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Abstract

Autonomous convoys, also known as platooning, are defined as a group of vehicles driving
after one another autonomously. Acting as one single unit the gap between them can be
significant reduced and hence the fuel costs compared to conventional driving.

In this thesis a semi-automatic two-vehicle military convoy is studied. Assume the first
vehicle remain in control by humans. The second vehicle should then follow it’s track
autonomously based on information about the relative distance, position and velocity
of the first vehicle. The purpose of this thesis is to find and test methods for vehicle
detection and pose estimation.

The methods are mainly based on 3D point cloud data gathered by a LiDAR, but infor-
mation from cameras are also used. The LiDAR is chosen because of it’s robustness in
shifting light and weather conditions, but also because most of today’s research on the
field is based on camera vision.

Classifiers based on the leading vehicle’s geometrical properties was found suitable. Also
the POSIT method, which combines the imaging coordinates with the corresponding 3D
properties provides good results. Distance error was measured to around 15% and orien-
tation deviation to ±4°. For driving that not require millimetre precision the conclusion
it that the methods used are well suited. They also have room for improvements as there
was several sources of uncertainty in this project.
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1. Introduction

1.1 Motivation

Platooning is defined as a group of vehicles driving autonomously in a convoy. The pla-
toon can be considered as one unit where every vehicle follows the vehicle in front of it
with fixed spacing. The idea of platooning is inspired by nature where groups of animals
organise themselves into energy efficient formations take advantage of aero- and hydro-
dynamics. Well known examples are like migrating bird swarms and packs of dolphins in
the sea [10].

Figure 1.1: Truck platoon test drive [1]

By reducing the spacing between
the vehicles the drag coefficient can
be dramatically reduced and hence
the fuel costs too [10]. As hu-
mans do not have the reaction time
needed to maintain the safety factor
at such short margins, fuel cost ef-
fective and safe platoons are realis-
able by means of autonomous vehi-
cles only. Other benefits of platoon-
ing are the increase in road capac-
ity. Also the traffic safety in gen-
eral may be improved as accidents
related to human errors and inat-
tention can be neglected.

In a military perspective platoons are of great interest. Not only based on the argu-
ments mentioned above, but as a tool to reduce the risk of severe injuries or death on
soldiers. Transportation of supplies and personnel, surveying, aid missions etc. are typi-
cal military tasks which often take place in risky environments. Also the transportation
can become more time and cost efficient compared to convectional convoy driving.

Fully autonomous driving in rural off road environments requires a sophisticated and
robust system. The vehicle system need to interpret the environment to avoid obstacles
and dead ends, and adjust the speed according to the current ground conditions. Typ-
ical issues are related to differentiate between lakes and solid ground, evaluate ground
friction (dry/icy) and estimate steepness. To reduce the complexity this thesis set focus
on the following routine only. Assumed humans remain in control of the first vehicle of
the convoy, e.g. by physically driving it or by remote control, the second vehicle and

1



backwards "only" have to follow the leaders track perfectly and the mentioned issues can
be neglected.

1.2 Thesis’ background

This master thesis project is done in collaboration with the Norwegian Defence Research
Establishment and the University of Stavanger. The thesis is part of an ongoing research
project on autonomous vehicles and military off road convoys.

The Norwegian Defence Research Establishment, FFI1, is the prime responsible insti-
tution for defence related research in Norway. It’s principal mission is to develop state-
of-the-art technical solutions and perform research that meets the requirements to the
Norwegian Armed Forces. The agency was founded in April 1946 and is subordinated
the Norwegian Ministry of Defence. [11].

1.3 Problem statement

The leading vehicle in a two-vehicle platoon is to be followed autonomously. The task
of this thesis is to create and test methods to estimate the relative distance between
the two vehicles and the relative position, orientation and velocity of the leading vehicle
only. The estimates should be based on measurements gathered by the following vehicle.
Sensors available are LiDAR, colour and gray scale cameras, stereo vision, odometer data
and GPS position.

No internal communication within the platoon is allowed due to safety issues. Any
challenges faced by the leading vehicle itself, e.g. path selection due to rough terrain,
traffic, obstacles etc. are not to be considered.

Based on challenges found in previous studies using stereo vision for position estima-
tion, see chapter 2.1, this thesis focuses on estimations based on LiDAR 3D point cloud
data.

1.4 Assumptions and limitations

The convoy studied in this paper consists of two vehicles: the leading vehicle and the one
following it, the ego-vehicle. The main approach is driving in rural environments, on and
off roads. Issues related to obstacles, route planning etc. are neglected and it’s assumed
that the leading vehicle drives a route that is safe to follow. Due to safety reasons the
methods should be based on information collected by the ego-vehicle only, that means no
internal communication within the convoy.

Processing time should not be considered as an issue, see chapter 4.1.4. Duration and
speed performance of the methods are therefore not considered in this thesis.

Calculations, method adjustments and results presented in this thesis are based on one
1Forsvarets forskningsinstitutt
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data set recorded in February 2017. Details on the gathering procedure, duration and
more are described in chapter 4.2.1.

1.5 Thesis outline

Chapter 1 - Introduction
The reader is introduced to the background and motivation of the thesis topic. Also the
problem statements is defined, and assumptions and limitation described.

Chapter 2 - Background
A brief presentation of previous work on the field of platooning, both on and off road.
Theory relevant for this thesis is also presented.

Chapter 3 - Implementation
Detailed description of the proposed methods and it’s purpose.

Chapter 4 - Experiments
Vehicle and sensor configuration, the collection process of data used and calibration meth-
ods are described in detail. Experiments arranged to verify the performance of methods
created are then presented.

Chapter 5 - Results
This chapter contains all results obtained from the experiments described in chapter 4.

Chapter 6 - Discussion
Solutions and results obtained throughout the thesis are discussed.

Chapter 7 - Conclusion and Future work A conclusion is set, and future work
and challenges are discussed.

Appendix A
Sketches with measurements and dimensions of the ego-vehicle used.

Appendix B
Sketches with measurements and dimensions of the leading vehicle used.

Appendix C
Matlab source code is attached.

3



2. Background

This chapter presents background information this thesis is based upon. The first section
gives an overview on previous work and studies focusing on autonomous driving and
platooning. The main focus in this summary will be on platooning itself, not necessarily
issues related to autonomous driving such as path selection and obstacle avoidance. Both
on road and off road aspects are included.

2.1 Previous work

The first part of the thesis project was a literature study to gain knowledge on previous
and ongoing projects of relevance. In this section the findings are presented.

History

The concept of platooning was first presented by General Motors at the World Fair in
1939. This resulted in several studies which led to the Automatic Highway System (AHS)
as presented in San Diego in 1997 [10]. The research started in the 1960 and the first
tests took place in the 1970’s.

Initially the systems were build on a single free agent, i.e. a single vehicle platoon. This
developed to include more vehicles and inter-platoon communication was introduced. The
result was increased road safety and the fixed spacing between could be reduced. A study
from 1995 [12] found that a reduction in spacing could cause a 55% reduction of the drag
coefficient and hence the fuel costs.

Later a concept of infrastructure assisted platooning was released, which implemented
communication between the highway and the platoon. Active or passive components,
such as magnetic plates and emitting units, was suggested integrated in the road in-
frastructure. This could provide the platoon with information of interest, for example
velocity, position in the lane, internal distance estimates in the platoon, road exits and
entries, speed limits etc. [10] [13].

Due to disadvantages related with infrastructure modifications, like big investments and
that the platoon need to be compatible with the current road system, has directed the
research over to independent platoons again. The most resent research programme is
SARTRE (Safe Road Trains For Environment), an EU founded study launched in 2009.
They achieved their first milestone in 2011 demonstrating a truck following a leading
truck autonomously. The leading truck however was not autonomic.
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In April 2016 another milestone was reached. This time by an initiative between the
European automobile industry named EU Truck platooning challenge. For the first time
six on-road truck platoons successfully arrived Rotterdam after driving autonomously
more than 20.000 km in total through Sweden, Denmark, Germany, Belgium and the
Netherlands. Fuel costs was estimated reduced by 10%. The project is led by Scania,
Daimler, MAN, IVECO, DAF and Volvo Group [14] [15].

Another aspect of platooning is off road platoons. This is more of interest for mili-
tary departments, space agencies etc. Off road autonomous driving is associated with
more complex interpretations compared to on road driving. Varying ground conditions,
no roads to follow and route planning that avoids dead ends are some examples [16].

A leading research team on the field is located at the Universität der Bundeswehr (UniBW)
in Munich, Germany. With more than 30 years of research, named the MuCar-project,
they have successfully developed an autonomous two-vehicle platoon. As participants in
M-ELROB1 2013 they managed to drive 99.76% of the route fully autonomously. Future
challenges are related to improve the following accuracy, increase of speed and robustness
and route planning [17] [18].

Technology

Several methods for vehicle detection have been submitted by researches through the
years. Frequently used is either visual recognition using camera(s) or detection in 3D
point clouds obtained by surveying sensors like LiDAR and radar. Both approaches
has it’s pros and cons. For example is visual recognition excellent for object detection
and recognition providing information about texture, colour, shadows, shape and other
unique features using neural networks and classifier methods like LPB, SVM, adaBOOST
etc. [19]. However it’s very light sensitive and the results are highly affected by weather
and illumination conditions. 3D data on the other hand is not affected by illumination and
provides the same information during both daylight and night. Also a LiDAR provides
range data with high accuracy. But with classifiers based on geometrical properties
only this approach has a association issue [20]. Recently studies therefore look at the
possibilities of merging camera data with LiDAR to take advantage of both aspects.

2.2 POS/POSIT

The leading vehicle’s orientation and position relative the ego-vehicle is to be estimated.
Assuming a 3D model of the object is known, i.e. the relative geometry of a set of fea-
ture points, the translation and rotation matrices can be approximated by means of the
POS/POSIT method from a single image.

The methods POS, Pose from Orthography and Scaling, and POSIT, POS with Itera-
tions, was first presented by DeMenthon et al. in [21]. The methods require minimum
four known pairs of 3D feature point coordinates and the corresponding 2D image coor-
dinates.

1Military European Land Robot Trial
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Based on perspective projection the POS method generates a linear equation system
based on the given feature point coordinate pairs. When solved an approximate of the
current rotation and translation matrices of that object in relation to the camera position
is estimated. [21] [22]

POSIT is an extended version of POS. By implementing POS in an iteration loop the
results can be used to estimate an even more accurate approximation. The number of
iteration can be specified according to available processing time. POSIT converges after
only a few iterations, see section 16 in [21].

2.3 Imaging geometry

Imaging geometry and perspective projection is used to create a conversion method from
LiDAR 3D-coordinates to camera image 2D-coordinates. For this purpose the theory of
weak forward projection is presented. Forward projection is the process of converting 3D

(a) (b)

Figure 2.1: The figure illustrates forward projection, i.e. how 3D world coordinates are
transformed to 2D image coordinates [2]

world coordinates into 2D image pixel coordinates. See figure 2.1. By weak projection a
linear approximation is used instead of the full projection. The approximation is based
on the similar triangles rules, see figure 2.2 and 2.3.

For a world point, P = (X, Y, Z), the image point, p = (x, y, f), this gives the following
approximated:

x = f · X
Z

(2.1)

y = f · Y
Z

(2.2)

f is the focal length of the camera.
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(a) (b)

Figure 2.2: Geometrical properties of weak perspective projection. Z-axis is optical axis in
both figures. (a) x-plane properties highlighted in red. (b) y-plane properties highlighted
in red. [2]

Figure 2.3: Illustration of the similar triangles for the problem given in fig. 2.2 [2].

2.4 RANSAC

Based on a vehicle’s geometrical properties, see chapter 3.1.1, it’s of interest to find sur-
faces with a specific angle around the ground plane. Plane matching and plane estimation
from a set of LiDAR data points using RANSAC serves this purpose.

The Random Sample Consensus, shortened RANSAC, is an iterative method estimat-
ing the parameters of a mathematical model based on a given data set with outliers.
In this context inliers referrers to the data points whose distribution can be described
by the given mathematical model, though may be affected by noise, and outliers to the
remaining data points that does not fit this model. RANSAC can successfully be applied
to data sets with up to 50% outliers.

Based on a voting routine and the least square method RANSAC estimates the model
parameters that has the most inliers. The outliers does not affect the results. For a given
data set only one solution is available [3] [23].
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In figure 2.4 an example of using RANSAC for line estimation is displayed. Outliers
are marked in red and inliers in blue.

(a) (b)

Figure 2.4: Example on how RANSAC processes the data set (a) and returns the estimated
line with inliers (blue) and outliers (red). The outliers does not affect the line parameters.
[3]
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3. Methods

This chapter presents descriptions of methods developed as a solution to the problem
statement. Some of them obtain the same information even though only one of them are
to be implemented in the final system. In this way their results can be compared and
evaluated and the method with the best performance selected.

The methods are implemented in Matlab for testing, and therefore make use of build-in
Matlab functions where available. Their role and functionality is still described in this
chapter.

For some methods it’s assumed that the leading vehicle is known, e.g. it’s geometrical
properties etc. This should come out clear during the method description.

All axis and angle references are consistent. The reference coordinate system is right-
handed with the x-axis pointing in the driving direction, the y-axis to the left and the
z-axis upwards. If not specified, angles, distances etc. are all describing the leading
vehicle in relation to the ego-vehicle.

3.1 Vehicle detection

This section describes the method used for vehicle detection. Before the method descrip-
tion an overview over the vehicle’s features are presented.

3.1.1 Vehicle properties

This section will give a short description of features associated with any car, and also the
vehicle to be followed, which create the foundation for how the detection methods are
designed and which features they are searching for.

Visual properties

Figure 3.1: Image captured by the
roof top color camera during the test
run.

Visual features related to any object are those
which are present in an image or by eye vision
such as colour, shape and illumination. Based
on the fact that the ego-vehicle in the con-
voy situation, which is the case in this pa-
per, the vehicle to be followed will always be
in front and observed from behind. The vi-
sual features of interest can therefore be lim-
ited to those on it’s back and it’s left and right
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sides.

When it comes to illumination there are two main
features that can be used for vehicle detection. The first one is the difference in illumina-
tion between the car body and the windows [20]. Typically, also for the leading vehicle
used, the windows reflect less light than the chassis and therefore appears darker than the
body. This feature can be described using Haar-like features, see page ??. The second
one is related to the shadow underneath a vehicle. Statistically this area is darker than
an unoccupied one [24].

The colour of the car body could ease the car detection problem, especially for colours
that do not match the environment. In this study the leading vehicle used is silver metal-
lic, and is therefore not a very useful colour. But, as for every normal car, the rear lights
are red, which is a colour that is not usually found in the surroundings, especially in
nature.

Other visual features of interest could be the license plate, which is unique for each
car. If detected, and readable, it not only verifies that it’s a car, but also the correct one.

Geometrical properties

Information about geometrical properties of the vehicle is helpful when it comes to detec-
tion in a 3D point cloud (as obtained from the LiDAR). Four general vehicle properties,
which are applied to the detection algorithm presented in chapter 3.1.2, are described
below [25]. Reference axes are displayed in figure 3.2a

(a) (b) (c)

Figure 3.2: Screenshots of leading vehicle in the 3D point cloud. The 90° requirement and
the other listed properties are well illustrated.

1. 90 degree requirement (along the z-axis)
The surface of a vehicle’s body has box like shape and the sides have an angle of
90° among the ground or road, i.e. the xy-plane in the point cloud.

2. Smoothness
With some exceptions all vehicles has a smooth surface, i.e.

2 f(x1) = f(x0) + f(x2) (3.1)

2 f(z1) = f(z0) + f(z2) (3.2)
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3. Convexity (xy-plane/ground plane)
Use the fact that vehicles have a convex outline contour as given by Moosman et
al. in [26]. Observed in the xy-plane the property can be described as:

f
(x0 + x1

2

)
≥ f(x0) + f(x1)

2
(3.3)

4. Negative gradients (along the z-axis)
From figure 3.2 it can be seen that the gradients in z-direction are either negative
or zero:

f(z1)− f(z0)

z1 − z0
≤ 0 (3.4)

3.1.2 Point cloud detection

This method is a vehicle detection method in LiDAR point cloud data. It’s based on the
geometrical properties of a standard vehicle and the method is therefore general. However
some verification statements are based on the properties of the used leading vehicle, but
this can be adapted from one vehicle to another. The method consists of five steps:

(1) Normal estimation

First the point cloud data is rearranged from a n× 3 matrix of spherical coordinates, P,
to a 32× n

32
distance matrix, D. The data is sorted with polar angles, φ, as rows, azimuth

angles, θ as columns and radial distances, r, as cell values. See figure 3.3. The purpose
is to estimate the normal of every data point based on it’s neighbourhood.

Figure 3.3: Ilustration of rearrangement of spherical coordinates to a distance matrix. P
to the left and D to the right.
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A 3 × 3 neighbourhood is selected. Then RANSAC is used to estimate a plane through
the centre point of the mask. The plane’s normal, ~n, equals the estimated normal for
that point.

To estimate the normals, ~n, for every point in the point cloud the distance matrix,
D, is padded symmetrically. That meaning the first row is mirrored to the top, last row
to the bottom, the leftmost column to the left and the rightmost to the right.

(2) Ground angle computation

Figure 3.4: Ground plane (blue), object
plane (yellow), the plane normal, ~n and
the ground normal ~ez.

With all the point normals known the angle
between the ground, i.e. the xy-plane, and the
object plane can be calculated. With the unit
vector ~ez = [0, 0, 1] representing the ground
normal and ~n the point normal, the angle α
between the two equals the angle α between
the two planes:

α = cos−1
(

~n · ~ez
|~n| · |~ez|

)
(3.5)

For angles α > 90° it’s replaced with the sup-
plementary angle1 so that |α| ∈ [0, 90]°.

(3) Object extraction

Now the angles of every point surface is known.
The purpose of this step is to remove all the
points that are assumed part of the ground so
that only the object points remain.

From chapter 3.1.1 the 90° requirement is stated. A desired threshold value, τ , is set
and the data separated as follows:

α ≤ τ ↔ ground point (3.6)
α > τ ↔ object point (3.7)

The points classified as object points have an angle between it’s surface and the ground
on the interval [τ, 90]°.

In a new matrix D′, with the same size as D, the r -values are kept for the object points,
but set to zero for the ground points.

(4) Clustering

The fourth step is to group the object points into k clusters based on the distances inside
the cluster.

1Two supplementary angles sums up to 180°.
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Again the 3 × 3 neighbourhood in is considered, now for D′ and zero padded. To keep
control of the clustering process a third dimension is added. The matrix size of D′ now
equals (32× n

32
×2). The purpose of this layer is to flag all points with their current cluster

status. Table 3.1 gives an overview over the used flags. First the difference between the

Flag ID Point status
-1 ground point
0 object point, not assigned

[1,→〉 assigned to cluster i

Table 3.1: Flag status overview.

centre point and the neighbours in the 3×3 mask is computed. If the difference is below a
given threshold that point is assigned with same cluster flag as the centre point. If not the
flag remains zero. This process continues for the entire D′ matrix until all object points
are assigned. Each time a cluster is complete, i.e. it can’t grow any more, the cluster ID
i is increased by one and a new, unflagged object point ant it’s neighbours are considered.

Finally the clusters with few points are removed by change the flag to -1. These points
are not taken into further calculations.

(5) Vehicle verification

The final step is to verify which cluster that represents the vehicle. The routine described
in the following are applied to one cluster at the time until the a match is found. The
first positive verification is assumed to be the vehicle. If any step declares the cluster
disqualified the method returns on to the next cluster.

First the outer dimension of the cluster is measured. If there’s a significant difference in
either the cluster’s height, width or length compared the vehicle of interest the cluster is
disqualified.

Secondly the gradients along the z-axis, i.e. column wise, are studied. From chapter
3.1.1 it’s stated that the gradients should be negative or zero.

3.2 Pose estimation

With the term pose it’s understood the position, orientation and rotation of an object.
In this paper it referrers to the pose of the leading vehicle in relation to the ego-vehicle.
The symbols used to describe the relative pose are shown in figure 3.5, with ρ as distance,
γ as orientation angle and ω as rotation angle.

Methods that estimate these three parameters are described in the following. For some of
them more than one approach is described. The results are then compared and discussed
in chapter 5 and 6.
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Figure 3.5: Angles and axis references for pose variables.

3.2.1 Implementation of POSIT

For implementation of the POSIT method the proposed source code by DeMenthon et
al. is used. The method is found in appendix C and is named classicPosit.m [21]. The
method takes the image and model feature point coordiante pairs as input and returns
the approximated 3× 3 rotation matrix, R, and the 3× 1 translation vector, T.

3.2.2 Rotation, ω

The rotation estimate is based on the rotation matrix, R, returned by the POSIT method.
Of interest is the vehicles rotation in the ground plane, i.e. about the z-axis.

First the 3× 3 rotation matrix is decomposed to Euler angles, θ:

R =

rxx rxy rxz
ryx ryy ryz
rzx rzy rzz

 (3.8)

θx = atan2
(
r32
r33

)
(3.9)

θy = atan2

(
−r31√
r232 + r233

)
(3.10)

θz = atan2
(
r21
r11

)
(3.11)

θ = [θx, θy, θz] (3.12)

where the elements of θ holds the rotation angles around the x-, y- and z-axis respectively.
Thus the ω estimate is set to:

ω̂ = θz (3.13)
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3.2.3 Relative distance, ρ

Two methods estimate the relative distance. The results are presented and compared
in chapter ??. For compareability both methods estimates the distance between the
reference points set for both vehicles.

Method 1

The first method is based on the POSIT method used for pose estimation. It has two
outputs, a translation vector and a rotation matrix of the detected object. The translation
vector T = [tx, ty, tz] represents the position of the object’s reference point, P, in relation
to the current origin, O. The length of this vector equals the distance between these two
reference points:

d = ||T || =
√
t2x + t2y + t2z (3.14)

The distance relative the ego-vehicle reference point, R, is obtained using vector addition.
With ~dOR representing the position of R in relation to the origin, O, and ~dref point P
relative the reference point:

~dref = T − ~dOR (3.15)

and the relative distance

ρ1 = | ~dref | (3.16)

The relationship of the vectors and points mentioned above are visualized in figure 5.8.

Figure 3.6: The relationship between the position vectors and the origin, O, the object
point, P, and the ego-vehicle reference point, R.

Method 2

The second method is based on the LiDAR vehicle detection method. When the vehicle
is successfully detected the distance is simply defined by the closest point in that cluster.
Then, as for method 1, the distance is converted so it is relative the ego-vehicles reference
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point too.

A vector, ~c, containing all detected point coordinates on the vehicle’s surface, is returned
by the detection method. First all the euclidean distance for each point is calculated.
This distance corresponds to the vehicle’s point closest to the LiDAR. Then the shortest
distance is selected as point of interest. At last the same procedure as above is performed:

~dref = ~pclosest − ~dOR (3.17)

ρ2 = | ~dref | (3.18)

3.2.4 Orientation, γ

The orientation can be calculated using information in the translation vector, T , as found
in chapter 3.2.1. The orientation is defined as the angle in the xy-plane between the x-
axis and T . The geometrical properties are illustrated in figure 3.7.

If T = [∆x,∆y,∆z], γ is defined a

γ = tan−1
(∆y

∆x

)
= sin−1

(∆y

ρ

)
(3.19)

Negative γ values corresponds to a vehicle orientation on the right hand side and positive
values to the left (seen from the ego-vehicle in the driving direction).

(a) (b)

Figure 3.7: (a) Geometrical properties of the translation vector, T, (purple) between the
origin, O, and a point, P.
(b)
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3.3 Estimation of relative velocity

The relative velocity, v, between the two vehicles is to be estimated. This parameter is
of interest for future implementation as an input to the engine control system regulating
the speed of the autonomous vehicle.

Known parameters and estimates obtained from other methods are the relative distance,
time stamps of gathered sensor data and the ego vehicle speed, acceleration and position.

From physics the equation of motion for non-accelerated objects says:

v̄ =
d

∆t
(3.20)

where d is the travelled distance, ∆t the duration and v̄ the average velocity. Inserting
the relative distance between the two vehicles, ρ, and the time difference between the
last two measurements, t(n)− t(n− 1), the average velocity of that time interval can be
approximated. The smaller the ∆t, the better the estimate.

Another approach is using the Backward Euler method:

v̂(n) = ḋ(n) ≈ 1

∆t

(
d(n)− d(n− 1)

)
(3.21)

This estimate is based on the previous and current measured distance and the time in-
terval of the two observations.

To reduce the effect of potential bad distance estimates, a weighted mean including the
last three velocity estimates is implemented:

v̂(n) = 0.85 · v̄(n) + 0.10 · v̄(n− 1) + 0.05 · v̄(n− 2) (3.22)

17



4. Experiments

This chapter contains descriptions of all tests and experiments performed and their re-
sults. To ensure reproducibility the first section describes the vehicle and sensor con-
figuration used, including relevant specifications. Sensor range and limitations are also
discussed. Section 4.2 is a presentation of the data material used - how it’s gathered,
what data types it contains and some calculations on the sample rate used during the
test run. Test and experiment descriptions are presented from section 4.3. Every test
starts with a short explanation of it’s purpose.

4.1 Vehicle configuration

Figure 4.1: An original unmod-
ified Polaris Ranger ATV [4]

The ego-vehicle is a custom modified Polaris Ranger
ATV as the one displayed in figure 4.1. It’s equipped
with several sensors, see the list below, and all necessary
actuators and sensors needed for autonomous driving.

• 2 Flir Grasshopper3 8.9 MP monochrome USB
cameras

• 1 Flir Grasshopper3 8.9 MP color USB camera

• 1 Velodyne HDL-32E LiDAR

• 1 IMU

• 1 GPS antenna

Figure 4.2: Screenshot of the
Golf during a test run.

The listed sensors are located on the roof top. Exact
positions are found in appendix A on page 49. Addi-
tional hardware for data processing and communication
are located in the boot lid, physically protected from
rain, snow, potential harmful objects, direct sunlight
etc. It also contains an external cooling to prevent over
heating.

4.1.1 Vehicle specifications

Ego-vehicle

The ego-vehicle, also refered to as UGV, is a four wheel all terrain vehicle. Maximum
speed is 40 km/h. An unmodified model is shown in figure 4.1
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Leading vehicle

The leading vehicle used in this paper during the test runs is a silver metallic 5-doors
VW Golf V (mod. 2008), see figure 4.2. Technical documentation is found in appendix
B on page 51.

4.1.2 Camera specifications

The ego-vehicle has three cameras in total, two monochrome cameras for stereo vision
and one colour. Specification are given as found in the data sheets [27] [28]:

Color vision Stereo vision
Type Color Grayscale
Model no. GS3-U3-89S6C-C GS3-U3-89S6M-C
Max. resolution 4096 x 2160 4096 x 2160
Resolution used 1688 x 1352 1688 x 1352
Max. frame rate 43 FPS 43 FPS
Frame rate used 6 FPS 6 FPS
Pixel size 3.45 µm 3.45 µm
Focal length 3.80 mm 3.80 mm
FOV 74.9° x 63.1° 74.9° x 63.1°

Table 4.1: Camera specifications

4.1.3 LiDAR specifications

Model no. Velodyne HDL-32E
Channels 32
FOV, horizontal 360° horizontal
Angular resolution, horizontal 0.1° - 0.4°
FOV, vertical [+10°, −30°]
Angular resolution, vertical 1.33°
Max. range 80 - 100 m
Range accuracy ±2 cm
Rotation rate 5-20 Hz
Rotation rate used 10 Hz

Table 4.2: LiDAR specifications [9]

The LiDAR returns the positions of surrounding objects reflecting the emitted laser
pulses. The information is stored as spherical coordinates (r, φ, θ), with r representing
radial distance, φ polar angle and θ azimuth angle as illustrated in figure 4.3. The data
is converted so that zero azimuth points in the positive x direction with positive rotation
counter clockwise (in the xy-plane) and with polar angle relative the z-axis. The LiDAR
has coordinates (0,0,0). The LiDAR is located on the rooftop of the ego-vehicle. Due
to the vehicle geometry this causes some potential occlusion issues as described in the
following.
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Figure 4.3: Illustration of LiDAR configuration. The X-axis is pointing in the driving
direction, Y to the left and Z upwards. Azimuth angle, θ, in red, polar angle, φ, in blue
and radial distance, r, in black. [5]

Forward occlusion

There are no limitations in the LiDAR viewing field in front of the car caused by it’s
location, but with a vertical FOV of −30° the minimum horizontal detection range, d, is
limited:

d =
H + h

cosφ
=

2.079 m + 0.150 m
cos 30°

= 2.574 m (4.1)

Figure 4.4: LiDAR configuration, right view. No roof top occlusion, [6] [5]

Sideways occlusion

Sideways the rooftop occludes the emitted laser beams and causes major limitation in
the minimum horizontal detection range. As the LiDAR is not perfectly centred there
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are some differences between right and left side, represented by d1 and d2 respectively.
The angles α1 and α2 represents the new vertical negative angle for the actual FOV. The
occlusion problem is illustrated in figure 4.5.

α1 = tan−1
(

0.711 m
0.150 m

)
= 78.1° (4.2)

α2 = tan−1
(

0.717 m
0.150 m

)
= 78.2° (4.3)

d1 =
H + h

cosα1

=
2.079 m + 0.150 m

cos 78.1°
= 10.810 m (4.4)

d2 =
H + h

cosα2

=
2.079 m + 0.150 m

cos 78.2°
= 10.890 m (4.5)

Figure 4.5: Left and right occlusion. Viewing field set by LiDAR specs. marked with
orange lines. Maximum practical downward viewing field due to rooftop occlusion marked
with dotted red lines. [6] [5]

Backward occlusion

This is considered not relevant for this paper, as the leading vehicle is assumed to be
positioned within the azimuth sector 90.

4.1.4 Hardware

The hardware of the ego-vehicle, except the already listed sensors, are located in the
boot lid. This gives protection from shifting weather conditions and external potential
harmful objects. An external cooling system is also installed to prevent over heating. A
high-performance computer is installed as processing unit with improved graphics card
and processor.
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4.2 Data material

This section is meant to give an overview of the data used for testing in this paper. First
a description on how it’s collected, then a short presentation of the data types and last
some calculations on the recording frequency.

4.2.1 Data gathering

The data set used in this paper was gathered during one test run in Kjeller, Norway, mid-
February 2017. In total 77.42 GB of driving data, lasting 21 minutes and 37 seconds,
and 9.2 GB of still stand recordings for calibration purposes was gathered. The data was
recorded as a ROS bag-file consisting of the following data:

• color images (6 fps)

• stereo grayscale images (6 fps)

• 360° LiDAR point cloud data (rotation speed: 10 Hz)

• ego-vehilce odometer data

• GPS data of ego-vehicle and leading vehicle

The route was driven on asphalt roads, with and without traffic (i.e. pedestrians, driving
and parked cars etc.) in both urban and rural environments. Both (convoy) cars were
driven manually during the test run. The route was chosen to include both flat, uphill
and downhill roads, left and right curves, as well as varying distance between the two cars
to ensure to obtain all possible perspectives of the leading vehicle from the ego-vehicle
point of view. Weather conditions was -8 °C, clear blue sky, sunny and light winds.

4.2.2 Presentation of data

The onboard software is based on ROS, also known as Robot Operating System, a frame-
work especially designed for robot applications [29]. All data collected during test runs,
regarding their type, are organised and stored in the ROS specific .bag format. Bag-files
are made readable in Matlab by the Robotics System Toolbox.

Different data types are stored under different topics, and each topic holds additional
information relevant for this specific data type. The ROS-environment provides syn-
chroized time stamps for all data consecutively when recorded. An overview of the data
types is given in the next three subsections.

LiDAR data

The LiDAR provides 3D point cloud data of the surroundings. The LiDAR data is or-
ganised under the bag topic lidar_sweep and is stored as spherical coordinates (r, φ, θ).
For every rotation, or sweep, n× 32 laser beams are emitted - n in the horizontal plane
and 32 in the vertical plane. A full 360° rotation generates approx. 60.000 data points.

The data points are organised in a tree structure. Each rotation generates one mes-
sage cell, lidarSweep2. Each of these holds n lidarScan2 messages which again contains

22



32 laserReturn submessages. This is where the information about the reflected beam and
the estimated radial distance to the object is found. An illustrating this structure is given
in figure 4.6 The message cells does not hold the azimuth and polar angles explicit, only

Figure 4.6

the radial distance. However the angular range and number of emitted beams are known:
32 in the vertical plane and n in the horizontal plane. According to message numbering,
rθ and rφ, the angles can be calculated as follows:

θ = (rθ − 1) ·∆ θ

= (rθ − 1) · 360°
n

, rθ ∈ [1, n] (4.6)

φ = (rφ − 1) ·∆φ

= (rφ − 1) · 40°
32

, rφ ∈ [1, 32] (4.7)

Comment: ∆φ and ∆ θ refers to the angular resolution in the vertical and horizontal
plane respectively.

Based on the assumption that the leading car normally is located in the front half sector
relative the ego-vehicle the data is reduced to only contain the reflection point in the
sector θ = ±60°. See illustration below. This reduces the amount of LiDAR data to be
processed by a third.

Figure 4.7: Top-down view on two LiDAR point clouds. To the left a complete view of
360° and to the right one reduced to a horizontal FOV of 120°.

To ensure equal axis references the point cloud is rotated 180° around the z-axis with
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the x-axis is pointing in the driving direction of the ego vehicle. This is handled by the
function lidar2polar.m which also converts the LiDAR ROS-message into a 3xn mat-file
with polar coordinates. Axis and angle references are displayed in figure 4.3 on page 20.

Images

Three cameras provides images independently, two gray scale stereo cameras and one
colour camera. The images are organised in three individual bag topics, camera/stereo_left,
camera/stereo_right and camera/center. Each topic holds k image messages with infor-
mation about image size, time stamp, encoding and the image data. All images are
recorded with resolution 1352×1688 pixels.

The gray scale images are stored directly as intensity images, ranging 0 to 255. The
colour images are encoded as bgr8 Bayer vectors. The build-in Matlab function readImage
decodes them to (height× width× 3) RGB images using demosaicing.

Figure 4.8: Images captured from the three cameras. From the left: decoded RGB image,
left stereo image and right stereo image.

Odometer data

Drive information from the ego-vehicle is stored with the topic vehicle_measurements.
The data is given as Ackerman data, including speed, acceleration, steering angle, steering
angle velocity and jerk.

Positioning data

GPS data was during the test run collected and stored in a separate bag. This data was
the converted to .bin files which can be converted to Matlab struct objects using the
methods read_navlog_GPS.m read_navlog_navp.m.

4.2.3 Comments on data recording frequency

The maximum speed of the ego-vehicle in use is 40 km/h, i.e. 11.11 m/s. As specified
in the section 4.2.1 the LiDAR rotates at a frequency of 10 Hz and the cameras stores
6 frames pr. second (fps) each. Assumed that the max. speed limit are equal for both
vehicles, i.e. the leading vehicle never exceed 40 km/h, there is a possible maximum
relative displacement between the frames at 1.85 meters and for the LiDAR 1.11 meters.

From table 4.1 and 4.2 maximum recording rate for the cameras and the LiDAR are
43 fps and 20 Hz respectively, i.e. the maximum displacement can be reduced to 0.25 m
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(camera) and 0.55 m (LiDAR). A high frame- and rotation rate results in a bigger amount
of data to be processed and therefore require a system capable to process it accordingly
fast. If the computations take too long it will cause a lag that increases for every loop
iteration and make the entire system unstable. On the other hand, if processing capacity
is not an issue, it’s preferable to keep the rates as high as possible to increase the accuracy
and give updates for the control loop.

4.3 Calibration

4.3.1 Camera calibration

This test is performed by employees at FFI. The goal was to calculate the transformation
matrix, T , for the two stereo cameras. The result is given below:

T =


0.99987424 0.00792202 −0.01373866 −0.41291371
−0.00779913 0.99992931 0.00897542 0.00093172
0.01380879 −0.00886715 0.99986534 0.00988889

0 0 0 1

 (4.8)

Please note: the T matrix is originally computed with 16 significant figures precision.
However only 8 significant figures are displayed in this paper.

The transformation matrix can be used to convert any image point from the left camera,
pL = [x, y, z, 1]′, to the corresponding right camera image coordinate, pR = [X, Y, Z, 1]′,
and vice versa. This is useful when testing the pose estimation algorithm to ensure the
exact corresponding coordinates are obtained from the left and right stereo camera. More
on this test in chapter 5.2. From figure 4.9 two corresponding image points are marked,

Figure 4.9: Left and right stereo image of the same scene. Corresponding points are
marked manually in Matlab.

pL = [534, 1012] and pR = [480, 1026]. The image point in the opposite stereo camera
can then be computed:

pL
′ = T pR
= T [pR, 0, 1]

= T [480, 1026, 0, 1]

= [479, 1026, 1.7, 1] (4.9)
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pR
′ = T pL
= T [pL, 0, 1]

= T [534, 1012, 0, 1]

= [526, 1016, 0.1, 1] (4.10)

4.3.2 LiDAR vs. camera calibration

The purpose of this test is to find a method that converts a LiDAR point cloud coordinate
to the corresponding image coordinate. This opens the possibility to verify founds in the
point cloud by looking at the corresponding visual features. Weak perspective projection,
as described in chapter 2.3, is used for this purpose. The method consists of two steps.

(a) (b)

Figure 4.10: (a) Image plane (yellow) and world space (gray) relative the observer, O. f
is the focal length

• Step 1 - weak perspective estimate
First the 2D coordinates are estimated using weak perspective projection. f is the
focal length and the x-axis the optical axis (see fig. 4.10).

x = f · −Y
X

(4.11)

y = f · −Z
X

(4.12)

The minus signs ensures correct signs of x and y when converting from the world
coordinate system to the image plane coordinate system.

• Step 2 - remap
Secondly x and y from step 1 need to be remapped to match the dimensions of the
images, 1352× 1688.

r = 1 +
(y − ymin) (1352− 1)

(ymax − ymin)
(4.13)

c = 1 +
(x− xmin) (1688− 1)

(xmax − xmin)
(4.14)
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nmax and nmin are the minimum and maximum values of all x and y computed in
step 1.

Figure 4.11: Reconstructed image from point cloud data to the left. Original image from
left stereo camera to the right.

4.4 LiDAR data unit tests

The purpose of this test is to decide and verify the units of the radial distances measured
by the LiDAR. The test is performed on two objects with known physical dimensions.
By comparing the measured and the actual lengths a correction ratio can be computed.
To verify the results this ratio is applied to the data set and a control object is measured.
Desired unit is millimetres.

Test 1

The first comparison is made on a person of known height, see fig. 4.12. A plot of the
point cloud in Matlab allows access to the coordinates of any point simply by click at it.
As shown in fig.4.12a head and toe have this cartesian (x,y,z) coordinates:

Head: (1650,−694.2,−131.3)

Toe: (1694,−693.8,−847.3)

This gives the euclidian distance:

dHT =

√
(1694− 1650)2 +

(
(−693.8)− (−694.2)

)2
+
(
(−847.3)− (−131.3)

)2
= 717.4 (4.15)

The physical height of this person is 158 cm. This gives the ratio, r1:

r1 =
158 cm
717.4

= 0.2204 cm = 2.204 mm (4.16)
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(a) (b)

Figure 4.12: Visual image and corresponding LiDAR data of a person of known height.

Test 2

The second test is performed on recordings of a square plate made for camera calibration
purposes. The plate has outer dimensions of 79.6 x 79.6 cm. Information about the
chessboard pattern is here not of interest. From Matlab, see fig. 4.13a, these coordinates
of two edges are obtained:

Top edge: (2706,−52.33,−167.8)

Right edge: (2576,−310.9,−73.07)

which gives the euclidean distance

dTR =

√
(2576− 2706)2 +

(
(−310.9)− (−52.33)

)2
+
(
(−73.07)− (−167.8)

)2
= 304.5 (4.17)

Compared with the physical length of 79.6 cm the ratio, r2 becomes:

r2 =
79.6 cm
304.5

= 0.2614 cm = 2.614 mm (4.18)

Verification

Figure 4.14: Point cloud data of
a Golf V from behind. Outermost
points on rear wheels are marked
with corresponding coordinates.

Multiplying any coordinate or distance in the Li-
DAR point cloud with this ratio converts it into
the units of cm or mm respectively. To illustrate
this, and to verify whether the two ratios obtained
are correct or not, a verification test of the leading
vehicle, the Golf, is performed.

From the figure on the left, 4.14, coordinates of
the left and right rear wheels are given:

Left rear wheel: (2308, 464.3,−782.6)

Right rear wheel: (2294,−364.5,−772.2)
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(a) (b)

Figure 4.13: Visual image and corresponding LiDAR data of a calibration board with
known dimensions.

with the distance

dLR =

√
(2294− 2308)2 +

(
(−364.5)− 464.3

)2
+
(
(−772.2)− (−782.6)

)2
= 829.0 (4.19)

Multiplying with the ratios r1 and r2, separately, the actual car width should be returned
if the factor are correct:

w1 = dLR r1

= 829.0 · 2.204 mm
= 1827.1 mm (4.20)

w2 = dLR r2

= 829.0 · 2.614 mm
= 2167.0 mm (4.21)

Comparing these two estimated widths with the actual width 1786 mm, as found in the
technical documentation on page 51, the least deviation is found for the ration r1. The
ration, r, is therefor set to 2.2 and 0.22 for conversion to millimetres and centimetres
respectively.

After adding the factor, r = 2.2, the wheel coordinates now are:

Left rear wheel: (5078, 1021,−1722) mm
Right rear wheel: (5047,−801.9,−1699) mm

and the distance

dLR
′ =

√
(5047− 5078)2 +

(
(−801.9)− 1021

)2
+
(
(−1699)− (−1722)

)2 mm

= 1822 mm (4.22)
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which equals

r · dLR = 2.2 · 829.0 mm
= 1823.8 mm
≈ dLR

′ (4.23)

Please note that there are uncertainty related to both of these test. Did the LiDAR
sweep get reflected by the exact reference points chosen (board edges, foot sole, top
of the head), or are the located somewhere in the gap between the LiDAR beams and
therefore not visible? The resolution, and the precision, in the LiDAR data decreases with
growing distance between the source and the reflecting object. Also, error in the "known"
measurements has to be considered. For example how the shoes, hair style etc. affect the
height of the person measured by the LiDAR, and uncertainty in the measurement of the
calibration board.

4.5 Conversion of positioning data

Positioning data returned by the detection algorithm are given relative the LiDAR sensor
placed on the rooftop of the ego vehicle. Implementation of the control routine for
autonomous driving requires positioning data relative the ego-vehicles rear shaft center
point. A convertion of data is therefore required.

Detailed sketches with accurate measurements the ego-vehicle are given in appendix
A, see page 49.

Ego-vehicle: LiDAR - IMU

GPS-positioning data are collected by an IMU attached to the ego-vehicle rooftop1. For
analysis purposes comparision of IMU data, from both the ego- and leading vehicle, and
the estimated relative position, a convertion between the LiDAR and IMU are of interest.

Figure 4.15: Top-down view of rooftop and a
scene point, P. [5]

Ref. figures A.2 and A.3, with origin at the
LiDAR’s position and coordiates pointing
x forward, y left and z up ref. the driving
direction, the offset vector, ~d, is set to

~dLI = [∆x,∆y,∆z]

= [−0.474,+0.03,−0.207] m (4.24)

~dIL = −~dLI (4.25)

The positioning vector of any point, ~p,
given relative to the LiDAR is converted
relative the IMU, ~p′, as follows:

~p′ = ~dIL + ~p (4.26)
1internal measurement unit
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Ego-vehicle: IMU - ref. point

The center point of the rear shaft is set as the reference point on the ego-vehicle. The
IMU is manually assembled underneath the vehicle’s roof top, centered along the y-axis.
No accurate measurements on the y-axis offset between the IMU and the reference point
is given, so it’s assumed to be zero. Some minor errors might therefore be considered.

Ref. figure 4.16, distances a, b and c and the offset angle θ are found in the technical
documents of the ego-vehicle as found in Appendix A (page 49). The relative position
∆x and ∆z (∆y ≈ 0 as explained above) is then calculated.

Figure 4.16: Right view of ego-vehicle illustrating the offset between the IMU and the
reference point, R, on the rear shaft. [5]

α = tan−1
(a
b

)
= tan−1

(
0.741

1.538

)
= 25.72◦ (4.27)

c =
√
a2 + b2

=
√

0.7412 + 1.5382 m
= 1.7054 m (4.28)
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∆x = a′

= c sin (α + θ)

= 1.7054 sin(25.72◦ + 2.1◦)

= 0.796 (4.29)

∆z = b′

= c cos (α + θ)

= 1.7054 cos(25.72◦ + 2.1◦)

= 1.508 (4.30)

The translation vector, ~dIR, then becomes

~dIR = [−0.796, 0,−1.508] m (4.31)
~dRI = −~dIR (4.32)

Ego-vehicle: LiDAR - ref.point

Given the transition vectors ~dLI and ~dIR the direct convertion from LiDAR positions to
position relative the reference point equals the sum of these vectors:

~dLR = ~dLI + ~dIR

= [−0.474, 0.03,−0.207] m + [−0.796, 0,−1.508] m
= [−1.270, 0.03,−1.715] m (4.33)

~dRL = −~dLR (4.34)

Figure 4.17: Overview of ego-vehicles translation(?) vectors, ~d, and corresponding posi-
tion vectors, ~p, for a random scene point, P. [5]

32



Leading vehicle (VW Golf V)

No main reference point is selected for the leading vehicle. For following and anti-collision
purposes the shortest distance between the two vehicle is the one of interest, and for the
case of pose and velocity estimation the centre point of the license plate is used.

Please see the technical drawings on page 51 and the documentation on the 3D-model
in chapter 4.6 for more details.

4.6 Creation of 3D models

To perform a model based pose estimation a 3D model of the object to be detected is
required. Two models are created, one of the leading vehicle, a Golf V, and one of the
license plate. For both models the license plate’s centre point is set as reference point
(0,0,0) so that the results are comparable. Results using both models are presented in
chapter 5.2.

4.6.1 Leading vehicle

As explained in chapter 2.2 at least four points are required to obtain the rotation and
translation matrix of an object. To minimise the risk that occlusion of one or more feature
points prevents the pose estimation method from working correctly, several feature points
are included in the 3D model. The points are distributed on both sides and the back of
the vehicle so that it’s rotation relative the ego-vehicle is not an issue, and selected to
have visual features that are easy recognisable.

The calculations made to obtain relative position coordinates of the selected feature points
are mainly based on measurements found in the technical documentation of the vehicle,
see page 51, as it provides the most correct data. Where lack of information prevents
obtaining relative coordinate position of a feature point, typically in the z-dimension,
data from the LiDAR is applied.

Using the point cloud data for distance calculations between feature points implies a
significant uncertainty related to the fact that it don’t provide any visual information
other than shape. Combined with the resolution vs. distance problem, ref. chapter 4.1.3,
the model will be an approximation. To minimize the error as few measurements as
possible is based on the point cloud data.

Wheel centre coordinates, Wn

WC = (xWc , yWc , zWc) (4.35)

xWc = 4986 mm +
1

2
(5878 mm− 4986 mm) = 5432 mm (4.36)

yWc = −760 mm +
1

2

(
1021 mm− (−760) mm

)
= 130.5 mm (4.37)

zWc = −1677 mm +
1

2

(
(−1722) mm− (−1677) mm

)
= −1699.5 mm (4.38)
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Figure 4.18: Leading vehicle, point cloud view from behind. Relevant feature coordinates
used for calculations in this section are marked with black dots. The vehicle is slightly
rotated ref. the ego-vehicle.

|PrefWC | =
√

(5432− 4501)2 + (130.5− 99.3)2 +
(
(−1699.5)− (−1275

)2 mm

= 1445.6 mm (4.39)

The relative x-axis displacement, ∆xw, between the reference point and the rear shaft can
now be computed using pythagoras with catheti ∆xw and ∆zw and the length |PrefWC |
as hypotenuse:

∆xw =
√
|PrefWC |2 −∆z2

=

√
1445.62 −

(
(−2175)− (−1699.5)

)2 mm

= 1024 mm (4.40)

The displacement in y-direction is found from the technical documentation, and is set
to half the length of the shaft width:

∆yw =
1

2
· 1786 mm = 893 mm (4.41)

For the z-direction ∆zw should be the difference between the reference point and the
wheel centre, not the wheel point touching the ground as the one found in the LiDAR
data. The wheel radius, 2 · rw = 16” = 403.4 mm, is therefore to be included in the
calculations:

∆zw = zPref
− zWR

+ rw

= (−1275) mm− (−1677) mm +
1

2
· 406.4 mm

= 605 mm (4.42)

34



Figure 4.19: LiDAR measurements of rear wheels, reference point and right mirror. Dis-
tances in black are included from the technical documentation of the Golf. All units in
mm.

This gives the wheel centre coordinates relative the reference point as follows:

WL
′ = (∆xw,∆yw,−∆zw)

= (1024, 893,−605) mm (4.43)
WR

′ = (∆xw,−∆yw,−∆zw)

= (1024,−893,−605) mm (4.44)

Please note these are the rear wheel coordinates! For the front wheels the shaft distance
2575 mm is added in the x-direction, see fig. 4.20 and 4.21.

Mirror coordinates, Mn

For the mirrors only the displacement in x-direction is unknown and need more complex
calculations. ∆zm is found directly from the LiDAR data and ∆ym from the technical
documentation.

|WCMR| =
√

(xMR
− xWC

)2 + (yMR
− yWC

)2 + (zMR
− zWC

)2

=

√
(7281− 5432)2 +

(
(−1016)− 130.5

)2
+
(
(−705)− (−1699.5)

)2 mm

= 3215 mm (4.45)
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∆xm = ∆xw +
√
|WCMR|2 −∆y2m

= 1024 mm +
√

(3215 mm)2 − (893 mm)2

= 4112 mm (4.46)

∆ym =
1

2
· 2044 mm

= 1022 mm (4.47)

∆zm = zMR
− zPref

= −705 mm− (−1275 mm)

= 570 mm (4.48)

This result in the following mirror coordinates, relative the reference point:

ML
′ = (∆xm,∆ym,∆zm)

= (3215, 1022, 570) mm (4.49)
MR

′ = (∆xm,−∆ym,∆zm)

= (3215,−1022, 570) mm (4.50)

Complete model
A 3D model of the Golf is created by means of the coordinates obtained above and some
additional simple calculation based on figures 4.18 and B.1. The results are presented in
figures 4.20 and 4.21.

Figure 4.20: 3D model of the Golf. All feature points are relative the centre of the license
plate. Units in millimetres.
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Figure 4.21: 3D model of the Golf. All feature points are relative the centre of the license
plate. Units in millimetres.

4.6.2 License plate

The Norwegian license plate is a rectangular metal or plastic plate with EU standardised
dimensions, 520 × 110 mm [30]2. Assuming no depth variations and origin located at the
plate’s centre, the four corners have the following coordinates:

Upper left corner (0, 260, 55) mm
Upper right corner (0, -260, 55) mm
Lower left corner (0, 260, -55) mm
Lower right corner (0, -260, -55) mm

Figure 4.22: Illustration of a lincense plate and it’s corners and center posistions. Coor-
dinate system corresponds to the back plate to a vehicle in front of the detecting camera.

2car plate, narrow version
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5. Results

This chapter presents results obtained from applying the methods described in chapter 3
on the described data sets.

5.1 Vehicle detection

Figure 5.1

This section present some results using the
point cloud detection methods on a LiDAR
point cloud. The results are presented in
the same order as the methods were de-
scribed in chapter 3.1.2.

Normal estimation and object ex-
traction

Figure 5.1 displays the first three stages of
the point cloud detection algorithm. The
top shows the original point cloud used
as input. The data used is LiDAR mes-
sage 10 from bag file 2017-02-24-12-36-
28_0.bag.

In the middle the estimated normals
based on a 3 × 3 neighbourhood are
included. Only every 50th normal is
plotted to ensure good visual appear-
ance. Outliers are defined as points with
a point-plane distance greater than 50
mm.

Last is the result after removing the
ground points. The threshold, τ , is here
set to 85°. That implies that the remain-
ing points have estimated surface angles
α ∈ [85, 90]°.
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Vehicle clusters

In this section the vehicle clusters detected are visualised by a pair of figures. First are
intensity images of the point cloud data with a FOV of 120°, and below is the vehicle
cluster extracted and presented in a binary image. In total three results are presented.

Figure 5.2

Figure 5.3

Figure 5.4
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Figure 5.5

Figure 5.6

5.2 Pose estimation

In the following section the results from the pose estimation methods described in chapter
3 are presented.

5.2.1 About the tests

The POSIT method is the foundation of the estimations. It require minimum 4 nonplanar
points and their corresponding 3D properties as input to calculate a proper estimate. For
each input image the pose is estimated for the following inputs:

• License plate, 5 feature points (lp)

• Vehicle body, 5 feature points (b5)

• Vehicle body, 9 feature points (b9)

Methods using images as input are performed on both the left and right stereo images.
The average of the two corresponding outputs is then computed and set as the final esti-
mate. This is done for two reasons. First, the average of two estimates are less affected
by error in one of them. Secondly and most important, to compensate for the ±15 m
left/right offset camera location relative the rooftop centre axis (see figure A.3).

The tests are all performed on the same data sets so that the results are comparable.
The bag-file message IDs are listed in table 5.1. LiDAR and image data with equal time
stamps are sorted column wise.
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Figure 5.7

i 1 2 3 4 5 6 7 8
Stereo msg. ID #1 #440 #598 #453 #460 #200 #490 #370
LiDAR msg. ID #10 #660 #900 #680 #700 #330 #740 #584

Table 5.1: Data used to test pose estimation methods. Corresponding LiDAR and image
message ID in the same column.

5.2.2 Distance estimates, ρ̂

As explained in chapter 3.2.3, two methods for distance estimation are to be tested. First
the results using method 1 are presented, followed by the results obtained by method 2.
Both methods are applied on the exact same data set so the results are comparable. The
distances listed are the radial distance from the lidar/stereo camera center (roof top) to
the licence plate centre point of the leading vehicle.

Method 1 - Results

Table 5.2 shows the results using the translation matrix, T , to estimate the relative
distance, ρ as described in chapter 3.2.3. The normalised standard deviation estimates

i 1 2 3 4 5 6 7 8
ρ [mm] 4 679 11 268 12 459 14 036 15 424 17 057 17 791 20 473
ρ̂lp [mm] 2 703 9 663 14 249 13 725 13 485 13 804 15 855 19 197
ρ̂b5 [mm] 4 452 7 999 14 180 12 391 12 958 14 180 15 176 19 065
ρ̂b9 [mm] 5 008 7 465 15 848 15 457 15 520 16 482 21 751 22 871

Table 5.2: Distance estimates of eight stereo image pairs. See table 5.1 for data info.

of the three different outputs are:

σ̂ρlp =

√√√√ 1

N

N∑
i=1

(
ρi − ρ̂lp,i

ρi

)2

= 18.9% (5.1)

σ̂ρb5 =

√√√√ 1

N

N∑
i=1

(
ρi − ρ̂b5,i

ρi

)2

= 15.8% (5.2)
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Figure 5.8: Plot of results given in table 5.2.

σ̂ρb9 =

√√√√ 1

N

N∑
i=1

(
ρi − ρ̂b9,i

ρi

)2

= 18.2% (5.3)

Another relation of interest is to study wheter the deviation increases with the distance
to the object, i.e. the distance between the two cars. In figure 5.9 the true relative
distance, ρ, is plotted against the mean normalised deviation for each input image.

Figure 5.9

Method 2

Table 5.3 displays the distance estimates, ρ̂2. The normalised standard deviation with
respect to true distance is calculated. Then two plots of true distance vs. ρ̂2 (fig. 5.10)
and normalised deviation vs true relative distance (fig. 5.11).

i 1 2 3 4 5 6 7 8
ρ [mm] 4 679 11 268 12 459 14 036 15 424 17 057 17 791 20 473
ρ̂2 [mm] 2 030 7 711 9 235 5 303 6 376 6 920 8 082 5 537

Table 5.3: Distance estimates of eight point cloud data sets. See table 5.1 for data info.
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σ̂ρ2 =

√√√√ 1

N

N∑
i=1

(
ρi − ρ̂2,i

ρi

)2

= 54.7% (5.4)

Figure 5.10

Figure 5.11

5.2.3 Rotation estimates, ω̂

i 3 6 1 5 7 4 8 2
ω -44.0 -34.0 -5.0 -4.0 13.0 18.0 38.0 66.0
ω̂lp -0.4 -36.6 7.0 1.7 7.2 2.1 1.6 78.8
ω̂b5 -61.4 -27.6 -8.5 -17.1 33.0 35.1 44.0 40.3
ω̂b9 -35.8 -62.2 -6.2 -11.4 35.5 1.5 57.7 53.1

Table 5.4

σ̂ωlp =

√√√√ 1

N

N∑
i=1

(ωi − ω̂i)2 = 21.6° (5.5)
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σ̂ωb5 =

√√√√ 1

N

N∑
i=1

(ωi − ω̂i)2 = 15.4° (5.6)

σ̂ωb9 =

√√√√ 1

N

N∑
i=1

(ωi − ω̂i)2 = 16.7° (5.7)

Figure 5.12

Figure 5.13

5.2.4 Orientation estimates, γ̂

γ̂1 = tan−1
(
ty
tx

)
(5.8)

Standard deviation:

σ̂γ =

√√√√ 1

N

N∑
i=1

(γi − γ̂i)2 = 3.85° (5.9)

Normalised:

γ̂2n =

√√√√ 1

N

N∑
i=1

(
γi − γ̂i
γi

)2

= 12.53% (5.10)
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Figure 5.14: Plot of results given in table ??.

Figure 5.15
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6. Discussion

This chapter is used to discussed different sides of this thesis. First some comments on
the results are presented, followe

6.1 Comments on the results

A hypothesis was that the POSIT estimates become more accurate with more feature
points. Based on the computed deviations for estimates using five and nine feature
points this is not considered true. Actually it could look like the incresing number of
feature points reduced the accuracy.

Another hypothesis that I wanted to study was if there were any correlation between
the relative distance and the deviation. From the scatter plots in chapter 5 no such de-
pendencies could be found.

The orientation angle estimates have a high variance, up to 20°, which is considered
not satisfying. The distance estimates on the other hand only have an mean normalised
error 15%.

There are many sources of error related to the computations. First is the 3D model
used which is created using point cloud data from the test runs and the technical doc-
umentation of the current vehicle. The accuracy of the model is therefore not known.
An improved model could be obtained if LiDAR data was gathered explicitly for this
purpose. The more precise estimates, the more accurate model is required.

Another source of error that may affect the results is the accuracy of the data stated
as true values. With lack of actual measurements the distance, orientation and rotation
values was measured manually. See figure 6.1

6.2 LiDAR range

The LiDAR maps the surroundings by sweeping 32 laser beams with a fixed angular
spacing. With increasing distance between the sensor and the object to be detected the
resolution decreases with growing relative distance. With a vertical resolution of 1.33°,
ref. table 4.2, cosine theorem defines the minimum height of a object to be detected.

hmin ≥
√
r12 + r22 − 2r1r2 cos(n1.33°) (6.1)

where n is the number of rays hitting the object. To be able to recognize a vehicle n
should be greater than three.
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Figure 6.1: Description of how actual measurements were calculated.
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7. Conclusion and Future Work

In this thesis I have been studying several method for vehicle detection and pose esti-
mation, mainly based on 3D point cloud data. There are obviously advantages using the
LiDAR, but it also causes some challenges related to conclude if the object detected is
the correct one or only one of similar shape.

Even with lots of potential error sources in the data, like an potential inaccurate 3D
model and assumptions an accuracy of 15% was accomplished.

For future work a better 3D model of the leading vehicle is preferrable. Also merging
the LiDAR data with camera images to take advantage of image classifiers for improved
results should be considered.
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A. Vehicle sketches - Ego-vehicle

(Polar Ranger, customized)

Figure A.1: Ego-vehicle, right view [7]
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Figure A.2: Sensor roof top, vertical positions [7]

Figure A.3: Sensor rooftop, top view. Red lines indicate roof top center lines. [7]
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B. Vehicle sketches - Leading vehicle

VW Golf V, mod. 2008. Measurements in millimetres.

Figure B.1: Technical drawings of a VW Golf V (5 doors) [8]
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C. Source code

!
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