.format(current_ksplit)):

                try:

                    with open(summary_folder + 'model{}-validate.csv'.format(current_ksplit), 'w') as csvfile:

                        csv_writer = csv.writer(csvfile, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL)

                        csv_writer.writerow(['COST'])

                except Exception as e:

                    my_functions.myPrint('Error writing to file', error=True)

                    my_functions.myPrint(e, error=True)



            # Start a Tensorflow session

            with tf.Graph().as_default(), tf.Session() as sess:



                # Image input

                input_img = tf.placeholder(tf.float32, shape=[None, IMAGE_SIZE, IMAGE_SIZE, N_INPUT_CH], name='input_images')



                # Target labels

                class_target = tf.placeholder(tf.int32, shape=[None], name='output_prediction')



                # Construct the graph model

                trainable = True

                if layer_config == 'layer1':

                    encoder_op, reshape_shape, size_last_layer = my_layer1.encoder(input_img, n_filter, K_SIZE_AE, trainable)

                    decoder_op = my_layer1.decoder(encoder_op, n_filter, N_INPUT_CH, reshape_shape, K_SIZE_AE)

                    classifier_output = my_layer1.classify(encoder_op, N_FILTERS_CF_1, N_FILTERS_CF_2, str(N_FILTERS_CF_1), str(N_FILTERS_CF_2), N_CLASSES_CF)

                elif layer_config == 'layer2':

                    encoder_op, reshape_shape, size_last_layer = my_layer2.encoder(input_img, n_filter, K_SIZE_AE, trainable)

                    decoder_op = my_layer2.decoder(encoder_op, n_filter, N_INPUT_CH, reshape_shape, K_SIZE_AE)

                    classifier_output = my_layer2.classify(encoder_op, N_FILTERS_CF_1, N_FILTERS_CF_2, str(N_FILTERS_CF_1), str(N_FILTERS_CF_2), N_CLASSES_CF)

                elif layer_config == 'layer3':

                    encoder_op, reshape_shape, size_last_layer = my_layer3.encoder(input_img, n_filter, K_SIZE_AE, trainable)

                    decoder_op = my_layer3.decoder(encoder_op, n_filter, N_INPUT_CH, reshape_shape, K_SIZE_AE)

                    classifier_output = my_layer3.classify(encoder_op, N_FILTERS_CF_1, N_FILTERS_CF_2, str(N_FILTERS_CF_1), str(N_FILTERS_CF_2), N_CLASSES_CF)

                elif layer_config == 'layer4':

                    encoder_op, reshape_shape, size_last_layer = my_layer4.encoder(input_img, n_filter, K_SIZE_AE, trainable)

                    decoder_op = my_layer4.decoder(encoder_op, n_filter, N_INPUT_CH, reshape_shape, K_SIZE_AE)

                    classifier_output = my_layer4.classify(encoder_op, N_FILTERS_CF_1, N_FILTERS_CF_2, str(N_FILTERS_CF_1), str(N_FILTERS_CF_2), N_CLASSES_CF)

                elif layer_config == 'layer5':

                    encoder_op, reshape_shape, size_last_layer = my_layer5.encoder(input_img, n_filter, K_SIZE_AE, trainable)

                    decoder_op = my_layer5.decoder(encoder_op, n_filter, N_INPUT_CH, reshape_shape, K_SIZE_AE)

                    classifier_output = my_layer5.classify(encoder_op, N_FILTERS_CF_1, N_FILTERS_CF_2, str(N_FILTERS_CF_1), str(N_FILTERS_CF_2), N_CLASSES_CF)

                elif layer_config == 'layer6':

                    encoder_op, reshape_shape, size_last_layer = my_layer6.encoder(input_img, n_filter, K_SIZE_AE, trainable)

                    decoder_op = my_layer6.decoder(encoder_op, n_filter, N_INPUT_CH, reshape_shape, K_SIZE_AE)

                    classifier_output = my_layer6.classify(encoder_op, N_FILTERS_CF_1, N_FILTERS_CF_2, str(N_FILTERS_CF_1), str(N_FILTERS_CF_2), N_CLASSES_CF)

                elif layer_config == 'layer7':

                    encoder_op, reshape_shape, size_last_layer = my_layer7.encoder(input_img, n_filter, K_SIZE_AE, trainable)

                    decoder_op = my_layer7.decoder(encoder_op, n_filter, N_INPUT_CH, reshape_shape, K_SIZE_AE)

                    classifier_output = my_layer7.classify(encoder_op, N_FILTERS_CF_1, N_FILTERS_CF_2, str(N_FILTERS_CF_1), str(N_FILTERS_CF_2), N_CLASSES_CF)

                elif layer_config == 'layer8':

                    encoder_op, reshape_shape, size_last_layer = my_layer8.encoder(input_img, n_filter, K_SIZE_AE, trainable)

                    decoder_op = my_layer8.decoder(encoder_op, n_filter, N_INPUT_CH, reshape_shape, K_SIZE_AE)

                    classifier_output = my_layer8.classify(encoder_op, N_FILTERS_CF_1, N_FILTERS_CF_2, str(N_FILTERS_CF_1), str(N_FILTERS_CF_2), N_CLASSES_CF)

                elif layer_config == 'layer9':

                    encoder_op, reshape_shape, size_last_layer = my_layer9.encoder(input_img, n_filter, K_SIZE_AE, trainable)

                    decoder_op = my_layer9.decoder(encoder_op, n_filter, N_INPUT_CH, reshape_shape, K_SIZE_AE)

                    classifier_output = my_layer9.classify(encoder_op, N_FILTERS_CF_1, N_FILTERS_CF_2, str(N_FILTERS_CF_1), str(N_FILTERS_CF_2), N_CLASSES_CF)

                elif layer_config == 'layer10':

                    encoder_op, reshape_shape, size_last_layer = my_layer10.encoder(input_img, n_filter, K_SIZE_AE, trainable)

                    decoder_op = my_layer10.decoder(encoder_op, n_filter, N_INPUT_CH, reshape_shape, K_SIZE_AE)

                    classifier_output = my_layer10.classify(encoder_op, N_FILTERS_CF_1, N_FILTERS_CF_2, str(N_FILTERS_CF_1), str(N_FILTERS_CF_2), N_CLASSES_CF)

                elif layer_config == 'layer11':

                    encoder_op, reshape_shape, size_last_layer = my_layer11.encoder(input_img, n_filter, K_SIZE_AE, trainable)

                    decoder_op = my_layer11.decoder(encoder_op, n_filter, N_INPUT_CH, reshape_shape, K_SIZE_AE)

                    classifier_output = my_layer11.classify(encoder_op, N_FILTERS_CF_1, N_FILTERS_CF_2, str(N_FILTERS_CF_1), str(N_FILTERS_CF_2), N_CLASSES_CF)

                elif layer_config == 'layer12':

                    encoder_op, reshape_shape, size_last_layer = my_layer12.encoder(input_img, n_filter, K_SIZE_AE, trainable)

                    decoder_op = my_layer12.decoder(encoder_op, n_filter, N_INPUT_CH, reshape_shape, K_SIZE_AE)

                    classifier_output = my_layer12.classify(encoder_op, N_FILTERS_CF_1, N_FILTERS_CF_2, str(N_FILTERS_CF_1), str(N_FILTERS_CF_2), N_CLASSES_CF)

                elif layer_config == 'layer13':

                    encoder_op, reshape_shape, size_last_layer = my_layer13.encoder(input_img, n_filter, K_SIZE_AE, trainable)

                    decoder_op = my_layer13.decoder(encoder_op, n_filter, N_INPUT_CH, reshape_shape, K_SIZE_AE)

                    classifier_output = my_layer13.classify(encoder_op, N_FILTERS_CF_1, N_FILTERS_CF_2, str(N_FILTERS_CF_1), str(N_FILTERS_CF_2), N_CLASSES_CF)

                elif layer_config == 'layer14':

                    encoder_op, reshape_shape, size_last_layer = my_layer14.encoder(input_img, n_filter, K_SIZE_AE, trainable)

                    decoder_op = my_layer14.decoder(encoder_op, n_filter, N_INPUT_CH, reshape_shape, K_SIZE_AE)

                    classifier_output = my_layer14.classify(encoder_op, N_FILTERS_CF_1, N_FILTERS_CF_2, str(N_FILTERS_CF_1), str(N_FILTERS_CF_2), N_CLASSES_CF)

                elif layer_config == 'layer15':

                    encoder_op, reshape_shape, size_last_layer = my_layer15.encoder(input_img, n_filter, K_SIZE_AE, trainable)

                    decoder_op = my_layer15.decoder(encoder_op, n_filter, N_INPUT_CH, reshape_shape, K_SIZE_AE)

                    classifier_output = my_layer15.classify(encoder_op, N_FILTERS_CF_1, N_FILTERS_CF_2, str(N_FILTERS_CF_1), str(N_FILTERS_CF_2), N_CLASSES_CF)

                elif layer_config == 'layer16':

                    encoder_op, reshape_shape, size_last_layer = my_layer16.encoder(input_img, n_filter, K_SIZE_AE, trainable)

                    decoder_op = my_layer16.decoder(encoder_op, n_filter, N_INPUT_CH, reshape_shape, K_SIZE_AE)

                    classifier_output = my_layer16.classify(encoder_op, N_FILTERS_CF_1, N_FILTERS_CF_2, str(N_FILTERS_CF_1), str(N_FILTERS_CF_2), N_CLASSES_CF)

                elif layer_config == 'layer17':

                    encoder_op, reshape_shape, size_last_layer = my_layer17.encoder(input_img, n_filter, K_SIZE_AE, trainable)

                    decoder_op = my_layer17.decoder(encoder_op, n_filter, N_INPUT_CH, reshape_shape, K_SIZE_AE)

                    classifier_output = my_layer17.classify(encoder_op, N_FILTERS_CF_1, N_FILTERS_CF_2, str(N_FILTERS_CF_1), str(N_FILTERS_CF_2), N_CLASSES_CF)

                elif layer_config == 'layer18':

                    encoder_op, reshape_shape, size_last_layer = my_layer18.encoder(input_img, n_filter, K_SIZE_AE, trainable)

                    decoder_op = my_layer18.decoder(encoder_op, n_filter, N_INPUT_CH, reshape_shape, K_SIZE_AE)

                    classifier_output = my_layer18.classify(encoder_op, N_FILTERS_CF_1, N_FILTERS_CF_2, str(N_FILTERS_CF_1), str(N_FILTERS_CF_2), N_CLASSES_CF)

                elif layer_config == 'layer19':

                    encoder_op, reshape_shape, size_last_layer = my_layer19.encoder(input_img, n_filter, K_SIZE_AE, trainable)

                    decoder_op = my_layer19.decoder(encoder_op, n_filter, N_INPUT_CH, reshape_shape, K_SIZE_AE)

                    classifier_output = my_layer19.classify(encoder_op, N_FILTERS_CF_1, N_FILTERS_CF_2, str(N_FILTERS_CF_1), str(N_FILTERS_CF_2), N_CLASSES_CF)

                elif layer_config == 'layer20':

                    encoder_op, reshape_shape, size_last_layer = my_layer20.encoder(input_img, n_filter, K_SIZE_AE, trainable)

                    decoder_op = my_layer20.decoder(encoder_op, n_filter, N_INPUT_CH, reshape_shape, K_SIZE_AE)

                    classifier_output = my_layer20.classify(encoder_op, N_FILTERS_CF_1, N_FILTERS_CF_2, str(N_FILTERS_CF_1), str(N_FILTERS_CF_2), N_CLASSES_CF)

                elif layer_config == 'layer21':

                    encoder_op, reshape_shape, size_last_layer = my_layer21.encoder(input_img, n_filter, K_SIZE_AE, trainable)

                    decoder_op = my_layer21.decoder(encoder_op, n_filter, N_INPUT_CH, reshape_shape, K_SIZE_AE)

                    classifier_output = my_layer21.classify(encoder_op, N_FILTERS_CF_1, N_FILTERS_CF_2, str(N_FILTERS_CF_1), str(N_FILTERS_CF_2), N_CLASSES_CF)

                else:

                    my_functions.myPrint('Error in layer_config. Please choose another layer.', error=True)

                    exit()



                # Convert the label to onehot format

                class_target_onehot = tf.one_hot(

                                            indices=class_target,  # A Tensor of indices.

                                            depth=N_CLASSES_CF,  # A scalar defining the depth of the one hot dimension.

                                            on_value=1,  # A scalar defining the value to fill in output when indices[j] = i. (default: 1)

                                            off_value=0,  # A scalar defining the value to fill in output when indices[j] != i. (default: 0)

                                            axis=-1,  # The axis to fill (default: -1, a new inner-most axis).

                                            dtype=tf.int32)  # The data type of the output tensor.



                # Loss function

                loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=classifier_output, labels=class_target_onehot), name='loss_function')

                tf.summary.scalar('loss', loss)



                # Train the model

                optimizer = tf.train.AdamOptimizer(LEARNING_RATE_CF).minimize(loss)



                # Prediction

                prediction = tf.nn.softmax(classifier_output, dim=-1)



                # Evaluation

                correct_prediction = tf.equal(tf.argmax(prediction, 1), tf.argmax(class_target_onehot, 1))

                with tf.name_scope('Classifier_accuracy'):

                    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

                tf.summary.scalar('accuracy', accuracy)



                # Create a queue of labeled training/test images

                test_image_queue, test_label_queue = my_functions.my_queue_labeled_data(image_path_list=test_set,

                                                                                                label_path_list=test_label,

                                                                                                IMAGE_SIZE=IMAGE_SIZE,

                                                                                                N_INPUT_CH=N_INPUT_CH,

                                                                                                QUEUE_CAPACITY_CF=QUEUE_CAPACITY_CF_TEST,

                                                                                                BATCH_SIZE_CF=BATCH_SIZE_CF_TEST,

                                                                                                NUM_QUEUE_THREADS=NUM_QUEUE_THREADS,

                                                                                                IMAGE_TYPE=IMAGE_TYPE,

                                                                                                SHUFFLE=True)



                train_image_queue, train_label_queue = my_functions.my_queue_labeled_data(image_path_list=train_set,

                                                                                                label_path_list=train_label,

                                                                                                IMAGE_SIZE=IMAGE_SIZE,

                                                                                                N_INPUT_CH=N_INPUT_CH,

                                                                                                QUEUE_CAPACITY_CF=QUEUE_CAPACITY_CF_TRAIN,

                                                                                                BATCH_SIZE_CF=BATCH_SIZE_CF_TRAIN,

                                                                                                NUM_QUEUE_THREADS=NUM_QUEUE_THREADS,

                                                                                                IMAGE_TYPE=IMAGE_TYPE,

                                                                                                SHUFFLE=True)



                # Merge all the summaries and write them (for tensorboard)

                merged = tf.summary.merge_all()



                # Create a model folder

                #if not os.path.exists(current_model_path + MODEL_PATH + CURRENT_HPARAM_STR_CF + '/k-fold-' + str(current_ksplit)):

                #    os.makedirs(current_model_path + MODEL_PATH + CURRENT_HPARAM_STR_CF + '/k-fold-' + str(current_ksplit))



                # Create global variables (These variables are saved by tensorflow to the model, and will be restored).

                with tf.name_scope('my_global_variables'):

                    glb_AE_epoch           = tf.Variable(0,     name='glb_epoch',           dtype=tf.int32,     trainable=False)  # Keeps track of epochs

                    glb_AE_bestModel_cost  = tf.Variable(50000, name='glb_bestModel_cost',  dtype=tf.float32,   trainable=False)  # Cost for best model

                    glb_AE_bestModel_epoch = tf.Variable(0,     name='glb_bestModel_epoch', dtype=tf.int32,     trainable=False)  # What epoch best model was found at

                    glb_CF_epoch           = tf.Variable(0,     name='glb_epoch',           dtype=tf.int32,     trainable=False)  # Keeps track of epochs

                    glb_CF_bestModel_acc  = tf.Variable(0, name='glb_bestModel_cost',  dtype=tf.float32,   trainable=False)  # Cost for best model

                    glb_CF_bestModel_epoch = tf.Variable(0,     name='glb_bestModel_epoch', dtype=tf.int32,     trainable=False)  # Global variable



                # Call this after declaring all tf.Variables.

                saver = tf.train.Saver(max_to_keep=N_MODEL_TO_KEEP_CF)



                # If folder exist, then we have trained this model before, load model.

                if os.path.exists(current_model_path + MODEL_PATH + CURRENT_HPARAM_STR_CF + '/' + str(current_ksplit) + '/'):

                    # Load a CF model and continue training

                    ckpt = tf.train.get_checkpoint_state(current_model_path + MODEL_PATH + CURRENT_HPARAM_STR_CF + '/' + str(current_ksplit) + '/')



                    if ckpt and ckpt.model_checkpoint_path:

                        saver.restore(sess, ckpt.model_checkpoint_path)  # restore all variables

                        my_functions.myPrint('\tSuccessfully restored (latest) model: {}'.format(ckpt.model_checkpoint_path))

                        #my_functions.myPrint('Model status - Epoch:{0}'.format(glb_CF_epoch.eval()))

                    else:

                        my_functions.myPrint('\tNo model found. Stopping program.')

                        exit()

                else:

                    # Folder dont exist. We have not trained this model before. Make folder and load AE model.

                    os.makedirs(current_model_path + MODEL_PATH + CURRENT_HPARAM_STR_CF + '/' + str(current_ksplit))



                    # Load a AE model and continue training

                    ckpt = tf.train.get_checkpoint_state(current_model_path + MODEL_PATH + CURRENT_HPARAM_STR_AE)



                    if ckpt and ckpt.model_checkpoint_path:

                        saver.restore(sess, ckpt.model_checkpoint_path)  # restore all variables

                        #my_functions.myPrint('\tSuccessfully restored (latest) model: {}'.format(ckpt.model_checkpoint_path))

                        # my_functions.myPrint('Model status - Epoch:{0}'.format(glb_CF_epoch.eval()))



                        # Load best model

                        best_model_path = '{0}{1}{2}/model.ckpt-{3}'.format(current_model_path, MODEL_PATH, CURRENT_HPARAM_STR_AE, glb_AE_bestModel_epoch.eval())

                        saver.restore(sess, best_model_path)  # restore all variables

                        my_functions.myPrint('\t\tSuccessfully restored (best) model: {}, Epoch: {}'.format(CURRENT_HPARAM_STR_AE, glb_AE_bestModel_epoch.eval()))

                        # my_functions.myPrint('Best model status - Epoch:{0}, training step:{1}, total steps:{2}, acc:{3:.2%}'.format(glb_epoch.eval(), glb_currentStep.eval(), glb_totalSteps.eval(), glb_bestModel_acc.eval()))

                    else:

                        my_functions.myPrint('\tNo model found. Stopping program.')

                        exit()



                # Coordinate the loading of image files.

                coord = tf.train.Coordinator()

                threads = tf.train.start_queue_runners(sess=sess, coord=coord)



                # Create a summary writer

                train_writer = tf.summary.FileWriter(current_model_path + TENSORBOARD_PATH + CURRENT_HPARAM_STR_CF, sess.graph)



                # Get last global_epoch

                epoch_start = glb_CF_epoch.eval() + 1



                # Calculate total number of batches

                TOTAL_BATCH_TRAIN = QUEUE_CAPACITY_CF_TRAIN // BATCH_SIZE_CF_TRAIN

                TOTAL_BATCH_TEST = QUEUE_CAPACITY_CF_TEST // BATCH_SIZE_CF_TEST



                # Set break flag

                BREAK_FLAG = 'Finished training'



                # Create an empty array to append accuracy in

                train_acc_array = []

                test_acc_array = []

                test_pred_array = []

                test_label_batch_array = []

                current_epoch = N_EPOCH_CF_TOTAL+1



                # training cycle

                for current_epoch in range(epoch_start, (N_EPOCH_CF_TOTAL+1)):



                    # Update global variable

                    glb_CF_epoch.assign(current_epoch).eval()



                    for i in range(TOTAL_BATCH_TRAIN):

                        # Load a batch of training data

                        train_image_batch, train_label_batch = sess.run([train_image_queue, train_label_queue])



                        # Run the optimizer with the loaded batch

                        summary, _, train_acc = sess.run([merged, optimizer, accuracy], feed_dict={input_img: train_image_batch, class_target: train_label_batch})



                        # Append current accuracy to the array

                        train_acc_array.append(train_acc)



                    # Calculate average accuracy of current epoch

                    total_train_acc = sum(train_acc_array) / float(len(train_acc_array))



                    # Write tensorboard summary

                    train_writer.add_summary(summary, current_epoch)



                    # Print training result

                    my_functions.myPrint('\t\t\tEpoch {} of {}, train accuracy: {:.2f}'.format(current_epoch, N_EPOCH_CF_TOTAL, total_train_acc))



                    # Write result to summary file

                    try:

                        with open(summary_folder + 'model{}-train.csv'.format(current_ksplit), 'a', newline='') as csvfile:

                            csv_writer = csv.writer(csvfile, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL)

                            csv_writer.writerow([total_train_acc])

                    except Exception as e:

                        my_functions.myPrint('Error writing to file', error=True)

                        my_functions.myPrint(e, error=True)



                    # Evaluate the model every 10th run

                    if current_epoch % 10 == 0:

                        for j in range(TOTAL_BATCH_TEST):

                            test_image_batch, test_label_batch = sess.run([test_image_queue, test_label_queue])

                            summary, test_acc = sess.run([merged, accuracy], feed_dict={input_img: test_image_batch, class_target: test_label_batch})



                            # Append current accuracy to the array

                            test_acc_array.append(test_acc)



                        # Calculate average accuracy of current epoch

                        total_test_acc = sum(test_acc_array) / float(len(test_acc_array))

                        my_functions.myPrint("\t\t\t\tValidation Accuracy: {:.2f}".format(total_test_acc))



                        # Write result to summary file

                        try:

                            with open(summary_folder + 'model{}-validate.csv'.format(current_ksplit), 'a', newline='') as csvfile:

                                csv_writer = csv.writer(csvfile, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL)

                                csv_writer.writerow([total_test_acc])

                        except Exception as e:

                            my_functions.myPrint('Error writing to file', error=True)

                            my_functions.myPrint(e, error=True)



                    # Reset accuracy arrays

                    train_acc_array.clear()

                    test_acc_array.clear()



                    # Save model

                    try:

                        save_path = saver.save(sess, current_model_path + MODEL_PATH + CURRENT_HPARAM_STR_CF + '/' + str(current_ksplit) + "/model.ckpt", global_step=glb_CF_epoch)

                        #my_functions.myPrint('\t\tSuccessfully saved model to path: {}'.format(save_path))

                    except Exception as e:

                        my_functions.myPrint('\tError saving model', error=True)

                        my_functions.myPrint(e, error=True)



                # Training done, Evaluate the model

                for k in range(TOTAL_BATCH_TEST):

                    test_image_batch, test_label_batch = sess.run([test_image_queue, test_label_queue])

                    summary, test_acc, test_pred = sess.run([merged, accuracy, prediction], feed_dict={input_img: test_image_batch, class_target: test_label_batch})



                    # Append current accuracy to the array

                    test_acc_array.append(test_acc)

                    for m in range(len(test_pred)):

                        test_pred_array.append(test_pred[m])

                        test_label_batch_array.append(test_label_batch[m])



                # Calculate average accuracy of current epoch

                total_test_acc = sum(test_acc_array) / float(len(test_acc_array))

                my_functions.myPrint("\t\t\t\tValidate Accuracy: {:.2f}".format(total_test_acc))



                # Write result to summary file

                try:

                    with open(summary_folder + 'model{}-validate.csv'.format(current_ksplit), 'a', newline='') as csvfile:

                        csv_writer = csv.writer(csvfile, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL)

                        csv_writer.writerow([total_test_acc])

                except Exception as e:

                    my_functions.myPrint('Error writing to file', error=True)

                    my_functions.myPrint(e, error=True)



                # Update tensorboard

                train_writer.add_summary(summary, current_epoch)



                # Save confusion matrix to folder

                cm_label = []

                for p in range(len(NAME_OF_CLASSES)):

                    cm_label.append(p)



                conf_matrix = confusion_matrix(y_true=test_label_batch_array, y_pred=np.argmax(test_pred_array, axis=1), labels=cm_label)



                my_functions.plot_confusion_matrix(conf_matrix, current_ksplit, classes=NAME_OF_CLASSES, current_model_path=current_model_path,

                                                   folder=CURRENT_HPARAM_STR_CF, title='Confusion matrix')





                # Save image with prediction result

                my_functions.my_plot_with_prediction(current_epoch, test_image_batch, test_label_batch, test_pred,

                                                     current_model_path, FIGURE_PATH, CURRENT_HPARAM_STR_CF, BATCH_SIZE_CF_TEST,

                                                     N_CLASSES_CF, NAME_OF_CLASSES)



                if test_acc > glb_CF_bestModel_acc.eval():

                    glb_CF_bestModel_acc.assign(test_acc).eval()

                    #glb_CF_bestModel_epoch.assign(current_epoch).eval()



                # Finish off the filename queue coordinator. When done, ask the threads to stop.

                coord.request_stop()

                coord.join(threads)



                # Calculate elapse time for current run

                current_kfold_elapse_time = time.time() - current_kfold_start_time

                m, s = divmod(current_kfold_elapse_time, 60)

                h, m = divmod(m, 60)

                my_functions.myPrint('K-fold %0d finished. Total time(H:M:S): %02d:%02d:%02d' % (current_ksplit, h, m, s))



                # Estimate remaining running time (Estimate Time until Finish)

                ETF = current_kfold_elapse_time * (N_KFOLDS_SPLITS - current_ksplit)

                m, s = divmod(ETF, 60)

                h, m = divmod(m, 60)

                my_functions.myPrint('Estimated time until current model finish(H:M:S): %02d:%02d:%02d' % (h, m, s))



        else:

            # We have allready trained this model, stepping on to next k-fold validation.

            pass



    return size_last_layer, BREAK_FLAG, total_test_acc








Autoencoder/layer_files/__init__.py

from os.path import dirname, basename, isfile

import glob

modules = glob.glob(dirname(__file__)+"/*.py")

__all__ = [ basename(f)[:-3] for f in modules if isfile(f)]






Autoencoder/layer_files/my_layer1.py

import tensorflow as tf

import my_functions



######### LAYER CONFIGURATION MY_LAYER1

# ENCODER:

# conv, conv, pool, reshape

#

# DECODE:

# reshape, unpool, deconv, deconv

#

# CLASSIFIER:

# dense, dense, dense





def encoder(input_img, N_FILTERS, K_SIZE, trainable):



    output_conv1    = my_functions.my_conv2d(input_img, N_FILTERS, K_SIZE, trainable, 'conv_1')

    output_conv2    = my_functions.my_conv2d(output_conv1, N_FILTERS, K_SIZE, trainable, 'conv_2')

    output_pool3    = my_functions.my_pooling(output_conv2, 'pooling_3')

    reshape_shape   = output_pool3.get_shape().as_list()

    output_reshape4 = tf.reshape(tensor=output_pool3, shape=[-1, reshape_shape[1]*reshape_shape[2]*N_FILTERS], name='reshape_4')



    SIZE_LAST_LAYER = output_reshape4.get_shape().as_list()[1]





    return output_reshape4, reshape_shape, SIZE_LAST_LAYER





def decoder(input, N_FILTERS, N_INPUT_CH, reshape_shape, K_SIZE):



    output_reshape5 = tf.reshape(tensor=input, shape=[-1, reshape_shape[1], reshape_shape[2], N_FILTERS], name='reshape_5')

    with tf.name_scope('unpooling_6'):

        output_unpool6 = my_functions.unpool_resize(output_reshape5, [1, 2, 2, 1])

    output_deconv7 = my_functions.deconvLayer_new(output_unpool6, N_FILTERS, K_SIZE, name='deconvolve_7')

    output_deconv8 = my_functions.deconvLayer_new(output_deconv7, N_INPUT_CH, K_SIZE, name='deconvolve_8')



    return output_deconv8





def classify(input, N_FILTERS_CF_1, N_FILTERS_CF_2, name1, name2, N_CLASSES_CF):



    # Fully connected layer

    output_dense_9 = my_functions.my_dense(input=input, units=N_FILTERS_CF_1, name=name1 + '_' + name2 + '_dense_layer_9')

    output_dense_10 = my_functions.my_dense(input=output_dense_9, units=N_FILTERS_CF_2, name=name1 + '_' + name2 + '_dense_layer_10')

    output_dense_11 = my_functions.my_dense(input=output_dense_10, units=N_CLASSES_CF, name=name1 + '_' + name2 + '_dense_layer_11')



    return output_dense_11








Autoencoder/layer_files/my_layer10.py

import tensorflow as tf

import my_functions



######### LAYER CONFIGURATION MY_LAYER2

# ENCODER:

# conv, conv, pool, conv, conv, pool, conv, conv, pool, reshape, FC

#

# DECODE:

# FC, reshape, unpool, deconv, deconv, unpool, deconv, deconv, unpool, deconv, deconv

#

# CLASSIFIER:

# dense, dense, dense





def encoder(input_img, N_FILTERS, K_SIZE, trainable):



    output_conv1    = my_functions.my_conv2d(input_img, N_FILTERS, K_SIZE, trainable, 'conv_1')

    output_conv2    = my_functions.my_conv2d(output_conv1, N_FILTERS, K_SIZE, trainable, 'conv_2')

    output_pool3    = my_functions.my_pooling(output_conv2, 'pooling_3')

    output_conv4    = my_functions.my_conv2d(output_pool3, N_FILTERS, K_SIZE, trainable, 'conv_4')

    output_conv5    = my_functions.my_conv2d(output_conv4, N_FILTERS, K_SIZE, trainable, 'conv_5')

    output_pool6    = my_functions.my_pooling(output_conv5, 'pooling_6')

    output_conv7    = my_functions.my_conv2d(output_pool6, N_FILTERS, K_SIZE, trainable, 'conv_7')

    output_conv8    = my_functions.my_conv2d(output_conv7, N_FILTERS, K_SIZE, trainable, 'conv_8')

    output_pool9    = my_functions.my_pooling(output_conv8, 'pooling_9')

    reshape_shape   = output_pool9.get_shape().as_list()

    output_reshape10 = tf.reshape(tensor=output_pool9, shape=[-1, reshape_shape[1]*reshape_shape[2]*N_FILTERS], name='reshape_10')

    output_dense_11 = my_functions.my_dense(input=output_reshape10, units=(reshape_shape[1] * reshape_shape[1] * N_FILTERS) / 2, name='dense_layer_11')

    #print('output_dense_11: ', output_dense_11)

    size_last_layer = output_dense_11.get_shape().as_list()[1]



    return output_dense_11, reshape_shape, size_last_layer





def decoder(input, N_FILTERS, N_INPUT_CH, reshape_shape, K_SIZE):



    output_dense_12 = my_functions.my_dense(input=input, units=reshape_shape[1] * reshape_shape[1] * N_FILTERS, name='dense_layer_12')

    #print('output_dense_12: ', output_dense_12)



    output_reshape13 = tf.reshape(tensor=output_dense_12, shape=[-1, reshape_shape[1], reshape_shape[2], N_FILTERS], name='reshape_13')

    with tf.name_scope('unpooling_14'):

        output_unpool14 = my_functions.unpool_resize(output_reshape13, [1, 2, 2, 1])

    output_deconv15 = my_functions.deconvLayer_new(output_unpool14, N_FILTERS, K_SIZE, name='deconvolve_15')

    output_deconv16 = my_functions.deconvLayer_new(output_deconv15, N_FILTERS, K_SIZE, name='deconvolve_16')

    with tf.name_scope('unpooling_17'):

        output_unpool17 = my_functions.unpool_resize(output_deconv16, [1, 2, 2, 1])

    output_deconv18 = my_functions.deconvLayer_new(output_unpool17, N_INPUT_CH, K_SIZE, name='deconvolve_18')

    output_deconv19 = my_functions.deconvLayer_new(output_deconv18, N_INPUT_CH, K_SIZE, name='deconvolve_19')



    with tf.name_scope('unpooling_20'):

        output_unpool20 = my_functions.unpool_resize(output_deconv19, [1, 2, 2, 1])

    output_deconv21 = my_functions.deconvLayer_new(output_unpool20, N_INPUT_CH, K_SIZE, name='deconvolve_21')

    output_deconv22 = my_functions.deconvLayer_new(output_deconv21, N_INPUT_CH, K_SIZE, name='deconvolve_22')



    return output_deconv22





def classify(input, N_FILTERS_CF_1, N_FILTERS_CF_2, name1, name2, N_CLASSES_CF):



    # Fully connected layer

    output_dense_11 = my_functions.my_dense(input=input, units=N_FILTERS_CF_1, name=name1 + '_' + name2 + '_dense_layer_11')

    output_dense_12 = my_functions.my_dense(input=output_dense_11, units=N_FILTERS_CF_2, name=name1 + '_' + name2 + '_dense_layer_12')

    output_dense_13 = my_functions.my_dense(input=output_dense_12, units=N_CLASSES_CF, name=name1 + '_' + name2 + '_dense_layer_13')



    return output_dense_13










Autoencoder/layer_files/my_layer11.py

import tensorflow as tf

import my_functions



######### LAYER CONFIGURATION MY_LAYER2

# ENCODER:

# conv, conv, pool, conv, conv, pool, conv, conv, pool, reshape, FC, FC

#

# DECODE:

# FC, FC, reshape, unpool, deconv, deconv, unpool, deconv, deconv, unpool, deconv, deconv

#

# CLASSIFIER:

# dense, dense, dense





def encoder(input_img, N_FILTERS, K_SIZE, trainable):



    output_conv1    = my_functions.my_conv2d(input_img, N_FILTERS, K_SIZE, trainable, 'conv_1')

    output_conv2    = my_functions.my_conv2d(output_conv1, N_FILTERS, K_SIZE, trainable, 'conv_2')

    output_pool3    = my_functions.my_pooling(output_conv2, 'pooling_3')

    output_conv4    = my_functions.my_conv2d(output_pool3, N_FILTERS, K_SIZE, trainable, 'conv_4')

    output_conv5    = my_functions.my_conv2d(output_conv4, N_FILTERS, K_SIZE, trainable, 'conv_5')

    output_pool6    = my_functions.my_pooling(output_conv5, 'pooling_6')

    output_conv7    = my_functions.my_conv2d(output_pool6, N_FILTERS, K_SIZE, trainable, 'conv_7')

    output_conv8    = my_functions.my_conv2d(output_conv7, N_FILTERS, K_SIZE, trainable, 'conv_8')

    output_pool9    = my_functions.my_pooling(output_conv8, 'pooling_9')

    reshape_shape   = output_pool9.get_shape().as_list()

    output_reshape10 = tf.reshape(tensor=output_pool9, shape=[-1, reshape_shape[1]*reshape_shape[2]*N_FILTERS], name='reshape_10')

    output_dense_11 = my_functions.my_dense(input=output_reshape10, units=(reshape_shape[1] * reshape_shape[1] * N_FILTERS) / 2, name='dense_layer_11')

    #print('output_dense_11: ', output_dense_11)

    output_dense_12 = my_functions.my_dense(input=output_dense_11, units=(reshape_shape[1] * reshape_shape[1] * N_FILTERS) / 4, name='dense_layer_12')

    #print('output_dense_12: ', output_dense_12)

    size_last_layer = output_dense_12.get_shape().as_list()[1]



    return output_dense_12, reshape_shape, size_last_layer





def decoder(input, N_FILTERS, N_INPUT_CH, reshape_shape, K_SIZE):



    output_dense_13 = my_functions.my_dense(input=input, units=(reshape_shape[1] * reshape_shape[1] * N_FILTERS) / 2, name='dense_layer_13')

    #print('output_dense_13: ', output_dense_13)



    output_dense_14 = my_functions.my_dense(input=output_dense_13, units=reshape_shape[1] * reshape_shape[1] * N_FILTERS, name='dense_layer_14')

    #print('output_dense_14: ', output_dense_14)



    output_reshape15 = tf.reshape(tensor=output_dense_14, shape=[-1, reshape_shape[1], reshape_shape[2], N_FILTERS], name='reshape_15')

    with tf.name_scope('unpooling_16'):

        output_unpool16 = my_functions.unpool_resize(output_reshape15, [1, 2, 2, 1])

    output_deconv17 = my_functions.deconvLayer_new(output_unpool16, N_FILTERS, K_SIZE, name='deconvolve_17')

    output_deconv18 = my_functions.deconvLayer_new(output_deconv17, N_FILTERS, K_SIZE, name='deconvolve_18')

    with tf.name_scope('unpooling_19'):

        output_unpool19 = my_functions.unpool_resize(output_deconv18, [1, 2, 2, 1])

    output_deconv20 = my_functions.deconvLayer_new(output_unpool19, N_INPUT_CH, K_SIZE, name='deconvolve_20')

    output_deconv21 = my_functions.deconvLayer_new(output_deconv20, N_INPUT_CH, K_SIZE, name='deconvolve_21')



    with tf.name_scope('unpooling_22'):

        output_unpool22 = my_functions.unpool_resize(output_deconv21, [1, 2, 2, 1])

    output_deconv23 = my_functions.deconvLayer_new(output_unpool22, N_INPUT_CH, K_SIZE, name='deconvolve_23')

    output_deconv24 = my_functions.deconvLayer_new(output_deconv23, N_INPUT_CH, K_SIZE, name='deconvolve_24')



    return output_deconv24





def classify(input, N_FILTERS_CF_1, N_FILTERS_CF_2, name1, name2, N_CLASSES_CF):



    # Fully connected layer

    output_dense_11 = my_functions.my_dense(input=input, units=N_FILTERS_CF_1, name=name1 + '_' + name2 + '_dense_layer_11')

    output_dense_12 = my_functions.my_dense(input=output_dense_11, units=N_FILTERS_CF_2, name=name1 + '_' + name2 + '_dense_layer_12')

    output_dense_13 = my_functions.my_dense(input=output_dense_12, units=N_CLASSES_CF, name=name1 + '_' + name2 + '_dense_layer_13')



    return output_dense_13










Autoencoder/layer_files/my_layer12.py

import tensorflow as tf

import my_functions



######### LAYER CONFIGURATION MY_LAYER2

# ENCODER:

# conv, conv, pool, conv, conv, pool, conv, conv, pool, reshape, FC, FC, FC

#

# DECODE:

# FC, FC, FC, reshape, unpool, deconv, deconv, unpool, deconv, deconv, unpool, deconv, deconv

#

# CLASSIFIER:

# dense, dense, dense





def encoder(input_img, N_FILTERS, K_SIZE, trainable):



    output_conv1    = my_functions.my_conv2d(input_img, N_FILTERS, K_SIZE, trainable, 'conv_1')

    output_conv2    = my_functions.my_conv2d(output_conv1, N_FILTERS, K_SIZE, trainable, 'conv_2')

    output_pool3    = my_functions.my_pooling(output_conv2, 'pooling_3')

    output_conv4    = my_functions.my_conv2d(output_pool3, N_FILTERS, K_SIZE, trainable, 'conv_4')

    output_conv5    = my_functions.my_conv2d(output_conv4, N_FILTERS, K_SIZE, trainable, 'conv_5')

    output_pool6    = my_functions.my_pooling(output_conv5, 'pooling_6')

    output_conv7    = my_functions.my_conv2d(output_pool6, N_FILTERS, K_SIZE, trainable, 'conv_7')

    output_conv8    = my_functions.my_conv2d(output_conv7, N_FILTERS, K_SIZE, trainable, 'conv_8')

    output_pool9    = my_functions.my_pooling(output_conv8, 'pooling_9')

    reshape_shape   = output_pool9.get_shape().as_list()

    output_reshape10 = tf.reshape(tensor=output_pool9, shape=[-1, reshape_shape[1]*reshape_shape[2]*N_FILTERS], name='reshape_10')

    output_dense_11 = my_functions.my_dense(input=output_reshape10, units=(reshape_shape[1] * reshape_shape[1] * N_FILTERS) / 2, name='dense_layer_11')

    #print('output_dense_11: ', output_dense_11)

    output_dense_12 = my_functions.my_dense(input=output_dense_11, units=(reshape_shape[1] * reshape_shape[1] * N_FILTERS) / 4, name='dense_layer_12')

    #print('output_dense_12: ', output_dense_12)

    output_dense_13 = my_functions.my_dense(input=output_dense_12, units=(reshape_shape[1] * reshape_shape[1] * N_FILTERS) / 8, name='dense_layer_13')

    #print('output_dense_13: ', output_dense_13)

    size_last_layer = output_dense_13.get_shape().as_list()[1]



    return output_dense_13, reshape_shape, size_last_layer





def decoder(input, N_FILTERS, N_INPUT_CH, reshape_shape, K_SIZE):



    output_dense_14 = my_functions.my_dense(input=input, units=(reshape_shape[1] * reshape_shape[1] * N_FILTERS) / 4, name='dense_layer_14')

    #print('output_dense_14: ', output_dense_14)



    output_dense_15 = my_functions.my_dense(input=output_dense_14, units=(reshape_shape[1] * reshape_shape[1] * N_FILTERS) / 2, name='dense_layer_15')

    #print('output_dense_15: ', output_dense_15)



    output_dense_16 = my_functions.my_dense(input=output_dense_15, units=reshape_shape[1] * reshape_shape[1] * N_FILTERS, name='dense_layer_16')

    #print('output_dense_16: ', output_dense_16)



    output_reshape17 = tf.reshape(tensor=output_dense_16, shape=[-1, reshape_shape[1], reshape_shape[2], N_FILTERS], name='reshape_17')

    with tf.name_scope('unpooling_18'):

        output_unpool18 = my_functions.unpool_resize(output_reshape17, [1, 2, 2, 1])

    output_deconv19 = my_functions.deconvLayer_new(output_unpool18, N_FILTERS, K_SIZE, name='deconvolve_19')

    output_deconv20 = my_functions.deconvLayer_new(output_deconv19, N_FILTERS, K_SIZE, name='deconvolve_20')

    with tf.name_scope('unpooling_21'):

        output_unpool21 = my_functions.unpool_resize(output_deconv20, [1, 2, 2, 1])

    output_deconv22 = my_functions.deconvLayer_new(output_unpool21, N_INPUT_CH, K_SIZE, name='deconvolve_22')

    output_deconv23 = my_functions.deconvLayer_new(output_deconv22, N_INPUT_CH, K_SIZE, name='deconvolve_23')



    with tf.name_scope('unpooling_24'):

        output_unpool24 = my_functions.unpool_resize(output_deconv23, [1, 2, 2, 1])

    output_deconv25 = my_functions.deconvLayer_new(output_unpool24, N_INPUT_CH, K_SIZE, name='deconvolve_25')

    output_deconv26 = my_functions.deconvLayer_new(output_deconv25, N_INPUT_CH, K_SIZE, name='deconvolve_26')



    return output_deconv26





def classify(input, N_FILTERS_CF_1, N_FILTERS_CF_2, name1, name2, N_CLASSES_CF):



    # Fully connected layer

    output_dense_11 = my_functions.my_dense(input=input, units=N_FILTERS_CF_1, name=name1 + '_' + name2 + '_dense_layer_11')

    output_dense_12 = my_functions.my_dense(input=output_dense_11, units=N_FILTERS_CF_2, name=name1 + '_' + name2 + '_dense_layer_12')

    output_dense_13 = my_functions.my_dense(input=output_dense_12, units=N_CLASSES_CF, name=name1 + '_' + name2 + '_dense_layer_13')



    return output_dense_13










Autoencoder/layer_files/my_layer13.py

import tensorflow as tf

import my_functions



######### LAYER CONFIGURATION MY_LAYER2

# ENCODER:

# conv, conv, pool, conv, conv, pool, conv, conv, pool, reshape, FC, FC, FC, FC

#

# DECODE:

# FC, FC, FC, FC, reshape, unpool, deconv, deconv, unpool, deconv, deconv, unpool, deconv, deconv

#

# CLASSIFIER:

# dense, dense, dense





def encoder(input_img, N_FILTERS, K_SIZE, trainable):



    output_conv1    = my_functions.my_conv2d(input_img, N_FILTERS, K_SIZE, trainable, 'conv_1')

    output_conv2    = my_functions.my_conv2d(output_conv1, N_FILTERS, K_SIZE, trainable, 'conv_2')

    output_pool3    = my_functions.my_pooling(output_conv2, 'pooling_3')

    output_conv4    = my_functions.my_conv2d(output_pool3, N_FILTERS, K_SIZE, trainable, 'conv_4')

    output_conv5    = my_functions.my_conv2d(output_conv4, N_FILTERS, K_SIZE, trainable, 'conv_5')

    output_pool6    = my_functions.my_pooling(output_conv5, 'pooling_6')

    output_conv7    = my_functions.my_conv2d(output_pool6, N_FILTERS, K_SIZE, trainable, 'conv_7')

    output_conv8    = my_functions.my_conv2d(output_conv7, N_FILTERS, K_SIZE, trainable, 'conv_8')

    output_pool9    = my_functions.my_pooling(output_conv8, 'pooling_9')

    reshape_shape   = output_pool9.get_shape().as_list()

    output_reshape10 = tf.reshape(tensor=output_pool9, shape=[-1, reshape_shape[1]*reshape_shape[2]*N_FILTERS], name='reshape_10')

    output_dense_11 = my_functions.my_dense(input=output_reshape10, units=(reshape_shape[1] * reshape_shape[1] * N_FILTERS) / 2, name='dense_layer_11')

    #print('output_dense_11: ', output_dense_11)

    output_dense_12 = my_functions.my_dense(input=output_dense_11, units=(reshape_shape[1] * reshape_shape[1] * N_FILTERS) / 4, name='dense_layer_12')

    #print('output_dense_12: ', output_dense_12)

    output_dense_13 = my_functions.my_dense(input=output_dense_12, units=(reshape_shape[1] * reshape_shape[1] * N_FILTERS) / 8, name='dense_layer_13')

    #print('output_dense_13: ', output_dense_13)

    output_dense_14 = my_functions.my_dense(input=output_dense_13, units=(reshape_shape[1] * reshape_shape[1] * N_FILTERS) / 16, name='dense_layer_14')

    #print('output_dense_14: ', output_dense_14)

    size_last_layer = output_dense_14.get_shape().as_list()[1]



    return output_dense_14, reshape_shape, size_last_layer





def decoder(input, N_FILTERS, N_INPUT_CH, reshape_shape, K_SIZE):



    output_dense_15 = my_functions.my_dense(input=input, units=(reshape_shape[1] * reshape_shape[1] * N_FILTERS) / 8, name='dense_layer_15')

    #print('output_dense_15: ', output_dense_15)



    output_dense_16 = my_functions.my_dense(input=output_dense_15, units=(reshape_shape[1] * reshape_shape[1] * N_FILTERS) / 4, name='dense_layer_16')

    #print('output_dense_16: ', output_dense_16)



    output_dense_17 = my_functions.my_dense(input=output_dense_16, units=(reshape_shape[1] * reshape_shape[1] * N_FILTERS) / 2, name='dense_layer_17')

    #print('output_dense_17: ', output_dense_17)



    output_dense_18 = my_functions.my_dense(input=output_dense_17, units=reshape_shape[1] * reshape_shape[1] * N_FILTERS, name='dense_layer_18')

    #print('output_dense_18: ', output_dense_18)



    output_reshape19 = tf.reshape(tensor=output_dense_18, shape=[-1, reshape_shape[1], reshape_shape[2], N_FILTERS], name='reshape_19')

    with tf.name_scope('unpooling_20'):

        output_unpool20 = my_functions.unpool_resize(output_reshape19, [1, 2, 2, 1])

    output_deconv21 = my_functions.deconvLayer_new(output_unpool20, N_FILTERS, K_SIZE, name='deconvolve_21')

    output_deconv22 = my_functions.deconvLayer_new(output_deconv21, N_FILTERS, K_SIZE, name='deconvolve_22')

    with tf.name_scope('unpooling_23'):

        output_unpool23 = my_functions.unpool_resize(output_deconv22, [1, 2, 2, 1])

    output_deconv24 = my_functions.deconvLayer_new(output_unpool23, N_INPUT_CH, K_SIZE, name='deconvolve_24')

    output_deconv25 = my_functions.deconvLayer_new(output_deconv24, N_INPUT_CH, K_SIZE, name='deconvolve_25')



    with tf.name_scope('unpooling_26'):

        output_unpool26 = my_functions.unpool_resize(output_deconv25, [1, 2, 2, 1])

    output_deconv27 = my_functions.deconvLayer_new(output_unpool26, N_INPUT_CH, K_SIZE, name='deconvolve_27')

    output_deconv28 = my_functions.deconvLayer_new(output_deconv27, N_INPUT_CH, K_SIZE, name='deconvolve_28')



    return output_deconv28





def classify(input, N_FILTERS_CF_1, N_FILTERS_CF_2, name1, name2, N_CLASSES_CF):



    # Fully connected layer

    output_dense_11 = my_functions.my_dense(input=input, units=N_FILTERS_CF_1, name=name1 + '_' + name2 + '_dense_layer_11')

    output_dense_12 = my_functions.my_dense(input=output_dense_11, units=N_FILTERS_CF_2, name=name1 + '_' + name2 + '_dense_layer_12')

    output_dense_13 = my_functions.my_dense(input=output_dense_12, units=N_CLASSES_CF, name=name1 + '_' + name2 + '_dense_layer_13')



    return output_dense_13










Autoencoder/layer_files/my_layer14.py

import tensorflow as tf

import my_functions



######### LAYER CONFIGURATION MY_LAYER2

# ENCODER:

# conv, pool, conv, pool, reshape, FC, FC

#

# DECODE:

# FC, FC, reshape, unpool, deconv, unpool, deconv

#

# CLASSIFIER:

# dense, dense, dense





def encoder(input_img, N_FILTERS, K_SIZE, trainable):



    output_conv1    = my_functions.my_conv2d(input_img, N_FILTERS, K_SIZE, trainable, 'conv_1')

    output_pool2    = my_functions.my_pooling(output_conv1, 'pooling_2')

    output_conv3    = my_functions.my_conv2d(output_pool2, N_FILTERS, K_SIZE, trainable, 'conv_3')

    output_pool4    = my_functions.my_pooling(output_conv3, 'pooling_4')

    reshape_shape   = output_pool4.get_shape().as_list()

    output_reshape5 = tf.reshape(tensor=output_pool4, shape=[-1, reshape_shape[1]*reshape_shape[2]*N_FILTERS], name='reshape_5')

    output_dense_6 = my_functions.my_dense(input=output_reshape5, units=(reshape_shape[1] * reshape_shape[1] * N_FILTERS) / 2, name='dense_layer_6')

    #print('output_dense_6: ', output_dense_6)

    output_dense_7 = my_functions.my_dense(input=output_dense_6, units=(reshape_shape[1] * reshape_shape[1] * N_FILTERS) / 4, name='dense_layer_7')

    #print('output_dense_7: ', output_dense_7)

    size_last_layer = output_dense_7.get_shape().as_list()[1]



    return output_dense_7, reshape_shape, size_last_layer





def decoder(input, N_FILTERS, N_INPUT_CH, reshape_shape, K_SIZE):



    output_dense_8 = my_functions.my_dense(input=input, units=(reshape_shape[1] * reshape_shape[1] * N_FILTERS) / 2, name='dense_layer_8')

    #print('output_dense_8: ', output_dense_8)

    output_dense_9 = my_functions.my_dense(input=output_dense_8, units=reshape_shape[1] * reshape_shape[1] * N_FILTERS, name='dense_layer_9')

    #print('output_dense_9: ', output_dense_9)



    output_reshape10 = tf.reshape(tensor=output_dense_9, shape=[-1, reshape_shape[1], reshape_shape[2], N_FILTERS], name='reshape_10')

    with tf.name_scope('unpooling_11'):

        output_unpool11 = my_functions.unpool_resize(output_reshape10, [1, 2, 2, 1])

    output_deconv12 = my_functions.deconvLayer_new(output_unpool11, N_FILTERS, K_SIZE, name='deconvolve_12')

    with tf.name_scope('unpooling_13'):

        output_unpool13 = my_functions.unpool_resize(output_deconv12, [1, 2, 2, 1])

    output_deconv14 = my_functions.deconvLayer_new(output_unpool13, N_INPUT_CH, K_SIZE, name='deconvolve_14')



    return output_deconv14





def classify(input, N_FILTERS_CF_1, N_FILTERS_CF_2, name1, name2, N_CLASSES_CF):



    # Fully connected layer

    output_dense_11 = my_functions.my_dense(input=input, units=N_FILTERS_CF_1, name=name1 + '_' + name2 + '_dense_layer_11')

    output_dense_12 = my_functions.my_dense(input=output_dense_11, units=N_FILTERS_CF_2, name=name1 + '_' + name2 + '_dense_layer_12')

    output_dense_13 = my_functions.my_dense(input=output_dense_12, units=N_CLASSES_CF, name=name1 + '_' + name2 + '_dense_layer_13')



    return output_dense_13










Autoencoder/layer_files/my_layer15.py

import tensorflow as tf

import my_functions



######### LAYER CONFIGURATION MY_LAYER2

# ENCODER:

# conv, pool, conv, pool, reshape, FC, FC, FC

#

# DECODE:

# FC, FC, FC, reshape, unpool, deconv, unpool, deconv

#

# CLASSIFIER:

# dense, dense, dense





def encoder(input_img, N_FILTERS, K_SIZE, trainable):



    output_conv1    = my_functions.my_conv2d(input_img, N_FILTERS, K_SIZE, trainable, 'conv_1')

    output_pool2    = my_functions.my_pooling(output_conv1, 'pooling_2')

    output_conv3    = my_functions.my_conv2d(output_pool2, N_FILTERS, K_SIZE, trainable, 'conv_3')

    output_pool4    = my_functions.my_pooling(output_conv3, 'pooling_4')

    reshape_shape   = output_pool4.get_shape().as_list()

    output_reshape5 = tf.reshape(tensor=output_pool4, shape=[-1, reshape_shape[1]*reshape_shape[2]*N_FILTERS], name='reshape_5')

    output_dense_6 = my_functions.my_dense(input=output_reshape5, units=(reshape_shape[1] * reshape_shape[1] * N_FILTERS) / 2, name='dense_layer_6')

    #print('output_dense_6: ', output_dense_6)

    output_dense_7 = my_functions.my_dense(input=output_dense_6, units=(reshape_shape[1] * reshape_shape[1] * N_FILTERS) / 4, name='dense_layer_7')

    #print('output_dense_7: ', output_dense_7)

    output_dense_8 = my_functions.my_dense(input=output_dense_7, units=(reshape_shape[1] * reshape_shape[1] * N_FILTERS) / 8, name='dense_layer_8')

    #print('output_dense_8: ', output_dense_8)

    size_last_layer = output_dense_8.get_shape().as_list()[1]



    return output_dense_8, reshape_shape, size_last_layer





def decoder(input, N_FILTERS, N_INPUT_CH, reshape_shape, K_SIZE):



    output_dense_9 = my_functions.my_dense(input=input, units=(reshape_shape[1] * reshape_shape[1] * N_FILTERS) / 4, name='dense_layer_9')

    #print('output_dense_9: ', output_dense_9)



    output_dense_10 = my_functions.my_dense(input=output_dense_9, units=(reshape_shape[1] * reshape_shape[1] * N_FILTERS) / 2, name='dense_layer_10')

    #print('output_dense_10: ', output_dense_10)

    output_dense_11 = my_functions.my_dense(input=output_dense_10, units=reshape_shape[1] * reshape_shape[1] * N_FILTERS, name='dense_layer_11')

    #print('output_dense_11: ', output_dense_11)



    output_reshape12 = tf.reshape(tensor=output_dense_11, shape=[-1, reshape_shape[1], reshape_shape[2], N_FILTERS], name='reshape_12')

    with tf.name_scope('unpooling_13'):

        output_unpool13 = my_functions.unpool_resize(output_reshape12, [1, 2, 2, 1])

    output_deconv14 = my_functions.deconvLayer_new(output_unpool13, N_FILTERS, K_SIZE, name='deconvolve_14')

    with tf.name_scope('unpooling_15'):

        output_unpool15 = my_functions.unpool_resize(output_deconv14, [1, 2, 2, 1])

    output_deconv16 = my_functions.deconvLayer_new(output_unpool15, N_INPUT_CH, K_SIZE, name='deconvolve_16')



    return output_deconv16





def classify(input, N_FILTERS_CF_1, N_FILTERS_CF_2, name1, name2, N_CLASSES_CF):



    # Fully connected layer

    output_dense_11 = my_functions.my_dense(input=input, units=N_FILTERS_CF_1, name=name1 + '_' + name2 + '_dense_layer_11')

    output_dense_12 = my_functions.my_dense(input=output_dense_11, units=N_FILTERS_CF_2, name=name1 + '_' + name2 + '_dense_layer_12')

    output_dense_13 = my_functions.my_dense(input=output_dense_12, units=N_CLASSES_CF, name=name1 + '_' + name2 + '_dense_layer_13')



    return output_dense_13










Autoencoder/layer_files/my_layer16.py

import tensorflow as tf

import my_functions



######### LAYER CONFIGURATION MY_LAYER2

# ENCODER:

# conv, pool, conv, pool, reshape, FC, FC, FC, FC

#

# DECODE:

# FC, FC, FC, FC, reshape, unpool, deconv, unpool, deconv

#

# CLASSIFIER:

# dense, dense, dense





def encoder(input_img, N_FILTERS, K_SIZE, trainable):



    output_conv1    = my_functions.my_conv2d(input_img, N_FILTERS, K_SIZE, trainable, 'conv_1')

    output_pool2    = my_functions.my_pooling(output_conv1, 'pooling_2')

    output_conv3    = my_functions.my_conv2d(output_pool2, N_FILTERS, K_SIZE, trainable, 'conv_3')

    output_pool4    = my_functions.my_pooling(output_conv3, 'pooling_4')

    reshape_shape   = output_pool4.get_shape().as_list()

    output_reshape5 = tf.reshape(tensor=output_pool4, shape=[-1, reshape_shape[1]*reshape_shape[2]*N_FILTERS], name='reshape_5')

    output_dense_6 = my_functions.my_dense(input=output_reshape5, units=(reshape_shape[1] * reshape_shape[1] * N_FILTERS) / 2, name='dense_layer_6')

    #print('output_dense_6: ', output_dense_6)

    output_dense_7 = my_functions.my_dense(input=output_dense_6, units=(reshape_shape[1] * reshape_shape[1] * N_FILTERS) / 4, name='dense_layer_7')

    #print('output_dense_7: ', output_dense_7)

    output_dense_8 = my_functions.my_dense(input=output_dense_7, units=(reshape_shape[1] * reshape_shape[1] * N_FILTERS) / 8, name='dense_layer_8')

    #print('output_dense_8: ', output_dense_8)

    output_dense_9 = my_functions.my_dense(input=output_dense_8, units=(reshape_shape[1] * reshape_shape[1] * N_FILTERS) / 16, name='dense_layer_9')

    #print('output_dense_9: ', output_dense_9)

    size_last_layer = output_dense_9.get_shape().as_list()[1]



    return output_dense_9, reshape_shape, size_last_layer





def decoder(input, N_FILTERS, N_INPUT_CH, reshape_shape, K_SIZE):



    output_dense_10 = my_functions.my_dense(input=input, units=(reshape_shape[1] * reshape_shape[1] * N_FILTERS) / 8, name='dense_layer_10')

    #print('output_dense_10: ', output_dense_10)



    output_dense_11 = my_functions.my_dense(input=output_dense_10, units=(reshape_shape[1] * reshape_shape[1] * N_FILTERS) / 4, name='dense_layer_11')

    #print('output_dense_11: ', output_dense_11)



    output_dense_12 = my_functions.my_dense(input=output_dense_11, units=(reshape_shape[1] * reshape_shape[1] * N_FILTERS) / 2, name='dense_layer_12')

    #print('output_dense_12: ', output_dense_12)

    output_dense_13 = my_functions.my_dense(input=output_dense_12, units=reshape_shape[1] * reshape_shape[1] * N_FILTERS, name='dense_layer_13')

    #print('output_dense_13: ', output_dense_13)



    output_reshape14 = tf.reshape(tensor=output_dense_13, shape=[-1, reshape_shape[1], reshape_shape[2], N_FILTERS], name='reshape_14')

    with tf.name_scope('unpooling_15'):

        output_unpool15 = my_functions.unpool_resize(output_reshape14, [1, 2, 2, 1])

    output_deconv16 = my_functions.deconvLayer_new(output_unpool15, N_FILTERS, K_SIZE, name='deconvolve_16')

    with tf.name_scope('unpooling_17'):

        output_unpool17 = my_functions.unpool_resize(output_deconv16, [1, 2, 2, 1])

    output_deconv18 = my_functions.deconvLayer_new(output_unpool17, N_INPUT_CH, K_SIZE, name='deconvolve_18')



    return output_deconv18





def classify(input, N_FILTERS_CF_1, N_FILTERS_CF_2, name1, name2, N_CLASSES_CF):



    # Fully connected layer

    output_dense_11 = my_functions.my_dense(input=input, units=N_FILTERS_CF_1, name=name1 + '_' + name2 + '_dense_layer_11')

    output_dense_12 = my_functions.my_dense(input=output_dense_11, units=N_FILTERS_CF_2, name=name1 + '_' + name2 + '_dense_layer_12')

    output_dense_13 = my_functions.my_dense(input=output_dense_12, units=N_CLASSES_CF, name=name1 + '_' + name2 + '_dense_layer_13')



    return output_dense_13










Autoencoder/layer_files/my_layer17.py

import tensorflow as tf

import my_functions



######### LAYER CONFIGURATION MY_LAYER2

# ENCODER:

# conv, pool, conv, pool, conv, pool, reshape

#

# DECODE:

# reshape, unpool, deconv, unpool, deconv, unpool, deconv

#

# CLASSIFIER:

# dense, dense, dense





def encoder(input_img, N_FILTERS, K_SIZE, trainable):



    output_conv1    = my_functions.my_conv2d(input_img, N_FILTERS, K_SIZE, trainable, 'conv_1')

    output_pool2    = my_functions.my_pooling(output_conv1, 'pooling_2')

    output_conv3    = my_functions.my_conv2d(output_pool2, N_FILTERS, K_SIZE, trainable, 'conv_3')

    output_pool4    = my_functions.my_pooling(output_conv3, 'pooling_4')

    output_conv5    = my_functions.my_conv2d(output_pool4, N_FILTERS, K_SIZE, trainable, 'conv_5')

    output_pool6    = my_functions.my_pooling(output_conv5, 'pooling_6')

    reshape_shape   = output_pool6.get_shape().as_list()

    output_reshape7 = tf.reshape(tensor=output_pool6, shape=[-1, reshape_shape[1]*reshape_shape[2]*N_FILTERS], name='reshape_7')

    size_last_layer = output_reshape7.get_shape().as_list()[1]



    return output_reshape7, reshape_shape, size_last_layer





def decoder(input, N_FILTERS, N_INPUT_CH, reshape_shape, K_SIZE):



    output_reshape8 = tf.reshape(tensor=input, shape=[-1, reshape_shape[1], reshape_shape[2], N_FILTERS], name='reshape_12')

    with tf.name_scope('unpooling_9'):

        output_unpool9 = my_functions.unpool_resize(output_reshape8, [1, 2, 2, 1])

    output_deconv10 = my_functions.deconvLayer_new(output_unpool9, N_FILTERS, K_SIZE, name='deconvolve_10')

    with tf.name_scope('unpooling_11'):

        output_unpool11 = my_functions.unpool_resize(output_deconv10, [1, 2, 2, 1])

    output_deconv12 = my_functions.deconvLayer_new(output_unpool11, N_FILTERS, K_SIZE, name='deconvolve_12')

    with tf.name_scope('unpooling_13'):

        output_unpool13 = my_functions.unpool_resize(output_deconv12, [1, 2, 2, 1])

    output_deconv14 = my_functions.deconvLayer_new(output_unpool13, N_INPUT_CH, K_SIZE, name='deconvolve_14')



    return output_deconv14





def classify(input, N_FILTERS_CF_1, N_FILTERS_CF_2, name1, name2, N_CLASSES_CF):



    # Fully connected layer

    output_dense_11 = my_functions.my_dense(input=input, units=N_FILTERS_CF_1, name=name1 + '_' + name2 + '_dense_layer_11')

    output_dense_12 = my_functions.my_dense(input=output_dense_11, units=N_FILTERS_CF_2, name=name1 + '_' + name2 + '_dense_layer_12')

    output_dense_13 = my_functions.my_dense(input=output_dense_12, units=N_CLASSES_CF, name=name1 + '_' + name2 + '_dense_layer_13')



    return output_dense_13










Autoencoder/layer_files/my_layer18.py

import tensorflow as tf

import my_functions



######### LAYER CONFIGURATION MY_LAYER2

# ENCODER:

# conv, pool, conv, pool, conv, pool, reshape, FC

#

# DECODE:

# FC, reshape, unpool, deconv, unpool, deconv, unpool, deconv

#

# CLASSIFIER:

# dense, dense, dense





def encoder(input_img, N_FILTERS, K_SIZE, trainable):



    output_conv1    = my_functions.my_conv2d(input_img, N_FILTERS, K_SIZE, trainable, 'conv_1')

    output_pool2    = my_functions.my_pooling(output_conv1, 'pooling_2')

    output_conv3    = my_functions.my_conv2d(output_pool2, N_FILTERS, K_SIZE, trainable, 'conv_3')

    output_pool4    = my_functions.my_pooling(output_conv3, 'pooling_4')

    output_conv5    = my_functions.my_conv2d(output_pool4, N_FILTERS, K_SIZE, trainable, 'conv_5')

    output_pool6    = my_functions.my_pooling(output_conv5, 'pooling_6')

    reshape_shape   = output_pool6.get_shape().as_list()

    output_reshape7 = tf.reshape(tensor=output_pool6, shape=[-1, reshape_shape[1]*reshape_shape[2]*N_FILTERS], name='reshape_7')

    output_dense_8 = my_functions.my_dense(input=output_reshape7, units=(reshape_shape[1] * reshape_shape[1] * N_FILTERS) / 2, name='dense_layer_8')

    #print('output_dense_8: ', output_dense_8)

    size_last_layer = output_dense_8.get_shape().as_list()[1]



    return output_dense_8, reshape_shape, size_last_layer





def decoder(input, N_FILTERS, N_INPUT_CH, reshape_shape, K_SIZE):



    output_dense_9 = my_functions.my_dense(input=input, units=reshape_shape[1] * reshape_shape[1] * N_FILTERS, name='dense_layer_9')

    #print('output_dense_9: ', output_dense_9)



    output_reshape10 = tf.reshape(tensor=output_dense_9, shape=[-1, reshape_shape[1], reshape_shape[2], N_FILTERS], name='reshape_10')

    with tf.name_scope('unpooling_11'):

        output_unpool11 = my_functions.unpool_resize(output_reshape10, [1, 2, 2, 1])

    output_deconv12 = my_functions.deconvLayer_new(output_unpool11, N_FILTERS, K_SIZE, name='deconvolve_12')

    with tf.name_scope('unpooling_13'):

        output_unpool13 = my_functions.unpool_resize(output_deconv12, [1, 2, 2, 1])

    output_deconv14 = my_functions.deconvLayer_new(output_unpool13, N_FILTERS, K_SIZE, name='deconvolve_14')

    with tf.name_scope('unpooling_15'):

        output_unpool15 = my_functions.unpool_resize(output_deconv14, [1, 2, 2, 1])

    output_deconv16 = my_functions.deconvLayer_new(output_unpool15, N_INPUT_CH, K_SIZE, name='deconvolve_16')



    return output_deconv16





def classify(input, N_FILTERS_CF_1, N_FILTERS_CF_2, name1, name2, N_CLASSES_CF):



    # Fully connected layer

    output_dense_11 = my_functions.my_dense(input=input, units=N_FILTERS_CF_1, name=name1 + '_' + name2 + '_dense_layer_11')

    output_dense_12 = my_functions.my_dense(input=output_dense_11, units=N_FILTERS_CF_2, name=name1 + '_' + name2 + '_dense_layer_12')

    output_dense_13 = my_functions.my_dense(input=output_dense_12, units=N_CLASSES_CF, name=name1 + '_' + name2 + '_dense_layer_13')



    return output_dense_13










Autoencoder/layer_files/my_layer19.py

import tensorflow as tf

import my_functions



######### LAYER CONFIGURATION MY_LAYER2

# ENCODER:

# conv, pool, conv, pool, conv, pool, reshape, FC, FC

#

# DECODE:

# FC, FC, reshape, unpool, deconv, unpool, deconv, unpool, deconv

#

# CLASSIFIER:

# dense, dense, dense





def encoder(input_img, N_FILTERS, K_SIZE, trainable):



    output_conv1    = my_functions.my_conv2d(input_img, N_FILTERS, K_SIZE, trainable, 'conv_1')

    output_pool2    = my_functions.my_pooling(output_conv1, 'pooling_2')

    output_conv3    = my_functions.my_conv2d(output_pool2, N_FILTERS, K_SIZE, trainable, 'conv_3')

    output_pool4    = my_functions.my_pooling(output_conv3, 'pooling_4')

    output_conv5    = my_functions.my_conv2d(output_pool4, N_FILTERS, K_SIZE, trainable, 'conv_5')

    output_pool6    = my_functions.my_pooling(output_conv5, 'pooling_6')

    reshape_shape   = output_pool6.get_shape().as_list()

    output_reshape7 = tf.reshape(tensor=output_pool6, shape=[-1, reshape_shape[1]*reshape_shape[2]*N_FILTERS], name='reshape_7')

    output_dense_8 = my_functions.my_dense(input=output_reshape7, units=(reshape_shape[1] * reshape_shape[1] * N_FILTERS) / 2, name='dense_layer_8')

    #print('output_dense_8: ', output_dense_8)

    output_dense_9 = my_functions.my_dense(input=output_dense_8, units=(reshape_shape[1] * reshape_shape[1] * N_FILTERS) / 4, name='dense_layer_9')

    #print('output_dense_9: ', output_dense_9)

    size_last_layer = output_dense_9.get_shape().as_list()[1]



    return output_dense_9, reshape_shape, size_last_layer





def decoder(input, N_FILTERS, N_INPUT_CH, reshape_shape, K_SIZE):



    output_dense_10 = my_functions.my_dense(input=input, units=(reshape_shape[1] * reshape_shape[1] * N_FILTERS) / 2, name='dense_layer_10')

    #print('output_dense_10: ', output_dense_10)



    output_dense_11 = my_functions.my_dense(input=output_dense_10, units=reshape_shape[1] * reshape_shape[1] * N_FILTERS, name='dense_layer_11')

    #print('output_dense_11: ', output_dense_11)



    output_reshape12 = tf.reshape(tensor=output_dense_11, shape=[-1, reshape_shape[1], reshape_shape[2], N_FILTERS], name='reshape_12')

    with tf.name_scope('unpooling_13'):

        output_unpool13 = my_functions.unpool_resize(output_reshape12, [1, 2, 2, 1])

    output_deconv14 = my_functions.deconvLayer_new(output_unpool13, N_FILTERS, K_SIZE, name='deconvolve_14')

    with tf.name_scope('unpooling_15'):

        output_unpool15 = my_functions.unpool_resize(output_deconv14, [1, 2, 2, 1])

    output_deconv16 = my_functions.deconvLayer_new(output_unpool15, N_FILTERS, K_SIZE, name='deconvolve_16')

    with tf.name_scope('unpooling_17'):

        output_unpool17 = my_functions.unpool_resize(output_deconv16, [1, 2, 2, 1])

    output_deconv18 = my_functions.deconvLayer_new(output_unpool17, N_INPUT_CH, K_SIZE, name='deconvolve_18')



    return output_deconv18





def classify(input, N_FILTERS_CF_1, N_FILTERS_CF_2, name1, name2, N_CLASSES_CF):



    # Fully connected layer

    output_dense_11 = my_functions.my_dense(input=input, units=N_FILTERS_CF_1, name=name1 + '_' + name2 + '_dense_layer_11')

    output_dense_12 = my_functions.my_dense(input=output_dense_11, units=N_FILTERS_CF_2, name=name1 + '_' + name2 + '_dense_layer_12')

    output_dense_13 = my_functions.my_dense(input=output_dense_12, units=N_CLASSES_CF, name=name1 + '_' + name2 + '_dense_layer_13')



    return output_dense_13










Autoencoder/layer_files/my_layer2.py

import tensorflow as tf

import my_functions



######### LAYER CONFIGURATION MY_LAYER1

# ENCODER:

# conv, conv, pool, reshape, FC

#

# DECODE:

# FC, reshape, unpool, deconv, deconv

#

# CLASSIFIER:

# dense, dense, dense





def encoder(input_img, N_FILTERS, K_SIZE, trainable):



    output_conv1    = my_functions.my_conv2d(input_img, N_FILTERS, K_SIZE, trainable, 'conv_1')

    output_conv2    = my_functions.my_conv2d(output_conv1, N_FILTERS, K_SIZE, trainable, 'conv_2')

    output_pool3    = my_functions.my_pooling(output_conv2, 'pooling_3')

    reshape_shape   = output_pool3.get_shape().as_list()

    output_reshape4 = tf.reshape(tensor=output_pool3, shape=[-1, reshape_shape[1]*reshape_shape[2]*N_FILTERS], name='reshape_4')

    print('output_reshape4: ', output_reshape4)

    output_dense_5 = my_functions.my_dense(input=output_reshape4, units=(reshape_shape[1] * reshape_shape[1] * N_FILTERS) / 2, name='dense_layer_5')

    print('output_dense_5: ', output_dense_5)

    SIZE_LAST_LAYER = output_dense_5.get_shape().as_list()[1]



    return output_dense_5, reshape_shape, SIZE_LAST_LAYER





def decoder(input, N_FILTERS, N_INPUT_CH, reshape_shape, K_SIZE):



    output_dense_6 = my_functions.my_dense(input=input, units=reshape_shape[1] * reshape_shape[1] * N_FILTERS, name='dense_layer_6')

    print('output_dense_6: ', output_dense_6)

    output_reshape7 = tf.reshape(tensor=output_dense_6, shape=[-1, reshape_shape[1], reshape_shape[2], N_FILTERS], name='reshape_7')

    print('output_reshape7: ', output_reshape7)

    with tf.name_scope('unpooling_8'):

        output_unpool8 = my_functions.unpool_resize(output_reshape7, [1, 2, 2, 1])

    output_deconv9 = my_functions.deconvLayer_new(output_unpool8, N_FILTERS, K_SIZE, name='deconvolve_9')

    output_deconv10 = my_functions.deconvLayer_new(output_deconv9, N_INPUT_CH, K_SIZE, name='deconvolve_10')



    return output_deconv10





def classify(input, N_FILTERS_CF_1, N_FILTERS_CF_2, name1, name2, N_CLASSES_CF):



    # Fully connected layer

    output_dense_9 = my_functions.my_dense(input=input, units=N_FILTERS_CF_1, name=name1 + '_' + name2 + '_dense_layer_9')

    output_dense_10 = my_functions.my_dense(input=output_dense_9, units=N_FILTERS_CF_2, name=name1 + '_' + name2 + '_dense_layer_10')

    output_dense_11 = my_functions.my_dense(input=output_dense_10, units=N_CLASSES_CF, name=name1 + '_' + name2 + '_dense_layer_11')



    return output_dense_11








Autoencoder/layer_files/my_layer20.py

import tensorflow as tf

import my_functions



######### LAYER CONFIGURATION MY_LAYER2

# ENCODER:

# conv, pool, conv, pool, conv, pool, reshape, FC, FC, FC

#

# DECODE:

# FC, FC, FC, reshape, unpool, deconv, unpool, deconv, unpool, deconv

#

# CLASSIFIER:

# dense, dense, dense





def encoder(input_img, N_FILTERS, K_SIZE, trainable):



    output_conv1    = my_functions.my_conv2d(input_img, N_FILTERS, K_SIZE, trainable, 'conv_1')

    output_pool2    = my_functions.my_pooling(output_conv1, 'pooling_2')

    output_conv3    = my_functions.my_conv2d(output_pool2, N_FILTERS, K_SIZE, trainable, 'conv_3')

    output_pool4    = my_functions.my_pooling(output_conv3, 'pooling_4')

    output_conv5    = my_functions.my_conv2d(output_pool4, N_FILTERS, K_SIZE, trainable, 'conv_5')

    output_pool6    = my_functions.my_pooling(output_conv5, 'pooling_6')

    reshape_shape   = output_pool6.get_shape().as_list()

    output_reshape7 = tf.reshape(tensor=output_pool6, shape=[-1, reshape_shape[1]*reshape_shape[2]*N_FILTERS], name='reshape_7')

    output_dense_8 = my_functions.my_dense(input=output_reshape7, units=(reshape_shape[1] * reshape_shape[1] * N_FILTERS) / 2, name='dense_layer_8')

    #print('output_dense_8: ', output_dense_8)

    output_dense_9 = my_functions.my_dense(input=output_dense_8, units=(reshape_shape[1] * reshape_shape[1] * N_FILTERS) / 4, name='dense_layer_9')

    #print('output_dense_9: ', output_dense_9)

    output_dense_10 = my_functions.my_dense(input=output_dense_9, units=(reshape_shape[1] * reshape_shape[1] * N_FILTERS) / 8, name='dense_layer_10')

    #print('output_dense_10: ', output_dense_10)

    size_last_layer = output_dense_10.get_shape().as_list()[1]



    return output_dense_10, reshape_shape, size_last_layer





def decoder(input, N_FILTERS, N_INPUT_CH, reshape_shape, K_SIZE):



    output_dense_11 = my_functions.my_dense(input=input, units=(reshape_shape[1] * reshape_shape[1] * N_FILTERS) / 4, name='dense_layer_11')

    #print('output_dense_11: ', output_dense_11)



    output_dense_12 = my_functions.my_dense(input=output_dense_11, units=(reshape_shape[1] * reshape_shape[1] * N_FILTERS) / 2, name='dense_layer_12')

    #print('output_dense_12: ', output_dense_12)



    output_dense_13 = my_functions.my_dense(input=output_dense_12, units=reshape_shape[1] * reshape_shape[1] * N_FILTERS, name='dense_layer_13')

    #print('output_dense_13: ', output_dense_13)



    output_reshape14 = tf.reshape(tensor=output_dense_13, shape=[-1, reshape_shape[1], reshape_shape[2], N_FILTERS], name='reshape_14')

    with tf.name_scope('unpooling_15'):

        output_unpool15 = my_functions.unpool_resize(output_reshape14, [1, 2, 2, 1])

    output_deconv16 = my_functions.deconvLayer_new(output_unpool15, N_FILTERS, K_SIZE, name='deconvolve_16')

    with tf.name_scope('unpooling_17'):

        output_unpool17 = my_functions.unpool_resize(output_deconv16, [1, 2, 2, 1])

    output_deconv18 = my_functions.deconvLayer_new(output_unpool17, N_FILTERS, K_SIZE, name='deconvolve_18')

    with tf.name_scope('unpooling_19'):

        output_unpool19 = my_functions.unpool_resize(output_deconv18, [1, 2, 2, 1])

    output_deconv20 = my_functions.deconvLayer_new(output_unpool19, N_INPUT_CH, K_SIZE, name='deconvolve_20')



    return output_deconv20





def classify(input, N_FILTERS_CF_1, N_FILTERS_CF_2, name1, name2, N_CLASSES_CF):



    # Fully connected layer

    output_dense_11 = my_functions.my_dense(input=input, units=N_FILTERS_CF_1, name=name1 + '_' + name2 + '_dense_layer_11')

    output_dense_12 = my_functions.my_dense(input=output_dense_11, units=N_FILTERS_CF_2, name=name1 + '_' + name2 + '_dense_layer_12')

    output_dense_13 = my_functions.my_dense(input=output_dense_12, units=N_CLASSES_CF, name=name1 + '_' + name2 + '_dense_layer_13')



    return output_dense_13










Autoencoder/layer_files/my_layer21.py

import tensorflow as tf

import my_functions



######### LAYER CONFIGURATION MY_LAYER2

# ENCODER:

# conv, pool, conv, pool, conv, pool, conv, pool, reshape, FC,

#

# DECODE:

# FC, reshape, unpool, deconv, unpool, deconv, unpool, deconv, unpool, deconv

#

# CLASSIFIER:

# dense, dense, dense





def encoder(input_img, N_FILTERS, K_SIZE, trainable):



    output_conv1    = my_functions.my_conv2d(input_img, N_FILTERS, K_SIZE, trainable, 'conv_1')

    output_pool2    = my_functions.my_pooling(output_conv1, 'pooling_2')

    output_conv3    = my_functions.my_conv2d(output_pool2, N_FILTERS, K_SIZE, trainable, 'conv_3')

    output_pool4    = my_functions.my_pooling(output_conv3, 'pooling_4')

    output_conv5    = my_functions.my_conv2d(output_pool4, N_FILTERS, K_SIZE, trainable, 'conv_5')

    output_pool6    = my_functions.my_pooling(output_conv5, 'pooling_6')



    output_conv7 = my_functions.my_conv2d(output_pool6, N_FILTERS, K_SIZE, trainable, 'conv_7')

    output_pool8 = my_functions.my_pooling(output_conv7, 'pooling_8')



    reshape_shape   = output_pool8.get_shape().as_list()



    output_reshape9 = tf.reshape(tensor=output_pool8, shape=[-1, reshape_shape[1]*reshape_shape[2]*N_FILTERS], name='reshape_9')

    output_dense_10 = my_functions.my_dense(input=output_reshape9, units=(reshape_shape[1] * reshape_shape[1] * N_FILTERS) / 2, name='dense_layer_10')

    #print('output_dense_10: ', output_dense_10)







    size_last_layer = output_dense_10.get_shape().as_list()[1]



    return output_dense_10, reshape_shape, size_last_layer





def decoder(input, N_FILTERS, N_INPUT_CH, reshape_shape, K_SIZE):



    output_dense_11 = my_functions.my_dense(input=input, units=(reshape_shape[1] * reshape_shape[1] * N_FILTERS), name='dense_layer_11')

    #print('output_dense_11: ', output_dense_11)



    output_reshape12 = tf.reshape(tensor=output_dense_11, shape=[-1, reshape_shape[1], reshape_shape[2], N_FILTERS], name='reshape_12')



    with tf.name_scope('unpooling_13'):

        output_unpool13 = my_functions.unpool_resize(output_reshape12, [1, 2, 2, 1])

    output_deconv14 = my_functions.deconvLayer_new(output_unpool13, N_FILTERS, K_SIZE, name='deconvolve_14')

    with tf.name_scope('unpooling_15'):

        output_unpool15 = my_functions.unpool_resize(output_deconv14, [1, 2, 2, 1])

    output_deconv16 = my_functions.deconvLayer_new(output_unpool15, N_FILTERS, K_SIZE, name='deconvolve_16')

    with tf.name_scope('unpooling_17'):

        output_unpool17 = my_functions.unpool_resize(output_deconv16, [1, 2, 2, 1])

    output_deconv18 = my_functions.deconvLayer_new(output_unpool17, N_INPUT_CH, K_SIZE, name='deconvolve_18')



    with tf.name_scope('unpooling_19'):

        output_unpool19 = my_functions.unpool_resize(output_deconv18, [1, 2, 2, 1])

    output_deconv20 = my_functions.deconvLayer_new(output_unpool19, N_INPUT_CH, K_SIZE, name='deconvolve_20')



    return output_deconv20





def classify(input, N_FILTERS_CF_1, N_FILTERS_CF_2, name1, name2, N_CLASSES_CF):



    # Fully connected layer

    output_dense_11 = my_functions.my_dense(input=input, units=N_FILTERS_CF_1, name=name1 + '_' + name2 + '_dense_layer_11')

    output_dense_12 = my_functions.my_dense(input=output_dense_11, units=N_FILTERS_CF_2, name=name1 + '_' + name2 + '_dense_layer_12')

    output_dense_13 = my_functions.my_dense(input=output_dense_12, units=N_CLASSES_CF, name=name1 + '_' + name2 + '_dense_layer_13')



    return output_dense_13










Autoencoder/layer_files/my_layer3.py

import tensorflow as tf

import my_functions



######### LAYER CONFIGURATION MY_LAYER2

# ENCODER:

# conv, pool, conv, pool, reshape

#

# DECODE:

# reshape, unpool, deconv, unpool, deconv

#

# CLASSIFIER:

# dense, dense, dense





def encoder(input_img, N_FILTERS, K_SIZE, trainable):



    output_conv1    = my_functions.my_conv2d(input_img, N_FILTERS, K_SIZE, trainable, 'conv_1')

    output_pool2    = my_functions.my_pooling(output_conv1, 'pooling_2')

    output_conv3    = my_functions.my_conv2d(output_pool2, N_FILTERS, K_SIZE, trainable, 'conv_3')

    output_pool4    = my_functions.my_pooling(output_conv3, 'pooling_4')

    reshape_shape   = output_pool4.get_shape().as_list()

    output_reshape5 = tf.reshape(tensor=output_pool4, shape=[-1, reshape_shape[1]*reshape_shape[2]*N_FILTERS], name='reshape_5')



    size_last_layer = output_reshape5.get_shape().as_list()[1]



    return output_reshape5, reshape_shape, size_last_layer





def decoder(input, N_FILTERS, N_INPUT_CH, reshape_shape, K_SIZE):



    output_reshape6 = tf.reshape(tensor=input, shape=[-1, reshape_shape[1], reshape_shape[2], N_FILTERS], name='reshape_6')

    with tf.name_scope('unpooling_7'):

        output_unpool7 = my_functions.unpool_resize(output_reshape6, [1, 2, 2, 1])

    output_deconv8 = my_functions.deconvLayer_new(output_unpool7, N_FILTERS, K_SIZE, name='deconvolve_8')

    with tf.name_scope('unpooling_9'):

        output_unpool9 = my_functions.unpool_resize(output_deconv8, [1, 2, 2, 1])

    output_deconv10 = my_functions.deconvLayer_new(output_unpool9, N_INPUT_CH, K_SIZE, name='deconvolve_10')



    return output_deconv10





def classify(input, N_FILTERS_CF_1, N_FILTERS_CF_2, name1, name2, N_CLASSES_CF):



    # Fully connected layer

    output_dense_11 = my_functions.my_dense(input=input, units=N_FILTERS_CF_1, name=name1 + '_' + name2 + '_dense_layer_11')

    output_dense_12 = my_functions.my_dense(input=output_dense_11, units=N_FILTERS_CF_2, name=name1 + '_' + name2 + '_dense_layer_12')

    output_dense_13 = my_functions.my_dense(input=output_dense_12, units=N_CLASSES_CF, name=name1 + '_' + name2 + '_dense_layer_13')



    return output_dense_13










Autoencoder/layer_files/my_layer4.py

import tensorflow as tf

import my_functions



######### LAYER CONFIGURATION MY_LAYER2

# ENCODER:

# conv, pool, conv, pool, reshape, FC

#

# DECODE:

# FC, reshape, unpool, deconv, unpool, deconv

#

# CLASSIFIER:

# dense, dense, dense





def encoder(input_img, N_FILTERS, K_SIZE, trainable):



    output_conv1    = my_functions.my_conv2d(input_img, N_FILTERS, K_SIZE, trainable, 'conv_1')

    output_pool2    = my_functions.my_pooling(output_conv1, 'pooling_2')

    output_conv3    = my_functions.my_conv2d(output_pool2, N_FILTERS, K_SIZE, trainable, 'conv_3')

    output_pool4    = my_functions.my_pooling(output_conv3, 'pooling_4')

    reshape_shape   = output_pool4.get_shape().as_list()

    output_reshape5 = tf.reshape(tensor=output_pool4, shape=[-1, reshape_shape[1]*reshape_shape[2]*N_FILTERS], name='reshape_5')

    output_dense_6 = my_functions.my_dense(input=output_reshape5, units=(reshape_shape[1] * reshape_shape[1] * N_FILTERS) / 2, name='dense_layer_6')



    size_last_layer = output_dense_6.get_shape().as_list()[1]



    return output_dense_6, reshape_shape, size_last_layer





def decoder(input, N_FILTERS, N_INPUT_CH, reshape_shape, K_SIZE):



    output_dense_7 = my_functions.my_dense(input=input, units=reshape_shape[1] * reshape_shape[1] * N_FILTERS, name='dense_layer_7')

    output_reshape8 = tf.reshape(tensor=output_dense_7, shape=[-1, reshape_shape[1], reshape_shape[2], N_FILTERS], name='reshape_8')

    with tf.name_scope('unpooling_9'):

        output_unpool9 = my_functions.unpool_resize(output_reshape8, [1, 2, 2, 1])

    output_deconv10 = my_functions.deconvLayer_new(output_unpool9, N_FILTERS, K_SIZE, name='deconvolve_10')

    with tf.name_scope('unpooling_11'):

        output_unpool11 = my_functions.unpool_resize(output_deconv10, [1, 2, 2, 1])

    output_deconv12 = my_functions.deconvLayer_new(output_unpool11, N_INPUT_CH, K_SIZE, name='deconvolve_12')



    return output_deconv12





def classify(input, N_FILTERS_CF_1, N_FILTERS_CF_2, name1, name2, N_CLASSES_CF):



    # Fully connected layer

    output_dense_11 = my_functions.my_dense(input=input, units=N_FILTERS_CF_1, name=name1 + '_' + name2 + '_dense_layer_11')

    output_dense_12 = my_functions.my_dense(input=output_dense_11, units=N_FILTERS_CF_2, name=name1 + '_' + name2 + '_dense_layer_12')

    output_dense_13 = my_functions.my_dense(input=output_dense_12, units=N_CLASSES_CF, name=name1 + '_' + name2 + '_dense_layer_13')



    return output_dense_13










Autoencoder/layer_files/my_layer5.py

import tensorflow as tf

import my_functions



######### LAYER CONFIGURATION MY_LAYER2

# ENCODER:

# conv, conv, pool, conv, conv, pool, reshape

#

# DECODE:

# reshape, unpool, deconv, deconv, unpool, deconv, deconv

#

# CLASSIFIER:

# dense, dense, dense





def encoder(input_img, N_FILTERS, K_SIZE, trainable):



    output_conv1    = my_functions.my_conv2d(input_img, N_FILTERS, K_SIZE, trainable, 'conv_1')

    output_conv2    = my_functions.my_conv2d(output_conv1, N_FILTERS, K_SIZE, trainable, 'conv_2')

    output_pool3    = my_functions.my_pooling(output_conv2, 'pooling_3')

    output_conv4    = my_functions.my_conv2d(output_pool3, N_FILTERS, K_SIZE, trainable, 'conv_4')

    output_conv5    = my_functions.my_conv2d(output_conv4, N_FILTERS, K_SIZE, trainable, 'conv_5')

    output_pool6    = my_functions.my_pooling(output_conv5, 'pooling_6')

    reshape_shape   = output_pool6.get_shape().as_list()

    output_reshape7 = tf.reshape(tensor=output_pool6, shape=[-1, reshape_shape[1]*reshape_shape[2]*N_FILTERS], name='reshape_7')

    size_last_layer = output_reshape7.get_shape().as_list()[1]



    return output_reshape7, reshape_shape, size_last_layer





def decoder(input, N_FILTERS, N_INPUT_CH, reshape_shape, K_SIZE):



    output_reshape8 = tf.reshape(tensor=input, shape=[-1, reshape_shape[1], reshape_shape[2], N_FILTERS], name='reshape_8')

    with tf.name_scope('unpooling_9'):

        output_unpool9 = my_functions.unpool_resize(output_reshape8, [1, 2, 2, 1])

    output_deconv10 = my_functions.deconvLayer_new(output_unpool9, N_FILTERS, K_SIZE, name='deconvolve_10')

    output_deconv11 = my_functions.deconvLayer_new(output_deconv10, N_FILTERS, K_SIZE, name='deconvolve_11')

    with tf.name_scope('unpooling_12'):

        output_unpool12 = my_functions.unpool_resize(output_deconv11, [1, 2, 2, 1])

    output_deconv13 = my_functions.deconvLayer_new(output_unpool12, N_INPUT_CH, K_SIZE, name='deconvolve_13')

    output_deconv14 = my_functions.deconvLayer_new(output_deconv13, N_INPUT_CH, K_SIZE, name='deconvolve_14')



    return output_deconv14





def classify(input, N_FILTERS_CF_1, N_FILTERS_CF_2, name1, name2, N_CLASSES_CF):



    # Fully connected layer

    output_dense_11 = my_functions.my_dense(input=input, units=N_FILTERS_CF_1, name=name1 + '_' + name2 + '_dense_layer_11')

    output_dense_12 = my_functions.my_dense(input=output_dense_11, units=N_FILTERS_CF_2, name=name1 + '_' + name2 + '_dense_layer_12')

    output_dense_13 = my_functions.my_dense(input=output_dense_12, units=N_CLASSES_CF, name=name1 + '_' + name2 + '_dense_layer_13')



    return output_dense_13










Autoencoder/layer_files/my_layer6.py

import tensorflow as tf

import my_functions



######### LAYER CONFIGURATION MY_LAYER2

# ENCODER:

# conv, conv, pool, conv, conv, pool, reshape, FC

#

# DECODE:

# FC, reshape, unpool, deconv, deconv, unpool, deconv, deconv

#

# CLASSIFIER:

# dense, dense, dense





def encoder(input_img, N_FILTERS, K_SIZE, trainable):



    output_conv1    = my_functions.my_conv2d(input_img, N_FILTERS, K_SIZE, trainable, 'conv_1')

    output_conv2    = my_functions.my_conv2d(output_conv1, N_FILTERS, K_SIZE, trainable, 'conv_2')

    output_pool3    = my_functions.my_pooling(output_conv2, 'pooling_3')

    output_conv4    = my_functions.my_conv2d(output_pool3, N_FILTERS, K_SIZE, trainable, 'conv_4')

    output_conv5    = my_functions.my_conv2d(output_conv4, N_FILTERS, K_SIZE, trainable, 'conv_5')

    output_pool6    = my_functions.my_pooling(output_conv5, 'pooling_6')

    reshape_shape   = output_pool6.get_shape().as_list()

    output_reshape7 = tf.reshape(tensor=output_pool6, shape=[-1, reshape_shape[1]*reshape_shape[2]*N_FILTERS], name='reshape_7')

    output_dense_8 = my_functions.my_dense(input=output_reshape7, units=(reshape_shape[1]*reshape_shape[1]*N_FILTERS)/2, name='dense_layer_8')

    size_last_layer = output_dense_8.get_shape().as_list()[1]



    return output_dense_8, reshape_shape, size_last_layer





def decoder(input, N_FILTERS, N_INPUT_CH, reshape_shape, K_SIZE):



    output_dense_9 = my_functions.my_dense(input=input, units=reshape_shape[1] * reshape_shape[1] * N_FILTERS, name='dense_layer_9')

    output_reshape10 = tf.reshape(tensor=output_dense_9, shape=[-1, reshape_shape[1], reshape_shape[2], N_FILTERS], name='reshape_10')

    with tf.name_scope('unpooling_11'):

        output_unpool11 = my_functions.unpool_resize(output_reshape10, [1, 2, 2, 1])

    output_deconv12 = my_functions.deconvLayer_new(output_unpool11, N_FILTERS, K_SIZE, name='deconvolve_12')

    output_deconv13 = my_functions.deconvLayer_new(output_deconv12, N_FILTERS, K_SIZE, name='deconvolve_13')

    with tf.name_scope('unpooling_14'):

        output_unpool14 = my_functions.unpool_resize(output_deconv13, [1, 2, 2, 1])

    output_deconv15 = my_functions.deconvLayer_new(output_unpool14, N_INPUT_CH, K_SIZE, name='deconvolve_15')

    output_deconv16 = my_functions.deconvLayer_new(output_deconv15, N_INPUT_CH, K_SIZE, name='deconvolve_16')



    return output_deconv16





def classify(input, N_FILTERS_CF_1, N_FILTERS_CF_2, name1, name2, N_CLASSES_CF):



    # Fully connected layer

    output_dense_11 = my_functions.my_dense(input=input, units=N_FILTERS_CF_1, name=name1 + '_' + name2 + '_dense_layer_11')

    output_dense_12 = my_functions.my_dense(input=output_dense_11, units=N_FILTERS_CF_2, name=name1 + '_' + name2 + '_dense_layer_12')

    output_dense_13 = my_functions.my_dense(input=output_dense_12, units=N_CLASSES_CF, name=name1 + '_' + name2 + '_dense_layer_13')



    return output_dense_13










Autoencoder/layer_files/my_layer7.py

import tensorflow as tf

import my_functions



######### LAYER CONFIGURATION MY_LAYER2

# ENCODER:

# conv, conv, pool, conv, conv, pool, reshape, FC, FC

#

# DECODE:

# FC, FC, reshape, unpool, deconv, deconv, unpool, deconv, deconv

#

# CLASSIFIER:

# dense, dense, dense





def encoder(input_img, N_FILTERS, K_SIZE, trainable):



    output_conv1    = my_functions.my_conv2d(input_img, N_FILTERS, K_SIZE, trainable, 'conv_1')

    output_conv2    = my_functions.my_conv2d(output_conv1, N_FILTERS, K_SIZE, trainable, 'conv_2')

    output_pool3    = my_functions.my_pooling(output_conv2, 'pooling_3')

    output_conv4    = my_functions.my_conv2d(output_pool3, N_FILTERS, K_SIZE, trainable, 'conv_4')

    output_conv5    = my_functions.my_conv2d(output_conv4, N_FILTERS, K_SIZE, trainable, 'conv_5')

    output_pool6    = my_functions.my_pooling(output_conv5, 'pooling_6')

    reshape_shape   = output_pool6.get_shape().as_list()

    output_reshape7 = tf.reshape(tensor=output_pool6, shape=[-1, reshape_shape[1]*reshape_shape[2]*N_FILTERS], name='reshape_7')

    #print('output_reshape7: ', output_reshape7)

    output_dense_8 = my_functions.my_dense(input=output_reshape7, units=(reshape_shape[1]*reshape_shape[1]*N_FILTERS)/2, name='dense_layer_8')

    #print('output_dense_8: ', output_dense_8)

    output_dense_9 = my_functions.my_dense(input=output_dense_8, units=(reshape_shape[1] * reshape_shape[1] * N_FILTERS) / 4, name='dense_layer_9')

    #print('output_dense_9: ', output_dense_9)

    size_last_layer = output_dense_9.get_shape().as_list()[1]



    return output_dense_9, reshape_shape, size_last_layer





def decoder(input, N_FILTERS, N_INPUT_CH, reshape_shape, K_SIZE):



    output_dense_10 = my_functions.my_dense(input=input, units=(reshape_shape[1] * reshape_shape[1] * N_FILTERS) / 2, name='dense_layer_10')

    #print('output_dense_10: ', output_dense_10)

    output_dense_11 = my_functions.my_dense(input=output_dense_10, units=reshape_shape[1] * reshape_shape[1] * N_FILTERS, name='dense_layer_11')

    #print('output_dense_11: ', output_dense_11)

    output_reshape12 = tf.reshape(tensor=output_dense_11, shape=[-1, reshape_shape[1], reshape_shape[2], N_FILTERS], name='reshape_12')

    #print('output_reshape12: ', output_reshape12)



    with tf.name_scope('unpooling_13'):

        output_unpool13 = my_functions.unpool_resize(output_reshape12, [1, 2, 2, 1])

    output_deconv14 = my_functions.deconvLayer_new(output_unpool13, N_FILTERS, K_SIZE, name='deconvolve_14')

    output_deconv15 = my_functions.deconvLayer_new(output_deconv14, N_FILTERS, K_SIZE, name='deconvolve_15')

    with tf.name_scope('unpooling_16'):

        output_unpool16 = my_functions.unpool_resize(output_deconv15, [1, 2, 2, 1])

    output_deconv17 = my_functions.deconvLayer_new(output_unpool16, N_INPUT_CH, K_SIZE, name='deconvolve_17')

    output_deconv18 = my_functions.deconvLayer_new(output_deconv17, N_INPUT_CH, K_SIZE, name='deconvolve_18')



    return output_deconv18





def classify(input, N_FILTERS_CF_1, N_FILTERS_CF_2, name1, name2, N_CLASSES_CF):



    # Fully connected layer

    output_dense_11 = my_functions.my_dense(input=input, units=N_FILTERS_CF_1, name=name1 + '_' + name2 + '_dense_layer_11')

    output_dense_12 = my_functions.my_dense(input=output_dense_11, units=N_FILTERS_CF_2, name=name1 + '_' + name2 + '_dense_layer_12')

    output_dense_13 = my_functions.my_dense(input=output_dense_12, units=N_CLASSES_CF, name=name1 + '_' + name2 + '_dense_layer_13')



    return output_dense_13










Autoencoder/layer_files/my_layer8.py

import tensorflow as tf

import my_functions



######### LAYER CONFIGURATION MY_LAYER2

# ENCODER:

# conv, conv, pool, conv, conv, pool, reshape, FC, FC, FC

#

# DECODE:

# FC, FC, FC, reshape, unpool, deconv, deconv, unpool, deconv, deconv

#

# CLASSIFIER:

# dense, dense, dense





def encoder(input_img, N_FILTERS, K_SIZE, trainable):



    output_conv1    = my_functions.my_conv2d(input_img, N_FILTERS, K_SIZE, trainable, 'conv_1')

    output_conv2    = my_functions.my_conv2d(output_conv1, N_FILTERS, K_SIZE, trainable, 'conv_2')

    output_pool3    = my_functions.my_pooling(output_conv2, 'pooling_3')

    output_conv4    = my_functions.my_conv2d(output_pool3, N_FILTERS, K_SIZE, trainable, 'conv_4')

    output_conv5    = my_functions.my_conv2d(output_conv4, N_FILTERS, K_SIZE, trainable, 'conv_5')

    output_pool6    = my_functions.my_pooling(output_conv5, 'pooling_6')

    reshape_shape   = output_pool6.get_shape().as_list()

    output_reshape7 = tf.reshape(tensor=output_pool6, shape=[-1, reshape_shape[1]*reshape_shape[2]*N_FILTERS], name='reshape_7')

    #print('output_reshape7: ', output_reshape7)

    output_dense_8 = my_functions.my_dense(input=output_reshape7, units=(reshape_shape[1]*reshape_shape[1]*N_FILTERS)/2, name='dense_layer_8')

    #print('output_dense_8: ', output_dense_8)

    output_dense_9 = my_functions.my_dense(input=output_dense_8, units=(reshape_shape[1] * reshape_shape[1] * N_FILTERS) / 4, name='dense_layer_9')

    #print('output_dense_9: ', output_dense_9)

    output_dense_10 = my_functions.my_dense(input=output_dense_9, units=(reshape_shape[1] * reshape_shape[1] * N_FILTERS) / 8, name='dense_layer_10')

    #print('output_dense_10: ', output_dense_10)

    size_last_layer = output_dense_10.get_shape().as_list()[1]



    return output_dense_10, reshape_shape, size_last_layer





def decoder(input, N_FILTERS, N_INPUT_CH, reshape_shape, K_SIZE):



    output_dense_11 = my_functions.my_dense(input=input, units=(reshape_shape[1] * reshape_shape[1] * N_FILTERS) / 4, name='dense_layer_11')

    #print('output_dense_11: ', output_dense_11)



    output_dense_12 = my_functions.my_dense(input=output_dense_11, units=(reshape_shape[1] * reshape_shape[1] * N_FILTERS) / 2, name='dense_layer_12')

    #print('output_dense_12: ', output_dense_12)

    output_dense_13 = my_functions.my_dense(input=output_dense_12, units=reshape_shape[1] * reshape_shape[1] * N_FILTERS, name='dense_layer_13')

    #print('output_dense_13: ', output_dense_13)

    output_reshape14 = tf.reshape(tensor=output_dense_13, shape=[-1, reshape_shape[1], reshape_shape[2], N_FILTERS], name='reshape_14')

    #print('output_reshape14: ', output_reshape14)



    with tf.name_scope('unpooling_15'):

        output_unpool15 = my_functions.unpool_resize(output_reshape14, [1, 2, 2, 1])

    output_deconv16 = my_functions.deconvLayer_new(output_unpool15, N_FILTERS, K_SIZE, name='deconvolve_16')

    output_deconv17 = my_functions.deconvLayer_new(output_deconv16, N_FILTERS, K_SIZE, name='deconvolve_17')

    with tf.name_scope('unpooling_18'):

        output_unpool18 = my_functions.unpool_resize(output_deconv17, [1, 2, 2, 1])

    output_deconv19 = my_functions.deconvLayer_new(output_unpool18, N_INPUT_CH, K_SIZE, name='deconvolve_19')

    output_deconv20 = my_functions.deconvLayer_new(output_deconv19, N_INPUT_CH, K_SIZE, name='deconvolve_20')



    return output_deconv20





def classify(input, N_FILTERS_CF_1, N_FILTERS_CF_2, name1, name2, N_CLASSES_CF):



    # Fully connected layer

    output_dense_11 = my_functions.my_dense(input=input, units=N_FILTERS_CF_1, name=name1 + '_' + name2 + '_dense_layer_11')

    output_dense_12 = my_functions.my_dense(input=output_dense_11, units=N_FILTERS_CF_2, name=name1 + '_' + name2 + '_dense_layer_12')

    output_dense_13 = my_functions.my_dense(input=output_dense_12, units=N_CLASSES_CF, name=name1 + '_' + name2 + '_dense_layer_13')



    return output_dense_13










Autoencoder/layer_files/my_layer9.py

import tensorflow as tf

import my_functions



######### LAYER CONFIGURATION MY_LAYER2

# ENCODER:

# conv, conv, pool, conv, conv, pool, conv, conv, pool, reshape

#

# DECODE:

# reshape, unpool, deconv, deconv, unpool, deconv, deconv, unpool, deconv, deconv

#

# CLASSIFIER:

# dense, dense, dense





def encoder(input_img, N_FILTERS, K_SIZE, trainable):



    output_conv1    = my_functions.my_conv2d(input_img, N_FILTERS, K_SIZE, trainable, 'conv_1')

    output_conv2    = my_functions.my_conv2d(output_conv1, N_FILTERS, K_SIZE, trainable, 'conv_2')

    output_pool3    = my_functions.my_pooling(output_conv2, 'pooling_3')

    output_conv4    = my_functions.my_conv2d(output_pool3, N_FILTERS, K_SIZE, trainable, 'conv_4')

    output_conv5    = my_functions.my_conv2d(output_conv4, N_FILTERS, K_SIZE, trainable, 'conv_5')

    output_pool6    = my_functions.my_pooling(output_conv5, 'pooling_6')

    output_conv7    = my_functions.my_conv2d(output_pool6, N_FILTERS, K_SIZE, trainable, 'conv_7')

    output_conv8    = my_functions.my_conv2d(output_conv7, N_FILTERS, K_SIZE, trainable, 'conv_8')

    output_pool9    = my_functions.my_pooling(output_conv8, 'pooling_9')

    reshape_shape   = output_pool9.get_shape().as_list()

    output_reshape10 = tf.reshape(tensor=output_pool9, shape=[-1, reshape_shape[1]*reshape_shape[2]*N_FILTERS], name='reshape_10')

    #print('output_reshape10: ', output_reshape10)

    size_last_layer = output_reshape10.get_shape().as_list()[1]



    return output_reshape10, reshape_shape, size_last_layer





def decoder(input, N_FILTERS, N_INPUT_CH, reshape_shape, K_SIZE):



    output_reshape11 = tf.reshape(tensor=input, shape=[-1, reshape_shape[1], reshape_shape[2], N_FILTERS], name='reshape_11')

    #print('output_reshape14: ', output_reshape11)



    with tf.name_scope('unpooling_12'):

        output_unpool12 = my_functions.unpool_resize(output_reshape11, [1, 2, 2, 1])

    output_deconv13 = my_functions.deconvLayer_new(output_unpool12, N_FILTERS, K_SIZE, name='deconvolve_13')

    output_deconv14 = my_functions.deconvLayer_new(output_deconv13, N_FILTERS, K_SIZE, name='deconvolve_14')

    with tf.name_scope('unpooling_15'):

        output_unpool15 = my_functions.unpool_resize(output_deconv14, [1, 2, 2, 1])

    output_deconv16 = my_functions.deconvLayer_new(output_unpool15, N_INPUT_CH, K_SIZE, name='deconvolve_16')

    output_deconv17 = my_functions.deconvLayer_new(output_deconv16, N_INPUT_CH, K_SIZE, name='deconvolve_17')



    with tf.name_scope('unpooling_18'):

        output_unpool18 = my_functions.unpool_resize(output_deconv17, [1, 2, 2, 1])

    output_deconv19 = my_functions.deconvLayer_new(output_unpool18, N_INPUT_CH, K_SIZE, name='deconvolve_19')

    output_deconv20 = my_functions.deconvLayer_new(output_deconv19, N_INPUT_CH, K_SIZE, name='deconvolve_20')



    return output_deconv20





def classify(input, N_FILTERS_CF_1, N_FILTERS_CF_2, name1, name2, N_CLASSES_CF):



    # Fully connected layer

    output_dense_11 = my_functions.my_dense(input=input, units=N_FILTERS_CF_1, name=name1 + '_' + name2 + '_dense_layer_11')

    output_dense_12 = my_functions.my_dense(input=output_dense_11, units=N_FILTERS_CF_2, name=name1 + '_' + name2 + '_dense_layer_12')

    output_dense_13 = my_functions.my_dense(input=output_dense_12, units=N_CLASSES_CF, name=name1 + '_' + name2 + '_dense_layer_13')



    return output_dense_13










Autoencoder/main.py

import my_functions

import classifier_eval

import autoencoder

import time

import sys

import csv

import os



######## FILE DESCRIPTION ###################################################################

# This file takes images located in the dataset path, and trains a deep autoencoder

# to produce the same output at the image input.

# After training the autoencoder can be used as an image classifier.

# -

# Master thesis at University of Stavanger 2017

# Rune Wetteland

#############################################################################################



######## VERSION HISTORY ####################################################################

# V1: Make an autoencoder on MNIST DATASET.

# V2: Combine V1 and ReadData4 (file to make a tensorflow queue)

# V3: Use V1. Try import my own data using ReadData5

# V4: Changing from 1-D vector -> 2-D image. Changing to convolutional layers

# V5: Videre fra V4. Fjerner mesteparten av nettverket for debugging

# V6: Videre fra V5. (8/3: Fungerer greit for b/w images)

# V7: Videre fra V6. Endrer hele nettverket fra grayscale til RGB farge. Fjerner da MNIST. (8/3: cost: 390)

# V8: Videre fra V7. Skal legge inn flere grafer i tensorboard.

# V8.1: Videre fra V8. Lager egen main fil som mater inn forskjellige hyperparameter. (10/3: fungerer bra!)

# V9: Videre fra V8.1.

# V10: 13/3 - Videre fra V9. Endrer mappestruktur på lagring, slik at hver modell blir lagret i hver sin mappe.

#      Lagt til save/restore model, og globale variabler

#      Lagt til stop kriterie for trening

# V11: 14/3 - Videre fra V10. Endret struktur på main fil så den har bare ett kall til autoencoder. Fungerer bra.

# V12: 14/3 - Videre fra V11. Legger til funksjon for å estimere hvor lang tid det er igjen før koden er ferdig å kjøre. bra!

#       Lagt til summary funksjon på slutten som oppsummerer. Fungerer bra.

#       Flyttet layers oppbygning i egne filer. Gjort bildene om til int() før plotting, nå viser bildene skikkelig. men er gronne.

# V14: 15/3 - Videre fra V12. Endret navn på alle filene.

# V15: 16/3 - Skriver om slik at koden bruker GPU.

# V16: 20/3 - Lagt til valg om å kjøre på CPU eller GPU. Lag til n_filter som hyperparameter.

#               Lagt til mulighet for å ta inn både grayscale og RGB bilder.

#               Ordnet riktig farge på output bildene.

# V17: 22/3 - Byttet alle funksjonene fra tf.nn til tf.layers. Nye og oppdaterte funksjoner fra Tensorflow.

#               Lagt til ny MODEL_MODE for å trene classifier.

#               Legger til funksjoner for å trene classifier og for å gjøre classification.

#               Lagt til bar chart som viser prosent andel ved klassifisering

# V18: 3/4 - Classification fungerer nesten. Legg til load best model, save model, tensorboard etc..Endret maaten å lese inn labels paa.

# V19: 6/4 - AE og CF fungerer! Starter eksperimentering.

#               Fjernet LOAD_BEST_MODEL og forbedret måten programmet restorer modeller.

#               Lagt til high_cost counter

# V20: 7/4 - Lagt til mange forskjellige netverk strukturer.

#               Lagt til summary.csv som skriver resultatet for hver model til excel ark

#               Lagt til last_improvement og high_cost_counter som globale variabler, disse blir nå hentet når en model blir restored

#               Lagt til mange nye layers

# V21: 13/4 - Fikset litt ting

# V22: 18/4 - Fikset litt ting. Ordnet på queue system og classifier.

# V23: 19/4 - Fikset litt ting. Lagt til TIME i summary CVS fil.

# V24: 28/4 - Logger nå cost for hver epoche. Gått tilbake til å lagre hver modell, og restorer den beste modellen i klassifisereren.

#               Lagt til confusion matrix og k-fold validation

#               Lagt til lagring/restore av classifiers. Logger alt av classifier til excel ark.

# V25: 10/5 - Added logging of time for each K-fold run

#                Lagt til lagring av ett bilde fra autoencoder i egen mappe.

# V26: 15/5 - Fixed an issue where savefig saving time accumulated making the performance to decrease over time.

#############################################################################################



######### PROGRAM CONFIGURATIONS

FILENAME_QUEUE_SHUFFLE      = True      # True=Shuffle image files in the queue. False=No shuffeling

N_EPOCH_AE_TOTAL            = 1        # how many epochs should each autoencoder model run for

N_EPOCH_CF_TOTAL            = 2        # how many epochs should the classifier run for

N_MODEL_TO_KEEP_AE          = 500         # Number of AE models to save

N_MODEL_TO_KEEP_CF          = 10         # Number of CF models to save

REQUIRE_IMPROVEMENT         = 600         # If no improvment after n epochs, stop training.

REQUIRE_COST_COUNTER_LIMIT  = 500         # If cost stays high over n epoches, stop training.

REQUIRED_COST_LIMIT         = 15000     # If cost is above this limit, add 1 to the counter

MODEL_MODE                  = 2         # 0=Train new autoencoder. 1=Continue training previous autoencoder. 2=Train classifier, 3=Use finished model as classifier

PREVIOUS_MODEL_PATH         = '2017-06-07_13-57-57/'  # None=Create a new run. Else, specify path of model to continue from, eg. '2017-03-13_17-50-50/' Remember to add '/' at end.

#PREVIOUS_MODEL_PATH         = None      # None=Create a new model. Else, specify path of model to continue from, eg. '2017-03-13_17-50-50/' Remember to add '/' at end.

RUN_ON_MULTIPLE_GPU         = False      # True=Run on multiple GPU, False=Run on CPU or single GPU

RUN_MULTIPLE_MODES          = False      # True=run MODEL_MODE=0 first then MODEL_MODE=2. False=Run only one mode at a time

AE_MODEL                    = 1          # Which AE model you want to train CF on.



######### HYPERPARAMETERS AUTOENCODER (AE)

LEARNING_RATE_AE        = [0.001]

BATCH_SIZE_AE           = [64]

N_FILTERS_AE            = [10]

LAYER_CONFIG            = ['layer17']

K_SIZE_AE               = [3]



######### HYPERPARAMETERS CLASSIFIER (CF)

LEARNING_RATE_CF        = [0.00001]

BATCH_SIZE_CF_TEST      = [64]

BATCH_SIZE_CF_TRAIN     = [64]

N_FILTERS_CF_1          = [128, 256]

N_FILTERS_CF_2          = [256]

N_CLASSES_CF            = 5

N_KFOLDS_SPLITS         = 2                         # Must be 2 or larger



######### PARAMETERS

QUEUE_CAPACITY_AE                   = 128           # How many images to train on in each epoch (895148)

QUEUE_CAPACITY_CF_TEST              = 128            # How many images to test on and make a plot (for 10-fold: 15232)

QUEUE_CAPACITY_CF_TRAIN             = 128       # How many images to train on in each epoch (for 10-fold: 137081)

NUM_QUEUE_THREADS                   = 2

MIN_AFTER_DEQUEUE                   = 1024



######### CONSTANTS

IMAGE_SIZE      = 128       # Height/Width of image

N_INPUT_CH      = 3         # 1=grayscale images, 3=RGB images

IMAGE_TYPE      = 'jpg'     # Image type, 'png', 'jpg' or 'jpeg'.

current_model   = 0         # Start variable to keep track of model count

N_MODEL_TOTAL_AE   = len(LEARNING_RATE_AE) * len(BATCH_SIZE_AE) * len(LAYER_CONFIG) * len(N_FILTERS_AE) * len(K_SIZE_AE) # Calculating total number of runs

N_MODEL_TOTAL_CF   = len(LEARNING_RATE_CF) * len(BATCH_SIZE_CF_TRAIN) * len(N_FILTERS_CF_1) * len(N_FILTERS_CF_2) # Calculating total number of runs



######### PATHS

SAVED_DATA_PATH     = 'Saved_data/'     # Path where to save data from current run

TENSORBOARD_PATH    = 'tensorboard/'    # path of tensorboard files

MODEL_PATH          = 'model/'          # Path of model files

LOG_PATH            = 'logs/'           # Path of log files

FIGURE_PATH         = 'figure/'         # Path of figure files which are created during run

CF_SUMMARY_PATH     = 'Classifier_summary/'

FILE_NAME           = os.path.splitext(os.path.basename(sys.argv[0]))[0]  # Name of current file

PROJECT_NAME        = os.path.split(os.getcwd())[1] # Name of the project

SUMMARY_AE_CSV_FILE    = 'summary_autoencoder.csv'     # A CSV file that includes summary of each model. Can be opened in Excel.

SUMMARY_CF_CSV_FILE    = 'Classifier_summary/summary_classifier.csv'      # A CSV file that includes summary of each model. Can be opened in Excel.



######### TRAINING DATASET PATH

DATASET_AE     = '../../Dataset/SCN_Autoencoder_dataset_128_jpg/*.jpg'

#DATASET_AE     = '../../Dataset/color_dataset_v2/unlabeled/*.png'

#DATASET_AE     = '../../Dataset/SCN_very_large/*.jpg'                       # 895148 files



######### DATASET USED WHEN CREATING IMAGES (SHOULD ONLY CONTAIN 10 IMAGES)

DATASET_TEST_IMAGES = '../../Dataset/SCN_Autoencoder_dataset_128_jpg_test/*.jpg'

#DATASET_TEST_IMAGES     = '../../Dataset/color_dataset_v2/plot_images/*.png'



######### CLASSIFICATION DATASET (LABELED)

#DATASET_CF_LABELED = '../../Dataset/SCN_Autoencoder_dataset_128_labeled/'   # 236 files, for testing

#DATASET_CF_LABELED     = '../../Dataset/SCN_very_large_labeled/'

#DATASET_CF_LABELED     = '../../Dataset/Labeled_dataset_02_twoClasses_Augmented/'

DATASET_CF_LABELED     = '../../Dataset/Labeled_dataset_02_fiveClasses_Augmented/'



######## RUN INIT FILE

current_model_path = my_functions.init_file(SAVED_DATA_PATH=SAVED_DATA_PATH,

                                            TENSORBOARD_PATH=TENSORBOARD_PATH,

                                            FIGURE_PATH=FIGURE_PATH,

                                            LOG_PATH=LOG_PATH,

                                            FILE_NAME=FILE_NAME,

                                            MODEL_PATH=MODEL_PATH,

                                            PREVIOUS_MODEL_PATH=PREVIOUS_MODEL_PATH,

                                            CF_SUMMARY_PATH=CF_SUMMARY_PATH)



######### PRINT VARIABLES TO SCREEN AND LOG-FILE

my_functions.myPrint('')

my_functions.myPrint('PROJECT_NAME: \t\t\t\t{}'.format(PROJECT_NAME))

my_functions.myPrint('FILENAME_QUEUE_SHUFFLE: \t\t{}'.format(FILENAME_QUEUE_SHUFFLE))

my_functions.myPrint('N_EPOCH_AE_TOTAL: \t\t\t{}'.format(N_EPOCH_AE_TOTAL))

my_functions.myPrint('N_EPOCH_CF_TOTAL:\t\t\t\t{}'.format(N_EPOCH_CF_TOTAL))

my_functions.myPrint('N_MODEL_TO_KEEP_AE: \t\t\t\t{}'.format(N_MODEL_TO_KEEP_AE))

my_functions.myPrint('N_MODEL_TO_KEEP_CF: \t\t\t\t{}'.format(N_MODEL_TO_KEEP_CF))

my_functions.myPrint('REQUIRE_IMPROVEMENT: \t\t\t{}'.format(REQUIRE_IMPROVEMENT))

my_functions.myPrint('REQUIRE_COST_COUNTER_LIMIT: \t\t\t{}'.format(REQUIRE_COST_COUNTER_LIMIT))

my_functions.myPrint('REQUIRED_COST_LIMIT: \t\t\t{}'.format(REQUIRED_COST_LIMIT))

my_functions.myPrint('MODEL_MODE: \t\t\t\t{}'.format(MODEL_MODE))

my_functions.myPrint('PREVIOUS_MODEL_PATH: \t\t\t{}'.format(PREVIOUS_MODEL_PATH))

my_functions.myPrint('RUN_ON_MULTIPLE_GPU: \t\t\t{}'.format(RUN_ON_MULTIPLE_GPU))

my_functions.myPrint('RUN_MULTIPLE_MODES: \t\t\t{}'.format(RUN_MULTIPLE_MODES))

my_functions.myPrint('LEARNING_RATE_AE: \t\t\t{}'.format(LEARNING_RATE_AE))

my_functions.myPrint('BATCH_SIZE_AE: \t\t\t\t{}'.format(BATCH_SIZE_AE))

my_functions.myPrint('N_FILTERS_AE: \t\t\t\t{}'.format(N_FILTERS_AE))

my_functions.myPrint('LAYER_CONFIG: \t\t\t\t{}'.format(LAYER_CONFIG))

my_functions.myPrint('K_SIZE_AE: \t\t\t\t\t{}'.format(K_SIZE_AE))

my_functions.myPrint('LEARNING_RATE_CF: \t\t\t{}'.format(LEARNING_RATE_CF))

my_functions.myPrint('BATCH_SIZE_CF_TEST: \t\t\t{}'.format(BATCH_SIZE_CF_TEST))

my_functions.myPrint('BATCH_SIZE_CF_TRAIN: \t\t\t{}'.format(BATCH_SIZE_CF_TRAIN))

my_functions.myPrint('N_FILTERS_CF_1: \t\t\t\t{}'.format(N_FILTERS_CF_1))

my_functions.myPrint('N_FILTERS_CF_2: \t\t\t\t{}'.format(N_FILTERS_CF_2))

my_functions.myPrint('N_CLASSES_CF: \t\t\t\t{}'.format(N_CLASSES_CF))

my_functions.myPrint('QUEUE_CAPACITY_AE: \t\t\t{}'.format(QUEUE_CAPACITY_AE))

my_functions.myPrint('QUEUE_CAPACITY_CF_TEST: \t\t{}'.format(QUEUE_CAPACITY_CF_TEST))

my_functions.myPrint('QUEUE_CAPACITY_CF_TRAIN: \t\t{}'.format(QUEUE_CAPACITY_CF_TRAIN))

my_functions.myPrint('NUM_QUEUE_THREADS: \t\t\t{}'.format(NUM_QUEUE_THREADS))

my_functions.myPrint('MIN_AFTER_DEQUEUE: \t\t\t{}'.format(MIN_AFTER_DEQUEUE))

my_functions.myPrint('IMAGE_SIZE: \t\t\t\t{}'.format(IMAGE_SIZE))

my_functions.myPrint('N_INPUT_CH: \t\t\t\t{}'.format(N_INPUT_CH))

my_functions.myPrint('DATASET_AE: \t\t\t\t{}'.format(DATASET_AE))

my_functions.myPrint('DATASET_CF_LABELED: \t\t\t{}'.format(DATASET_CF_LABELED))

my_functions.myPrint('')





########################## TRAIN AUTOENCODER ################################

if MODEL_MODE == 0 or MODEL_MODE == 1:



    # Before training, we need to find out which model we are currently training on. We use variable 'current_model' to keep track of this.

    current_model = my_functions.find_current_model(current_model, MODEL_MODE, PREVIOUS_MODEL_PATH, LEARNING_RATE_AE, BATCH_SIZE_AE,

                                                    LAYER_CONFIG, N_FILTERS_AE, K_SIZE_AE, current_model_path, MODEL_PATH,

                                                    N_MODEL_TOTAL_AE, LEARNING_RATE_CF, BATCH_SIZE_CF_TRAIN, BATCH_SIZE_CF_TEST,

                                                    N_FILTERS_CF_1, N_FILTERS_CF_2)



    # A variable to keep track of things

    temp_var = 1                               # Used to jump over models already trained

    summary_array_AE = ['nan', 150000]          # Keep track of best model summary. Initial values are random values.



    # Create a new summary_autoencoder.csv file

    if not os.path.isfile(current_model_path + SUMMARY_AE_CSV_FILE):

        try:

            with open(current_model_path + SUMMARY_AE_CSV_FILE, 'w') as csvfile:

                csv_writer = csv.writer(csvfile, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL)

                csv_writer.writerow(['MODEL_NO', 'LAYER_CONFIG', 'LEARNING_RATE', 'BATCH_SIZE',

                                     'N_FILTERS', 'K_SIZE', 'BEST_COST', 'BREAK_FLAG', 'LAST_LAYER_SIZE', 'EPOCHS', 'TIME(H:M:S)'])

        except Exception as e:

            my_functions.myPrint('Error writing to file', error=True)

            my_functions.myPrint(e, error=True)



    # Loop through each permutation of the hyperparameters

    for current_learning_rate in LEARNING_RATE_AE:

        for current_batch_size in BATCH_SIZE_AE:

            for current_layer_config in LAYER_CONFIG:

                for current_n_filters in N_FILTERS_AE:

                    for current_k_size in K_SIZE_AE:

                        if temp_var == current_model:



                            # Construct a hyperparamter string for each one (example: "lr_0.01,batch_size=32")

                            current_hparam_str_AE = my_functions.make_hparam_string_AE(current_model_var=current_model,

                                                                            learning_var=current_learning_rate,

                                                                            batch_var=current_batch_size,

                                                                            layer_var=current_layer_config,

                                                                            n_filt_var=current_n_filters,

                                                                            k_size_var=current_k_size)



                            # Create a new 'current_hparam_str_AE'.csv file to store cost summary of each AE model.

                            if not os.path.isfile(current_model_path + current_hparam_str_AE + '.csv'):

                                try:

                                    with open(current_model_path + current_hparam_str_AE + '.csv', 'w') as csvfile:

                                        csv_writer = csv.writer(csvfile, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL)

                                        csv_writer.writerow(['COST'])

                                except Exception as e:

                                    my_functions.myPrint('Error writing to file', error=True)

                                    my_functions.myPrint(e, error=True)



                            my_functions.myPrint('\t')

                            my_functions.myPrint('Starting model {} of {} - {}, learning rate:{}, batch size:{}, n_filters:{}, k_size:{}'.format(

                                                                                        current_model, N_MODEL_TOTAL_AE,

                                                                                        current_layer_config,

                                                                                        current_learning_rate,

                                                                                        current_batch_size,

                                                                                        current_n_filters,

                                                                                        current_k_size))



                            my_functions.sendemail(to_addr_list='runewetteland@hotmail.com', message='Starting AE model {} of {}'.format(current_model, N_MODEL_TOTAL_AE))

                            current_model_start_time = time.time()



                            # Train the autoencoder

                            model_cost, break_flag, size_last_layer, n_epochs = autoencoder.autoencoder_function(

                                                                batch_size_AE=current_batch_size,

                                                                BATCH_SIZE_CF_TEST=BATCH_SIZE_CF_TEST[0],

                                                                BATCH_SIZE_CF_TRAIN=BATCH_SIZE_CF_TRAIN[0],

                                                                learning_rate=current_learning_rate,

                                                                TENSORBOARD_PATH=TENSORBOARD_PATH,

                                                                IMAGE_SIZE=IMAGE_SIZE,

                                                                DATASET_AE=DATASET_AE,

                                                                FILENAME_QUEUE_SHUFFLE=FILENAME_QUEUE_SHUFFLE,

                                                                QUEUE_CAPACITY_AE=QUEUE_CAPACITY_AE,

                                                                QUEUE_CAPACITY_CF_TEST = QUEUE_CAPACITY_CF_TEST,

                                                                QUEUE_CAPACITY_CF_TRAIN = QUEUE_CAPACITY_CF_TRAIN,

                                                                NUM_QUEUE_THREADS=NUM_QUEUE_THREADS,

                                                                MIN_AFTER_DEQUEUE=MIN_AFTER_DEQUEUE,

                                                                N_EPOCH_AE_TOTAL=N_EPOCH_AE_TOTAL,

                                                                FIGURE_PATH=FIGURE_PATH,

                                                                current_model_path=current_model_path,

                                                                N_MODEL_TO_KEEP_AE=N_MODEL_TO_KEEP_AE,

                                                                MODEL_PATH=MODEL_PATH,

                                                                REQUIRE_IMPROVEMENT=REQUIRE_IMPROVEMENT,

                                                                layer_config=current_layer_config,

                                                                RUN_ON_MULTIPLE_GPU=RUN_ON_MULTIPLE_GPU,

                                                                n_filter=current_n_filters,

                                                                N_INPUT_CH=N_INPUT_CH,

                                                                K_SIZE_AE=current_k_size,

                                                                DATASET_CF_LABELED=DATASET_CF_LABELED,

                                                                DATASET_TEST_IMAGES=DATASET_TEST_IMAGES,

                                                                N_FILTERS_CF_1=N_FILTERS_CF_1,

                                                                N_FILTERS_CF_2=N_FILTERS_CF_2,

                                                                CURRENT_HPARAM_STR_AE=current_hparam_str_AE,

                                                                REQUIRE_COST_COUNTER_LIMIT=REQUIRE_COST_COUNTER_LIMIT,

                                                                REQUIRED_COST_LIMIT=REQUIRED_COST_LIMIT,

                                                                IMAGE_TYPE=IMAGE_TYPE,

                                                                N_CLASSES_CF=N_CLASSES_CF)



                            # Check if current model is a new best, if yes, update array.

                            if model_cost < summary_array_AE[1]:

                                summary_array_AE[0] = current_hparam_str_AE

                                summary_array_AE[1] = model_cost



                                # Store all the best hyperparametre

                                best_layer_config = current_layer_config

                                best_n_filters = current_n_filters

                                best_model_no = current_model



                            # Calculate elapse time for current run

                            current_model_elapse_time = time.time() - current_model_start_time

                            m, s = divmod(current_model_elapse_time, 60)

                            h, m = divmod(m, 60)

                            my_functions.myPrint('Model %0d finished. Total time(H:M:S): %02d:%02d:%02d' % (current_model, h, m, s))



                            model_time =  '%02d:%02d:%02d' % (h, m, s)



                            # Estimate remaining running time (Estimate Time until Finish)

                            ETF = current_model_elapse_time * (N_MODEL_TOTAL_AE - current_model)

                            m, s = divmod(ETF, 60)

                            h, m = divmod(m, 60)

                            my_functions.myPrint('Estimated time until finish(H:M:S): %02d:%02d:%02d' % (h, m, s))



                            # Write result to summary.csv file

                            try:

                                with open(current_model_path + SUMMARY_AE_CSV_FILE, 'a', newline='') as csvfile:

                                    csv_writer = csv.writer(csvfile, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL)

                                    csv_writer.writerow([current_model, current_layer_config, current_learning_rate,

                                                    current_batch_size, current_n_filters, current_k_size, model_cost,

                                                    break_flag, size_last_layer, n_epochs, model_time])

                            except Exception as e:

                                my_functions.myPrint('Error writing to file', error=True)

                                my_functions.myPrint(e, error=True)



                            # Update value

                            temp_var += 1

                            current_model += 1

                        else:

                            # Update value

                            temp_var += 1



    my_functions.end_summary(summary_array_AE, best_model_no)





########################## TRAIN CLASSIFIER WITH K-FOLD VALIDATION ################################

if MODEL_MODE == 2 or RUN_MULTIPLE_MODES == True:



    if MODEL_MODE == 0 or MODEL_MODE == 1:

        current_model = 1

        my_functions.myPrint('')

        # Mode 2: Continue training previous classifier model

        my_functions.myPrint('Mode 2: Train classifier model')

    else:

        # Before training, we need to find out which model we are currently training on. We use variable 'current_model' to keep track of this.

        current_model = my_functions.find_current_model(current_model, MODEL_MODE, PREVIOUS_MODEL_PATH, LEARNING_RATE_AE, BATCH_SIZE_AE,

                                                    LAYER_CONFIG, N_FILTERS_AE, K_SIZE_AE, current_model_path, MODEL_PATH,

                                                    N_MODEL_TOTAL_AE, LEARNING_RATE_CF, BATCH_SIZE_CF_TRAIN, BATCH_SIZE_CF_TEST,

                                                    N_FILTERS_CF_1, N_FILTERS_CF_2)



    # Print size of labeled dataset

    my_functions.myPrint('')

    dataset_classes = os.listdir(DATASET_CF_LABELED)

    total_sum = 0



    for index, current_class in enumerate(dataset_classes):

        # Go through each class to get total number of images

        total_sum += len(os.listdir(DATASET_CF_LABELED + current_class))



    my_functions.myPrint('{0:8s}\t {1:5s} \t {2:5s}'.format('CLASS NAME', 'NUMBER', 'PERCENTAGE'))

    for index, current_class in enumerate(dataset_classes):

        current_path = DATASET_CF_LABELED + current_class

        n_images_current_class = len(os.listdir(current_path))

        my_functions.myPrint('{0:8}\t {1:5} \t {2:5.0f}%'.format(current_class, n_images_current_class, (n_images_current_class/total_sum)*100))



    my_functions.myPrint('Total size of dataset: {} images'.format(total_sum))



    if RUN_MULTIPLE_MODES == True:

        # Fetch variables from earlier

        PREVIOUS_MODEL_PATH = current_model_path[:-1].split('/')[1] + '/'

        current_hparamstr_AE = summary_array_AE[0]

        N_FILTERS_AE = [best_n_filters]

        LAYER_CONFIG = [best_layer_config]

    else:

        # Manual input the parameters for the model you want to train the classifier for

        current_hparamstr_AE = my_functions.make_hparam_string_AE(current_model_var=AE_MODEL,

                                                            learning_var=LEARNING_RATE_AE[0],

                                                            batch_var=BATCH_SIZE_AE[0],

                                                            layer_var=LAYER_CONFIG[0],

                                                            n_filt_var=N_FILTERS_AE[0],

                                                            k_size_var=K_SIZE_AE[0])



        # Check that only one parameter is used for each hyperparameter

        if len(LEARNING_RATE_AE) >= 2 or len(BATCH_SIZE_AE) >= 2 or len(LAYER_CONFIG) >= 2 \

                or len(N_FILTERS_AE) >= 2 or len(K_SIZE_AE) >= 2:

            my_functions.myPrint('ERROR: You have to choose only one parameter for each hyperparameter for this MODEL_MODE', error=True)

            exit()



    # Check that PREVIOUS_MODEL_PATH is set

    if PREVIOUS_MODEL_PATH == None:

        my_functions.myPrint('ERROR: PREVIOUS_MODEL_PATH must be defined when using MODEL_MODE 2.', error=True)

        exit()



    # Create a new summary.csv file

    if not os.path.isfile(current_model_path + SUMMARY_CF_CSV_FILE):

        try:

            with open(current_model_path + SUMMARY_CF_CSV_FILE, 'w') as csvfile:

                csv_writer = csv.writer(csvfile, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL)

                csv_writer.writerow(['MODEL_NO', 'LAYER_CONFIG', 'LEARNING_RATE', 'BATCH_SIZE_TRAINING',

                                     'N_FILTERS_1', 'N_FILTERS_2', 'BEST_ACC', 'BREAK_FLAG', 'LAST_LAYER_SIZE', 'EPOCHS', 'TIME(H:M:S)'])

        except Exception as e:

            my_functions.myPrint('Error writing to file', error=True)

            my_functions.myPrint(e, error=True)



    # Set random number to prevent error message in the end summary

    summary_array_CF = ['none', 0]

    temp_var = 1



    # Get name of classes

    classes = os.listdir(DATASET_CF_LABELED)

    NAME_OF_CLASSES = []

    for item in classes:

        NAME_OF_CLASSES.append(item)



    ## CLASSIFIER

    # Loop through each permutation of the hyperparameters

    for current_learning_rate_CF in LEARNING_RATE_CF:

        for current_batch_size_CF_train in BATCH_SIZE_CF_TRAIN:

            for current_batch_size_CF_test in BATCH_SIZE_CF_TEST:

                for current_n_filters_CF_1 in N_FILTERS_CF_1:

                    for current_n_filters_CF_2 in N_FILTERS_CF_2:

                        if temp_var == current_model:

                            current_hparamstr_CF = my_functions.make_hparam_string_CF(current_model_var=current_model,

                                                                                      learning_var=current_learning_rate_CF,

                                                                                      batch_train_var=current_batch_size_CF_train,

                                                                                      batch_test_var=current_batch_size_CF_test,

                                                                                      filt1_var=current_n_filters_CF_1,

                                                                                      filt2_var=current_n_filters_CF_2)



                            my_functions.myPrint('\t')

                            my_functions.myPrint('Starting model {} of {} - Learning rate:{}, batch train size:{}, batch test size:{}, filt1:{}, filt2:{}'.format(

                                                        current_model, N_MODEL_TOTAL_CF,

                                                        current_learning_rate_CF,

                                                        current_batch_size_CF_train,

                                                        current_batch_size_CF_test,

                                                        current_n_filters_CF_1,

                                                        current_n_filters_CF_2))



                            my_functions.sendemail(to_addr_list='runewetteland@hotmail.com', message='Starting CF model {} of {}'.format(current_model, N_MODEL_TOTAL_CF))



                            current_model_start_time = time.time()



                            # Evaluate the classifier

                            size_last_layer, break_flag, current_acc = classifier_eval.evaluate_my_classifier(

                                                        BATCH_SIZE_CF_TEST=current_batch_size_CF_test,

                                                        BATCH_SIZE_CF_TRAIN=current_batch_size_CF_train,

                                                        TENSORBOARD_PATH=TENSORBOARD_PATH,

                                                        IMAGE_SIZE=IMAGE_SIZE,

                                                        FILENAME_QUEUE_SHUFFLE=FILENAME_QUEUE_SHUFFLE,

                                                        QUEUE_CAPACITY_CF_TEST=QUEUE_CAPACITY_CF_TEST,

                                                        QUEUE_CAPACITY_CF_TRAIN=QUEUE_CAPACITY_CF_TRAIN,

                                                        NUM_QUEUE_THREADS=NUM_QUEUE_THREADS,

                                                        MIN_AFTER_DEQUEUE=MIN_AFTER_DEQUEUE,

                                                        N_EPOCH_CF_TOTAL=N_EPOCH_CF_TOTAL,

                                                        FIGURE_PATH=FIGURE_PATH,

                                                        current_model_path=current_model_path,

                                                        N_MODEL_TO_KEEP_CF=N_MODEL_TO_KEEP_CF,

                                                        MODEL_PATH=MODEL_PATH,

                                                        REQUIRE_IMPROVEMENT=REQUIRE_IMPROVEMENT,

                                                        layer_config=LAYER_CONFIG[0],

                                                        n_filter=N_FILTERS_AE[0],

                                                        N_INPUT_CH=N_INPUT_CH,

                                                        K_SIZE_AE=K_SIZE_AE[0],

                                                        DATASET_CF_LABELED=DATASET_CF_LABELED,

                                                        LEARNING_RATE_CF=current_learning_rate_CF,

                                                        CURRENT_HPARAM_STR_AE=current_hparamstr_AE,

                                                        CURRENT_HPARAM_STR_CF=current_hparamstr_CF,

                                                        N_FILTERS_CF_1=current_n_filters_CF_1,

                                                        N_FILTERS_CF_2=current_n_filters_CF_2,

                                                        IMAGE_TYPE=IMAGE_TYPE,

                                                        N_CLASSES_CF=N_CLASSES_CF,

                                                        NAME_OF_CLASSES=NAME_OF_CLASSES,

                                                        N_KFOLDS_SPLITS=N_KFOLDS_SPLITS)



                            # Check if current model is a new best, if yes, update array.

                            if current_acc > summary_array_CF[1]:

                                summary_array_CF[0] = current_hparamstr_CF

                                summary_array_CF[1] = current_acc

                                best_model_no = current_model



                            # Calculate elapse time for current run

                            current_model_elapse_time = time.time() - current_model_start_time

                            m, s = divmod(current_model_elapse_time, 60)

                            h, m = divmod(m, 60)

                            my_functions.myPrint('Model %0d finished. Average accuracy: %.2f, Total time(H:M:S): %02d:%02d:%02d' % (current_model, current_acc, h, m, s))



                            model_time = '%02d:%02d:%02d' % (h, m, s)



                            # Estimate remaining running time (Estimate Time until Finish)

                            ETF = current_model_elapse_time * (N_MODEL_TOTAL_CF - current_model)

                            m, s = divmod(ETF, 60)

                            h, m = divmod(m, 60)

                            my_functions.myPrint('Estimated time until finish(H:M:S): %02d:%02d:%02d' % (h, m, s))



                            # Write result to summary.csv file

                            try:

                                with open(current_model_path + SUMMARY_CF_CSV_FILE, 'a', newline='') as csvfile:

                                    csv_writer = csv.writer(csvfile, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL)

                                    csv_writer.writerow([current_model, LAYER_CONFIG[0], current_learning_rate_CF,

                                                         current_batch_size_CF_train, current_n_filters_CF_1, current_n_filters_CF_2,

                                                         current_acc, break_flag, size_last_layer, N_EPOCH_CF_TOTAL, model_time])

                            except Exception as e:

                                my_functions.myPrint('Error writing to file', error=True)

                                my_functions.myPrint(e, error=True)



                            # Update value

                            temp_var += 1

                            current_model += 1

                        else:

                            # Update value

                            temp_var += 1



    my_functions.end_summary(summary_array_CF, best_model_no)



# Update watchdog file

with open('watchdog.txt', 'w') as file:

    file.write('Done')

    my_functions.sendemail(to_addr_list = 'runewetteland@hotmail.com', message = 'Done')








Autoencoder/my_functions.py

import numpy as np                          # Numpy

import matplotlib.pyplot as plt             # Plotting

import itertools                            # For confusion matrix

import smtplib                              # For sending emails

import datetime                             # Time

import logging                              # Datalogging

import time                                 # Time

import math                                 # Math functions

import os                                   # Datalogging

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'    # Disable all debugging information from tensorflow

os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'      # Set the program to use only this GPU device

import tensorflow as tf                     # Deep learning



# Convolution function

def my_conv2d(input, N_FILTERS, K_SIZE, trainable, name):

    return tf.layers.conv2d(

        inputs=input,                            #  Tensor input.

        filters=N_FILTERS,                       #* integer, the dimensionality of the output space (i.e. the number output of filters in the convolution).

        kernel_size=K_SIZE,                      #* an integer or tuple/list of 2 integers, specifying the width and height of the 2D convolution window. Can be a single integer to specify the same value for all spatial dimensions.

        strides=1,                               #? an integer or tuple/list of 2 integers, specifying the strides of the convolution along the width and height. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any dilation_rate value != 1.

        padding='SAME',                          # one of "valid" or "same" (case-insensitive).

        data_format='channels_last',             #  A string, one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs.

        dilation_rate=(1,1),                     #? An integer or tuple/list of 2 integers, specifying the dilation rate to use for dilated convolution. Can be a single integer to specify the same value for all spatial dimensions.

        activation=tf.nn.relu,                   #  Activation function. Set it to None to maintain a linear activation.

        use_bias=True,                           #  Boolean, whether the layer uses a bias.

        kernel_initializer=None,                 #? An initializer for the convolution kernel.

        bias_initializer=tf.zeros_initializer(), #? An initializer for the bias vector. If None, no bias will be applied.

        kernel_regularizer=None,                 #? Optional regularizer for the convolution kernel.

        bias_regularizer=None,                   #? Optional regularizer for the bias vector.

        activity_regularizer=None,               #? Regularizer function for the output.

        trainable=True,                          #* Boolean, if True also add variables to the graph collection GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).

        name=name,                               #  A string, the name of the layer.

        reuse=False)                             #  Boolean, whether to reuse the weights of a previous layer by the same name.



# 2x2 Max Pooling function

def my_pooling(input, name):

    return tf.layers.max_pooling2d(

        inputs=input,                            #  The tensor over which to pool. Must have rank 4.

        pool_size=[2, 2],                        #  An integer or tuple/list of 2 integers: (pool_height, pool_width) specifying the size of the pooling window. Can be a single integer to specify the same value for all spatial dimensions.

        strides=2,                               #  An integer or tuple/list of 2 integers, specifying the strides of the pooling operation. Can be a single integer to specify the same value for all spatial dimensions.

        padding='SAME',                          #  A string. The padding method, either 'valid' or 'same'. Case-insensitive.

        data_format='channels_last',             #  A string. The ordering of the dimensions in the inputs. channels_last (default) and channels_first are supported. channels_last corresponds to inputs with shape (batch, height, width, channels) while channels_first corresponds to inputs with shape (batch, channels, height, width).

        name=name)                               #  A string, the name of the layer.



# Deconvolution function (with dynamic batch size shape)

def deconvLayer_new(input, N_FILTERS, K_SIZE, name):

    return tf.layers.conv2d_transpose(

        inputs=input,                            #  Input tensor.

        filters=N_FILTERS,                       #* integer, the dimensionality of the output space (i.e. the number output of filters in the convolution).

        kernel_size=K_SIZE,                      #* a tuple or list of 2 positive integers specifying the spatial dimensions of of the filters. Can be a single integer to specify the same value for all spatial dimensions.

        strides=(1,1),                           #? a tuple or list of 2 positive integers specifying the strides of the convolution. Can be a single integer to specify the same value for all spatial dimensions.

        padding='SAME',                          #  one of "valid" or "same" (case-insensitive). SAME gives better results than VALID.

        data_format='channels_last',             #  A string, one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch, width, height, channels) while channels_first corresponds to inputs with shape (batch, channels, width, height).

        activation=tf.nn.relu,                   #  Activation function. Set it to None to maintain a linear activation.

        use_bias=True,                           #  Boolean, whether the layer uses a bias.

        kernel_initializer=None,                 #? An initializer for the convolution kernel.

        bias_initializer=tf.zeros_initializer(), #? An initializer for the bias vector. If None, no bias will be applied.

        kernel_regularizer=None,                 #? Optional regularizer for the convolution kernel.

        bias_regularizer=None,                   #? Optional regularizer for the bias vector.

        activity_regularizer=None,               #? Regularizer function for the output.

        trainable=True,                          #* Boolean, if True also add variables to the graph collection GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).

        name=name,                               #  A string, the name of the layer.

        reuse=False)                             #  Boolean, whether to reuse the weights of a previous layer by the same name.



# Unpooling funksjon finnes ikke i tensorflow. Bruker image_resize til å forstorre bildet til onsket storrelse.

def unpool_resize(source, kernel_shape):

    input_shape = source.get_shape().as_list()

    return tf.image.resize_images(source, [input_shape[1]*kernel_shape[1], input_shape[2]*kernel_shape[2]])



# Fully connected layers

def my_dense(input, units, name):

    return tf.layers.dense(

        inputs=input,                            #  Tensor input.

        units=units,                             #* Integer or Long, dimensionality of the output space.

        activation=tf.nn.relu,                   #  Activation function (callable). Set it to None to maintain a linear activation.

        use_bias=True,                           #  Boolean, whether the layer uses a bias.

        kernel_initializer=None,                 #? Initializer function for the weight matrix.

        bias_initializer=tf.zeros_initializer(), #? Initializer function for the bias.

        kernel_regularizer=None,                 #? Regularizer function for the weight matrix.

        bias_regularizer=None,                   #? Regularizer function for the bias.

        activity_regularizer=None,               #? Regularizer function for the output.

        trainable=True,                          #  Boolean, if True also add variables to the graph collection GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).

        name=name,                               #  String, the name of the layer.

        reuse=False)                             #  Boolean, whether to reuse the weights of a previous layer by the same name.



# Make aspecial string based on input parameters (Autoencoder)

def make_hparam_string_AE(current_model_var, learning_var, batch_var, layer_var, n_filt_var, k_size_var):

    # Putting together the different variables to make a string

    hparam_string = 'AE_{},{},lr_{},batch_{},filt_{},ksize_{}'.format(current_model_var, layer_var, learning_var, batch_var, n_filt_var, k_size_var)

    return hparam_string



# Make aspecial string based on input parameters (Classifier)

def make_hparam_string_CF(current_model_var, learning_var, batch_train_var, batch_test_var, filt1_var, filt2_var):

    # Putting together the different variables to make a string

    hparam_string = 'CF_{},lr_{},batch_train_{},batch_test_{},filt1_{},filt2_{}'.format(current_model_var, learning_var, batch_train_var, batch_test_var, filt1_var, filt2_var)

    return hparam_string



# Used to measure time

def TicTocGenerator():

    # Generator that returns time differences

    ti = 0           # initial time

    tf = time.time() # final time

    while True:

        ti = tf

        tf = time.time()

        yield tf-ti # returns the time difference



# create an instance of the TicTocGen generator

TicToc = TicTocGenerator()



# This will be the main function through which we define both tic() and toc()

def toc(tempBool=True):

    # Prints the time difference yielded by generator instance TicToc

    tempTimeInterval = next(TicToc)

    if tempBool:

        myPrint( "Elapsed time: %f seconds.\n" %tempTimeInterval )



# Used to measure time

def tic():

    # Records a time in TicToc, marks the beginning of a time interval

    toc(False)



# Function that both prints a message to console and to a log file

def myPrint(msg, error=False):

    if not error:

        logging.info(msg)

        print(msg)

    else:

        logging.error(msg)

        print(msg)



# Function that runs in the beginning of the program

def init_file(SAVED_DATA_PATH, TENSORBOARD_PATH, FIGURE_PATH, LOG_PATH, FILE_NAME, MODEL_PATH, PREVIOUS_MODEL_PATH, CF_SUMMARY_PATH):

    # Check if SAVED_DATA_PATH exist. If not, create one

    if not os.path.exists(SAVED_DATA_PATH):

        os.makedirs(SAVED_DATA_PATH)

        #myPrint('No SAVED_DATA_PATH folder found. Successfully created folder: {}'.format(SAVED_DATA_PATH))



    # Define current run path

    if PREVIOUS_MODEL_PATH == None:

        current_run_path = '{0}{1}'.format(SAVED_DATA_PATH, datetime.datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d_%H-%M-%S/'))

    else:

        print('Override path activated')

        current_run_path = '{}{}'.format(SAVED_DATA_PATH, PREVIOUS_MODEL_PATH)

    #print('current_run_path:', current_run_path)



    # Make a new folder to save current run inside

    if not os.path.exists(current_run_path):

        os.makedirs(current_run_path)

    #myPrint('Created folder for current_run: {0}'.format(current_run_path))

    #print('Created folder for current_run: {0}'.format(current_run_path))



    # Test start time

    global start_time

    start_time = time.time()

    start_time_formatted = datetime.datetime.fromtimestamp(start_time).strftime('%Y-%m-%d %H:%M:%S')

    start_time_logger = datetime.datetime.fromtimestamp(start_time).strftime('%Y-%m-%d %H-%M-%S')



    # Create a logger

    logg_navn = '{0}{1}-{2}.log'.format(current_run_path, start_time_logger, FILE_NAME)

    #print(logg_navn)

    logging.basicConfig(filename=logg_navn, level=logging.INFO)



    # Print test start

    print("\n")

    myPrint('Program started at {}'.format(start_time_formatted))



    # Create a tensorboard folder

    if not os.path.exists(current_run_path + TENSORBOARD_PATH):

        os.makedirs(current_run_path + TENSORBOARD_PATH)

    #myPrint('Successfully created folder: {}{}'.format(current_run_path, TENSORBOARD_PATH))

    #print('Successfully created folder: {}{}'.format(current_run_path, TENSORBOARD_PATH))



    # Create a figure folder

    if not os.path.exists(current_run_path + FIGURE_PATH):

        os.makedirs(current_run_path + FIGURE_PATH)

    #myPrint('Successfully created folder: {}{}'.format(current_run_path, FIGURE_PATH))

    #print('Successfully created folder: {}{}'.format(current_run_path, FIGURE_PATH))



    # Create a model folder

    if not os.path.exists(current_run_path + MODEL_PATH):

        os.makedirs(current_run_path + MODEL_PATH)



    if not os.path.exists(current_run_path + CF_SUMMARY_PATH):

        os.makedirs(current_run_path + CF_SUMMARY_PATH)



    return current_run_path



# Function that runs in the end of the program

def end_summary(summary_array, best_model):

    myPrint('\t')

    end_time = time.time()

    end_time_formatted = datetime.datetime.fromtimestamp(end_time).strftime('%Y-%m-%d %H:%M:%S')

    myPrint("Current mode finished at: {}".format(end_time_formatted))

    elapse_time = end_time - start_time

    m, s = divmod(elapse_time, 60)

    h, m = divmod(m, 60)

    myPrint('Total time(H:M:S): %02d:%02d:%02d' % (h, m, s))

    myPrint('Best model was {} with lowest cost: {:.2f}'.format(best_model, (summary_array[1])))



def my_read_labeled_image_list(folder_path):

    # All images in one folder has the same label, the name of the folder

    classes = os.listdir(folder_path)

    filenames = []

    labels = []



    for index, current_class in enumerate(classes):

        current_path = folder_path + current_class

        #label = os.path.split(folder_path)[-1]



        files = os.listdir(current_path)

        #print(files)



        current_label = index

        #print(current_label)



        for item in files:

            filenames.append(current_path + '/' + item)

            labels.append(int(current_label))



    #print(filenames)

    #print(labels)

    return filenames, labels



# Used by my_queue_labeled_data function

def read_images_from_disk(input_queue, IMAGE_SIZE, N_INPUT_CH, IMAGE_TYPE):

    """Consumes a single filename and label as a ' '-delimited string.

    Args:

      filename_and_label_tensor: A scalar string tensor.

    Returns:

      Two tensors: the decoded image, and the label.

    """

    label = input_queue[1]

    file_contents = tf.read_file(input_queue[0])



    #example = tf.image.decode_png(file_contents, channels=N_INPUT_CH)



    # Decode the image

    if IMAGE_TYPE == 'png':

        #print('Decode using PNG image decoder')

        example = tf.image.decode_png(    # Return: A Tensor of type uint8. 3-D with shape [height, width, channels]

            contents=file_contents,        # A Tensor of type string. 0-D. The PNG-encoded image.

            channels=0,                 # Defaults to 0. Use the number of channels in the PNG-encoded image.

            dtype=None,                 # An optional tf.DType from: tf.uint8, tf.uint16. Defaults to tf.uint8.

            name=None)                  # A name for the operation (optional).

    elif IMAGE_TYPE == 'jpg' or IMAGE_TYPE == 'jpeg':

        # print('Decode using JPEG image decoder')

        example = tf.image.decode_jpeg(

            contents=file_contents,

            channels=0,

            ratio=None,

            fancy_upscaling=None,

            try_recover_truncated=None,

            acceptable_fraction=None,

            name=None)

    else:

        myPrint('\tWrong image format in file_contents. Not PNG or JPG image. Error in image decoder.', error=True)



    example.set_shape((IMAGE_SIZE, IMAGE_SIZE, N_INPUT_CH))

    return example, label



# Create a queue

def my_queue_labeled_data(image_path_list, label_path_list, IMAGE_SIZE, N_INPUT_CH, QUEUE_CAPACITY_CF,

                          BATCH_SIZE_CF, NUM_QUEUE_THREADS, IMAGE_TYPE, SHUFFLE):

    # Read pathes of images together with their labels

    #image_path_list, label_path_list = read_labeled_image_list(DATASET_FILE_PATH)

    #image_path_list, label_path_list = my_read_labeled_image_list(DATASET_FILE_PATH)



    #print('image_path_list: ', image_path_list)

    #print('label_path_list: ', label_path_list)



    # Convert to tensors

    image_list = tf.convert_to_tensor(image_path_list, dtype=tf.string)

    label_list = tf.convert_to_tensor(label_path_list, dtype=tf.int8)



    # Makes an input queue

    input_queue = tf.train.slice_input_producer(

        tensor_list=[image_list, label_list],   # A list of Tensor objects. Every Tensor in tensor_list must have the same size in the first dimension.

        num_epochs=None,                        # An integer (optional). If specified, slice_input_producer produces each slice num_epochs times before generating an OutOfRange error. If not specified, slice_input_producer can cycle through the slices an unlimited number of times.

        shuffle=SHUFFLE,                           # Boolean. If true, the integers are randomly shuffled within each epoch.

        seed=None,                              # An integer (optional). Seed used if shuffle == True.

        capacity=QUEUE_CAPACITY_CF,       # An integer. Sets the queue capacity.

        shared_name=None,                       # (optional). If set, this queue will be shared under the given name across multiple sessions.

        name=None)                              # A name for the operations (optional).



    images, labels = read_images_from_disk(input_queue, IMAGE_SIZE, N_INPUT_CH, IMAGE_TYPE)



    # Make batches of images and labels

    image_queue, label_queue = tf.train.batch(

                                [images, labels],

                                batch_size=BATCH_SIZE_CF,

                                num_threads=NUM_QUEUE_THREADS,

                                capacity=QUEUE_CAPACITY_CF,

                                enqueue_many=False,

                                shapes=None,

                                allow_smaller_final_batch=True,

                                shared_name=None,

                                name=None)



    return image_queue, label_queue



# Create a queue

def my_queue_unlabeled_data(DATASET, FILENAME_QUEUE_SHUFFLE, FILENAME_QUEUE_CAPACITY, IMAGE_SIZE, N_INPUT_CH, batch_size,

                            NUM_QUEUE_THREADS, MIN_AFTER_DEQUEUE, IMAGE_TYPE):



    filename_queue = tf.train.string_input_producer(            # Returns: A queue with the output strings. A QueueRunner for the Queue is added to the current Graph's QUEUE_RUNNER collection.

        string_tensor=tf.train.match_filenames_once(DATASET),   # A 1-D string tensor with the strings to produce.

        num_epochs=None,                                        # If None, can cycle through data unlimited number of times. Note: if num_epochs is not None, this function creates local counter epochs. Use local_variables_initializer() to initialize local variables.

        shuffle=FILENAME_QUEUE_SHUFFLE,                         # Randomly shuffle strings within each epoch

        seed=None,                                              # Shuffle seed for random

        capacity=FILENAME_QUEUE_CAPACITY,                       # Queue capacity

        shared_name=None,                                       # If set, this queue will be shared under the given name across multiple sessions.

        name=None,                           # A name for the operations

        cancel_op=None)                                         # Cancel op for the queue (optional).



    image_reader = tf.WholeFileReader()



    # Read a whole file from the queue

    _, image_file = image_reader.read(filename_queue)



    # Decode the image

    if IMAGE_TYPE == 'png':

        #print('Decode using PNG image decoder')

        image = tf.image.decode_png(    # Return: A Tensor of type uint8. 3-D with shape [height, width, channels]

            contents=image_file,        # A Tensor of type string. 0-D. The PNG-encoded image.

            channels=0,                 # Defaults to 0. Use the number of channels in the PNG-encoded image.

            dtype=None,                 # An optional tf.DType from: tf.uint8, tf.uint16. Defaults to tf.uint8.

            name=None)                  # A name for the operation (optional).



        # Convert image

        # image = tf.image.rgb_to_grayscale(image)

    elif IMAGE_TYPE == 'jpg' or IMAGE_TYPE == 'jpeg':

        # print('Decode using JPEG image decoder')

        image = tf.image.decode_jpeg(

            contents=image_file,

            channels=0,

            ratio=None,

            fancy_upscaling=None,

            try_recover_truncated=None,

            acceptable_fraction=None,

            name=None)

    else:

        myPrint('\tWrong image format in DATASET. Not PNG or JPG image. Error in image decoder.', error=True)



    # Set shape of image

    image.set_shape((IMAGE_SIZE, IMAGE_SIZE, N_INPUT_CH))



    # Create a batch queue

    #myPrint('\tFilling queue with {} images before starting to train. This will take a few minutes.'.format(MIN_AFTER_DEQUEUE))



    if FILENAME_QUEUE_SHUFFLE:

        images = tf.train.shuffle_batch(                    # Returns: A list or dictionary of tensors with the types as tensors.

            [image],                                        # The list or dictionary of tensors to enqueue. All tensors must have fully-defined shapes

            batch_size=batch_size,                          # The new batch size pulled from the queue.

            num_threads=NUM_QUEUE_THREADS,                  # The number of threads enqueuing tensor_list

            capacity=MIN_AFTER_DEQUEUE + 3 * batch_size,    # An integer. The maximum number of elements in the queue.

            min_after_dequeue=MIN_AFTER_DEQUEUE,            # Minimum number elements in the queue after a dequeue, used to ensure a level of mixing of elements.

            seed=None,                                      # Seed for the random shuffling within the queue.

            enqueue_many=False,                             # Whether each tensor in tensor_list is a single example.

            shapes=None,                                    # (Optional) The shapes for each example. Defaults to the inferred shapes for tensor_list.

            allow_smaller_final_batch=False,                # Allow the final batch to be smaller if there are insufficient items left in the queue.

            shared_name=None,                               # (Optional) If set, this queue will be shared under the given name across multiple sessions.

            name=None)                                      # (Optional) A name for the operations.

    else:

        images = tf.train.batch(                            # Returns: A list or dictionary of tensors with the same types as tensors (except if the input is a list of one element, then it returns a tensor, not a list).

            tensors=[image],                                # The list or dictionary of tensors to enqueue.

            batch_size=batch_size,                          # The new batch size pulled from the queue.

            num_threads=NUM_QUEUE_THREADS,                  # The number of threads enqueuing tensor_list

            capacity=MIN_AFTER_DEQUEUE + 3 * batch_size,    # An integer. The maximum number of elements in the queue.

            enqueue_many=False,                             # Whether each tensor in tensor_list is a single example.

            shapes=None,                                    # (Optional) The shapes for each example. Defaults to the inferred shapes for tensor_list.

            allow_smaller_final_batch=False,                # Allow the final batch to be smaller if there are insufficient items left in the queue.

            shared_name=None,                               # (Optional) If set, this queue will be shared under the given name across multiple sessions.

            name=None)                                      # (Optional) A name for the operations.



    return images



# Plot input image together with my_pred and save to plot_filepath

def my_plot_with_prediction(current_epoch, image, label, my_pred, current_model_path, FIGURE_PATH, folder,

                            BATCH_SIZE_CF_TEST, N_CLASSES_CF, NAME_OF_CLASSES):

    # Make a new plot

    fig, a = plt.subplots(2, 10, figsize=(10, 3))



    # Calculate number of plots

    if BATCH_SIZE_CF_TEST < 10:

        n_plots = BATCH_SIZE_CF_TEST

    else:

        n_plots = 10



    # Lag en vektor med antall klasser

    classes = []

    for i in range(N_CLASSES_CF):

        classes.append(i)



    # Vektor med navn på hver klasse

    name_of_classes_array = []

    for index, value in enumerate(NAME_OF_CLASSES):

        name_of_classes_array.append('Class ' + str(index) + ': ' + value)



    j = 0



    # Plot each figure

    for i in range(n_plots):

        if i == 0:

            a[0][i].set_title('Input images (epoch {})'.format(current_epoch), loc='left', fontsize=12)

            a[1][i].set_title('Prediction', loc='left', fontsize=12)

            a[1][i].set_yticks(classes)  # Set number of y-ticks

            #a[1][i].set_yticklabels(['Class 0:', 'Class 1:'])  # Set label of y-ticks

            a[1][i].set_yticklabels(name_of_classes_array)  # Set label of y-ticks

            a[1][i].set_xticks([0, 1])  # specify x-ticks

            a[1][i].set_xticklabels(['0%', '100%'])  # Set label of y-ticks

        else:

            a[1][i].set_xticks([0, 1])  # Set number of y-ticks

            a[1][i].set_xticklabels([''])  # Set label of y-ticks

            a[1][i].set_yticks(classes)  # Set number of y-ticks

            a[1][i].set_yticklabels([''])  # Set label of y-ticks



        a[0][i].set_yticks([])  # Remove y-ticks

        a[0][i].set_xticks([])  # Remove x-ticks



        a[0][i].spines['top'].set_linewidth(0)              # remove boarder around image

        a[0][i].spines['right'].set_linewidth(0)            # remove boarder around image

        a[0][i].spines['bottom'].set_linewidth(0)           # remove boarder around image

        a[0][i].spines['left'].set_linewidth(0)             # remove boarder around image



        # Calculate prediction

        prediction = np.argmax(my_pred, axis=1)



        # We only want to print images that have wrong predictions. Check prediction against true label.

        if j < 20:

            while label[j] == prediction[j]:

                j += 1



        # Plot image and bar chart

        a[0][i].imshow(image[j])  # plot image

        a[1][i].barh(classes, np.round(my_pred[j], 1), align='center', edgecolor='None')  # plot horizontal bar graph



        # Plot axis label

        if i == 0:

            a[0][i].set_xlabel('True class: ' + str(label[j]), fontsize=8)  # set the xlabel

        else:

            a[0][i].set_xlabel(label[j], fontsize=8)  # set the xlabel



        # Go to next image

        j += 1



        #a[1][i].set_yticks(classes)  # Set number of y-ticks

        a[1][i].tick_params(axis='both', which='major', labelsize=6)

        # a[1][i].set_xlabel('score', fontsize=8)             # Set xlabel



        a[1][i].spines['top'].set_linewidth(0.2)            # specify boarder width around image

        a[1][i].spines['right'].set_linewidth(0.2)          # specify boarder width around image

        a[1][i].spines['bottom'].set_linewidth(0.2)         # specify boarder width around image

        a[1][i].spines['left'].set_linewidth(0.2)           # specify boarder width around image



        for tic in a[1][i].xaxis.get_major_ticks():

            tic.tick1On = tic.tick2On = False

        for tic in a[1][i].yaxis.get_major_ticks():

            tic.tick1On = tic.tick2On = False



    plot_timestamp = datetime.datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H-%M-%S')

    plot_filepath = '{0}{1}/{2}/'.format(current_model_path, FIGURE_PATH, folder)

    if not os.path.exists(plot_filepath):

        os.makedirs(plot_filepath)

    fig.savefig(plot_filepath + plot_timestamp + '.png', dpi=200)

    plt.close(fig)

    plt.cla()



# Before training, we need to find out which model we are currently training on. We use variable 'current_model' to keep track of this.

def find_current_model(current_model, MODEL_MODE, PREVIOUS_MODEL_PATH, LEARNING_RATE_AE, BATCH_SIZE_AE,

                       LAYER_CONFIG, N_FILTERS_AE, K_SIZE, current_model_path, MODEL_PATH, N_MODEL_TOTAL,

                       LEARNING_RATE_CF, BATCH_SIZE_CF_TRAIN, BATCH_SIZE_CF_TEST, N_FILTERS_CF_1, N_FILTERS_CF_2):

    # Before training, we need to find out which model we are currently training on. We use variable 'current_model' to keep track of this.

    if MODEL_MODE == 0:

        # Mode 0: Train new autoencoder

        myPrint('Mode 0: Training new autoencoder')



        # Check that PREVIOUS_MODEL_PATH is not set

        if not PREVIOUS_MODEL_PATH == None:

            myPrint('ERROR: PREVIOUS_MODEL_PATH can not be defined when using MODEL_MODE 0. Please set PREVIOUS_MODEL_PATH=None or choose MODEL_MODE=1.')

            exit()



        # Update value of current_model

        current_model += 1

    elif MODEL_MODE == 1:

        # Mode 1: Continue training previous autoencoder model

        myPrint('Mode 1: Continue from previous autoencoder model')



        # Check that PREVIOUS_MODEL_PATH is set

        if PREVIOUS_MODEL_PATH == None:

            myPrint('ERROR: PREVIOUS_MODEL_PATH must be defined when using MODEL_MODE 1. Please set PREVIOUS_MODEL_PATH or choose MODEL_MODE=0.')

            exit()



        # If we are continuing from a previous model, we need to find out where the last model stopped. Create an array with all possible models

        hparamstr_array = []

        temp_model = 0

        for learning_rates in LEARNING_RATE_AE:

            for batch_sizes in BATCH_SIZE_AE:

                for layer_configs in LAYER_CONFIG:

                    for n_filters in N_FILTERS_AE:

                        for k_size in K_SIZE:

                            temp_model += 1

                            hparamstr_array.append(make_hparam_string_AE(current_model_var=temp_model,

                                                                        learning_var=learning_rates,

                                                                        batch_var=batch_sizes,

                                                                        layer_var=layer_configs,

                                                                        n_filt_var=n_filters,

                                                                        k_size_var=k_size))



        # Loop through each permutation of the hyperparameters

        temp2_model = 0

        for current_learning_rate in LEARNING_RATE_AE:

            for current_batch_size in BATCH_SIZE_AE:

                for current_layer_config in LAYER_CONFIG:

                    for current_n_filters in N_FILTERS_AE:

                        for current_k_size in K_SIZE:

                            temp2_model += 1

                            # Find index of current model inside hparamstr_array

                            current_index = hparamstr_array.index(make_hparam_string_AE(

                                                                current_model_var=temp2_model,

                                                                learning_var=current_learning_rate,

                                                                batch_var=current_batch_size,

                                                                layer_var=current_layer_config,

                                                                n_filt_var=current_n_filters,

                                                                k_size_var=current_k_size))



                            # Check if we are at last item in array

                            if (current_index + 1) <= (len(hparamstr_array) - 1):

                                # We are not at last element of the array yet. Check if folder for next model in array exist.

                                if os.path.exists(current_model_path + MODEL_PATH + hparamstr_array[current_index + 1]):

                                    # Update value of current_model

                                    current_model += 1

                                    # Model exist, this means that the current model finished in last run. jump to next model

                                    #myPrint('Model {} of {} already finished, moving on to next model.'.format(current_model, N_MODEL_TOTAL))

                            else:

                                # Index out of range, we are at last element

                                # Update value of current_model

                                current_model += 1

    elif MODEL_MODE == 2:

        # Mode 2: Continue training previous classifier model

        myPrint('Mode 2: Train classifier model')



        # Check that PREVIOUS_MODEL_PATH is set

        if PREVIOUS_MODEL_PATH == None:

            myPrint('ERROR: PREVIOUS_MODEL_PATH must be defined when using MODEL_MODE 2.', error=True)

            exit()



        # If we are continuing from a previous model, we need to find out where the last model stopped. Create an array with all possible models

        hparamstr_array = []

        temp_model = 0





        for learning_rates in LEARNING_RATE_CF:

            for batch_sizes_train in BATCH_SIZE_CF_TRAIN:

                for batch_size_test in BATCH_SIZE_CF_TEST:

                    for n_filt1 in N_FILTERS_CF_1:

                        for n_filt2 in N_FILTERS_CF_2:

                            temp_model += 1



                            hparamstr_array.append(make_hparam_string_CF(current_model_var=temp_model,

                                                  learning_var=learning_rates,

                                                  batch_train_var=batch_sizes_train,

                                                  batch_test_var=batch_size_test,

                                                  filt1_var=n_filt1,

                                                  filt2_var=n_filt2))



        # Loop through each permutation of the hyperparameters

        temp2_model = 0

        for current_learning_rates in LEARNING_RATE_CF:

            for current_batch_sizes_train in BATCH_SIZE_CF_TRAIN:

                for current_batch_size_test in BATCH_SIZE_CF_TEST:

                    for current_n_filt1 in N_FILTERS_CF_1:

                        for current_n_filt2 in N_FILTERS_CF_2:

                            temp2_model += 1



                            # Find index of current model inside hparamstr_array

                            current_index = hparamstr_array.index(

                                            make_hparam_string_CF(current_model_var=temp2_model,

                                                                learning_var=current_learning_rates,

                                                                batch_train_var=current_batch_sizes_train,

                                                                batch_test_var=current_batch_size_test,

                                                                filt1_var=current_n_filt1,

                                                                filt2_var=current_n_filt2))



                            # Check if we are at last item in array

                            if (current_index + 1) <= (len(hparamstr_array) - 1):

                                # We are not at last element of the array yet. Check if folder for next model in array exist.

                                if os.path.exists(current_model_path + MODEL_PATH + hparamstr_array[current_index + 1]):

                                    # Update value of current_model

                                    current_model += 1

                                    # Model exist, this means that the current model finished in last run. jump to next model

                                    #myPrint('Model {} of {} already finished, moving on to next model.'.format(current_model, N_MODEL_TOTAL))

                            else:

                                # Index out of range, we are at last element

                                # Update value of current_model

                                current_model += 1

    return current_model



# When plotting the latent vector, it needs to be reshaped into a matrix, this function will find the optimal size of the matrix

def image_size_factors(n):

    # Finds the prime factors of 'n'

    pFact, limit, check, num = [], int(math.sqrt(n)) + 1, 2, n

    if n == 1:

        return [1]

    for check in range(2, limit):

        while num % check == 0:

            pFact.append(check)

            num /= check

    if num > 1:

        pFact.append(num)



    # Calculate how to divide the array on two

    if not pFact[-1] == 2:

        length_array = (len(pFact) // 2)+1

    else:

        length_array = (len(pFact) // 2)



    # Multiply all the factors together

    a = 1

    for i in range(length_array):

        a *= pFact[i]



    b = 1

    for i in range(length_array, len(pFact)):

        b *= pFact[i]



    return a, b



# This function prints and plots the confusion matrix.

def plot_confusion_matrix(cm, current_ksplit, classes, folder,current_model_path, title='Confusion matrix', cmap=plt.cm.Blues):

    plt.imshow(cm, interpolation='nearest', cmap=cmap)

    plt.title(title)

    plt.colorbar()

    tick_marks = np.arange(len(classes))

    plt.xticks(tick_marks, classes, rotation=45)

    plt.yticks(tick_marks, classes)



    thresh = cm.max() / 2.

    for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):

        plt.text(j, i, cm[i, j],

                 horizontalalignment="center",

                 color="white" if cm[i, j] > thresh else "black")



    plt.tight_layout()

    plt.ylabel('True label')

    plt.xlabel('Predicted label')



    #plot_timestamp = datetime.datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H-%M-%S')

    plot_filepath = '{0}{1}/{2}/'.format(current_model_path, 'Confusion matrix/', folder)

    if not os.path.exists(plot_filepath):

        os.makedirs(plot_filepath)

    plt.savefig(plot_filepath + 'K-fold test no ' + str(current_ksplit) + '.png', dpi=200)

    plt.close()

    plt.cla()



# Function to send notification emails.

def sendemail(to_addr_list, message, smtpserver='smtp.gmail.com:587'):

    from_addr = 'rune.unix.respons@gmail.com'

    login = 'rune.unix.respons@gmail.com'

    password = 'r8xMekz6g5'

    SUBJECT = 'Report from python program'

    message2 = 'Subject: {}\n\n{}'.format(SUBJECT, message)



    if False:

        try:

            server = smtplib.SMTP(smtpserver)

            server.ehlo()

            server.starttls()

            server.login(login, password)

            problems = server.sendmail(from_addr, to_addr_list, message2)

            server.quit()

        except smtplib.SMTPException as e:

            print('Error sending email')

            print(e)















########################################################################################################################

################## ALT UNDER HER ER UTGATT #############################################################################

########################################################################################################################



# Weight initialization function (UTGATT)

def weight_variable(shape, name):

    initial = tf.truncated_normal(shape, stddev=0.1, name=name)  # truncated_normal = random

    return tf.Variable(initial)



# Bias initialization function (UTGATT)

def bias_variable(shape, name):

    initial = tf.constant(0.1, shape=shape, name=name)

    return tf.Variable(initial)



# Convolution function (UTGATT)

def conv2d(x, W):

    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')



# Alternativ deconvolution function (with dynamic batch size shape) (UTGATT)

def deconvLayer(input, filter_shape, output_shape, strides):

    #W1_1 = weight_variable(filter_shape)

    dyn_input_shape = tf.shape(input)

    batch_size = dyn_input_shape[0]

    output_shape = tf.stack([batch_size, output_shape[1], output_shape[2], output_shape[3]])

    output = tf.nn.conv2d_transpose(input, filter_shape, output_shape, strides, padding="VALID")

    return output



# Deconvolution function (UTGATT)

def deconv2d(output_size, x, W):

    return tf.nn.conv2d_backprop_input(

        input_sizes=output_size,

        filter=W,

        out_backprop=x,

        strides=[1, 1, 1, 1],

        padding='VALID')



# Pooling function (UTGATT)

def max_pool_2x2(pool_input):

    return tf.nn.max_pool(pool_input, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')



# Alternativ funksjon for unpooling (IKKE I BRUK)

def unpool(value, name='unpool_function'):

    # https://github.com/tensorflow/tensorflow/issues/2169

    """N-dimensional version of the unpooling operation from

    https://www.robots.ox.ac.uk/~vgg/rg/papers/Dosovitskiy_Learning_to_Generate_2015_CVPR_paper.pdf



    :param value: A Tensor of shape [b, d0, d1, ..., dn, ch]

    :return: A Tensor of shape [b, 2*d0, 2*d1, ..., 2*dn, ch]

    """

    with tf.name_scope(name) as scope:

        sh = value.get_shape().as_list()

        dim = len(sh[1:-1])

        #print('UNPOOL DIM:',dim)

        out = (tf.reshape(value, [-1] + sh[-dim:]))

        for i in range(dim, 0, -1):

            out = tf.concat([out, tf.zeros_like(out)], i)

        out_size = [-1] + [s * 2 for s in sh[1:-1]] + [sh[-1]]

        out = tf.reshape(out, out_size, name=scope)

    return out



# Alternativ funksjon for unpooling (IKKE I BRUK)

def unpool2(updates, mask, ksize=[1, 2, 2, 1]):

    # https://github.com/tensorflow/tensorflow/issues/2169

    input_shape = updates.get_shape().as_list()

    #  calculation new shape

    output_shape = (input_shape[0], input_shape[1] * ksize[1], input_shape[2] * ksize[2], input_shape[3])

    # calculation indices for batch, height, width and feature maps

    one_like_mask = tf.to_int64(tf.ones_like(mask))

    batch_range = tf.reshape(tf.range(output_shape[0], dtype=tf.int64), shape=[input_shape[0], 1, 1, 1])

    b = one_like_mask * batch_range

    y = tf.to_int64(mask // (output_shape[2] * output_shape[3]))

    x = tf.to_int64(mask % (output_shape[2] * output_shape[3]) // output_shape[3])

    feature_range = tf.range(output_shape[3], dtype=tf.int64)

    f = one_like_mask * feature_range

    # transpose indices & reshape update values to one dimension

    updates_size = tf.size(updates)

    indices = tf.transpose(tf.reshape(tf.stack([b, y, x, f]), [4, updates_size]))

    values = tf.reshape(updates, [updates_size])

    ret = tf.scatter_nd(indices, values, output_shape)

    return ret



# Alternativ funksjon for unpooling (IKKE I BRUK)

def FixedUnPooling(x, shape, unpool_mat=None):

    """

    https://github.com/ppwwyyxx/tensorpack/blob/master/tensorpack/models/pool.py

    Unpool the input with a fixed matrix to perform kronecker product with.

    Args:

        x (tf.Tensor): a NHWC tensor

        shape: int or (h, w) tuple

        unpool_mat: a tf.Tensor or np.ndarray 2D matrix with size=shape.

            If is None, will use a matrix with 1 at top-left corner.

    Returns:

        tf.Tensor: a NHWC tensor.

    """

    shape = shape2d(shape)



    # a faster implementation for this special case

    if shape[0] == 2 and shape[1] == 2 and unpool_mat is None:

        return UnPooling2x2ZeroFilled(x)



    input_shape = tf.shape(x)

    if unpool_mat is None:

        mat = np.zeros(shape, dtype='float32')

        mat[0][0] = 1

        unpool_mat = tf.constant(mat, name='unpool_mat')

    elif isinstance(unpool_mat, np.ndarray):

        unpool_mat = tf.constant(unpool_mat, name='unpool_mat')

    assert unpool_mat.get_shape().as_list() == list(shape)



    # perform a tensor-matrix kronecker product

    fx = tf.reshape(tf.transpose(x, [0, 3, 1, 2]), [-1])

    fx = tf.expand_dims(fx, -1)       # (bchw)x1

    mat = tf.expand_dims(tf.reshape(unpool_mat, [-1]), 0)  # 1x(shxsw)

    prod = tf.matmul(fx, mat)  # (bchw) x(shxsw)

    prod = tf.reshape(prod, tf.stack(

        [-1, input_shape[3], input_shape[1], input_shape[2], shape[0], shape[1]]))

    prod = tf.transpose(prod, [0, 2, 4, 3, 5, 1])

    prod = tf.reshape(prod, tf.stack(

        [-1, input_shape[1] * shape[0], input_shape[2] * shape[1], input_shape[3]]))

    return prod



# Brukes av funksjonen FixedUnPooling (IKKE I BRUK)

def shape2d(a):

    """

    https://github.com/ppwwyyxx/tensorpack/blob/master/tensorpack/utils/argtools.py

    Ensure a 2D shape.

    Args:

        a: a int or tuple/list of length 2

    Returns:

        list: of length 2. if ``a`` is a int, return ``[a, a]``.

    """

    if type(a) == int:

        return [a, a]

    if isinstance(a, (list, tuple)):

        assert len(a) == 2

        return list(a)

    raise RuntimeError("Illegal shape: {}".format(a))



# Brukes av funksjonen FixedUnPooling (IKKE I BRUK)

def UnPooling2x2ZeroFilled(x):

    # https://github.com/tensorflow/tensorflow/issues/2169

    # https://github.com/ppwwyyxx/tensorpack/blob/master/tensorpack/models/pool.py

    out = tf.concat([x, tf.zeros_like(x)], 3)

    out = tf.concat([out, tf.zeros_like(out)], 2)



    sh = x.get_shape().as_list()

    if None not in sh[1:]:

        out_size = [-1, sh[1] * 2, sh[2] * 2, sh[3]]

        return tf.reshape(out, out_size)

    else:

        shv = tf.shape(x)

        ret = tf.reshape(out, tf.stack([-1, shv[1] * 2, shv[2] * 2, sh[3]]))

        ret.set_shape([None, None, None, sh[3]])

    return ret



# Used by my_queue_labeled_data function (UTGATT)

def read_labeled_image_list(image_list_file):

    """Reads a .txt file containing pathes and labeles

    Args:

       image_list_file: a .txt file with one /path/to/image per line

       label: optionally, if set label will be pasted after each line

    Returns:

       List with all filenames in file image_list_file

    """

    f = open(image_list_file, 'r')

    filenames = []

    labels = []



    for line in f:

        #temp_array = []

        filename, label = line[:-1].split(',')

        #filename, label1, label2, label3 = line.split(' ')

        temp = [x.strip() for x in line.split(',')]

        filenames.append(filename)

        #temp_array.append(int(temp[1]))

        #temp_array.append(int(temp[2]))

        #temp_array.append(int(temp[3]))

        labels.append(int(temp[1]))

    return filenames, labels



# Lag et plot og vis (UTGATT??)

def plot_images(images, cls_true, title, cls_pred=None):

    assert len(images) == len(cls_true) == 9



    # Create figure with 3x3 sub-plots.

    fig, axes = plt.subplots(3, 3)

    fig.subplots_adjust(hspace=0.3, wspace=0.3)

    # fig.title(title)

    fig.suptitle(title)



    for i, ax in enumerate(axes.flat):

        # Plot image.

        ax.imshow(images[i].reshape(28, 28), cmap='binary')



        # Show true and predicted classes.

        if cls_pred is None:

            xlabel = "True: {0}".format(cls_true[i])

        else:

            xlabel = "True: {0}, Pred: {1}".format(cls_true[i], cls_pred[i])



        # Show the classes as the label on the x-axis.

        ax.set_xlabel(xlabel)



        # Remove ticks from the plot.

        ax.set_xticks([])

        ax.set_yticks([])



    # Ensure the plot is shown correctly with multiple plots

    # in a single Notebook cell.

    plt.show()










Autoencoder/watchdog.py

import time

import os

import subprocess



watchdog_file = 'watchdog.txt'

start_program = True

sleep_time = 30

restart_limit = 20



# Start program

if start_program == True:

    print('Starting program')



    if os.path.isfile(watchdog_file):

        os.remove(watchdog_file)



    subprocess.call(['python3', 'main.py'])

    start_program = False

    time.sleep(sleep_time)





while True:

    print('Check information in file')

    if os.path.isfile(watchdog_file):

        try:

            with open(watchdog_file, 'r') as file:

                textfile = file.read()

        except Exception as e:

            print('Error reading file')

            print(e)



        print(textfile)



        if len(textfile) == 0:

            print('Ingen info i fil. Sleep')

            time.sleep(sleep_time)

        elif textfile == 'Done':

            print('Program is done. Shutting down watchdog')

            exit()

        else:

            time_now = time.time()

            difference = time_now - float(textfile)

            print(difference)



            if difference > restart_limit:

                # More than 10 minutes since program updated textfile. Restarting program

                print('More than 10 minutes since program updated textfile. Restarting program')

                subprocess.call(['python3', 'main.py'])

            else:

                # Program is running. sleeping for 10 minutes

                print('Program is running. sleeping for {} seconds'.format(sleep_time))

                time.sleep(sleep_time)

    else:

        print('File does not exist. Sleeping for {} seconds'.format(sleep_time))

        time.sleep(sleep_time)










PreProcessing/MyFunctions.py

from gi.overrides import Vips

from xml.etree import ElementTree

import numpy as np

import time

import os

import scipy.io

from PIL import Image, ImageDraw

import logging                              # Datalogging

import datetime                             # Time

import sys

import math





def TicTocGenerator():

    # Generator that returns time differences

    ti = 0           # initial time

    tf = time.time() # final time

    while True:

        ti = tf

        tf = time.time()

        yield tf-ti # returns the time difference



TicToc = TicTocGenerator() # create an instance of the TicTocGen generator



# This will be the main function through which we define both tic() and toc()

def toc(tempBool=True):

    # Prints the time difference yielded by generator instance TicToc

    tempTimeInterval = next(TicToc)

    if tempBool:

        myPrint( "Elapsed time: %f seconds.\n" %tempTimeInterval )



def tic():

    # Records a time in TicToc, marks the beginning of a time interval

    toc(False)



def CheckFolders(current_save_path, current_mask_path, current_delete_path):

    if not os.path.exists(current_save_path):

        os.makedirs(current_save_path)

        myPrint('No current_save_path folder found. Successfully created folder: "{0}"'.format(current_save_path))



    #if not os.path.exists(current_background_path):

        #os.makedirs(current_background_path)

        #myPrint('No background folder found. Successfully created folder: "{0}"'.format(current_background_path))



    if not os.path.exists(current_mask_path):

        os.makedirs(current_mask_path)

        myPrint('No current_mask_path folder found. Successfully created folder: "{0}"'.format(current_mask_path))



    if not os.path.exists(current_delete_path):

        os.makedirs(current_delete_path)

        myPrint('No current_delete_path folder found. Successfully created folder: "{0}"'.format(current_delete_path))





def preprocess_image(remove_white_background, binaryMask, split_image, save_delete_img, current_xml_path,

                     search_size, tile_size, root, current_filename, current_save_path,

                     current_mask_path, current_delete_path, KEEP_INSIDE_OF_REGION, PRINT_IMAGE_AFTER_MASK):



    # This function pre-process the images in the folder "images".

    # First the function removes any white area/border around the images.

    # Then the function applies a binary mask (if XML file exist) to mask out any unwanted parts of the image.

    # Then the function splits the large image up into small tile-images and saves them as tiff images. The function

    # checks each tile of it should be saved or discarded.

    # Rune Wetteland - 14.02.2017





    # Parameters

    current_image_path = '{}/{}'.format(root, current_filename)



    # Load current image

    current_image = Vips.Image.new_from_file(current_image_path)

    myPrint('Current image: {}, height:{} width:{}'.format(current_image_path, current_image.height, current_image.width))



    # Flatten image to remove alpha channel (only if SCN images

    if current_filename[-3:] == 'scn':

        current_image = current_image.flatten()



    #################### REMOVE WHITE BACKGROUND #######################

    if remove_white_background:

        myPrint('Starting removing white background')



        # Reset variables

        remove_rows_top = 0

        remove_rows_bottom = 0

        remove_cols_left = 0

        remove_cols_right = 0



        ##### REMOVE HORIZONTAL WHITE LINES (TOP AND DOWN)

        if current_image((current_image.width // 2), 0)[1] == 255:

            first = 0

            last = (current_image.height // 2)



            while first <= last:

                midpoint = (first + last) // 2  # Using floor division

                #print('first {}, midpoint {}, last {}'.format(first, midpoint, last))

                if current_image((current_image.width // 2), midpoint)[1] == 255:

                    #print('if statement True')

                    first = midpoint + 1

                else:

                    #print('if statement False')

                    last = midpoint - 1



            remove_rows_top = midpoint - 1



        ##### END HORIZONTAL WHITE LINES (TOP AND DOWN)

        ##### REMOVE HORIZONTAL WHITE LINES (BOTTOM AND UP)

        if current_image((current_image.width // 2), (current_image.height-1))[1] == 255:

            first = (current_image.height // 2) - 5000

            last = current_image.height



            while first <= last:

                midpoint = (first + last) // 2  # Using floor division

                # print('first {}, midpoint {}, last {}'.format(first, midpoint, last))

                if current_image(((current_image.width // 2)-(current_image.width//4)), midpoint)[1] == 255:

                    #print('if statement True')

                    last = midpoint - 1

                else:

                    #print('if statement False')

                    first = midpoint + 1



            remove_rows_bottom = midpoint

            # print(remove_rows_bottom)



        ##### END HORIZONTAL WHITE LINES (BOTTOM AND UP)

        ##### REMOVE VERTICAL WHITE LINES (VENSTRE MOT HoYRE)

        if current_image(0, (current_image.height // 2))[1] == 255:

            first = 0

            last = (current_image.width // 2)



            while first <= last:

                midpoint = (first + last) // 2  # Using floor division

                # print('first {}, midpoint {}, last {}'.format(first, midpoint, last))

                if current_image(midpoint, (current_image.height // 2))[1] == 255:

                    #print('if statement True')

                    first = midpoint + 1

                else:

                    #print('if statement False')

                    last = midpoint - 1



            remove_cols_left = midpoint - 1

            # print(remove_cols_left)



        ##### END VERTICAL WHITE LINES (VENSTRE MOT HOYRE)

        ##### REMOVE VERTICAL WHITE LINES (HOYRE MOT VENSTRE)

        if current_image(0, (current_image.height // 2))[1] == 255:

            first = current_image.width // 2

            last = current_image.width

            while first <= last:

                midpoint = (first + last) // 2  # Using floor division

                # print('first {}, midpoint {}, last {}'.format(first, midpoint, last))

                if current_image(midpoint, (current_image.height // 2))[1] == 255:

                    # print('if statement True')

                    last = midpoint - 1

                else:

                    # print('if statement False')

                    first = midpoint + 1

            remove_cols_right = midpoint + 1



        ##### END VERTICAL WHITE LINES (HOYRE MOT VENSTRE)



        #print('remove_rows_top:', remove_rows_top)

        #print('remove_rows_bottom:', remove_rows_bottom)

        #print('remove_cols_left:', remove_cols_left)

        #print('remove_cols_right:', remove_cols_right)



        # Calculate new width/height of image and crop.

        if remove_rows_bottom != 0:

            # Calculate new width/height

            new_width = current_image.width - remove_cols_left - (current_image.width - remove_cols_right)

            new_height = current_image.height - remove_rows_top - (current_image.height - remove_rows_bottom)



            # Make sure that new width/height is an even number, if not remove one extra line.

            if new_width % 2 != 0:

                new_width -= 1



            if new_height % 2 != 0:

                new_height -= 1



            # Remove white background around the image

            current_image = current_image.extract_area(remove_cols_left, remove_rows_top, new_width, new_height)



            # Rotate image 90 degree

            current_image = current_image.rot(1)



            myPrint('Finished removing white background. New heigth:{}, width:{}'.format(new_height, new_width))

        else:

            myPrint('No white background found around image. No cropping done.')

    else:

        myPrint('Remove white background turned off.')





    #################### BINARY MASK ####################################

    if binaryMask:

        myPrint('Starting applying binary mask on image')



        # Les XML filen, og lag en liste med alle X-, Y-koordinatene.

        xml_liste = readXML(current_xml_path, current_image.width)



        # Create a new binary mask filled with 1's

        myPrint('Creating new black mask')

        vips_mask = Vips.Image.black(current_image.width, current_image.height)

        myPrint('Flooding mask with 1s')

        vips_mask = vips_mask.draw_flood(1, 50, 50)



        # Draw polygons on mask

        #myPrint('starting drawing polygons on mask')

        first_element = True



        for index, item in enumerate(xml_liste):

            #myPrint('\t')

            toc()

            myPrint('Drawing region {} of {}'.format(index+1, len(xml_liste)))

            tic()

            for coordinated in item:



                if first_element != True:

                    # Draw a line from (last_x, last_y) to (x,y)

                    vips_mask = vips_mask.draw_line(0.0, last_x, last_y, coordinated[0], coordinated[1])

                else:

                    # If first time, set initial values

                    first_element = False

                    x_max = coordinated[0]

                    x_min = coordinated[0]

                    y_max = coordinated[1]

                    y_min = coordinated[1]

                    start_x = coordinated[0]

                    start_y = coordinated[1]



                # Update last coordinates

                last_x = coordinated[0]

                last_y = coordinated[1]



                # Update max/min values

                if last_x > x_max:

                    x_max = coordinated[0]

                elif last_x < x_min:

                    x_min = coordinated[0]

                if last_y > y_max:

                    y_max = coordinated[1]

                elif last_y < y_min:

                    y_min = coordinated[1]





            # Reset first_element flag

            first_element = True



            # Calculate flood x-y coordinates for current polygon

            mass_center_x = ((x_min + x_max) // 2)

            mass_center_y = ((y_min + y_max) // 2)

            #print('mass center x:{} y:{}'.format(mass_center_x, mass_center_y))



            if mass_center_x > start_x:

                # Calculate the angle

                flood_angle = (math.atan((mass_center_y - start_y) / (mass_center_x - start_x)))

            else:

                # Calculate the angle and add Pi to the value

                flood_angle = math.pi + (math.atan((mass_center_y - start_y) / (mass_center_x - start_x)))



            #print('angle:', flood_angle)



            # Calculate the step-size to go away from start point and into the flood area.

            flood_length = current_image.width // 100



            # Calculate the point that layes inside the polygon. The flood-function will start

            # flooding from this point and out towards the polygon border.

            flood_x = int(start_x + round(flood_length * math.cos(flood_angle), 0))

            flood_y = int(start_y + round(flood_length * math.sin(flood_angle), 0))

            #print('start_x:{} start_y:{}'.format(start_x, start_y))

            #print('flood_x:{} flood_y:{}'.format(flood_x, flood_y))



            # Flood the inside of the current polygon with 1s

            if KEEP_INSIDE_OF_REGION == True:

                # Start flooding with 0s from coordinate x=1, y=1.

                vips_mask = vips_mask.draw_flood(0, 1, 1)

            else:

                # Start flooding with 0s from coordinate x=flood_x, y=flood_y.

                vips_mask = vips_mask.draw_flood(0, flood_x, flood_y)



            # Draw the line that shows where to flood. Good for debugging when it floods wrong.

            #vips_mask = vips_mask.draw_line(200.0, start_x, start_y, flood_x, flood_y)



        # Apply binary mask on current image by multiplying the two together.

        # The two input images are cast up to the smallest common format. This means:

        # Before multiplying the image is uchar (0-255)

        # After multiplying the image is ushort (0-65535)

        myPrint('Multiplying current image with binary mask and casting image type to UCHAR')

        current_image = current_image.multiply(vips_mask)



        # We need to cast the image format back down to uchar.

        current_image = current_image.cast(0)



        if PRINT_IMAGE_AFTER_MASK:

            current_image_after_mask = current_image

            # Resize image

            myPrint('Preparing to print image after binary mask is applied')

            if current_image.width > 10000:

                current_image_after_mask = current_image_after_mask.resize(0.05)



            # Saving to saved folder

            fileName = '{}_binarymask.jpeg'.format(current_filename[:-4])

            current_image_after_mask.jpegsave(fileName)



        myPrint('Finish applying binary mask on image')

    else:

        myPrint('Binary mask not found or turned off')





    # ALTERNATIV BINARY MASK

    # Les XML filen, og lag en liste med alle X-, Y-koordinatene.

    #mask1_width = current_image.width

    #mask1_height = current_image.height



    #xml_liste = readXML(current_xml_path, mask1_width)



    #img1 = Image.new('L', (mask1_width, mask1_height), 1)

    #img2 = Image.new('L', (mask2_width, mask2_height), 1)



    '''

    for item in xml_liste:

        # if len(xml_liste) >= 2:

        # ImageDraw.Draw(img1).polygon(current_list1, outline=1, fill=0)

        ImageDraw.Draw(img1).polygon(item, outline=1, fill=0)

        # else:

        # print('Listen er for kort')

    '''



    #for index, item in enumerate(xml_liste):

    #    print(item)

    #    myPrint('Drawing region {} of {}'.format(index + 1, len(xml_liste)))

    #    ImageDraw.Draw(img1).polygon(item, outline=1, fill=0)











    #mask1 = np.array(img1)

    #mask2 = np.array(img2)



    # Save binary mask as MAT file

    #print('Saving mask1')

    #scipy.io.savemat('mat files/binaryMask1.mat', mdict={'mask': mask1}, do_compression=True)

    #print('Saving mask2')

    #scipy.io.savemat('mat files/binaryMask2.mat', mdict={'mask': mask2}, do_compression=True)

    #print('finished saving masks')























    #################### SPLIT IMAGE #######################

    if split_image:

        myPrint('Starting splitting image up in tiles.')



        # Calculate how many tiles there are room for in width/height

        n_search_width = (current_image.width // search_size) * search_size

        n_search_height = (current_image.height // search_size) * search_size



        saved_locations = []

        count_search_saved = 0

        count_search_deleted = 0

        avg_timing = []



        # Set time start

        timer_start = time.time()



        # We will sort through the images two times. First time using 'search_size' and second

        # time using 'tile-size'. This is to sort out the background more efficiently.

        for i in range(0, n_search_height, search_size):

            # Calculate estimated time until completion

            avg_timing.append(round(time.time() - timer_start, 1))



            avg_timing_result = sum(avg_timing) / len(avg_timing)

            n_steps_left = round((n_search_height - i) / search_size, 1)

            ETF = round(avg_timing_result * n_steps_left, 0)



            if i < 8000:

                myPrint('Searching through row {}-{} of {}, ETF: *calculating*'.format(i, (i+search_size), n_search_height))

            else:

                myPrint('Searching through row {0}-{1} of {2}, ETF: {3:g} sec'.format(i, (i+search_size), n_search_height, ETF))

                # Remove first element to produce a running average array

                avg_timing.pop(0)



            # Restart timer

            timer_start = time.time()



            for j in range(0, n_search_width, search_size):



                # Extract current_search_block of the image

                current_search_block = current_image.extract_area(j, i, search_size, search_size)



                # Calculate 10% threshold limit

                current_block_thresh = current_search_block.percent(10)



                # If most of the pixel values are in the upper range of the image, it means that

                # most of the image consist of gray background. Delete image. Else, save image.

                # Also check if image is binary mask, then delete.

                #if current_search_block_deviation > 18:

                if current_block_thresh < 200 and current_block_thresh > 2:

                    # Saving coordinate to array

                    saved_locations.append((i,j))

                    count_search_saved += 1

                    # Saving to saved folder

                    #fileName = '{}/{}-{}-{}.tif'.format(current_save_path, os.path.splitext(current_file_path)[0], i, j)

                    #current_search_block.tiffsave(fileName)

                else:

                    count_search_deleted += 1

                    #fileName = '{}/{}-{}-{}.jpeg'.format(current_delete_path, os.path.splitext(current_file_path)[0], i, j)

                    #fileName = '{}/{}-{}-{}.jpeg'.format(current_save_path, os.path.splitext(current_file_path)[0], i, j)

                    #current_tile.write_to_file(fileName)

                    #current_search_block.jpegsave(fileName, Q=30)



        # Finished searching through the image. Now extracting the tiles

        myPrint('Search blocks saved: {}'.format(count_search_saved))

        myPrint('Search blocks deleted: {}'.format(count_search_deleted))

        myPrint('Finished searching through the image. Now extracting the tiles')

        # print(saved_locations)



        # Restart timer

        timer_start = time.time()

        avg_timing.clear()



        # Extracting tiles from search block

        index = 0

        count_tile_saved = 0

        count_tile_deleted = 0



        for current_search_block in saved_locations:



            #print('Extracting tiles. Current search block:{} of {}'.format(index, len(saved_locations)))

            index += 1



            # Calculate estimated time until completion

            avg_timing.append(round(time.time() - timer_start, 1))

            avg_timing_result = sum(avg_timing) / len(avg_timing)

            n_steps_left = round(len(saved_locations) - index + 1, 1)



            ETF = round(avg_timing_result * n_steps_left, 0)



            if index < 10:

                myPrint('Extracting tiles. Current search block: {} of {}, ETF: *calculating*'.format(index, len(saved_locations)))

            else:

                myPrint('Extracting tiles. Current search block: {} of {}, ETF: {:g} sec'.format(index, len(saved_locations), ETF))

                # Remove first element to produce a running average array

                avg_timing.pop(0)



            # Restart timer

            timer_start = time.time()

            limit_thres = 200





            for m in range(current_search_block[0], int(current_search_block[0]+search_size), tile_size):

                for n in range(current_search_block[1], int(current_search_block[1]+search_size), tile_size):



                    # Extract tile area of the image

                    current_tile = current_image.extract_area(n, m, tile_size, tile_size)





                    '''

                    current_hist = current_tile.hist_find()



                    print('current_hist(218, 0)[2]: ', current_hist(218, 0))



                    if current_hist(218, 0)[2] > limit_thres or current_hist(219, 0)[2] > limit_thres or \

                                    current_hist(220, 0)[2] > limit_thres or current_hist(221, 0)[2] > limit_thres or \

                                    current_hist(222, 0)[2] > limit_thres:

                        fileName = '{}/{}-{}-{}.png'.format(current_delete_path, os.path.splitext(current_filename)[0], m, n)

                        current_tile.pngsave(fileName)

                        count_tile_deleted += 1

                        # BRUK PNG BILDER PGA TENSORFLOW

                        # current_tile.pngsave(fileName)

                    else:

                        fileName = '{}/{}-{}-{}.png'.format(current_save_path, os.path.splitext(current_filename)[0], m, n)

                        current_tile.pngsave(fileName)

                        count_tile_saved += 1

                        # BRUK PNG BILDER PGA TENSORFLOW

                        #current_tile.pngsave(fileName)





                    '''

                    # Find 10% threshold limit

                    current_tile_thresh = current_tile.percent(10)



                    # If most of the pixel values are in the upper range of the image, it means that

                    # most of the image consist of gray background. Delete image. Else, save image.

                    # Check if tile consist of mostly binary mask. Save to mask_folder (if save_delete_img is True)

                    if current_tile_thresh < 20:

                        count_tile_deleted += 1

                        if save_delete_img:

                            fileName = '{}/{}-{}-{}.jpg'.format(current_mask_path, os.path.splitext(current_filename)[0], m, n)

                            current_tile.jpegsave(fileName, Q=100)

                    # Check if tile consist of no background, save tile

                    #elif current_tile_thresh < 115:

                        #fileName = '{}/{}-{}-{}.tif'.format(current_save_path, os.path.splitext(current_filename)[0], m, n)

                        #current_tile.pngsave(fileName)

                    # Check if tile consist of no background, save tile

                    elif current_tile_thresh < 185:

                        fileName = '{}/{}-{}-{}.jpg'.format(current_save_path, os.path.splitext(current_filename)[0], m, n)

                        current_tile.jpegsave(fileName, Q=100)

                        count_tile_saved += 1

                    # Background, saving to delete folder (if save_delete_img is True)

                    else:

                        count_tile_deleted += 1

                        if save_delete_img:

                            fileName = '{}/{}-{}-{}.jpg'.format(current_delete_path, os.path.splitext(current_filename)[0], m, n)

                            current_tile.jpegsave(fileName, Q=100)





        myPrint('Tiles saved: {}'.format(count_tile_saved))

        myPrint('Tiles deleted: {}'.format(count_tile_deleted))

        myPrint('Finished preprocessing of image')

        myPrint('\t')

    else:

        myPrint('Split image option off')

        myPrint('Finished preprocessing of image')

        myPrint('\t')





def readXML(path, mask_width):

    # This function read the coordinates from the XML file created by the ImageScope SCN viewer

    # program, and returns a array list. The function is made generic and can read an

    # arbitrary number of polygons from the XML file.

    # Rune Wetteland - 09.02.2017



    # Temporary variables used in the function

    #temp1_x = []

    #temp1_y = []

    temp2_x = []

    #temp2_y = []

    dict_list = {}

    xml_liste = []



    # Parse the root of the XML file structure

    root = ElementTree.parse(path).getroot()



    # Iterate through the XML file to get the data

    for Region in root.iter('Region'):



        # Lag en ny key i dictionary for hver region

        dict_list[Region.get('Id')] = {}



        # Reset values. Viktig, for hvis ikke overskrives de samme dataene.

        temp_x = []

        temp_y = []



        for current_vertex in Region.find('Vertices'):



            if int(current_vertex.get('X')) <= mask_width:

                # Sett inn i mask1

                temp_x.append(int(current_vertex.get('X')))

                temp_y.append(int(current_vertex.get('Y')))

            elif int(current_vertex.get('X')) > mask_width:

                # Sett inn i mask2

                temp2_x.append(int(current_vertex.get('X')) - mask_width)

                #temp2_y.append(int(current_vertex.get('Y')))



            # Legg verdiene inn i dictionary

            dict_list[Region.get('Id')]['X'] = temp_x

            dict_list[Region.get('Id')]['Y'] = temp_y





    # Konverter dictionary om til en liste. SlÃ¥r sammen X og Y koordinater til tuples.

    for list_items in dict_list.keys():

        xml_liste.append(list(zip(dict_list[list_items]['X'], dict_list[list_items]['Y'])))



    # Returner listen

    return xml_liste



def start_logging(log_path, file_name):

    # Check if directory for logs exist, if not, create one.

    if not os.path.exists(log_path):

        os.makedirs(log_path)



    # Test start time

    global start_time

    start_time = time.time()

    start_time_formatted = datetime.datetime.fromtimestamp(start_time).strftime('%Y-%m-%d %H:%M:%S')

    start_time_logger = datetime.datetime.fromtimestamp(start_time).strftime('%Y-%m-%d %H-%M-%S')



    # Create a logger

    logg_navn = '{0}{1}-{2}.log'.format(log_path, start_time_logger, file_name)

    logging.basicConfig(filename=logg_navn, level=logging.INFO)



    # Test start

    print("\n")

    print('Program started at {}'.format(start_time_formatted))

    logging.info('Program started at {}'.format(start_time_formatted))



def myPrint(msg, debug=True):

    if debug:

        #logging.debug(msg)

        logging.info(msg)

        print(msg)

    else:

        logging.error(msg)

        print(msg)



def end_logging():

    end_time = time.time()

    end_time_formatted = datetime.datetime.fromtimestamp(end_time).strftime('%Y-%m-%d %H:%M:%S')

    myPrint('\t')

    myPrint("Program finished at: {}".format(end_time_formatted))

    elapse_time = end_time - start_time

    m, s = divmod(elapse_time, 60)

    h, m = divmod(m, 60)

    myPrint('Total time(H:M:S): %02d:%02d:%02d' % (h, m, s))










PreProcessing/PreProcessing10.py

import MyFunctions

import os

import sys



#### PROGRAM INFORMATION

# The images you want to preprocess and split up should be put in

# subfolders of images after which class they belong, e.g. images/class1/img1.scn.

# The resulting split up images will then be put into the folder dataset/class1_save/tile128_128.png

#######################



########### PARAMETERS

search_size             = 1024

#search_size             = 8192

#search_size             = 1024      # Size of search block, performed before making tiles.

tile_size               = 128       # Final size of each tile image.

remove_white_background = False      # If SCN file has white background, this function removes it.

split_image             = True      # Enable function to split image up into smaller images of size tile_size.

binaryMaskForce         = False      # Force to not run binary mask option. True=Not run, False=Run if XML file available.

enable_logging          = False      # Enable logging of information to file while running the program.

save_delete_img         = True     # Enable this to also save the deleted tile images.

KEEP_INSIDE_OF_REGION   = False     # If a XML file is found, should the masked are be kept or not? True=Everything around is masked out. False=The region is masked.

PRINT_IMAGE_AFTER_MASK  = True      # True=Save an image of the full image after binary mask have been applied. False=Do not save image.



########### PATHS

image_path              = 'images'

dataset_path            = 'dataset'

xml_path                = os.path.abspath('images/image.xml')

log_path                = 'logs/'

file_name               = os.path.splitext(os.path.basename(sys.argv[0]))[0]



########### START LOGGING

if enable_logging:

    MyFunctions.start_logging(log_path, file_name)



# Save file configuration to log file

MyFunctions.myPrint('Parameter: search_size: {}'.format(search_size))

MyFunctions.myPrint('Parameter: tile_size: {}'.format(tile_size))

MyFunctions.myPrint('Parameter: remove_white_background: {}'.format(remove_white_background))

MyFunctions.myPrint('Parameter: split_image: {}'.format(split_image))

MyFunctions.myPrint('Parameter: binaryMaskForce: {}'.format(binaryMaskForce))

MyFunctions.myPrint('Parameter: enable_logging: {}'.format(enable_logging))

MyFunctions.myPrint('Parameter: save_delete_img: {}'.format(save_delete_img))

MyFunctions.myPrint('Parameter: KEEP_INSIDE_OF_REGION: {}'.format(KEEP_INSIDE_OF_REGION))

MyFunctions.myPrint('\t')



########### START PREPROCESSING

# Go through each image in each class (folder)

for _, classes, _ in os.walk(image_path):

    for current_class in classes:



        # Check if directory for saving images exist, if not, create one.

        current_save_path       = '{}/{}_save'.format(dataset_path, current_class)

        #current_maybeSave_path  = '{}/{}_maybeSave'.format(dataset_path, current_class)

        current_mask_path       = '{}/{}_mask'.format(dataset_path, current_class)

        current_delete_path     = '{}/{}_delete'.format(dataset_path, current_class)

        MyFunctions.CheckFolders(current_save_path, current_mask_path, current_delete_path)



        # Define path for folder of current class

        current_class_path = '{}/{}'.format(image_path, current_class)



        # Search through the directories for all the files

        for root, _, images in os.walk(current_class_path):

            for current_filename in images:

                # Check that the current file is an image file, and not an XML file.

                if os.path.splitext(current_filename)[1] in {'.scn', '.tif', '.jpeg', '.jpg', '.bmp', '.png'}:



                    MyFunctions.myPrint('Loaded {}. Starting preprocessing'.format(current_filename))



                    # Define path for XML file

                    current_xml_path = '{}/{}/{}.xml'.format(image_path, current_class, os.path.splitext(current_filename)[0])



                    # Check that the XML file exist.

                    if os.path.exists(current_xml_path) and not binaryMaskForce:

                        MyFunctions.myPrint('Found XML file for {}.'.format(current_filename))

                        binaryMask = True

                    else:

                        MyFunctions.myPrint('No XML file found for {}.'.format(current_filename))

                        binaryMask = False



                    # Remove white background, Binary mask, Split the image up in smaller tiles, save to tiff images.

                    MyFunctions.preprocess_image(remove_white_background, binaryMask, split_image, save_delete_img,

                                                 current_xml_path, search_size, tile_size, root, current_filename,

                                                 current_save_path, current_mask_path,

                                                 current_delete_path, KEEP_INSIDE_OF_REGION, PRINT_IMAGE_AFTER_MASK)

                else:

                    MyFunctions.myPrint('Loaded {}. Not an image, ignoring.'.format(current_filename))





######### LOGGING END

if enable_logging:

    MyFunctions.end_logging()






