Universitetet

I Stavanger

FACULTY OF SCIENCE AND TECHNOLOGY

MASTER'S THESIS

Study programme specialisation: Spring Autumn semester, 2017

Industnial Automation and Signal Processing

Open Confidential: Open

Author: Firnik Aflekt Thomessen ; i/

......................

tsignature of authon)

Programme coordinator: Ivar Austvoll

Supervisor(s): Ivar Austvoll, krlend Tossebro

Tiﬂc of master’s thesis: Advanced vision based vebicle classification for traffic surveillance
system using neural networks

Norwegian: Avansert visjonbaser! kjeretayklassifisenng for trafikkovervakingssystem ved bruk av
nevrale nettverk

Credits: 30 ECTS

Keywords: Traftic surveillance, background [g
subtraction, Kalman filter. Decp Number of pages: t e
lcarning, Neural nctworks

Chapter 0

Preface

This is a master’s thesis in automation and signal processing at the University
of Stavanger. The topic is advanced vision based vehicle classification for traffic
surveillance systems using neural networks. I would like to thank my supervisors,
Ivar Austvoll and Erlend Tgssebro, for valuable discussions and support to suc-

cessfully accomplish my MSc Thesis.

Also great thanks to Bjgrn Inge Lerang from Roxel, Hakon Kjerkreit and other
guys from KVS, and prof Trygve Thomessen for great help, ideas and enthusiasm.

And thanks to Bjgrn Fossden and Stale Freyer for acquisition of cameras.

A special thanks to Ingrid, to always supporting me during the work, and for

your endless patience.

Advanced vision-based vehicle
classification for trafhic
surveillance systems using neural

networks

IT

Chapter 0

Summary

During the last years, the use of vision-based traffic system has increased in pop-
ularity, both in terms of traffic monitoring and control of autonomous cars.
This master thesis focus especially on traffic monitoring, which are of importance

to fulfill planning and traffic management of road networks.

An important requirement is data interpretation accuracy to provide adequate
characteristic data from the acquired vision-data. A vision-based system has been
developed, using new methods and technologies to achieve an automated traffic

monitoring system, without the use of additional sensors.

The thesis is based upon Erik Sudland’s master thesis from 2016, which inves-
tigated available litterateur containing adequate algorithms for traffic monitoring.
However in the current master thesis, methods have been further analyzed and
experimentally optimized on vision-data from real traffic situations. In addition, a
new classification method based upon neural networks has been implemented and

verified with successful results.

The system has undergone a comprehensive experimental verification, with analy-
sis of more than 20000 images. The experimental results verify a successful imple-
mentation of both the detection and object classification routines, and demonstrate

the system’s capability of determining characteristic traffic data, like
m Velocity distribution
m Density of vehicles
m Traffic congestion

m Vehicle class frequency

I1I

Chapter 0

Sammendrag

I lgpet av de siste arene har bruken av kamerabaserte trafikksystemer gkt i popu-
laritet, bade nar det gjelder trafikkovervakning og kontroll av autonome biler.
Denne masteroppgaven fokuserer spesielt pa trafikkovervakning, noe som er viktig

for & oppfylle planlegging og trafikkstyring av veinett.

Et viktig krav er at datatolkningen er ngyaktig nok til a gi tilstrekkelig karak-
teristiske analyser. Et kamerabasert system er utviklet ved hjelp av nye metoder
og teknologier for & oppna et automatisert trafikkovervakingssystem uten bruk av

tilleggs-sensorer.

Avhandlingen er basert pa Erik Sudlands masteroppgave fra 2016, som undersgkte
tilgjengelig litteratur om algoritmer for trafikkovervakning. I denne masteropp-
gaven er metodene videre analysert og eksperimentelt optimalisert pa data fra
ekte trafikksituasjoner. I tillegg er en ny klassifikasjonsmetode, basert pa nevrale

nettverk, implementert og verifisert med vellykkede resultater.

Systemet har gjennomgatt en omfattende eksperimentell verifisering, med anal-
yse av mer enn 20000 bilder. De eksperimentelle resultatene bekrefter en vellykket
implementering av bade deteksjons- og objektklassifikasjonsrutiner, og demonstr-

erer systemets evne til & bestemme karakteristiske trafikkdata, slik som:

m Hastighetsfordeling
m Trafikkfrekvens
m Kgsituasjoner

m Frekvens av kjgretgyklassene

IV

Contents

[Prefacd I

| DUMMATY| « v v o v v v v e e e e e e e e e e e 111
1__Introductionl 1
(1.1 Background| 1
(1.2 Introduction to object identification| 3
(1.3 Current available technologyl)
(L4 Problem formulationl 0oL 7

2 Theory behind implemented methods| 10
[2.1 Background subtraction| 11
[2.1.1 Morphological operations|. 15

2.2 Kalman filterl oo 18
2.3 Artifical neural networkso o oo 25
[2.4 Classifying images with neural networks] 35

[3 Implementation of the vision-based traffic system| 40
[3.1 Hardware components 42
[3.2 Implementation in Python| 45
[3.2.1 System setup| 47

[3.2.2 Detection modulelo 49

[3.2.3 Tracking module] o000 53

[3.2.4 Classification modulef 59

[3.2.5 Graphical Interfacel 62

Chapter 0 Contents
[4 Experimental results| 64
4.1 Data acquisition|. 65
[4.2 "Testing neural networks architectures| 70
[4.2.1 'lTesting the classifier] 75

4.3 Arranging the experimental setup| 78
[4.4 Initial considerations of the acquired data| 82
[4.4.1 Determining a reasonable vector space| 83

[4.4.2 Initiating the Kalman filter] 87

[4.4.3 Hit rate during sunny days|. 89

[4.4.4 Hit rate during cloudy days| 92

[4.4.5 Recordings from three diftferent locations 94

[4.4.6 Multiple lanes|o 96

[4.5 Analysis and presentation of trafhic data] 98
[4.5.1 Velocity distribution| 99

[4.5.2 Density of vehicles) 101

[4.5.3 'lraffic congestion |o 103

[4.5.4 Classifying the dataset| 106

[4.5.5 Vehicle class frequency| 108

5 Discussionl 110
6 Recommendations for further workl 115
[7__Conclusion| 118
(Bibliography| 120
A ppend 130
[A Python libraries| 131
IB_Datasheets 133
lC Neural network models| 137

VI

Chapter 0 Contents

[D_Source codel 140

(E._User manual| 141

VII

Chapter 1

Introduction

1.1 Background

In recent years, big data applications utilized in real-time traffic operation and
safety monitoring has gained interest. The [P-based surveillance segment is ex-
pected to witness high growth over the next years. According to a new report
from the US Market Research Institute, Grand View Research [30], states that the
world market for video surveillance and video surveillance to will grow to as much
as 49 billion dollars by 2020, which is equivalent to approximately NOK 390 billion.

The primary purpose of a surveillance camera is for security and statistics purpose,
such as open data governmental surveillance of traffic, and planning new solutions
to reduce risks, and increase traffic flow. Furthermore, this data can be used for
risk assessment purposes through analysis providing predictions to current risk

levels, and possibly enable proactive mobilization of emergency units.

Traffic surveillance is a method that improves traffic management and flow, and
is often referred to as an intelligent transportation system (ITS) [41]. ITS are
used in several applications, such as to identify vehicles traveling over the legal
speed limit, detect vehicles in the wrong direction, driving on red light or vehi-

cles crossing railways that grade illegally. These camera systems are often used in

Chapter 1 1.1. Background

combination with a range of sensors to recognize vehicles.

A vision-based approach is introduced. It has the advantages of easy maintenance
and high flexibility in traffic monitoring and compact hardware and software struc-
ture which enhanced the mobility and performance. The deployed cameras utilize
a vehicle detection algorithm that detects cars and performs analyzes based on
the data mining. Applying camera systems provides additional benefits as they
can detect people in the way, alarm if someone is driving the wrong way or if is a

traffic jam.

Autonomous cars are expected to be an important part of our everyday life in
just a few years. Combining the vehicles technology system with a robust surveil-
lance system could prevent traffic jams, accidents or other events and drastically

improve congestion.

Chapter 1 1.2. Introduction to object identification

1.2 Introduction to object identification

Motion detection is often the first step of a multi-stage computer vision system.
The problem to recognize and monitor vehicles is normally separated into three

main operations; detection, tracking and classification.

Detection is the process of localizing objects in the scene. A survey on object
detection and tracking methods[I9] proposed that background subtraction can be
a simple method providing complete information about an object compared to

optical flow and frame difference for detecting objects.

Tracking is the problem of localizing the object in consecutive frames. Erik Sudland
[43] proposed an interesting algorithm for object tracking based upon a Kalman
filter to estimate the unknown states of the objects. Even though the Kalman
filter has some weaknesses when the background is varying [2], promising results

were demonstrated in conjunction with background subtraction [38].

Classification is the process of categorizing the objects. Vehicle classification is
an inherently difficult problem, because many vehicle types do not have any dis-
tinct signatures.The traffic situation in the real world is constantly changing and
cameras will be challenged by occlusions, shadows, camera noise, changes in illu-
mination and weather, etc. In addition, each vehicle category (car, van, bus etc)
contains multiple variants of geometry, colour, size, styling etc. which makes it
difficult to classify based on simple parameters [10]. This task becomes even more

challenging, when subcategories are included.

The development of artificial neural networks, has contributed to a significant
improvement of the computer vision tasks during the recent years. The neural
networks are frequently used for machine learning and has a special strength in
the object classification. The neural network method is based upon offline train-

ing on object with known properties, and has the capability to extend this trained

Chapter 1 1.2. Introduction to object identification

knowledge, to detect unknown object properly. In addition, a big strength with

the neural networks, is the small consumption of computation power.

Chapter 1 1.3. Current available technology

1.3 Current available technology

Erik Sudland[43] presented in his MSc Thesis, an overview of the existing tech-
nology and algorithms for vehicle recognition. Among these are inductive loops,
pressure sensitive sensors, radars, lazer, ultrasound and infrared light. The overall
drawbacks were either high cost or low reliability due to wear and tear and sensi-

bility to challenging weather conditions.

Image processing has been used for traffic monitoring and -surveillance since the
1970s in the USA, Japan and France. Typically, video cameras with image pro-
cessing are used for vehicle detection. However, the availability of new technology
and especially computation power during the last few years have opened for im-

plementation of new and advanced algorithms for even real-time analysis.

Today a fair number of tunnels around the world have camera systems that auto-
matically alerts about abnormal traffic conditions like pedestrians in the tunnel,
vehicles in the wrong lane, slow traffic, smoke, dropped load and overheating in

vehicles. The system goes under the name Automatic Incident Detection(AID).

The technology also makes is possible to detect traffic in several lanes inside of
the field of view. Statens Vegvesen is using an ATK (Automatic traffic control)
system which matches cars over a certain distance to measure the average speed
[47]. Key data, like time of passage, wheelbase, weight and license plate, are sent

from "photo box A" to "photo box B" and is used to recognize the vehicles.

Even though this method is based on basically, simple license plate detection,
it has some important challenges related to flaws like, dirt on the plate, weather
conditions (rain, snow) etc, making the license plate unreadable, even though the
cameras high resolutions images. Because of these flawed factors, the system also
has installed pressure sensivitive sensors which detect speed, weight and wheelbase.

In total, this leads to high costs and sometimes low performance and need for fre-

Chapter 1 1.3. Current available technology

quent maintenance. However, currently, there are interesting projects running for
video based traffic monitoring and surveillance. The project VITUS (Video Image
analysis for Tunnel Safety) was completed in Austria. Even though the project ac-
quired important knowledge about vision technology, it unfortunately, concluded

final results it did not achieve a satisfactory level.

Another project, Robust Sensor Systems for Advanced Traffic Applications (ROSSATA),
applied more advanced methods, like passive 3D vision and flow analysis to exam-

ine 3D-scenes. This project is running.

However, this MSc thesis, has the ambitions to investigate and experimentally,
verify, partly new algorithms and methodology. This has implied a considerable
risk. However, motivation have occurred of the opportunity to make a possible

break-through within vision based traffic surveillance systems.

Chapter 1 1.4. Problem formulation

1.4 Problem formulation

This master thesis is enabled and motivated by a collaboration between the uni-

versity in Stavanger and Statens vegvesen. The target has been twofold;

m Develop a powerful, reliable, traffic surveillance system to detect traffic sit-

uations like:
— Velocity distribution
— Density of vehicles
— Traffic congestion
— Vehicle class frequency
m Develop, adapt and implement new detection and classification algorithms,

and make a representative verification of them through testing on a huge

source of real traffic data

Thus, this thesis basically, try to successfully fulfill the expectations from two
“customers”. The system should be based upon vision and be able to anonymously
detect and determine different classes of vehicles. “Anonymous” is used in the
terms of not using any identification features, such as code chip, vehicle registration

plates etc. The case is described in figure [I.1]

Chapter 1 1.4. Problem formulation
I .
Problem: Solution:) Present development:\

The challenge of

with camera
surveillance, to
evaluate present
level of risk.

E.g tunnel safety

.

identifying vehicles

J

Descriptive data:

Apply intelligent vision-
based traffic
surveillance system to
identify important
traffic parameters.

Predictive data:

Correlate descriptive
data with historical
data to predict
possible risk

situations

Prescriptive data:

Generate/Suggest
preventive actions based
upon the predictive data.

E.g:

. Mobilize the emergency
department

Develop intelligent vision-
based traffic surveillance
system on a python based
platform

- J

|

4)

Future development:

Apply an intelligent vision-
based system in an
advanced application which
is based upon:

. Historical data
- Traffic situations
» Accidents risks
. Real time data
» Intelligent processing

\. Close a tunnel or road/

(& J

Figure 1.1: Problem, solution and development for a traffic surveillance system

The problem description has during close correspondence with the supervisors,

been somewhat adjusted during the development process, to comply with the ac-

quired knowledge during the development process.

Thus, the target has been move away from tunnel safety, toward a more gen-

eral traffic surveillance system, with vision and neural network classification as

core methodologies.

The thesis is organize with the following main chapter:

Chapter 1 1.4. Problem formulation

1. Introductory study to determine the need for and challenges of traffic surveil-

lance systems
2. Introductory study of the detection and classification methods
3. Develop a module for detection, tracking and classification respectively
4. Develop a complete system structure as a surveillance system
5. Collect data for testing
6. Experimental testing for all modules
7. Documentation of the experimental setup, including hardware and software
8. Documentation of the user functions to operate the experimental setup.

9. Documentation of the experimental results

Thus, the reader is brought through basic theory, principles and methodology

before diving into the comprehensive experiments to verify the results.

Chapter 2

Theory behind implemented
methods

The traffic surveillance system in this thesis utilizes a range of image processing
methods and machine learning algorithms. The processes are placed in separate

modules, where the entirety of the system is presented in figure 2.1]

Video
frames

Method:
Background
subtraction

Method:
Kalman filter
1
Method:
Neural network

Detection
Module

Tracking
module

Classification

Figure 2.1: Modules in the system.

The detection module is solved by implementing a background subtraction method.
The tracking module is solved with a Kalman filter. The classification module
utilizes a neural network. The theory behind the implemented methods in each

module are explained separately in the next chapter.

10

Chapter 2 2.1. Background subtraction

2.1 Background subtraction

Background subtraction, also referred to as foreground detection, is a method to
detect a dynamic foreground in a static background image without any prior knowl-
edge about the objects [19]. Background subtraction is a widely used approach for
detecting moving objects in videos from static cameras, as well as other monitor-
ing applications [22] [45]. The method segments moving objects by thresholding a

pixel distance between the current frame and static background image.

Figure 2.2: Extract foreground based on movement in the background

image

The basic approach is to maintain a background image as a cumulative average of

the video stream. "The simplest process' is explained by the equation [2.1}

|frame; — frame;_,| > Threshold (2.1)

Where frame; is the current frame, and the estimated background, frame;_q, is
the previous frame. Objects are segmented by thresholding a pixel distance be-
tween the current frame and the background image. This is very sensitive to the
global threshold, and works only under special conditions, where the background is
unaffected by uncontrolled environments [26]. A simple subtraction difference with
global threshold is a weak solution, because the background subtraction method
must deal with problems as illumination changes, motion changes and changes in

background geometry [12].

11

Chapter 2 2.1. Background subtraction

[Nlumination variations may both be gradual and sudden, such as clouds or blinking
lights. Motion changes may be camera oscillations or background objects that are
moving frequently. Changes in the background geometry may be moving vehicles.
To counteract uncontrolled environments, most of the state of the art algorithms
uses a sequence of previous images to create a historical and probabilistic model.
Several background methods bound to different probability models have been pro-
posed, and a paper conducted by Massimo Piccardi[33], reviews and compares the
state of the art background subtraction methods. The experiments concludes that
all methods outperforms the basic method, especially with additional image pro-
cessing, such as morphological operations. One highlighted and promising method

is the Gaussian Mixture Model.

Gaussian Mixture Model (GMM) is a model proposed by Stauffer and Grim-
som to tolerate environmental changes [42]. Considering that environmental fac-
tors contributes to the background pixel values, the GMM uses probability of
occurrence of a color at a given pixel, as a mixture of K numbers of Gaussians [§],
as illustrated in figure 2.3]

00161 ——- 1: 80 & 20 w: 0.3
K:1000: 5 w: 0.2 [
\

00144 ___ u: 200 0: 10 w: 0.4 H !

0.012 i

|
0.010 ! \
0.008 1
0.006
0.004 1

! N
0.002 e \ K
/ N

0.000] mmmmmem=Tlo AT O,

Figure 2.3: Threshold area for a pixel, I,), given by a mixture of
Gaussian distributions. Values within the distributions are considered

background.

12

Chapter 2 2.1. Background subtraction

The probability of a given pixel being a part of the background is given by the

equation:

K
P(-Is,t) - Z Wk, st ° N(/«’/k,s,ta Ek,s,t) (22)
k=1

P(I,;) is probability of the color Iy; at time t and pizel s. I,; may be one-
dimensional, such as gray sacle, 2D (normalized colour space) or 3D (colour, RGB
space). N (i s, Xp.s) is the K Gaussian model and wy, ¢ ; are the corresponding
weights. All weights w are updated for each consecutive frame. X, is the
covariance matrix. The RGB components are assumed to be uncorrelated and
share the same variance, hence the covariance matrix given by ¥ = oI, where o2

is the variance. The parameters in the model are updated as following:

Wyt = (1 — Q)wps -1 + (2.3)
Pt = (1 — p)prsi—1 + plsy (2.4)
Uﬁ,s,t =(1- P)Ulz,s,tq + p(Ls ity Pkyst) (2.5)

where o and p are learning rates, which decides how fast the model should adapt to
changes in the background. Faster learning rates results in a more sensitive model.
To achieve decay in the background, the weights of unmatched distributions are

reduced over time:

Wyst = (1 — Q)wpsi-1 (2.6)

A pixel is set to be background with higher probability if it occurs frequently (high
wy and does not vary much (low o?). At every frame, some of the Gaussian pdfs

are matching the current value. For the matching values, ; and o; is updated.

13

Chapter 2 2.1. Background subtraction

If the color I,; does not match any apriori probabilities, the distribution with

lowest weights are replaced by a Gaussian with:

— mean of I,

— small weights w

— large initial variance, o2

All of the K distributions are ranked by the criterion wy/py ,which is proportional
to the peak amplitude of the weighted distributions. Detected objects are in motion
and a distribution representing the foreground will have greater variance and less
road factor, and therefore the B most reliable distributions are chosen as part of

the background.
h

B = argmin, (> _wy, > T) (2.7)

=1

The distributions that exceeds the threshold 7 are set as background, and the rest
are default foreground. The foreground is extracted followed by morphological

operations, which is presented in next section.

14

Chapter 2 2.1. Background subtraction

2.1.1 Morphological operations

Morphological means, in mathematics, shape, form or structure. It’s a set of non-
linear methods related to the shape or of features in an image [35]. It has been
used for image processing since the early 1960, and was introduced by Georger
Matheron and Jean Serra [35]. When first introduced it was only applicable for
binary images, but later developed for grayscale as well. Morphological image
processing has a lot of applications, but it’s especially useful for extracting and
describing image regions. It is based on a set of basic methods, which are applied
in different ways. Morphological operations are based on structuring elements(
shortened to strel). A strel is a small set of pixels or subimage, used to probe for

structure.

Morphological operations may be applied to the extracted foreground to prevent
noise and false positives. One of the advantages of morphological operations is
that they require little computing power, and wont affect the real time processing.
Morphological operations are often combined to enhance specific features in an

image. The basic operations are explained below.

Erosion is a set of points Z, so that the structuring element, translated by Z,
fits fully inside A. A is the original set, B is the structuring element, given by the

equation:

Ao B ={Z|B. C A} (2.8)

The outcome of erosion will always give a subset of A. It can be seen as a peeler,

it removes thin lines and isolated dots, but leaves gross details.

15

Chapter 2 2.1. Background subtraction

Dilation find pixels in which the shifted strel has overlap with the original set,
A. In other words, it fatten things up.

AB ={Z|B.nAC A} (2.9)
Dilation is both commutative (2.10))

AGB=BoA (2.10)
and associative (2.11):

Ao (Be(C)=(AaB)aC (2.11)

Both dilation and erosion are changing the size of the objects. A mix of these two
gives operators that opens and/or fill holes, but does not change the original size.

They are called Opening and Closing

Opening is the result of eroding, then dilating, with the same structuring ele-
ment.

AoB=(AcB)@B (2.12)

The eroding breaks bridges and eliminate thin structures. The dilating adds size

to the object, so that it keeps its original size. Typically used to separate regions.

Closing
AeB=(A®B)S B (2.13)

Result of dilation, followed by erosion. Union of all translates of B that does not

intersect with A. This method fuses narrow breaches and eliminates small holes.

The basic morphological operators structuring element contains foreground pixels
and zeros. The operators are deduced from combinations of dilation and erosion.
They are used to remove noise to either suppress or enhance features in a given

image.

16

Chapter 2 2.1. Background subtraction

More advanced operators, such as hit and miss, applies erosion with a pair of
disjoint structuring elements, where a pixel is set to foreground if the background
pixels corresponds exactly to the structuring element. e.g searching for a corner

can be done with a kernel with the structure:

-1 1 0
-1 1

2.14
1 (2.14)
-1 -1 -1 -1

where -1 corresponds to the values for the first structuring element, and 1 dis-
jointed one. This structuring element gives hit when it finds left corners that are

exactly 90 degrees.

One of the benefits with this operation is that it also takes the background pixels
into account. The pixel is set to background if there is no match. Operators like
hit-or-miss are used to simplify the structure of an object, while preserving its

structure.

17

Chapter 2 2.2. Kalman filter

2.2 Kalman filter

Kalman filter is a linear optimal filtering for computer vision system, which ap-
plies to stationary as well as nonstationary environments [14]. The word filter is
used because it filters out the noise to find the best estimate, and projects the
measurements onto the state estimate. It is a recursive filter, since current state
depends on previous state. It is known from the theory that the Kalman filter is

optimal with the following requirements[16]:
m The model fits perfectly with the underlying system (motion model)
m The noise is normally distributed
m The covariance of the noise are known

The Kalman filter proposes advantages in vision based tracking when tracking
congested traffic scenes because it tolerates small occlusions. A limitation of the
Kalman filter is the ability to only process linear, discrete-time dynamical systems.
Complex dynamic trajectories cannot be modeled by linear systems, thus, constant

velocity is assumed in the implementation of the Kalman filter.
If the model is a linear motion model, and process and measurement noise are

Gaussian-like, then the Kalman filter represents the optimal solution for the track-

ing problem. These conditions are satisfied for a vast majority of applications [14].

18

Chapter 2 2.2. Kalman filter

An example of the advantageous of the Kalman filter is when a vehicle is occluded.

Frames

Figure 2.4: Vehicle tracking with occlusion. The dark spot is the

occluded area

The vehicle is occluded in figure[2.4] in the dark area. The green line is the Kalman
estimated position. The estimate is the weighted average of the predicted state
and the measurement. When the necessary measurements are not available, the

estimation will fully depend on the prediction of the vehicle motion model.

The vehicle position estimate is obtained by three parameters; Object motion
model, Measurements noise and Process noise. These parameters are decisive
in the practical application of the Kalman filter, which can be explained in three

steps;
— Initial state
— Predicting

— Correction

where initial state is the parameters of the filter before it is initiated.

19

Chapter 2 2.2. Kalman filter

Predicting and correction are filtering the measurements, where predicting might
be seen as a time update and correction seen as a measurement update, explained

in figure 2.5

[v

Prediction Correction
Time update Measurement update
| s |

1.Project next state
2. Update error
covariance

T J

1. Update estimate
2. Correct error

Figure 2.5: Prediction and correction steps in the Kalman filter

The steps are explained in detail below.

Initial state The object motion model is considered a constant velocity model,
represented by
Tp = Tr—1 + Vk_1 * (215)

where x}, is x at step k, and v is velocity. How these parameters affects the estimate
is described The state of a constant velocity model includes both the position and

velocity in x and y directions. The state vector is presented as:

(2.16)

NSO T ST

where the x,y are position coordinates. &, are the velocity in the x and y direction

respectively. @,y are derivates of the position.

20

Chapter 2 2.2. Kalman filter

The initial uncertainty is expressed by the covariance matrix P. The uncertainty

in position is illustrated in figure [2.6]

Vehicle
position
probability

da

g

Vehicle
position

Figure 2.6: Uncertainty of the vehicle position in subsequent frames is

given by the blue probability density function

The inital covariance matrix is assumed to have uncorrelated components, and

uncertainty I for each component.

(2.17)

S O O N~
S O ~N O
O N O O
~N O O O

Predicting the next state includes evaluating both position and velocity. The
optimal estimate of the vehicles positions is calculated by combining the measure-

ment and the prediction of the prior vehicle position. Predicting the next state:
z(k) =®3(k—1)4+Tulk—1) (2.18)

where T is apriori state, and Z is aposterior state. ® is the state transition matrix.
The state transition matrix is represented by the linear dynamical system, constant

velocity model, given by equation [2.19
pt) =pt—1)+v=*p(t—1) (2.19)

21

Chapter 2 2.2. Kalman filter

where v denotes velocity and p position. The model is represented by the state

transition matrix ®.

I 0 At 0
07 0 At
® = (2.20)
00 I 0
00 0 I

where At is given by the time step. The covariance, P, matrix is predicted with

equation [2.21}
Pk)=®P(k—1)®" +Q (2.21)

where @ is the process noise, and k is the k’th frame. The prediction is used to
localize and detect the vehicle in subsequent frames. If the vehicle is occluded,
the algorithm will predict position purely based on the previous prediction. As
the vehicle position becomes "more" uncertain, the covariance matrix would get
larger. In addition an increasing acceleration would result in a larger covariance

matrix because the model assumes constant velocity (implies zero acceleration).

Correction step is performed when new measurements are observed. After the
predicted state, the Kalman filter is correcting the error covariance, based on the

input measurements. The measurement(oberservation) model is
z=Dzx+wv (2.22)

v has zero mean with covariance R, and z is:

z= (‘T) (2.23)
y

The x and y coordinates are acquired from the center of the foreground blob.

22

Chapter 2 2.2.

Kalman filter

Furthermore, the model selection matrix, D, is:
1 000
D—
0100

The kalman gain, K, is computed to correct the prediction,

_ P(k)DT
- DP(k)DT +R

(2.24)

(2.25)

The gain is a relation between the filter’s use of predicted state estimate and mea-

surement.

In this application the measurement noise, R, is small, which entails predictions are

weighted less than measurements, and the Kalman gain decreases. The weighted

prediction is illustrated below:

Measurement

Probability
density
function

Vehicle
position

@ Prediction

Figure 2.7: Uncertainty of the measurement and predicted position.

The variance of prediction is bigger than the measurement

23

Chapter 2 2.2. Kalman filter

The green Gaussian probability density function represents prediction, and shows
a bigger variance than the orange(measurements), because the process noise,Q, is
higher than the measurements noise,R. Analyze possible sources of disturbances
and assume them to be white Gaussian.

The state prediction is corrected:

2(k) = (k) + K(k)[y(k) — D2(F)] (2.26)

and the covariance matrix by:

P = (I — K(k)D)P(k) (2.27)

24

Chapter 2 2.3. Artifical neural networks

2.3 Artifical neural networks

Artifical neural networks (ANN) are a method dating back to 1940 (4.40), but in
recent times have gained renewed attention in conjunction with increasing data
availability and computing power. Neural networks refers to a way of approxi-
mating mathematical functions inspired by the biology of the brain, and hence the
name neural. The method is used in different applications, including classification.
(Classifying is the problem of identifying which category a given input belongs to.
In newer times when data is to a greater extent stored digitally and IoT (Internet
of Things) is introduced, availability of data is greater than before. In addition,
road cameras are installed in a greater extent, which in turn increases traffic mon-

itoring capabilities.

Several major companies have already taken advantage of this, including Tesla.
Tesla has, in collaboration with Nvidia, based core technology on Neural Net-
works (NVIDIA). Neural networks are built to solve problems in the same way as
the human brain, with several layers of neurons and synapses that forms a net-
work. The number of input and output neurons in the network is determined by

the number of input parameters and size of the desired output.

25

Chapter 2 2.3. Artifical neural networks

Figure [2.11] is an network structure with two inputs, three artificial neurons and

two outputs.

Hidden
Input neurons Output
neurons neurons

Figure 2.8: An artificial neural network with two inputs, one hidden

layer and two outputs

This network can take two-value inputs, and classify into two different classes.
Given some input vector, the neural net is trained to compute a desired output
by adjusting its weights. W® and WD are the weights, respectively, in the grid
from the entry neurons to the hidden neurons, and the grid from hidden neurons

to the output neuron. The activation within a single neuron is illustrated below.

Figure 2.9: Activation’s inside a single neuron in the neural network.

26

Chapter 2 2.3. Artifical neural networks

where x; and x, are the input neurons, denoted by X w, are the weights, 7 is

weighted sum of the inputs signals, and a is the output activation of the neuron.

The weights, W, in the network are initialized with random values. The weighted
inputs, Z® are added together at each node. The activation function is applied
to the sum of the weighted input signals, and provides the activity, a¥), of the
hidden layer. The activation function is necessary to obtain a non-linear model.
There are several activation functions to choose from, where a common one is the

sigmoid function, given by:

S == (2.28)

and plotted, with its derivative, in [2.10}

10 10
— Sigmoid —— Derivative

0.8+ 0.8
0.6 4 0.6

0.4 4 0.4 4
021 0.2 ‘/\
0.0 T T T 0.0 T T

Figure 2.10: The sigmoid function and its derivative

The sigmoid activation function limits the output of a given neuron to a value
between 0 and 1. The output,a), is multiplied by the corresponding weights. The
output will at first give a poor prediction in relation to the expected response, be-
cause the weights in the network are initialized with random values. In order for
the neural network to improve the classification results, the weights in the network

must be updated. This is refereed to as training the network.

27

Chapter 2 2.3. Artifical neural networks

Training a neural net is done by back propagating its weights. The weights are
updated by minimizing a cost function with respect to the weights in the network.
The cost function is computed by comparing the predicted value to the desired
output. There are several cost functions, where mean squared error is the most

frequently used one:

T=Y 5% -9y (2.20)

y is the target vector or desired output for the input x and ¢ is the predicted value.

The goal of backpropagation is to compute the partial derivative, or gradient, g—g
of a loss function J with respect to any weight w in the network. This is called
stochastic gradient descent [

Partial gradients, of the loss function with respect to the weights, are used to
update the weights and minimize the cost. The weights are updated with an
optimizing algorithm called gradient descent.

Gradient descent can be explained as a linear approximation to the cost function,
J, and then moving downwards toward the weights,W, that gives the lowest cost,

where the hidden layer gradient matrix for the weights in layer 1, is given by the

matrix:
78]1) LJm
97 ow L ow Y
o = | : (2.30)
ow owh

The sum of the cost function adds the error from each example which creates an

overall cost:

EI140) = Z(?/) (2.31)

iThe gradient descent can also be computed using the whole dataset. This is called batch
gradient descent. The batch approach is great for convex, or relatively smooth error manifolds.
Additionally, batch gradient descent, given an annealed learning rate, will eventually find the
minimum located in it’s basin of attraction. Small batches of the dataset may also be used, this

is called mini-batch gradient descent

28

Chapter 2 2.3. Artifical neural networks

Where 7 is the sigmoid activation function of Z®, f(Z®).

To find the gradients with respect to the weights in all layers, the backpropagation
algorithm is used to compute the overall cost of function J. This is done by applying
the chain rule to 231k

aJ 0y 0zt
o —(y - y)az(m) o

The back propagation error with respect to the weights decides where the cost

(2.32)

function should move:

Figure 2.11: Back propagation error of J, with respect to W.

Figure [2.17] illustrates the error, which is moving towards the weights that con-
tributes more to the overall cost, which means that synapses with large error will

gain more correction in the next training epoch.

The back propagation starts from the last hidden layer in the network, where

%ngg) is the change of Z, last layer activity, in respect to the weights in the
second last layer. STZV is the activation for each synapse. The error-terms is back-

propagated to each synapse, by multiplying by each weight. The weights that
contributes more to the overall error will have larger activations, yield larger to

the next backpropagation layer and yield larger % values.

29

Chapter 2 2.3. Artifical neural networks

«— - —— i 4l
st 0

Figure 2.12: Backpropagation error from output to input neuron, with

one hidden layer

Figure [2.12] is the backpropagation for one hidden neuron, with one hidden layer.
5"+ is the backpropagation error from Z2 to Z2, and ' is the back propagation
error from Z2 to x!. The error back propagated from Z? and backwards until the
input of the network, . The backpropagation error from Z3 is the derivative
with respect to the weights. The backpropagation error for hidden layers, Z2,
is computed as derivatives across the synapse,a. The back propagation error is

computed, and multiplied by the activity in the hidden layer:

oJ ASE
owao oW

y — 4 is the true label , f/(ZU+1) is the activation function. The equation ﬂ

may be expressed as:

—(y—9) 1 (Z2"Y) (2.33)

oJ (+1) (1)

where 6'*! is the back propagation error, and ailj the activations.

30

Chapter 2 2.3. Artifical neural networks

If the network is built with multiple layers, the back propagation is done with the
derivatives across the synapses instead of the derivative in respect to the weights.

X is a vector holding the n numbers of input neurons in the network:

X

X2

X=| (2.35)

xl—s—n

thus, the cost function in respect to the weights:

oJ

_ +1
50 = X5ty (2.36)

where X is the input vector to the neural network, and §¢) = §(+D (WO /(2 +1))
where f’ is the activation function of the sum of weighted inputs, 2z, in each

neuron.

31

Chapter 2 2.3. Artifical neural networks

Overfitting is a problem of machine learning algorithms, where the algorithm
does not reflect the real world [7]. The algorithm is built on observations of the
real world, and these observations are composed of signal and noise. The model
should capture the underlying process or features of the input, but the signal will
always be obscured by noise, therefor the algorithm must be convinced to fit the
signal and not the noise to prevent overfitting.

This problem comes apparent if the neural network is too deep, trained with too
many iterations, or has a small dataset. A rule of thumb is that it’s required ten
times more data than degrees of freedom in a model. Each weight is one degree of
freedom [6].

Consider a two-class problem, illustrated in Figure 2.13] classifying red and blue
dots. The dots are placed randomly. The x- and y coordinates for the red and

blue dots represent input data to the neural network.

.
0s 3

0o

=05

_152,0 -15 -10 -05 00 os 10 15 20 25

Figure 2.13: A two class problem presented with blue and red dots,

randomly placed in a predefined area. The axes represent the position.
In the two class problem, the coordinates are fed as pairs of x,y coordinates,

therefor two nodes are being used. One node for each x- and y-coordinate. The

output is classifying between red or blue,thus, two output neurons.

32

Chapter 2 2.3. Artifical neural networks

Figure [2.14] and [2.15] shows the decision boundary after the neural network has

been trained.

20

10

00

“1s

-2 =1 o L5 2 S

Figure 2.14: Illustration of a properly trained neural network output

with 10 hidden neurons after 100 training iterations.

Plot is a good fit to the dataset, while plot is overfit.

20
1s
10
05

=2 =1 o 1 2 3

Figure 2.15: Hlustration of a overfitted neural network output with

100 hidden neurons after 1000 training iterations

Figure is overfit because it does not find the general decision boundary, but

locates small patterns that may be considered noise in the dataset. The overfit

33

Chapter 2 2.3. Artifical neural networks

model will achieve a best classification score for that particular dataset or case,
because it correctly classifies all the data, but will fail when new data is presented

to the classifier.

To overcome overfitting, the data is normally split into three sets:
— Test set
— Training set

— Validation set

It is a indication of overfitting if the accuracy of the training dataset scores higher
than the accuracy of the test or valididation dataset. The accuracy is calculated

as the overall correct classifications.

Correct classified

Accuracy = (2.37)

Total number of samples

With less training data, the neural network parameter estimates have greater vari-
ance. With less testing data the performance statistics will have greater variance.
The training set is used to update the weights in the network, while the cross-
validation set used to measure the accuracy during training, but not used to up-
date the weights. The validation set is not used to update the weights. The test

set is used to validate the network after the training is completed.

34

Chapter 2 2.4. Classifying images with neural networks

2.4 Classifying images with neural networks

Conventional artificial neural networks as described in last section does not scale
well to large images, because they process the image as a flattened vector. Each
of the hidden layer has a set of neurons, and each neuron are fully connected with
the neurons in the previous layers. These layers are called dense layers, or fully
connected layers. Each layer is fully connected to its previous layer, but neurons
in a single layer function completely independently and do not share any connec-
tions. E.g an 128x128x3 image would give 49,152 weights in the first layer, and
the weights will add up as the network is getting deeper. The amount of parame-
ters to update and tune the network would lead to overfitting and need of heavy

computational power.

Convolutional neural networks takes advantages of the vector input being an im-
age, and limits the number of neurons in the network, without losing information
about the feature vector. The neural network is build in three layers: height,
width and depth, where depth is referring to the activation volume [27]. The im-
ages are input activation volume, with dimension height,width and color channel.
Only a part of the image is connected to the previous layer, instead of having a
fully connected network. Only the last layers in a convolutional neural network
are fully connected. The convolutional neural net architecture is build from three

main types of layers: Convolutional layer, pooling layer and fully-connected layer.

;)
Convolution Pooling Fully
/ connected
—_— e ’

Figure 2.16: Convolutional network structure, with convolution layer,

pooling layer and fully connected layers.

35

Chapter 2 2.4. Classifying images with neural networks

Convolutional layers consist of learnable filters. During training, these filters
are convolved across the input vector. For each pixel position the dot product
summation between the filters and values around the center pixels are computed.
The filter is convolved across the entire image, which allows the neural network to
respond to visual features such as edges. Each convolutional layer will have have a
set of filters, which is stacked in the depth dimension of the network. The depth is
presented as the red box in figure An example of a typical filter that reacts

on edges is the Laplacian, with spatial size 3x3

F=|-1 4 -1 (2.38)

Figure is the result of convolving a Laplacian filter around a grayscale image.

Original image Laplacian filter

Figure 2.17: Edge detection with Laplacian filtering

36

Chapter 2 2.4. Classifying images with neural networks

In contrast to dense layers, each neuron are connected to a local region of the
image, illustrated in [2.18

Figure 2.18: All neurons along the depth are looking at the same

region in the input.

Each neuron in a depth slice are using the same weights, such that each slice can
be computed as a convolution of the feature matrix. This allows the network to
localize the features in an image.

The input matrix are divided into small tiles, based on the filter size. Each of the
input tiles are processed in the neural net,and the output size of the convolutional

layer is given by the equation

W -F+2P
B S
where W is the input volume, F is the receptive field(filter size), S is the stride

@) +1 (2.39)

and P is the zero padding.
The zero padding are used to ensure that the input and output has the same

spatial volume.

37

Chapter 2 2.4. Classifying images with neural networks

Pooling layers are often inserted in-between successive convolutional layers.
Pooling, or subsampling is a technique to reduce the size of the feature matrix,
which leads to less memory use and faster training. The most common one is the
max pool. Maxpool applies a filter,normally of size 2x2, to the input volume, and

outputs the maximum value in the every region that the filter convolves around.

The pooling layer samples all the highest activation values, reduces the spatial

size by a half, and keeps the relative locations between the features.

2 |5 [T
0707\f79
2|3 |5]|86 3]s
o|lo [1]s8

Figure 2.19: Downsampling an image with max-pooling with a 2x2 filter

Figure demonstrates the pooling on an 4x4 image, which is down-sampled
to 2x2. The filter size is 2x2, and the stride is 2. The filter convolves from the
upper left corner, illustrated by orange. The highest activation from the box is
chosen, and the filter is subsequently moved to the right, with a stride of two
boxes, illustrated with blue, and keeps the highest activation for the region. The

process is repeated for the whole image.

Dropout are layers composed to process the overfitting. The layer drops out a
random set of activations in hidden layers, by setting them to zero in the forward
pass. The dropout forces the network to be redundant, because the activations
are removed randomly. In practice, the drop-out is equal to training the data on

many different networks, and the result becomes a more robust network.

38

Chapter 2 2.4. Classifying images with neural networks

Fully connected or dense layers is as explained in[£.2] They are the last layers
of convolutional networks, and outputs the classification score. The volume from
a convolutional layer is flattened into a vector and passed into fully connected
layers. Fully connected layers constricts the classification of an image to a single
variable for each class(classification score),which is unattainable for convolutional

layers because they output a volume.

Transfer Learning Transfer learning is the process of training an already pre-
trained model. It transfers the weights and parameters from a network that has
been trained on a large volume of images, and continue the training on a custom
dataset. The last layers of the pre-trained net are removed, and retrain the last

layers on a different dataset. Transfer learning is illustrated in [2.20}

Feature extraction part

Convolution
AvgPool

Ma.:m Classification part

Dropout
@ Fully connected
@ Softmax

[13]

Figure 2.20: Transfer learning from the Inception net

The layers from the pre-trained net are not updated, and is not affected by the
gradient descent. A common model to transfer from is the ImageNet. This is
a dataset with 14 million images, classified in 1000 classes [21]. The first layers
are discovering edges and curves, which is often needed in all classification task.
With the exception of datasets that differ significantly from the classes in the

ImageNet,the network will benefit from transfer learning.

39

Chapter 3

Implementation of the

vision-based traffic system

In this chapter, details of the practical implementation of the vision-based traffic

system will be presented. The system is divided into four modules:

Preprocessing
— Detection
— Tracking
— Classification

The system is distributed so that all training of the neural network is performed
on the Unix server because of the necessity of computational power. The real-time

part of the system is run on a local computer.

40

Chapter 3

The framework for the system in terms of software and hardware is presented first.
Figure shows a simplified overview of the software- and hardware components

of the system.

[tttk 4 1 [l aiateted it ddtdd =
Local computer b Unix server
Asus UX303L P Gorina 4
Axis P1346 Camera Python E E Titan X GPU Machine learning
Mobotix Allround Dual Intel core i7 : : BuiIdi?g ”:U"a| led
1 1 networks
M15/M16 camera : :

Nvidia Geforce 940m < SSH file transfer

Y

Image libraries

E PIL |’> Graphical interface

Mathematical libraries
MatPlotLib

Figure 3.1: Software and hardware components of the system
The system relies on parameters from the location it processes, which makes it

more practical to explain parts of the implementation in details in the experimental

section. Comprehensive information about the Python libraries are attached in [A]

41

Chapter 3

3.1. Hardware components

3.1 Hardware components

This section will present various hardware components that has been implemented

in the system.

Camera

System

Machine learning

Hardware

AXIS P1346
Mobotix Allround Dual M15/M16

Asus UX303L
Nvidia 940 M

Unix server
Tesla P100

Table 3.1: Hardware components table

The recordings from the web cameras are, according to Statens Vegvesen[46], a set

of Axis P12346 cameras.

@

[5]

Figure 3.2: Cameras used by Statens Vegvesen, Axis P1346

The webcams are set to give users an impression of traffic conditions such as con-

gestion, weather and driving conditions. The cameras should not take pictures

of individuals, and it should not be possible to identify persons or registration

numbers of vehicles on the images, due to privacy regulations. The drawback of

the anonymous filming is a limited image resolution and low frame frequency. The

images are free for use and Statens vegvesen does not demand any allowance for

the usage [46].

42

Chapter 3 3.1. Hardware components

Another camera has also been used for testing. This camera is provided by Bjgrn

Fossaen from Statens vegvesen, and is a combined optical and thermal camera.

Figure 3.3: Mobotix Allround Dual M15/M16

It is a combined day/night camera for 24-hour use, used for surveillance. More

comprehensive technical information can be found in [B]

Figure 3.4: Tesla P100 video card

The Unix server is a server that is available to students at the University of Sta-
vanger. The server is a Linux based web server, where heavier applications can
be run. The server has installed three Tesla P100 video cards (Figure [3.4). The

43

Chapter 3 3.1. Hardware components

server is intended for machine learning purposes such as training neural network.
These were purchased in the context of master’s thesis work based on machine

learning. Comprehensive information about the Tesla P100 may be found in [31].

44

Chapter 3 3.2. Implementation in Python

3.2 Implementation in Python

This chapter will present programming modules that has been developed and im-

plemented in the final system. The Python-system is divided into four modules:
m System setup
m Detection module

Tracking module

Classify module

Analyze and interface

The program is object-oriented, where an object stores vehicle attributes in fields
to ensure systematic structure of all the passing vehicles. The objects can be
modified and maintained independently of other objects, and once created, the
object can be easily modified inside the system. From here on, objects refers to
an data-object.

Implementation of the system setup describes necessary readjustments when the

program is utilized at new locations.

The detection module involves the background subtraction and blob detection.
This module describes both implementation of background subtraction and the
image processing. The classify module describes how neural networks are imple-

mented into the system.
Figure shows the program flow, where the system setup, detection module and

classify module are located in the left box, and Analyze and interface is at the

right:

45

Chapter 3 3.2. Implementation in Python

- N EE EE EE EE EE EE EE E e .y

’ »
Video

'

Analyze and interface

.\

7 Vehicles,Information \

and warnings

Graphical

interface

Yes

Foreground
extraction

Current
background

Analysis

Location
of
vehicles

Yes

Object outside
frame?

Save
vehicle
objects

Valid
vehicle
trace?

- e o o =

Create new
object , ’

"_-------- - s Em . -

Figure 3.5: The flow chart of the program. The left module is
acquiring traffic data, while the right module is processing the data

into useful information.
The detection module is represented withing the green area, the tracking module

by red and the analyze and interface by the right box.

The following sections are describing the implementation of each module.

46

Chapter 3 3.2. Implementation in Python

3.2.1 System setup

The system setup allows the user to make adjustments to the system to accommo-
date geometric changes to changing locations. The reasoning for implementing a

system setup part into the system is two-fold:
— Adjust the system to a new locations
— Eliminate false positives

The steps are specified in figure |3.6}

) Locate region of . o
interegst —> Separable lanes > Define line divier

Figure 3.6: Methods used in system setup

The region of interest is defined by the corners of the road, such that all traffic is

captured, but irrelevant information and noise is filtered out.

Figure 3.7: Region of interest defined by the corner the lanes

47

Chapter 3 3.2. Implementation in Python

The divider line is placed to cover the entire road. Objects that pass the divider

is counted and saved to the database.

Figure 3.8: Divider line, in red, determines where the vehicles are counted

48

Chapter 3 3.2. Implementation in Python

3.2.2 Detection module

The detection module processing the incomming video frames to extract movement
in the background and determine the position of the vehicles. The extracted area

is then passed forward for further processing. The flow diagram of the detection:

Video o .| Background .| Morphological
Median filter | subtraction | operations

Figure 3.9: flow in the the detection module

The raw video stream is processed with a median filter to reduce noise points of
the imageﬂ The image becomes smoother and the filtering has little effect on the
edges of the vehicle and other details [23]. The image processing is followed by a
mixture of Gaussian background subtraction(BS) algorithm, provided by opencv.
For the BS to adapt faster to the background, an initial background image is
chosen. The initial background is set to a frame with no moving objects in the

background. The background is updated based on the history of previous frames.

‘Median filtering should be a well known method for the audience of this thesis. Information

may found in [I5]

49

Chapter 3 3.2. Implementation in Python

In this application, the method is set to form a background based on the 50 last
frames. The raw output of the background subtraction is shown in figure [3.10}

Figure 3.10: Unprocessed foreground mask

The foreground mask is then cleaned up with morphological operations, provided
by opencv. A structuring element of size 3x3 pixels is used to perform closing,
opening and dilation in that respective order.

The result of performing the morphological operations is the removal of noise and
filling out details on the remaining objects while retaining the size of the detected

objects. The result is shown in figure [3.11}

Figure 3.11: Foreground mask processed by morphological operations

50

Chapter 3 3.2. Implementation in Python

Shadows caused by vehicles are removed by thresholding a value relative to the
vehicle. The idea behind shadow extraction is that shadow has a slightly darker
color than the road, while vehicles are clearly discernible. This approach fails

when the illumination is weak, and there is no clear contrast between vehicle and

shadow.

Figure 3.12: Background subtraction without(left) and with shadow(right)

As an object is detected in the background, the center coordinates of the contour
is computed and plotted for each consecutive frame. The tracked center of the
vehicle is found by dividing the detection box width and height by 2.

Detected objects are marked in relation to its extracted background blob.

Figure 3.13: Detected blobs are marked with a green square

51

Chapter 3 3.2. Implementation in Python

The extracted region is defined within the lane markers. The lanes are localized

by evaluating the blob coordinates over a period of time.

Figure 3.14: The lanes becomes apparent by tracking the movement in the fore-

ground mask

Figure displays object positions over time. The three lanes are easily recog-
nized, and manually divided into separate regions. Traffic in opposite direction
is removed from the processed region. Each blob are saved as a separate object,
with information about size, coordinates and time at last detection. When the
coordinates indicates that the object has passed a divider, an image of the vehicle

is saved and stored in its respective object and saved to the vehicle database.

52

Chapter 3 3.2. Implementation in Python

3.2.3 Tracking module

Tracking is the process of matching vehicles in subsequent frames. The tracking
provides the system with abilities to prevent true negatives values and measure

velocity, size and driving pattern.

No occlusion

)
[_l

Occluded and
split

"\

occlusion

Figure 3.15: Detection and tracking scenarios

The tracking has basically three scenarios per lane, listed in relation to the degree
of difficulty:

One lane, ideal case: When there is no occlusion or separation. This is the
simplest tracking scenario, where a detected objected is assigned a new tracker.

This tracker is deleted when the vehicle is leaving the frame.

One lane, object is split: When occluded objects are split, they share the cor-

responding occluded tracking values until they are split, and assigned separate

23

Chapter 3 3.2. Implementation in Python

values afterwards.
One lane, with occlusion: The blobs are overlapping, and one object contains
two or more vehicles. They share the same coordinates, and are counted as one.

When objects passes the divider, they are counted and classified.

While taking cognizance of the above, a two part system is proposed to obtain
robust tracking:

1. Manually deciding a vector space

2. Predict position with Kalman filter

o4

Chapter 3 3.2. Implementation in Python

Figure shows the tracking system. The first state, Acquire object, is acquired

from locating a vector space.

Acquire object

v

Initialize Kalman filter

v

Establish measurement
frame

A

Yes

new
measurement?

Update kalman filter Update kalman filter
with predictions with measurement

v

Correct trajectory
model

v

Reset error

—>» New object position (—J

No

Object outside frame

Yes

Save object

Figure 3.16: Flow chart for the Kalman filter

A region-based tracking method are tracking the regions that are segmented from
the foreground extraction. The vehicle assessment involves features as geometry
and number of measured positions. The geometric traits are used to eliminate false
segmented areas. The module is assigning coordinates to objects, and retained in
later frames to ensures that objects are counted.

The first step when the algorithm is applied to a new scene is computing a vector

95

Chapter 3 3.2. Implementation in Python

space, established from the coordinates. The vector space ensures that an moving
vehicle-object acquires at least two points, which is required for the Kalman filter
to predict the next position. This process is described more in comprehensive
details in the experiment section

The Kalman filter implemented in the system is based upon the constant ve-
locity model, as described in2.2] It is used to predict the next spatial and temporal
state of the vehicle. All measurements for an object up to the current time are
used to estimate the next position. A minimum of two positional coordinates are
required to describe the dynamical behavior of the system, and to predict its fu-

ture state.

Initially the noise covariances matrices for the measurement noise and the pro-
cess noise must be obtained. The covariance of the measurement noise is denoted
as R, and assumed to be Gaussian. In the context of this application, this means
the detection error. The R matrix describes how uncertain the position around
the location of the centroid of the bounding box is. In this case for the x,y coor-
dinates the corresponding diagonal values of R should be a few pixels, assuming
that the measurements are relatively reliable. The state includes velocity, thus,
the need to guess the uncertainty of the velocity measurement, and take the units
into account. The position is measured in pixels and the velocity in pixels per

frame, so the diagonal entries of R must reflect that.

Q is the covariance of the process noise. The Q specifies how much the actual
motion of the object deviates from the assumed motion model. The constant ve-
locity model should be reasonably good when tracking the vehicles, which implies
small entries of Q. If the vehicles are driving with constant velocity, the prediction
will deviate from the constant velocity model, and yield larger error. In general the
Q matrix will be full matrix, not a diagonal, because there is correlation between
the state variables. For example, if there is a change in velocity due to bumps,

there will also be a change in position. They are correlated, and so the off-diagonal

26

Chapter 3 3.2. Implementation in Python

elements will be non-zero. But even a relatively simple process model can produce
acceptable results if there is enough uncertainty in the Q matrix, but selecting an

overly large Q, then Kalman filter would not be well-behaved.

The model is tuned by setting the measurement noise matrix is set as constant,and
treating the process noise as a tuning parameter to adjust the gain of the Kalman
filter. The tuning is done by plotting the predictions to see how much they deviate
from the detections. Since the R matrices is considered reliable, the Q is tuned
until the predictions and detections is right. The source code to tune the filter is
attached in Appendix. The kalman filter is implemented by coding the equations
from into Python. If a par of coordinates fails to match any objects currently
tracked by the algorithm, the coordinates are assign to a new object. An object is
deleted from the algorithm if no new coordinates are assigned to the object within
a given time frame. The object is kept in the database if the coordinates have

passed the divider line.

XK

Figure 3.17: Vehicle moving from upper left corner to right bottom

corner. Red square is prediction, x is measurements.

Figure shows the tracking of a vehicle. The X is measurements, and the
squares are predictions. X and Y along the axes are position over time.With no
new measurements the uncertainty of the prediction grows, denoted by the circle

around the prediction.

o7

Chapter 3 3.2. Implementation in Python

Figure |3.18| shows the tracking of a vehicle.

Figure 3.18: Background blob tracked with Kalman filter. The dots highlights

trajectory points. Red is measured position, and white is predicted position.

The white circles denotes the kalman predicted position. The red circles are the
true measured position. The measurements are weighted more heavily than pre-
diction, but if no measurement is registered, the kalman filter is computed entirely
from the last predicted position. Predict the last estimation to the time of the
new measurement using the propagation model, and update the co-variance ac-

cordingly.

o8

Chapter 3

3.2. Implementation in Python

3.2.4 Classification module

A convolutional neural network is trained as a classifier, with the purpose of clas-
sifying incoming objects from the detection module. The classifier is built with

the Python package Tensorflow. The classification module structure is described

in figure [3.19,

P ——

—
Feed i

—

—_—
Accu

predi

Figure 3.19: Flow chart of the Classify module, both with and without training

e

Load model

p—
e
mage

e

e
racy/

ction

| cussiy |

Outperform®
previous
models?

Yes

29

FOR
[parameters][Dataset]

|

Layer
architecture
—

Accuracy/
prediction

Update weights

Chapter 3 3.2. Implementation in Python

Training of the classifier is initiated with different hyperparameters that de-
fines the complexity and learning capacity of the model. These parameters cannot
be learned directly from the data in the standard model training process and need
to be predefined.

By combining different parameters, one can programmatically set a competent
network architecture, with the number and type of neuronal layers and the number
of neurons comprising each layer, and choosing the values that test better.

The hyperparameters for the convolutional neural network are image input vol-
ume, the learning rate in the gradient descent, image batch size, convolutional

filter size and depth, and fully connected layer size.

An input pipeline were constructed to feed the network with image batches. A
script is reading filenames from the dataset folder, and subsequent shuffles the
filenames to prevent overfitting. According to the initially defined batch size , a
batch of filenames are placed in a queue. An image decoder reads the filenames
and pass on the image queue to the network. The pipeline limits the ram usage of
the computer by allocating a batch of images to the memory, and not the entire

dataset. The dataset structure is describes in next section.

The layer architecture is a sequence of layers, defined by the hyperparameters.
Three types of layers are combined, convolutional layers, pooling layers and fully-
connected layers, in that order. A number of each layer type may be stacked,
keeping in mind that a deeper network is more prone to overfitting. Each convo-
lutional layer is holding a number of trainable weights, according to the spatial

input volume and the filter depth.

60

Chapter 3 3.2. Implementation in Python

Convolution

Filterdepth Fully connected
filtersi Max-pool .
‘ [filtersize] \ 2)(3 output
| " — \“ —_— l‘u
Number of classes
' 64xB4xfilterdepth ~ connected
128x128x3 128x128xfilterdepth neurons

Figure 3.20: Convolutional neural network with fixed hyperparameters, filterdepth,

filtersize and connected neurons.

Convolutional layers, fully-connected layers and pooling layers have all hyperpa-
rameters that were tested. For each training epoch the model is saved if the

accuracy of the validation set is higher than previous recorded.

To use the classifier the weights and the network architecture from the best
recorded model is initialized. Loading the model is time consuming, but it is a one
time cost. Using the classifier may be done by both the locale computer and the
Unix server. The classifier is represented to the left in the flow chart

61

Chapter 3

3.2. Implementation in Python

3.2.5 Graphical Interface

A graphical interface was developed to illustrate the activity in the vehicle database.

The interface gives feedback about vehicle class, velocity(in pixels per frame), last

detection of the vehicle and number of counted vehicles.

B | MainWindow
File

Start

Counter

Car: 6
Truck: 0
Pedestrian: 0

Warnings:

No warnings.

Traffic surveillance system

[Extracted foreground
Video stream

[Traces

] Detection

[] Classify

Last detected vehicle

Class: Car

Velocity 60

Figure 3.21: Information from the database is shown in a Graphical interface

62

Chapter 3 3.2. Implementation in Python

Start starts the system at a predefined location. The check boxes presents a

number of different processing options:
— Extracted foreground
— Show video stream
— Show detected blobs
— Detect and track vehicles
— Classify incoming objects

The counter keeps track of the classified vehicles in the database. If the classify
check box is unchecked all objects are counted as cars. The neural network model
is loaded into the program by pressing file and insert model.

The upper right image shows the last detected vehicle and its class and velocity.

The images below is the last vehicles stored inside the database.

63

Chapter 4
Experimental results

The following chapter presents the experiments that were carried out and the

results they gave. The chapter is divided in four sections:

Collecting data for the neural network

— Testing architectures for the neural networks

— Initial test of the detection module

— Data analysis of the dataset acquired from the inital tests

All detection experiments were run with a axis P1431 camera and Asus UX303L.
All neural network tests were performed on the Unix server on a Tesla P100 GPU.
The neural network were trained to classify three different classes; pedestrian, cars

and trucks.

64

Chapter J 4.1. Data acquisition

4.1 Data acquisition

This section describes the dataset acquisition to meet the large data requirements
for deep learning,as discussed in The pedestrian dataset and cars and trucks

datasets are described separately.

Pedestrian dataset

The Daimler dataset [I§] is made freely available to academic and non-academic
entities for non-commercial purposes such as academic research, teaching, scientific
publications, or personal experimentation. The dataset involves a large training
and test set. The training set contains 15.560 pedestrian samples (image cut-outs
at 4896 resolution) and 6744 additional full images not containing pedestrians for
extracting negative samples. The test set contains an independent sequence with
more than 21.790 images with 56.492 pedestrian labels (fully visible or partially
occluded), captured from a vehicle during a 27 min drive through urban traffic, at
VGA resolution (6402480, uncompressed) [18]

Unbalanced datasets has a significant impact on the performance of convolutional
neural networks [40], thus, to prevent a unbalanced datasets relative to the car

and truck, 7000 random images were chosen from the Daimler dataset.

Cars and trucks dataset

In order for the network to recognize vehicle fronts, it is a prerequisite that the data
set also consists of vehicle fronts. The data collecting were resolved by processing
recording with the detection algorithm. The detection algorithm were utilized at
different locations at various times of the day. There are several reasons why the

recordings are made under different environments and locations:
— Variance of illumination
— Images of multiple angles of the vehicles
— Changes in background

65

Chapter J 4.1. Data acquisition

Performing all data retrieval from a particular location may cause overfitting, as
the neural network may find insignificant features such as borderlines and colors

of the road.

The collected data were labeled by hand as either car, truck or no class.

The recordings gave a total of 4870 annotated cars and 4993 annotated trucks.

Recording position Time Personal vehicle | Truck
Maritim E18 12:00-20:00 2499 1245
Sandvika E16 Nord | 12:00-18:00 543 261

Sandvika E18 07:00-11:00 1562 1583
Rv. 150 Ullern 10:00-20:00 266 1905
Sum: 28 hours 4870 4995

Table 4.1: Gathered data at given locations

Data augmentation

To increase the amount of data, various augmentation methods were applied to the
dataset. Figure [4.1] shows images from the original dataset, and figure [4.2] shows

the augmented dataset.

66

Chapter J 4.1. Data acquisition

Figure 4.1: Original data, directly cropped from the object detection module

Different augmentation methods were applied to the dataset, such as cropping,
flipping, change in hue, contrast, brightness and saturation. The augmentation
simulates different scenarios that occurs during the day, e.g illumination and ve-

hicle orientation.

67

Chapter J 4.1. Data acquisition

-

Figure 4.2: Data augmentation of the original dataset in figure

With augmentation the dataset were increased to 23800 images for both cars and
trucks. Splitting the dataset into training, validation and testing datasets proposes
two challenges: with less training data, the parameter estimates will have greater
variance, and on the other hand, with less test data, the performance statistical
will have greater variance. Ideally, that variance should be as small as possible for
both.

Ideally, the networks should be trained with different sizes of test, validation and
training data sets, to evaluate the combinations that offers the best results. How-
ever, an assessment has been made that the dataset is split into 80:20 for the
training and test data sets, and then the training set is again divided into 80:20

for the training and validation set respectively. It provides a test data set of 4750

68

Chapter J 4.1. Data acquisition

images, training data set of 15,232 and validation set of 2808.

69

Chapter J 4.2. Testing neural networks architectures

4.2 Testing neural networks architectures

In this section testing and evaluating of various network architectures are ex-
plained. The networks architectures are composed with a combinations of different
input size, batch size, learning rate and combinations of convolution, dense layers
and pooling layers. All input images that does not meet the input size of the
neural network are zero padded. The network is designed to predict three classes
considered important in traffic surveillance. The three classes are cars, trucks and
pedestrians. Detecting pedestrian proposes important features to the system in

regards to safety [20].

There are no generalizing rules for building the convolution neural network, but
Xudong Cao[IT] conducted a paper aiming to find theories for designing very deep
convolutional neural networks. The paper concluded that an image size of 128x128
pixels are sufficient, in addition to using small convolutional filters. There are sev-
eral examples of small filters being applied with success, one of the is the VGG Net
[40] , which is one of the most successful neural networks for image classification.
The pooling size is fixed to 2x2 with stride 1 (equals down-sampling the volume
by a half).

The mini-batch gradient descent algorithm(as described in forms the optimiza-
tion of the neural network. Mini-batch gradient descent usually operates with
batches with size of 32-512 images[30]. The main problem with large batch sizes
are sharp local minima which leads to overfitting [25] and GPU memory require-
ments. According to Yann Lecun [28] is a batch size of one theoretically the best
approach, but requires far longer time to train the network. The VGG net was
trained with a batch size of 256. To limit the GPU memory use, and optimize
the training time, the batch size is fixed to 128 images. In most cases a single
validation set of respectable size substantially simplifies the code base, without

the need for cross-validation with multiple folds [24].

70

Chapter J 4.2. Testing neural networks architectures

The structure of the architectural testing is illustrated in figure

Learning
rates
Input i Dense
layer Convolutional layers
layers
™
Mini
—> —
batches
h
Parameters: Parameters: Parameters:
« Fixed input size. » Filter depth « Mumber of neurons
128x128x3 s Filter size « Drop out
« Pooling
Evaluate
model

Figure 4.3: Experimenting on different architectures of the neural network

The mini batch size and input size is fixed to 64 and 128x128x3 respectively. The
datasets are split into minibatches and fed into the network. The images in each
mini batches are randomly picked, and the network is updated according to its
gradient descent.

For the mini-batch gradient descent it is for efficiency of the estimator that each
example or mini-batch be sampled approximately independently. Faster conver-

gence has been observed by shuffling the dataset[9].
The remaining hyperparameters were compromised within fixed ranges to limit
possible architectural structures for the model. The learning rate is defined as ei-

ther 1076 or 10~°. The convolutional filter size is defined between 3x3 to 8x8 and

71

Chapter J 4.2. Testing neural networks architectures

filter depths between 32-512, depending on the size of the network. The pooling
layer may or may not be used, but with fixed parameters. The neural network
takes a lot longer to train without pooling, but some features in the image may be
lost using it. Outputs from convolutional layers are zero padded to preserve the

same spatial volume as the input.

Dense layers were given input neurons ranging from 512 to 4048, with and without
drop out. Note that drop out is just used during training. Each model is trained

for 100 epochs and saved when the validation accuracy outscores previous models.

A total of 20 models were trained, varying from 4 to 12 convolutional layers,and
two to four dense layers.

Figure [£.4] shows examples of models that were disposed of due to no accuracy
improvement. These models were all constructed with four convolutional layers
with filter depth 32,64,64,64 respectively, but different pooling and filter size. Re-
gardless of various pooling and filter parameters the model fails to improve its
validation accuracy (model 2,3,4,7 in appendix C).

Validation accuracy

0.600
0.550
0.500

0.450

0.400

0.350

0.000 2.000k 4.000k 6.000k 8.000k 10.00k 12.00k 14.00k 16.00k 18.00k
Training iterations

Figure 4.4: Accuracy of neural networks plotted vs epochs. The colors represent

neural network models with different architectures.

72

Chapter J 4.2. Testing neural networks architectures

Figure [4.4] shows no sign of improvement of accuracy, even though the accuracy
is floating between 0.35 and 0.55. The accuracy of the validation testing for the
top 5 most promising models are shown in figure [1.5] These models were con-
structed with deeper architectures and more complex filter depth(model 1,4,5,6,10
in appendix C).

Validation accuracy

1.00

0.900

0.800

0.700

0.600

0.500

0.400

0.300

0.000 2.000k 4.000k 6.000k 8.000k 10.00k 12.00k 14.00k 16.00k 18.00k
Training iterations

Figure 4.5: Neural network architectures with good accuracy. The accuracy is

plotted vs training iterations.

All models that shows high accuracy are saved and used for testing on the test

dataset.

73

Chapter J 4.2. Testing neural networks architectures

The best architecture from the validation tests is shown in figure

Filter

@ Ty ™] ™ ™

P = > % % b >

size: @ T I}] ™ o

= N
@ oo} @ © o™ =
3 N Y N @0 — = = -
— — — I Ty} o
> N RS N R e e BT B

L . [y W (73]
ayers: 5 - c [c [c c D
3 =] =] =] =] =] o T (]

Q Q Q Q Q o o

2 g 2 8 8 o 9«

Volume: © o = = = o~ wn S a2 '
- — = o <= ot = < = —
= % [&e] el — o] = = <
©) £ b < P = = =
o~ b= = &N © & =
- =k ©w ™ -

Figure 4.6: The architecture of the neural network with the highest accuracy score

The first convolutional layer is without max pooling. The volume is the number
of output neurons from each layer. The last convolutional layer represents the fea-

ture vector as a 4x4 image with 512 filters. The model achieved 99,9% validation

accuracy.

The validation score itself is not very interesting in regard of network perfor-
mance, because it only proposes an indication of how the model will perform. The

test that determines how the network will behave in real is carried out on the test

dataset.

4

Chapter J 4.2. Testing neural networks architectures

4.2.1 Testing the classifier

The best architectures from the training was tested on the test dataset (TD). The
results for the TD were promising. The result of the test is presented in a confusion
matrix, where the predicted class are at the top, and the true class is at the left.

The model with the best classification score is shown in table .7

Predicted class

Car Truck |Pedestrian All

Car 2207 23 3 2233
2]
(7))
)

: Truck 0 1828 34 1862
-
=
-

Pedestrian 1 0 1904 1905

All 2208 1851 1941 6000

Figure 4.7: Confusion matrix after classifying the test dataset. Achieved 99.0%

accuracy
E.g of 2233 images cars were misclassified as trucks 23 times. The confusion matrix

shows the biggest error is due to truck being classified as pedestrian, followed by

cars being classified as pedestrians.

75

Chapter J 4.2. Testing neural networks architectures

The normalized confusion matrix is shown in [4.8

Predicted class

Car Truck | Pedestrian All
& Car 0,985 0,005 0,011 2273
7]
E 1
: Truck 0,001 0,968 0,032 1860
=
|5
|_
|Pedestrian| 0,001 0,003 0,996 1867
All 2241 1816 1943 6000

Figure 4.8: Confusion matrix after classifying the test set. 99% accuracy

Finding how each class has been classified The matrix gives the percentage of ele-
ments of real class classified as each class. The matrix is achieved by dividing each
element by the sum of the elements in each row. The matrix gives a better indica-

tion of the error rate. From the current dataset the accuracy is approximately 99%.

The error rate of a truck classifying as a pedestrian is 0.03 %, which means the net-
work misclassifies a approximately three in a hundred images. The second largest
error rate is a result cars being classified as a pedestrian. This error rate is 0.01%,
which gives about one error prediction out of a hundred images. Pedestrians, on
the other hand, are classified almost flawlessly, with only 7 misclassifications out
of 1867 images, which is equivalent to around 3 misclassification per thousand im-
ages. This may be a indication that the network is overfitting the pedestrian class.
Ideally, the classifier would avoid misclassifying vehicles as pedestrians because

this misclassification proposes the biggest safety challenges.

76

Chapter J 4.2. Testing neural networks architectures

Figure [£.9 shows some of the misclassifications.

Predicted: Truck Predicted: Car Predicted: Car
True: Car True: Pedestrian True: Truck

Figure 4.9: Misclassifications of the dataset
Some of the misclassifications are understandable, e.g the pedestrian image shows

more than one person, and the image of the truck is very close up,which changes

the features of the input images.

7

Chapter J 4.8. Arranging the experimental setup

4.3 Arranging the experimental setup

All cameras are in a fixed position, filming a static background. The neural network
is trained to classify the vehicle front, which implies that the camera must be
aligned to capture incoming traffic.

Cameras from Statens vegvesen are mounted on poles or structures above or ad-

jacent to the roadway, capturing incoming traffic, illustrated in figure [4.10}

Figure 4.10: The camera may be mounted anywhere along the x-axis, as long as

the green area is observable.

The all tests were performed with Axis P1346 cameras with a top-down view. The

78

Chapter J

recordings are from the destinations in figure [£.11]

Bansnes

Tyrifjorden

4

5

ol

nnemarka n
‘Pi!
Tanum \\

+

Slepend_e_n“

r./’
51 stad § L4 2

285]
Elks=tm

s
Honp d
Asker 7

= al¥
- U
l cstenstad
Lierbyer e
[&7}
Frogner ’.’
u// J
i 3 Slemmestad
F iz Po;}"rken
e s - 1
= Ikkestad ¢
TR /<‘/ Gl
rammen -

Na=rsnes

|
Fag ar-

st rid

is E18 Sandvika

Figure 4.11: Recording destinations. 1 is E18 Maritim, 2 is E16 Sandvika, and 3

4.8. Arranging the experimental setup

Levlia

N
KIKutstua f«.nebv‘jn
\
i \'.‘.II
Nordmarka
J-t/Movatn
y 4
Ullevd Iseter ,.J Piithed al
I! #
Holmen- d
kollen (et
d o
3 OSLo -
o | g
ndvika IQ@\ 1
Nesodd- | 'Y
tangen :|
|
ey
f.,
|
Ma ﬂemél |I .
F.9- I 155| va
Mesodden ‘* .Jl(d'r*‘gom :
[i=7] [is¢l \

'I'. J:‘ Slggerud

4

The image resolution from the cameras are 800x600 pixels, with a frame rate of 1

frame per second. The video stream are both composed of objects and noise,thus,

the result of the detection has four outcomes, presented in table

Vehicle present | Vehicle absent
Detected Hit False positive
Not detected Miss Correct rejection

Table 4.2: Detection table

79

Chapter J 4.8. Arranging the experimental setup

Multiple detections of the same vehicle are counted as hits in the initial tests. All
images that contains recognizable objects are considered a positive, illustrated in
figure and figure [4.13]

i 3 3
1™

Figure 4.12: Hits detected

HEL
N

Figure 4.13: False hits detected

80

Chapter J 4.8. Arranging the experimental setup

The performance of the model is measured with a hit rate. The hit rate is computed

by dividing the sum of valid detections on all detections, in epochs of five minutes.

PO
S (4.1)

where n is the number of detections, and m is the number of true detections.

hitrate =

The detections are manually sorted as either false positive or true detections.

Detections of non-vehicles are considered false detections.

81

Chapter J 4.4. Initial considerations of the acquired data

4.4 Initial considerations of the acquired data

Datasetet var hentet pa forskjellige tider og ved orjskelliige veerfrohold. Dette
skapte en innledene arrised quastions i forhold til validity pa den acquired data.
thus inital consideration were done to investigate the data and to skille ut de

reliable datasets. Several steps were taken to achieve this.

1. Determining a reasonable vector space
2. Initiating the Kalman filter

3. Hit rate during sunny days

4. Hit rate during cloudy days

5. Hit rate at different locations

6. Multiple lanes

82

Chapter J 4.4. Initial considerations of the acquired data

4.4.1 Determining a reasonable vector space

Deciding a reasonably vector space must be done every time new locations are used
by the system, because the geometry of the lane changes, which implies different

driving pattern of the vehicles in different locations. The location of this test is

shown in figure

E16 Sandvika 75 2017-05-03 12:21:.46

Figure 4.14: The system is adjusted according to the location. The black boxes

are blocking personal properties, due to privacy regulation.

83

Chapter J 4.4. Initial considerations of the acquired data

The adjustment is completed by computing vectors between coordinates. Figure
illustrates how the vectors are computed. The origin of the coordinate system

is in the upper left corner.

(0,0) X

Figure 4.15: Vectors between vehicle coordinates

The purple and turquoise marks represents two separate vehicles driving in the
direction of the Y-axis. The valid vectors are the ones point backwards, because
each new measured coordinate are looking to join an existing object.. If the vector
points downwards, A vector pointing downwards is not valid, because it implies
the vehicle is looking for points ahead of itself (e.g the vehicle in front), which is

undesirable. The angle between the points is measured in relation to the x-axis.

84

Chapter J 4.4. Initial considerations of the acquired data

a1 is a valid vector in figure [4.15] «y is the opposite vector of «y, which is ay + 180
The vectors are defined between -180 to 180 , which implies angles exceeding 180
, will continue at the negative axis. For each valid vector aq, a corresponding
invalid ap will exist. as is a vector between the two lanes and will be invalid in
both directions, because no correspondence is desired between the lanes.

Figure shows the result of computing the vectors between all measured coor-

dinates in a one minutes interval in relation to each other.

800 A

7004 .0

o

=

]
L

=]
=

Object distance (pixels)

View angles (degrees)

Figure 4.16: Distance between measured positions based on frames per second

The blue and green area are represent the valid space for the two lanes. Since the
blue and green are valid vector space, they will project two equal punctures that
are skewed 180 degrees. This is reflected in figure [£.16] where the purple parabola
has a offset of 180 relative to the blue parabola. The yellow area has an offset
of 180 relative to the green. Both purple and yellow are invalid vector area. The
seemingly random dots in the plot are coordinates in the two lanes and noise in

the extracted foreground.

85

Chapter J 4.4. Initial considerations of the acquired data

How the pixel distance changes as a result of various frame frequency is illustrated

in figure [4.17]

1 Frame per second

_—
an - an
ot h i~ -
Distznce betwesn massuremsants N
Time "
80 kmin 40 Frames per second
R
~an "an
§ ot Sy e d:

Distance betwesn measurements

v

Time

Figure 4.17: Distance between measured positions based on frames per second
Only one lane were used in this test, thus the blue line in figure constrains

the vector space. The area is manually chosen. The parabola is computed by the

following equation.

y=alx—z,)(r—x) (4.2)

Where z, and z; is left and right, respectively, intersection between the parabola

and the angle-axis. a is solved by inputting the maximum distance value for y and
ot] 3
#eE for X, in equation .

86

Chapter J 4.4. Initial considerations of the acquired data

4.4.2 Initiating the Kalman filter

The coordinates for a single vehicle from the background subtraction are plotted.
The model is considered constant velocity, and the noise sources is assumed to be

white Gaussian distributed. The measurements are considered real values. The

—z(t—1))*+(y(t)—y(t—1))?)
At

x and y are pixels coordinates. The time dependent terms of the state transition

velocity is given as v = V(@@ , where t is a given frame, and

matrix are updated every time the time step is changed.

I 0 At 0
0 1 0 At
d = (4.3)
00 I 0
0 0
The initial error covariance of the state vector is set to I - 0.1.
01 0 0 0
0O 01 0 0
P = (4.4)
0 0 01 0
0 0 0 0.1

Which means the standard deviation of each inital guess is the square of 0.1, =
0.1. So for all cases, 68 % of the time the initial inputs are within +/- 0.3 units
and 95% of the time within +/-0.6 pixels. This statement is reasonable because
the initial position of the vehicle is relative accurate, which gives an initial error
covariance for x and y that is close to zero, and a 95% confidence that the initial
position is within +/-0.6 pixels. And the vehicles is moving with +/-0.6pixels/dt.
The effect of initializing a measurement noise covariance matrix close to zero means
the proportion of error in the correction step is going to be nearly 100% attributed

to the model.

87

Chapter J

4.4. Initial considerations of the acquired data

The filter is manually tuned until the prediction fits the measurements.

2004 ® Measurements
+ Predictions

175

150

125 A

100 A

Y-coordinates

759

50

251

T T T T T T T
120 140 160 180 200 220 240
X-coordinates

Figure 4.18: Measured coordinates in pixels and the corresponding predictions

The norm of the state covariance matrix is shown in figure

Figure 4.19:

14

12

10 -

Norm of state covariance, P

Time

The norm of the state covariance matrix plotted vs time

The state covariance matrix converges rapidly, which means a lower uncertainty.

The values for Q and R was retained for the following tests.

88

Chapter J

4.4. Initial considerations of the acquired data

4.4.3 Hit rate during sunny days

The following initial test were conducted to see how the system responds to the

sun changing position during the day. This is to determining if utilizing the system

at different times of the day will be decisive for the result.

Recording position Time Day | Weather | Lanes
Sandvika E18 08:00-09:00 | 15.05.2017 Sun one
Sandvika E18 11:00-12:00 | 15.05.2017 Sun one
Sandvika E18 14:00-15:00 | 15.05.2017 Sun one
Sandvika E18 16:00-17:00 | 15.05.2017 Sun one
Sandvika E18 19:00-20:00 | 15.05.2017 Sun one

Table 4.3: Recordings from Sandvika E18

These results are within the practical scope of this project, thus

are present.

89

some time gaps

Chapter / 4.4. Initial considerations of the acquired data

Figure and figure shows hit rate during the time interval.

0,95

09

0,85

08

Hit rate duringsunny days

08:00-09:00

W 12:00-13:00

@075
E s 1400-15:00
£ 07
0,65 16:00-17:00
0,6
. 192000 -20:00
0,55
0,5
SR22RSS RS2/ 9SRISALESRLESIRISRISRISALSIASL S
EgEgzgggsgadiNdoddEss a5 a8Ea9d8g
Time
Figure 4.20: Hit rate at different time of day
Illumination during day
1
09
08:00-09:00
0.8
12:00-13:00
> W ——1400-15:00
16:00-17:00
0.6
— 1900 -20:00
05
0.4

0000 0005 00:10 00:15 00:20 00:25 0030 00:35 0040 0045 0050 0055 01:00

Figure 4.21: Hit rate at different time of day, parallel view of figure 4.25

90

Chapter J 4.4. Initial considerations of the acquired data

The test shows significant difference in hit rate in relation to the time of day, where
the average hit rate is varying form approximately 0,70% to 0,85% for 08:00 and
12:00-13:00 respectively.

The test shows significant difference in hit rate in relation to the time of day. The
position of the sun has a impact on the projected shadows from the cars, which in

turn may lead to false positives. Figure strates how the sun provokes shadow.

Figure 4.22: Shadow projection caused by the sun

The reason is two-folded, shadow from the surroundings is detected as vehicles,
and shadow from vehicles that are not filtered out. This shadow causes vehicles
to be detected as the same blob, and thus difficult to differentiate and classify. It

can be concluded that illumination proposes considerable error on the hit rate.

91

Chapter J 4.4. Initial considerations of the acquired data

4.4.4 Hit rate during cloudy days

The impact of cloudy days is measured by filming the same locations,with cloudy

weather conditions, in different time intervals between morning and evening.

The recordings are listed in the table [.4}

Recording position Time Day | Weather | lanes
Sandvika E16 Nord | 08:00-09:00 | 15.05.2017 cloudy | one
Sandvika E16 Nord | 14:00-15:00 | 15.05.2017 cloudy | one
Sandvika E16 Nord | 19:00-20:00 | 15.05.2017 cloudy | one

Table 4.4: Recordings from Sandvika E16

The results of detecting and tracking in various times during the day is presented
in a graph in figure [£.23] and figure [4.24]

Hit rate during cloudy days

N\ W
7 M’\/\ s \lorNiNG 08:00-09:00

= Afternoon 14:00-15:00
e Eyening 19:00-20:00

SER23R2ESR23R23R23RA23RE3A23R2 3 REIZRIZRES
g2ggggaaadd3d80000dd333494498 985S 55859524938

Figure 4.23: Hit rate during cloudy days, plotted between 08:00 - 20:00

92

Chapter J 4.4. Initial considerations of the acquired data

Detection rate at different times of the day

09 : ; : :

08

0,7 s Morning 08:00-09:00
=— Afternocon 14:00-15:00
w— Eyening 19:00-20:00

06

Hit rate

0,5

04
00:00 00:05 00:10 00:15 00:20 00:25 00:30 00:35 00:40 00:45 00:50 00:55 01:00

Hours

Figure 4.24: Hit rate during cloudy days, parallel view of figure |4.23

The experiment indicates that performance of the system is lower in the morning,
compared to measurements later in the day. One apparent reason for the lower hit
rate in the morning is higher frequency of vehicles. Higher frequency of vehicles
entails occlusion, which in turn may confuses the tracking module. Backed by this
results, further analysis will use cloudy data because its more reliable than sunny

weather.

Due to the considerable amount of data needed for the tests, a representative
time interval had to be selected to make further analysis within a reasonably time
frame.

The interval is selected from the initial tests, where the plot indicates a stable hit
rate around 14:00 with cloudy weather. Furthermore, the time at 14:00 will be

defined as zero point.

93

Chapter J 4.4. Initial considerations of the acquired data

4.4.5 Recordings from three different locations

The impact of different locations are measured by recording three different loca-

tions at the same time of day. The recordings are listed in table [£.5]

Recording position Time Day | Weather | lanes
Sandvika E16 Nord | 14:00-15:00 | 15.05.2017 | Cloudy | one
18 Maritim 14:00-15:00 | 15.05.2017 | Cloudy oneﬂ
E18 Fiskvollbukta | 14:00-15:00 | 15.05.2017 | Cloudy | one

Table 4.5: Recordings from Sandvika E16

“This destination has originally multiple lanes, but only one of the lanes are recorded in this

test
The result of the test is shown in figure [4.25]

Initial Location Test

e [1B Sandvika
— 18 Maritim

E18 Fishkvoltbukta

14:00 14:05 14:10 34:15 14:20 14:25 14:30 14:35 1440 14:45 14:50 14:55 15:00

Time

Figure 4.25: Hit rates for the three selected locations

The quality of the data from this three locations are very similar, with a average
hit rate of approximately 0,85 %. Thus the data from these three locations will
be merged for further analysis. In addition it can be assumed that the system is

representative of roads that are relatively straight and with single lanes.

94

Chapter J 4.4. Initial considerations of the acquired data

The colors in graph represents the different locations, and by further analysis,

the locations will be represented by the same colors.

95

Chapter J

4.4. Initial considerations of the acquired data

4.4.6 Multiple lanes

The multiple lane experime

nt aims to provide results to which extent the hit rate

is affected by detecting multiple lanes. The recordings are from at same time at

day, but different locations.

Recording position Time Day | Weather | lanes
Maritim E18 14:00-15:00 | 03.05.2017 cloudy oneH
Maritim E18 14:00-15:00 | 09.05.2017 cloudy | three

Table 4.6: Recordings with multiple lanes

“One lane cropped out

The results from the test lane testing is presented in Figure [£.26]

Detection rate with multiple lanes

Hit rate

Figure 4.26: Multiple lanes

As expected is the hit rate for multiple lanes poor compared to single lane de-
tection. Multiple lanes proposes challenges as several objects are tracked simul-
taneously, as multiple object tracking increases the likelihood of mixing vehicle
coordinates as they change lanes. In addition the vehicle frequency is higher with

multiple lanes, as more cars pass the camera over the same time period compared

to a single lane.

96

One lane

s F OUr l2NES

Chapter J 4.4. Initial considerations of the acquired data

Based on the initial tests, it can be assumed that future tests must be conducted

at the same time of the day and with the same weather conditions, and with one

lane.

97

Chapter J 4.5. Analysis and presentation of traffic data

4.5 Analysis and presentation of traffic data

The essential part of the data analysis is to
present the data in informative format to simplify the decision making and the
planning for the end user(Statens vegvesen). Data from the initial tests were used

for further analysis.

The three locations within the given prerequisites(cloudy, 14:00-15:00 and a single
lane) gave a dataset of approximately 3000 images.
A report from Statens Vegvesen[4] sums up the desired target data from the anal-

ysis.
m Velocity distribution

Density of vehicles

m Traffic congestion
m Vehicle classification

m Vehicle class frequency

These analysis will be presented in the next sections.

98

Chapter / 4.5. Analysis and presentation of traffic data

4.5.1 Velocity distribution

This analysis shows how the relative speed between the cars are distributed. The
database stores information about the pizels per second velocity for each moving
objects. The real distance of the road is necessary to convert from pixels per sec-

ond to meter per second.

Figure [4.29 shows how the distribution of the velocity of the vehicles are. Pixels
per frame may also be seen as pixels per second, because of the frame frequency
is 1. In the plots, 9-25 means the interval between 9 pixels per second to 25 pixels

per second and so forth.

Vehicle velocity EL8 Sandvika

250
2 200
=
T
3 150
—
o
@ 100
f~]
5
= l
= w0 D W oW oD ow e WD = =
W AR BRSO~ N MDD B RENS
Ngiglooonrorqgaaaandosea
mﬂw—ﬁﬂ'tﬂhmﬂr\lﬁmmmmq—m
‘_‘_FFFFFNNNNNNNMM

Vehicle velocity [intervals of pixels per second]

Figure 4.27: Vehicle velocity at E18 Sandvika.

99

Chapter / 4.5. Analysis and presentation of traffic data

Wehicle velocity ELE Maritim

160
2 140
[=]
E 120
= 100
=
; B0
o B0
E a0
° o . .I
D- --_—_—_—
L L Ly
w R 2L EREEE S Ee8ascas Lesecs
T et s TTTOTTE T AN NN
SeNpgve=2e Iy ¥R K S
Vehicle velocity [intervals of pixels per second]
Figure 4.28: Vehicle velocity at E18 Maritim.
Wehicle velocity E18 Fiskvollbukta
k|
=
=
[+ 1]
=
=]
@
=
E
=
=
N
A S S T
3 G = & =% @ =t
[¥p T [==] = - L}
- o v v Ny

Vehicle velocity [intervals of pixels per second]

Figure 4.29: Vehicle velocity at E18 Fiskvollbukta.

All the plots indicates a normal distribution with expectancy value of approxi-
mately 60 pixels per second. The three locations have a similar speed limit, which

indicates that the speed measurements are relatively consistent.

100

Chapter / 4.5. Analysis and presentation of traffic data

4.5.2 Density of vehicles

This analysis gives information about the amount of vehicles passing through the
system for given periods. Information about detection time of the objects is stored
in the database. Figure [£.30] .31] and [4.32] shows the density of vehicles in time
intervals of 6 minutes. The data is supported by graphs showing the typical traffic

flow pattern. In the plots, 0-5 means the interval between minute 0-5 and so forth.

Density of vehicles E18 Sandvika

o iy iy i
==} I = [1e}
-— o o Lar}

Time[minutes] (Imervals of & minutes)

120

g

Number of vehides
[oy [=x] =2
= (=] (=] (=] =

6-11
12-17

e
s
s4-so

0-5

Figure 4.30: Vehicle density at E18 Sandvika

Density of vehicles E18 Mairitim

160
140
@ 120
=
5 1oo
=
T 80
o
£ &0
3J
= ap
0 P [x] [=] & = [i o (=]
w - - o o iy = i L e <0
= b o~ . =~ 5] A g =2 = 3
Time[minutes] |Intervals of 6 minutes)

Figure 4.31: Vehicle density at E18 Maritim

101

Chapter / 4.5. Analysis and presentation of traffic data

Density of vehicles E18 Fiskvollbukta

140
120
4 100
=
=
-
i
[w]
al
= GO
E
=
= 40
20
0 o — M~ m m
- S S (R D SR A S
= L e s 2 i,
o o 273 & 8 9 92 3

Time[minutes] {Intervals of 6 minutes)

Figure 4.32: Vehicle density at E18 Fiskvollbukta

The plots show relatively continuous flow of vehicles, but there is a somewhat larger
variance on the E18 maritime (the intervall 60-66 is small because the recordings

ended after 62 minutes).

102

Chapter / 4.5. Analysis and presentation of traffic data

4.5.3 Traffic congestion

This analysis is an result of deriving information from the two previous tests. By
combining both analysis one could obtain information about the congestion.

We define the congestion to be high if the velocity is low and the distance be-
tween vehicles are short, defined by x Multiplying the time difference between the

detections and the velocity at a given time

X = Vo, * At (45)

where v, is velocity for object o, and At is time difference between object o,, and
On_1. X, is between 0 and 100 where a total traffic jam is represented by 0. Values
outside 2 standard deviations of the normal distribution around the mean queue
factor, for each measured location, is assumed to be noise, and removed from the

plots. The running average of six vehicles are plotted as the purple line.

Traffic congestion Sandvika

100,00
40,00
80,00
70,00
60,00
50,00
40,00
30,00
20,00
10,00

0,00

Traffic factor,X

8] 4 8 11 14 18 22 25 30 34 38 42 46 50 54 G5B

Time[minutes]

Figure 4.33: Congestion at E18 Sandvika

103

Chapter / 4.5. Analysis and presentation of traffic data

Traffic congestion Maritim

=

Traffic factor, X
o BEEEEBIEES

[} 8 15 21 28 32 39 47 53 59

Time[minutes)

Figure 4.34: Congestion at E18 Maritim

Traffic congestion Fiskvollbukta

100,00
90,00

70,00
60,00
50,00
40,00
30,00
20,00
10,00

0,00

Traffic factor[X]

a 5 10 14 20 25 E] 37 41 47 52 56

Time[minutes]

Figure 4.35: Congestion at E18 Fiskvollbukta

The queue situation is determined by low velocity and close distance, and several
vehicles have to present at the same time to be able to determine congestion or
traffic jams. Each discrete measurements in Figure does not present
congestion by itself. However, if look at the plot of average represented by the
purple line, this will be a picture of the moving average, determined by ten objects,

will easily give an impression of the current congestion situation. The x has an

104

Chapter J 4.5. Analysis and presentation of traffic data

average around 20, however fluctuating between 10 and 40. This makes it difficult
to conclude any considerable traffic jam situation. However, this might be natural,
due to the fact that video recordings were acquired between 14 and 15 o’clock, thus
before people normally go home from work, and in general efficient movement of
traffic and minimal traffic congestion problems. It is however an exception in

Maritime, where traffic is lower than otherwise. This is discussed later.

105

Chapter J 4.5. Analysis and presentation of traffic data

4.5.4 Classifying the dataset

The classification of all data from the three destination are performed in the fol-
lowing test. The best model from the initial neural network test is used to classify.
The data was first labelled into car, truck and pedestrians, which gave a total of

3000 labelled images.

Unrecognizable data were removed, thus, the classification test implies that the
detection algorithm has a 100% hit rate of the detections. This is discussed in [5]
This data set will have a large imbalance between classes as a result of frequency of
the different types varies. The results of the classification is shown in the confusion
matrix (430

Predicted class

Car Truck |Pedestrian All
Car 2234 82 1] 2316
W
W
=
: Truck 38 643 0 681
=
| .
-
Pedestrian | 0 0 3 3
All 2272 725 3 2000

Figure 4.36: Confusion matrix of the classified dataset

106

Chapter J

4.5. Analysis and presentation of traffic data

2234 + 643 + 3
Accuracy = = 0,96
Y 3000 ’
and the normalized confusion matrix in figure [£.37]
Predicted class
Car Truck | Pedestrian All
- Car 0,96 0,04 0,00 2316
7]
=
: Truck 0,06 0,94 0,00 681
-
|
=
Pedestrian 0,00 0,00 1,00 3
Al 2159 838 3 3000

Figure 4.37: normalized confusion matrix of the classified dataset

(4.6)

Again, the accuracy is calculated as the overall correct classifications, which is

which gives a overall classification accuracy of 96%. All the pedestrian are rightly

classified, and in addition none of the other classes are misclassified as pedestrian.

96% of all cars are rightly classified, and the remaining 4 % are classified as trucks.

For truck is 94 % rightly classified as trucks, and the remaining 6 % are classified

as vehicles.

107

Chapter J 4.5. Analysis and presentation of traffic data

4.5.5 Vehicle class frequency

This analysis gives information about the frequency of each vehicle class. Applying
the results from the classification test in conjunction with the vehicle density pro-

vides a detailed information about the frequency of each vehicle class are accounted

for.

Frequency of the different classes at Sandvika

200
100
:.In l

[0-20] [20-440] [40-60]

MNumber of vehicles
n

Tirme[minutes]

BCar MTruck = Pedestrian

Figure 4.38: Frequency of the three classes at K18 Sandvika in intervals of 20

minutes (no pedestrians were detected)

108

Chapter J 4.5. Analysis and presentation of traffic data

Frequency of the different classes at Maritim
350
300
250
200

150

100
1 O N
v

[020 [20-40] [a-a0]

Mumber of vehicles

Time|minutes|

BCar BWTruck = Pedestrian

Figure 4.39: Frequency of the three classes at E18 Maritim in intervals of 20

minutes (no pedestrians were detected)

Frequency of the ditterent classes at Fiskvollbukta
350
300

250

200
150
100
-in B 1B
a

[0-20] [20-40] [40-60]

Number of vehlcles

Tirme[minutes]

W Car WTruck = Pedestrian

Figure 4.40: Frequency of the three classes at E18 Fiskvollbukta in intervals of 20

minutes (no pedestrians were detected)

These results can be used to determine the amount heavy traffic driving on the

road, and thus maintain the road according to needs.

109

Chapter 5
Discussion

This section considers the experimental results related to the following topics:
m Neural network
m Detection and tracking

m Data analysis

Neural network

The neural network shows good ability to distinguish between the different classes,
but is dependent on the data from the detection module being reliable. There is
a performance fall when the network is used in new locations, that may be a re-
sult of the training data and test data are retrieved from the same location, while
the new data set is retrieved from a new locations. Another explanation is the
different in frequency of the three classes. There are, for example, only three 3
pedestrian who have been moving in front of the camera during the recordings.
This affects the classification results if the car class classifies with less accuracy

than the pedestrian class.

In the test, unrecognizable data was removed before classification. This is be-

cause unrecognizable data randomly classified, which induces noise in the result,

110

Chapter &5

which in turn makes the result not representative for the classifier. A solution is to
introduce a background class that classifies unrecognizable data as a background,

and removes it from the system.

The network is competitive in comparison with other methods performed by clas-
sification. In a comperative study by S. Munder and D.M. Gavrila [29] with
pedestrian classification achieved the best method, support vector machine, a
classification accuracy of 95.0%, which is lower than the 99,6% neural network
accuracy.

Another study by Ambar Dekar [3] compared different classification algorithms ,
achieving a classification accuracy of 99.25% when classifying between cars and
trucks, using a support vector machine. This result is better than the neural net-
work, however, these are methods that only classifies between two classes. To
extend the methods in order to distinguish between several classes, it must inte-
grate multiple support vector machines, as well as being more resource-intensive
than neural networks.

Overall the neural network proves to be a good classifier, and classifies the three

classes exact, even though the training dataset is relatively small.

111

Chapter &5

Detection and tracking

Ideally the traffic should have been acquired 24 hours intervals for several days, but
however this was not achievable in the time frame of this MSc thesis. The initial
test with sunlight indicated that the light affects the rate apparently randomly,
thus, results based on data from sunlight recordings will be difficult to conclude
from. The recordings from cloudy weather, on the other hand, have shown rela-
tively constant hit rate within given intervals. These tests should be quantified
to conclude for which environmental parameters the results are valid. Initial tests
have shown that the selected measurement range has provided reliable data sets,

which in turn has produced reliable analysis results.

However the is a surprising but interesting deviation of the experimental data, as
marked with the dotted lines in figure 5.1, where these is a detected drop around
14:25-14:35. The reason is not fully understandable, but seen in conjunction with

plot a following reasonable interpretation can be given.

112

Chapter &5

Initial Location Test

o B
W e

|
H i
8 H |
Sor7 : i e E18 Sadivika
= H !
I ' i .
06 i i e E18 I @ritim
i ' s E18 Fiskvolbukta
05 : i
{ !
i 1
04 ; '
14:00 1405 1410 14:15 1420 1425 1430 14:35 1440 14:45 1450 1455 15:00
Time
Density of vehicles E18 Fiskvollbukta
160
H |
140 H |
H |
w120 H |
B : |
i 2B
k1 " i
o B0 v '
g | |
g i |
J []
= 4 1 ;
H 1
i 1
H '
H 1
] H i
{

[0,6] (6,121 (12, 18] (1B, 23] (23, 2%] (29, 35] (35,41] (41,47] (47,52] (52, 58] (58, 64]

Time[minutes] (Intervals of & minutes

Traffic congestion Maritim

Trafficfactor, @

o 8 15 21 28 32 39 47 53 59

Time[minutes]

Figure 5.1: Drop in hit rate,

The plot shows a drop in hit rate, higher density of vehicles and a lower queue
factor (higher congestion) in that time interval. There is a significant increase in
the number of vehicles passing the system during this period, which gives reason
to believe there is a correlation between congestion and hit rate, due to the fact

that vehicles driving closer to each other are more difficult to detect.

113

Chapter &5

Data analysis

Based on reliable data from the initial tests analysis represents useful traffic infor-
mation.

The congestion analysis should be conducted through a larger time interval in
which you will have both morning and evening rush. However, this requires more
analysis and experimentation around different lighting conditions, to achieve a

smooth hit rate throughout the day.

The relative velocity plot for three locations has clear similarities, and all may
be expressed by weibull distributions, and with an assumed mean equal to the
speed limit. This means that the extremes of the plot indicates that some vehicles
are driving approximately 6 times as fast as the speed limit, which is unrealistic,
and assumed to be error detections, thus may be removed from the system. These
error detections can be associated with the Kalman filter, which is optimal only
for linear models, and the motion model may be unlinear. As a result, when mul-
tiple objects are detected, confusion between the objects may occur, which makes
coordinates from one object believe it belongs to an object further on the road,
which in turn gives higher measured velocity.

In turn, the relative speed is also useful information in connection with traffic
queue detections, where low relative speed and small distance between vehicles
give indications of queue. However, it was not possible to detect queues during
the recordings, so the analysis was omitted. Furthermore, continuous analyzes of

the collected data has shown to be useful in determining different traffic factors.

114

Chapter 6

Recommendations for further

work

The thesis holds several elements that could be further investigated and expanded

upon. For main topics are recommended for further work:

m Improve and expand the neural network
m Implement other detection and tracking algorithms

m Perform real-time analysis

Neural network

There are several improvements and modifications that can be made to the neural
network. The most obvious ones are to train the network on both vehicle fronts
and vehicle rears and train with additional classes, e.g a background class can be
added to eliminate false positives from the system.

In order to streamline the training process and reduce the need for data, transfer
learning can be used. Source code for implementing the transfer learning of the

Inception Network is attached.

115

Chapter 6

Detection and tracking

As the tracking and detection module seems to be the weak link in the system, it
should be considered to investigate other possible improvement of the detection and
tracking algorithm. Perform a comparative study solely on detection and tracking

algorithms. Several methods may be implemented in the detection module:
m Region proposal
m Haar cascade
m SIFT
s SURF
However, none of the methods has shown in general to be superior to each other

139).

There should also be considered using a Thermal camera. The detection algo-
rithm was tested with a thermal camera, which gave good results in terms of
filtering out shadows in the video frame. One apparent advantage with thermal
camera is its ability to detect at both day and night. The tests were not quantified,

and are therefor not a part of the results. The data and source code are attached.

The tracking module can be improved by using other methods [19].

m Particle filters
m Support vector machine
m Multiple hypothesis

m Recursive Monte-carlo

An extended Kalman filter could be applied to handle unlinear motion models,

but requires more tuning and can be difficult to optimize [32].

116

Chapter 6

It should be considered using video with higher frame rate when tracking objects.
Tests were performed on 40 FPS video, which gave indications of an improved

tracking, but these tests were not quantified.

Continuous analysis

There are several examples of how further analysis can be used in conjunction
with forecasting or to establish a relationship between traffic volume and
accidents to determine the probable occurrence. A report based on vehicle
frequency and classification data shows how data analysis can detect weaknesses
in road structure and how road capacity carrying the heavier traffic needs
maintaining to extend its durability [4]. By conducting this analysis, the
economic aspect can be investigated by distributing the economy where the need

is greatest, such as structural upgrading, strengthening or capacity expansion.

117

Chapter 7
Conclusion

A vision-based traffic system is developed to detect the traffic situation at three
different locations in Norway. The data was acquired using a camera, and
utilizing a background subtraction algorithm to detect vehicle, and subsequently
classifying the vehicles in a neural network. The system has undergone a
comprehensive experimental verification, with analysis of more than 20000

images. The results shows the following:

m The algorithm detects 85% of the vehicles with certainty, but there is some

uncertainty around the remaining 15%

m Given valid data from the detecting algorithm the neural network were able

to classify the type of vehicle with approximately 96%. .
Through analyzes of the acquired data, the following traffic data was determined:
m Velocity distribution
m Density of vehicles
m Traffic congestion

m Vehicle class frequncy

This shows that a modern vision-system combining background subtraction and

neural network achieves a performance that is capable of acquiring characteristic

118

Chapter 7

data for a modern traffic surveillance system. Finally, recommendations for

further improvements are presented.

119

Bibliography

1]
2]

Article @ Fluidsengineering. Asmedigitalcollection. Asme.Org.

V. K. Agarwal, N. Sivakumaran, and V. P. S. Naidu. Six object tracking

algorithms: A comparative study. Indian Journal of Science and Technology,
9(30), 2016.

a. Ambardekar, M. Nicolescu, G. Bebis, and M. Nicolescu. Vehicle classifica-
tion framework: a comparative study. FEurasip Journal on Image and Video
Processing, 2014(1):1-13, 2014.

M. o. W. and Transport. Traffic Data Collection and Analysis. (99912 - 0 -
417 - 2):1-54, 2004.

Axis. Axis Communications.

L. J. Ba and R. Caruana. Do Deep Nets Really Need to be Deep? pages 1-9,
2013.

N. Basant. Evils of Overfitting — and How to Minimize them. 2015.

Y. Benezeth, P.-M. Jodoin, B. Emile, H. Laurent, and C. Rosenberger. Com-
parative study of background subtraction algorithms. J. FElectron. Imaging,
19, 2010.

Y. Bengio. Practical recommendations for gradient-based training of deep
architectures. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7700
LECTU:437-478, 2012.

120

Chapter 7 Bibliography

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

S. Bhattacharyya, C. Shen, D. Dawadi, and B. Panja. Detection and Classi-
fication of Vehicles Using Wireless Sensor. Analysis, 3(1):37-47, 2002.

X. Cao. A practical theory for designing very deep convolutional neural net-

works.

S.-c. S. Cheung and C. Kamath. Robust techniques for background subtrac-
tion in urban traffic video. page 881, 2004.

Codelabs. codelabs.developers.google.com.

E. Cuevas, D. Zaldivar, and R. Rojas. Kalman filter for vision tracking.
Measurement, (August):1-18, 2005.

P. Delmas. Median Filtering Lecture Slides - examples. pages 1-8, 2010.

R. Faragher. Understanding the basis of the kalman filter via a simple
and intuitive derivation [lecture notes|. IEEE Signal Processing Magazine,
29(5):128-132, 2012.

Foswiki. SecureShell @ wiki.ux.uis.no, 2017.

F. F. Gavrila. and D. M. PedCut: an iterative framework for pedestrian

segmentation combining shape models and multiple data cues. 2008.

U. K. J. . Himani S. Parekhl, Darshak G. Thakore 2. A Survey on Object De-
tection and Tracking Methods. International Journal of Innovative Research
in Computer and Communication Engineering, 2(2):2970-2978, 2014.

R. Hughes, H. Huang, C. Zegeer, and M. Cynecki. Evaluation of Automated
Pedestrian Detection at Signalized Intersections. (August), 2001.

Imagenet. image-net.org.

R. Javadzadeh, E. Banihashemi, and J. Hamidzadeh. Subtraction Technique
and Prewitt Edge Detection. 6(10):8-12, 2015.

E. Jaynes and F. Cummings. Stamp @ Teeexplore.leee.Org, 1963.

121

Chapter 7 Bibliography

[24]

[25]

[26]

[27]

28]

[29]

A. Karpathy. CS231n Convolutional Neural Networks for Visual Recognition.
2016.

N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang.
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp
Minima. 2016.

P. Kumar and N. S. Bindu. A Comparative study on object detection and
Tracking in video. 2(12):1784-1789, 2013.

LeCun, Yann, and M. Ranzato. Deep learning tutorial. Tutorials in Interna-
tional Conference on Machine Learning (ICML’13)., pages 1-29, 2013.

Y. A. LeCun, L. Bottou, G. B. Orr, and K. R. M??ller. Efficient backprop.
Lecture Notes in Computer Science (including subseries Lecture Notes in Ar-
tificial Intelligence and Lecture Notes in Bioinformatics), 7700 LECTU:9-48,
2012.

S. Munder and D. M. Gavrila. An experimental study on pedestrian classi-
fication. IEEFE Transactions on Pattern Analysis and Machine Intelligence,
28(11):1863-1868, 2006.

A. Ng. 1. Supervised learning. Machine Learning, pages 1-30, 2012.

Nvidia. tesla-p100 @ www.nvidia.com.

N. Obolensky. Kalman Filtering Methods for Moving Vehicle Tracking. 2002.
M. Piccardi. Background subtraction techniques: a review. 2004.

PythonWare. www.pythonware.com.

A. M. Raid, W. M. Khedr, M. A. El-Dosuky, and M. Aoud. Image Restoration
Based on Morphological Operations. International Journal of Computer Sci-
ence, Engineering and Information Technology (IJCSEIT), 4(3):9-21, 2014.

122

Chapter 7 Bibliography

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]
[44]

[45]

[46]

[47]

G. V. Research. Video Surveillance And VSaaS Market Analysis By Product
(IP-Based, Analog), By Component (Hardware, Software, Services), By Ap-
plication (Residential, Retail, Transportation, Government, Corporate, Hos-

pitality, Industrial, Healthcare, Stadiums) And Segment. 2015.
Riverbank. riverbankcomputing.com.

J. Scott, M. A. Pusateri, and D. Cornish. Kalman Filter Based Video Back-
ground Estimation. [EFEE Applied Imagery Pattern Recognition Workshop,
pages 1-7, 2009.

M. Shao, D. Tang, Y. Liu, and T. K. Kim. A comparative study of video-based
object recognition from an egocentric viewpoint. Neurocomputing, 171:982—
990, 2016.

A. Simonyan, K. and Zisserman. Very Deep Convolutional Networks for
Large-Scale Image Recognition. CoRR, abs/1409.1, 2014.

Z. Sitavancova and M. Hajek. Intelligent Transport Systems Thematic Sum-

mary European Commission. page 81, 2009.

C. Stauffer and W. E. L. Grimson. Adaptive background mixture models for
real-time tracking. Proceedings 1999 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition Cat No PR00149, 2(c):246-252,
1999.

E. Sudland. Gjenkjenning av kjgretgy ved inn- og utkjgring av tunneler. 2016.
Tensorflow. Index @ Www.Tensorflow.Org, 2017.

A. Varghese, G., and Sreelekha. Background Subtraction for Vehicle Detec-
tion, 2015.

S. vegve. Om+webkamera @ www.vegvesen.no.

S. Vegvsen. Automatisk trafikk-kontroll ATK.

123

List of Figures

(1.1 Problem, solution and development for a traffic surveillance system | &
2.1 Modules in the system.|. 10
[2.2 Extract foreground based on movement in the background image|. . 11
[2.3 Threshold area for a pixel, /), given by a mixture of Gaussian |
| [SEhnG V] i The Teinhh Terod backs |
| ground. | 12
[2.4 Vehicle tracking with occlusion. The dark spot is the occluded area] 19
[2.5 Prediction and correction steps in the Kalman filter| 20
[2.6 Uncertainty of the vehicle position in subsequent frames is given by |
| the blue probability density function| 21
[2.7 Uncertainty of the measurement and predicted position. The vari- |
| ance of prediction is bigger than the measurement| 23
[2.8 An artificial neural network with two inputs, one hidden layer and |
[two outputs| 26
[2.9 Activation’s inside a single neuron in the neural network. | 26
[2.10 The sigmoid function and its derivative| 27
[2.11 Back propagation error ot J, with respect to W.|. 29
[2.12 Backpropagation error from output to input neuron, with one hid- |
| den layer|. 30
[2.13 A two class problem presented with blue and red dots, randomly |

placed in a predefined area. ['he axes represent the position. 32

124

Chapter 7 List of Figures
[2.14 Illustration of a properly trained neural network output with 10 |
hidden neurons after 100 training iterations. |. 33

[2.15 [llustration of a overfitted neural network output with 100 hidden |
neurons after 1000 training iterations| 33

[2.16 Convolutional network structure, with convolution layer, pooling |
layer and fully connected layers.| 35

[2.17 Edge detection with Laplacian filteringl 36
[2.18 All neurons along the depth are looking at the same region in the |
input. | 37

[2.19 Downsampling an image with max-pooling with a 2x2 filter | 38
[2.20 Transter learning from the Inception net| 39
[3.1 Software and hardware components ot the system| 41
[3.2 Cameras used by Statens Vegvesen, Axis P1346, 42
3.3 Mobotix Allround Dual M15/MI16[. 43
3.4 Tesla P100 video cardl oo 43
[3.5 The flow chart of the program. The left module is acquiring traf- |
fic data, while the right module is processing the data into useful |
Information 46

[3.6 Methods used in system setup| 47
[3.7 Region of interest defined by the corner the lanes| 47
[3.8 Divider line, in red, determines where the vehicles are counted| . . . 48
(3.9 flow in the the detection modulef. 49
[3.10 Unprocessed foreground mask{ 50
[3.11 Foreground mask processed by morphological operations| 50
[3.12 Background subtraction without(left) and with shadow(right)| 51
[3.13 Detected blobs are marked with a green squaref. 51
[3.14 The lanes becomes apparent by tracking the movement in the fore- |
ground mask|. oo 52

[3.15 Detection and tracking scenarios|. 53
[3.16 Flow chart for the Kalman filter] 55

125

Chapter 7

List of Figures

[3.17

Vehicle moving from upper lett corner to right bottom corner. Red

| square 1s prediction, x is measurements.|. 57
[3.18 Background blob tracked with Kalman filter. The dots highlights |
| trajectory points. Red is measured position, and white is predicted |
[POSIBION.| 58
[3.19 Flow chart of the Classify module, both with and without training| . 59
[3.20 Convolutional neural network with fixed hyperparameters, filter- |
| depth, filtersize and connected neurons.|. 61
[3.21 Information from the database is shown in a Graphical intertace |. . 62
4.1 Original data, directly cropped from the object detection modulel. . 67
4.2 Data augmentation of the original dataset in igure 4.1} 68
[4.3 Experimenting on different architectures ot the neural networkl . . . 71
[4.4 Accuracy of neural networks plotted vs epochs. The colors represent |
L neural network models with different architectures) 72
[4.5 Neural network architectures with good accuracy. T'he accuracy is |
| plotted vs training iterations. | 73
4.6 The architecture of the neural network with the highest accuracy |
I SCOTeL. . . . e 74
4.7 Confusion matrix after classifying the test dataset. Achieved 99.0% |
| ACCUTACY] -+« v v v e e e e e 75
4.8 Confusion matrix after classifying the test set. 99% accuracy| 76
4.9 Misclassifications of the dataset] 7
[4.10 The camera may be mounted anywhere along the x-axis, as long as |
| the green area is observable. | 78
[4.11 Recording destinations. 1 is K18 Maritim, 2 is E16 Sandvika, and |
L JiskISbandvikalo o 79
M.12 Hits detectedlo 80
4.13 False hits detected | oo 80
[4.14 The system is adjusted according to the location. The black boxes |
| are blocking personal properties, due to privacy regulation. | 83
4.15 Vectors between vehicle coordinates 84

126

Chapter 7 List of Figures

[4.16 Distance between measured positions based on frames per second| . 85
[4.17 Distance between measured positions based on frames per second| . 86
[4.18 Measured coordinates in pixels and the corresponding predictions| . 88
[4.19 'T'he norm of the state covariance matrix plotted vs time| 88
[4.20 Hit rate at different tsme of day| 90
[4.21 Hit rate at different time of day, parallel view of figure|4.25/. 90
[4.22 Shadow projection caused by the sun|. 91
[4.23 Hit rate during cloudy days, plotted between 08:00 - 20:00, 92
[4.24 Hit rate during cloudy days, parallel view of figure |4.23[. 93
.25 Hit rates for the three selected locationsl 94
[4.26 Multiple lanes|o 96
[4.27 Vehicle velocity at K18 Sandvika. |. 00000 99
[4.28 Vehicle velocity at E18 Maritim. | 100
[4.29 Vehicle velocity at E18 Fiskvollbukta. | 100
{4.30 Vehicle density at E18 Sandwvika | 101
[4.31 Vehicle density at 18 Maritim| 101
[4.32 Vehicle density at £18 Fiskvollbukta | 102
{4.33 Congestion at E18 Sandvika |. 103
{4.34 Congestion at K18 Maritim| 104
[4.35 Congestion at K18 Fiskvollbukta | 104
.36 Confusion matrix of the classified dataset|. 106
4.37 normalized confusion matrix of the classified dataset| 107
[4.38 Frequency ot the three classes at E18 Sandvika in intervals of 20 |

minutes (no pedestrians were detected) | 108

.39

Frequency of the three classes at K18 Maritim in intervals of 20 |

minutes (no pedestrians were detected) 109

[4.40 Frequency of the three classes at K18 Fiskvollbukta in intervals of |

20 minutes (no pedestrians were detected) |o 109
(5.1 Dropin hitrate,| 113
...................................... 138

127

Chapter 7 List of Figures

128

List of Tables

[3.1 Hardware components table 42
4.1 Gathered data at given locations| 66
4.2 Detection tablel oo 79
4.3 Recordings from Sandvika EI18/. 89
4.4 Recordings from Sandvika E16[.00 92
4.5 Recordings from Sandvika E16(. 94
4.6 Recordings with multiple lanes|. 96
[A.1 Table of implemented software 131

129

Appendices

130

Appendix A

Python libraries

This section presents software components that has been implemented in the

system.
Image processing | Mathematical operations | Machine learning | GUI
Python package Open cv Numpy Tensorflow PyQt
skimage Pandas
PIL matplotlib

Table A.1: Table of implemented software

Python package OpenCV[7] , skimage [7] and PIL[] are used for different
image processing tasks. Comprehensive information is attached in [4.40]
OpenCV is open source and open for use both private and for commercial use.
scikit-image is a collection of algorithms for image processing. It is available free

of charge and free of restriction.
PIL, Python Imaging Library, is a library with image processing capabilities.
This library supports many file formats, and provides powerful image processing

and graphics capabilities [34].

Tensorflow is an open-source software library for machine learning. It’s a
computational graph, and may be seen as a program consisting of two discrete

sections :

131

Chapter 1

m Building the computational graph.
m Running the computational graph.

A series of operations or functions are arranged into graph of nodes. Each node
takes an input and produces an output. Computational graph’s are a technique
for calculating derivatives quickly. It can make training of neural networks as
much as ten million times faster, relative to a naive implementation . The
computational graph is built up of many small units, where each unit is
responsible for computing an output based on the inputs to the unit and the

gradient of the output with respect to the inputs.[44]

SSH file transfer is a program to transfer files between the local computer and
the Unix server [17].

PyQt is a GUI toolkit. Qt also includes Qt Designer, a graphical user interface

designer. PyQt is able to generate Python code from Qt Designer. It is also
possible to add new GUI controls written in Python to Qt Designer [37].

132

Appendix B

Datasheets

133

60,7mm (2,39")

254mm (1") 48,6mm (1,91")
14mm (4,49")

P1311
. ©
e ,l .
42,8mm (1,68") 42mm (1,65") ! B —\

‘

I it
= c ﬁ ? =
‘ > N
P1343 T o 921,5mm (0,85"), - e &2 3
¥] e] s e
? R =| @9mm (0,35") e g S
New from PU 0320-001-03 05,5mm (0,22") - @
@5,5mm (0227) | || ‘ 150,5mm (5,93") ‘
55mm (2,16") ‘ 54,4mm (2,14") E s
P1344 ‘ | o |
()
JE— y
,)
™ 1 E| _
5
New from PU 0324-001-06] 0
& o
= &
£| E
o| £
59mm (2,32") 48mm (1,89")]
P1346 [o]
=) I — |
New from PU 0328-001-02
87,2mm (3,4")
59mm (2,32") @5mm (0,2") (3x)
P1347 ‘ < —\
S
&
[:
£
<
IN
& —)

@64mm (2,52") (3x)

AXIS P13 Network Camera AXIS 4

1 FEB, 2012 COMMUNICATIONS

Products: Thermal / \

Dual Thermal Technology

Automatic Temperature Alarms e 6MP Moonlight e Reliable

- -
- .0... -
L] L]
o.'...o
® 2 00"
$ oigiates !
.00000'
® 20000 "*
* e 000"
" " a0 0 0

!
|

MOBOTIX

Products: Thermal

Thermal image overlay

Temperature Events

Thermal radiometry (TR) models M15, S15
and S15 PTMount from MOBOTIX generate
automatic alarms, defined by temperature
limits or temperature ranges, which is vital
to detect potential fire or heat sources. Up

to 20 different temperature triggers can be

Thermal Resolution
Equivalent to 0.05 °C, range -40 to +550 °C

Temperature Alarms
Up to 20 different automatic
temperature events

Hot Spot Analysis
With thermal image overlay

Motion Detection
In complete darkness with thermal
image and MxActivitySensor

Power
Lowest energy bill, < 6W, standard PoE

Robust and Nearly Maintenance-Free
Weatherproof, IP66, -30 to +60 °C,
MTBF > 9 years

defined at the same time within so-called
TR (Thermal Radiometry) windows or the
whole sensor image can be used over the
temperature range of -40 to +550 °C. In this
way critical situations can be analyzed in the
control room in order to plan the next steps
for effective fire prevention. Critical assets
like emergency generators, wind turbines or
radio stations can be cost-effectively main-
tained and tested remotely. MOBOTIX
thermal dual camera systems offer thermal
overlay to localize so-called hot spots in the
visual image to prevent larger damage. The
standard Power-over-Ethernet (PoE) com-
patibility and the extremely low power
consumption of only 6 watts allows opera-
tion of MOBOTIX thermal camera systems in

every situation.

M15 Dual
Thermal & Optic

S15 Dual
Thermal & Optic

S15 Dual S15
Dual Thermal PTMount Thermal

Cost Effective Perimeter Solution

Only one thermal MOBOTIX camera is
required to protect a huge outdoor area
without the need of any additional illumina-
tion - even in complete darkness. The com-
bination of thermal & video sensors and
intelligent software based motion detection
(MxActivitySensor) are perfectly suited to
efficiently cover wide perimeter situations
without any secondary equipment like con-

ventional light or infrared illumination.

Respecting Privacy

The detected thermal profile of a thermal
camera shows no identifiable details for
identification of persons and can therefore
guarantee privacy. As soon as an object is
moving into the relevant surveillance area,
MOBOTIX dual camera system can automat-
ically switch from thermal sensor to the
optical sensor, producing visible high reso-
lution video. This unique MOBOTIX feature
combines two aspects, respecting the
privacy aspect and at the same time optimal

video surveillance.

EN_09/16

MOBOTIX AG
Kaiserstrasse

D-67722 Langmeil

Tel.: +49 6302 9816-103
302 9816-190
mobotix.com

Perimeter protection

Border control Privacy zones

www.mobotix.com

MOBOTIX

137

Chapter 3

Appendix C

Neural network models

Models {connected area, filter size, filter depth)
Model_1 Model_2 Model_3 Model_4 Meodel_5
128x128x3 128x128x3 128x128x3 128x128x3 | 128x128x3
128x128,5x5,96

max pool 2x2 max pool 2x2 max pool 2x2 max pool 2x2 max pool 2x2
64x64, 5x5,16 B4xE4, 5x5,32 B4x64,5x5, 32 64x64,5%5,96 | 64x64,5x%5,128
64dx64, 5x5,32 64x64, 5x5,32
Bdxbd, 5x5,32 64x64, 5x5,64
B4x64, 5x5,64

64x64, 5x3,128
64x64, 5x5,128
B4x64, 5x5,192
64164, 5x5,192

max pool 2x2

max pool 2x2

max pool 2x2

max pool 2x2

max pool 2x2

32%32,5x5,256 32x32, 5x5,64 32%32,5x5, 64 32x32,5x5, 256 | 32x32,5x5, 128
32x32,5x5,256
32x32,5%5,256
32x32,5x5,256
32x32,5x5,256
max pool 2x2 max pool 2x2 max pool 2x2 max pool 2x2
16x16,5x5,512 16x16,5x5,64 16x16,5x5,256 | 16x16,5x5,128
16x16,5%5,512
16x16,5x5,512
16x16,5%5,512
max pool 2x2
8x8B,5x5,256
max pool 2x2 max pool 2x2 max pool 2x2 max pool 2x2
8x8,5x5,512 BxB,5x5,64 8x8,5x5,512 4x4,5x5,512
1x4048 1x4048 1x4048 1x4048 1x4048
1x2024 1x2024 1x2024 1x2024 1x2024
1x3 1x3 1x3 1x3 1x3

Figdr8C.1

Input
Convl

Conv2
Convi
Convd
Conv5
Conveg
Conv7y
Conve
Conv9d

conv10
convll
convl2
convl3
convld

convlS
convlg
convl?7
convl@

convl9

conv20

Chapter 3

Model_&

Model_7

Model_8

Model_39

Model_10

128%128x3

128x128x3

128x128x3

128x128x3
128x128,8x8,32

128x128x3
128x128,5x5,16

max pool 2x2

max pool 2x2

max pool 2x2

max pool 2x2

max pool 2x2

B4x64, 8x8,96

B64x64, 8x8,32

64x64, 8x8,64
B4x64, 8x8,64

64x64,3x3,64

64x64,3x3,32
B64x64,3x3,32
B4x64,3x3,64
B4x64,3x3,64
64x64,3x3,128
64x64,3%3,128
B64x64,3x3,192
B4x64,3x3,192

max pool 2x2

max pool 2x2

max pool 2x2

max pool 2x2

max pool 2x2

32x32,5x%5,256

32x32, 3x3,64

32x32,5x%5, 64

32x%32,3x3, 128

32x32,5%3, 256
32x32,5x3, 256
32x32,5x3, 256
32x32,5%3, 256

max pool 2x2

max pool 2x2

max pool 2x2

max pool 2x2

max pool 2x2

16x16,3x3,256

16x16,3x3,64

16x16,5x3,64

16x16,3x3,128

16x16,3x3,512
16x16,3x3,512
16x16,3x3,512
16x16,3x3,512

max pool 2x2

max pool 2x2

8x8,3x3,256 B8x8,3x3,256
max pool 2x2 max pool 2x2 max pool 2x2 max pool 2x2 max pool 2x2
8x8,3x3,512 8x8,3x3,64 8x8,5x5,64 4x4,3x3,512 4x4,3x3,512
1x4048 1x4048 1x4048 1x4048 1x4048
1x2024 1x2024 1x2024 1x2024 1x2024
1x3 1x3 1x3 1x3 1x3
Figure C.2
Recordings
Destinations: Web:
E18 http://www.vegvesen.no/trafikkinformasjon/Reiseinformasjon/Trafikkmeldinger

Fiskvollbukta

/Webkamera?kamera=3292728&video=true&zoom=9

E16 Sandvika

http://www.vegvesen.no/Trafikkinformasjon/Reiseinformasjon/Trafikkmeldinge
r/Webkamera?kamera=6026638&video=true

E18 Maritim

http://www.vegvesen.no/Trafikkinformasjon/Reiseinformasjon/Trafikkmeldinge
r/Webkamera?kamera=424667&video=true

E18 Sandvika

http://www.vegvesen.no/Trafikkinformasjon/Reiseinformasjon/Trafikkmeldinge
r/Webkamera?kamera=418039&video=true

139

Input
Convl

Conv2
Conv3
Convd
Convs
Convé
Conwv7
Conv@
Conva

convl0
convll
convl2
convl3
convld

convls
convle
convl?7
convlg

convl®

conv20

Appendix D
Source code

Source code: -[:I

Systemmain

The main file of the system, including the GUI file. The use is explained in the

user manual.

CNN

The convolutional neural network source code. The use is explained in the user

manual.

Kalmanfilter

The implemented Kalman filter, used by the main file.

Tensorflowdatasetbatches

The input pipeline. Input parameter is folder destination of the dataset folder.
Used by the CNN file. Make sure to follow the user manual.

140

CNN_figures.py

from sklearn.metrics import confusion_matrix

import matplotlib.pyplot as plt

import numpy as np

from dataset import DataSet

from pandas_ml import ConfusionMatrix

#import cv2

#in_dir = "D:/Vehicles_Database/"

#training_set = DataSet(in_dir = in_dir)

#images_test = training_set.get_test_set()[0][0:9]

#labels_test = training_set.get_test_set()[1][0:9]

NUM_CLASSES = 3

def plot_confusion_matrix(pred,true,display=False):

 cm = ConfusionMatrix(y_true=true,

 y_pred=pred)

 sensitivity, speficity, PPV= cm.stats_class.get_values()[9:12]

 accuracy = cm.stats_class.get_values()[16]

 stat_values = cm.stats_class.get_values()

 #print(stat_values)

 #print("Sensitivity: {0} \n Speficity: {1}".format(stat_values[12],stat_values[13]))

 print(cm)

 #3print(accuracy)

 #cm.print_stats()

 if display:

 cm.plot(normalized=True)

 plt.show()

 return speficity,sensitivity,PPV

def plot_errors(pred,correct):

 incorrect = (correct == False)

 #images = data.test.images[incorrect]

 #pred = pred[incorrect]

 print(incorrect)

 plot_images(images = images[0:9],

 true = true[0:9],

 pred = pred[0:9])

def plot_images(images,true,pred=None):

 fig,axes = plt.subplots(3,3)

 fig.subplots_adjust(hspace=0.3,wspace=0.3)

 img_shape = [32,32,3]

 for i,ax in enumerate(axes.flat):

 image = plt.imread(images[i],1)

 ax.imshow(image.reshape(img_shape),cmap='gray')

 if pred is None:

 xlabel = "True: {0}".format(true[i])

 else:

 xlabel = "True: {0}, Pred: {1}".format(true[i],pred[i])

 ax.set_xlabel(xlabel)

 ax.set_xticks([])

 ax.set_yticks([])

 plt.show()

def laplacian_filter(image):

 image = cv2.imread(image,0)

 filter = cv2.Laplacian(image,cv2.CV_64F)

 plt.subplot(121)

 plot = plt.imshow(image,cmap='gray')

 plt.title("Original image")

 plt.subplot(122)

 plot1 = plt.imshow(filter,cmap='gray')

 plt.title("Laplacian filter")

 plt.show()

#laplacian_filter("D:/E16_sandvika/webcam_10/vehicle382.jpg")

#pred = [1,1,1,1,1,1,1,1,1]

#spef,sen,PPV = plot_confusion_matrix([1,1,1,2,1,1,3,1,1,1],[1,1,1,2,2,2,3,3,1,1])

#plot_images(images_test,labels_test,pred)

CNN_final.py

==

Convolutional Neural Net

Input: Cifar10 or custom dataset

Output: Class prediction, in one_hot coded label

#

#

Classes in cifar10:

['airplane','automobile','bird','cat','deer','dog','frog','horse','ship','truck']

==

spef = 4 #dummy variable, delete

import os, math, time, datetime

os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" #Remove debugging from Tensorflow

os.environ["CUDA_VISIBLE_DEVICES"] = "0" #Only GPU 0 is visible

import tensorflow as tf

import numpy as np

import matplotlib.pyplot as plt

from cifar10 import img_size, num_channels, num_classes

import cifar10

from dataset import DataSet

from Tensorflow_Dataset_batches import input_pipeline

import logging

LOGDIR = 'D:/Tensorboard/'

DEBUG_DIR = 'D:/Tensorboard/'

FILENAME = "TESTING_NEURAL_NET_3.log"

===

Dataset

===

CIFAR10 = False

CUSTOM_DATASET = True

CIFAR_DATASET = False

GORINA = False

if GORINA:

 in_dir = "/home/stud/eirikat/Hovedprogram/Vehicles_Database_testing_m_sandivka/"

 LOGDIR = "/home/stud/eirikat/Hovedprogram/Tensorflow/"

 DEBUG_DIR = "/home/stud/eirikat/Hovedprogram/"

else:

 #in_dir = "D:/Test_vehicle_base/"

 in_dir = "C:"

 #in_dir = "D:/Vehicles_Database_testing_m_sandivka/"

 in_dir = "D:/E16_sandvika/testing_webcam3/"

 in_dir = "D:/Vehicles_Database/"

 import FIND_ALL_MODELS

 import cv2

if CIFAR10:

 in_dir = "D:/mnist/"

 training_set = DataSet(in_dir=in_dir)

 images_train = training_set.get_training_set()[0]

 labels_train = training_set.get_training_set()[1]

 images_test = training_set.get_test_set()[0]

 labels_test = training_set.get_test_set()[1]

 SIZE_DATASET = len(images_train)

 NUM_CLASSES = 10

if CUSTOM_DATASET:

 NUM_CLASSES = 3

 if CIFAR_DATASET:

 in_dir = "D:/mnist/"

 NUM_CLASSES = 10

 training_set = DataSet(in_dir = in_dir)

 images_train = training_set.get_training_set()[0]

 labels_train = training_set.get_training_set()[1]

 images_test = training_set.get_test_set()[0]

 labels_test = training_set.get_test_set()[1]

 SIZE_DATASET = len(images_train)

logging.basicConfig(filename="{0}{1}".format(DEBUG_DIR,FILENAME), level=logging.DEBUG)

log = logging.getLogger("Initial Model")

RUN_MAIN=False

===

Create log directory

===

if RUN_MAIN:

 if not os.path.exists(LOGDIR):

 os.makedirs(LOGDIR)

 print('No tensorboard folder found, Successfully created folder {}'.format(LOGDIR))

 # Add delay so directory can be made

 time.sleep(1)

 # Make a new folder to save tensorboard model inside

 current_tensorboard_path = '{0}{1}'.format(LOGDIR,

 datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d_%H%M%S'))

 os.makedirs(current_tensorboard_path)

 # Make subfolders for Tensorboard and model

 tensorboard_path = '{0}{1}'.format(current_tensorboard_path, '/tensorboard')

 os.makedirs(tensorboard_path)

 model_path = '{0}{1}'.format(current_tensorboard_path, '/model')

 os.makedirs(model_path)

 else:

 # Make a new folder to save tensorboard model inside

 current_tensorboard_path = '{0}{1}'.format(LOGDIR,

 datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d_%H%M%S'))

 os.makedirs(current_tensorboard_path)

 # Make subfolders for Tensorboard and model

 tensorboard_path = '{0}{1}'.format(current_tensorboard_path, '/tensorboard')

 os.makedirs(tensorboard_path)

 model_path = '{0}{1}'.format(current_tensorboard_path, '/model')

 os.makedirs(model_path)

===

Parameters

===

LEARNING_RATE = [1E-4, 1E-5] # [1E-4, 1E-5]...

BATCH_SIZE = [32] # [32, 64, 128]...

HM_FC = [2]

DROPOUT = 0.1

HM_EPOCHS = 50

IMG_SIZE= 128

COLOR_SPACE = 3

INPUT_SIZE = IMG_SIZE*IMG_SIZE*COLOR_SPACE

TIMER = time.clock()

INPUT is layer,kernels,pool [0/1]

INPUTS= [

#Test with/out dropout

[[32,64,64,64],[8,3,3,3],[1,1,1,1]],

[[32,64,64,64],[8,3,3,3],[1,0,0,1]],

#Test with larger filters

[[96,256,256,512],[8,5,3,3],[0,0,0,0]],

[[96,256,256,512],[8,5,3,3],[1,1,1,1]],

#Test vs tidligere set, 20170510_105433

[[32,64,64,64],[5,5,5,5],[0,0,0,0]],

#LARGE NET

[[16,32,32,64,64,128,128,192,192,256,256,256,256,512,512,512,512,512,512],

 [5,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5],

 [1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0]],

]

def create_mini_batch(batch_size):

 size = len(images_train)

 idx = np.random.choice(size,size=batch_size,replace=False)

 x_batch = images_train[idx,:,:,:]

 y_batch = labels_train[idx,:]

 return x_batch,y_batch

===

layers

===

def fc_layer(flat_image,size_out,dropout=False,name="fc"):

 with tf.name_scope(name):

 dense = tf.layers.dense(inputs=flat_image,

 units=size_out,

 activation=tf.nn.relu)

 #DROPOUT not used in testing

 if dropout:

 return tf.layers.dropout(inputs=dense,

 rate=0.4,

 training = False)

 else:

 return dense

def conv_layer(input, size_out, max_pool,kernel_size = 5,name="conv"):

 with tf.name_scope(name):

 conv = tf.layers.conv2d(

 inputs=input,

 filters = size_out,

 kernel_size=kernel_size,

 padding="same",

 activation=tf.nn.relu

)

 if int(max_pool):

 return tf.layers.max_pooling2d(inputs=conv,

 pool_size=[2,2],

 strides=2)

 else:

 return conv

===

Model

===

def CNN_model_test(x,inputs):

 #INPUT is layer,kernels,pool [0/1]

 for i,(layer,kernel,pool) in enumerate(zip(inputs[0],inputs[1],inputs[2])):

 if i ==0:

 conv = x

 conv = conv_layer(conv,

 size_out= layer,

 max_pool=pool,

 kernel_size=5,

 name='conv{0}'.format(i))

 #conv_layers.append(conv1)

 log.debug(conv)

 print(conv)

 shape = conv.get_shape().as_list()

 num_units = shape[1] * shape[1] * shape[3]

 flattened = tf.reshape(conv, [-1, num_units])

 fc0 = fc_layer(flattened, 4048,

 dropout=True,

 name='fc0')

 fc1 = fc_layer(fc0, 1024,

 dropout=True,

 name='fc1')

 #fc2 = fc_layer(flattened, 1024,

 # dropout=True,

 # name='fc1')

 logits = fc_layer(flat_image=fc1,

 size_out=NUM_CLASSES,

 dropout=False,

 name='fc2')

 y_pred_cls = tf.argmax(logits, dimension=1)

 return logits, y_pred_cls,fc1

def CNN_model(learning_rate, batch_size,hparam,inputs,model_path_1 = None):

 #model_path_1 = "D:/Tensorboard/20170425_181335/model/0.0001_batch_64/model.ckpt-30"

 tf.reset_default_graph()

 sess = tf.Session()

 # Setup placeholders, and reshape the data

 x = tf.placeholder(tf.float32, shape=[None,IMG_SIZE,IMG_SIZE,num_channels], name="x")

 y = tf.placeholder(tf.float32, shape=[None, NUM_CLASSES], name="labels")

 y_true_cls = tf.argmax(y,dimension=1)

 logits, y_pred_cls,_ = CNN_model_test(x,inputs)

 saver = tf.train.Saver()

 with tf.name_scope("xent"):

 xent = tf.reduce_mean(

 tf.nn.softmax_cross_entropy_with_logits(

 logits=logits, labels=y), name="xent")

 tf.summary.scalar("xent", xent)

 with tf.name_scope("train"):

 train_step = tf.train.AdamOptimizer(learning_rate=learning_rate,epsilon = 0.1).minimize(xent)

 with tf.name_scope("validaton_accuracy"):

 correct_prediction = tf.equal(y_pred_cls, y_true_cls)

 validation_accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

 tf.summary.scalar("validation_accuracy", validation_accuracy)

 with tf.name_scope("accuracy"):

 correct_prediction = tf.equal(y_pred_cls, y_true_cls)

 accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

 tf.summary.scalar("accuracy", accuracy)

 summ = tf.summary.merge_all()

 saver = tf.train.Saver()

 if model_path_1:

 saver.restore(sess, model_path_1)

 else:

 sess.run(tf.global_variables_initializer())

 writer = tf.summary.FileWriter(os.path.join(tensorboard_path, hparam))

 test_writer = tf.summary.FileWriter(os.path.join(tensorboard_path+'/test', hparam))

 writer.add_graph(sess.graph)

 # Calculate iterations

 HM_STEPS = int(HM_EPOCHS * (SIZE_DATASET / batch_size))

 print('\nStarting run for :%s' % hparam)

 print('\nHow many epochs:' + str(HM_EPOCHS) + ', How many steps:' + str(HM_STEPS))

 # Creates a folder for each hparam in model folder

 current_model_path = '{0}{1}{2}'.format(model_path, '/', hparam) # If you want hparam in foldername

 os.makedirs(current_model_path)

 #Start Coordinator

 image_batch, label_batch = input_pipeline(filename_queue=images_train,

 labels_in=labels_train,

 batch_size=batch_size,

 number_classes=NUM_CLASSES,

 img_size_cropped=IMG_SIZE,

 training=False,

 return_as_eval=False)

 image_val_batch, label_val_batch = input_pipeline(filename_queue=images_test,

 labels_in=labels_test,

 batch_size=400,

 number_classes=NUM_CLASSES,

 img_size_cropped=IMG_SIZE,

 training=False,

 return_as_eval=False)

 coord = tf.train.Coordinator()

 threads = tf.train.start_queue_runners(sess=sess, coord=coord)

#Run net for different parameters

 max_accuracy = 0.2

 for i in range(HM_STEPS):

 if CUSTOM_DATASET:

 x_batch, y_batch = sess.run([image_batch, label_batch])

 x_val_batch, y_val_batch = sess.run([image_val_batch, label_val_batch])

 elif CIFAR10:

 x_batch,y_batch = create_mini_batch(batch_size)

 if i % 5 == 0:

 s = sess.run(summ, feed_dict={x: x_batch, y: y_batch})

 writer.add_summary(s, i)

 s_val = sess.run(summ, feed_dict={x: x_val_batch, y: y_val_batch})

 writer.add_summary(s_val,i)

 # Reporting accuracy every 100 steps

 if i % 5 == 0:

 train_accuracy = sess.run(accuracy, feed_dict = {x: x_batch, y: y_batch})

 val_accuracy = sess.run(validation_accuracy,feed_dict= {x: x_val_batch,y: y_val_batch})

 if not GORINA:

 print("Step: {0} Training_accuracy: {1} Time: {2}".format(i, train_accuracy, int(time.clock() - TIMER)))

 print("Step: {0} Validation_accuracy: {1} Time: {2}".format(i, val_accuracy, int(time.clock() - TIMER)))

 if i % 500 == 0:

 print("Step: {0} Training_accuracy: {1} Time: {2}".format(i, train_accuracy, int(time.clock() - TIMER)))

 if train_accuracy>max_accuracy:

 max_accuracy = train_accuracy

 print("saved")

 print("Step: {0} Training_accuracy: {1} Time: {2}".format(i, train_accuracy, int(time.clock() - TIMER)))

 log = logging.getLogger("Model")

 log.debug(

 "Step: {0} Training_accuracy: {1:.2f} Time: {2} Layers:[{3}]".format(i, train_accuracy,

 int(

 time.clock() - TIMER),

 inputs[0]))

 saver.save(sess, os.path.join(current_model_path, "model.ckpt"), i)

 # Actual training of the model

 sess.run([train_step, accuracy, summ, xent], feed_dict={x: x_batch, y: y_batch})

 coord.request_stop()

 coord.join(threads)

def make_hparam_string(learning_rate, batch_size,input):

 return "Layer_{0}_batch_{2}_kernel_{3}_model_{1}_pool_{4}".format(input[0],float(learning_rate), batch_size,input[1],input[2])

def main():

 for learning_rate in LEARNING_RATE:

 for batch_size in BATCH_SIZE:

 for input in INPUTS:

 # Construct a hyperparameter string for each one (example: "lr_1E-4,batch_size=128)

 hparam = make_hparam_string(learning_rate, batch_size,input)

 print('Starting run for %s' % hparam)

 # Actually run with the new settings

 CNN_model(learning_rate, batch_size, hparam,input,model_path_1 = None)

def Test_all_images(MODEL_DIR,in_img=False,display =False,):

 import CNN_figures

 #MODEL_DIR = FIND_ALL_MODELS.REPLACE_FILENAMES(MODEL_DIR)

 print(MODEL_DIR)

 ALL_MODELS, layers,kernels,pools = FIND_ALL_MODELS.get_models_ver_4(MODEL_DIR)

 print(ALL_MODELS)

 log = logging.getLogger("Testing")

 #Filters,kernel,pooling

 #[[96, 256, 256, 512], [8, 5, 3, 3], [0, 0, 0, 0]]

 for model, layer,kernel,pool in zip(ALL_MODELS, layers,kernels,pools):

 print("this is model",model)

 tf.reset_default_graph()

 input = [layer,kernel,pool]

 #sess = tf.Session()

 x = tf.placeholder(tf.float32,

 shape=[None, IMG_SIZE, IMG_SIZE, num_channels],

 name="x")

 y = tf.placeholder(tf.float32,

 shape=[None, NUM_CLASSES],

 name="labels")

 y_true_cls = tf.argmax(y, dimension=1)

 logits, y_pred_cls,fc1 = CNN_model_test(x, input)

 saver = tf.train.Saver()

 images_test = training_set.get_test_set()[0]

 labels_test = training_set.get_test_set()[1]

 with tf.name_scope("accuracy"):

 correct_prediction = tf.equal(y_pred_cls, y_true_cls)

 accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

 if model_path:

 with tf.Session() as sess:

 print("this is image batch",len(labels_test))

 saver.restore(sess,"{0}/{1}".format(MODEL_DIR,model))

 #cls_pred, = sess.run(y_pred_cls, feed_dict={x: x_batch, y:y_batch})

 image_batch, label_batch = input_pipeline(filename_queue=images_test,

 labels_in=labels_test,

 batch_size=15,

 number_classes=NUM_CLASSES,

 img_size_cropped=IMG_SIZE,

 training=False,

 return_as_eval=False)

 coord = tf.train.Coordinator()

 threads = tf.train.start_queue_runners(sess=sess, coord=coord)

 # Run net for different parameters

 max_accuracy = 0.2

 for i in range(1):

 x_batch, y_batch = sess.run([image_batch, label_batch])

 # Reporting accuracy every 100 steps

 if i % 1 == 0:

 train_accuracy,ypred,ytrue,fc = sess.run([accuracy,y_pred_cls, y_true_cls,fc1], feed_dict={x: x_batch, y: y_batch})

 pred = np.ones(len(ypred))

 print("Step: {0} Training_accuracy: {1} Time: {2}".format(i, train_accuracy, int(time.clock() - TIMER)))

 #print("Pred {0} \n True {1}".format(pred,ytrue))

 try:

 specificity,sensitivity,PPV = CNN_figures.plot_confusion_matrix(ypred,ytrue)

 #CNN_figures.plot_confusion_matrix(pred,ytrue)

 #print("{0}, \n {1}".format(ypred,ytrue))

 print(specificity,sensitivity)

 log.debug("Model: {0} \n Speficity: {1} \n Sensitivity: {2} \n PPV: {3} "

 "\n Accuracy: {4}".format(model,

 np.around(

 specificity.tolist(),

 decimals=1),

 np.around(

 sensitivity.tolist(),

 decimals=1),

 np.around(

 PPV.tolist(),

 decimals=1),

 train_accuracy))

 except:

 print("Model: {0} Accuracy: {1}".format(model,train_accuracy))

 log.debug("Accuracy: {0}".format(train_accuracy))

 coord.request_stop()

 coord.join(threads)

===

USED IN MAIN_TESTING

===

def Test_image(model_path=None,in_img=False,var=0):

 #import CNN_figures

 # MODEL_DIR = FIND_ALL_MODELS.REPLACE_FILENAMES(MODEL_DIR)

 #ALL_MODELS, layers, kernels, pools = FIND_ALL_MODELS.get_models_ver_4(MODEL_DIR)

 tf.reset_default_graph()

 x = tf.placeholder(tf.float32, shape=[None, IMG_SIZE, IMG_SIZE, num_channels], name="x")

 y = tf.placeholder(tf.float32, shape=[None, NUM_CLASSES], name="labels")

 y_true_cls = tf.argmax(y, dimension=1)

 input = [[32,64,128,128,256,512], [8, 3, 3, 3,3,3], [0, 1, 1, 1,1,1]]

 logits, y_pred_cls, fc1 = CNN_model_test(x, input)

 saver = tf.train.Saver()

 if model_path:

 with tf.Session() as sess:

 saver.restore(sess,model_path)

 coord = tf.train.Coordinator()

 threads = tf.train.start_queue_runners(sess=sess, coord=coord)

 #print("model restored")

 #print(in_img)

 in_img = cv2.imread(in_img)

 images = cv2.resize(in_img, (IMG_SIZE, IMG_SIZE))

 #cv2.imshow("img",in_img)

 #cv2.waitKey(0)

 images = np.reshape(images,[1,IMG_SIZE,IMG_SIZE,3])

 feed_dict = {x: images}

 cls_pred = sess.run(y_pred_cls, feed_dict=feed_dict)

 coord.request_stop()

 coord.join(threads)

 print(cls_pred)

 coord.request_stop()

 coord.join(threads)

 return (cls_pred)

#

if __name__ == '__main__':

 #main()

 #Test_image(model_path="C:/Users/trygvet/Dropbox/UIS/Master/Hovedprogram/model/model.ckpt-11250",

 # in_img="C:/Users/trygvet/Dropbox/UIS/Master/bilde.jpg")

 #Test_image(model_path="D:/Tensorboard/from_gorina/model.ckpt-11250",

 # in_img="D:/E16_sandvika/testing_webcam3/vehicle1.jpg")

 #MODEL_DIR = "D:/Tensorboard/20170427_161924/model"

 model_path=True

 #Test_all_images(MODEL_DIR = "D:/Tensorboard/from_gorina/model")

 Test_all_images(MODEL_DIR="F:/Master/model")

FIND_ALL_MODELS.py

import glob,os

import re

import numpy as np

import matplotlib.pyplot as plt

in_dir = "D:/Tensorboard/20170427_161924/model"

def get_models(in_dir):

 os.chdir(in_dir)

 list = []

 layers = []

 st = ["checkpoint", "data", "index", "meta"]

 for file in glob.glob("*"):

 os.chdir("{0}/{1}".format(in_dir,file))

 layer = re.findall("[-+]?\d+[\.]?\d*[eE]?\d*",file[file.rindex("model_["):])

 for model in glob.glob("*"):

 loc0,loc1,loc2= [model.find(st[0]),model.find(st[1]),model.find(st[2])]

 if loc0 < 0 and loc1 < 0 and loc2 < 0:

 layers.append(layer)

 list.append(str("{0}/{1}".format(file,model[:model.find(".meta")])))

 return(list,layers)

def get_models_ver_4(in_dir):

 os.chdir(in_dir)

 files= []

 list = []

 layers =[]

 kernels=[]

 pools =[]

 for file in glob.glob("*"):

 newname = file.replace(",", "_")

 newname = newname.replace(" ", "")

 os.rename(os.path.join(in_dir,file),os.path.join(in_dir,newname))

 for file in glob.glob("*"):

 os.chdir("{0}/{1}".format(in_dir, file))

 layer = re.findall("[-+]?\d+[\.]?\d*[eE]?\d*", file[file.rindex("Layer_["):])

 kernel = re.findall("[-+]?\d+[\.]?\d*[eE]?\d*", file[file.rindex("kernel_["):])

 pool = re.findall("[-+]?\d+[\.]?\d*[eE]?\d*", file[file.rindex("pool_["):])

 batch = re.findall("[-+]?\d+[\.]?\d*[eE]?\d*", file[file.rindex("batch_"):])

 model = re.findall("[-+]?\d+[\.]?\d*[eE]?\d*", file[file.rindex("model_"):])

 layer = layer[:0-len(batch)]

 kernel = kernel[:0-len(model)]

 for model in glob.glob("*"):

 if model.find(".meta") > 0:

 list.append(str("{0}/{1}".format(file, model[:model.find(".meta")])))

 pools.append(pool)

 kernels.append(kernel)

 layers.append(layer)

 files.append(file)

 return list, layers,kernels,pools

def REPLACE_FILENAMES(in_dir):

 os.chdir(in_dir)

 list = []

 layers = []

 st = ["checkpoint", "data", "index", "meta"]

 for file in glob.glob("*"):

 #os.chdir("{0}/{1}".format(in_dir,file))

 newname = file.replace(",","_")

 newname = newname.replace(" ","")

 #print("this is filename",file)

 #print("This is newname",newname)

 if newname != file:

 list.append(newname)

 layers.append(file)

 os.rename("{0}/{1}".format(in_dir,file),"{0}/{1}".format(in_dir,newname))

 else:

 print("Equal")

def ALL_JPGS(in_dir):

 os.chdir(in_dir)

 import cv2

 list = [file for file in glob.glob("*.jpg")]

 for file in glob.glob("*.jpg"):

 ing = cv2.imread(file)

 print(file)

 if len(ing[0]) == 0:

 print(file)

 return(list)

def RENAME(in_dir,outname):

 os.chdir(in_dir)

 files=[]

 for file in glob.glob("*"):

 #layer = re.findall("Kopi",file)

 try:

 plt.imread(file)

 except:

 if file != "test":

 files.append(file)

 if re.findall(" ",file):

 print(file)

 if re.findall("Kopi",file):

 os.remove(file)

 print(file)

 newname = "{0}{1}".format(outname,file)

 os.rename("{0}/{1}".format(in_dir, file), "{0}/{1}".format(in_dir, newname))

 print(files)

#RENAME("D:/E16_sandvika/testing_webcam21/car/",21)

#m,l = get_models_ver_4("D:/Tensorboard/20170512_161927/model")

#print(m)

#print(l[0])

#print(l[1])

#print(l[0])

#RENAME("D:/Vehicles_Database_testing_m_sandivka/truck","h")

#RENAME("F:/Master/webcam_16/","7")

#RENAME("D:/E16_sandvika/webcam_13/car",13)

#REPLACE(in_dir)

#ALL_JPGS("D:/E16_sandvika/webcam_5/minivan/")

#if __name__ == '__main__':

ALL_JPGS("D:/Vehicles_Database_testing_m_sandivka/pedestrian/")

Image_grab.py

import numpy as np

import cv2

from mss import mss

from PIL import Image

mon = {'top': 660, 'left': 860, 'width': 600, 'height': 1500}

sct = mss()

while True:

 sct.get_pixels(mon)

 img = Image.frombytes('RGB', (sct.width, sct.height), sct.image)

 cv2.imshow('test', np.array(img))

 if cv2.waitKey(25) & 0xFF == ord('q'):

 cv2.destroyAllWindows()

 break

Kalman_filter_2d.py

import numpy as np

import cv2

import math

#import matplotlib.pyplot as plt

import time

from numpy import linalg as LA

def inital_2d(x, P, mes, R):

 #inital vector

 motion_vector = np.matrix(np.zeros((4,1)))

 #Q as identity matrix

 Q = np.matrix(np.eye(4))*0.1**2

 #State-space

 dt = 0.016#0.016 #time between each measurement, framerate 1/40 fps

 #dt is Velocity is marked as derivative of position in time, gets a new point evert frame

 A = np.matrix([[1,0,dt,0],[0,1,0,dt],[0,0,1,0],[0,0,0,1]])

 #Measurement equation

 H = np.matrix([[1,0,0,0],[0,1,0,0]])

 return kalman_filter(x,P,mes,R,motion_vector,Q,A,H)

def kalman_filter(x, P, measurement, R, motion, Q, theta, H):

 y = np.matrix(measurement).T - H * x

 S = H * P * H.T + R

 K = P * H.T * S.I #equation 4.4

 x = x + K*y #equation 4.5 aprori

 I = np.matrix(np.eye(theta.shape[0]))

 P = (I - K*H)*P #equation 4.6 aprori

 # return predictions

 x = theta*x + motion #equation 4.2

 P = theta*P*theta.T + Q #equation 4.3

 return x,P,K

def kalman_xy(coordinates):

 x = np.matrix('0. 0. 0. 0.').T

 P = np.matrix(np.eye(4))*10 # initial uncertainty

 ra = 0.1**2

 R = np.matrix([[ra, 0.0],[0.0, ra]])

 result = []

 state_cov =[]

 for coor in coordinates:

 x, P, K = inital_2d(x, P, coor, R)

 result.append((x[:2]).tolist())

 state_cov.append(LA.norm(P))

 #velocity.append(x[2:4].tolist())

 #gain.append([K[0,0],K[1,1]])

 velocity = lambda x,y: np.sqrt(x**2 + y**2)

 #print(velocity(x[2:3],x[3:4]))

 #plt.plot(state_cov)

 #plt.xlabel('Time')

 #plt.ylabel('Norm of state covariance, P')

 #plt.show()

 return velocity(x[2:3],x[3:4]), result

"""

trace = [(114, 16), (117, 17), (121, 18), (123, 20), (127, 21), (129, 23), (132, 25), (134, 27),

 (137, 31), (139, 33), (141, 37), (144, 41), (145, 44), (148, 48), (150, 51), (153, 56), (156, 60), (158, 64), (160, 69),

 (163, 74), (166, 78), (168, 84), (170, 89), (173, 95), (176, 100), (179, 106), (182, 113), (185, 119), (188, 127), (192, 133),

 (195, 142), (199, 150), (203, 159), (207, 166), (211, 170), (216, 174), (221, 179), (226, 182), (232, 188), (229, 193), (234, 199)]

x = [int(i[0]) and int(i[1]) for i in trace]

y = [int(i[1]) and int(i[1]) for i in trace]

import matplotlib.pyplot as plt

velocity, result= kalman_xy(trace)

print(velocity)

print(result)

x = [i[0] for i in trace]

y = [i[1] for i in trace]

plt.plot(x, y,"ro",label = "Measurements")

x = [i[0] for i in result]

y = [i[1] for i in result]

plt.plot(x,y,"k+",label='Predictions')

plt.plot(x,y,"k")

plt.axis()

plt.xlabel('X-coordinates')

plt.ylabel('Y-coordinates')

plt.legend()

plt.show()

"""

Kalman_tuning.py

import numpy as np

import matplotlib.pyplot as plt

plt.rcParams['figure.figsize'] = (10, 8)

intial parameters

n_iter = 50

sz = (n_iter,) # size of array

x = -0.37727 # truth value (typo in example at top of p. 13 calls this z)

z = np.random.normal(x,0.1,size=sz) # observations (normal about x, sigma=0.1)

z= [(124, 376), (325, 416), (305, 504), (411, 441), (339, 622), (339, 621), (336, 621), (312, 626), (372, 675), (339, 681), (296, 684)]

z=[123,325,305,411,339,339,336,312,372,339,296]

Q = 1e-5 # process variance

allocate space for arrays

xhat=np.zeros(sz) # a posteri estimate of x

P=np.zeros(sz) # a posteri error estimate

xhatminus=np.zeros(sz) # a priori estimate of x

Pminus=np.zeros(sz) # a priori error estimate

K=np.zeros(sz) # gain or blending factor

R = 0.1**2 # estimate of measurement variance, change to see effect

intial guesses

xhat[0] = 0.0

P[0] = 1.0

for k in range(1,len(z)):

 # time update

 xhatminus[k] = xhat[k-1]

 Pminus[k] = P[k-1]+Q

 # measurement update

 K[k] = Pminus[k]/(Pminus[k]+R)

 xhat[k] = xhatminus[k]+K[k]*(z[k]-xhatminus[k])

 P[k] = (1-K[k])*Pminus[k]

plt.figure()

plt.plot(z,'k+',label='noisy measurements')

plt.plot(xhat,'b-',label='a posteri estimate')

plt.axhline(x,color='g',label='truth value')

plt.legend()

plt.title('Estimate vs. iteration step', fontweight='bold')

plt.xlabel('Iteration')

plt.ylabel('Voltage')

plt.figure()

valid_iter = range(1,n_iter) # Pminus not valid at step 0

plt.plot(valid_iter,Pminus[valid_iter],label='a priori error estimate')

plt.title('Estimated $\it{\mathbf{a \ priori}}$ error vs. iteration step', fontweight='bold')

plt.xlabel('Iteration')

plt.ylabel('$(Voltage)^2$')

plt.setp(plt.gca(),'ylim',[0,.01])

plt.show()

Merge_Images.py

import cv2

import numpy as np

from Vehicles import Vehicle_Counter

import matplotlib.pyplot as plt

import Tracking

import time

#--------------- This class is for displaying data

img_width = 28

img_heigth = 28

tile_width = 10

tile_heigth = 10

tiles = tile_width*tile_heigth

def merge_images(input,output):

 # Input = [img1,img2....]

 len(input)

 pass

def input_traces(trace_0):

 angle_list = []

 distance_list = []

 colors = []

 for k in range(31):

 distance,angle = Tracking.vector(trace_0[k], trace_0[k+1])

 angle_list.append(angle)

 distance_list.append(distance)

 for k in range(62):

 distance,angle = Tracking.vector(trace_0[k+32], trace_0[k+33])

 angle_list.append(angle)

 distance_list.append(distance)

 for k in range(30):

 distance,angle = Tracking.vector(trace_0[k+96], trace_0[k+97])

 angle_list.append(angle)

 distance_list.append(distance)

 for k in range(48):

 distance, angle = Tracking.vector(trace_0[k + 183], trace_0[k + 184])

 angle_list.append(angle)

 distance_list.append(distance)

 for i in range(len(trace_0)):

 for j in range(len(trace_0)-1):

 distance, angle = Tracking.vector(trace_0[i], trace_0[j])

 if angle in angle_list or distance in distance_list:

 continue

 angle_list.append(angle)

 distance_list.append(distance)

 colors = np.zeros((len(distance_list), 4))

 size = np.zeros(len(distance_list))

 colors[:, -1] = 1

 colors[0:171, 1] = 1

 colors[172:len(distance_list), 0] = 1

 angle = np.arange(-180, 180, 1)

 x = -0.01 * angle ** 2 - 0.4 * angle + 20

 plt.scatter(angle_list, distance_list, s=2, c=colors)

 plt.scatter(angle, x, s=0.12)

 plt.scatter(angle, np.ones(len(angle)) * 10, s=0.1)

 plt.title("Scatter")

 plt.xlabel("Angle (degrees)")

 plt.ylabel("Distance (pixels)")

 plt.axis([-180, 180, 0, max(distance_list)])

 plt.show()

def input_traces1(trace_0):

 angle_list = []

 distance_list = []

 colors = []

 for k in range(41):

 distance, angle = Tracking.vector(trace_0[k], trace_0[k + 1])

 angle_list.append(angle)

 distance_list.append(distance)

 for k in range(37):

 distance, angle = Tracking.vector(trace_0[k + 41], trace_0[k + 42])

 angle_list.append(angle)

 distance_list.append(distance)

 for k in range(36):

 distance, angle = Tracking.vector(trace_0[k + 78], trace_0[k + 79])

 angle_list.append(angle)

 distance_list.append(distance)

 for k in range(43):

 distance, angle = Tracking.vector(trace_0[k + 114], trace_0[k + 115])

 angle_list.append(angle)

 distance_list.append(distance)

 for k in range(41):

 distance, angle = Tracking.vector(trace_0[k + 157], trace_0[k + 158])

 angle_list.append(angle)

 distance_list.append(distance)

 for k in range(41):

 distance, angle = Tracking.vector(trace_0[k + 198], trace_0[k + 199])

 angle_list.append(angle)

 distance_list.append(distance)

 for i in range(len(trace_0)):

 for j in range(len(trace_0) - 1):

 distance, angle = Tracking.vector(trace_0[i], trace_0[j])

 if angle in angle_list or distance in distance_list:

 continue

 angle_list.append(angle)

 distance_list.append(distance)

 colors = np.zeros((len(distance_list),4))

 size = np.zeros(len(distance_list))

 colors[:,-1] = 1

 colors[0:239,1] = 0.5

 colors[239:len(distance_list),0]= 1

 angle = np.arange(-180,180,1)

 x = -0.003* angle**2 - 0.3 * angle + 12

 plt.scatter(angle_list,distance_list,s=9,c=colors)

 plt.scatter(angle,x,s=2)

 plt.scatter(angle,np.ones(len(angle))*12,s=0.9)

 plt.title("Scatter")

 plt.xlabel("Angle (degrees)")

 plt.ylabel("Distance (pixels)")

 plt.axis([-180,180,0,max(distance_list)])

 plt.show()

def test_traces1(trace_0):

 angle_list = []

 distance_list = []

 colors = []

 for k in range(21):

 distance, angle = Tracking.vector(trace_0[k], trace_0[k + 1])

 angle_list.append(angle)

 distance_list.append(distance)

 colors = np.zeros((len(distance_list),4))

 size = np.zeros(len(distance_list))

 colors[:,-1] = 1

 colors[0:239,1] = 0.5

 colors[239:len(distance_list),0]= 1

 angle = np.arange(-180,180,1)

 x = -0.003* angle**2 - 0.3 * angle + 12

 plt.scatter(angle_list,distance_list,s=2,c=colors)

 plt.scatter(angle,x,s=0.12)

 plt.scatter(angle,np.ones(len(angle))*12,s=0.1)

 plt.title("Scatter")

 plt.xlabel("Angle (degrees)")

 plt.ylabel("Distance (pixels)")

 plt.axis([-180,180,0,max(distance_list)])

 plt.show()

test_trace = [(270, 20)

,(272, 19)

,(301, 58)

,(301, 53)

,(300, 51)

,(300, 49)

,(301, 76)

,(301, 74)

,(301, 71)

,(302, 78)

,(302, 76)

,(302, 73)

,(303, 71)

,(304, 69)

,(304, 66)

,(303, 65)

,(303, 64)

,(303, 63)

,(303, 62)

,(302, 60)

,(302, 58)

,(300, 57)

]

#test_traces1(test_trace)

trace_1 = [

 (114, 16), (117, 17), (121, 18), (123, 20), (127, 21), (129, 23), (132, 25), (134, 27),

 (137, 31), (139, 33), (141, 37), (144, 41), (145, 44), (148, 48), (150, 51), (153, 56), (156, 60), (158, 64), (160, 69),

 (163, 74), (166, 78), (168, 84), (170, 89), (173, 95), (176, 100), (179, 106), (182, 113), (185, 119), (188, 127), (192, 133),

 (195, 142), (199, 150), (203, 159), (207, 166), (211, 170), (216, 174), (221, 179), (226, 182), (232, 188), (229, 193), (234, 199),

 (121, 15), (109, 16), (110, 17), (112, 19), (113, 20), (114, 21), (116, 23), (120, 25), (122, 26), (124, 28), (126, 30), (130, 32),

 (131, 34), (134, 36), (136, 38), (139, 40), (142, 42), (144, 44), (146, 47), (149, 49), (151, 52), (154, 55), (157, 58), (159, 61),

 (161, 64), (177, 97),(180, 103), (183, 109), (189, 123),(193, 131),(197, 139), (201, 148), (205, 158), (210, 165), (215, 169), (220, 174),(227, 179),

(145, 29), (147, 31), (149, 34), (186, 116), (150, 38), (152, 41), (153, 43), (155, 47), (157, 50),(158, 54),(160, 58), (163, 62),(164, 65),

 (166, 70), (168, 74), (170, 79), (172, 84), (174, 89), (177, 94), (179, 100), (182, 105), (185, 112),(188, 118),(191, 125), (194, 132), (197, 140), (201, 149), (206, 157),

 (210, 162), (214, 166), (219, 170), (224, 174), (230, 179), (236, 184) ,(234, 189), (239, 195),

 (103, 19), (106, 21), (109, 22), (111, 24), (115, 25), (118, 27), (121, 29), (287, 51), (126, 33), (129, 35),(133, 37), (135, 39),

 (138, 41), (141, 43), (143, 46), (146, 49),(149, 51), (152, 54), (154, 57), (157, 60),

(160, 64), (163, 68), (166, 73), (169, 79), (173, 85), (176, 92), (179, 98), (183, 105), (187, 113), (190, 122), (195, 124),

 (199, 126), (204, 128), (210, 130), (216, 133), (215, 136), (218, 138), (222, 141), (223, 144), (222, 169),

 (228, 174), (227, 180), (234, 186), (239, 193), (250, 201),

 (91, 15), (94, 17), (98, 18), (100, 19), (104, 21), (108, 23), (112, 24), (114, 26), (117, 28), (120, 31),

 (124, 34), (127, 37), (129, 41), (131, 45), (134, 49), (136, 53), (138, 57), (140, 62), (142, 67), (144, 71),

 (147, 77), (149, 82), (151, 88), (153, 93), (156, 100),

 (159, 107), (162, 114), (165, 121), (168, 130), (172, 139), (175, 147), (180, 156), (184, 159), (188, 163),

 (193, 167), (198, 171), (203, 175), (197, 180), (201, 185),

 (201, 190), (203, 197),

(111, 16), (115, 18), (119, 19),(121, 21), (125, 23), (130, 24), (133, 26), (138, 28),

(142, 30), (149, 32), (152, 34), (159, 39), (163, 42), (166, 43), (169, 47),

(170, 52), (172, 55), (325, 93), (180, 58), (183, 61), (185, 64), (192, 72),

(195, 76), (198, 81), (202, 86), (232, 96), (231, 104), (230, 112), (227, 115),

(228, 114), (235, 113), (242, 112), (250, 130), (271, 26),(269, 24), (269, 22),

 (268, 20), (267, 19), (272, 156), (270, 17), (272, 16)]

#input_traces1(trace_1)

trace_0 = [(50, 79), (50, 82), (51, 85), (52, 88), (55, 94), (56, 98), (57, 100),

 (58, 102), (60, 109), (62, 112), (63, 115), (67, 118), (72, 127), (81, 150), (83, 156), (85, 162), (89, 175), (91, 182),

 (93, 189), (95, 197), (100, 214), (103, 223), (106, 233), (109, 244), (116, 260), (119, 264), (123, 269), (126, 274),

 (132, 285), (134, 290), (134, 297), (137, 303), (43, 21), (43, 21), (43, 22), (43, 23), (44, 24), (44, 25), (44, 26),

 (45, 26), (46, 28), (46, 29), (46, 30), (47, 30), (47, 32), (48, 33), (48, 34), (48, 35), (49, 37), (49, 38), (50, 39),

 (51, 40), (51, 42), (55, 61), (56, 63), (57, 65), (58, 70), (59, 72), (59, 74), (60, 77), (61, 82), (62, 84), (63, 87),

 (64, 90), (65, 96), (66, 99), (67, 102), (68, 106), (70, 113), (71, 116), (72, 120), (74, 124), (76, 133), (77, 137),

 (79, 142), (80, 147), (83, 158), (85, 164), (87, 169), (88, 176), (92, 189), (95, 196), (97, 204), (99, 212), (105, 230),

 (108, 239), (111, 249), (114, 253), (121, 261), (124, 266), (128, 271), (131, 276), (132, 287), (134, 294), (137, 300),

 (139, 308), (75, 111), (75, 114), (76, 118), (77, 121), (79, 128), (80, 132), (81, 136), (82, 139), (85, 148), (86, 152),

 (87, 157), (88, 162), (92, 172), (93, 177), (94, 183), (96, 189), (100, 201), (101, 208), (103, 215), (105, 222), (110, 238),

 (113, 247), (115, 256), (117, 262), (123, 270), (127, 274), (128, 278), (131, 283), (132, 293), (133, 298), (135, 304),

 (185, 50), (184, 93), (183, 92), (179, 67), (177, 65), (176, 64), (174, 63), (172, 59), (171, 56), (170, 53), (168, 50),

 (166, 47), (165, 45), (164, 43), (163, 41), (162, 38), (161, 36), (160, 35), (160, 33), (156, 31), (154, 29), (152, 28),

 (149, 27), (145, 25), (144, 24), (141, 22), (139, 21), (136, 19), (134, 19), (132, 18), (131, 17), (128, 15), (183, 69),

 (182, 66), (181, 63), (179, 61), (177, 55), (175, 53), (175, 51), (172, 48), (167, 44), (165, 42), (163, 40), (160, 38),

 (156, 34), (154, 33), (152, 30), (150, 29), (147, 26), (144, 24), (143, 22), (141, 21), (138, 18), (136, 17), (135, 16),

 (133, 16), (47, 22), (48, 23), (48, 24), (49, 26), (50, 29), (50, 31), (51, 32), (51, 34), (53, 38), (53, 40), (54, 42),

 (54, 44), (56, 48), (56, 50), (57, 52), (57, 55), (59, 60), (60, 62), (61, 64), (62, 67), (64, 73), (65, 76), (66, 79),

 (67, 82), (70, 90), (70, 93), (72, 97), (73, 102), (76, 111), (78, 115), (80, 120), (81, 125), (85, 136), (87, 142),

 (89, 149), (91, 155), (96, 170), (99, 178), (101, 186), (104, 196), (111, 216), (115, 227), (119, 238), (123, 252),

 (133, 266), (137, 272), (142, 278), (146, 285), (147, 301)]

#input_traces(trace_0)

#Vector fra hvert startpunkt, til alle punkt i matrisen

#startpunkt: 0,32,96,183

def test_traces_sandvika(trace_0):

 angle_list = []

 distance_list = []

 colors = []

 for i in range(len(trace_0)):

 for j in range(len(trace_0) - 1):

 distance, angle = Tracking.vector(trace_0[i], trace_0[j])

 if angle in angle_list or distance in distance_list:

 continue

 angle_list.append(angle)

 distance_list.append(distance)

 colors = np.zeros((len(distance_list),4))

 size = np.zeros(len(distance_list))

 colors[:,-1] = 0.5

 colors[0:239,1] = 0.5

 colors[0:len(distance_list),0]= 1

 angle = np.arange(-180,180,0.01)

 x = -2* angle**2 + 60 * angle + 200

 plt.scatter(angle_list,distance_list,s=2,c=colors)

 plt.scatter(angle,x,s=0.12)

 plt.scatter(angle,np.ones(len(angle))*50,s=0.1)

 plt.title("Scatter")

 plt.xlabel("Angle (degrees)")

 plt.ylabel("Distance (pixels)")

 plt.axis([-180,180,0,max(distance_list)])

 plt.show()

trace_sandvika_E18 = [(300, 461), (68, 718), (23, 707), (32, 670), (68, 649), (16, 477), (300, 491), (301, 44), (214, 44),

 (151, 44), (81, 44), (21, 44), (300, 15), (366, 804), (260, 618), (253, 540), (468, 548), (187, 498),

 (136, 474), (506, 450), (140, 438), (65, 408), (103, 412), (482, 386), (534, 345), (573, 296), (260, 616),

 (64, 408), (483, 385), (521, 355), (539, 328), (165, 802), (449, 668), (242, 546), (238, 519), (115, 430),

 (464, 406), (480, 385), (524, 355), (565, 307), (241, 546), (463, 405), (479, 385), (563, 307), (242, 540),

 (115, 432), (114, 432), (181, 853), (136, 848), (109, 813), (207, 824), (167, 796), (185, 765), (244, 537),

 (131, 851), (215, 813), (185, 762), (130, 852), (168, 795), (448, 668), (237, 518), (101, 840), (237, 517),

 (514, 380), (535, 331), (185, 790), (157, 794), (216, 762), (169, 754), (412, 695), (237, 549), (472, 699),

 (424, 666), (428, 648), (247, 613), (438, 420), (513, 398), (521, 360), (566, 304), (565, 305), (244, 629),

 (241, 593), (519, 366), (562, 305), (245, 589), (518, 363), (244, 588), (511, 397), (233, 625), (258, 630),

 (245, 581), (214, 802), (202, 784), (226, 750), (156, 779), (412, 436), (389, 437), (507, 424), (516, 387),

 (525, 344), (560, 307), (154, 779), (202, 784), (214, 802), (154, 779), (526, 344), (215, 801), (411, 436),

 (154, 778), (142, 813), (159, 741), (388, 437), (507, 423), (143, 812), (119, 794), (153, 740), (506, 415),

 (494, 465), (513, 409), (516, 377), (522, 352), (555, 310), (516, 377), (522, 350), (555, 310), (521, 350),

 (521, 346), (512, 409), (493, 464), (494, 455), (473, 531), (236, 460), (508, 441), (515, 391), (520, 351),

 (550, 314), (507, 441), (516, 370), (515, 382), (520, 349), (235, 460), (519, 350), (550, 313), (473, 528),

 (466, 526), (424, 668), (493, 490), (178, 456), (518, 384), (519, 360), (544, 318), (157, 455), (518, 360),

 (544, 318), (518, 359), (517, 384), (543, 318), (423, 689), (450, 669), (415, 646), (432, 632), (490, 487),

 (459, 578), (141, 443), (505, 438), (515, 384), (538, 322), (516, 384), (515, 384), (516, 377), (538, 322),

 (387, 768), (490, 480), (125, 432), (513, 417), (510, 393), (535, 326), (480, 473), (511, 407), (511, 393),

 (482, 468), (124, 432), (534, 327), (387, 769), (482, 468), (386, 822), (405, 811), (366, 796), (345, 800),

 (434, 744), (394, 755), (453, 553), (505, 444), (114, 422), (512, 369), (530, 332), (573, 304), (504, 364),

 (572, 304), (504, 444), (452, 575), (456, 526), (503, 462)]

test_traces_sandvika(trace_sandvika_E18)

system_main.py

from PyQt5.QtWidgets import QMainWindow, QApplication

from PyQt5 import uic

from PyQt5 import QtGui

from PyQt5.QtGui import QImage,QPixmap

import numpy as np

import cv2

from matplotlib import pyplot as plt

from skimage.morphology import watershed

from skimage.feature import peak_local_max

import matplotlib.colors as color

import Tracking

import time

#from IPython.display import Image, display

import time

from datetime import timedelta

import os

import logging

import operator

import functools

#from Vehicle_Database import Vehicle_database

#from Vehicles import Vehicle_Counter

from threading import Thread

import sys

from Kalman_filter_2d import kalman_xy

import os, math, time, datetime

import pickle

from skimage.feature import hog

from skimage import data,color,exposure

from scipy import signal

from mss import mss

from PIL import Image

from PIL import ImageGrab

#import CNN_ver_1

#import CNN_ver_2

import CNN4_test_to_toshiba

Ui_MainWindow, QtBaseClass = uic.loadUiType("C:/Users/eirikaflekt/Dropbox/UIS/Master/GUI/GUI.ui")

sys._excepthook = sys.excepthook

def my_exception_hook(exctype, value, traceback):

 # Print the error and traceback

 print(exctype, value, traceback)

 # Call the normal Exception hook after

 sys._excepthook(exctype, value, traceback)

 sys.exit(1)

Set the exception hook to our wrapping function

sys.excepthook = my_exception_hook

==

Detect and Track vehicles

#

.. OBS! The threshold value changes when ResizeRatio is modified

.. It's computed in the Merge_Images

.. Divider Line and Offset is also changed

#

#

#

#

==

#===

Inputs

#===

plt.ion()

vehicles = []

InitalBackground = "Empty"

logging.basicConfig(filename="Coordinates", level=logging.DEBUG)

logging.basicConfig(filename="vehicle_log",level = logging.DEBUG)

circle_color = (255, 0, 0)

rectangle_color = (0, 255, 0)

line_color = (0, 0, 255)

frame_global = []

Slowmo = 1

MaxSize = 500

plt.ion()

#vehicles = []

InitalBackground="Empty"

#logging.basicConfig(filename="Coordinates", level=logging.DEBUG)

logging.basicConfig(filename="vehicle_log",level = logging.DEBUG)

circle_color = (255,0,0)

rectangle_color = (0,255,0)

line_color = (0,0,255)

frame_global = []

x_line = 450 #the divider

y_line = 800

ResizeRatio = 0.7

INCEPTION = False

SAVE_IMG_TO_DATABASE=False

LOG_DIR = "C:/VEHICLE_LOG/"

FILENAME = datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d_%H%M%S')

#CNN_MODEL_PATH= "D:/Tensorboard/20170426_162215/model/0.0001_batch_64_model_[8_10_10_10]/model.ckpt-11205"

CLASS_LABELS = ["Personal Vehicle","Truck","Random","Random2"]

somelist = []

if not os.path.exists(LOG_DIR):

 os.makedirs(LOG_DIR)

 print('No folder found, Successfully created folder {}'.format(LOG_DIR))

 # Add delay so directory can be made

 time.sleep(1)

logging.basicConfig(filename="{0}{1}".format(LOG_DIR,FILENAME), level=logging.DEBUG)

print("{0}{1}".format(LOG_DIR,FILENAME))

def classify(image_path):

 # Display the image.

 # display(Image(image_path))

 # Use the Inception model to classify the image.

 pred = model.classify(image=image_path)

 # Print the scores and names for the top-k predictions.

 model.print_scores(pred=pred, k=5, only_first_name=True)

 #Faa ut class, add text to img (frame)

 return pred

def plot_resized_image(image_path):

 # Get the resized image from the Inception model.

 resized_image = model.get_resized_image(image=image_path)

 # Plot the image.

 plt.imshow(resized_image, interpolation='nearest')

 # Ensure that the plot is shown.

 plt.show()

def sliding_window(bin_image,sliding_size=(2,2)):

 #bin_image = cv2.resize(bin_image, (28, 28))

 height, width = bin_image.shape

 print(bin_image.shape)

 start_time = time.time()

 square_size = height*width/16

 for yy in range(0,width,int(width/6)):

 for xx in range(0,height,int(height/8)):

 orig = bin_image

 cv2.rectangle(orig, (xx, yy), (xx + int(height/4), yy + int(width/4)), (255), 2)

 cv2.imshow("thresh", orig)

 try:

 #if region contains pixels, mark as ROI

 if np.sum(bin_image[xx + int(height/4), yy + int(width/4)]) != 0:

 cv2.imshow("bin_img",bin_image[xx:xx+int(height/4),yy:yy+int(width/4)])

 #cv2.waitKey(0)

 img_ROI = bin_image[xx:xx+int(height/4),yy:yy+int(width/4)]

 # #Classifier here

 except:

 continue

def save_frame(file_name_format, frame_number, frame, label_format):

 file_name = file_name_format % frame_number

 label = label_format % frame_number

 #log.debug("Saving %s as '%s'", label, file_name)

 cv2.imwrite(file_name, frame)

#===

Single Vehicle Objects

#===

class Vehicles(object):

 def __init__(self,id,position):

 self.id = id #unique number for each vehicle

 self.positions = [position] #positions is all center coordinates for the given vehicle

 self.frames_since_seen = 0

 self.counted = False

 self.square = [] #Coordinates for square, measurement for size

 self.velocity = 0

 self.size = 0

 self.color = []

 self.frame_last_seen = []

 self.image = []

 self.vehicle_name = []

 def last_position(self):

 return self.positions[-1]

 def add_position(self, new_position,square):

 self.positions.append(new_position) #if position is added, reset frames_since_seen

 self.frames_since_seen = 0

 self.square.append(square)

 def add_identifier(self,identifier):

 self.identifier = identifier

 #print(self.positions)

#===

Creator of multiple vehicle objects, based on traces

#===

class Vehicle_Counter(object):

 def __init__(self):

 self.log = logging.getLogger("Main")

 self.vehicles = []

 self.next_vehicle_id = 0

 self.vehicle_count = 0

 self.max_unseen_frames = 100

 def valid_vector(self,vector):

 # Vector is [distance, degree]

 #From scatterplot, valid vectors are:

 distance,angle = vector

 x = -0.01 * angle ** 2 - 0.4 * angle + 20

 threshold = max(20, x)

 #For maritim E18

 #x = -2 * angle ** 2 + 60 * angle + 200

 ####x = -0.003 * angle ** 2 - 0.3 * angle + 12

 #threshold = max(50,x)

 #print("this is distance {0}, this is angle {1}, this is x {2}, threshold {3}".format(distance,angle,x,threshold))

 if distance < threshold or x>0:

 return vector

 def crop_vehicle(self,*args,**kwargs):

 return

 def update_vehicle(self,vehicle,traces):

 #Vehicle is one object from Vehicles, in list self.vehicles

 #Update for object vehicle in class Vehicle

 for k, trace in enumerate(traces):

 con,center = trace

 #receive vector between last center point of movement and new center point

 vector = Tracking.vector(vehicle.last_position(),center)

 #Check if vector is valid

 #print("this is vector {0}".format(vector))

 if self.valid_vector(vector):

 if center in vehicle.positions:

 return k

 Tracking.KalmanFilter()

 vehicle.add_position(center, con)

 Tracking.on_movement(center[0], center[1], color=(0, 0,255))

 return k

 #no matches, iterate the frame_counter

 vehicle.frames_since_seen += 1

 def update_all(self,traces):

 #Check if traces match any of the vehicles in database

 for vehicle in self.vehicles:

 #print(vehicle.positions)

 k = self.update_vehicle(vehicle,traces)

 #Delete traces that are matching with vehices in database

 if k is not None:

 del traces[k]

 #For uncounted vehicles

 for trace in traces:

 contour,centroid = trace

 somelist.append(centroid)

 #self.log.debug(somelist)

 #print(somelist)

 #Create new object, with new id.

 new_vehicle = Vehicles(self.next_vehicle_id,centroid)

 self.next_vehicle_id +=1

 self.vehicles.append(new_vehicle)

 # All vehicles passing the line

 for vehicle in self.vehicles:

 # is object vehicle counted for?(boolean values) if not:

 if not vehicle.counted and (vehicle.last_position()[1] > x_line):

 if len(vehicle.positions) < 3:

 self.vehicles.remove(vehicle)

 break

 self.crop_vehicle(vehicle)

 vehicle.counted = True

 self.vehicle_count += 1

 print(vehicle.positions)

 # Add size of the bounding box when passing line

 # Optional do operation in vehicle_Database, use max(traces)

 #vehicle.size = functools.reduce(operator.mul, vehicle.square[-1][2:4], 1)

 #if object has not been detected in a given time frame:

 for vehicle in self.vehicles:

 # If vehicle is counted, and missing from frame, add to new database.

 if vehicle.frames_since_seen >= self.max_unseen_frames and vehicle.counted:

 print("Vehicle {0} is inside tunnel \n time: {1} \n \ size:{2}"

 .format(vehicle.id, int(time.clock()-self.t0), vehicle.size))

 # Keep only vehicles that's not been missing > max_unseen_frames

 self.vehicles[:] = [v for v in self.vehicles

 if not v.frames_since_seen >= self.max_unseen_frames]

 return(vehicle)

#===

Main

#===

class class_process(Vehicle_Counter):

 def __init__(self,camerafeed,classify = False,offset = 0):

 super().__init__()

 #Thread.__init__(self)

 self.log = logging.getLogger("Main")

#Class construction vehicle objects

 #self.Counter_constructor = Vehicle_Counter()

#Class storing vehicle objects inside tunnel

 #self.database = Vehicle_database()

#Camera settings

 self.ResizeRatio = ResizeRatio

 self.offset = offset

 self.camerafeed = camerafeed

 #self.daemon = True

 #self.start()

 self.t0 = time.clock()

 self.fgbg = cv2.createBackgroundSubtractorKNN(history=50, detectShadows=True)

 self.frame_number = 0 #Variable to track frame number

 self.cap = cv2.VideoCapture(self.camerafeed)

 #self.cap = camerafeed

 self.item = []

 self.var = 0

 self.delete = []

 self.classify = classify

 self.disp_foreground = False

 self.disp_video = False

 self.disp_trace = False

 if self.classify:

 import inception

 import tensorflow as tf

 import Tensor

 import prettytensor as pt

 #def add_to_database(self):

 # return

 def add_to_postprocessing(self,*args,**kwargs):

 return

 def preprocessing(self):

#Background subtractor, opencv.

 #Start oversiktsfigur

 while(True):

 #### REMOVE IF RUN FROM FILE

 #mon = {'top': 660, 'left': 860, 'width': 600, 'height': 1500}

 #sct = mss()

 #sct.get_pixels(mon)

 #print(sct.get_pixels(mon))

 #self.frame = Image.frombytes('RGB', (sct.width, sct.height), sct.image)

 #self.frame = np.array(self.frame)

 ####

 self.ret, self.frame = self.cap.read() #Get frame from camera

 self.frame_number = int(time.clock() - self.t0) #1 FPS, count frames

 self.frame_copy = self.frame.copy() #Copy of frame to draw on

 self.frame = cv2.resize(self.frame, (0, 0), fx=self.ResizeRatio, fy=self.ResizeRatio)#Resize to match display

 self.roi = self.frame[0:len(self.frame[1]), 0:y_line] #Region of interest

 Tracking.tracking_graph() #Plotting tracks

 self.foreground_mask = self.fgbg.apply(self.roi) #Apply foreground mask to region of interest

 self.thresh_img = self.filter_foreground(self.foreground_mask)

 # Detect vehicles,returns traces, draw on frame

 trace = self.detect_vehicles(self.thresh_img)

 self.draw_on_frame(trace)

 #VehicleClass, input traces

 #return vehicles inside tunnel

 #From Vehicle_counter

 #return value when vehicle is outside frame

 self.vehicle_left = self.update_all(self.detect_vehicles(self.thresh_img))

 #smallers, *rest, largest = list

 if self.vehicle_left:

 self.vehicle_left.frame_last_seen = self.frame_number

 self.add_to_postprocessing(self.vehicle_left,kalman = True)

 print("Vehicle counter {0}".format(self.vehicle_count))

 if self.disp_foreground:

 cv2.imshow("Foreground {0}".format(self.camerafeed), self.thresh_img)

 if self.disp_video:

 cv2.putText(self.frame, ("Time: {0}".format(int(time.clock() - self.t0))), (0, 20),

 cv2.FONT_HERSHEY_SIMPLEX, 0.5,

 (0, 0, 0), 2, cv2.LINE_AA)

 cv2.imshow("Frame {0}".format(self.camerafeed), self.frame)

 if cv2.waitKey(Slowmo) & 0xFF == ord('q'):

 break

 print("{0} is updated ".format(self.log))

 self.log.debug("Log is Updated")

 self.cap.release()

 cv2.destroyAllWindows()

 def crop_vehicle(self,vehicle):

 x, y, w, h = vehicle.square[-1]

 # Resized frame to original frame

 w = int(w / self.ResizeRatio)

 h = int(h / self.ResizeRatio)

 x = int((self.offset + x) / self.ResizeRatio)

 y = int(y / self.ResizeRatio)

 cv2.destroyWindow('crop')

 cv2.imshow("crop", self.frame_copy[y:y + h, x:x + w])

 def draw_on_frame(self, trace):

 cv2.line(self.frame, (0, x_line), (self.frame.shape[1], x_line), line_color, 1)

 for (i, trace) in enumerate(trace):

 box, center = trace

 #self.delete.append(center)

 #self.log.debug(self.delete)

 #print(center)

 x, y, w, h = box

 if self.disp_trace:

 cv2.rectangle(self.frame, (x + self.offset, y), (x + self.offset + w, y + h), (0,255,0), 2)

 cv2.circle(self.frame, (center[0] + self.offset, center[1]), 2, circle_color, -1)

 def detect_vehicles(self,fg_mask):

 centroid = (0, 0)

 MIN_CONTOUR_WIDTH = 24 #Minimum area for valid detection

 MIN_CONTOUR_HEIGHT = 24

 #Find contours of any vehicles in the image

 im2, contours, hierarchy = cv2.findContours(fg_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

 trace = []

 for (i, contour) in enumerate(contours):

 (x, y, w, h) = cv2.boundingRect(contour)

 contour_valid = (w >= MIN_CONTOUR_WIDTH) and (h >= MIN_CONTOUR_HEIGHT)

 if not contour_valid:

 continue

 centroid = self.get_center(x, y, w, h)

 trace.append(((x, y, w, h), centroid))

 return trace

 def get_center(self,x, y, w, h): #Return center of contour. Used to calculate

 cx = x + int(w / 2)

 cy = y + int(h / 2)

 center = (cx, cy)

 return center

 def filter_foreground(self,foreground):

 kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)) #Morphological Strel

 closing = cv2.morphologyEx(foreground, cv2.MORPH_CLOSE, kernel) #Morphological closing

 opening = cv2.morphologyEx(closing, cv2.MORPH_OPEN, kernel) #Morphological opening

 thresh_img = cv2.dilate(opening, kernel, iterations=2) #Morphological dilation

 #thresh_img=foreground

 ret, thresh_img = cv2.threshold(thresh_img, 127, 255, cv2.THRESH_BINARY) #Threshold to limit shadow appearance

 return thresh_img

 def Classify(self, to_classify):

 #self.pred = CNN_ver_4_Test.Test_image(model_path="C:/Users/trygvet/Dropbox/UIS/Master/Hovedprogram/model/model.ckpt-11250",in_img = to_classify,var=1)

 #print(self.pred)

 print("hei")

===

Post Processing. Class intended for camera 1

===

class Post_processing(class_process): #Entry Camera

 def __init__(self,camerafeed="Trafikk_kamera1.m2v", destination="C:",classify = False):

 super().__init__(camerafeed)

 self.log = logging.getLogger("Vehicles")

 self.vehicles_list = []

 self.vehicles_id = []

 self.color = [(255, 0, 0), (255, 0, 0), (255, 0, 0)]

 self.database_counter = []

 self.choice = 0

 self.move = 0

 self.image = []

 self.update_variable = [0,0,0]

 self.classify = classify

 # Display Settings

 self.destination = "D:/E16_sandvika/{0}/".format(destination)

 #self.destination = "D:/E16_sandvika/webcam_6/"

 #class_process.preprocessing(self)

 # self.classify()

 def add_to_postprocessing(self, vehicle=None, kalman=None,crop_image = None):

 self.log.debug("\nVehicle id: {0} Size: {1} Last seen: {2} Time: {3} \n \n".format(vehicle.id, vehicle.size,

 vehicle.frame_last_seen, int(time.clock()-self.t0)))

 vehicle.Color = self.color[self.choice]

 if self.choice >= len(self.color) - 1:

 self.choice = 0

 else:

 self.choice += 1

 self.vehicles_list.append(vehicle)

 self.database_counter = len(self.vehicles_list)

 # self.kalman_filter(vehicle.positions)

 if kalman:

 self.velocity, self.result = kalman_xy(vehicle.positions)

 else:

 self.velocity = [[0]]

 # self.classify(vehicle.image)

 #self.update_display(vehicle)

 def crop_vehicle(self,vehicle):

 offset = 0

 #Offset is due to ROI

 if self.offset:

 offset = int(self.offset/self.ResizeRatio)

 xy = [int(i/self.ResizeRatio) for i in vehicle.square[-1]]

 self.xy=xy

 xy[0] += offset

 Padding = 15

 vehicle.vehicle_name = "{0}/vehicle{1}.jpg".format(self.destination, self.vehicle_count)

 if SAVE_IMG_TO_DATABASE: #Save to database

 try:

 write_img = cv2.resize(self.frame_copy[xy[1]:xy[1] + xy[3], xy[0]:xy[0] + xy[2]],

 (300,300))

 #write_img = self.frame_copy[xy[1]:xy[1] + xy[3], xy[0]:xy[0] + xy[2]]

 cv2.imwrite(vehicle.vehicle_name,

 write_img)

 except:

 pass

 #display_img = cv2.resize(self.frame_copy[xy[1]:xy[1] + xy[3], xy[0]:xy[0]+ xy[2]],

 # (300, 300))

 display_img=self.frame_copy[xy[1]:xy[1] + xy[3], xy[0]:xy[0]+ xy[2]]

 if vehicle.id not in self.vehicles_id and len(vehicle.positions) > 4 :

 print(vehicle.counted)

 self.vehicles_id.append(vehicle.id)

 self.update_display(image = display_img)

 with open('vehicle_data.pkl','ab') as output:

 pickle.dump(vehicle,output,pickle.HIGHEST_PROTOCOL)

 print("saved {0}".format(self.vehicle_count))

 del vehicle

 if self.classify:

 self.Classify(display_img)

 def update_display(self, vehicle=None,image = None):

 # Text placement is manual

 self.font = cv2.FONT_HERSHEY_SIMPLEX

 self.textSize = 0.6

 self.display_frame = np.ones((400, 800, 3), np.uint8)

 varx = 0

 vary = 0

 self.display_frame[:] = (255, 255, 255)

 display_text = ["Vehicle Counter:", "Last seen:", "Velocity:", "Classified as:"]

 display_position = [50 + (20 * i) for i, item in enumerate(display_text)]

 # display_position = [50, 70, 90]

 for text, position in zip(display_text, display_position):

 cv2.putText(self.display_frame, text,

 (0, position),

 self.font,

 self.textSize,

 (0, 0, 0), 2,

 cv2.LINE_AA)

 if vehicle is not None and self.classify:

 self.update_variable = [len(self.vehicles_list),

 vehicle.frame_last_seen,

 int(self.velocity[0][0]),

 CLASS_LABELS[self.pred[0]]]

 elif vehicle is not None:

 self.update_variable = [len(self.vehicles_list),

 vehicle.frame_last_seen,

 int(self.velocity[0][0])]

 for text, position in zip(self.update_variable, display_position):

 cv2.putText(self.display_frame,

 str(text),

 (160, position),

 self.font,

 self.textSize,

 self.color[self.choice],

 2, cv2.LINE_AA)

 if image is not None:

 self.image.append(image)

 for img in self.image:

 self.display_frame[vary:vary + 100, 500 + varx:600 + varx] = img

 #May need modification

 if varx >= 200 and vary < 300:

 varx = 0

 vary += 100

 elif varx >= 200 and vary >= 300:

 vary = 0

 varx = 0

 else:

 varx += 100

 cv2.imshow("Collection Frame", self.display_frame)

 k = cv2.waitKey(30) & 0xFF

 if k == 32: reset()

===

QTdesigner, interface class

The program will run without this class.

===

class MyApp(QMainWindow,Ui_MainWindow,Post_processing):

 def __init__(self):

 super(MyApp, self).__init__()

 self.ui = Ui_MainWindow()

 self.ui.setupUi(self)

 #self.ui.start_button.clicked.connect(self.setImages)

 self.ui.start_button.clicked.connect(self.Start_program)

 self.ui.checkBox_stream.stateChanged.connect(self.state_changed)

 self.ui.checkBox_videostream.stateChanged.connect(self.state_changed_1)

 self.ui.checkBox_trace.stateChanged.connect(self.state_changed_2)

 self.ui.checkBox_classify.stateChanged.connect(self.state_changed_3)

 #self.ui.input.connect(self.choose)

 self.destination = "C:"

 self.log = logging.getLogger("Vehicles")

 self.vehicles_list = []

 self.vehicles_id = []

 self.color = [(255, 0, 0), (255, 0, 0), (255, 0, 0)]

 self.database_counter = []

 self.choice = 0

 self.move = 0

 self.image = []

 self.update_variable = [0, 0, 0]

 self.classify = classify

 self.calls = 3

 self.classify = True

 self.pred=0

 self.car=0

 self.truck=0

 self.pedestrian=0

 def Start_program(self):

 #camerafeed="D:/E16_sandvika/Captures/webcam3.mp4"

 super(Post_processing, self).__init__(camerafeed = "Trafikk_kamera1.m2v")

 self.preprocessing()

 def update_display(self, vehicle=None,image = None):

 image = cv2.resize(self.frame_copy[self.xy[1]:self.xy[1] + self.xy[3], self.xy[0]:self.xy[0] + self.xy[2]],

 (176, 176))

 image = QtGui.QImage(image, image.shape[1], \

 image.shape[0], image.shape[1] * 3, QtGui.QImage.Format_RGB888)

 pix = QtGui.QPixmap(image)

 self.ui.label_image_main.setPixmap(pix)

 window = getattr(self.ui, "label_image_{0}".format(self.calls))

 window.setPixmap(pix)

 if self.calls == 10:

 self.calls = 3

 else:

 self.calls += 1

 def Classify(self, to_classify):

 #self.pred = CNN4_test_to_toshiba.Test_image(

 # model_path="C:/Users/EirikAflekt/Dropbox/UIS/Master/Hovedprogram/model/model.ckpt-11250",

 # in_img=to_classify)

 self.pred = CNN4_test_to_toshiba.Test_image(model_path = "D:/Tensorboard/from_gorina/model/Layer_[96_128_128_128_256_512]_batch_64_kernel_[8_5_3_3_3_3]_model_pool_[0_1_1_1_1_1]/model.ckpt-10000",

 in_img=to_classify)

 self.pred = CNN4_test_to_toshiba.Test_image(

 model_path="D:/Tensorboard/from_gorina/model/Layer_[96_128_128_128_256_512]_batch_64_kernel_[8_5_3_3_3_3]_model_pool_[0_1_1_1_1_1]/model.ckpt-7500",

 in_img=to_classify)

 #cv2.imshow("to classify",to_classify)

 #cv2.waitKey(0)

 print(self.pred)

 if self.pred == 1:

 self.car +=1

 self.ui.car_label.setText("{0}".format(self.car))

 self.ui.Class_label.setText("Vehicle")

 elif self.pred == 2:

 self.truck +=1

 self.ui.truck_label.setText("{0}".format(self.truck))

 self.ui.Class_label.setText("Truck")

 elif self.pred == 0:

 self.pedestrian +=1

 self.ui.pedestrian_label.setText("{0}".format(self.pedestrian))

 self.ui.Class_label.setText("Pedestrian")

 def state_changed(self):

 try:

 self.disp_foreground = np.invert(self.disp_foreground)

 if self.disp_foreground == False:

 cv2.destroyWindow("Foreground {0}".format(self.camerafeed))

 except:

 print("Start the program first")

 def state_changed_1(self):

 try:

 self.disp_video = np.invert(self.disp_video)

 if self.disp_foreground == False:

 cv2.destroyWindow("Frame {0}".format(self.camerafeed))

 except:

 print("Start the program first")

 def state_changed_2(self):

 try:

 self.disp_trace = np.invert(self.disp_trace)

 except:

 print("Start the program first")

 def state_changed_3(self):

 try:

 self.classify = np.invert(self.classify)

 except:

 print("Start the program first")

===

MAIN

===

if __name__ == "__main__":

 app = QApplication(sys.argv)

 window = MyApp()

 window.show()

 try:

 sys.exit(app.exec_())

 except:

 print("Exiting")

Tensor.py

import cv2

import time

import numpy as np

import threading

def Center_Of_mass(bin_image):

 bin_image = cv2.resize(bin_image,(28,28))

 start_time = time.time()

 height, width = bin_image.shape

 print("%s height and %s width" % (height,width))

 for i in range(height):

 #print(i)

 for j in range(width):

 #print(j)

 #print(bin_image[i][j])

 #time.sleep(1)

 continue

 print("%s seconds" %(time.time()-start_time))

def sliding_window(bin_image,sliding_size=(2,2)):

 #bin_image = cv2.resize(bin_image, (28, 28))

 height, width = bin_image.shape

 print(bin_image.shape)

 start_time = time.time()

 square_size = height*width/16

 for yy in range(0,width,int(width/6)):

 for xx in range(0,height,int(height/8)):

 orig = bin_image

 cv2.rectangle(orig, (xx, yy), (xx + int(height/4), yy + int(width/4)), (255), 2)

 cv2.imshow("thresh", orig)

 try:

 #if region contains pixels, mark as ROI

 if np.sum(bin_image[xx + int(height/4), yy + int(width/4)]) != 0:

 cv2.imshow("bin_img",bin_image[xx:xx+int(height/4),yy:yy+int(width/4)])

 #cv2.waitKey(0)

 img_ROI = bin_image[xx:xx+int(height/4),yy:yy+int(width/4)]

 # #Classifier here

 except:

 continue

 #if cv2.waitKey(1) & 0xFF == ord('q'):

 # cv2.destroyAllWindows()

 print(threading.active_count())

 print("%s seconds" % (time.time() - start_time))

 #cv2.waitKey(0)

#bin_image = cv2.imread("bin_image.jpg",0)

#print(bin_image.shape)

#Center_Of_mass(bin_image)

#sliding_window(bin_image)

#Trekk linjer mellom center of mass?

#Frame -1,

Tensorflow_Dataset_batches.py

import os

import tensorflow as tf

import numpy as np

#import cv2

from PIL import Image

from dataset import DataSet

import matplotlib.pyplot as plt

import cv2

def dense_to_one_hot(labels_dense, num_classes=10):

 """Convert class labels from scalars to one-hot vectors."""

 num_labels = labels_dense.shape[0]

 index_offset = np.arange(num_labels) * num_classes

 labels_one_hot = np.zeros((num_labels, num_classes))

 labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1

 return labels_one_hot

def read_my_file_format(filename_queue,

 img_size_cropped=300,

 training=False,

 num_channels=3,

 one_hot=True,

 num_classes = 10):

 #Needed to read unlabeled data

 #image_reader = tf.read_file(filename_queue)

 #image_reader = tf.WholeFileReader()

 #_, image_file = image_reader.read(filename_queue)

 #image = tf.image.decode_jpeg(image_file)

 label = filename_queue[1]

 image = tf.image.decode_jpeg(tf.read_file(filename_queue[0]), channels=3)

 if tf.shape(image)[0] != tf.shape(image)[1]:

 #print(image.get_shape().as_list())

 image = tf.image.resize_image_with_crop_or_pad(image,

 target_height=img_size_cropped,

 target_width=img_size_cropped)

 image = tf.image.resize_images(image, (img_size_cropped, img_size_cropped),

 method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)

 else:

 image = tf.image.resize_images(image, (img_size_cropped, img_size_cropped),

 method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)

 # Returns one hot labeled labels

 if one_hot:

 label = tf.one_hot(label,num_classes)

 #image = tf.image.per_image_standardization(image)

 #image = tf.image.resize_image_with_crop_or_pad(image,target_height=200,target_width=200)

 if training:

 # For training, add the following to the TensorFlow graph.

 # Randomly crop the input image.

 image = tf.random_crop(image, size=[img_size_cropped, img_size_cropped, num_channels])

 # Randomly flip the image horizontally.

 image = tf.image.random_flip_left_right(image)

 # Randomly adjust hue, contrast and saturation.

 image = tf.image.random_hue(image, max_delta=0.05)

 image = tf.image.random_contrast(image, lower=0.3, upper=1.0)

 image = tf.image.random_brightness(image, max_delta=0.2)

 image = tf.image.random_saturation(image, lower=0.0, upper=2.0)

 # Limit the image pixels between [0, 1] in case of overflow.

 #image = tf.minimum(image, 1.0)

 #image = tf.maximum(image, 0.0)

 #else:

 # image = tf.image.resize_image_with_crop_or_pad(image,

 # target_height=img_size_cropped,

 # target_width=img_size_cropped)

 image.set_shape((img_size_cropped,img_size_cropped,num_channels))

 return image,label

def input_pipeline(

 in_dir=None,

 labels_in=None,

 filename_queue=None,

 batch_size=9,

 exts='.jpg',

 num_epochs=None,

 return_as_eval=True,

 shuffle = True,

 training = True,

 number_classes=3,

 img_size_cropped = 300):

 #OBS!!! Input must be a square image

 if filename_queue is None:

 filename_queue = tf.train.string_input_producer(

 tf.train.match_filenames_once("{0}*{1}".format(in_dir, exts)),

 num_epochs=num_epochs,

 shuffle=True)

 label = dense_to_one_hot(np.array([label_var] * batch_size),

 num_classes=number_classes)

 #filename_queue = tf.train.string_input_producer(filename_queue, num_epochs=num_epochs, shuffle=True)

 #image = read_my_file_format(filename_queue,img_size_cropped= img_size_cropped, training=True,num_classes=number_classes)

 else:

 images, labels = filename_queue, labels_in

 input_queue = tf.train.slice_input_producer([images, labels],

 shuffle=shuffle)

 image,label = read_my_file_format(input_queue,

 training=training,

 img_size_cropped=img_size_cropped,

 num_classes=number_classes)

 min_after_dequeue = 100

 capacity = min_after_dequeue + 3 * batch_size

 #tf.train.shuffle_batch

 [images, labels] = tf.train.batch(

 [image, label],

 batch_size=batch_size,

 capacity=capacity,

 #min_after_dequeue=min_after_dequeue,

 allow_smaller_final_batch=True)

 if return_as_eval:

 #Rapport

 with tf.Session() as sess:

 # # Required to get the filename matching to run.

 tf.global_variables_initializer().run()

 coord = tf.train.Coordinator()

 threads = tf.train.start_queue_runners(coord=coord)

 for i in range(9):

 images = sess.run(image)

 #cv2.imshow("name",np.array(images))

 #print(image)

 #cv2.waitKey(0)

 plt.subplot(3,3,i+1)

 plt.imshow(images)

 plt.axis("off")

 #plt.imshow(np.array(images))

 plt.show()

 #images = images.eval()

 #labels = labels.eval()

 coord.request_stop()

 coord.join(threads)

 sess.close()

 return images, labels

##

Display dataset

##

#training_set = DataSet(in_dir = "D:/Test_vehicle_base/")

#filename_queue = training_set.get_training_set()[0]

#labels = training_set.get_training_set()[1]

#image_batch,label_batch = input_pipeline(filename_queue=filename_queue,

 # labels_in=labels,

 # batch_size=9,

 # return_as_eval=True,

 # training=True,

 # shuffle=True)

##

"""

with tf.Session() as sess:

 tf.global_variables_initializer().run()

 coord = tf.train.Coordinator()

 threads = tf.train.start_queue_runners(sess=sess, coord=coord)

 try:

 while not coord.should_stop():

 sess.run(qnque_op)

 except:

 coord.request_stop()

coord.join(threads)

sess.close()

training_set = DataSet(in_dir = "D:/Vehicles_Database/")

filename_queue = training_set.get_training_set()[0]

labels = training_set.get_training_set()[1]

image_batch,label_batch = input_pipeline(filename_queue=filename_queue,labels_in=labels,batch_size=16,return_as_eval=True)

def something():

 sess = tf.Session()

 x = tf.placeholder(tf.float32, shape=[None, 300, 300, 3], name="x")

 print(x)

 tf.global_variables_initializer()

 coord = tf.train.Coordinator()

 threads = tf.train.start_queue_runners(sess= sess,coord=coord)

 print(x)

 image_batch1,label_batch2 = sess.run([image_batch,label_batch])

 print(image_batch1)

 coord.request_stop()

 coord.join(threads)

 sess.close()

 #sess.run(something, feed_dict={x: image_batch})

something()

"""

Tracking.py

import cv2, numpy as np

import math

kalman = cv2.KalmanFilter(4,2)

kalman.measurementMatrix = np.array([[1,0,0,0],[0,1,0,0]],np.float32)

kalman.transitionMatrix = np.array([[1,0,1,0],[0,1,0,1],[0,0,1,0],[0,0,0,1]],np.float32)

kalman.processNoiseCov = np.array([[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]],np.float32) *0.003

kalman.measurementNoiseCov = np.array([[1,0],[0,1]],np.float32) * 0.95

meas=[]

pred=[]

frame = np.zeros((400,700,3), np.uint8) *255 # drawing canvas

mp = None

tp=None

def on_movement(x,y,color=(0,0,255),size = 5):

 global mp,meas,frame

 mp = np.array([[np.float32(x)],[np.float32(y)]])

 meas.append((x,y))

 cv2.circle(frame, (x, y), size, color, -1)

 kalman.correct(mp)

 tp = kalman.predict()

 #print(tp)

 return meas

def KalmanFilter():

 kalman.correct(mp)

 tp = kalman.predict()

 pred.append((int(tp[0]), int(tp[1])))

 cv2.circle(frame,(tp[0],tp[1]),5,color=(255,255,255))

 for i in range(len(pred) - 1): cv2.line(frame, pred[i], pred[i + 1], (0, 0, 200))

 return pred

def reset():

 global meas,pred,frame

 meas = []

 pred = []

 #frame = np.zeros((400, 600, 3), np.uint8)

#cv2.namedWindow("Track Movement")

def tracking_graph():

 cv2.imshow("Tracking Graph", frame)

 k = cv2.waitKey(30) & 0xFF

 if k == 32: reset()

def vector(a,b):

 #gradients

 dx = float(b[0] - a[0])

 dy = float(b[1] - a[1])

 #Distance between points, eucledean

 distance = math.sqrt(dx ** 2 + dy ** 2)

 if dy > 0:

 degree = math.degrees(math.atan(-dx / dy))

 elif dy == 0:

 if dx < 0:

 degree = 90.0

 elif dx > 0:

 degree = -90.0

 else:

 degree = 0.0

 else:

 if dx < 0:

 degree = 180 - math.degrees(math.atan(dx / dy))

 elif dx > 0:

 degree = -180 - math.degrees(math.atan(dx / dy))

 else:

 degree = 180.0

 return distance, degree

"""

trace = [(114, 16), (117, 17), (121, 18), (123, 20), (127, 21), (129, 23), (132, 25), (134, 27),

 (137, 31), (139, 33), (141, 37), (144, 41), (145, 44), (148, 48), (150, 51), (153, 56), (156, 60), (158, 64), (160, 69),

 (163, 74), (166, 78), (168, 84), (170, 89), (173, 95), (176, 100), (179, 106), (182, 113), (185, 119), (188, 127), (192, 133),

 (195, 142), (199, 150), (203, 159), (207, 166), (211, 170), (216, 174), (221, 179), (226, 182), (232, 188), (229, 193), (234, 199)]

import time

for i in trace:

 tracking_graph()

 print(on_movement(i[0],i[1]))

 KalmanFilter()

 time.sleep(2)

import matplotlib.pyplot as plt

import time

z= [(305, 416), (325, 504), (411, 441), (339, 622), (339, 621), (336, 621), (312, 626), (372, 675), (339, 681), (296, 684)]

z= [(114, 16), (117, 17), (121, 18), (123, 20), (127, 21), (129, 23), (132, 25), (134, 27),

 (137, 31), (139, 33), (141, 37), (144, 41), (145, 44), (148, 48), (150, 51), (153, 56), (156, 60), (158, 64), (160, 69),

 (163, 74), (166, 78), (168, 84), (170, 89), (173, 95), (176, 100), (179, 106), (182, 113), (185, 119), (188, 127), (192, 133),

 (195, 142), (199, 150), (203, 159), (207, 166), (211, 170), (216, 174), (221, 179), (226, 182), (232, 188), (229, 193), (234, 199),(351,300)]

for k,i in enumerate(z):

 x= int(i[0]-100)

 y =int(i[0]-20)

 meas = on_movement(x,y)

 #pred = KalmanFilter()

 #tracking_graph()

 if k>2:

 KalmanFilter()

x = [int(i[0]) - 200 and int(i[1]) for i in meas]

y = [int(i[1]) - 300 and int(i[1]) for i in meas]

#for i in range(10):

pred = KalmanFilter()

on_movement(pred[-1][0],pred[-1][1])

print(pred)

print(meas)

plt.plot(x, y, 'ro',label='Measurements')

x = [int(i[0]) - 200 and int(i[1]) for i in pred]

y = [int(i[1]) - 300 and int(i[1]) for i in pred]

plt.plot(x, y, 'k+',label='Predictions')

plt.legend()

plt.show()

cv2.waitKey(0)

"""

TRAIN_MODELS.py

import numpy as np

#0 False

#1 True

#Filter width, filter size,max pool

inputs = [

 [[32,32,53],[5,3,3],[0,0,1]],

 [[32,32,64,64,128,128],[5,3,3,5,5],[0,0,0,0,0,0]]

]

for input in inputs:

 for i,val in enumerate(input[0]):

 print(i,val)

 g_i = cal

Appendix E
User manual

The Python files are embedded as python.zip

Using the surveillance system
1. Download the python.zip file

2. Download PyCharm from

https://www.jetbrains.com /pycharm/

3. Download Anaconda 4.4.0
https://www.continuum.io/downloads

Python 3.6 64 bit-installer

4. Download all necessary Python packages. Open cmd and write pip install
followed by (if several conda environments are installed, write "activate" fol-

lowed by desired Python version, e.g py35):
numpy, scikit-image, opencv-python, PyQt5
tensorflow, pandas_ ml, PIL, pickle

If any of those fails to download, replace pip install with conda install.

5. Open PyCharm

141

Chapter &5

Press file, default settings, project intepreter
In Project interpreter choose the desired Python version from Anaconda
(python.exe)
6. Open the system,,ain filein Pycharmandpress Run

optional: The neural network model may be changed in line 687, by

choosing the default directory of the model

optional: The videofile may be changed in line 659 by choosing the de-
fault directory.

optional: Modify the vector space in line 218 and 219.

7. Press Start in the GUIL.

Training a neural network
1. Follow the 4 first steps from Using the surveillance system

2. Make a new main folder

Make a new class folder for each desired class, inside the main folder,

and add the training data

Make a new folder inside the class folders, and put the test data inside

3. Open the Python file CNN in pycharm

change log directory(LOGDIR), debug directory(DEBUGDIR) and de-
sired model directory(FILENAME) in line 22,23 and 24 in line 22,23,24

4. Choose the desired input in line 119

shape of input: [[filter depth],[filter size],[pooling]]

5. Start the program and read the results from LOGDIR.

Graphs can be found in tensorflow by following

142

Chapter &5

Results from testing in Tensorboard
1. open cmd
2. Write cd followed by the directory of the FILENAME folder
3. Write "tensorboard -logdir = directory

4. Copy the ip-address from the cmd into a Google Chrome browser

143

	Preface
	Summary
	Introduction
	Background
	Introduction to object identification
	Current available technology
	Problem formulation

	Theory behind implemented methods
	Background subtraction
	Morphological operations

	Kalman filter
	Artifical neural networks
	Classifying images with neural networks

	Implementation of the vision-based traffic system
	Hardware components
	Implementation in Python
	System setup
	Detection module
	Tracking module
	Classification module
	Graphical Interface

	Experimental results
	Data acquisition
	Testing neural networks architectures
	Testing the classifier

	Arranging the experimental setup
	Initial considerations of the acquired data
	Determining a reasonable vector space
	Initiating the Kalman filter
	Hit rate during sunny days
	Hit rate during cloudy days
	Recordings from three different locations
	Multiple lanes

	Analysis and presentation of traffic data
	Velocity distribution
	Density of vehicles
	Traffic congestion
	Classifying the dataset
	Vehicle class frequency

	Discussion
	Recommendations for further work
	Conclusion
	Bibliography
	Appendices
	Python libraries
	Datasheets
	Neural network models
	Source code
	User manual

