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Summary

During the last years, the use of vision-based traffic system has increased in pop-
ularity, both in terms of traffic monitoring and control of autonomous cars.
This master thesis focus especially on traffic monitoring, which are of importance
to fulfill planning and traffic management of road networks.

An important requirement is data interpretation accuracy to provide adequate
characteristic data from the acquired vision-data. A vision-based system has been
developed, using new methods and technologies to achieve an automated traffic
monitoring system, without the use of additional sensors.

The thesis is based upon Erik Sudland’s master thesis from 2016, which inves-
tigated available litterateur containing adequate algorithms for traffic monitoring.
However in the current master thesis, methods have been further analyzed and
experimentally optimized on vision-data from real traffic situations. In addition, a
new classification method based upon neural networks has been implemented and
verified with successful results.

The system has undergone a comprehensive experimental verification, with analy-
sis of more than 20000 images. The experimental results verify a successful imple-
mentation of both the detection and object classification routines, and demonstrate
the system’s capability of determining characteristic traffic data, like

� Velocity distribution

� Density of vehicles

� Traffic congestion

� Vehicle class frequency
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Sammendrag

I løpet av de siste årene har bruken av kamerabaserte trafikksystemer økt i popu-
laritet, både når det gjelder trafikkovervåkning og kontroll av autonome biler.
Denne masteroppgaven fokuserer spesielt på trafikkovervåkning, noe som er viktig
for å oppfylle planlegging og trafikkstyring av veinett.

Et viktig krav er at datatolkningen er nøyaktig nok til å gi tilstrekkelig karak-
teristiske analyser. Et kamerabasert system er utviklet ved hjelp av nye metoder
og teknologier for å oppnå et automatisert trafikkovervåkingssystem uten bruk av
tilleggs-sensorer.

Avhandlingen er basert på Erik Sudlands masteroppgave fra 2016, som undersøkte
tilgjengelig litteratur om algoritmer for trafikkovervåkning. I denne masteropp-
gaven er metodene videre analysert og eksperimentelt optimalisert på data fra
ekte trafikksituasjoner. I tillegg er en ny klassifikasjonsmetode, basert på nevrale
nettverk, implementert og verifisert med vellykkede resultater.

Systemet har gjennomgått en omfattende eksperimentell verifisering, med anal-
yse av mer enn 20000 bilder. De eksperimentelle resultatene bekrefter en vellykket
implementering av både deteksjons- og objektklassifikasjonsrutiner, og demonstr-
erer systemets evne til å bestemme karakteristiske trafikkdata, slik som:

� Hastighetsfordeling

� Trafikkfrekvens

� Køsituasjoner

� Frekvens av kjøretøyklassene
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Chapter 1

Introduction

1.1 Background

In recent years, big data applications utilized in real-time traffic operation and
safety monitoring has gained interest. The IP-based surveillance segment is ex-
pected to witness high growth over the next years. According to a new report
from the US Market Research Institute, Grand View Research [36], states that the
world market for video surveillance and video surveillance to will grow to as much
as 49 billion dollars by 2020, which is equivalent to approximately NOK 390 billion.

The primary purpose of a surveillance camera is for security and statistics purpose,
such as open data governmental surveillance of traffic, and planning new solutions
to reduce risks, and increase traffic flow. Furthermore, this data can be used for
risk assessment purposes through analysis providing predictions to current risk
levels, and possibly enable proactive mobilization of emergency units.

Traffic surveillance is a method that improves traffic management and flow, and
is often referred to as an intelligent transportation system (ITS) [41]. ITS are
used in several applications, such as to identify vehicles traveling over the legal
speed limit, detect vehicles in the wrong direction, driving on red light or vehi-
cles crossing railways that grade illegally. These camera systems are often used in
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Chapter 1 1.1. Background

combination with a range of sensors to recognize vehicles.

A vision-based approach is introduced. It has the advantages of easy maintenance
and high flexibility in traffic monitoring and compact hardware and software struc-
ture which enhanced the mobility and performance. The deployed cameras utilize
a vehicle detection algorithm that detects cars and performs analyzes based on
the data mining. Applying camera systems provides additional benefits as they
can detect people in the way, alarm if someone is driving the wrong way or if is a
traffic jam.

Autonomous cars are expected to be an important part of our everyday life in
just a few years. Combining the vehicles technology system with a robust surveil-
lance system could prevent traffic jams, accidents or other events and drastically
improve congestion.
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Chapter 1 1.2. Introduction to object identification

1.2 Introduction to object identification

Motion detection is often the first step of a multi-stage computer vision system.
The problem to recognize and monitor vehicles is normally separated into three
main operations; detection, tracking and classification.

Detection is the process of localizing objects in the scene. A survey on object
detection and tracking methods[19] proposed that background subtraction can be
a simple method providing complete information about an object compared to
optical flow and frame difference for detecting objects.

Tracking is the problem of localizing the object in consecutive frames. Erik Sudland
[43] proposed an interesting algorithm for object tracking based upon a Kalman
filter to estimate the unknown states of the objects. Even though the Kalman
filter has some weaknesses when the background is varying [2], promising results
were demonstrated in conjunction with background subtraction [38].

Classification is the process of categorizing the objects. Vehicle classification is
an inherently difficult problem, because many vehicle types do not have any dis-
tinct signatures.The traffic situation in the real world is constantly changing and
cameras will be challenged by occlusions, shadows, camera noise, changes in illu-
mination and weather, etc. In addition, each vehicle category (car, van, bus etc)
contains multiple variants of geometry, colour, size, styling etc. which makes it
difficult to classify based on simple parameters [10]. This task becomes even more
challenging, when subcategories are included.

The development of artificial neural networks, has contributed to a significant
improvement of the computer vision tasks during the recent years. The neural
networks are frequently used for machine learning and has a special strength in
the object classification. The neural network method is based upon offline train-
ing on object with known properties, and has the capability to extend this trained
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knowledge, to detect unknown object properly. In addition, a big strength with
the neural networks, is the small consumption of computation power.

4
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1.3 Current available technology

Erik Sudland[43] presented in his MSc Thesis, an overview of the existing tech-
nology and algorithms for vehicle recognition. Among these are inductive loops,
pressure sensitive sensors, radars, lazer, ultrasound and infrared light. The overall
drawbacks were either high cost or low reliability due to wear and tear and sensi-
bility to challenging weather conditions.

Image processing has been used for traffic monitoring and -surveillance since the
1970s in the USA, Japan and France. Typically, video cameras with image pro-
cessing are used for vehicle detection. However, the availability of new technology
and especially computation power during the last few years have opened for im-
plementation of new and advanced algorithms for even real-time analysis.

Today a fair number of tunnels around the world have camera systems that auto-
matically alerts about abnormal traffic conditions like pedestrians in the tunnel,
vehicles in the wrong lane, slow traffic, smoke, dropped load and overheating in
vehicles. The system goes under the name Automatic Incident Detection(AID).

The technology also makes is possible to detect traffic in several lanes inside of
the field of view. Statens Vegvesen is using an ATK (Automatic traffic control)
system which matches cars over a certain distance to measure the average speed
[47]. Key data, like time of passage, wheelbase, weight and license plate, are sent
from "photo box A" to "photo box B" and is used to recognize the vehicles.

Even though this method is based on basically, simple license plate detection,
it has some important challenges related to flaws like, dirt on the plate, weather
conditions (rain, snow) etc, making the license plate unreadable, even though the
cameras high resolutions images. Because of these flawed factors, the system also
has installed pressure sensivitive sensors which detect speed, weight and wheelbase.
In total, this leads to high costs and sometimes low performance and need for fre-
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quent maintenance. However, currently, there are interesting projects running for
video based traffic monitoring and surveillance. The project VITUS (Video Image
analysis for Tunnel Safety) was completed in Austria. Even though the project ac-
quired important knowledge about vision technology, it unfortunately, concluded
final results it did not achieve a satisfactory level.

Another project, Robust Sensor Systems for Advanced Traffic Applications (ROSSATA),
applied more advanced methods, like passive 3D vision and flow analysis to exam-
ine 3D-scenes. This project is running.

However, this MSc thesis, has the ambitions to investigate and experimentally,
verify, partly new algorithms and methodology. This has implied a considerable
risk. However, motivation have occurred of the opportunity to make a possible
break-through within vision based traffic surveillance systems.
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1.4 Problem formulation

This master thesis is enabled and motivated by a collaboration between the uni-
versity in Stavanger and Statens vegvesen. The target has been twofold;

� Develop a powerful, reliable, traffic surveillance system to detect traffic sit-
uations like:

– Velocity distribution

– Density of vehicles

– Traffic congestion

– Vehicle class frequency

� Develop, adapt and implement new detection and classification algorithms,
and make a representative verification of them through testing on a huge
source of real traffic data

Thus, this thesis basically, try to successfully fulfill the expectations from two
“customers”. The system should be based upon vision and be able to anonymously
detect and determine different classes of vehicles. “Anonymous” is used in the
terms of not using any identification features, such as code chip, vehicle registration
plates etc. The case is described in figure 1.1.
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Figure 1.1: Problem, solution and development for a traffic surveillance system

The problem description has during close correspondence with the supervisors,
been somewhat adjusted during the development process, to comply with the ac-
quired knowledge during the development process.

Thus, the target has been move away from tunnel safety, toward a more gen-
eral traffic surveillance system, with vision and neural network classification as
core methodologies.

The thesis is organize with the following main chapter:
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1. Introductory study to determine the need for and challenges of traffic surveil-
lance systems

2. Introductory study of the detection and classification methods

3. Develop a module for detection, tracking and classification respectively

4. Develop a complete system structure as a surveillance system

5. Collect data for testing

6. Experimental testing for all modules

7. Documentation of the experimental setup, including hardware and software

8. Documentation of the user functions to operate the experimental setup.

9. Documentation of the experimental results

Thus, the reader is brought through basic theory, principles and methodology
before diving into the comprehensive experiments to verify the results.

9
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Theory behind implemented
methods

The traffic surveillance system in this thesis utilizes a range of image processing
methods and machine learning algorithms. The processes are placed in separate
modules, where the entirety of the system is presented in figure 2.1.

Figure 2.1: Modules in the system.

The detection module is solved by implementing a background subtraction method.
The tracking module is solved with a Kalman filter. The classification module
utilizes a neural network. The theory behind the implemented methods in each
module are explained separately in the next chapter.
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2.1 Background subtraction

Background subtraction, also referred to as foreground detection, is a method to
detect a dynamic foreground in a static background image without any prior knowl-
edge about the objects [19]. Background subtraction is a widely used approach for
detecting moving objects in videos from static cameras, as well as other monitor-
ing applications [22] [45]. The method segments moving objects by thresholding a
pixel distance between the current frame and static background image.

Figure 2.2: Extract foreground based on movement in the background
image

The basic approach is to maintain a background image as a cumulative average of
the video stream. "The simplest process" is explained by the equation 2.1:

|framei − framei−1| > Threshold (2.1)

Where framei is the current frame, and the estimated background, framei−1, is
the previous frame. Objects are segmented by thresholding a pixel distance be-
tween the current frame and the background image. This is very sensitive to the
global threshold, and works only under special conditions, where the background is
unaffected by uncontrolled environments [26]. A simple subtraction difference with
global threshold is a weak solution, because the background subtraction method
must deal with problems as illumination changes, motion changes and changes in
background geometry [12].

11
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Illumination variations may both be gradual and sudden, such as clouds or blinking
lights. Motion changes may be camera oscillations or background objects that are
moving frequently. Changes in the background geometry may be moving vehicles.
To counteract uncontrolled environments, most of the state of the art algorithms
uses a sequence of previous images to create a historical and probabilistic model.
Several background methods bound to different probability models have been pro-
posed, and a paper conducted by Massimo Piccardi[33], reviews and compares the
state of the art background subtraction methods. The experiments concludes that
all methods outperforms the basic method, especially with additional image pro-
cessing, such as morphological operations. One highlighted and promising method
is the Gaussian Mixture Model.

Gaussian Mixture Model (GMM) is a model proposed by Stauffer and Grim-
som to tolerate environmental changes [42]. Considering that environmental fac-
tors contributes to the background pixel values, the GMM uses probability of
occurrence of a color at a given pixel, as a mixture of K numbers of Gaussians [8],
as illustrated in figure 2.3.

Figure 2.3: Threshold area for a pixel, I(s,t), given by a mixture of
Gaussian distributions. Values within the distributions are considered

background.
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The probability of a given pixel being a part of the background is given by the
equation:

P (Is,t) =
K∑

k=1
ωk,s,t · N (µk,s,t,Σk,s,t) (2.2)

P (Is,t) is probability of the color Is,t at time t and pixel s. Is,t may be one-
dimensional, such as gray sacle, 2D (normalized colour space) or 3D (colour, RGB
space). N (µi,s,t,Σk,s,t) is the kth Gaussian model and ωk,s,t are the corresponding
weights. All weights ω are updated for each consecutive frame. Σk,s,t is the
covariance matrix. The RGB components are assumed to be uncorrelated and
share the same variance, hence the covariance matrix given by Σ = σ2I, where σ2

is the variance. The parameters in the model are updated as following:

ωk,s,t = (1− α)ωk,s,t−1 + α (2.3)

µk,s,t = (1− ρ)µk,s,t−1 + ρIs,t (2.4)

σ2
k,s,t = (1− ρ)σ2

k,s,t−1 + ρ(Is,t,µk,s,t) (2.5)

where α and ρ are learning rates, which decides how fast the model should adapt to
changes in the background. Faster learning rates results in a more sensitive model.
To achieve decay in the background, the weights of unmatched distributions are
reduced over time:

ωk,s,t = (1− α)ωk,s,t−1 (2.6)

A pixel is set to be background with higher probability if it occurs frequently (high
ωk and does not vary much (low σ2). At every frame, some of the Gaussian pdfs
are matching the current value. For the matching values, i and σi is updated.

13
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If the color Is,t does not match any apriori probabilities, the distribution with
lowest weights are replaced by a Gaussian with:

– mean of Is,t

– small weights ω

– large initial variance, σ2

All of the K distributions are ranked by the criterion ωk/µk ,which is proportional
to the peak amplitude of the weighted distributions. Detected objects are in motion
and a distribution representing the foreground will have greater variance and less
road factor, and therefore the B most reliable distributions are chosen as part of
the background.

B = argminh(
h∑

i=1
ωk > τ) (2.7)

The distributions that exceeds the threshold τ are set as background, and the rest
are default foreground. The foreground is extracted followed by morphological
operations, which is presented in next section.

14
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2.1.1 Morphological operations

Morphological means, in mathematics, shape, form or structure. It’s a set of non-
linear methods related to the shape or of features in an image [35]. It has been
used for image processing since the early 1960, and was introduced by Georger
Matheron and Jean Serra [35]. When first introduced it was only applicable for
binary images, but later developed for grayscale as well. Morphological image
processing has a lot of applications, but it’s especially useful for extracting and
describing image regions. It is based on a set of basic methods, which are applied
in different ways. Morphological operations are based on structuring elements(
shortened to strel). A strel is a small set of pixels or subimage, used to probe for
structure.

Morphological operations may be applied to the extracted foreground to prevent
noise and false positives. One of the advantages of morphological operations is
that they require little computing power, and wont affect the real time processing.
Morphological operations are often combined to enhance specific features in an
image. The basic operations are explained below.

Erosion is a set of points Z, so that the structuring element, translated by Z,
fits fully inside A. A is the original set, B is the structuring element, given by the
equation:

A	B = {Z|Bz ⊆ A} (2.8)

The outcome of erosion will always give a subset of A. It can be seen as a peeler,
it removes thin lines and isolated dots, but leaves gross details.

15
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Dilation find pixels in which the shifted strel has overlap with the original set,
A. In other words, it fatten things up.

AB = {Z|B̂z ∩ A ⊆ A} (2.9)

Dilation is both commutative (2.10)

A	B = B 	 A (2.10)

and associative (2.11):

A⊕ (B ⊕ C) = (A⊕B)⊕ C (2.11)

Both dilation and erosion are changing the size of the objects. A mix of these two
gives operators that opens and/or fill holes, but does not change the original size.
They are called Opening and Closing

Opening is the result of eroding, then dilating, with the same structuring ele-
ment.

A ◦B = (A	B)⊕B (2.12)

The eroding breaks bridges and eliminate thin structures. The dilating adds size
to the object, so that it keeps its original size. Typically used to separate regions.

Closing
A •B = (A⊕B)	B (2.13)

Result of dilation, followed by erosion. Union of all translates of B that does not
intersect with A. This method fuses narrow breaches and eliminates small holes.

The basic morphological operators structuring element contains foreground pixels
and zeros. The operators are deduced from combinations of dilation and erosion.
They are used to remove noise to either suppress or enhance features in a given
image.
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More advanced operators, such as hit and miss, applies erosion with a pair of
disjoint structuring elements, where a pixel is set to foreground if the background
pixels corresponds exactly to the structuring element. e.g searching for a corner
can be done with a kernel with the structure:


−1 1 0 0
−1 1 0 0
−1 1 1 1
−1 −1 −1 −1

 (2.14)

where -1 corresponds to the values for the first structuring element, and 1 dis-
jointed one. This structuring element gives hit when it finds left corners that are
exactly 90 degrees.

One of the benefits with this operation is that it also takes the background pixels
into account. The pixel is set to background if there is no match. Operators like
hit-or-miss are used to simplify the structure of an object, while preserving its
structure.
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2.2 Kalman filter

Kalman filter is a linear optimal filtering for computer vision system, which ap-
plies to stationary as well as nonstationary environments [14]. The word filter is
used because it filters out the noise to find the best estimate, and projects the
measurements onto the state estimate. It is a recursive filter, since current state
depends on previous state. It is known from the theory that the Kalman filter is
optimal with the following requirements[16]:

� The model fits perfectly with the underlying system (motion model)

� The noise is normally distributed

� The covariance of the noise are known

The Kalman filter proposes advantages in vision based tracking when tracking
congested traffic scenes because it tolerates small occlusions. A limitation of the
Kalman filter is the ability to only process linear, discrete-time dynamical systems.
Complex dynamic trajectories cannot be modeled by linear systems, thus, constant
velocity is assumed in the implementation of the Kalman filter.

If the model is a linear motion model, and process and measurement noise are
Gaussian-like, then the Kalman filter represents the optimal solution for the track-
ing problem. These conditions are satisfied for a vast majority of applications [14].
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An example of the advantageous of the Kalman filter is when a vehicle is occluded.

Figure 2.4: Vehicle tracking with occlusion. The dark spot is the
occluded area

The vehicle is occluded in figure 2.4, in the dark area. The green line is the Kalman
estimated position. The estimate is the weighted average of the predicted state
and the measurement. When the necessary measurements are not available, the
estimation will fully depend on the prediction of the vehicle motion model.

The vehicle position estimate is obtained by three parameters; Object motion
model, Measurements noise and Process noise. These parameters are decisive
in the practical application of the Kalman filter, which can be explained in three
steps;

– Initial state

– Predicting

– Correction

where initial state is the parameters of the filter before it is initiated.
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Predicting and correction are filtering the measurements, where predicting might
be seen as a time update and correction seen as a measurement update, explained
in figure 2.5:

Figure 2.5: Prediction and correction steps in the Kalman filter

The steps are explained in detail below.

Initial state The object motion model is considered a constant velocity model,
represented by

xk = xk−1 + vk−1 ∗ t (2.15)

where xk is x at step k, and v is velocity. How these parameters affects the estimate
is described The state of a constant velocity model includes both the position and
velocity in x and y directions. The state vector is presented as:

x =


x

y

ẋ

ẏ

 (2.16)

where the x,y are position coordinates. ẋ,ẏ are the velocity in the x and y direction
respectively. ẋ,ẏ are derivates of the position.
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The initial uncertainty is expressed by the covariance matrix P. The uncertainty
in position is illustrated in figure 2.6.

Figure 2.6: Uncertainty of the vehicle position in subsequent frames is
given by the blue probability density function

The inital covariance matrix is assumed to have uncorrelated components, and
uncertainty I for each component.

P =


I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I

 (2.17)

Predicting the next state includes evaluating both position and velocity. The
optimal estimate of the vehicles positions is calculated by combining the measure-
ment and the prediction of the prior vehicle position. Predicting the next state:

x̄(k) = Φx̂(k − 1) + Γu(k − 1) (2.18)

where x̄ is apriori state, and x̂ is aposterior state. Φ is the state transition matrix.
The state transition matrix is represented by the linear dynamical system, constant
velocity model, given by equation 2.19:

p(t) = p(t− 1) + v ∗ p(t− 1) (2.19)
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where v denotes velocity and p position. The model is represented by the state
transition matrix Φ.

Φ =


I 0 ∆t 0
0 I 0 ∆t
0 0 I 0
0 0 0 I

 (2.20)

where ∆t is given by the time step. The covariance, P , matrix is predicted with
equation 2.21:

P̄ (k) = ΦP̂ (k − 1)ΦT +Q (2.21)

where Q is the process noise, and k is the k’th frame. The prediction is used to
localize and detect the vehicle in subsequent frames. If the vehicle is occluded,
the algorithm will predict position purely based on the previous prediction. As
the vehicle position becomes "more" uncertain, the covariance matrix would get
larger. In addition an increasing acceleration would result in a larger covariance
matrix because the model assumes constant velocity (implies zero acceleration).

Correction step is performed when new measurements are observed. After the
predicted state, the Kalman filter is correcting the error covariance, based on the
input measurements. The measurement(oberservation) model is 2.22:

z = Dx+ v (2.22)

v has zero mean with covariance R, and z is:

z =
 x

y

 (2.23)

The x and y coordinates are acquired from the center of the foreground blob.
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Furthermore, the model selection matrix, D, is:

D =
1 0 0 0

0 1 0 0

 (2.24)

The kalman gain, K, is computed to correct the prediction, 2.25:

K = P̄ (k)DT

DP̄ (k)DT +R
(2.25)

The gain is a relation between the filter’s use of predicted state estimate and mea-
surement.

In this application the measurement noise, R, is small, which entails predictions are
weighted less than measurements, and the Kalman gain decreases. The weighted
prediction is illustrated below:

Figure 2.7: Uncertainty of the measurement and predicted position.
The variance of prediction is bigger than the measurement
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The green Gaussian probability density function represents prediction, and shows
a bigger variance than the orange( measurements), because the process noise,Q, is
higher than the measurements noise,R. Analyze possible sources of disturbances
and assume them to be white Gaussian.
The state prediction is corrected:

x̂(k) = x̄(k) +K(k)[y(k)−Dx̂(k)] (2.26)

and the covariance matrix by:

P̂ = (I −K(k)D)P̂ (k) (2.27)
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2.3 Artifical neural networks

Artifical neural networks (ANN) are a method dating back to 1940 (4.40), but in
recent times have gained renewed attention in conjunction with increasing data
availability and computing power. Neural networks refers to a way of approxi-
mating mathematical functions inspired by the biology of the brain, and hence the
name neural. The method is used in different applications, including classification.
Classifying is the problem of identifying which category a given input belongs to.
In newer times when data is to a greater extent stored digitally and IoT (Internet
of Things) is introduced, availability of data is greater than before. In addition,
road cameras are installed in a greater extent, which in turn increases traffic mon-
itoring capabilities.

Several major companies have already taken advantage of this, including Tesla.
Tesla has, in collaboration with Nvidia, based core technology on Neural Net-
works (NVIDIA). Neural networks are built to solve problems in the same way as
the human brain, with several layers of neurons and synapses that forms a net-
work. The number of input and output neurons in the network is determined by
the number of input parameters and size of the desired output.
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Figure 2.11 is an network structure with two inputs, three artificial neurons and
two outputs.

Figure 2.8: An artificial neural network with two inputs, one hidden
layer and two outputs

This network can take two-value inputs, and classify into two different classes.
Given some input vector, the neural net is trained to compute a desired output
by adjusting its weights. W (l) and W (l+1) are the weights, respectively, in the grid
from the entry neurons to the hidden neurons, and the grid from hidden neurons
to the output neuron. The activation within a single neuron is illustrated below.

Figure 2.9: Activation’s inside a single neuron in the neural network.
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where x1 and x2 are the input neurons, denoted by X w, are the weights, Z is
weighted sum of the inputs signals, and a is the output activation of the neuron.

The weights, W, in the network are initialized with random values. The weighted
inputs, Z(l) are added together at each node. The activation function is applied
to the sum of the weighted input signals, and provides the activity, a(l), of the
hidden layer. The activation function is necessary to obtain a non-linear model.
There are several activation functions to choose from, where a common one is the
sigmoid function, given by:

S(t) = 1
1 + e−t

(2.28)

and plotted, with its derivative, in 2.10:

Figure 2.10: The sigmoid function and its derivative

The sigmoid activation function limits the output of a given neuron to a value
between 0 and 1. The output,a(l), is multiplied by the corresponding weights. The
output will at first give a poor prediction in relation to the expected response, be-
cause the weights in the network are initialized with random values. In order for
the neural network to improve the classification results, the weights in the network
must be updated. This is refereed to as training the network.
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Training a neural net is done by back propagating its weights. The weights are
updated by minimizing a cost function with respect to the weights in the network.
The cost function is computed by comparing the predicted value to the desired
output. There are several cost functions, where mean squared error is the most
frequently used one:

J =
∑ 1

2 × (y − ŷ)2 (2.29)

y is the target vector or desired output for the input x and ŷ is the predicted value.

The goal of backpropagation is to compute the partial derivative, or gradient, ∂E
∂w

of a loss function J with respect to any weight w in the network. This is called
stochastic gradient descent i.
Partial gradients, of the loss function with respect to the weights, are used to
update the weights and minimize the cost. The weights are updated with an
optimizing algorithm called gradient descent.
Gradient descent can be explained as a linear approximation to the cost function,
J, and then moving downwards toward the weights,W, that gives the lowest cost,
where the hidden layer gradient matrix for the weights in layer l, is given by the
matrix:

∂J

∂W (l) =


∂J

∂W
(l)
11
· · · ∂J

∂W
(l)
1n

· · · . . . ...
∂J

∂W
(l)
n1
· · · ∂J

∂W
(l)
nn

 (2.30)

The sum of the cost function adds the error from each example which creates an
overall cost:

∂J

∂W (l) =
∑

(y − ŷ) (2.31)

iThe gradient descent can also be computed using the whole dataset. This is called batch
gradient descent. The batch approach is great for convex, or relatively smooth error manifolds.
Additionally, batch gradient descent, given an annealed learning rate, will eventually find the
minimum located in it’s basin of attraction. Small batches of the dataset may also be used, this
is called mini-batch gradient descent
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Where ŷ is the sigmoid activation function of Z(l), f(Z(l)).
To find the gradients with respect to the weights in all layers, the backpropagation
algorithm is used to compute the overall cost of function J. This is done by applying
the chain rule to 2.31:

∂J

∂W (l) = −(y − ŷ) ∂ŷ

∂Z(l+1)
∂Z(l+1)

∂W (l) (2.32)

The back propagation error with respect to the weights decides where the cost
function should move:

Figure 2.11: Back propagation error of J, with respect to W.

Figure 2.11 illustrates the error, which is moving towards the weights that con-
tributes more to the overall cost, which means that synapses with large error will
gain more correction in the next training epoch.

The back propagation starts from the last hidden layer in the network, where
∂Z(l+1)

∂W (l) is the change of Z, last layer activity, in respect to the weights in the
second last layer. dZ

dW
is the activation for each synapse. The error-terms is back-

propagated to each synapse, by multiplying by each weight. The weights that
contributes more to the overall error will have larger activations, yield larger to
the next backpropagation layer and yield larger dZ

dW
values.
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Figure 2.12: Backpropagation error from output to input neuron, with
one hidden layer

Figure 2.12 is the backpropagation for one hidden neuron, with one hidden layer.
δl+1 is the backpropagation error from Z3 to Z2, and δl is the back propagation
error from Z2 to x1. The error back propagated from Z2 and backwards until the
input of the network, x1. The backpropagation error from Z3 is the derivative
with respect to the weights. The backpropagation error for hidden layers, Z2,
is computed as derivatives across the synapse,a. The back propagation error is
computed, and multiplied by the activity in the hidden layer:

∂J

∂W (l) = −(y − ŷ)f ′(Z(l+1))∂Z
(l+1)

∂W (l) (2.33)

y − ŷ is the true label , f ′(Z(l+1)) is the activation function. The equation 2.33
may be expressed as:

∂J

∂W (l) = δ
(l+1)
j a

(l)
i,j (2.34)

where δl+1 is the back propagation error, and a(l)
i,j the activations.
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If the network is built with multiple layers, the back propagation is done with the
derivatives across the synapses instead of the derivative in respect to the weights.
X is a vector holding the n numbers of input neurons in the network:

X =



x1

x2
...

x1+n

 (2.35)

thus, the cost function in respect to the weights:

∂J

∂(l) = Xδ(l+1) (2.36)

where X is the input vector to the neural network, and δ(l) = δ(l+1)(W (l)f ′(z(l+1)),
where f’ is the activation function of the sum of weighted inputs, z(l), in each
neuron.
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Overfitting is a problem of machine learning algorithms, where the algorithm
does not reflect the real world [7]. The algorithm is built on observations of the
real world, and these observations are composed of signal and noise. The model
should capture the underlying process or features of the input, but the signal will
always be obscured by noise, therefor the algorithm must be convinced to fit the
signal and not the noise to prevent overfitting.
This problem comes apparent if the neural network is too deep, trained with too
many iterations, or has a small dataset. A rule of thumb is that it’s required ten
times more data than degrees of freedom in a model. Each weight is one degree of
freedom [6].

Consider a two-class problem, illustrated in Figure 2.13, classifying red and blue
dots. The dots are placed randomly. The x- and y coordinates for the red and
blue dots represent input data to the neural network.

Figure 2.13: A two class problem presented with blue and red dots,
randomly placed in a predefined area. The axes represent the position.

In the two class problem, the coordinates are fed as pairs of x,y coordinates,
therefor two nodes are being used. One node for each x- and y-coordinate. The
output is classifying between red or blue,thus, two output neurons.
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Figure 2.14 and 2.15 shows the decision boundary after the neural network has
been trained.

Figure 2.14: Illustration of a properly trained neural network output
with 10 hidden neurons after 100 training iterations.

Plot 2.14 is a good fit to the dataset, while plot 2.15 is overfit.

Figure 2.15: Illustration of a overfitted neural network output with
100 hidden neurons after 1000 training iterations

Figure 2.15 is overfit because it does not find the general decision boundary, but
locates small patterns that may be considered noise in the dataset. The overfit
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model will achieve a best classification score for that particular dataset or case,
because it correctly classifies all the data, but will fail when new data is presented
to the classifier.

To overcome overfitting, the data is normally split into three sets:

– Test set

– Training set

– Validation set

It is a indication of overfitting if the accuracy of the training dataset scores higher
than the accuracy of the test or valididation dataset. The accuracy is calculated
as the overall correct classifications.

Accuracy = Correct classified
Total number of samples (2.37)

With less training data, the neural network parameter estimates have greater vari-
ance. With less testing data the performance statistics will have greater variance.
The training set is used to update the weights in the network, while the cross-
validation set used to measure the accuracy during training, but not used to up-
date the weights. The validation set is not used to update the weights. The test
set is used to validate the network after the training is completed.
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2.4 Classifying images with neural networks

Conventional artificial neural networks as described in last section does not scale
well to large images, because they process the image as a flattened vector. Each
of the hidden layer has a set of neurons, and each neuron are fully connected with
the neurons in the previous layers. These layers are called dense layers, or fully
connected layers. Each layer is fully connected to its previous layer, but neurons
in a single layer function completely independently and do not share any connec-
tions. E.g an 128x128x3 image would give 49,152 weights in the first layer, and
the weights will add up as the network is getting deeper. The amount of parame-
ters to update and tune the network would lead to overfitting and need of heavy
computational power.

Convolutional neural networks takes advantages of the vector input being an im-
age, and limits the number of neurons in the network, without losing information
about the feature vector. The neural network is build in three layers: height,
width and depth, where depth is referring to the activation volume [27]. The im-
ages are input activation volume, with dimension height,width and color channel.
Only a part of the image is connected to the previous layer, instead of having a
fully connected network. Only the last layers in a convolutional neural network
are fully connected. The convolutional neural net architecture is build from three
main types of layers: Convolutional layer, pooling layer and fully-connected layer.

Figure 2.16: Convolutional network structure, with convolution layer,
pooling layer and fully connected layers.
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Convolutional layers consist of learnable filters. During training, these filters
are convolved across the input vector. For each pixel position the dot product
summation between the filters and values around the center pixels are computed.
The filter is convolved across the entire image, which allows the neural network to
respond to visual features such as edges. Each convolutional layer will have have a
set of filters, which is stacked in the depth dimension of the network. The depth is
presented as the red box in figure 2.16. An example of a typical filter that reacts
on edges is the Laplacian, with spatial size 3x3

F =


0 −1 0
−1 4 −1
0 −1 0

 (2.38)

Figure 2.17 is the result of convolving a Laplacian filter around a grayscale image.

Figure 2.17: Edge detection with Laplacian filtering
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In contrast to dense layers, each neuron are connected to a local region of the
image, illustrated in 2.18.

Figure 2.18: All neurons along the depth are looking at the same
region in the input.

Each neuron in a depth slice are using the same weights, such that each slice can
be computed as a convolution of the feature matrix. This allows the network to
localize the features in an image.
The input matrix are divided into small tiles, based on the filter size. Each of the
input tiles are processed in the neural net,and the output size of the convolutional
layer is given by the equation

O = W − F + 2P
S

+ 1 (2.39)

where W is the input volume, F is the receptive field(filter size), S is the stride
and P is the zero padding.
The zero padding are used to ensure that the input and output has the same
spatial volume.
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Pooling layers are often inserted in-between successive convolutional layers.
Pooling, or subsampling is a technique to reduce the size of the feature matrix,
which leads to less memory use and faster training. The most common one is the
max pool. Maxpool applies a filter,normally of size 2x2, to the input volume, and
outputs the maximum value in the every region that the filter convolves around.

The pooling layer samples all the highest activation values, reduces the spatial
size by a half, and keeps the relative locations between the features.

Figure 2.19: Downsampling an image with max-pooling with a 2x2 filter

Figure 2.19 demonstrates the pooling on an 4x4 image, which is down-sampled
to 2x2. The filter size is 2x2, and the stride is 2. The filter convolves from the
upper left corner, illustrated by orange. The highest activation from the box is
chosen, and the filter is subsequently moved to the right, with a stride of two
boxes, illustrated with blue, and keeps the highest activation for the region. The
process is repeated for the whole image.

Dropout are layers composed to process the overfitting. The layer drops out a
random set of activations in hidden layers, by setting them to zero in the forward
pass. The dropout forces the network to be redundant, because the activations
are removed randomly. In practice, the drop-out is equal to training the data on
many different networks, and the result becomes a more robust network.
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Fully connected or dense layers is as explained in 4.2. They are the last layers
of convolutional networks, and outputs the classification score. The volume from
a convolutional layer is flattened into a vector and passed into fully connected
layers. Fully connected layers constricts the classification of an image to a single
variable for each class(classification score),which is unattainable for convolutional
layers because they output a volume.

Transfer Learning Transfer learning is the process of training an already pre-
trained model. It transfers the weights and parameters from a network that has
been trained on a large volume of images, and continue the training on a custom
dataset. The last layers of the pre-trained net are removed, and retrain the last
layers on a different dataset. Transfer learning is illustrated in 2.20:

[13]

Figure 2.20: Transfer learning from the Inception net

The layers from the pre-trained net are not updated, and is not affected by the
gradient descent. A common model to transfer from is the ImageNet. This is
a dataset with 14 million images, classified in 1000 classes [21]. The first layers
are discovering edges and curves, which is often needed in all classification task.
With the exception of datasets that differ significantly from the classes in the
ImageNet,the network will benefit from transfer learning.
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Implementation of the
vision-based traffic system

In this chapter, details of the practical implementation of the vision-based traffic
system will be presented. The system is divided into four modules:

– Preprocessing

– Detection

– Tracking

– Classification

The system is distributed so that all training of the neural network is performed
on the Unix server because of the necessity of computational power. The real-time
part of the system is run on a local computer.
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The framework for the system in terms of software and hardware is presented first.
Figure 3.1 shows a simplified overview of the software- and hardware components
of the system.

Figure 3.1: Software and hardware components of the system

The system relies on parameters from the location it processes, which makes it
more practical to explain parts of the implementation in details in the experimental
section. Comprehensive information about the Python libraries are attached in A.
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3.1 Hardware components

This section will present various hardware components that has been implemented
in the system.

Camera System Machine learning
Hardware AXIS P1346 Asus UX303L Unix server

Mobotix Allround Dual M15/M16 Nvidia 940 M Tesla P100

Table 3.1: Hardware components table

The recordings from the web cameras are, according to Statens Vegvesen[46], a set
of Axis P12346 cameras.

[5]

Figure 3.2: Cameras used by Statens Vegvesen, Axis P1346

The webcams are set to give users an impression of traffic conditions such as con-
gestion, weather and driving conditions. The cameras should not take pictures
of individuals, and it should not be possible to identify persons or registration
numbers of vehicles on the images, due to privacy regulations. The drawback of
the anonymous filming is a limited image resolution and low frame frequency. The
images are free for use and Statens vegvesen does not demand any allowance for
the usage [46].
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Another camera has also been used for testing. This camera is provided by Bjørn
Fossåen from Statens vegvesen, and is a combined optical and thermal camera.

Figure 3.3: Mobotix Allround Dual M15/M16

It is a combined day/night camera for 24-hour use, used for surveillance. More
comprehensive technical information can be found in B.

[31]

Figure 3.4: Tesla P100 video card

The Unix server is a server that is available to students at the University of Sta-
vanger. The server is a Linux based web server, where heavier applications can
be run. The server has installed three Tesla P100 video cards (Figure 3.4). The
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server is intended for machine learning purposes such as training neural network.
These were purchased in the context of master’s thesis work based on machine
learning. Comprehensive information about the Tesla P100 may be found in [31].
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3.2 Implementation in Python

This chapter will present programming modules that has been developed and im-
plemented in the final system. The Python-system is divided into four modules:

� System setup

� Detection module

� Tracking module

� Classify module

� Analyze and interface

The program is object-oriented, where an object stores vehicle attributes in fields
to ensure systematic structure of all the passing vehicles. The objects can be
modified and maintained independently of other objects, and once created, the
object can be easily modified inside the system. From here on, objects refers to
an data-object.
Implementation of the system setup describes necessary readjustments when the
program is utilized at new locations.

The detection module involves the background subtraction and blob detection.
This module describes both implementation of background subtraction and the
image processing. The classify module describes how neural networks are imple-
mented into the system.

Figure 3.5 shows the program flow, where the system setup, detection module and
classify module are located in the left box, and Analyze and interface is at the
right:
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Figure 3.5: The flow chart of the program. The left module is
acquiring traffic data, while the right module is processing the data

into useful information.

The detection module is represented withing the green area, the tracking module
by red and the analyze and interface by the right box.
The following sections are describing the implementation of each module.
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3.2.1 System setup

The system setup allows the user to make adjustments to the system to accommo-
date geometric changes to changing locations. The reasoning for implementing a
system setup part into the system is two-fold:

– Adjust the system to a new locations

– Eliminate false positives

The steps are specified in figure 3.6:

Figure 3.6: Methods used in system setup

The region of interest is defined by the corners of the road, such that all traffic is
captured, but irrelevant information and noise is filtered out.

Figure 3.7: Region of interest defined by the corner the lanes
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The divider line is placed to cover the entire road. Objects that pass the divider
is counted and saved to the database.

Figure 3.8: Divider line, in red, determines where the vehicles are counted
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3.2.2 Detection module

The detection module processing the incomming video frames to extract movement
in the background and determine the position of the vehicles. The extracted area
is then passed forward for further processing. The flow diagram of the detection:

Figure 3.9: flow in the the detection module

The raw video stream is processed with a median filter to reduce noise points of
the image i. The image becomes smoother and the filtering has little effect on the
edges of the vehicle and other details [23]. The image processing is followed by a
mixture of Gaussian background subtraction(BS) algorithm, provided by opencv.
For the BS to adapt faster to the background, an initial background image is
chosen. The initial background is set to a frame with no moving objects in the
background. The background is updated based on the history of previous frames.

iMedian filtering should be a well known method for the audience of this thesis. Information
may found in [15]
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In this application, the method is set to form a background based on the 50 last
frames. The raw output of the background subtraction is shown in figure 3.10:

Figure 3.10: Unprocessed foreground mask

The foreground mask is then cleaned up with morphological operations, provided
by opencv. A structuring element of size 3x3 pixels is used to perform closing,
opening and dilation in that respective order.
The result of performing the morphological operations is the removal of noise and
filling out details on the remaining objects while retaining the size of the detected
objects. The result is shown in figure 3.11.

Figure 3.11: Foreground mask processed by morphological operations
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Shadows caused by vehicles are removed by thresholding a value relative to the
vehicle. The idea behind shadow extraction is that shadow has a slightly darker
color than the road, while vehicles are clearly discernible. This approach fails
when the illumination is weak, and there is no clear contrast between vehicle and
shadow.

Figure 3.12: Background subtraction without(left) and with shadow(right)

As an object is detected in the background, the center coordinates of the contour
is computed and plotted for each consecutive frame. The tracked center of the
vehicle is found by dividing the detection box width and height by 2.
Detected objects are marked in relation to its extracted background blob.

Figure 3.13: Detected blobs are marked with a green square
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The extracted region is defined within the lane markers. The lanes are localized
by evaluating the blob coordinates over a period of time.

Figure 3.14: The lanes becomes apparent by tracking the movement in the fore-
ground mask

Figure 3.14 displays object positions over time. The three lanes are easily recog-
nized, and manually divided into separate regions. Traffic in opposite direction
is removed from the processed region. Each blob are saved as a separate object,
with information about size, coordinates and time at last detection. When the
coordinates indicates that the object has passed a divider, an image of the vehicle
is saved and stored in its respective object and saved to the vehicle database.
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3.2.3 Tracking module

Tracking is the process of matching vehicles in subsequent frames. The tracking
provides the system with abilities to prevent true negatives values and measure
velocity, size and driving pattern.

Figure 3.15: Detection and tracking scenarios

The tracking has basically three scenarios per lane, listed in relation to the degree
of difficulty:
One lane, ideal case: When there is no occlusion or separation. This is the
simplest tracking scenario, where a detected objected is assigned a new tracker.
This tracker is deleted when the vehicle is leaving the frame.

One lane, object is split: When occluded objects are split, they share the cor-
responding occluded tracking values until they are split, and assigned separate
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values afterwards.
One lane, with occlusion: The blobs are overlapping, and one object contains
two or more vehicles. They share the same coordinates, and are counted as one.
When objects passes the divider, they are counted and classified.

While taking cognizance of the above, a two part system is proposed to obtain
robust tracking:

1. Manually deciding a vector space

2. Predict position with Kalman filter
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Figure 3.16 shows the tracking system. The first state, Acquire object, is acquired
from locating a vector space.

Figure 3.16: Flow chart for the Kalman filter

A region-based tracking method are tracking the regions that are segmented from
the foreground extraction. The vehicle assessment involves features as geometry
and number of measured positions. The geometric traits are used to eliminate false
segmented areas. The module is assigning coordinates to objects, and retained in
later frames to ensures that objects are counted.
The first step when the algorithm is applied to a new scene is computing a vector
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space, established from the coordinates. The vector space ensures that an moving
vehicle-object acquires at least two points, which is required for the Kalman filter
to predict the next position. This process is described more in comprehensive
details in the experiment section 4.4.1.

The Kalman filter implemented in the system is based upon the constant ve-
locity model, as described in 2.2. It is used to predict the next spatial and temporal
state of the vehicle. All measurements for an object up to the current time are
used to estimate the next position. A minimum of two positional coordinates are
required to describe the dynamical behavior of the system, and to predict its fu-
ture state.

Initially the noise covariances matrices for the measurement noise and the pro-
cess noise must be obtained. The covariance of the measurement noise is denoted
as R, and assumed to be Gaussian. In the context of this application, this means
the detection error. The R matrix describes how uncertain the position around
the location of the centroid of the bounding box is. In this case for the x,y coor-
dinates the corresponding diagonal values of R should be a few pixels, assuming
that the measurements are relatively reliable. The state includes velocity, thus,
the need to guess the uncertainty of the velocity measurement, and take the units
into account. The position is measured in pixels and the velocity in pixels per
frame, so the diagonal entries of R must reflect that.

Q is the covariance of the process noise. The Q specifies how much the actual
motion of the object deviates from the assumed motion model. The constant ve-
locity model should be reasonably good when tracking the vehicles, which implies
small entries of Q. If the vehicles are driving with constant velocity, the prediction
will deviate from the constant velocity model, and yield larger error. In general the
Q matrix will be full matrix, not a diagonal, because there is correlation between
the state variables. For example, if there is a change in velocity due to bumps,
there will also be a change in position. They are correlated, and so the off-diagonal
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elements will be non-zero. But even a relatively simple process model can produce
acceptable results if there is enough uncertainty in the Q matrix, but selecting an
overly large Q, then Kalman filter would not be well-behaved.

The model is tuned by setting the measurement noise matrix is set as constant,and
treating the process noise as a tuning parameter to adjust the gain of the Kalman
filter. The tuning is done by plotting the predictions to see how much they deviate
from the detections. Since the R matrices is considered reliable, the Q is tuned
until the predictions and detections is right. The source code to tune the filter is
attached in Appendix. The kalman filter is implemented by coding the equations
from 2.2 into Python. If a par of coordinates fails to match any objects currently
tracked by the algorithm, the coordinates are assign to a new object. An object is
deleted from the algorithm if no new coordinates are assigned to the object within
a given time frame. The object is kept in the database if the coordinates have
passed the divider line.

Figure 3.17: Vehicle moving from upper left corner to right bottom
corner. Red square is prediction, x is measurements.

Figure 3.17 shows the tracking of a vehicle. The X is measurements, and the
squares are predictions. X and Y along the axes are position over time.With no
new measurements the uncertainty of the prediction grows, denoted by the circle
around the prediction.
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Figure 3.18 shows the tracking of a vehicle.

Figure 3.18: Background blob tracked with Kalman filter. The dots highlights
trajectory points. Red is measured position, and white is predicted position.

The white circles denotes the kalman predicted position. The red circles are the
true measured position. The measurements are weighted more heavily than pre-
diction, but if no measurement is registered, the kalman filter is computed entirely
from the last predicted position. Predict the last estimation to the time of the
new measurement using the propagation model, and update the co-variance ac-
cordingly.
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3.2.4 Classification module

A convolutional neural network is trained as a classifier, with the purpose of clas-
sifying incoming objects from the detection module. The classifier is built with
the Python package Tensorflow. The classification module structure is described
in figure 3.19.

Figure 3.19: Flow chart of the Classify module, both with and without training
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Training of the classifier is initiated with different hyperparameters that de-
fines the complexity and learning capacity of the model. These parameters cannot
be learned directly from the data in the standard model training process and need
to be predefined.
By combining different parameters, one can programmatically set a competent
network architecture, with the number and type of neuronal layers and the number
of neurons comprising each layer, and choosing the values that test better.
The hyperparameters for the convolutional neural network are image input vol-
ume, the learning rate in the gradient descent, image batch size, convolutional
filter size and depth, and fully connected layer size.

An input pipeline were constructed to feed the network with image batches. A
script is reading filenames from the dataset folder, and subsequent shuffles the
filenames to prevent overfitting. According to the initially defined batch size , a
batch of filenames are placed in a queue. An image decoder reads the filenames
and pass on the image queue to the network. The pipeline limits the ram usage of
the computer by allocating a batch of images to the memory, and not the entire
dataset. The dataset structure is describes in next section.

The layer architecture is a sequence of layers, defined by the hyperparameters.
Three types of layers are combined, convolutional layers, pooling layers and fully-
connected layers, in that order. A number of each layer type may be stacked,
keeping in mind that a deeper network is more prone to overfitting. Each convo-
lutional layer is holding a number of trainable weights, according to the spatial
input volume and the filter depth.
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Figure 3.20: Convolutional neural network with fixed hyperparameters, filterdepth,
filtersize and connected neurons.

Convolutional layers, fully-connected layers and pooling layers have all hyperpa-
rameters that were tested. For each training epoch the model is saved if the
accuracy of the validation set is higher than previous recorded.

To use the classifier the weights and the network architecture from the best
recorded model is initialized. Loading the model is time consuming, but it is a one
time cost. Using the classifier may be done by both the locale computer and the
Unix server. The classifier is represented to the left in the flow chart 3.19.
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3.2.5 Graphical Interface

A graphical interface was developed to illustrate the activity in the vehicle database.
The interface gives feedback about vehicle class, velocity(in pixels per frame), last
detection of the vehicle and number of counted vehicles.

Figure 3.21: Information from the database is shown in a Graphical interface
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Start starts the system at a predefined location. The check boxes presents a
number of different processing options:

– Extracted foreground

– Show video stream

– Show detected blobs

– Detect and track vehicles

– Classify incoming objects

The counter keeps track of the classified vehicles in the database. If the classify
check box is unchecked all objects are counted as cars. The neural network model
is loaded into the program by pressing file and insert model.
The upper right image shows the last detected vehicle and its class and velocity.
The images below is the last vehicles stored inside the database.
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Experimental results

The following chapter presents the experiments that were carried out and the
results they gave. The chapter is divided in four sections:

– Collecting data for the neural network

– Testing architectures for the neural networks

– Initial test of the detection module

– Data analysis of the dataset acquired from the inital tests

All detection experiments were run with a axis P1431 camera and Asus UX303L.
All neural network tests were performed on the Unix server on a Tesla P100 GPU.
The neural network were trained to classify three different classes; pedestrian, cars
and trucks.
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4.1 Data acquisition

This section describes the dataset acquisition to meet the large data requirements
for deep learning,as discussed in 4.2. The pedestrian dataset and cars and trucks
datasets are described separately.

Pedestrian dataset

The Daimler dataset [18] is made freely available to academic and non-academic
entities for non-commercial purposes such as academic research, teaching, scientific
publications, or personal experimentation. The dataset involves a large training
and test set. The training set contains 15.560 pedestrian samples (image cut-outs
at 48x96 resolution) and 6744 additional full images not containing pedestrians for
extracting negative samples. The test set contains an independent sequence with
more than 21.790 images with 56.492 pedestrian labels (fully visible or partially
occluded), captured from a vehicle during a 27 min drive through urban traffic, at
VGA resolution (640x480, uncompressed) [18]
Unbalanced datasets has a significant impact on the performance of convolutional
neural networks [40], thus, to prevent a unbalanced datasets relative to the car
and truck, 7000 random images were chosen from the Daimler dataset.

Cars and trucks dataset

In order for the network to recognize vehicle fronts, it is a prerequisite that the data
set also consists of vehicle fronts. The data collecting were resolved by processing
recording with the detection algorithm. The detection algorithm were utilized at
different locations at various times of the day. There are several reasons why the
recordings are made under different environments and locations:

– Variance of illumination

– Images of multiple angles of the vehicles

– Changes in background
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Performing all data retrieval from a particular location may cause overfitting, as
the neural network may find insignificant features such as borderlines and colors
of the road.

The collected data were labeled by hand as either car, truck or no class.
The recordings gave a total of 4870 annotated cars and 4993 annotated trucks.

Recording position Time Personal vehicle Truck
Maritim E18 12:00-20:00 2499 1245
Sandvika E16 Nord 12:00-18:00 543 261
Sandvika E18 07:00-11:00 1562 1583
Rv. 150 Ullern 10:00-20:00 266 1905
Sum: 28 hours 4870 4995

Table 4.1: Gathered data at given locations

Data augmentation

To increase the amount of data, various augmentation methods were applied to the
dataset. Figure 4.1 shows images from the original dataset, and figure 4.2 shows
the augmented dataset.

66



Chapter 4 4.1. Data acquisition

Figure 4.1: Original data, directly cropped from the object detection module

Different augmentation methods were applied to the dataset, such as cropping,
flipping, change in hue, contrast, brightness and saturation. The augmentation
simulates different scenarios that occurs during the day, e.g illumination and ve-
hicle orientation.
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Figure 4.2: Data augmentation of the original dataset in figure 4.1

With augmentation the dataset were increased to 23800 images for both cars and
trucks. Splitting the dataset into training, validation and testing datasets proposes
two challenges: with less training data, the parameter estimates will have greater
variance, and on the other hand, with less test data, the performance statistical
will have greater variance. Ideally, that variance should be as small as possible for
both.

Ideally, the networks should be trained with different sizes of test, validation and
training data sets, to evaluate the combinations that offers the best results. How-
ever, an assessment has been made that the dataset is split into 80:20 for the
training and test data sets, and then the training set is again divided into 80:20
for the training and validation set respectively. It provides a test data set of 4750

68



Chapter 4 4.1. Data acquisition

images, training data set of 15,232 and validation set of 2808.
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4.2 Testing neural networks architectures

In this section testing and evaluating of various network architectures are ex-
plained. The networks architectures are composed with a combinations of different
input size, batch size, learning rate and combinations of convolution, dense layers
and pooling layers. All input images that does not meet the input size of the
neural network are zero padded. The network is designed to predict three classes
considered important in traffic surveillance. The three classes are cars, trucks and
pedestrians. Detecting pedestrian proposes important features to the system in
regards to safety [20].

There are no generalizing rules for building the convolution neural network, but
Xudong Cao[11] conducted a paper aiming to find theories for designing very deep
convolutional neural networks. The paper concluded that an image size of 128x128
pixels are sufficient, in addition to using small convolutional filters. There are sev-
eral examples of small filters being applied with success, one of the is the VGG Net
[40] , which is one of the most successful neural networks for image classification.
The pooling size is fixed to 2x2 with stride 1 (equals down-sampling the volume
by a half).

The mini-batch gradient descent algorithm(as described in forms the optimiza-
tion of the neural network. Mini-batch gradient descent usually operates with
batches with size of 32–512 images[30]. The main problem with large batch sizes
are sharp local minima which leads to overfitting [25] and GPU memory require-
ments. According to Yann Lecun [28] is a batch size of one theoretically the best
approach, but requires far longer time to train the network. The VGG net was
trained with a batch size of 256. To limit the GPU memory use, and optimize
the training time, the batch size is fixed to 128 images. In most cases a single
validation set of respectable size substantially simplifies the code base, without
the need for cross-validation with multiple folds [24].
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The structure of the architectural testing is illustrated in figure 4.3.

Figure 4.3: Experimenting on different architectures of the neural network

The mini batch size and input size is fixed to 64 and 128x128x3 respectively. The
datasets are split into minibatches and fed into the network. The images in each
mini batches are randomly picked, and the network is updated according to its
gradient descent.
For the mini-batch gradient descent it is for efficiency of the estimator that each
example or mini-batch be sampled approximately independently. Faster conver-
gence has been observed by shuffling the dataset[9].

The remaining hyperparameters were compromised within fixed ranges to limit
possible architectural structures for the model. The learning rate is defined as ei-
ther 10−6 or 10−5. The convolutional filter size is defined between 3x3 to 8x8 and
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filter depths between 32-512, depending on the size of the network. The pooling
layer may or may not be used, but with fixed parameters. The neural network
takes a lot longer to train without pooling, but some features in the image may be
lost using it. Outputs from convolutional layers are zero padded to preserve the
same spatial volume as the input.

Dense layers were given input neurons ranging from 512 to 4048, with and without
drop out. Note that drop out is just used during training. Each model is trained
for 100 epochs and saved when the validation accuracy outscores previous models.

A total of 20 models were trained, varying from 4 to 12 convolutional layers,and
two to four dense layers.
Figure 4.4 shows examples of models that were disposed of due to no accuracy
improvement. These models were all constructed with four convolutional layers
with filter depth 32,64,64,64 respectively, but different pooling and filter size. Re-
gardless of various pooling and filter parameters the model fails to improve its
validation accuracy 4.4 (model 2,3,4,7 in appendix C).

Figure 4.4: Accuracy of neural networks plotted vs epochs. The colors represent
neural network models with different architectures.
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Figure 4.4 shows no sign of improvement of accuracy, even though the accuracy
is floating between 0.35 and 0.55. The accuracy of the validation testing for the
top 5 most promising models are shown in figure 4.5. These models were con-
structed with deeper architectures and more complex filter depth(model 1,4,5,6,10
in appendix C).

Figure 4.5: Neural network architectures with good accuracy. The accuracy is
plotted vs training iterations.

All models that shows high accuracy are saved and used for testing on the test
dataset.
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The best architecture from the validation tests is shown in figure 4.6.

Figure 4.6: The architecture of the neural network with the highest accuracy score

The first convolutional layer is without max pooling. The volume is the number
of output neurons from each layer. The last convolutional layer represents the fea-
ture vector as a 4x4 image with 512 filters. The model achieved 99,9% validation
accuracy.

The validation score itself is not very interesting in regard of network perfor-
mance, because it only proposes an indication of how the model will perform. The
test that determines how the network will behave in real is carried out on the test
dataset.
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4.2.1 Testing the classifier

The best architectures from the training was tested on the test dataset (TD). The
results for the TD were promising. The result of the test is presented in a confusion
matrix, where the predicted class are at the top, and the true class is at the left.
The model with the best classification score is shown in table 4.7.

Figure 4.7: Confusion matrix after classifying the test dataset. Achieved 99.0%
accuracy

E.g of 2233 images cars were misclassified as trucks 23 times. The confusion matrix
shows the biggest error is due to truck being classified as pedestrian, followed by
cars being classified as pedestrians.
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The normalized confusion matrix is shown in 4.8.

Figure 4.8: Confusion matrix after classifying the test set. 99% accuracy

Finding how each class has been classified The matrix gives the percentage of ele-
ments of real class classified as each class. The matrix is achieved by dividing each
element by the sum of the elements in each row. The matrix gives a better indica-
tion of the error rate. From the current dataset the accuracy is approximately 99%.

The error rate of a truck classifying as a pedestrian is 0.03 %, which means the net-
work misclassifies a approximately three in a hundred images. The second largest
error rate is a result cars being classified as a pedestrian. This error rate is 0.01%,
which gives about one error prediction out of a hundred images. Pedestrians, on
the other hand, are classified almost flawlessly, with only 7 misclassifications out
of 1867 images, which is equivalent to around 3 misclassification per thousand im-
ages. This may be a indication that the network is overfitting the pedestrian class.
Ideally, the classifier would avoid misclassifying vehicles as pedestrians because
this misclassification proposes the biggest safety challenges.

76



Chapter 4 4.2. Testing neural networks architectures

Figure 4.9 shows some of the misclassifications.

Figure 4.9: Misclassifications of the dataset

Some of the misclassifications are understandable, e.g the pedestrian image shows
more than one person, and the image of the truck is very close up,which changes
the features of the input images.
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4.3 Arranging the experimental setup

All cameras are in a fixed position, filming a static background. The neural network
is trained to classify the vehicle front, which implies that the camera must be
aligned to capture incoming traffic.
Cameras from Statens vegvesen are mounted on poles or structures above or ad-
jacent to the roadway, capturing incoming traffic, illustrated in figure 4.10.

Figure 4.10: The camera may be mounted anywhere along the x-axis, as long as
the green area is observable.

The all tests were performed with Axis P1346 cameras with a top-down view. The
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recordings are from the destinations in figure 4.11.

Figure 4.11: Recording destinations. 1 is E18 Maritim, 2 is E16 Sandvika, and 3
is E18 Sandvika

The image resolution from the cameras are 800x600 pixels, with a frame rate of 1
frame per second. The video stream are both composed of objects and noise,thus,
the result of the detection has four outcomes, presented in table A.1.

Vehicle present Vehicle absent
Detected Hit False positive
Not detected Miss Correct rejection

Table 4.2: Detection table
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Multiple detections of the same vehicle are counted as hits in the initial tests. All
images that contains recognizable objects are considered a positive, illustrated in
figure 4.12 and figure 4.13.

Figure 4.12: Hits detected

Figure 4.13: False hits detected
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The performance of the model is measured with a hit rate. The hit rate is computed
by dividing the sum of valid detections on all detections, in epochs of five minutes.

hitrate =
∑n

i i∑m
i i

(4.1)

where n is the number of detections, and m is the number of true detections.
The detections are manually sorted as either false positive or true detections.
Detections of non-vehicles are considered false detections.
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4.4 Initial considerations of the acquired data

Datasetet var hentet på forskjellige tider og ved orjskelliige værfrohold. Dette
skapte en innledene arrised quastions i forhold til validity på den acquired data.
thus inital consideration were done to investigate the data and to skille ut de
reliable datasets. Several steps were taken to achieve this.

1. Determining a reasonable vector space

2. Initiating the Kalman filter

3. Hit rate during sunny days

4. Hit rate during cloudy days

5. Hit rate at different locations

6. Multiple lanes
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4.4.1 Determining a reasonable vector space

Deciding a reasonably vector space must be done every time new locations are used
by the system, because the geometry of the lane changes, which implies different
driving pattern of the vehicles in different locations. The location of this test is
shown in figure 4.14.

Figure 4.14: The system is adjusted according to the location. The black boxes
are blocking personal properties, due to privacy regulation.
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The adjustment is completed by computing vectors between coordinates. Figure
4.15 illustrates how the vectors are computed. The origin of the coordinate system
is in the upper left corner.

Figure 4.15: Vectors between vehicle coordinates

The purple and turquoise marks represents two separate vehicles driving in the
direction of the Y-axis. The valid vectors are the ones point backwards, because
each new measured coordinate are looking to join an existing object.. If the vector
points downwards, A vector pointing downwards is not valid, because it implies
the vehicle is looking for points ahead of itself (e.g the vehicle in front), which is
undesirable. The angle between the points is measured in relation to the x-axis.
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α1 is a valid vector in figure 4.15. α2 is the opposite vector of α1, which is α1 +180
The vectors are defined between -180 to 180 , which implies angles exceeding 180
, will continue at the negative axis. For each valid vector α1, a corresponding
invalid α2 will exist. α3 is a vector between the two lanes and will be invalid in
both directions, because no correspondence is desired between the lanes.
Figure 4.16 shows the result of computing the vectors between all measured coor-
dinates in a one minutes interval in relation to each other.

Figure 4.16: Distance between measured positions based on frames per second

The blue and green area are represent the valid space for the two lanes. Since the
blue and green are valid vector space, they will project two equal punctures that
are skewed 180 degrees. This is reflected in figure 4.16, where the purple parabola
has a offset of 180 relative to the blue parabola. The yellow area has an offset
of 180 relative to the green. Both purple and yellow are invalid vector area. The
seemingly random dots in the plot are coordinates in the two lanes and noise in
the extracted foreground.
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How the pixel distance changes as a result of various frame frequency is illustrated
in figure 4.17

Figure 4.17: Distance between measured positions based on frames per second

Only one lane were used in this test, thus the blue line in figure 4.16 constrains
the vector space. The area is manually chosen. The parabola is computed by the
following equation.

y = a(x− xo)(x− x1) (4.2)

Where xo and x1 is left and right, respectively, intersection between the parabola
and the angle-axis. a is solved by inputting the maximum distance value for y and
xo+x1

2 for x, in equation 4.2.
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4.4.2 Initiating the Kalman filter

The coordinates for a single vehicle from the background subtraction are plotted.
The model is considered constant velocity, and the noise sources is assumed to be
white Gaussian distributed. The measurements are considered real values. The
velocity is given as v =

√
((x(t)−x(t−1))2+(y(t)−y(t−1))2)

∆t
, where t is a given frame, and

x and y are pixels coordinates. The time dependent terms of the state transition
matrix are updated every time the time step is changed.

Φ =


I 0 ∆t 0
0 I 0 ∆t
0 0 I 0
0 0 0 I

 (4.3)

The initial error covariance of the state vector is set to I · 0.1.

P =


0.1 0 0 0
0 0.1 0 0
0 0 0.1 0
0 0 0 0.1

 (4.4)

Which means the standard deviation of each inital guess is the square of 0.1, =
0.1. So for all cases, 68 % of the time the initial inputs are within +/- 0.3 units
and 95% of the time within +/-0.6 pixels. This statement is reasonable because
the initial position of the vehicle is relative accurate, which gives an initial error
covariance for x and y that is close to zero, and a 95% confidence that the initial
position is within +/-0.6 pixels. And the vehicles is moving with +/-0.6pixels/dt.
The effect of initializing a measurement noise covariance matrix close to zero means
the proportion of error in the correction step is going to be nearly 100% attributed
to the model.
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The filter is manually tuned until the prediction fits the measurements.

Figure 4.18: Measured coordinates in pixels and the corresponding predictions

The norm of the state covariance matrix is shown in figure 4.19.

Figure 4.19: The norm of the state covariance matrix plotted vs time

The state covariance matrix converges rapidly, which means a lower uncertainty.
The values for Q and R was retained for the following tests.
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4.4.3 Hit rate during sunny days

The following initial test were conducted to see how the system responds to the
sun changing position during the day. This is to determining if utilizing the system
at different times of the day will be decisive for the result.

Recording position Time Day Weather Lanes
Sandvika E18 08:00-09:00 15.05.2017 Sun one
Sandvika E18 11:00-12:00 15.05.2017 Sun one
Sandvika E18 14:00-15:00 15.05.2017 Sun one
Sandvika E18 16:00-17:00 15.05.2017 Sun one
Sandvika E18 19:00-20:00 15.05.2017 Sun one

Table 4.3: Recordings from Sandvika E18

These results are within the practical scope of this project, thus some time gaps
are present.
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Figure 4.25 and figure 4.21 shows hit rate during the time interval.

Figure 4.20: Hit rate at different time of day

Figure 4.21: Hit rate at different time of day, parallel view of figure 4.25
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The test shows significant difference in hit rate in relation to the time of day, where
the average hit rate is varying form approximately 0,70% to 0,85% for 08:00 and
12:00-13:00 respectively.
The test shows significant difference in hit rate in relation to the time of day. The
position of the sun has a impact on the projected shadows from the cars, which in
turn may lead to false positives. Figure strates how the sun provokes shadow.

Figure 4.22: Shadow projection caused by the sun

The reason is two-folded, shadow from the surroundings is detected as vehicles,
and shadow from vehicles that are not filtered out. This shadow causes vehicles
to be detected as the same blob, and thus difficult to differentiate and classify. It
can be concluded that illumination proposes considerable error on the hit rate.
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4.4.4 Hit rate during cloudy days

The impact of cloudy days is measured by filming the same locations,with cloudy
weather conditions, in different time intervals between morning and evening.

The recordings are listed in the table 4.4:

Recording position Time Day Weather lanes
Sandvika E16 Nord 08:00-09:00 15.05.2017 cloudy one
Sandvika E16 Nord 14:00-15:00 15.05.2017 cloudy one
Sandvika E16 Nord 19:00-20:00 15.05.2017 cloudy one

Table 4.4: Recordings from Sandvika E16

The results of detecting and tracking in various times during the day is presented
in a graph in figure 4.23 and figure 4.24.

Figure 4.23: Hit rate during cloudy days, plotted between 08:00 - 20:00
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Figure 4.24: Hit rate during cloudy days, parallel view of figure 4.23

The experiment indicates that performance of the system is lower in the morning,
compared to measurements later in the day. One apparent reason for the lower hit
rate in the morning is higher frequency of vehicles. Higher frequency of vehicles
entails occlusion, which in turn may confuses the tracking module. Backed by this
results, further analysis will use cloudy data because its more reliable than sunny
weather.

Due to the considerable amount of data needed for the tests, a representative
time interval had to be selected to make further analysis within a reasonably time
frame.
The interval is selected from the initial tests, where the plot indicates a stable hit
rate around 14:00 with cloudy weather. Furthermore, the time at 14:00 will be
defined as zero point.
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4.4.5 Recordings from three different locations

The impact of different locations are measured by recording three different loca-
tions at the same time of day. The recordings are listed in table 4.5.

Recording position Time Day Weather lanes
Sandvika E16 Nord 14:00-15:00 15.05.2017 Cloudy one
E18 Maritim 14:00-15:00 15.05.2017 Cloudy onea

E18 Fiskvollbukta 14:00-15:00 15.05.2017 Cloudy one

Table 4.5: Recordings from Sandvika E16

aThis destination has originally multiple lanes, but only one of the lanes are recorded in this
test

The result of the test is shown in figure 4.25.

Figure 4.25: Hit rates for the three selected locations

The quality of the data from this three locations are very similar, with a average
hit rate of approximately 0,85 %. Thus the data from these three locations will
be merged for further analysis. In addition it can be assumed that the system is
representative of roads that are relatively straight and with single lanes.
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The colors in graph represents the different locations, and by further analysis,
the locations will be represented by the same colors.
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4.4.6 Multiple lanes

The multiple lane experiment aims to provide results to which extent the hit rate
is affected by detecting multiple lanes. The recordings are from at same time at
day, but different locations.

Recording position Time Day Weather lanes
Maritim E18 14:00-15:00 03.05.2017 cloudy onea

Maritim E18 14:00-15:00 09.05.2017 cloudy three

Table 4.6: Recordings with multiple lanes

aOne lane cropped out

The results from the test lane testing is presented in Figure 4.26.

Figure 4.26: Multiple lanes

As expected is the hit rate for multiple lanes poor compared to single lane de-
tection. Multiple lanes proposes challenges as several objects are tracked simul-
taneously, as multiple object tracking increases the likelihood of mixing vehicle
coordinates as they change lanes. In addition the vehicle frequency is higher with
multiple lanes, as more cars pass the camera over the same time period compared
to a single lane.
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Based on the initial tests, it can be assumed that future tests must be conducted
at the same time of the day and with the same weather conditions, and with one
lane.
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4.5 Analysis and presentation of traffic data

The essential part of the data analysis is to
present the data in informative format to simplify the decision making and the
planning for the end user(Statens vegvesen). Data from the initial tests were used
for further analysis.

The three locations within the given prerequisites(cloudy, 14:00-15:00 and a single
lane) gave a dataset of approximately 3000 images.
A report from Statens Vegvesen[4] sums up the desired target data from the anal-
ysis.

� Velocity distribution

� Density of vehicles

� Traffic congestion

� Vehicle classification

� Vehicle class frequency

These analysis will be presented in the next sections.
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4.5.1 Velocity distribution

This analysis shows how the relative speed between the cars are distributed. The
database stores information about the pixels per second velocity for each moving
objects. The real distance of the road is necessary to convert from pixels per sec-
ond to meter per second.

Figure 4.29 shows how the distribution of the velocity of the vehicles are. Pixels
per frame may also be seen as pixels per second, because of the frame frequency
is 1. In the plots, 9-25 means the interval between 9 pixels per second to 25 pixels
per second and so forth.

Figure 4.27: Vehicle velocity at E18 Sandvika.
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Figure 4.28: Vehicle velocity at E18 Maritim.

Figure 4.29: Vehicle velocity at E18 Fiskvollbukta.

All the plots indicates a normal distribution with expectancy value of approxi-
mately 60 pixels per second. The three locations have a similar speed limit, which
indicates that the speed measurements are relatively consistent.
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4.5.2 Density of vehicles

This analysis gives information about the amount of vehicles passing through the
system for given periods. Information about detection time of the objects is stored
in the database. Figure 4.30, 4.31 and 4.32 shows the density of vehicles in time
intervals of 6 minutes. The data is supported by graphs showing the typical traffic
flow pattern. In the plots, 0-5 means the interval between minute 0-5 and so forth.

Figure 4.30: Vehicle density at E18 Sandvika

Figure 4.31: Vehicle density at E18 Maritim

101



Chapter 4 4.5. Analysis and presentation of traffic data

Figure 4.32: Vehicle density at E18 Fiskvollbukta

The plots show relatively continuous flow of vehicles, but there is a somewhat larger
variance on the E18 maritime (the intervall 60-66 is small because the recordings
ended after 62 minutes).
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4.5.3 Traffic congestion

This analysis is an result of deriving information from the two previous tests. By
combining both analysis one could obtain information about the congestion.
We define the congestion to be high if the velocity is low and the distance be-
tween vehicles are short, defined by χ Multiplying the time difference between the
detections and the velocity at a given time

χ = von ∗∆t (4.5)

where vo is velocity for object on, and ∆t is time difference between object on and
on−1. χ, is between 0 and 100 where a total traffic jam is represented by 0. Values
outside 2 standard deviations of the normal distribution around the mean queue
factor, for each measured location, is assumed to be noise, and removed from the
plots. The running average of six vehicles are plotted as the purple line.

Figure 4.33: Congestion at E18 Sandvika
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Figure 4.34: Congestion at E18 Maritim

Figure 4.35: Congestion at E18 Fiskvollbukta

The queue situation is determined by low velocity and close distance, and several
vehicles have to present at the same time to be able to determine congestion or
traffic jams. Each discrete measurements in Figure 4.33– 4.35, does not present
congestion by itself. However, if look at the plot of average represented by the
purple line, this will be a picture of the moving average, determined by ten objects,
will easily give an impression of the current congestion situation. The χ has an
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average around 20, however fluctuating between 10 and 40. This makes it difficult
to conclude any considerable traffic jam situation. However, this might be natural,
due to the fact that video recordings were acquired between 14 and 15 o’clock, thus
before people normally go home from work, and in general efficient movement of
traffic and minimal traffic congestion problems. It is however an exception in
Maritime, where traffic is lower than otherwise. This is discussed later.
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4.5.4 Classifying the dataset

The classification of all data from the three destination are performed in the fol-
lowing test. The best model from the initial neural network test is used to classify.
The data was first labelled into car, truck and pedestrians, which gave a total of
3000 labelled images.

Unrecognizable data were removed, thus, the classification test implies that the
detection algorithm has a 100% hit rate of the detections. This is discussed in 5.
This data set will have a large imbalance between classes as a result of frequency of
the different types varies. The results of the classification is shown in the confusion
matrix 4.36.

Figure 4.36: Confusion matrix of the classified dataset
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Accuracy = 2234 + 643 + 3
3000 = 0, 96 (4.6)

and the normalized confusion matrix in figure 4.37.

Figure 4.37: normalized confusion matrix of the classified dataset

Again, the accuracy is calculated as the overall correct classifications, which is
which gives a overall classification accuracy of 96%. All the pedestrian are rightly
classified, and in addition none of the other classes are misclassified as pedestrian.

96% of all cars are rightly classified, and the remaining 4 % are classified as trucks.
For truck is 94 % rightly classified as trucks, and the remaining 6 % are classified
as vehicles.
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4.5.5 Vehicle class frequency

This analysis gives information about the frequency of each vehicle class. Applying
the results from the classification test in conjunction with the vehicle density pro-
vides a detailed information about the frequency of each vehicle class are accounted
for.

Figure 4.38: Frequency of the three classes at E18 Sandvika in intervals of 20
minutes (no pedestrians were detected)
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Figure 4.39: Frequency of the three classes at E18 Maritim in intervals of 20
minutes (no pedestrians were detected)

Figure 4.40: Frequency of the three classes at E18 Fiskvollbukta in intervals of 20
minutes (no pedestrians were detected)

These results can be used to determine the amount heavy traffic driving on the
road, and thus maintain the road according to needs.
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Discussion

This section considers the experimental results related to the following topics:

� Neural network

� Detection and tracking

� Data analysis

Neural network

The neural network shows good ability to distinguish between the different classes,
but is dependent on the data from the detection module being reliable. There is
a performance fall when the network is used in new locations, that may be a re-
sult of the training data and test data are retrieved from the same location, while
the new data set is retrieved from a new locations. Another explanation is the
different in frequency of the three classes. There are, for example, only three 3
pedestrian who have been moving in front of the camera during the recordings.
This affects the classification results if the car class classifies with less accuracy
than the pedestrian class.

In the test, unrecognizable data was removed before classification. This is be-
cause unrecognizable data randomly classified, which induces noise in the result,

110



Chapter 5

which in turn makes the result not representative for the classifier. A solution is to
introduce a background class that classifies unrecognizable data as a background,
and removes it from the system.

The network is competitive in comparison with other methods performed by clas-
sification. In a comperative study by S. Munder and D.M. Gavrila [29] with
pedestrian classification achieved the best method, support vector machine, a
classification accuracy of 95.0%, which is lower than the 99,6% neural network
accuracy.
Another study by Ambar Dekar [3] compared different classification algorithms ,
achieving a classification accuracy of 99.25% when classifying between cars and
trucks, using a support vector machine. This result is better than the neural net-
work, however, these are methods that only classifies between two classes. To
extend the methods in order to distinguish between several classes, it must inte-
grate multiple support vector machines, as well as being more resource-intensive
than neural networks.
Overall the neural network proves to be a good classifier, and classifies the three
classes exact, even though the training dataset is relatively small.
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Detection and tracking

Ideally the traffic should have been acquired 24 hours intervals for several days, but
however this was not achievable in the time frame of this MSc thesis. The initial
test with sunlight indicated that the light affects the rate apparently randomly,
thus, results based on data from sunlight recordings will be difficult to conclude
from. The recordings from cloudy weather, on the other hand, have shown rela-
tively constant hit rate within given intervals. These tests should be quantified
to conclude for which environmental parameters the results are valid. Initial tests
have shown that the selected measurement range has provided reliable data sets,
which in turn has produced reliable analysis results.

However the is a surprising but interesting deviation of the experimental data, as
marked with the dotted lines in figure 5.1, where these is a detected drop around
14:25-14:35. The reason is not fully understandable, but seen in conjunction with
plot 4.35, a following reasonable interpretation can be given.
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Figure 5.1: Drop in hit rate,

The plot 5.1 shows a drop in hit rate, higher density of vehicles and a lower queue
factor (higher congestion) in that time interval. There is a significant increase in
the number of vehicles passing the system during this period, which gives reason
to believe there is a correlation between congestion and hit rate, due to the fact
that vehicles driving closer to each other are more difficult to detect.
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Data analysis

Based on reliable data from the initial tests analysis represents useful traffic infor-
mation.
The congestion analysis should be conducted through a larger time interval in
which you will have both morning and evening rush. However, this requires more
analysis and experimentation around different lighting conditions, to achieve a
smooth hit rate throughout the day.

The relative velocity plot for three locations has clear similarities, and all may
be expressed by weibull distributions, and with an assumed mean equal to the
speed limit. This means that the extremes of the plot indicates that some vehicles
are driving approximately 6 times as fast as the speed limit, which is unrealistic,
and assumed to be error detections, thus may be removed from the system. These
error detections can be associated with the Kalman filter, which is optimal only
for linear models, and the motion model may be unlinear. As a result, when mul-
tiple objects are detected, confusion between the objects may occur, which makes
coordinates from one object believe it belongs to an object further on the road,
which in turn gives higher measured velocity.
In turn, the relative speed is also useful information in connection with traffic
queue detections, where low relative speed and small distance between vehicles
give indications of queue. However, it was not possible to detect queues during
the recordings, so the analysis was omitted. Furthermore, continuous analyzes of
the collected data has shown to be useful in determining different traffic factors.
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Recommendations for further
work

The thesis holds several elements that could be further investigated and expanded
upon. For main topics are recommended for further work:

� Improve and expand the neural network

� Implement other detection and tracking algorithms

� Perform real-time analysis

Neural network

There are several improvements and modifications that can be made to the neural
network. The most obvious ones are to train the network on both vehicle fronts
and vehicle rears and train with additional classes, e.g a background class can be
added to eliminate false positives from the system.
In order to streamline the training process and reduce the need for data, transfer
learning can be used. Source code for implementing the transfer learning of the
Inception Network is attached.
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Detection and tracking

As the tracking and detection module seems to be the weak link in the system, it
should be considered to investigate other possible improvement of the detection and
tracking algorithm. Perform a comparative study solely on detection and tracking
algorithms. Several methods may be implemented in the detection module:

� Region proposal

� Haar cascade

� SIFT

� SURF

However, none of the methods has shown in general to be superior to each other
[39].

There should also be considered using a Thermal camera. The detection algo-
rithm was tested with a thermal camera, which gave good results in terms of
filtering out shadows in the video frame. One apparent advantage with thermal
camera is its ability to detect at both day and night. The tests were not quantified,
and are therefor not a part of the results. The data and source code are attached.

The tracking module can be improved by using other methods [19].

� Particle filters

� Support vector machine

� Multiple hypothesis

� Recursive Monte-carlo

An extended Kalman filter could be applied to handle unlinear motion models,
but requires more tuning and can be difficult to optimize [32].
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It should be considered using video with higher frame rate when tracking objects.
Tests were performed on 40 FPS video, which gave indications of an improved

tracking, but these tests were not quantified.

Continuous analysis

There are several examples of how further analysis can be used in conjunction
with forecasting or to establish a relationship between traffic volume and
accidents to determine the probable occurrence. A report based on vehicle

frequency and classification data shows how data analysis can detect weaknesses
in road structure and how road capacity carrying the heavier traffic needs
maintaining to extend its durability [4]. By conducting this analysis, the

economic aspect can be investigated by distributing the economy where the need
is greatest, such as structural upgrading, strengthening or capacity expansion.
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Conclusion

A vision-based traffic system is developed to detect the traffic situation at three
different locations in Norway. The data was acquired using a camera, and

utilizing a background subtraction algorithm to detect vehicle, and subsequently
classifying the vehicles in a neural network. The system has undergone a
comprehensive experimental verification, with analysis of more than 20000

images. The results shows the following:

� The algorithm detects 85% of the vehicles with certainty, but there is some
uncertainty around the remaining 15%

� Given valid data from the detecting algorithm the neural network were able
to classify the type of vehicle with approximately 96%. .

Through analyzes of the acquired data, the following traffic data was determined:

� Velocity distribution

� Density of vehicles

� Traffic congestion

� Vehicle class frequncy

This shows that a modern vision-system combining background subtraction and
neural network achieves a performance that is capable of acquiring characteristic
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data for a modern traffic surveillance system. Finally, recommendations for
further improvements are presented.
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Appendix A

Python libraries

This section presents software components that has been implemented in the
system.

Image processing Mathematical operations Machine learning GUI
Python package Open cv Numpy Tensorflow PyQt

skimage Pandas
PIL matplotlib

Table A.1: Table of implemented software

Python package OpenCV[7] , skimage [7] and PIL[] are used for different
image processing tasks. Comprehensive information is attached in 4.40.

OpenCV is open source and open for use both private and for commercial use.
scikit-image is a collection of algorithms for image processing. It is available free

of charge and free of restriction.
PIL, Python Imaging Library, is a library with image processing capabilities.

This library supports many file formats, and provides powerful image processing
and graphics capabilities [34].

Tensorflow is an open-source software library for machine learning. It’s a
computational graph, and may be seen as a program consisting of two discrete

sections :
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� Building the computational graph.

� Running the computational graph.

A series of operations or functions are arranged into graph of nodes. Each node
takes an input and produces an output. Computational graph’s are a technique
for calculating derivatives quickly. It can make training of neural networks as
much as ten million times faster, relative to a naive implementation . The
computational graph is built up of many small units, where each unit is

responsible for computing an output based on the inputs to the unit and the
gradient of the output with respect to the inputs.[44]

SSH file transfer is a program to transfer files between the local computer and
the Unix server [17].

PyQt is a GUI toolkit. Qt also includes Qt Designer, a graphical user interface
designer. PyQt is able to generate Python code from Qt Designer. It is also
possible to add new GUI controls written in Python to Qt Designer [37].
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Temperature Events
Thermal radiometry (TR) models M15, S15 

and S15 PTMount from MOBOTIX generate 

automatic alarms, defined by temperature 

limits or temperature ranges, which is vital 

to detect potential fire or heat sources. Up 

to 20  different temperature triggers can be 

defined at the same time within so-called 

TR (Thermal Radiometry) windows or the 

whole sensor image can be used over the 

temperature range of -40 to +550 °C. In this 

way critical situations can be analyzed in the 

control room in order to plan the next steps 

for effective fire prevention. Critical assets 

like emergency generators, wind turbines or 

radio stations can be cost-effectively main-

tained and tested remotely. MOBOTIX 

 thermal dual camera systems offer thermal 

overlay to localize so-called hot spots in the 

visual image to prevent larger damage. The 
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patibility and the extremely low power 
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tion of MOBOTIX thermal camera systems in 
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Cost Effective Perimeter Solution
Only one thermal MOBOTIX camera is 

required to protect a huge outdoor area 

without the need of any additional illumina-

tion – even in complete  darkness. The com-

bination of thermal & video sensors and 

intelligent software based motion detection 

(MxActivitySensor) are perfectly suited to 

efficiently cover wide perimeter  situations 

without any secondary equipment like con-

ventional light or  infrared illumination. 

Respecting Privacy
The detected thermal profile of a thermal 

camera shows no identifiable details for 

identification of persons and can therefore 

guarantee privacy. As soon as an object is 

moving into the relevant surveillance area, 

MOBOTIX dual camera system can automat-

ically switch from thermal sensor to the 

optical sensor, producing visible high reso-

lution video. This unique MOBOTIX feature 

combines two aspects, respecting the 

 privacy aspect and at the same time optimal 

video surveillance.

Thermal image overlay

• Thermal Resolution 
Equivalent to 0.05 °C, range -40 to +550 °C

• Temperature Alarms 
Up to 20 different automatic 
temperature events

• Hot Spot Analysis 
With thermal image overlay

• Motion Detection 
In complete darkness with thermal 
image and MxActivitySensor

• Power 
Lowest energy bill, < 6W, standard PoE

• Robust and Nearly Maintenance-Free 
Weatherproof, IP66, -30 to +60 °C, 
MTBF > 9 years

M15 Dual
Thermal & Optic

S15 Dual
Thermal & Optic

S15 Dual
Dual Thermal
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PTMount Thermal

Perimeter protection

No smoking area

Border control

Fire prevention

Privacy zones
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Neural network models

Figure C.1138
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Figure C.2

Recordings
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Appendix D

Source code

Source code:

Systemmain

The main file of the system, including the GUI file. The use is explained in the
user manual.

CNN

The convolutional neural network source code. The use is explained in the user
manual.

Kalmanfilter

The implemented Kalman filter, used by the main file.

Tensorflowdatasetbatches

The input pipeline. Input parameter is folder destination of the dataset folder.
Used by the CNN file. Make sure to follow the user manual.
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CNN_figures.py

from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
import numpy as np
from dataset import DataSet
from pandas_ml import ConfusionMatrix
#import cv2
#in_dir = "D:/Vehicles_Database/"
#training_set = DataSet(in_dir = in_dir)
#images_test = training_set.get_test_set()[0][0:9]
#labels_test = training_set.get_test_set()[1][0:9]
NUM_CLASSES = 3


def plot_confusion_matrix(pred,true,display=False):

    cm = ConfusionMatrix(y_true=true,
                         y_pred=pred)


    sensitivity, speficity, PPV= cm.stats_class.get_values()[9:12]
    accuracy = cm.stats_class.get_values()[16]

    stat_values = cm.stats_class.get_values()
    #print(stat_values)
    #print("Sensitivity: {0} \n Speficity: {1}".format(stat_values[12],stat_values[13]))

    print(cm)
    #3print(accuracy)
    #cm.print_stats()
    if display:
        cm.plot(normalized=True)
        plt.show()
    return speficity,sensitivity,PPV


def plot_errors(pred,correct):
    incorrect = (correct == False)
    #images = data.test.images[incorrect]
    #pred = pred[incorrect]
    print(incorrect)

    plot_images(images = images[0:9],
                true = true[0:9],
                pred = pred[0:9])



def plot_images(images,true,pred=None):
    fig,axes = plt.subplots(3,3)
    fig.subplots_adjust(hspace=0.3,wspace=0.3)
    img_shape = [32,32,3]
    for i,ax in enumerate(axes.flat):
        image = plt.imread(images[i],1)
        ax.imshow(image.reshape(img_shape),cmap='gray')

        if pred is None:
            xlabel = "True: {0}".format(true[i])
        else:
            xlabel = "True: {0}, Pred: {1}".format(true[i],pred[i])

        ax.set_xlabel(xlabel)

        ax.set_xticks([])
        ax.set_yticks([])

    plt.show()


def laplacian_filter(image):
    image = cv2.imread(image,0)
    filter = cv2.Laplacian(image,cv2.CV_64F)
    plt.subplot(121)
    plot = plt.imshow(image,cmap='gray')
    plt.title("Original image")
    plt.subplot(122)
    plot1 = plt.imshow(filter,cmap='gray')
    plt.title("Laplacian filter")
    plt.show()

#laplacian_filter("D:/E16_sandvika/webcam_10/vehicle382.jpg")

#pred = [1,1,1,1,1,1,1,1,1]
#spef,sen,PPV = plot_confusion_matrix([1,1,1,2,1,1,3,1,1,1],[1,1,1,2,2,2,3,3,1,1])

#plot_images(images_test,labels_test,pred)








CNN_final.py

# ==============================================================================
# Convolutional Neural Net
#   Input: Cifar10 or custom dataset
#   Output: Class prediction, in one_hot coded label
#
#
#   Classes in cifar10:
#      ['airplane','automobile','bird','cat','deer','dog','frog','horse','ship','truck']
# ==============================================================================
spef = 4 #dummy variable, delete
import os, math, time, datetime
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" #Remove debugging from Tensorflow
os.environ["CUDA_VISIBLE_DEVICES"] = "0" #Only GPU 0 is visible
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
from cifar10 import img_size, num_channels, num_classes
import cifar10
from dataset import DataSet
from Tensorflow_Dataset_batches import input_pipeline
import logging
LOGDIR = 'D:/Tensorboard/'
DEBUG_DIR = 'D:/Tensorboard/'
FILENAME = "TESTING_NEURAL_NET_3.log"
# =======================================================================================================================
#                               Dataset
# =======================================================================================================================
CIFAR10 = False
CUSTOM_DATASET = True
CIFAR_DATASET = False
GORINA = False

if GORINA:
    in_dir = "/home/stud/eirikat/Hovedprogram/Vehicles_Database_testing_m_sandivka/"
    LOGDIR = "/home/stud/eirikat/Hovedprogram/Tensorflow/"
    DEBUG_DIR = "/home/stud/eirikat/Hovedprogram/"
else:
    #in_dir = "D:/Test_vehicle_base/"
    in_dir = "C:"
    #in_dir = "D:/Vehicles_Database_testing_m_sandivka/"
    in_dir = "D:/E16_sandvika/testing_webcam3/"
    in_dir = "D:/Vehicles_Database/"
    import FIND_ALL_MODELS
    import cv2

if CIFAR10:
    in_dir = "D:/mnist/"
    training_set = DataSet(in_dir=in_dir)
    images_train = training_set.get_training_set()[0]
    labels_train = training_set.get_training_set()[1]
    images_test = training_set.get_test_set()[0]
    labels_test = training_set.get_test_set()[1]
    SIZE_DATASET = len(images_train)
    NUM_CLASSES = 10

if CUSTOM_DATASET:
    NUM_CLASSES = 3
    if CIFAR_DATASET:
        in_dir = "D:/mnist/"
        NUM_CLASSES = 10
    training_set = DataSet(in_dir = in_dir)
    images_train = training_set.get_training_set()[0]
    labels_train = training_set.get_training_set()[1]
    images_test = training_set.get_test_set()[0]
    labels_test = training_set.get_test_set()[1]
    SIZE_DATASET = len(images_train)


logging.basicConfig(filename="{0}{1}".format(DEBUG_DIR,FILENAME), level=logging.DEBUG)
log = logging.getLogger("Initial Model")
RUN_MAIN=False

# =======================================================================================================================
#                               Create log directory
# =======================================================================================================================
if RUN_MAIN:
    if not os.path.exists(LOGDIR):
        os.makedirs(LOGDIR)
        print('No tensorboard folder found, Successfully created folder {}'.format(LOGDIR))

        # Add delay so directory can be made
        time.sleep(1)

        # Make a new folder to save tensorboard model inside
        current_tensorboard_path = '{0}{1}'.format(LOGDIR,
                                                 datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d_%H%M%S'))
        os.makedirs(current_tensorboard_path)

        # Make subfolders for Tensorboard and model
        tensorboard_path = '{0}{1}'.format(current_tensorboard_path, '/tensorboard')
        os.makedirs(tensorboard_path)
        model_path = '{0}{1}'.format(current_tensorboard_path, '/model')
        os.makedirs(model_path)
    else:
        # Make a new folder to save tensorboard model inside
        current_tensorboard_path = '{0}{1}'.format(LOGDIR,
                                                 datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d_%H%M%S'))
        os.makedirs(current_tensorboard_path)
        # Make subfolders for Tensorboard and model
        tensorboard_path = '{0}{1}'.format(current_tensorboard_path, '/tensorboard')
        os.makedirs(tensorboard_path)
        model_path = '{0}{1}'.format(current_tensorboard_path, '/model')
        os.makedirs(model_path)

# =======================================================================================================================
#                                Parameters
# =======================================================================================================================

LEARNING_RATE = [1E-4, 1E-5] # [1E-4, 1E-5]...
BATCH_SIZE = [32] # [32, 64, 128]...
HM_FC = [2]
DROPOUT = 0.1
HM_EPOCHS = 50
IMG_SIZE= 128
COLOR_SPACE = 3
INPUT_SIZE = IMG_SIZE*IMG_SIZE*COLOR_SPACE
TIMER = time.clock()
# INPUT is layer,kernels,pool [0/1]
INPUTS= [
#Test with/out dropout
[[32,64,64,64],[8,3,3,3],[1,1,1,1]],
[[32,64,64,64],[8,3,3,3],[1,0,0,1]],

#Test with larger filters
[[96,256,256,512],[8,5,3,3],[0,0,0,0]],
[[96,256,256,512],[8,5,3,3],[1,1,1,1]],
#Test vs tidligere set, 20170510_105433
[[32,64,64,64],[5,5,5,5],[0,0,0,0]],

#LARGE NET
[[16,32,32,64,64,128,128,192,192,256,256,256,256,512,512,512,512,512,512],
 [5,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5],
 [1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0]],

          ]



def create_mini_batch(batch_size):
    size = len(images_train)
    idx = np.random.choice(size,size=batch_size,replace=False)

    x_batch = images_train[idx,:,:,:]
    y_batch = labels_train[idx,:]

    return x_batch,y_batch

# =======================================================================================================================
#                                layers
# =======================================================================================================================
def fc_layer(flat_image,size_out,dropout=False,name="fc"):
    with tf.name_scope(name):
        dense = tf.layers.dense(inputs=flat_image,
                                units=size_out,
                                activation=tf.nn.relu)
        #DROPOUT not used in testing
        if dropout:
            return tf.layers.dropout(inputs=dense,
                                    rate=0.4,
                                    training = False)
        else:
            return dense

def conv_layer(input, size_out, max_pool,kernel_size = 5,name="conv"):
    with tf.name_scope(name):
        conv = tf.layers.conv2d(
            inputs=input,
            filters = size_out,
            kernel_size=kernel_size,
            padding="same",
            activation=tf.nn.relu
        )



        if int(max_pool):

            return tf.layers.max_pooling2d(inputs=conv,
                                           pool_size=[2,2],
                                           strides=2)
        else:
            return conv

# =======================================================================================================================
#                                Model
# =======================================================================================================================

def CNN_model_test(x,inputs):

    #INPUT is layer,kernels,pool [0/1]
    for i,(layer,kernel,pool) in enumerate(zip(inputs[0],inputs[1],inputs[2])):
        if i ==0:
            conv = x
        conv = conv_layer(conv,
                   size_out= layer,
                   max_pool=pool,
                   kernel_size=5,
                   name='conv{0}'.format(i))
    #conv_layers.append(conv1)
        log.debug(conv)
        print(conv)

    shape = conv.get_shape().as_list()

    num_units = shape[1] * shape[1] * shape[3]

    flattened = tf.reshape(conv, [-1, num_units])

    fc0 = fc_layer(flattened, 4048,
                   dropout=True,
                   name='fc0')

    fc1 = fc_layer(fc0, 1024,
                   dropout=True,
                   name='fc1')
    #fc2 = fc_layer(flattened, 1024,
    #               dropout=True,
    #               name='fc1')
    logits = fc_layer(flat_image=fc1,
                      size_out=NUM_CLASSES,
                      dropout=False,
                      name='fc2')
    y_pred_cls = tf.argmax(logits, dimension=1)
    return logits, y_pred_cls,fc1

def CNN_model(learning_rate, batch_size,hparam,inputs,model_path_1 = None):
    #model_path_1 = "D:/Tensorboard/20170425_181335/model/0.0001_batch_64/model.ckpt-30"
    tf.reset_default_graph()
    sess = tf.Session()

    # Setup placeholders, and reshape the data
    x = tf.placeholder(tf.float32, shape=[None,IMG_SIZE,IMG_SIZE,num_channels], name="x")
    y = tf.placeholder(tf.float32, shape=[None, NUM_CLASSES], name="labels")
    y_true_cls = tf.argmax(y,dimension=1)

    logits, y_pred_cls,_ = CNN_model_test(x,inputs)
    saver = tf.train.Saver()

    with tf.name_scope("xent"):

        xent = tf.reduce_mean(
            tf.nn.softmax_cross_entropy_with_logits(
                logits=logits, labels=y), name="xent")

        tf.summary.scalar("xent", xent)


    with tf.name_scope("train"):
        train_step = tf.train.AdamOptimizer(learning_rate=learning_rate,epsilon = 0.1).minimize(xent)

    with tf.name_scope("validaton_accuracy"):
        correct_prediction = tf.equal( y_pred_cls, y_true_cls)

        validation_accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
        tf.summary.scalar("validation_accuracy", validation_accuracy)

    with tf.name_scope("accuracy"):
        correct_prediction = tf.equal( y_pred_cls, y_true_cls)

        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
        tf.summary.scalar("accuracy", accuracy)

    summ = tf.summary.merge_all()
    saver = tf.train.Saver()

    if model_path_1:
        saver.restore(sess, model_path_1)
    else:
        sess.run(tf.global_variables_initializer())

    writer = tf.summary.FileWriter(os.path.join(tensorboard_path, hparam))
    test_writer = tf.summary.FileWriter(os.path.join(tensorboard_path+'/test', hparam))
    writer.add_graph(sess.graph)

    # Calculate iterations
    HM_STEPS = int(HM_EPOCHS * (SIZE_DATASET / batch_size))
    print('\nStarting run for :%s' % hparam)
    print('\nHow many epochs:' + str(HM_EPOCHS) + ', How many steps:' + str(HM_STEPS))
    # Creates a folder for each hparam in model folder
    current_model_path = '{0}{1}{2}'.format(model_path, '/', hparam) # If you want hparam in foldername
    os.makedirs(current_model_path)

    #Start Coordinator

    image_batch, label_batch = input_pipeline(filename_queue=images_train,
                                          labels_in=labels_train,
                                          batch_size=batch_size,
                                          number_classes=NUM_CLASSES,
                                          img_size_cropped=IMG_SIZE,
                                          training=False,
                                          return_as_eval=False)

    image_val_batch, label_val_batch = input_pipeline(filename_queue=images_test,
                                              labels_in=labels_test,
                                              batch_size=400,
                                              number_classes=NUM_CLASSES,
                                              img_size_cropped=IMG_SIZE,
                                              training=False,
                                              return_as_eval=False)

    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)


#Run net for different parameters
    max_accuracy = 0.2
    for i in range(HM_STEPS):

        if CUSTOM_DATASET:

            x_batch, y_batch = sess.run([image_batch, label_batch])
            x_val_batch, y_val_batch = sess.run([image_val_batch, label_val_batch])
        elif CIFAR10:
            x_batch,y_batch = create_mini_batch(batch_size)

        if i % 5 == 0:
            s = sess.run(summ, feed_dict={x: x_batch, y: y_batch})
            writer.add_summary(s, i)
            s_val = sess.run(summ, feed_dict={x: x_val_batch, y: y_val_batch})
            writer.add_summary(s_val,i)
        # Reporting accuracy every 100 steps
        if i % 5 == 0:
            train_accuracy = sess.run(accuracy, feed_dict = {x: x_batch, y: y_batch})
            val_accuracy = sess.run(validation_accuracy,feed_dict= {x: x_val_batch,y: y_val_batch})
            if not GORINA:
                print("Step: {0} Training_accuracy: {1} Time: {2}".format(i, train_accuracy, int(time.clock() - TIMER)))
                print("Step: {0} Validation_accuracy: {1} Time: {2}".format(i,  val_accuracy, int(time.clock() - TIMER)))
            if i % 500 == 0:
                print("Step: {0} Training_accuracy: {1} Time: {2}".format(i, train_accuracy, int(time.clock() - TIMER)))

            if train_accuracy>max_accuracy:
                max_accuracy = train_accuracy
                print("saved")
                print("Step: {0} Training_accuracy: {1} Time: {2}".format(i, train_accuracy, int(time.clock() - TIMER)))
                log = logging.getLogger("Model")


                log.debug(
                        "Step: {0} Training_accuracy: {1:.2f} Time: {2} Layers:[{3}]".format(i, train_accuracy,
                                                                                                     int(
                                                                                                         time.clock() - TIMER),
                                                                                                     inputs[0]))

                saver.save(sess, os.path.join(current_model_path, "model.ckpt"), i)
        # Actual training of the model
        sess.run([train_step, accuracy, summ, xent], feed_dict={x: x_batch, y: y_batch})

    coord.request_stop()
    coord.join(threads)

def make_hparam_string(learning_rate, batch_size,input):
    return "Layer_{0}_batch_{2}_kernel_{3}_model_{1}_pool_{4}".format(input[0],float(learning_rate), batch_size,input[1],input[2])

def main():


    for learning_rate in LEARNING_RATE:
        for batch_size in BATCH_SIZE:
            for input in INPUTS:
                # Construct a hyperparameter string for each one (example: "lr_1E-4,batch_size=128)
                hparam = make_hparam_string(learning_rate, batch_size,input)
                print('Starting run for %s' % hparam)
                # Actually run with the new settings
                CNN_model(learning_rate, batch_size, hparam,input,model_path_1 = None)


def Test_all_images(MODEL_DIR,in_img=False,display =False,):
    import CNN_figures
    #MODEL_DIR = FIND_ALL_MODELS.REPLACE_FILENAMES(MODEL_DIR)
    print(MODEL_DIR)
    ALL_MODELS, layers,kernels,pools = FIND_ALL_MODELS.get_models_ver_4(MODEL_DIR)
    print(ALL_MODELS)
    log = logging.getLogger("Testing")
    #Filters,kernel,pooling
    #[[96, 256, 256, 512], [8, 5, 3, 3], [0, 0, 0, 0]]

    for model, layer,kernel,pool in zip(ALL_MODELS, layers,kernels,pools):
        print("this is model",model)
        tf.reset_default_graph()
        input = [layer,kernel,pool]

        #sess = tf.Session()
        x = tf.placeholder(tf.float32,
                           shape=[None, IMG_SIZE, IMG_SIZE, num_channels],
                           name="x")
        y = tf.placeholder(tf.float32,
                           shape=[None, NUM_CLASSES],
                           name="labels")
        y_true_cls = tf.argmax(y, dimension=1)
        logits, y_pred_cls,fc1 = CNN_model_test(x, input)
        saver = tf.train.Saver()

        images_test = training_set.get_test_set()[0]
        labels_test = training_set.get_test_set()[1]
        with tf.name_scope("accuracy"):
            correct_prediction = tf.equal( y_pred_cls, y_true_cls)
            accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

        if model_path:
            with tf.Session() as sess:
                print("this is image batch",len(labels_test))
                saver.restore(sess,"{0}/{1}".format(MODEL_DIR,model))

                #cls_pred, = sess.run(y_pred_cls, feed_dict={x: x_batch, y:y_batch})
                image_batch, label_batch = input_pipeline(filename_queue=images_test,
                                                          labels_in=labels_test,
                                                          batch_size=15,
                                                          number_classes=NUM_CLASSES,
                                                          img_size_cropped=IMG_SIZE,
                                                          training=False,
                                                          return_as_eval=False)
                coord = tf.train.Coordinator()
                threads = tf.train.start_queue_runners(sess=sess, coord=coord)

                # Run net for different parameters
                max_accuracy = 0.2
                for i in range(1):

                    x_batch, y_batch = sess.run([image_batch, label_batch])
                    # Reporting accuracy every 100 steps
                    if i % 1 == 0:

                        train_accuracy,ypred,ytrue,fc = sess.run([accuracy,y_pred_cls, y_true_cls,fc1], feed_dict={x: x_batch, y: y_batch})
                        pred = np.ones(len(ypred))

                        print("Step: {0} Training_accuracy: {1} Time: {2}".format(i, train_accuracy, int(time.clock() - TIMER)))
                        #print("Pred {0} \n True {1}".format(pred,ytrue))
                        try:
                            specificity,sensitivity,PPV  = CNN_figures.plot_confusion_matrix(ypred,ytrue)
                        #CNN_figures.plot_confusion_matrix(pred,ytrue)
                       #print("{0}, \n {1}".format(ypred,ytrue) )
                            print(specificity,sensitivity)
                            log.debug("Model: {0} \n Speficity:   {1} \n Sensitivity: {2} \n PPV:         {3} "
                                  "\n Accuracy: {4}".format(model,
                                                                                                          np.around(
                                                                                                              specificity.tolist(),
                                                                                                              decimals=1),
                                                                                                          np.around(
                                                                                                              sensitivity.tolist(),
                                                                                                              decimals=1),
                                                                                                          np.around(
                                                                                                              PPV.tolist(),
                                                                                                              decimals=1),
                                                                                                            train_accuracy))
                        except:
                            print("Model: {0} Accuracy: {1}".format(model,train_accuracy))
                            log.debug("Accuracy: {0}".format(train_accuracy))
                coord.request_stop()
                coord.join(threads)

# =======================================================================================================================
#                                USED IN MAIN_TESTING
# =======================================================================================================================

def Test_image(model_path=None,in_img=False,var=0):
    #import CNN_figures
    # MODEL_DIR = FIND_ALL_MODELS.REPLACE_FILENAMES(MODEL_DIR)
   #ALL_MODELS, layers, kernels, pools = FIND_ALL_MODELS.get_models_ver_4(MODEL_DIR)
    tf.reset_default_graph()
    x = tf.placeholder(tf.float32, shape=[None, IMG_SIZE, IMG_SIZE, num_channels], name="x")
    y = tf.placeholder(tf.float32, shape=[None, NUM_CLASSES], name="labels")
    y_true_cls = tf.argmax(y, dimension=1)
    input = [[32,64,128,128,256,512], [8, 3, 3, 3,3,3], [0, 1, 1, 1,1,1]]
    logits, y_pred_cls, fc1 = CNN_model_test(x, input)
    saver = tf.train.Saver()
    if model_path:
        with tf.Session() as sess:
            saver.restore(sess,model_path)
            coord = tf.train.Coordinator()
            threads = tf.train.start_queue_runners(sess=sess, coord=coord)
            #print("model restored")
            #print(in_img)
            in_img = cv2.imread(in_img)
            images = cv2.resize(in_img, (IMG_SIZE, IMG_SIZE))
            #cv2.imshow("img",in_img)
            #cv2.waitKey(0)
            images = np.reshape(images,[1,IMG_SIZE,IMG_SIZE,3])


            feed_dict = {x: images}
            cls_pred = sess.run(y_pred_cls, feed_dict=feed_dict)
            coord.request_stop()
            coord.join(threads)
            print(cls_pred)
        coord.request_stop()
        coord.join(threads)
        return (cls_pred)




#
if __name__ == '__main__':
    #main()
    #Test_image(model_path="C:/Users/trygvet/Dropbox/UIS/Master/Hovedprogram/model/model.ckpt-11250",
    #              in_img="C:/Users/trygvet/Dropbox/UIS/Master/bilde.jpg")

    #Test_image(model_path="D:/Tensorboard/from_gorina/model.ckpt-11250",
     #          in_img="D:/E16_sandvika/testing_webcam3/vehicle1.jpg")

    #MODEL_DIR = "D:/Tensorboard/20170427_161924/model"
    model_path=True
    #Test_all_images(MODEL_DIR = "D:/Tensorboard/from_gorina/model")
    Test_all_images(MODEL_DIR="F:/Master/model")







FIND_ALL_MODELS.py

import glob,os
import re
import numpy as np
import matplotlib.pyplot as plt
in_dir = "D:/Tensorboard/20170427_161924/model"



def get_models(in_dir):
    os.chdir(in_dir)
    list = []
    layers = []
    st = ["checkpoint", "data", "index", "meta"]
    for file in glob.glob("*"):
        os.chdir("{0}/{1}".format(in_dir,file))
        layer = re.findall("[-+]?\d+[\.]?\d*[eE]?\d*",file[file.rindex("model_["):])
        for model in glob.glob("*"):
            loc0,loc1,loc2= [model.find(st[0]),model.find(st[1]),model.find(st[2])]
            if loc0 < 0 and loc1 < 0 and loc2 < 0:
                layers.append(layer)
                list.append(str("{0}/{1}".format(file,model[:model.find(".meta")])))

    return(list,layers)

def get_models_ver_4(in_dir):

    os.chdir(in_dir)
    files= []
    list = []
    layers =[]
    kernels=[]
    pools =[]
    for file in glob.glob("*"):
        newname = file.replace(",", "_")
        newname = newname.replace(" ", "")
        os.rename(os.path.join(in_dir,file),os.path.join(in_dir,newname))

    for file in glob.glob("*"):
        os.chdir("{0}/{1}".format(in_dir, file))

        layer = re.findall("[-+]?\d+[\.]?\d*[eE]?\d*", file[file.rindex("Layer_["):])
        kernel = re.findall("[-+]?\d+[\.]?\d*[eE]?\d*", file[file.rindex("kernel_["):])
        pool = re.findall("[-+]?\d+[\.]?\d*[eE]?\d*", file[file.rindex("pool_["):])
        batch = re.findall("[-+]?\d+[\.]?\d*[eE]?\d*", file[file.rindex("batch_"):])
        model = re.findall("[-+]?\d+[\.]?\d*[eE]?\d*", file[file.rindex("model_"):])
        layer = layer[:0-len(batch)]

        kernel = kernel[:0-len(model)]


        for model in glob.glob("*"):
            if model.find(".meta") > 0:
                list.append(str("{0}/{1}".format(file, model[:model.find(".meta")])))
                pools.append(pool)
                kernels.append(kernel)
                layers.append(layer)

        files.append(file)

    return list, layers,kernels,pools

def REPLACE_FILENAMES(in_dir):
    os.chdir(in_dir)
    list = []
    layers = []
    st = ["checkpoint", "data", "index", "meta"]
    for file in glob.glob("*"):
        #os.chdir("{0}/{1}".format(in_dir,file))
        newname = file.replace(",","_")
        newname = newname.replace(" ","")


        #print("this is filename",file)
        #print("This is newname",newname)
        if newname != file:
            list.append(newname)
            layers.append(file)
            os.rename("{0}/{1}".format(in_dir,file),"{0}/{1}".format(in_dir,newname))
        else:
            print("Equal")

def ALL_JPGS(in_dir):
    os.chdir(in_dir)
    import cv2
    list = [file for file in glob.glob("*.jpg")]
    for file in glob.glob("*.jpg"):
        ing = cv2.imread(file)
        print(file)
        if len(ing[0]) == 0:
            print(file)
    return(list)

def RENAME(in_dir,outname):
    os.chdir(in_dir)
    files=[]
    for file in glob.glob("*"):
        #layer = re.findall("Kopi",file)
        try:
            plt.imread(file)
        except:
            if file != "test":
                files.append(file)
        if re.findall(" ",file):
            print(file)
        if re.findall("Kopi",file):
            os.remove(file)
            print(file)
        newname = "{0}{1}".format(outname,file)
        os.rename("{0}/{1}".format(in_dir, file), "{0}/{1}".format(in_dir, newname))
    print(files)

#RENAME("D:/E16_sandvika/testing_webcam21/car/",21)


#m,l = get_models_ver_4("D:/Tensorboard/20170512_161927/model")
#print(m)
#print(l[0])
#print(l[1])
#print(l[0])

#RENAME("D:/Vehicles_Database_testing_m_sandivka/truck","h")

#RENAME("F:/Master/webcam_16/","7")
#RENAME("D:/E16_sandvika/webcam_13/car",13)

#REPLACE(in_dir)
#ALL_JPGS("D:/E16_sandvika/webcam_5/minivan/")
#if __name__ == '__main__':
#    ALL_JPGS("D:/Vehicles_Database_testing_m_sandivka/pedestrian/")






Image_grab.py



import numpy as np
import cv2
from mss import mss
from PIL import Image

mon = {'top': 660, 'left': 860, 'width': 600, 'height': 1500}

sct = mss()

while True:
    sct.get_pixels(mon)
    img = Image.frombytes('RGB', (sct.width, sct.height), sct.image)
    cv2.imshow('test', np.array(img))
    if cv2.waitKey(25) & 0xFF == ord('q'):
        cv2.destroyAllWindows()
        break






Kalman_filter_2d.py

import numpy as np
import cv2
import math
#import matplotlib.pyplot as plt
import time
from numpy import linalg as LA



def inital_2d(x, P, mes, R):
    #inital vector
    motion_vector = np.matrix(np.zeros((4,1)))
    #Q as identity matrix
    Q = np.matrix(np.eye(4))*0.1**2
    #State-space
    dt = 0.016#0.016 #time between each measurement, framerate 1/40 fps

    #dt is Velocity is marked as derivative of position in time, gets a new point evert frame
    A = np.matrix([[1,0,dt,0],[0,1,0,dt],[0,0,1,0],[0,0,0,1]])
    #Measurement equation
    H = np.matrix([[1,0,0,0],[0,1,0,0]])
    return kalman_filter(x,P,mes,R,motion_vector,Q,A,H)

def kalman_filter(x, P, measurement, R, motion, Q, theta, H):

    y = np.matrix(measurement).T - H * x
    S = H * P * H.T + R
    K = P * H.T * S.I  #equation 4.4
    x = x + K*y #equation 4.5 aprori
    I = np.matrix(np.eye(theta.shape[0]))
    P = (I - K*H)*P #equation 4.6 aprori
    # return predictions
    x = theta*x + motion #equation 4.2
    P = theta*P*theta.T + Q #equation 4.3

    return x,P,K


def kalman_xy(coordinates):
    x = np.matrix('0. 0. 0. 0.').T
    P = np.matrix(np.eye(4))*10 # initial uncertainty
    ra = 0.1**2

    R = np.matrix([[ra, 0.0],[0.0, ra]])
    result = []
    state_cov =[]
    for coor in coordinates:
        x, P, K = inital_2d(x, P, coor, R)
        result.append((x[:2]).tolist())
        state_cov.append(LA.norm(P))
        #velocity.append(x[2:4].tolist())
        #gain.append([K[0,0],K[1,1]])
    velocity = lambda x,y: np.sqrt(x**2 + y**2)
    #print(velocity(x[2:3],x[3:4]))
    #plt.plot(state_cov)
    #plt.xlabel('Time')
    #plt.ylabel('Norm of state covariance, P')
    #plt.show()
    return velocity(x[2:3],x[3:4]), result

"""
trace = [ (114, 16), (117, 17), (121, 18), (123, 20), (127, 21), (129, 23), (132, 25), (134, 27),
 (137, 31), (139, 33), (141, 37), (144, 41), (145, 44), (148, 48), (150, 51), (153, 56), (156, 60), (158, 64), (160, 69),
 (163, 74), (166, 78), (168, 84), (170, 89), (173, 95), (176, 100), (179, 106), (182, 113), (185, 119), (188, 127), (192, 133),
 (195, 142), (199, 150), (203, 159), (207, 166), (211, 170), (216, 174), (221, 179), (226, 182), (232, 188), (229, 193), (234, 199)]



x = [int(i[0]) and int(i[1]) for i in trace]
y = [int(i[1]) and int(i[1]) for i in trace]

import matplotlib.pyplot as plt


velocity, result= kalman_xy(trace)
print(velocity)
print(result)


x = [i[0] for i in trace]
y = [i[1] for i in trace]
plt.plot(x, y,"ro",label = "Measurements")
x = [i[0] for i in result]
y = [i[1] for i in result]
plt.plot(x,y,"k+",label='Predictions')
plt.plot(x,y,"k")
plt.axis()
plt.xlabel('X-coordinates')
plt.ylabel('Y-coordinates')


plt.legend()
plt.show()


"""



















Kalman_tuning.py

import numpy as np
import matplotlib.pyplot as plt

plt.rcParams['figure.figsize'] = (10, 8)

# intial parameters
n_iter = 50
sz = (n_iter,) # size of array
x = -0.37727 # truth value (typo in example at top of p. 13 calls this z)
z = np.random.normal(x,0.1,size=sz) # observations (normal about x, sigma=0.1)
z= [(124, 376), (325, 416), (305, 504), (411, 441), (339, 622), (339, 621), (336, 621), (312, 626), (372, 675), (339, 681), (296, 684)]
z=[123,325,305,411,339,339,336,312,372,339,296]
Q = 1e-5 # process variance

# allocate space for arrays
xhat=np.zeros(sz)      # a posteri estimate of x
P=np.zeros(sz)         # a posteri error estimate
xhatminus=np.zeros(sz) # a priori estimate of x
Pminus=np.zeros(sz)    # a priori error estimate
K=np.zeros(sz)         # gain or blending factor

R = 0.1**2 # estimate of measurement variance, change to see effect

# intial guesses
xhat[0] = 0.0
P[0] = 1.0

for k in range(1,len(z)):

    # time update
    xhatminus[k] = xhat[k-1]
    Pminus[k] = P[k-1]+Q

    # measurement update
    K[k] = Pminus[k]/( Pminus[k]+R )
    xhat[k] = xhatminus[k]+K[k]*(z[k]-xhatminus[k])
    P[k] = (1-K[k])*Pminus[k]

plt.figure()
plt.plot(z,'k+',label='noisy measurements')
plt.plot(xhat,'b-',label='a posteri estimate')
plt.axhline(x,color='g',label='truth value')
plt.legend()
plt.title('Estimate vs. iteration step', fontweight='bold')
plt.xlabel('Iteration')
plt.ylabel('Voltage')

plt.figure()
valid_iter = range(1,n_iter) # Pminus not valid at step 0
plt.plot(valid_iter,Pminus[valid_iter],label='a priori error estimate')
plt.title('Estimated $\it{\mathbf{a \ priori}}$ error vs. iteration step', fontweight='bold')
plt.xlabel('Iteration')
plt.ylabel('$(Voltage)^2$')
plt.setp(plt.gca(),'ylim',[0,.01])
plt.show()






Merge_Images.py

import cv2
import numpy as np
from Vehicles import Vehicle_Counter
import matplotlib.pyplot as plt
import Tracking
import time

#--------------- This class is for displaying data

img_width = 28
img_heigth = 28

tile_width = 10
tile_heigth = 10

tiles = tile_width*tile_heigth

def merge_images(input,output):
    # Input = [img1,img2....]
    len(input)

    pass



def input_traces(trace_0):
    angle_list = []
    distance_list = []
    colors = []
    for k in range(31):

        distance,angle = Tracking.vector(trace_0[k], trace_0[k+1])
        angle_list.append(angle)
        distance_list.append(distance)

    for k in range(62):

        distance,angle = Tracking.vector(trace_0[k+32], trace_0[k+33])
        angle_list.append(angle)
        distance_list.append(distance)

    for k in range(30):

        distance,angle = Tracking.vector(trace_0[k+96], trace_0[k+97])
        angle_list.append(angle)
        distance_list.append(distance)

    for k in range(48):
        distance, angle = Tracking.vector(trace_0[k + 183], trace_0[k + 184])
        angle_list.append(angle)
        distance_list.append(distance)


    for i in range(len(trace_0)):
        for j in range(len(trace_0)-1):
            distance, angle = Tracking.vector(trace_0[i], trace_0[j])
            if angle in angle_list or distance in distance_list:
                continue
            angle_list.append(angle)
            distance_list.append(distance)

    colors = np.zeros((len(distance_list), 4))
    size = np.zeros(len(distance_list))
    colors[:, -1] = 1
    colors[0:171, 1] = 1
    colors[172:len(distance_list), 0] = 1
    angle = np.arange(-180, 180, 1)
    x = -0.01 * angle ** 2 - 0.4 * angle + 20

    plt.scatter(angle_list, distance_list, s=2, c=colors)
    plt.scatter(angle, x, s=0.12)
    plt.scatter(angle, np.ones(len(angle)) * 10, s=0.1)
    plt.title("Scatter")
    plt.xlabel("Angle (degrees)")
    plt.ylabel("Distance (pixels)")
    plt.axis([-180, 180, 0, max(distance_list)])
    plt.show()

def input_traces1(trace_0):
    angle_list = []
    distance_list = []
    colors = []
    for k in range(41):
        distance, angle = Tracking.vector(trace_0[k], trace_0[k + 1])
        angle_list.append(angle)
        distance_list.append(distance)

    for k in range(37):
        distance, angle = Tracking.vector(trace_0[k + 41], trace_0[k + 42])
        angle_list.append(angle)
        distance_list.append(distance)

    for k in range(36):
        distance, angle = Tracking.vector(trace_0[k + 78], trace_0[k + 79])
        angle_list.append(angle)
        distance_list.append(distance)

    for k in range(43):
        distance, angle = Tracking.vector(trace_0[k + 114], trace_0[k + 115])
        angle_list.append(angle)
        distance_list.append(distance)

    for k in range(41):
        distance, angle = Tracking.vector(trace_0[k + 157], trace_0[k + 158])
        angle_list.append(angle)
        distance_list.append(distance)

    for k in range(41):
        distance, angle = Tracking.vector(trace_0[k + 198], trace_0[k + 199])
        angle_list.append(angle)
        distance_list.append(distance)

    for i in range(len(trace_0)):
        for j in range(len(trace_0) - 1):
            distance, angle = Tracking.vector(trace_0[i], trace_0[j])
            if angle in angle_list or distance in distance_list:
                continue
            angle_list.append(angle)
            distance_list.append(distance)

    colors = np.zeros((len(distance_list),4))
    size = np.zeros(len(distance_list))
    colors[:,-1] = 1
    colors[0:239,1] = 0.5
    colors[239:len(distance_list),0 ]= 1
    angle = np.arange(-180,180,1)
    x = -0.003* angle**2 - 0.3 * angle + 12

    plt.scatter(angle_list,distance_list,s=9,c=colors)
    plt.scatter(angle,x,s=2)
    plt.scatter(angle,np.ones(len(angle))*12,s=0.9)
    plt.title("Scatter")
    plt.xlabel("Angle (degrees)")
    plt.ylabel("Distance (pixels)")
    plt.axis([-180,180,0,max(distance_list)])
    plt.show()

def test_traces1(trace_0):
    angle_list = []
    distance_list = []
    colors = []
    for k in range(21):
        distance, angle = Tracking.vector(trace_0[k], trace_0[k + 1])
        angle_list.append(angle)
        distance_list.append(distance)

    colors = np.zeros((len(distance_list),4))
    size = np.zeros(len(distance_list))
    colors[:,-1] = 1
    colors[0:239,1] = 0.5
    colors[239:len(distance_list),0 ]= 1
    angle = np.arange(-180,180,1)
    x = -0.003* angle**2 - 0.3 * angle + 12

    plt.scatter(angle_list,distance_list,s=2,c=colors)
    plt.scatter(angle,x,s=0.12)
    plt.scatter(angle,np.ones(len(angle))*12,s=0.1)
    plt.title("Scatter")
    plt.xlabel("Angle (degrees)")
    plt.ylabel("Distance (pixels)")
    plt.axis([-180,180,0,max(distance_list)])
    plt.show()

test_trace = [(270, 20)
,(272, 19)
,(301, 58)
,(301, 53)
,(300, 51)
,(300, 49)
,(301, 76)
,(301, 74)
,(301, 71)
,(302, 78)
,(302, 76)
,(302, 73)
,(303, 71)
,(304, 69)
,(304, 66)
,(303, 65)
,(303, 64)
,(303, 63)
,(303, 62)
,(302, 60)
,(302, 58)
,(300, 57)
]

#test_traces1(test_trace)
trace_1 = [

 (114, 16), (117, 17), (121, 18), (123, 20), (127, 21), (129, 23), (132, 25), (134, 27),
 (137, 31), (139, 33), (141, 37), (144, 41), (145, 44), (148, 48), (150, 51), (153, 56), (156, 60), (158, 64), (160, 69),
 (163, 74), (166, 78), (168, 84), (170, 89), (173, 95), (176, 100), (179, 106), (182, 113), (185, 119), (188, 127), (192, 133),
 (195, 142), (199, 150), (203, 159), (207, 166), (211, 170), (216, 174), (221, 179), (226, 182), (232, 188), (229, 193), (234, 199),

 (121, 15), (109, 16), (110, 17), (112, 19), (113, 20), (114, 21), (116, 23), (120, 25), (122, 26), (124, 28), (126, 30), (130, 32),
 (131, 34), (134, 36), (136, 38), (139, 40), (142, 42), (144, 44), (146, 47), (149, 49), (151, 52), (154, 55), (157, 58), (159, 61),
 (161, 64), (177, 97),(180, 103), (183, 109), (189, 123),(193, 131),(197, 139), (201, 148), (205, 158),  (210, 165),  (215, 169), (220, 174),(227, 179),

(145, 29),  (147, 31), (149, 34), (186, 116), (150, 38), (152, 41),  (153, 43), (155, 47),  (157, 50),(158, 54),(160, 58), (163, 62),(164, 65),
           (166, 70),  (168, 74), (170, 79), (172, 84), (174, 89), (177, 94), (179, 100), (182, 105), (185, 112),(188, 118),(191, 125), (194, 132),  (197, 140),  (201, 149), (206, 157),
 (210, 162),  (214, 166),  (219, 170),  (224, 174),  (230, 179), (236, 184) ,(234, 189),  (239, 195),

 (103, 19),  (106, 21),  (109, 22),  (111, 24), (115, 25),   (118, 27), (121, 29), (287, 51),  (126, 33),  (129, 35),(133, 37),  (135, 39),
 (138, 41), (141, 43),  (143, 46), (146, 49),(149, 51), (152, 54),  (154, 57),  (157, 60),
(160, 64), (163, 68), (166, 73), (169, 79), (173, 85), (176, 92), (179, 98), (183, 105), (187, 113), (190, 122), (195, 124),
 (199, 126), (204, 128), (210, 130), (216, 133), (215, 136), (218, 138), (222, 141), (223, 144), (222, 169),
 (228, 174), (227, 180), (234, 186), (239, 193), (250, 201),

    (91, 15), (94, 17), (98, 18), (100, 19), (104, 21), (108, 23), (112, 24), (114, 26), (117, 28), (120, 31),
    (124, 34), (127, 37), (129, 41), (131, 45), (134, 49), (136, 53), (138, 57), (140, 62), (142, 67), (144, 71),
    (147, 77), (149, 82), (151, 88), (153, 93), (156, 100),
    (159, 107), (162, 114), (165, 121), (168, 130), (172, 139), (175, 147), (180, 156), (184, 159), (188, 163),
    (193, 167), (198, 171), (203, 175), (197, 180), (201, 185),
    (201, 190), (203, 197),

(111, 16), (115, 18), (119, 19),(121, 21), (125, 23), (130, 24), (133, 26), (138, 28),
(142, 30), (149, 32), (152, 34), (159, 39), (163, 42), (166, 43), (169, 47),
(170, 52), (172, 55), (325, 93), (180, 58), (183, 61), (185, 64), (192, 72),
(195, 76), (198, 81), (202, 86), (232, 96), (231, 104), (230, 112), (227, 115),
(228, 114), (235, 113), (242, 112), (250, 130), (271, 26),(269, 24), (269, 22),
    (268, 20), (267, 19), (272, 156), (270, 17), (272, 16)]

#input_traces1(trace_1)







trace_0 = [(50, 79), (50, 82), (51, 85), (52, 88), (55, 94), (56, 98), (57, 100),
           (58, 102), (60, 109), (62, 112), (63, 115), (67, 118), (72, 127), (81, 150), (83, 156), (85, 162), (89, 175), (91, 182),
           (93, 189), (95, 197), (100, 214), (103, 223), (106, 233), (109, 244), (116, 260), (119, 264), (123, 269), (126, 274),
           (132, 285), (134, 290), (134, 297), (137, 303), (43, 21), (43, 21), (43, 22), (43, 23), (44, 24), (44, 25), (44, 26),
           (45, 26), (46, 28), (46, 29), (46, 30), (47, 30), (47, 32), (48, 33), (48, 34), (48, 35), (49, 37), (49, 38), (50, 39),
           (51, 40), (51, 42), (55, 61), (56, 63), (57, 65), (58, 70), (59, 72), (59, 74), (60, 77), (61, 82), (62, 84), (63, 87),
           (64, 90), (65, 96), (66, 99), (67, 102), (68, 106), (70, 113), (71, 116), (72, 120), (74, 124), (76, 133), (77, 137),
           (79, 142), (80, 147), (83, 158), (85, 164), (87, 169), (88, 176), (92, 189), (95, 196), (97, 204), (99, 212), (105, 230),
           (108, 239), (111, 249), (114, 253), (121, 261), (124, 266), (128, 271), (131, 276), (132, 287), (134, 294), (137, 300),
           (139, 308), (75, 111), (75, 114), (76, 118), (77, 121), (79, 128), (80, 132), (81, 136), (82, 139), (85, 148), (86, 152),
           (87, 157), (88, 162), (92, 172), (93, 177), (94, 183), (96, 189), (100, 201), (101, 208), (103, 215), (105, 222), (110, 238),
           (113, 247), (115, 256), (117, 262), (123, 270), (127, 274), (128, 278), (131, 283), (132, 293), (133, 298), (135, 304),
           (185, 50), (184, 93), (183, 92), (179, 67), (177, 65), (176, 64), (174, 63), (172, 59), (171, 56), (170, 53), (168, 50),
           (166, 47), (165, 45), (164, 43), (163, 41), (162, 38), (161, 36), (160, 35), (160, 33), (156, 31), (154, 29), (152, 28),
           (149, 27), (145, 25), (144, 24), (141, 22), (139, 21), (136, 19), (134, 19), (132, 18), (131, 17), (128, 15), (183, 69),
           (182, 66), (181, 63), (179, 61), (177, 55), (175, 53), (175, 51), (172, 48), (167, 44), (165, 42), (163, 40), (160, 38),
           (156, 34), (154, 33), (152, 30), (150, 29), (147, 26), (144, 24), (143, 22), (141, 21), (138, 18), (136, 17), (135, 16),
           (133, 16), (47, 22), (48, 23), (48, 24), (49, 26), (50, 29), (50, 31), (51, 32), (51, 34), (53, 38), (53, 40), (54, 42),
           (54, 44), (56, 48), (56, 50), (57, 52), (57, 55), (59, 60), (60, 62), (61, 64), (62, 67), (64, 73), (65, 76), (66, 79),
           (67, 82), (70, 90), (70, 93), (72, 97), (73, 102), (76, 111), (78, 115), (80, 120), (81, 125), (85, 136), (87, 142),
           (89, 149), (91, 155), (96, 170), (99, 178), (101, 186), (104, 196), (111, 216), (115, 227), (119, 238), (123, 252),
           (133, 266), (137, 272), (142, 278), (146, 285), (147, 301)]
#input_traces(trace_0)

#Vector fra hvert startpunkt, til alle punkt i matrisen
#startpunkt: 0,32,96,183

def test_traces_sandvika(trace_0):
    angle_list = []
    distance_list = []
    colors = []
    for i in range(len(trace_0)):
        for j in range(len(trace_0) - 1):
            distance, angle = Tracking.vector(trace_0[i], trace_0[j])
            if angle in angle_list or distance in distance_list:
                continue
            angle_list.append(angle)
            distance_list.append(distance)

    colors = np.zeros((len(distance_list),4))
    size = np.zeros(len(distance_list))
    colors[:,-1] = 0.5
    colors[0:239,1] = 0.5
    colors[0:len(distance_list),0 ]= 1
    angle = np.arange(-180,180,0.01)
    x = -2* angle**2 + 60 * angle + 200

    plt.scatter(angle_list,distance_list,s=2,c=colors)
    plt.scatter(angle,x,s=0.12)
    plt.scatter(angle,np.ones(len(angle))*50,s=0.1)
    plt.title("Scatter")
    plt.xlabel("Angle (degrees)")
    plt.ylabel("Distance (pixels)")
    plt.axis([-180,180,0,max(distance_list)])
    plt.show()

trace_sandvika_E18 = [(300, 461), (68, 718), (23, 707), (32, 670), (68, 649), (16, 477), (300, 491), (301, 44), (214, 44),
                      (151, 44), (81, 44), (21, 44), (300, 15), (366, 804), (260, 618), (253, 540), (468, 548), (187, 498),
                      (136, 474), (506, 450), (140, 438), (65, 408), (103, 412), (482, 386), (534, 345), (573, 296), (260, 616),
                      (64, 408), (483, 385), (521, 355), (539, 328), (165, 802), (449, 668), (242, 546), (238, 519), (115, 430),
                      (464, 406), (480, 385), (524, 355), (565, 307), (241, 546), (463, 405), (479, 385), (563, 307), (242, 540),
                      (115, 432), (114, 432), (181, 853), (136, 848), (109, 813), (207, 824), (167, 796), (185, 765), (244, 537),
                      (131, 851), (215, 813), (185, 762), (130, 852), (168, 795), (448, 668), (237, 518), (101, 840), (237, 517),
                      (514, 380), (535, 331), (185, 790), (157, 794), (216, 762), (169, 754), (412, 695), (237, 549), (472, 699),
                      (424, 666), (428, 648), (247, 613), (438, 420), (513, 398), (521, 360), (566, 304), (565, 305), (244, 629),
                      (241, 593), (519, 366), (562, 305), (245, 589), (518, 363), (244, 588), (511, 397), (233, 625), (258, 630),
                      (245, 581), (214, 802), (202, 784), (226, 750), (156, 779), (412, 436), (389, 437), (507, 424), (516, 387),
                      (525, 344), (560, 307), (154, 779), (202, 784), (214, 802), (154, 779), (526, 344), (215, 801), (411, 436),
                      (154, 778), (142, 813), (159, 741), (388, 437), (507, 423), (143, 812), (119, 794), (153, 740), (506, 415),
                      (494, 465), (513, 409), (516, 377), (522, 352), (555, 310), (516, 377), (522, 350), (555, 310), (521, 350),
                      (521, 346), (512, 409), (493, 464), (494, 455), (473, 531), (236, 460), (508, 441), (515, 391), (520, 351),
                      (550, 314), (507, 441), (516, 370), (515, 382), (520, 349), (235, 460), (519, 350), (550, 313), (473, 528),
                      (466, 526), (424, 668), (493, 490), (178, 456), (518, 384), (519, 360), (544, 318), (157, 455), (518, 360),
                      (544, 318), (518, 359), (517, 384), (543, 318), (423, 689), (450, 669), (415, 646), (432, 632), (490, 487),
                      (459, 578), (141, 443), (505, 438), (515, 384), (538, 322), (516, 384), (515, 384), (516, 377), (538, 322),
                      (387, 768), (490, 480), (125, 432), (513, 417), (510, 393), (535, 326), (480, 473), (511, 407), (511, 393),
                      (482, 468), (124, 432), (534, 327), (387, 769), (482, 468), (386, 822), (405, 811), (366, 796), (345, 800),
                      (434, 744), (394, 755), (453, 553), (505, 444), (114, 422), (512, 369), (530, 332), (573, 304), (504, 364),
                      (572, 304), (504, 444), (452, 575), (456, 526), (503, 462)]


test_traces_sandvika(trace_sandvika_E18)






system_main.py


from PyQt5.QtWidgets import QMainWindow, QApplication
from PyQt5 import uic
from PyQt5 import QtGui
from PyQt5.QtGui import QImage,QPixmap


import numpy as np
import cv2
from matplotlib import pyplot as plt
from skimage.morphology import watershed
from skimage.feature import peak_local_max
import matplotlib.colors as color
import Tracking
import time
#from IPython.display import Image, display
import time
from datetime import timedelta
import os
import logging
import operator
import functools
#from Vehicle_Database import Vehicle_database
#from Vehicles import Vehicle_Counter
from threading import Thread
import sys
from Kalman_filter_2d import kalman_xy
import os, math, time, datetime
import pickle
from skimage.feature import hog
from skimage import data,color,exposure
from scipy import signal
from mss import mss
from PIL import Image
from PIL import ImageGrab
#import CNN_ver_1
#import CNN_ver_2
import CNN4_test_to_toshiba









Ui_MainWindow, QtBaseClass = uic.loadUiType("C:/Users/eirikaflekt/Dropbox/UIS/Master/GUI/GUI.ui")

sys._excepthook = sys.excepthook

def my_exception_hook(exctype, value, traceback):
    # Print the error and traceback
    print(exctype, value, traceback)
    # Call the normal Exception hook after
    sys._excepthook(exctype, value, traceback)
    sys.exit(1)

# Set the exception hook to our wrapping function
sys.excepthook = my_exception_hook


# ==============================================================================
#               Detect and Track vehicles
#
# .. OBS! The threshold value changes when ResizeRatio is modified
# .. It's computed in the Merge_Images
# .. Divider Line and Offset is also changed
#
#
#
#
# ==============================================================================


#=======================================================================================================================
#               Inputs
#=======================================================================================================================


plt.ion()
# vehicles = []
InitalBackground = "Empty"
logging.basicConfig(filename="Coordinates", level=logging.DEBUG)
# logging.basicConfig(filename="vehicle_log",level = logging.DEBUG)
circle_color = (255, 0, 0)
rectangle_color = (0, 255, 0)
line_color = (0, 0, 255)
frame_global = []
Slowmo = 1
MaxSize = 500
plt.ion()
#vehicles = []
InitalBackground="Empty"
#logging.basicConfig(filename="Coordinates", level=logging.DEBUG)
logging.basicConfig(filename="vehicle_log",level = logging.DEBUG)
circle_color = (255,0,0)
rectangle_color = (0,255,0)
line_color = (0,0,255)
frame_global = []
x_line = 450 #the divider
y_line = 800
ResizeRatio = 0.7
INCEPTION = False
SAVE_IMG_TO_DATABASE=False
LOG_DIR = "C:/VEHICLE_LOG/"
FILENAME = datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d_%H%M%S')
#CNN_MODEL_PATH= "D:/Tensorboard/20170426_162215/model/0.0001_batch_64_model_[8_10_10_10]/model.ckpt-11205"
CLASS_LABELS = ["Personal Vehicle","Truck","Random","Random2"]
somelist = []

if not os.path.exists(LOG_DIR):
    os.makedirs(LOG_DIR)
    print('No folder found, Successfully created folder {}'.format(LOG_DIR))

    # Add delay so directory can be made
    time.sleep(1)

logging.basicConfig(filename="{0}{1}".format(LOG_DIR,FILENAME), level=logging.DEBUG)
print("{0}{1}".format(LOG_DIR,FILENAME))


def classify(image_path):
    # Display the image.
    # display(Image(image_path))
    # Use the Inception model to classify the image.
    pred = model.classify(image=image_path)
    # Print the scores and names for the top-k predictions.
    model.print_scores(pred=pred, k=5, only_first_name=True)
    #Faa ut class, add text to img (frame)
    return pred

def plot_resized_image(image_path):
    # Get the resized image from the Inception model.
    resized_image = model.get_resized_image(image=image_path)
    # Plot the image.
    plt.imshow(resized_image, interpolation='nearest')
    # Ensure that the plot is shown.
    plt.show()

def sliding_window(bin_image,sliding_size=(2,2)):
    #bin_image = cv2.resize(bin_image, (28, 28))
    height, width = bin_image.shape
    print(bin_image.shape)
    start_time = time.time()
    square_size = height*width/16
    for yy in range(0,width,int(width/6)):
        for xx in range(0,height,int(height/8)):
            orig = bin_image
            cv2.rectangle(orig, (xx, yy), (xx + int(height/4), yy + int(width/4)), (255), 2)
            cv2.imshow("thresh", orig)
            try:
                #if region contains pixels, mark as ROI
                if np.sum(bin_image[xx + int(height/4), yy + int(width/4)]) != 0:
                   cv2.imshow("bin_img",bin_image[xx:xx+int(height/4),yy:yy+int(width/4)])
                   #cv2.waitKey(0)
                   img_ROI = bin_image[xx:xx+int(height/4),yy:yy+int(width/4)]
                #   #Classifier here
            except:
                continue

def save_frame(file_name_format, frame_number, frame, label_format):
    file_name = file_name_format % frame_number
    label = label_format % frame_number

    #log.debug("Saving %s as '%s'", label, file_name)
    cv2.imwrite(file_name, frame)

#=======================================================================================================================
#                                            Single Vehicle Objects
#=======================================================================================================================

class Vehicles(object):
    def __init__(self,id,position):

        self.id = id #unique number for each vehicle
        self.positions = [position] #positions is all center coordinates for the given vehicle
        self.frames_since_seen = 0
        self.counted = False
        self.square = [] #Coordinates for square, measurement for size
        self.velocity = 0
        self.size = 0
        self.color = []
        self.frame_last_seen = []
        self.image = []
        self.vehicle_name = []

    def last_position(self):
        return self.positions[-1]

    def add_position(self, new_position,square):
        self.positions.append(new_position)  #if position is added, reset frames_since_seen
        self.frames_since_seen = 0
        self.square.append(square)

    def add_identifier(self,identifier):
        self.identifier = identifier
        #print(self.positions)

#=======================================================================================================================
#                               Creator of multiple vehicle objects, based on traces
#=======================================================================================================================

class Vehicle_Counter(object):
    def __init__(self):
        self.log = logging.getLogger("Main")
        self.vehicles = []
        self.next_vehicle_id = 0
        self.vehicle_count = 0
        self.max_unseen_frames = 100


    def valid_vector(self,vector):
        # Vector is [distance, degree]
        #From scatterplot, valid vectors are:
        distance,angle = vector

        x = -0.01 * angle ** 2 - 0.4 * angle + 20
        threshold = max(20, x)
        #For maritim E18
        #x = -2 * angle ** 2 + 60 * angle + 200
        ####x = -0.003 * angle ** 2 - 0.3 * angle + 12
        #threshold = max(50,x)
        #print("this is distance {0}, this is angle {1}, this is x {2}, threshold {3}".format(distance,angle,x,threshold))
        if distance < threshold or x>0:
            return vector

    def crop_vehicle(self,*args,**kwargs):
        return

    def update_vehicle(self,vehicle,traces):
        #Vehicle is one object from Vehicles, in list self.vehicles
        #Update for object vehicle in class Vehicle
        for k, trace in enumerate(traces):
            con,center = trace
            #receive vector between last center point of movement and new center point
            vector = Tracking.vector(vehicle.last_position(),center)

            #Check if vector is valid
            #print("this is vector {0}".format(vector))
            if self.valid_vector(vector):
                if center in vehicle.positions:
                    return k
                Tracking.KalmanFilter()
                vehicle.add_position(center, con)
                Tracking.on_movement(center[0], center[1], color=(0, 0,255 ))

                return k
        #no matches, iterate the frame_counter
        vehicle.frames_since_seen += 1

    def update_all(self,traces):


        #Check if traces match any of the vehicles in database
        for vehicle in self.vehicles:
            #print(vehicle.positions)
            k = self.update_vehicle(vehicle,traces)
            #Delete traces that are matching with vehices in database
            if k is not None:
                del traces[k]
        #For uncounted vehicles
        for trace in traces:

            contour,centroid = trace
            somelist.append(centroid)
            #self.log.debug(somelist)
            #print(somelist)
            #Create new object, with new id.
            new_vehicle = Vehicles(self.next_vehicle_id,centroid)
            self.next_vehicle_id +=1
            self.vehicles.append(new_vehicle)
            # All vehicles passing the line

        for vehicle in self.vehicles:
            # is object vehicle counted for?(boolean values) if not:
            if not vehicle.counted and (vehicle.last_position()[1] > x_line):
                if len(vehicle.positions) < 3:
                    self.vehicles.remove(vehicle)
                    break
                self.crop_vehicle(vehicle)
                vehicle.counted = True
                self.vehicle_count += 1
                print(vehicle.positions)

                # Add size of the bounding box when passing line
                # Optional do operation in vehicle_Database, use max(traces)
                #vehicle.size = functools.reduce(operator.mul, vehicle.square[-1][2:4], 1)


        #if object has not been detected in a given time frame:
        for vehicle in self.vehicles:

            # If vehicle is counted, and missing from frame, add to new database.
            if vehicle.frames_since_seen >= self.max_unseen_frames and vehicle.counted:
                print("Vehicle {0} is inside tunnel  \n     time: {1} \n   \ size:{2}"
                      .format(vehicle.id, int(time.clock()-self.t0), vehicle.size))
                # Keep only vehicles that's not been missing > max_unseen_frames
                self.vehicles[:] = [v for v in self.vehicles
                                    if not v.frames_since_seen >= self.max_unseen_frames]
                return(vehicle)

#=======================================================================================================================
#                                                       Main
#=======================================================================================================================

class class_process(Vehicle_Counter):
    def __init__(self,camerafeed,classify = False,offset = 0):
        super().__init__()
        #Thread.__init__(self)
        self.log = logging.getLogger("Main")
#Class construction vehicle objects
        #self.Counter_constructor = Vehicle_Counter()
#Class storing vehicle objects inside tunnel
        #self.database = Vehicle_database()
#Camera settings
        self.ResizeRatio = ResizeRatio
        self.offset = offset
        self.camerafeed = camerafeed
        #self.daemon = True
        #self.start()
        self.t0 = time.clock()
        self.fgbg = cv2.createBackgroundSubtractorKNN(history=50, detectShadows=True)
        self.frame_number = 0 #Variable to track frame number
        self.cap = cv2.VideoCapture(self.camerafeed)
        #self.cap = camerafeed
        self.item = []
        self.var = 0
        self.delete = []
        self.classify = classify
        self.disp_foreground = False
        self.disp_video = False
        self.disp_trace = False
        if self.classify:
            import inception
            import tensorflow as tf
            import Tensor
            import prettytensor as pt


    #def add_to_database(self):
    #    return
    def add_to_postprocessing(self,*args,**kwargs):
        return


    def preprocessing(self):
#Background subtractor, opencv.

        #Start oversiktsfigur
        while(True):

            #### REMOVE IF RUN FROM FILE
            #mon = {'top': 660, 'left': 860, 'width': 600, 'height': 1500}
            #sct = mss()
            #sct.get_pixels(mon)
            #print(sct.get_pixels(mon))
            #self.frame = Image.frombytes('RGB', (sct.width, sct.height), sct.image)
            #self.frame = np.array(self.frame)


            ####
            self.ret, self.frame = self.cap.read()      #Get frame from camera
            self.frame_number = int(time.clock() - self.t0) #1 FPS, count frames
            self.frame_copy = self.frame.copy()                                                  #Copy of frame to draw on
            self.frame = cv2.resize(self.frame, (0, 0), fx=self.ResizeRatio, fy=self.ResizeRatio)#Resize to match display
            self.roi = self.frame[0:len(self.frame[1]), 0:y_line]                                #Region of interest
            Tracking.tracking_graph()                                                            #Plotting tracks

            self.foreground_mask = self.fgbg.apply(self.roi) #Apply foreground mask to region of interest
            self.thresh_img = self.filter_foreground(self.foreground_mask)
            # Detect vehicles,returns traces, draw on frame
            trace = self.detect_vehicles(self.thresh_img)
            self.draw_on_frame(trace)
            #VehicleClass, input traces
            #return vehicles inside tunnel
            #From Vehicle_counter
            #return value when vehicle is outside frame
            self.vehicle_left = self.update_all(self.detect_vehicles(self.thresh_img))

            #smallers, *rest, largest = list

            if self.vehicle_left:
                self.vehicle_left.frame_last_seen = self.frame_number
                self.add_to_postprocessing(self.vehicle_left,kalman = True)
                print("Vehicle counter {0}".format(self.vehicle_count))


            if self.disp_foreground:
                cv2.imshow("Foreground {0}".format(self.camerafeed), self.thresh_img)

            if self.disp_video:
                cv2.putText(self.frame, ("Time: {0}".format(int(time.clock() - self.t0))), (0, 20),
                            cv2.FONT_HERSHEY_SIMPLEX, 0.5,
                            (0, 0, 0), 2, cv2.LINE_AA)
                cv2.imshow("Frame {0}".format(self.camerafeed), self.frame)

            if cv2.waitKey(Slowmo) & 0xFF == ord('q'):
                break


        print("{0} is updated ".format(self.log))
        self.log.debug("Log is Updated")
        self.cap.release()
        cv2.destroyAllWindows()


    def crop_vehicle(self,vehicle):
        x, y, w, h = vehicle.square[-1]
        # Resized frame to original frame
        w = int(w / self.ResizeRatio)
        h = int(h / self.ResizeRatio)
        x = int((self.offset + x) / self.ResizeRatio)
        y = int(y / self.ResizeRatio)
        cv2.destroyWindow('crop')
        cv2.imshow("crop", self.frame_copy[y:y + h, x:x + w])



    def draw_on_frame(self, trace):
        cv2.line(self.frame, (0, x_line), (self.frame.shape[1], x_line), line_color, 1)

        for (i, trace) in enumerate(trace):

            box, center = trace
            #self.delete.append(center)
            #self.log.debug(self.delete)
            #print(center)
            x, y, w, h = box
            if self.disp_trace:
                cv2.rectangle(self.frame, (x + self.offset, y), (x + self.offset + w, y + h), (0,255,0), 2)
                cv2.circle(self.frame, (center[0] + self.offset, center[1]), 2, circle_color, -1)

    def detect_vehicles(self,fg_mask):
        centroid = (0, 0)
        MIN_CONTOUR_WIDTH = 24 #Minimum area for valid detection
        MIN_CONTOUR_HEIGHT = 24

        #Find contours of any vehicles in the image
        im2, contours, hierarchy = cv2.findContours(fg_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

        trace = []
        for (i, contour) in enumerate(contours):
            (x, y, w, h) = cv2.boundingRect(contour)
            contour_valid = (w >= MIN_CONTOUR_WIDTH) and (h >= MIN_CONTOUR_HEIGHT)
            if not contour_valid:
                continue
            centroid = self.get_center(x, y, w, h)
            trace.append(((x, y, w, h), centroid))
        return trace

    def get_center(self,x, y, w, h): #Return center of contour. Used to calculate
        cx = x + int(w / 2)
        cy = y + int(h / 2)
        center = (cx, cy)
        return center


    def filter_foreground(self,foreground):
        kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))            #Morphological Strel
        closing = cv2.morphologyEx(foreground, cv2.MORPH_CLOSE, kernel)          #Morphological closing
        opening = cv2.morphologyEx(closing, cv2.MORPH_OPEN, kernel)              #Morphological opening
        thresh_img = cv2.dilate(opening, kernel, iterations=2)                   #Morphological dilation
        #thresh_img=foreground
        ret, thresh_img = cv2.threshold(thresh_img, 127, 255, cv2.THRESH_BINARY) #Threshold to limit shadow appearance
        return thresh_img


    def Classify(self, to_classify):
        #self.pred = CNN_ver_4_Test.Test_image(model_path="C:/Users/trygvet/Dropbox/UIS/Master/Hovedprogram/model/model.ckpt-11250",in_img = to_classify,var=1 )
        #print(self.pred)
        print("hei")
# =======================================================================================================================
#                                Post Processing. Class intended for camera 1
# =======================================================================================================================

class Post_processing(class_process): #Entry Camera
    def __init__(self,camerafeed="Trafikk_kamera1.m2v", destination="C:",classify = False):
        super().__init__(camerafeed)
        self.log = logging.getLogger("Vehicles")
        self.vehicles_list = []
        self.vehicles_id = []
        self.color = [(255, 0, 0), (255, 0, 0), (255, 0, 0)]
        self.database_counter = []
        self.choice = 0
        self.move = 0
        self.image = []
        self.update_variable = [0,0,0]
        self.classify = classify
        # Display Settings
        self.destination = "D:/E16_sandvika/{0}/".format(destination)
        #self.destination = "D:/E16_sandvika/webcam_6/"
        #class_process.preprocessing(self)

        # self.classify()
    def add_to_postprocessing(self, vehicle=None, kalman=None,crop_image = None):
        self.log.debug("\nVehicle id: {0}  Size: {1} Last seen: {2} Time: {3} \n \n".format(vehicle.id, vehicle.size,
                                                                                vehicle.frame_last_seen, int(time.clock()-self.t0)))

        vehicle.Color = self.color[self.choice]
        if self.choice >= len(self.color) - 1:
            self.choice = 0
        else:
            self.choice += 1
        self.vehicles_list.append(vehicle)
        self.database_counter = len(self.vehicles_list)
        # self.kalman_filter(vehicle.positions)
        if kalman:
            self.velocity, self.result = kalman_xy(vehicle.positions)
        else:
            self.velocity = [[0]]

        # self.classify(vehicle.image)
        #self.update_display(vehicle)


    def crop_vehicle(self,vehicle):
        offset = 0
        #Offset is due to ROI
        if self.offset:
            offset = int(self.offset/self.ResizeRatio)

        xy = [int(i/self.ResizeRatio) for i in vehicle.square[-1]]
        self.xy=xy
        xy[0] += offset
        Padding = 15
        vehicle.vehicle_name = "{0}/vehicle{1}.jpg".format(self.destination, self.vehicle_count)


        if SAVE_IMG_TO_DATABASE:   #Save to database
            try:
                write_img = cv2.resize(self.frame_copy[xy[1]:xy[1] + xy[3], xy[0]:xy[0] + xy[2]],
                                  (300,300))
                #write_img = self.frame_copy[xy[1]:xy[1] + xy[3], xy[0]:xy[0] + xy[2]]
                cv2.imwrite(vehicle.vehicle_name,
                            write_img)
            except:
                pass



        #display_img = cv2.resize(self.frame_copy[xy[1]:xy[1] + xy[3], xy[0]:xy[0]+ xy[2]],
         #                        (300, 300))

        display_img=self.frame_copy[xy[1]:xy[1] + xy[3], xy[0]:xy[0]+ xy[2]]

        if vehicle.id not in self.vehicles_id and len(vehicle.positions) > 4 :
            print(vehicle.counted)
            self.vehicles_id.append(vehicle.id)
            self.update_display(image = display_img)
            with open('vehicle_data.pkl','ab') as output:
                pickle.dump(vehicle,output,pickle.HIGHEST_PROTOCOL)
                print("saved {0}".format(self.vehicle_count))
            del vehicle

            if self.classify:
                self.Classify(display_img)


    def update_display(self, vehicle=None,image = None):
        # Text placement is manual
        self.font = cv2.FONT_HERSHEY_SIMPLEX
        self.textSize = 0.6
        self.display_frame = np.ones((400, 800, 3), np.uint8)
        varx = 0
        vary = 0
        self.display_frame[:] = (255, 255, 255)
        display_text = ["Vehicle Counter:", "Last seen:", "Velocity:", "Classified as:"]
        display_position = [50 + (20 * i) for i, item in enumerate(display_text)]
        # display_position = [50, 70, 90]

        for text, position in zip(display_text, display_position):
            cv2.putText(self.display_frame, text,
                        (0, position),
                        self.font,
                        self.textSize,
                        (0, 0, 0), 2,
                        cv2.LINE_AA)


        if vehicle is not None and self.classify:
            self.update_variable = [len(self.vehicles_list),
                                    vehicle.frame_last_seen,
                                    int(self.velocity[0][0]),
                                    CLASS_LABELS[self.pred[0]]]
        elif vehicle is not None:
            self.update_variable = [len(self.vehicles_list),
                                    vehicle.frame_last_seen,
                                    int(self.velocity[0][0])]

        for text, position in zip(self.update_variable, display_position):
            cv2.putText(self.display_frame,
                        str(text),
                        (160, position),
                        self.font,
                        self.textSize,
                        self.color[self.choice],
                        2, cv2.LINE_AA)

        if image is not None:
            self.image.append(image)

        for img in self.image:
            self.display_frame[vary:vary + 100, 500 + varx:600 + varx] = img
    #May need modification
            if varx >= 200 and vary < 300:
                varx = 0
                vary += 100
            elif varx >= 200 and vary >= 300:
                vary = 0
                varx = 0
            else:
                varx += 100
        cv2.imshow("Collection Frame", self.display_frame)
        k = cv2.waitKey(30) & 0xFF
        if k == 32: reset()


# =======================================================================================================================
#                                QTdesigner, interface class
#                           The program will run without this class.
# =======================================================================================================================


class MyApp(QMainWindow,Ui_MainWindow,Post_processing):
    def __init__(self):
        super(MyApp, self).__init__()
        self.ui = Ui_MainWindow()
        self.ui.setupUi(self)
        #self.ui.start_button.clicked.connect(self.setImages)
        self.ui.start_button.clicked.connect(self.Start_program)
        self.ui.checkBox_stream.stateChanged.connect(self.state_changed)
        self.ui.checkBox_videostream.stateChanged.connect(self.state_changed_1)
        self.ui.checkBox_trace.stateChanged.connect(self.state_changed_2)
        self.ui.checkBox_classify.stateChanged.connect(self.state_changed_3)
        #self.ui.input.connect(self.choose)
        self.destination = "C:"
        self.log = logging.getLogger("Vehicles")
        self.vehicles_list = []
        self.vehicles_id = []
        self.color = [(255, 0, 0), (255, 0, 0), (255, 0, 0)]
        self.database_counter = []
        self.choice = 0
        self.move = 0
        self.image = []
        self.update_variable = [0, 0, 0]
        self.classify = classify
        self.calls = 3
        self.classify = True
        self.pred=0
        self.car=0
        self.truck=0
        self.pedestrian=0


    def Start_program(self):

        #camerafeed="D:/E16_sandvika/Captures/webcam3.mp4"
        super(Post_processing, self).__init__(camerafeed = "Trafikk_kamera1.m2v")
        self.preprocessing()


    def update_display(self, vehicle=None,image = None):

        image = cv2.resize(self.frame_copy[self.xy[1]:self.xy[1] + self.xy[3], self.xy[0]:self.xy[0] + self.xy[2]],
                                 (176, 176))
        image = QtGui.QImage(image, image.shape[1], \
                             image.shape[0], image.shape[1] * 3, QtGui.QImage.Format_RGB888)
        pix = QtGui.QPixmap(image)
        self.ui.label_image_main.setPixmap(pix)
        window = getattr(self.ui, "label_image_{0}".format(self.calls))
        window.setPixmap(pix)

        if self.calls == 10:
            self.calls = 3
        else:
            self.calls += 1

    def Classify(self, to_classify):
        #self.pred = CNN4_test_to_toshiba.Test_image(
        #    model_path="C:/Users/EirikAflekt/Dropbox/UIS/Master/Hovedprogram/model/model.ckpt-11250",
        #    in_img=to_classify)

        self.pred = CNN4_test_to_toshiba.Test_image(model_path = "D:/Tensorboard/from_gorina/model/Layer_[96_128_128_128_256_512]_batch_64_kernel_[8_5_3_3_3_3]_model_pool_[0_1_1_1_1_1]/model.ckpt-10000",
                                                    in_img=to_classify)
        self.pred = CNN4_test_to_toshiba.Test_image(
            model_path="D:/Tensorboard/from_gorina/model/Layer_[96_128_128_128_256_512]_batch_64_kernel_[8_5_3_3_3_3]_model_pool_[0_1_1_1_1_1]/model.ckpt-7500",
            in_img=to_classify)

        #cv2.imshow("to classify",to_classify)
        #cv2.waitKey(0)
        print(self.pred)
        if self.pred == 1:
            self.car +=1
            self.ui.car_label.setText("{0}".format(self.car))
            self.ui.Class_label.setText("Vehicle")
        elif self.pred == 2:
            self.truck +=1
            self.ui.truck_label.setText("{0}".format(self.truck))
            self.ui.Class_label.setText("Truck")
        elif self.pred == 0:
            self.pedestrian +=1
            self.ui.pedestrian_label.setText("{0}".format(self.pedestrian))
            self.ui.Class_label.setText("Pedestrian")

    def state_changed(self):
        try:
            self.disp_foreground = np.invert(self.disp_foreground)
            if self.disp_foreground == False:
                cv2.destroyWindow("Foreground {0}".format(self.camerafeed))
        except:
            print("Start the program first")

    def state_changed_1(self):
        try:
            self.disp_video = np.invert(self.disp_video)
            if self.disp_foreground == False:
                cv2.destroyWindow("Frame {0}".format(self.camerafeed))
        except:
            print("Start the program first")

    def state_changed_2(self):
        try:
            self.disp_trace = np.invert(self.disp_trace)
        except:
            print("Start the program first")

    def state_changed_3(self):
        try:
            self.classify = np.invert(self.classify)
        except:
            print("Start the program first")




# =======================================================================================================================
#                                MAIN
# =======================================================================================================================
if __name__ == "__main__":

    app = QApplication(sys.argv)
    window = MyApp()
    window.show()
    try:
        sys.exit(app.exec_())
    except:
        print("Exiting")







Tensor.py

import cv2
import time
import numpy as np
import threading

def Center_Of_mass(bin_image):
    bin_image = cv2.resize(bin_image,(28,28))
    start_time = time.time()
    height, width = bin_image.shape
    print("%s height and %s width" % (height,width))
    for i in range(height):
        #print(i)
        for j in range(width):
            #print(j)
            #print(bin_image[i][j])
            #time.sleep(1)
            continue


    print("%s seconds" %(time.time()-start_time))


def sliding_window(bin_image,sliding_size=(2,2)):
    #bin_image = cv2.resize(bin_image, (28, 28))
    height, width = bin_image.shape
    print(bin_image.shape)
    start_time = time.time()
    square_size = height*width/16
    for yy in range(0,width,int(width/6)):
        for xx in range(0,height,int(height/8)):
            orig = bin_image
            cv2.rectangle(orig, (xx, yy), (xx + int(height/4), yy + int(width/4)), (255), 2)
            cv2.imshow("thresh", orig)
            try:
                #if region contains pixels, mark as ROI
                if np.sum(bin_image[xx + int(height/4), yy + int(width/4)]) != 0:
                   cv2.imshow("bin_img",bin_image[xx:xx+int(height/4),yy:yy+int(width/4)])
                   #cv2.waitKey(0)
                   img_ROI = bin_image[xx:xx+int(height/4),yy:yy+int(width/4)]
                #   #Classifier here
            except:
                continue


        #if cv2.waitKey(1) & 0xFF == ord('q'):
        #    cv2.destroyAllWindows()
    print(threading.active_count())
    print("%s seconds" % (time.time() - start_time))
    #cv2.waitKey(0)




#bin_image = cv2.imread("bin_image.jpg",0)
#print(bin_image.shape)
#Center_Of_mass(bin_image)


#sliding_window(bin_image)
#Trekk linjer mellom center of mass?
#Frame -1,






Tensorflow_Dataset_batches.py

import os
import tensorflow as tf
import numpy as np
#import cv2
from PIL import Image
from dataset import DataSet

import matplotlib.pyplot as plt
import cv2




def dense_to_one_hot(labels_dense, num_classes=10):
  """Convert class labels from scalars to one-hot vectors."""
  num_labels = labels_dense.shape[0]
  index_offset = np.arange(num_labels) * num_classes
  labels_one_hot = np.zeros((num_labels, num_classes))
  labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
  return labels_one_hot


def read_my_file_format(filename_queue,
                        img_size_cropped=300,
                        training=False,
                        num_channels=3,
                        one_hot=True,
                        num_classes = 10):
    #Needed to read unlabeled data
  #image_reader = tf.read_file(filename_queue)
  #image_reader = tf.WholeFileReader()
  #_, image_file = image_reader.read(filename_queue)
  #image = tf.image.decode_jpeg(image_file)


  label = filename_queue[1]
  image = tf.image.decode_jpeg(tf.read_file(filename_queue[0]), channels=3)

  if tf.shape(image)[0] != tf.shape(image)[1]:
      #print(image.get_shape().as_list())
      image = tf.image.resize_image_with_crop_or_pad(image,
                                                     target_height=img_size_cropped,
                                                     target_width=img_size_cropped)
      image =  tf.image.resize_images(image, (img_size_cropped, img_size_cropped),
                                     method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
  else:
    image = tf.image.resize_images(image, (img_size_cropped, img_size_cropped),
                                     method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
  # Returns one hot labeled labels
  if one_hot:
    label = tf.one_hot(label,num_classes)
  #image = tf.image.per_image_standardization(image)
  #image = tf.image.resize_image_with_crop_or_pad(image,target_height=200,target_width=200)

  if training:
      # For training, add the following to the TensorFlow graph.
        # Randomly crop the input image.
      image = tf.random_crop(image, size=[img_size_cropped, img_size_cropped, num_channels])
        # Randomly flip the image horizontally.
      image = tf.image.random_flip_left_right(image)
        # Randomly adjust hue, contrast and saturation.
      image = tf.image.random_hue(image, max_delta=0.05)
      image = tf.image.random_contrast(image, lower=0.3, upper=1.0)
      image = tf.image.random_brightness(image, max_delta=0.2)
      image = tf.image.random_saturation(image, lower=0.0, upper=2.0)
      # Limit the image pixels between [0, 1] in case of overflow.
      #image = tf.minimum(image, 1.0)
      #image = tf.maximum(image, 0.0)
  #else:
  #    image = tf.image.resize_image_with_crop_or_pad(image,
  #                                                   target_height=img_size_cropped,
  #                                                   target_width=img_size_cropped)

  image.set_shape((img_size_cropped,img_size_cropped,num_channels))
  return image,label


def input_pipeline(
                   in_dir=None,
                   labels_in=None,
                   filename_queue=None,
                   batch_size=9,
                   exts='.jpg',
                   num_epochs=None,
                   return_as_eval=True,
                   shuffle = True,
                   training = True,
                   number_classes=3,
                   img_size_cropped = 300 ):


    #OBS!!! Input must be a square image
    if filename_queue is None:
        filename_queue = tf.train.string_input_producer(
          tf.train.match_filenames_once("{0}*{1}".format(in_dir, exts)),
                                                 num_epochs=num_epochs,
                                                 shuffle=True)
        label = dense_to_one_hot(np.array([label_var] * batch_size),
                                 num_classes=number_classes)

        #filename_queue = tf.train.string_input_producer(filename_queue, num_epochs=num_epochs, shuffle=True)
        #image = read_my_file_format(filename_queue,img_size_cropped= img_size_cropped, training=True,num_classes=number_classes)

    else:

        images, labels = filename_queue, labels_in
        input_queue = tf.train.slice_input_producer([images, labels],
                                                    shuffle=shuffle)


        image,label = read_my_file_format(input_queue,
                                          training=training,
                                          img_size_cropped=img_size_cropped,
                                          num_classes=number_classes)


    min_after_dequeue = 100
    capacity = min_after_dequeue + 3 * batch_size


    #tf.train.shuffle_batch
    [images, labels] = tf.train.batch(
        [image, label],
        batch_size=batch_size,
        capacity=capacity,
        #min_after_dequeue=min_after_dequeue,
        allow_smaller_final_batch=True)

    if return_as_eval:
        #Rapport
        with tf.Session() as sess:
            #       # Required to get the filename matching to run.
            tf.global_variables_initializer().run()
            coord = tf.train.Coordinator()
            threads = tf.train.start_queue_runners(coord=coord)

            for i in range(9):
                images = sess.run(image)
                #cv2.imshow("name",np.array(images))
                #print(image)
                #cv2.waitKey(0)
                plt.subplot(3,3,i+1)
                plt.imshow(images)
                plt.axis("off")
            #plt.imshow(np.array(images))

            plt.show()
            #images = images.eval()
            #labels = labels.eval()
            coord.request_stop()
            coord.join(threads)
            sess.close()

    return images, labels




########################################################################################
#                                       Display dataset
########################################################################################

#training_set = DataSet(in_dir = "D:/Test_vehicle_base/")

#filename_queue = training_set.get_training_set()[0]
#labels = training_set.get_training_set()[1]


#image_batch,label_batch = input_pipeline(filename_queue=filename_queue,
          #                               labels_in=labels,
          #                               batch_size=9,
          #                               return_as_eval=True,
          #                               training=True,
          #                               shuffle=True)


########################################################################################

"""


with tf.Session() as sess:
    tf.global_variables_initializer().run()
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)


    try:
        while not coord.should_stop():
            sess.run(qnque_op)
    except:
        coord.request_stop()

coord.join(threads)
sess.close()

training_set = DataSet(in_dir = "D:/Vehicles_Database/")
filename_queue = training_set.get_training_set()[0]
labels = training_set.get_training_set()[1]





image_batch,label_batch = input_pipeline(filename_queue=filename_queue,labels_in=labels,batch_size=16,return_as_eval=True)



def something():
    sess = tf.Session()

    x = tf.placeholder(tf.float32, shape=[None, 300, 300, 3], name="x")
    print(x)

    tf.global_variables_initializer()
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess= sess,coord=coord)
    print(x)
    image_batch1,label_batch2 = sess.run([image_batch,label_batch])
    print(image_batch1)
    coord.request_stop()
    coord.join(threads)
    sess.close()
    #sess.run(something, feed_dict={x: image_batch})

something()
"""






Tracking.py

import cv2, numpy as np
import math

kalman = cv2.KalmanFilter(4,2)
kalman.measurementMatrix = np.array([[1,0,0,0],[0,1,0,0]],np.float32)

kalman.transitionMatrix = np.array([[1,0,1,0],[0,1,0,1],[0,0,1,0],[0,0,0,1]],np.float32)
kalman.processNoiseCov = np.array([[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]],np.float32) *0.003
kalman.measurementNoiseCov = np.array([[1,0],[0,1]],np.float32) * 0.95
meas=[]
pred=[]
frame = np.zeros((400,700,3), np.uint8) *255 # drawing canvas
mp = None
tp=None



def on_movement(x,y,color=(0,0,255),size = 5):
    global mp,meas,frame
    mp = np.array([[np.float32(x)],[np.float32(y)]])
    meas.append((x,y))
    cv2.circle(frame, (x, y), size, color, -1)
    kalman.correct(mp)
    tp = kalman.predict()
    #print(tp)
    return meas

def KalmanFilter():
    kalman.correct(mp)
    tp = kalman.predict()
    pred.append((int(tp[0]), int(tp[1])))
    cv2.circle(frame,(tp[0],tp[1]),5,color=(255,255,255))
    for i in range(len(pred) - 1): cv2.line(frame, pred[i], pred[i + 1], (0, 0, 200))
    return pred

def reset():
    global meas,pred,frame
    meas = []
    pred = []
    #frame = np.zeros((400, 600, 3), np.uint8)

#cv2.namedWindow("Track Movement")

def tracking_graph():
    cv2.imshow("Tracking Graph", frame)
    k = cv2.waitKey(30) & 0xFF
    if k == 32: reset()


def vector(a,b):
    #gradients
    dx = float(b[0] - a[0])
    dy = float(b[1] - a[1])
    #Distance between points, eucledean
    distance = math.sqrt(dx ** 2 + dy ** 2)

    if dy > 0:
        degree = math.degrees(math.atan(-dx / dy))
    elif dy == 0:
        if dx < 0:
            degree = 90.0
        elif dx > 0:
            degree = -90.0
        else:
            degree = 0.0
    else:
        if dx < 0:
            degree = 180 - math.degrees(math.atan(dx / dy))
        elif dx > 0:
            degree = -180 - math.degrees(math.atan(dx / dy))
        else:
            degree = 180.0

    return distance, degree
"""
trace = [ (114, 16), (117, 17), (121, 18), (123, 20), (127, 21), (129, 23), (132, 25), (134, 27),
 (137, 31), (139, 33), (141, 37), (144, 41), (145, 44), (148, 48), (150, 51), (153, 56), (156, 60), (158, 64), (160, 69),
 (163, 74), (166, 78), (168, 84), (170, 89), (173, 95), (176, 100), (179, 106), (182, 113), (185, 119), (188, 127), (192, 133),
 (195, 142), (199, 150), (203, 159), (207, 166), (211, 170), (216, 174), (221, 179), (226, 182), (232, 188), (229, 193), (234, 199)]
import time


for i in trace:
    tracking_graph()
    print(on_movement(i[0],i[1]))
    KalmanFilter()
    time.sleep(2)


import matplotlib.pyplot as plt

import time

z= [ (305, 416), (325, 504), (411, 441), (339, 622), (339, 621), (336, 621), (312, 626), (372, 675), (339, 681), (296, 684)]

z= [ (114, 16), (117, 17), (121, 18), (123, 20), (127, 21), (129, 23), (132, 25), (134, 27),
 (137, 31), (139, 33), (141, 37), (144, 41), (145, 44), (148, 48), (150, 51), (153, 56), (156, 60), (158, 64), (160, 69),
 (163, 74), (166, 78), (168, 84), (170, 89), (173, 95), (176, 100), (179, 106), (182, 113), (185, 119), (188, 127), (192, 133),
 (195, 142), (199, 150), (203, 159), (207, 166), (211, 170), (216, 174), (221, 179), (226, 182), (232, 188), (229, 193), (234, 199),(351,300)]


for k,i in enumerate(z):

    x= int(i[0]-100)
    y =int(i[0]-20)
    meas = on_movement(x,y)
    #pred = KalmanFilter()
    #tracking_graph()
    if k>2:
        KalmanFilter()

x = [int(i[0]) - 200 and int(i[1]) for i in meas]

y = [int(i[1]) - 300 and int(i[1]) for i in meas]

#for i in range(10):
#    pred = KalmanFilter()
#    on_movement(pred[-1][0],pred[-1][1])
print(pred)
print(meas)
plt.plot(x, y, 'ro',label='Measurements')
x = [int(i[0]) - 200 and int(i[1]) for i in pred]
y = [int(i[1]) - 300 and int(i[1]) for i in pred]
plt.plot(x, y, 'k+',label='Predictions')
plt.legend()
plt.show()

cv2.waitKey(0)
"""






TRAIN_MODELS.py

import numpy as np

#0 False
#1 True
#Filter width, filter size,max pool
inputs = [
        [[32,32,53],[5,3,3],[0,0,1]],
         [[32,32,64,64,128,128],[5,3,3,5,5],[0,0,0,0,0,0]]
        ]


for input in inputs:
    for i,val in enumerate(input[0]):
        print(i,val)
        g_i = cal






Appendix E

User manual

The Python files are embedded as python.zip

Using the surveillance system

1. Download the python.zip file

2. Download PyCharm from

https://www.jetbrains.com/pycharm/

3. Download Anaconda 4.4.0

https://www.continuum.io/downloads

Python 3.6 64 bit-installer

4. Download all necessary Python packages. Open cmd and write pip install
followed by (if several conda environments are installed, write "activate" fol-
lowed by desired Python version, e.g py35):

numpy, scikit-image, opencv-python, PyQt5

tensorflow, pandas_ml, PIL, pickle

If any of those fails to download, replace pip install with conda install.

5. Open PyCharm

141



Chapter 5

Press file, default settings, project intepreter

In Project interpreter choose the desired Python version from Anaconda
(python.exe)

6. Open the systemmainfileinPycharmandpressRun

optional: The neural network model may be changed in line 687, by
choosing the default directory of the model

optional: The videofile may be changed in line 659 by choosing the de-
fault directory.

optional: Modify the vector space in line 218 and 219.

7. Press Start in the GUI.

Training a neural network

1. Follow the 4 first steps from Using the surveillance system

2. Make a new main folder

Make a new class folder for each desired class, inside the main folder,
and add the training data

Make a new folder inside the class folders, and put the test data inside

3. Open the Python file CNN in pycharm

change log directory(LOGDIR), debug directory(DEBUGDIR) and de-
sired model directory(FILENAME) in line 22,23 and 24 in line 22,23,24

4. Choose the desired input in line 119

shape of input: [[filter depth],[filter size],[pooling]]

5. Start the program and read the results from LOGDIR.

Graphs can be found in tensorflow by following
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Results from testing in Tensorboard

1. open cmd

2. Write cd followed by the directory of the FILENAME folder

3. Write "tensorboard -logdir = directory

4. Copy the ip-address from the cmd into a Google Chrome browser
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