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Abstract 

 

Equity indices are known to exhibit an asymmetric leverage effect, meaning that 

negative returns have a greater impact on volatility than positive returns of the 

same magnitude. We reevaluate the presence of leverage effect in a large sample 

of 21 equity indices around the world. We utilize not only daily data, but also 

realized volatility calculated from high-frequency data. Using realized volatility as 

a benchmark allows us for a more precise comparison of volatility models. 

Moreover, we also study models based directly on realized volatility. We find that 

all the 21 equity indices analyzed exhibit the leverage effect. In order to 

investigate whether asymmetric models produce more accurate volatility forecasts 

than symmetric models, three pairs of volatility models are compared. Within 

each pair, two models are almost identical. The only difference is that one model 

allow for the leverage effect, whereas the other model is a restricted version, 

which does not allow for the leverage effect. We find that the volatility models 

that allow for the asymmetric leverage effect produce significantly more accurate 

forecasts than the symmetric volatility models.  
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1 Introduction 

 

Volatility is an important variable for participants in financial markets. It 

measures the dispersion of return for a given security or market index. Volatility 

has received great attention from investors, academics and regulators because of 

its role in option pricing, asset allocation, hedging and risk management in 

general. Furthermore, the financial world has witnessed bankruptcy and stock 

market crashes, which have led to huge losses. The stock market crash in 1987 

and the financial crises in 2007-2008 have highlighted the importance of 

understanding volatility in financial markets. 

 

It is well documented that the volatility in equity markets appears to be 

asymmetric. This observation, usually called the leverage effect, and first 

documented by Black (1976) and Christie (1982), states that a drop in the value of 

the stock (negative return) increases financial leverage as debt to equity ratio 

increases and that makes the stock riskier and consequently more volatile. 

However, the magnitude of the asymmetric volatility effect is too large to be 

caused solely by an increase in financial leverage. A study presented by Figlewski 

and Wang (2000) suggests that leverage changes due to changes in capital 

structure (such as issuance of new debt) have in fact no impact on volatility. It is 

therefore questionable whether the leverage effect is related to financial leverage. 

Other explanations to this phenomenon are based on the existence of a 

time-varying premium and the volatility feedback effect (e.g. Pindyck, 1984; 

Engle, 1987; French et al., 1987; Campbell and Hentschel, 1992).  The volatility 

feedback effect suggests that an increase in volatility requires a higher rate of 

return from the asset, which only happens by a fall in the asset price. If volatility 

is priced, an expected rise in volatility increases the required return on equity, 

which leads to a decline in the stock price. In volatility feedback effect, changes in 

volatility drive returns, while in the leverage effect, returns drive volatility. A 

study presented by Bekaert and Wu (2000) find more support for the positive 

feedback effect of volatility in Nikkei 225 stocks, because of the lack of causality 

from leverage effect. However, Bollerslev (2006) find that when using high 

frequency data from S&P 500 returns, five-minutes absolute returns and realized 

volatility over longer time, the correlation is negative between the realized 

volatility and the current and lagged absolute returns. This effect is lasting for 
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several days. There are many other studies investigating and researching the 

presence of the leverage effect, and there is a broad agreement that the effect is 

present in many markets. Therefore, it is in our interest to further investigate this 

topic, by looking at different indices around the world and study the presence of 

leverage effect. Which of these theories is the most accurate explanation of this 

phenomenon has not been resolved yet.  

 

The Generalized AutoRegressive Conditional Heteroscedasticity 

(GARCH) model has become a popular tool for forecasting and modeling 

volatility. For that purpose, GARCH, E-GARCH (1,1), GJR-GARCH (1,1), 

TGARCH (1,1) models are often employed. For a review over volatility models 

and their forecasting performance see Poon & Granger (2003). Since the 

availability of high-frequency data, researchers and academics had rather relied on 

different approaches to estimate and model the volatility of returns on financial 

assets. Intra-day returns are often used to construct nonparametric, lower-

frequency (daily) volatility measures. These so called realized volatilities are used 

to assess the predictive performance and adequacy of existing stochastic-volatility 

models (Andersen & Bollerslev, 1998) and to explore the predictability of market 

volatility in general. It is therefore not surprising that realized volatility estimators 

are also used to test the asymmetric volatility effect.   

 

While the empirical studies on realized volatility is still ongoing, there are 

some facts that have been determined. It has been ascertained that the 

unconditional distribution of realized volatility is kurtosed and highly skewed, 

while the unconditional distribution of logarithmic realized volatility is nearly 

Gaussian (Molnár, 2012). Another fact is that the (logarithmic) realized volatility 

seems to be fractionally integrated. And finally, according to Ebens (1999), the 

realized volatility of stock indices is nonlinear in returns, which is also known as 

the leverage effect. Meaning that past negative return shocks have a larger impact 

on current volatility than previous positive shocks.  

 

In this thesis, we will study the presence of leverage effect in 21 equity 

indices around the world. Further, we will investigate if the asymmetric models 

produce more accurate volatility forecasts than the symmetric counterpart models 

using daily-realized volatility as the proxy for evaluating the predictive ability for 
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the models, instead of squared returns. The volatility models in this thesis are 

GARCH, GJR-GARCH, Log-GARCH and E-GARCH. We have chosen these 

models because they are commonly used in the literature and superior in empirical 

studies. We have also included the realized volatility models HAR-RV and 

LHAR-RV (leveraged), due to their straightforward estimation via OLS and their 

strong forecasting performance found in the literature (e.g. Corsi, Audrino, & 

Renò, 2012). From previous research, it is clear that the Autoregressive realized 

volatility models are superior over various GARCH models (e.g. Andersen, 

Bollerslev, & Huang, 2011). It will therefore be of no use to compare these 

models against each other, but more intuitive to compare the symmetric models 

with an asymmetric counterpart.  

 

The aim of this thesis is not to find the best model for forecasting 

volatility, so there might be other models that are superior over the models 

employed in this thesis. Typically, prior research on stock market volatility 

focuses on one or more models and typically only one or two stocks or markets. 

This thesis aims to study a large number of stock markets. In our knowledge, there 

are no similar studies including the same number of indices and at the same time 

employing the more precise realized volatility estimator as a proxy in the 

volatility forecasting evaluation. There have been studies examining a large 

number of stock markets, instead of realized volatility as the proxy, they employ 

an imperfect volatility proxy, namely the commonly used squared returns (Evans 

& McMillan, 2007). Moreover, we provide in- and out-of-sample evidence about 

the existence of the leverage effect. We therefore argue that this paper is a great 

contribution to the existing volatility literature. 

 

Empirical results indicate that the asymmetric models obtain the most 

accurate volatility forecasts, where the LHAR-RV model yields the lowest values 

for the loss functions. We therefore find, that irrespective of the employed model, 

adding an asymmetric component improves the fit and volatility forecasting 

performance. We can therefore conclude that the leverage effect should be 

considered as one of the reasons behind the observation of the asymmetric 

volatility effect. 
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Following this introduction part is section 2 which will present the data 

used in this thesis. In section 3 we present the various models applied in this thesis 

and the forecasting and evaluation methods that have been used. Section 4 will 

present the results based on our analysis. Section 5 will be a summary and a 

conclusion of the analysis, followed by references and appendix.  

 

2 Data 

 

All the data are obtained from the Oxford-Man Institute of Quantitative Finance 

(2017). The dataset used in this thesis consists of daily data, including realized 

variance, open and closing prices for 21 equity indices around the world. An 

overview of these indices is provided in table 1. 

 

Table 1: Overview over the indices, including name of the index, ticker, location and number of observations.  

Name Ticker Country Number of observations 

S&P 500 SPX United States 4252

FTSE 100 FTSE United Kingdom 4274

Nikkei 225 N2252 Japan 4120

German DAX GDAXI Germany 4308

Russel 2000 RUT United States 4255

All Ordinaries AORD Australia 4253

Dow Jones Industrial Average DJI United States 4255

Nasdaq 100 IXIC United States 4258

CAC 40 FCHI France 4335

Hang Seng HSI Hong Kong 3925

KOSPI Composite Index KS South Korea 4189

AEX Index AEX Netherlands 4334

Swiss Market Index SSMI Switzerland 4260

IBEX 35 IBEX Spain 4300

S&P CNX Nifty NSEI India 3677

IPC Mexico MXX Mexico 4257

Bovespa Index BVSP Brazil 4164

S&P/TSX Composite Index GSPTSE Canada 3669

Euro Stoxx 50 STOXX50E Germany 4311

FTSE Straits Times Singapore FTSTI Singapore 3879

FTSE MIB FTSEMIB Italy 4292  

 

Oxford-Man Institute for Quantitative Finance provides estimates of 

realized variance calculated in several different ways. In this paper, we use the 

most common measure of realized variance, the one calculated as a sum of 

squared 5-minute returns. To get the realized volatility we then take the square 

root of the variance. For most indices, the data covers the time period from 3rd 
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January 2000 to 9th January 2017. Due to different starting dates and differences 

in trading days in the different markets, number of observations differ 

accordingly. The index with highest number of observations is the French FCHI 

index with 4335 observations, while the index with the lowest number of 

observations is the Canadian GSPTSE index with 3669 observations.  

 

In the realized volatility literature and when dealing with high frequency 

data, it is a common approach to use data from the opening to the closing of the 

market, the so called open-to-close returns. Volatility estimated from intraday or 

daily data do not include data from the overnight period, i.e. the period from 

close-to-open. This period, often called the opening jump, exhibits different 

dynamics than the volatility. Analysis in the main body of the paper is conducted 

on the open-to-close returns. It is conveniently assumed that the opening jumps 

are constant over time. However, the analysis is repeated with close-to-close 

returns for the GARCH models. The results are presented in appendix A. 

However, all the main results remain the same. 

 

We define open-to-close returns as: 

 

𝑟𝑡 = log (
𝑃𝑡

𝑂𝑡
)     (1) 

and close-to-close returns as: 

𝑟𝑡 = log (
𝑃𝑡

𝑃𝑡−1
)      (2) 

      

where 𝑃𝑡 are the closing price at time t and 𝑂𝑡 are the open price at time t. 
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Table 2: Descriptive statistics for the daily open-to-close returns for all the indices reported in percentage. 

Period ranging from 3rd January 2000 to 9th January 2017. Auto.Q denotes the first order autocorrelation 

coefficient of returns and Auto.QR^2 denotes the first order autocorrelation coefficient of squared returns 

from the Automatic Portmanteau test and the corresponding p-values. 
not annualized but multiplied by 100

Ticker Min 1Q Mean 3.Q Max Auto.Q P-value Auto.QR^2 P-value Skew Ex. Kurt.

SPX -9.35 -0.50 0.01 0.55 10.22 -0.08 0.0034 0.21 0.0000 -0.17 7.67

FTSE -5.76 -0.48 -0.04 0.44 7.04 -0.03 0.2017 0.18 0.0000 -0.14 4.27

N2252 -10.56 -0.59 -0.03 0.58 11.66 -0.06 0.0452 0.25 0.0177 -0.55 10.54

GDAXI -9.41 -0.66 -0.03 0.62 9.99 0.01 0.6754 0.21 0.0004 -0.09 4.79

RUT -11.05 -0.73 0.01 0.79 7.78 -0.06 0.0282 0.30 0.0000 -0.26 4.24

AORD -6.44 -0.42 0.00 0.46 3.89 -0.03 0.2852 0.23 0.0001 -0.49 3.81

DJI -8.41 -0.47 0.02 0.55 10.75 -0.08 0.0028 0.18 0.0000 0.00 8.33

IXIC -8.05 -0.63 -0.02 0.64 14.91 -0.06 0.0459 0.28 0.0039 0.11 7.29

FCHI -8.12 -0.64 -0.04 0.57 7.28 -0.04 0.0634 0.24 0.0000 -0.14 4.13

HSI -11.62 -0.55 -0.05 0.48 12.16 -0.05 0.3022 0.52 0.1350 0.08 12.70

KS -11.78 -0.62 -0.04 0.56 8.76 -0.05 0.0316 0.21 0.0039 -0.34 5.78

AEX -8.42 -0.56 -0.04 0.53 9.24 -0.04 0.1570 0.26 0.0000 -0.20 6.51

SSMI -9.73 -0.48 -0.02 0.48 8.68 0.00 0.9633 0.23 0.0000 -0.29 8.26

IBEX -7.58 -0.67 -0.05 0.61 13.04 -0.01 0.6284 0.11 0.0000 -0.03 5.28

NSEI -13.38 -0.50 0.02 0.63 7.13 0.04 0.2525 0.35 0.0266 -0.99 10.38

MXX -8.26 -0.59 0.04 0.71 9.95 0.09 0.0000 0.15 0.0000 0.00 5.04

BVSP -15.92 -0.95 0.00 1.02 13.25 0.00 0.8486 0.13 0.0001 -0.17 4.90

GSPTSE -7.72 -0.43 -0.02 0.44 6.48 0.00 0.9096 0.36 0.0003 -0.61 8.81

STOXX50E -9.35 -0.67 -0.03 0.65 8.27 -0.03 0.2354 0.22 0.0010 -0.19 4.56

FTSTI -7.71 -0.45 -0.03 0.39 9.47 -0.09 0.0110 0.38 0.0488 0.38 9.11

FTSEMIB -9.19 -0.66 -0.06 0.59 8.23 -0.06 0.0066 0.16 0.0000 -0.26 3.83  

Note: The Automatic Portmanteau test for serial correlation as presented by Escanciano & Lobato (2009) 

 

The summary statistics for the intraday returns, presented in table 2, 

display an evidence of mild skewness and large kurtosis. Even though these are 

summary statistics of unconditional distribution of returns, residuals are not 

normally distributed even after modelling volatility as a GARCH model.1 We 

therefore use the reparametrized Johnson Su distribution (JSU, see Johnson 

1949a, 1949b) for all the GARCH models which are very flexible with respect to 

skewness and kurtosis in the residuals.  

Furthermore, the p-values from the Automatic Portmanteau test for serial 

correlation (Escanciano & Lobato, 2009) presented in table 2 confirm that the 

returns series exhibit serial correlation. We therefore use as the mean equation not 

only a simple constant (ARMA(0,0)) but also an ARMA (1,1) model. ARMA(0,0) 

will be presented in the main body of the thesis. The results when we use 

ARMA(1,1) as a mean equation can be found in appendix C (for the in-sample 

results) and in appendix D (for the out-of-sample forecasting evaluation). 

However, all our main results remain unaffected by the choice of the mean 

equation. In the time period the S&P 500´s highest return was 10.22 % and the 

lowest was -9.35 %, with a mean return of 0.01 %. 

                                                 
1 However, for the sake of brevity, we do not report these results in the paper. 
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Table 3: Descriptive statistics for the daily close-to-close returns for all the indices reported in percentage. 

Period ranging from 3rd January 2000 to 9th  January 2017. Auto.Q denotes the first order autocorrelation 

coefficient of returns and Auto.QR^2 denotes the first order autocorrelation coefficient of squared returns 

from the Automatic Portmanteau test and the corresponding p-values. 

close to close

Ticker Min 1Q Mean 3.Q Max Auto.Q P-value Auto.QR^2 P-value Skew Ex. Kurt.

SPX -9.69 -0.51 0.01 0.58 10.64 -0.07 0.0067 0.21 0.0000 -0.17 7.82

FTSE -8.93 -0.56 0.00 0.59 9.48 -0.01 0.8095 0.23 0.0001 -0.17 6.24

N2252 -12.11 -0.78 0.00 0.87 13.23 -0.03 0.2242 0.26 0.0087 -0.43 5.99

GDAXI -11.05 -0.69 0.01 0.78 12.03 0.01 0.5995 0.17 0.0011 -0.09 5.49

RUT -12.46 -0.76 0.02 0.87 8.76 -0.05 0.0501 0.28 0.0000 -0.31 4.50

AORD -7.26 -0.45 0.01 0.53 4.53 0.01 0.7131 0.20 0.0000 -0.65 5.71

DJI -8.61 -0.50 0.01 0.56 10.53 -0.07 0.0066 0.19 0.0000 -0.07 7.79

IXIC -10.22 -0.70 0.01 0.75 13.28 -0.03 0.2295 0.21 0.0000 0.07 6.23

FCHI -8.52 -0.71 0.00 0.75 10.44 -0.01 0.5956 0.22 0.0007 -0.08 4.49

HSI -32.40 -0.67 0.01 0.74 13.41 0.00 0.9820 0.22 0.1092 -1.95 50.03

KS -12.83 -0.65 0.02 0.78 11.24 0.02 0.3861 0.18 0.0002 -0.60 6.63

AEX -9.12 -0.66 -0.01 0.68 9.57 0.01 0.7499 0.23 0.0000 -0.16 5.90

SSMI -9.07 -0.56 0.00 0.61 10.79 0.03 0.3995 0.34 0.0012 -0.21 7.19

IBEX -12.72 -0.75 0.00 0.77 12.87 0.02 0.4536 0.16 0.0025 -0.14 5.29

NSEI -24.38 -0.66 0.04 0.84 18.47 0.00 0.9551 0.36 0.1696 -0.97 26.66

MXX -8.27 -0.59 0.04 0.73 10.44 0.09 0.0000 0.16 0.0000 0.04 5.18

BVSP -15.40 -0.98 0.03 1.10 13.36 0.01 0.5797 0.13 0.0001 -0.16 4.40

GSPTSE -9.06 -0.43 0.02 0.56 7.52 -0.01 0.6922 0.39 0.0000 -0.66 7.98

STOXX50E -8.77 -0.72 -0.01 0.74 10.55 -0.01 0.6046 0.22 0.0006 -0.08 4.48

FTSTI -16.50 -0.50 0.00 0.56 8.92 0.03 0.2634 0.09 0.0023 -1.04 16.48

FTSEMIB -13.33 -0.78 -0.02 0.79 10.76 -0.03 0.1273 0.17 0.0000 -0.24 5.09  

Note: The Automatic Portmanteau test for serial correlation as presented by Escanciano & Lobato (2009) 

Table 3 presents the descriptive statistics for the daily close-to-close 

returns. Comparing the intraday statistics with the daily close-to-close returns, we 

see that properties of close-to-close and open-to-close returns are rather similar.  

 

2.1 Realized volatility 

As mentioned before, modelling and forecasting volatility is one of the central 

issues finance. Realized volatility goes way back to 1980, when Merton showed 

that when data sampled at a high frequency are available, the sum of squared 

realizations can be used to estimate the variance of a random variable. In later 

years, it has been showed by Taylor and Xu (1997) and Andersen and Bollerslev 

(1998)  and others that realized volatility can be calculated simply by summing up 

intraday squared returns. The daily volatility for day t can be written as:  

 

𝑅𝑉𝑡
𝐷 =  ∑ 𝑟𝑖,𝑡

2𝑁
𝑖=1     (3) 

 

In equation (3), a day is divided in N equidistant periods, and 𝑟𝑖,𝑡 denotes the 

intraday return of the ith interval of day t. 𝑅𝑉𝑡
𝐷 is consistent and unbiased 

estimator of the daily volatility 𝜎𝑡
2, when the returns have a zero mean and are 

uncorrelated. Superscript D in 𝑅𝑉𝑡
𝐷 refers to the world daily, because later in the 

article we introduce also weekly (W) and monthly (M) realized volatility.  
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Theoretically, higher sampling frequency should lead to more precise 

estimate of realized volatility. However, choosing a very high sampling 

frequency, for example one second frequency, would lead to a bias in the 

estimated variance due to market microstructure effects. Andersen (2001) has 

proposed 5-min returns to compute the daily realized return, while other have 

found that 15-min and 25-min are optimal (Giot & Laurent, 2004) However, the 

most common choice in the existing literature is 5 minutes, and we therefore 

follow this standard choice. 

 

Table 4: Descriptive statistics for the realized volatility for all the indices, period ranging from 3𝑟𝑑January 

2000 to 9th January 2017. Realized volatility are annualized with the square-root-of-time rule, namely 

sqrt(252), reported values are in percentage. Auto.Q denotes the first order autocorrelation coefficient of 

realized volatility from the Automatic Portmanteau test and the p-value. 
annualized 100*sqrt(252)

Ticker Min 1Q Mean 3.Q Max Auto.Q P-value Skew Ex. Kurt.

SPX 2.02 8.32 14.38 17.14 139.73 0.80 0.0000 3.14 17.84

FTSE 3.09 7.61 12.66 15.17 107.98 0.79 0.0000 2.90 16.06

N2252 3.64 10.04 14.95 17.96 90.20 0.73 0.0000 2.82 15.15

GDAXI 3.17 11.15 18.32 21.70 121.76 0.83 0.0000 2.48 10.74

RUT 0.00 9.13 14.34 16.64 121.40 0.77 0.0000 3.07 16.67

AORD 1.77 6.09 9.56 11.27 62.00 0.66 0.0000 2.71 12.56

DJI 2.38 8.32 14.21 16.75 147.42 0.76 0.0000 3.53 23.43

IXIC 0.00 8.85 15.34 18.77 104.11 0.84 0.0000 2.43 9.84

FCHI 3.20 10.55 16.76 20.09 113.61 0.81 0.0000 2.60 13.23

HSI 3.57 9.51 13.75 15.87 104.98 0.71 0.0000 3.46 24.67

KS 3.78 9.09 15.70 19.25 122.39 0.84 0.0000 2.46 11.71

AEX 2.38 9.31 15.27 18.35 95.56 0.83 0.0000 2.46 9.60

SSMI 4.27 8.28 12.93 14.84 102.83 0.82 0.0000 3.10 16.26

IBEX 3.21 11.31 17.52 21.34 117.84 0.78 0.0000 2.19 11.50

NSEI 3.32 10.51 16.77 19.47 217.85 0.71 0.0000 4.59 46.17

MXX 2.91 8.02 12.77 15.11 114.60 0.60 0.0000 3.41 22.05

BVSP 5.02 15.62 21.43 24.22 130.48 0.72 0.0000 3.53 21.97

GSPTSE 0.00 5.90 9.99 11.48 95.20 0.80 0.0000 3.99 26.30

STOXX50E 0.34 11.20 17.91 21.20 165.18 0.77 0.0000 3.08 19.62

FTSTI 4.26 7.73 11.15 13.12 72.88 0.76 0.0000 2.94 18.28

FTSEMIB 4.12 10.01 16.13 19.56 115.28 0.79 0.0000 2.39 11.41  

Note: The Automatic Portmanteau test for serial correlation as presented by Escanciano & Lobato (2009) 

 

Summary statistics for the realized volatility in table 4, clearly shows the 

presence of autocorrelation in volatility for all the indices. This was expected and 

it is in accordance with the empirical literature. The annualized mean for the S&P 

500 index in the period from January 2000 to the start of January 2017 is 14.38 %. 

Meanwhile the Brazilian BVSP has the highest volatility in the time-period and 

the U.S.’s RUT has the lowest volatility with 21.43 % and 9.56 % respectively. 

From the skewness and kurtosis, we can observe that the realized volatility does 

not follow a normal distribution and it is skewed to the right.  
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Figure 1: S&P 500 daily returns(black line) and daily realized volatility(red line) from 2000 to 2017 

 

The time-series plot in figure 1 shows the relationship between intraday 

returns and volatility. We observe a highly volatile period in the end of 2008 and 

high fluctuations in the returns. When there are high fluctuations in returns, the 

volatility is also high. The highest return for the S&P 500 index was at 15th 

October 2008, meanwhile the lowest was at 28th October 2008. The date when the 

volatility was at is highest for the S&P 500 index was 10th October 2008 during 

the period after the Lehman Brother collapsed. 

 

2.2 Cross-correlation 

A negative cross-correlation may be interpreted as evidence for the leverage 

effect. Because we want to observe if the cross-correlation are negative between 

the returns and volatility and therefore evidence for the leverage effect we plot the 

cross-correlation for S&P 500 in figure 2. Upper panel in figure 2 plots the cross-

correlation between the absolute returns and returns. The lower panel displays the 

cross-correlation between realized volatility and returns, with lags and leads 

ranging from -20 to 20 days, 

 

𝑐𝑜𝑟𝑟(|𝑟𝑡,𝑡+1|, 𝑟𝑡−𝑗,𝑡−𝑗+1)         𝑗 =  −20, … ,20.    (4) 

 

𝑐𝑜𝑟𝑟(𝑅𝑉𝑡,𝑡+1, 𝑟𝑡−𝑗,𝑡−𝑗+1)          𝑗 = −20, … ,20.    (5) 

 

For lags 0 to 20 the cross-correlation are negative and mostly significant (all 

significant in the lower panel). When lags are negative the correlations are around 

zero and mostly not significant. For the realized volatility and returns, the effect is 

strongest at lag one and two, then declining as the lags increase. The impact of 

returns on the future realized volatility lasts for at least 20 lags, indicating long 
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memory in volatility. This pattern is the same for all the indices (see appendix B), 

with the strongest effect in the Indian NSEI and the lowest effect in the 

Singapore’s FTSTI. The cross-correlation already suggests a strong evidence for 

the presence of leverage effect in all the indices.   

Meanwhile, the correlation between returns and future absolute returns is 

also highly significant, but weaker than the correlation between returns and 

subsequent realized volatility. We can observe that the correlation is about half 

compared to the lower panel in Figure 2. Altogether, both the relationship 

between returns and absolute returns and returns and realized volatility are an 

evidence for the leverage effect. Stronger relation between returns and realized 

volatility means that is easier to detect leverage effect when realized volatility can 

be utilized in the analysis.   

 

 

 
 
Figure 2: Cross-correlation for the S&P 500 with lags -20 to 20. The upper panel shows the cross-

correlation between absolute returns and returns. The lower panel shows the cross-correlation between 

realized volatility and returns. The blue dotted lines indicate a 95% confidence interval under the null 

hypothesis of zero correlations. 
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3 Volatility models   

 

Our goal is to investigate whether the leverage effect exist in the 21 stock indices 

we investigate. We investigate the existence of the leverage effect both in- and 

out-of-sample. In other words, we investigate not only whether the leverage effect 

exist, but also whether it is strong enough to improve out-of-sample volatility 

forecasts. 

Many volatility models already exist in the literature. However, the goal of 

this study is not to compare various models, but to investigate the leverage effect. 

We therefore focus on the most commonly used volatility models. 

We conduct our analysis by comparing three pairs of volatility models. 

Within each pair, two models are almost identical. The only difference is that one 

model allows for leverage effect, whereas the other model is a restricted version 

which does not allow for the leverage effect.  In this section, we just present the 

models. Empirical comparison of these models is conducted in Section 4. 

 

GARCH models are probably the most popular volatility models. These 

models are based on daily data and belong to the oldest volatility models coined in 

the works of Engle (1982) and Bollerslev (1986). GARCH(1,1) model and the E-

GARCH(1,1) model are probably the most popular volatility models. We 

therefore compare the GARCH(1,1) model with the GJR-GARCH(1,1) model. 

These two models are identical except for GJR-GARCH model allows for the 

leverage effect. Similarly, we compare the E-GARCH model, which allows for 

the leverage effect, with its restricted version Log-GARCH, which does not allow 

for the leverage effect. 

 Emergence of high-frequency data and the concept of realized volatility 

allowed for a rapid development of new volatility models, usually based on the 

realized volatility. Probably the most popular from these models is the 

heterogeneous autoregressive model for realized volatility (HAR-RV) model of 

Corsi (2009). We therefore compare this model with its extended version which 

allows for the leverage effect, the LHAR-RV model.  

 

3.1 GARCH Models   

All GARCH models used are estimated via maximum likelihood. We assume that 
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the daily returns are drawn from a reparametrized Johnson Su distribution (JSU, 

see Johnson 1949a, 1949b) with a constant mean and time-varying variance: 
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where 𝜙 and 𝜃 are constants, 𝜇 denote the conditional mean of returns, 𝜎𝑡 denote 

the conditional variance of returns, 𝜀𝑡 denotes the innovation process, 𝑧𝑡 is the 

standardized residuals, L is the backshift operator, and ηt follows the Johnson’s Su 

distribution where ν and κ are skewness and kurtosis parameters. For the constant 

mean (ARMA(0,0), p and q are 0. We keep this assumption for all the GARCH 

models in the main body of the thesis. For the sake of robustness, we also present 

the estimated models and forecasting performance evaluation with ARMA(1,1) as 

the mean equation, p and q are then set to 1 (appendix C and D). The main results 

remain the same as with the constant mean equation.  

 

3.1.1 GARCH  

GARCH(1,1) is a symmetric volatility model presented by Bollerslev (1986). We 

can write the GARCH(1,1) model as: 

 

𝜎𝑡
2 = 𝜔 + 𝛼𝜀𝑡−1

2 + 𝛽𝜎𝑡−1
2 ,    (7) 

 

where 𝜎𝑡
2 is the conditional variance, 𝜔 is the intercept and 𝜀𝑡−1

2  is the residual 

from the mean process. The parameters 𝜔, 𝛽 and 𝛼 are restricted to be 

nonnegative with the restrictions 𝛼 ≥ 0, 𝛽 ≥ 0, 𝛼 +  𝛽 < 1, to ensure the 

positivity of conditional variance and stationarity. 

 

3.1.2 GJR-GARCH 

A model that can cope with asymmetric volatility response to negative and 

positive return shocks is the GJR-GARCH model proposed by Glosten et al. 

(1993). The GJR-GARCH can be written as follows:  
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𝜎𝑡
2 = 𝜔 + [𝛼 + 𝛾𝐼(𝜀𝑡−1 > 0)]𝜀𝑡−1

2 + 𝛽𝜎𝑡−1
2    (8) 

 

The indicator function I takes the value of 1 if 𝜀 ≤ 0 and 0 otherwise. This model 

uses the indicator function I to capture the asymmetric shocks on the conditional 

variance asymmetrically, where 𝛾 represents the leverage effect. In the GJR-

GARCH model positive news has an impact of 𝛼, while negative news has an 

impact of 𝛼 +  𝛾. Negative news has an even greater effect on the volatility than 

positive news if 𝛾 > 0.  The parameters 𝜔, 𝛽 and 𝛼 are restricted to be 

nonnegative with additional restriction  𝛼 +  𝛽 + 0.5𝛾 < 1, while the estimate of 

𝛼 + 0.5𝛾 should be positive.  

3.1.3 Log-GARCH 

The Log-GARCH (1,1) has been presented in different forms by several authors, 

first by Geweke (1986) and Pantula (1986). In this thesis we present the Log-

GARCH (1,1) model based on the model presented by Hansen and Lunde (2005). 

Log-GARCH (1,1) model can be written as follows: 

   

 log(𝜎𝑡) =  𝜔 + 𝛾 (|𝜀𝑡−1| − 𝐸|𝜀𝑡−1|] +  𝛽 log (𝜎𝑡−1) (9) 

 

Equation (9) has a logaritmic form that allows the parameters to be negative 

without the conditional volatility becoming negative.  

 

3.1.4 E-GARCH 

Alternative model that can cope with asymmetric volatility in response to 

asymmetric shocks is the Exponential GARCH (E-GARCH), which was 

advocated by Nelson (1991). The E-GARCH can be written as follows:  

 

log(𝜎𝑡
2) =  𝜔 + [𝛼𝜀𝑡−1 + 𝛾 (|𝜀𝑡−1| − 𝐸|𝜀𝑡−1|] + 𝛽 log (𝜎𝑡−1

2 )   (10) 

 

In equation (10) the coefficient 𝛼 captures the sign effect, where negative shocks 

have greater impact than positive news of equal magnitude if 𝛼 < 0. The 

coefficient 𝛾 captures the size effect. Since equation (10) has a logarithmic form, 

no restriction for the estimated coefficients are needed.  
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3.2 Realized volatility models  

3.2.1 HAR-RV 

The HAR-RV and LHAR-RV models are estimated via OLS. The heterogeneous 

autoregressive model of realized volatility (HAR-RV) is an additive cascade 

model of different volatility components. This model is proposed by Corsi (2009) 

and is designed to simulate the behavior of different types of market participants. 

We can formulate the HAR-RV model by the following time series representation:  

 

𝑅𝑉𝐷
𝑡+1 = 𝑐 +  𝛽1𝑅𝑉𝑡−1

𝐷 + 𝛽2𝑅𝑉𝑡−1
𝑊 + 𝛽3𝑅𝑉𝑡−1

𝑀 + 𝜀𝑡+1   (11) 

 

Where the weekly and monthly horizons are defined by, 

 

𝑅𝑉𝑡
𝑊 =  

1

5
∑ 𝑅𝑉𝑡−𝑖

𝐷4
𝑖=0     (12) 

 

𝑅𝑉𝑡
𝑀 =  

1

22
∑ 𝑅𝑉𝑡−𝑖

𝐷21
𝑖=0       (13) 

 

From the equation (11) we can see that this model predicts future volatility using a 

daily, a weekly and a monthly component. In practice this model has been very 

successful, which is impressive given its simple structure. Generally it produces 

more accurate forecasts than GARCH models (Andersen et al., 2011)  

 

3.2.2 LHAR-RV  

Based on the HAR-RV model, and extensions by McAleer and Medeiros (2008) 

and Corsi and Reno (2009) we present the leveraged HAR-RV (LHAR-RV) 

model. This model features asymmetry by adding leverage terms related with 

lagged absolute returns and lagged negative returns. The LHAR-model can be 

presented as follow:  

 

𝑅𝑉𝑡
𝐷 = 𝑐 +  𝛽1𝑅𝑉𝑡−1

𝐷 + 𝛽2𝑅𝑉𝑡−1
𝑊 + 𝛽3𝑅𝑉𝑡−1

𝑀 + 𝛾1|𝑟𝑡−1| + 𝛾2𝑟𝑡−1
− + 𝜀𝑡+1  (14) 

 

 

where, 

|𝑟𝑡| = 𝑎𝑏𝑠𝑜𝑢𝑙𝑡𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑟𝑒𝑡𝑢𝑟𝑛𝑠 and 𝑟𝑡
− = max (𝑟−, 0)   (15) 
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We are particularly interested in the coefficient 𝛾2, which captures the 

leverage effect. The reason why we include the term |𝑟𝑡−1| is the following. If we 

include only the term 𝑟𝑡−1
− , this term should be significant simply due to returns 

are high in absolute value, happening usually during periods of high volatility. We 

control for this by including the term |𝑟𝑡−1|. 

 

3.3 Forecasting procedure and evaluation 

The volatility is forecasted with an estimation window of the 1000 most recent 

observations (trading days). Realized volatility is then forecasted one day ahead 

and the model parameters are re-estimated every day. The forecasts are based on a 

rolling window procedure, the estimation window moves one step ahead for every 

forecast, but the size of the estimation window is always 1000 observations. More 

specifically, the second forecast uses an estimation window which starts with the 

second observation and ends with 1001th observation.  

 

When evaluating out-of-sample volatility forecasting performance we 

must choose a proxy for the true volatility. The squared returns are an often used 

proxy, but they provide a generally poor and very noisy proxy for the actual daily 

volatility. The use of realized volatility as the proxy, instead of squared returns 

improves the consistency of the volatility model ranking and comparison (Hansen 

& Lunde, 2006). Barndorff-Nielsen & Shephard (2002) shows that the realized 

volatility is a precise estimator of the actual volatility when microstructure noise 

effects are assumed to be non-existing.  

 

Evaluating the predictive accuracy of the volatility models can be done by 

a various number of loss functions. When using imperfect volatility proxies, such 

as the squared return, using an arbitrary loss functions could lead to inconsistent 

volatility model ranking (Patton, 2011). The loss functions used in the thesis are 

the Mean Squared Error (MSE) and QLIKE which are two of the most widely 

used loss functions in volatility literature and the only loss functions that are 

robust even if  imperfect volatility proxy is employed (Patton, 2011). 
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We are comparing the forecasts from GARCH (1.1) with the forecasts 

from GJR-GARCH (1.1), Log-GARCH (1.1) with the E-GARCH (1.1) and the 

forecasts from HAR-RV with the LHAR-RV model.  

 

MSE is defined by, 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝜎𝑡̂ − 𝜎𝑡)2𝑛

𝑡=1 ,     (16) 

 

QLIKE is defined by, 

𝑄𝐿𝐼𝐾𝐸 =
1

𝑛
 ∑

𝜎𝑡

𝜎𝑡̂
− ln (

𝜎𝑡

𝜎𝑡̂
) − 1𝑛

𝑡=1 ,    (17) 

 

where 𝜎𝑡  ̂ is the forecasted realized volatility and 𝜎𝑡 is the observed realized 

volatility, and used as the proxy in the forecast evaluation.  

 

Moreover, the model with the lowest loss function value does not 

necessarily imply that the model is superior over other models (Koopman, 

Jungbacker, & Hol, 2005). We therefore adopt the Model Confidence Set (MCS) 

by Hansen, Lunde & Nason (2011) to assess the relative forecasting performance 

between the symmetric models and the asymmetric counterpart models.  

 

The model confidence set (MCS) determines the best set of models, 𝑀∗, 

instead of one superior model. Therefore, there can be several models that are 

equally good instead of other methods that only choose one model to be the 

superior one. The MCS determine the 𝑀∗ from a collection of models, 𝑀0, with 

the use of some criterions, typically loss functions. The procedure gives a model 

confidence set, 𝑀∗̂, which is a collection of the best models with a given level of 

confidence. The process of removing models from the set 𝑀0 relies on the 

information from the sample about the performance of the models in the 

collection of models. The procedure is based on an equivalence test for equal 

predictive ability and an elimination rule. The test is applied to the set 𝑀 = 𝑀0. If 

the test is rejected there is evidence that the models in are not equally good. The 

elimination rule is than employed to remove an inferior model from M. The 

procedure is repeated until the equivalence test is not rejected. When the 

equivalence test is not rejected we have the best set of models, 𝑀∗ (Hansen et al., 

2011). 



 

 17 

The MCS function is initiated on the nested models, with the symmetric 

models as benchmark. We employ a confidence level of 95 %, giving an alpha 

value of 0.05 and 10000 bootstrapped samples are used to construct the statistical 

test and p-values. P-values <  indicate that the model provides significantly 

better forecasts than the counterpart model. The null hypothesis is that the models 

have equal predictive ability; our alternative hypothesis is not equal predictive 

ability. 

 

4 Empirical results and analysis 

 

First, we estimate the models in-sample utilizing the full data sample in order to 

investigate the presence of leverage effect and to see how well the models fit the 

data. All the models indicate high volatility persistence as expected from volatility 

of equity indices. These estimated coefficients are not used in the forecasting 

procedure in order to avoid look-ahead bias.  

 

4.1 GARCH models 

4.1.1 GARCH (1,1)  

Table 5 shows the whole sample parameter estimates for the GARCH (1,1) model 

together with the respective AIC values. GARCH (1,1) does not account for the 

leverage effect due to the symmetric form. We will use the GARCH model as a 

benchmark for comparison with the GJR-GARCH model. As shown in Table 5 

the parameters ,  and  in the model are all positive,  is relatively small and 

not significant. The  parameter is significant for some of the stock indices at the 

5 % level or higher, whereas the  parameter is significant for all the indices 

except for the U.S. RUT and the Swiss SSMI index.  

When    is close to one, it implies the existence of strong volatility 

persistence, the average for all the indices in our sample is 0.99, which indicates a 

strong volatility persistence. The estimated distribution parameters  and ν are at 

least significant at the 5 % level for most of the indices. This confirms negative 

skewness and kurtosis features, where ν determines the skewness of the 

distribution and  determines the kurtosis of the distribution.  
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Table 5: Estimated coefficients for the GARCH (1,1) model, reported together with the corresponding AIC 

values. Superscripts a, b, c, d indicate significance at the 10 %, 5 %, 1 % level and 0.1 % respectively. 

Ticker μ ω α β ν κ AIC 

SPX 3.80E-04c 1.20E-06 0.10 0.89d -0.40 2.02c -6.52 

FTSE -1.77E-04a 5.69E-07 0.10 0.90d -0.52c 2.39d -6.89 

N2252 -1.71E-04 2.45E-06 0.10 0.88d -0.29d 1.92d -6.39 

GDAXI 2.14E-04 1.06E-06 0.08a 0.92d -0.36c 2.13d -6.19 

RUT 3.42E-04 2.28E-06 0.09 0.90 -1.50 4.02 -5.99 

AORD 3.87E-05 4.74E-07 0.07a 0.92d -0.84c 2.71d -7.08 

DJI 4.79E-04c 1.20E-06 0.11 0.89d -0.33 2.04c -6.58 

IXIC 2.37E-04a 8.99E-07 0.09 0.91d -0.71d 2.56d -6.25 

FCHI 7.76E-05 1.32E-06 0.08 0.91d -0.21b 2.05d -6.31 

HSI -3.14E-04c 7.87E-07 0.05b 0.94d -0.024 2.00d -6.64 

KS -4.02E-04c 5.42E-07 0.08b 0.92d -0.48d 2.34d -6.42 

AEX -4.97E-06 9.71E-07 0.08a 0.91d -0.29b 2.03d -6.52 

SSMI 1.21E-05 1.61E-06 0.10 0.88 -0.30 1.98 -6.80 

IBEX 2.85E-06 8.07E-07 0.07b 0.93d -0.31d 2.04d -6.20 

NSEI 2.88E-04a 1.55E-06 0.08 0.91d -0.26b 1.76d -6.40 

MXX 5.73E-04c 1.62E-06 0.08 0.91d -0.31b 2.00d -6.19 

BVSP 1.65E-04 3.66E-06 0.06 0.93d -0.40b 2.77d -5.47 

GSPTSE 4.34E-05 9.04E-07 0.08 0.90d -0.81c 2.42d -7.07 

STOXX50 1.67E-04 1.52E-06 0.09 0.90d -0.32 2.12d -6.14 

FTSTI 2.00E-04b 5.58E-07 0.10 0.90d -0.08 2.20d -7.04 

FTSEMIB 2.25E-04 8.96E-07 0.08b 0.92d -0.36d 1.97d -6.23 

 

 

4.1.2 GJR-GARCH (1,1)  

To examine the presence of leverage effect we next estimate the GJR-GARCH 

(1,1) model. Table 6 shows the parameters estimated for the GJR-GARCH (1,1) 

and the respective AIC values. Comparing the AIC values from GARCH, we 

observe that the AIC values are lower for all the indices in our sample, suggesting 

that the GJR-GARCH model is superior to GARCH model considering the in-

sample comparison.  

 

The results also display the gamma 𝛾 parameter, which is the leverage 

parameter that we are interested in. Gamma is significant at the 5 % level or lower 

in eleven of the 21 indices and we therefore find a weak evidence of the leverage 

effect. The S&P index exhibits highest magnitude of the leverage effect, with an 

estimated value of 0.19, but it is not significant. Highest and significant at 5 % 

level is European STOXX50 with a gamma value of 0.17. Hong Kong’s HSI 
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index shows the lowest magnitude in our sample, with an estimated value of 0.04 

and a significance level of 1 %. Estimated parameters  and   are relatively 

small and mostly not significant. 

 

When    + 0.5𝛾 is close to one, it implies the existence of strong and growing 

volatility persistence, where the average for all the indices in our sample is 0.986. 

Moreover shape parameters  and ν are similar as the results from GARCH, 

indicating fat-tails, leptokurtosis and skewness. 

 

Table 6: Estimated coefficients for the GJR-GARCH (1,1) model, reported together with the corresponding 

AIC values. Superscripts a, b, c, d indicate significance at the 10 %, 5 %, 1 % level and 0.1 % respectively. 

Ticker μ ω α β 𝛾 ν κ AIC 

SPX 5.18E-05 1.59E-06 2.21E-08 0.89d 0.19 -0.60b 2.22d -6.56 

FTSE -3.63E-04b 6.79E-07 1.40E-02 0.91d 0.13b -0.66c 2.50d -6.91 

N2252 -3.52E-04b 3.09E-06 4.13E-02b 0.88d 0.11b -0.35d 1.98d -6.40 

GDAXI -4.50E-05 1.62E-06 3.64E-08 0.92b 0.14 -0.48 2.29 -6.22 

RUT 7.21E-06 2.85E-06 3.73E-03 0.91d 0.13 -2.12 4.75 -6.01 

AORD 3.45E-05 7.71E-07 6.22E-03 0.92d 0.11 -1.01 3.04 -7.10 

DJI 1.90E-04 1.44E-06 6.61E-08 0.89d 0.19 -0.50b 2.21d -6.62 

IXIC -2.97E-05 1.14E-06 1.01E-02 0.92d 0.13c -0.93c 2.77d -6.27 

FCHI -2.21E-04 1.81E-06 5.34E-08 0.91d 0.15 -0.37b 2.27d -6.33 

HSI -3.84E-04c 8.52E-07 2.57E-02 0.94d 0.04c -0.06 2.03d -6.64 

KS -4.79E-04d 6.58E-07 5.10E-02 0.92d 0.05b -0.51d 2.39d -6.42 

AEX -2.45E-04 1.08E-06 4.00E-06 0.92d 0.13d -0.43c 2.26d -6.55 

SSMI -1.54E-04 1.68E-06 1.40E-02 0.89d 0.14b -0.37c 2.07d -6.82 

IBEX -1.71E-04 1.19E-06 5.89E-03 0.93d 0.10b -0.40c 2.16d -6.22 

NSEI 2.13E-04 2.25E-06 5.38E-02 0.89d 0.08 -0.28b 1.79d -6.41 

MXX 3.92E-04a 1.82E-06 1.91E-02 0.92d 0.11 -0.36 2.14c -6.20 

BVSP -1.09E-04 4.49E-06 8.49E-03 0.93d 0.08d -0.50c 3.02d -5.48 

GSPTSE -1.02E-04 1.17E-06 1.27E-02 0.91d 0.11 -0.98 2.62d -7.08 

STOXX50 -1.82E-04 2.20E-06 1.43E-07 0.90d 0.17b -0.52d 2.39d -6.17 

FTSTI -2.62E-04c 5.58E-07 6.76E-02 0.90d 0.06c -0.09 2.23d -7.04 

FTSEMIB -4.28E-04b 1.24E-06 4.87E-04 0.93d 0.12b -0.47d 2.09d -6.25 

 

4.1.3 Log-GARCH (1,1)  

The Log-GARCH is presented as a restricted version of the E-GARCH model, 

where the leverage parameter, alpha (), is set to zero. This model will serve as 

our benchmark model in our comparison with the E-GARCH model. Table 7 

presents the parameter estimates of the Log-GARCH and the respective AIC 

values.  
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Looking at Table 7 we can see that  is negative and highly significant for 

almost all the indices.   and 𝛾 are positive and highly significant for all the 

indices, except for the Australia’s AORD and the Swiss SSMI index, where 𝛾 is 

not significant at all. The  coefficient, which is less than and close to one for all 

the considered indices, implies a high persistence and a slow decay in the 

volatility shocks. The distribution parameters are consistent with the tables 

presented earlier in the thesis.  

 

Table 7: Estimated coefficients for the Log-GARCH (1,1) model, reported together with the corresponding 

AIC values. Superscripts a, b, c, d indicate significance at the 10 %, 5 %, 1 % level and 0.1 % respectively. 

Ticker μ ω β 𝛾 ν κ AIC 

SPX 3.72E-04c -0.12d 0.99d 0.21d -0.37d 1.96d -6.52 

FTSE -1.61E-04a -0.11d 0.99d 0.20d -0.52d 2.39d -6.89 

N2252 -1.24E-04 -0.20d 0.98d 0.20d -0.27d 1.91d -6.39 

GDAXI 2.22E-04 -0.10d 0.99d 0.18d -0.34d 2.12d -6.19 

RUT 3.66E-04c -0.12d 0.99d 0.17d -1.35 3.72d -5.99 

AORD 3.87E-05 -0.11 0.99d 0.15 -0.84 2.73 -7.08 

DJI 5.05E-04d -0.13d 0.99d 0.22d -0.31d 1.99d -6.58 

IXIC 2.31E-04a -0.07d 0.99d 0.18d -0.70d 2.48d -6.25 

FCHI 1.12E-04 -0.12d 0.99d 0.19d -0.20c 2.06d -6.31 

HSI -3.19E-04d -0.09d 0.99d 0.12d -0.03 1.98d -6.64 

KS -3.92E-04d -0.07d 0.99d 0.16d -0.49d 2.36d -6.42 

AEX -6.90E-07 -0.11d 0.99d 0.19d -0.28d 2.02d -6.52 

SSMI 3.31E-05 -0.20 0.98d 0.21 -0.30c 1.96d -6.79 

IBEX 1.28E-05 -0.09d 0.99d 0.16d -0.30d 2.03d -6.20 

NSEI 2.09E-04 -0.12d 0.99d 0.17d -0.28d 1.72d -6.40 

MXX 5.48E-04d -0.12d 0.99d 0.18d -0.31d 1.98d -6.19 

BVSP 1.22E-04 -0.10c 0.99d 0.13a -0.38 2.68c -5.46 

GSPTSE 5.85E-05 -0.13d 0.99d 0.18d -0.78c 2.37d -7.06 

STOXX50 1.55E-04 -0.11d 0.99d 0.19d -0.32d 2.12d -6.13 

FTSTI -2.25E-04d -0.13d 0.99d 0.21d -0.08 2.17d -7.04 

FTSEMIB -1.94E-04 -0.09d 0.99d 0.17d -0.34d 1.97d -6.23 

 

4.1.4 E-GARCH (1,1)  

Comparing the estimated Log-GARCH and E-GARCH we see that the E-GARCH 

model yields lower AIC values for all indices in our sample, suggesting E-

GARCH as the superior in-sample model of the two models. E-GARCH model 

estimation and respective AIC values are presented in Table 8. The leverage effect 

effect is captured by the alpha  parameter. Moreover, , ,  and 𝛾 are highly 

significant for all the indices in our sample except for the U.K.’s FTSE index, 
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where 𝛾 is insignificant and  is significant only at the 10 % level. The effect on 

volatility for a positive shock is measured by  + 𝛾, and for a negative shock the 

effect is measured by  - 𝛾. Therefore, the leverage effect can be measured by the 

 coefficient. 

The results indicate a strong evidence for the leverage effect in the indices, 

where the U.S.’s S&P and DJI exhibit the strongest leverage effect with a value of 

-0.16. Again, distribution parameters are all significant and support our choice for 

modelling residuals via the Johnon’s Su distribution. 

 

Table 8: Estimated coefficients for the E-GARCH (1,1) model, reported together with the corresponding AIC 

values. Superscripts a, b, c, d indicate significance at the 10 %, 5 %, 1 % level and 0.1 % respectively. 

Ticker μ ω α β 𝛾 ν κ AIC 

SPX 3.98E-05 -0.18d -0.16b 0.98d 0.12b -0.64 2.23a -6.57 

FTSE -3.98E-04 -0.13 -0.10a 0.99d 0.14 -0.68 2.52 -6.91 

N2252 -3.69E-04c -0.25d -0.09d 0.97d 0.16d -0.35d 1.99d -6.41 

GDAXI -7.06E-05 -0.17d -0.11d 0.98d 0.13d -0.47d 2.28d -6.22 

RUT -7.21E-05 -0.16d -0.10d 0.98d 0.12d -2.36b 4.68d -6.02 

AORD 3.87E-05 -0.21d -0.10d 0.98d 0.12d -1.10d 3.20d -7.11 

DJI 1.66E-04a -0.19d -0.16d 0.98d 0.13d -0.52d 2.20d -6.63 

IXIC -5.50E-05 -0.11d -0.10d 0.99d 0.12d -0.98d 2.70d -6.28 

FCHI -2.98E-04a -0.19d -0.13d 0.98d 0.11d -0.41d 2.33d -6.34 

HSI -4.11E-04c -0.11d -0.03c 0.99d 0.11a -0.06 2.00d -6.64 

KS -5.13E-04d -0.09d -0.05d 0.99d 0.16d -0.53d 2.43d -6.43 

AEX -2.77E-04c -0.14d -0.11d 0.98d 0.11d -0.42d 2.25d -6.55 

SSMI -1.92E-04 -0.22d -0.11d 0.98d 0.13d -0.41d 2.12d -6.82 

IBEX -2.28E-04 -0.15d -0.09d 0.98d 0.11d -0.40d 2.17d -6.22 

NSEI 9.33E-05 -0.18d -0.06d 0.98d 0.18d -0.30d 1.77d -6.41 

MXX 3.30E-04a -0.14d -0.09d 0.98d 0.15d -0.38c 2.15d -6.20 

BVSP -1.58E-04 -0.13d -0.07d 0.98d 0.12d -0.49c 2.94d -5.48 

GSPTSE -7.87E-05d -0.18d -0.08d 0.98d 0.13d -0.94d 2.58d -7.08 

STOXX50 -2.52E-04c -0.19d -0.15d 0.98d 0.11d -0.59d 2.51d -6.18 

FTSTI -2.97E-04d -0.13d -0.04d 0.99d 0.20d -0.09 2.21d -7.04 

FTSEMIB -4.73E-04d -0.14d -0.10d 0.98d 0.12d -0.47d 2.15d -6.26 

4.2 HAR-RV  

Recent literature on realized volatility suggest that all the terms in the HAR-RV 

model can be treated as observable and we can therefore estimate the parameters 

by OLS. Table 9 presents the regression of the Heterogeneous Autoregressive 

model of Realized Volatility (HAR-RV) and the respective adjusted R-squared. 

From Table 9 we see that all the lagged volatility values for daily, weekly and 
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monthly are highly significant. The model puts the most weight on the daily 

lagged variable in fifteen of the 21 indices.  

 

 

Table 9: Regression results for the HAR-RV model, reported together with the corresponding adjusted R-

squared. Superscripts a, b, c, d indicate significance at the 10 %, 5 %, 1% level and 0, 1% respectively. 

 

4.3 LHAR-RV  

Including the lagged absolute value of returns and the lagged negative returns in 

the HAR-RV model allow us to investigate if the indices exhibit the leverage 

effect. The regression results and the adjusted R-squared are presented in Table 

10. We see that all the lagged values for daily, weekly and monthly volatility are 

significant. The regression result reveals highly significant coefficients for the 

lagged negative returns variable (2), all the indices have significant coefficients at 

the 0.1 % level, except the Hong Kong’s HSI and Singapore’s FTSTI which are 

significant at the 5 % and 10 % level, respectively. The results revealing a strong 

evidence that the indices exhibit leverage effect, with respect to the significant 𝛾2 

Ticker Intercept 1 2 3 𝑅𝑎𝑑𝑗
2  

SPX 5.39E-04b 0.37d 0.35d 0.20d 0.69 

FTSE 5.39E-04d 0.36d 0.32d 0.23d 0.68 

N2252 8.80E-04d 0.42d 0.28d 0.19d 0.59 

GDAXI 6.08E-04c 0.44d 0.28d 0.21d 0.73 

RUT 5.90E-04c 0.33d 0.38d 0.20d 0.66 

AORD 5.13E-04d 0.18d 0.43d 0.29d 0.56 

DJI 6.33E-04c 0.33d 0.36d 0.21d 0.65 

IXIC 4.65E-04c 0.46d 0.27d 0.21d 0.75 

FCHI 6.90E-04d 0.41d 0.35d 0.16d 0.70 

HSI 8.58E-04d 0.23d 0.45d 0.20d 0.58 

KS 5.21E-04d 0.41d 0.33d 0.19d 0.74 

AEX 5.31E-04d 0.44d 0.33d 0.16d 0.74 

SSMI 5.56E-04d 0.42d 0.35d 0.15d 0.72 

IBEX 8.85E-04d 0.42d 0.31d 0.18d 0.65 

NSEI 1.27E-04d 0.40d 0.24c 0.22d 0.56 

MXX 1.04E-03d 0.23d 0.30d 0.31d 0.46 

BVSP 1.20E-03c 0.32d 0.39d 0.18d 0.60 

GSPTSE 3.89E-04b 0.37d 0.34d 0.20d 0.70 

STOXX50 8.83E-04d 0.38d 0.34d 0.19d 0.65 

FTSTI 4.90E-04d 0.35d 0.29d 0.28d 0.67 

FTSEMIB 7.32E-04d 0.41d 0.34d 0.16d 0.68 
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coefficient for negative lagged returns. Moreover, we observe higher adjusted R-

squared for all the indices but one (HSI) in the sample, compared to the HAR-RV 

model. Average improvement based in adjusted R-squared is 4.24 % points for all 

the indices, where India’s NSEI and HSI exhibit the biggest and smallest 

improvement by 9.57 % and -0.84 % respectively. This implies that the leveraged 

HAR-RV is superior over the simple HAR-RV model for the in-sample analysis.  

 

Table 10: Regression results for the LHAR-RV model, reported together with the corresponding adjusted R-

squared. Superscripts a, b, c, d indicate significance at the 10 %, 5 %, 1 % level and 0.1 % respectively. 

Ticker Intercept 1 2 3 1 2   𝑅𝑎𝑑𝑗
2  

SPX 5.68E-04c 0.28d 0.40d 0.20d -0.03 0.16d 0.73 

FTSE 5.24E-04d 0.27d 0.34d 0.24d 0.03a 0.11d 0.71 

N2252 9.39E-04d 0.32d 0.32d 0.20d 0.01 0.09d 0.60 

GDAXI 6.18E-04d 0.34d 0.32d 0.22d 0.00 0.12d 0.75 

RUT 5.95E-04c 0.25d 0.41d 0.20d -0.02b 0.14d 0.70 

AORD 5.88E-04d 0.09b 0.46d 0.29d -0.03b 0.13d 0.58 

DJI 6.28E-04c 0.25d 0.41d 0.21d -0.03a 0.15d 0.69 

IXIC 5.57E-04d 0.35d 0.30d 0.19d 0.02 0.14d 0.79 

FCHI 7.22E-04d 0.30d 0.39d 0.16d 0.01 0.12d 0.73 

HSI 9.94E-04d 0.17d 0.47d 0.19d 0.04c 0.05b 0.58 

KS 5.28E-04d 0.31d 0.36d 0.18d 0.08d 0.04b 0.76 

AEX 6.26E-04d 0.32d 0.35d 0.17d 0.03c 0.11d 0.77 

SSMI 6.10E-04d 0.31d 0.36d 0.18d 0.02 0.11d 0.75 

IBEX 8.32E-04d 0.32d 0.34d 0.19d 0.01 0.10d 0.68 

NSEI 1.42E-03d 0.22d 0.26d 0.21d 0.09d 0.17d 0.61 

MXX 1.00E-03d 0.13d 0.33d 0.30d 0.03b 0.08d 0.48 

BVSP 1.20E-03d 0.24d 0.44d 0.17d -0.00 0.10d 0.63 

GSPTSE 4.50E-04c 0.23d 0.39d 0.21d 0.01 0.14d 0.73 

STOXX50 9.03E-04d 0.30d 0.38d 0.20d -0.01 0.13d 0.68 

FTSTI 6.50E-04d 0.23d 0.37d 0.28d 0.06d 0.02a 0.69 

FTSEMIB 7.62E.04d 0.27d 0.39d 0.17d 0.02b 0.12d 0.72 

 

4.4 Forecasting performance 

4.4.1 GARCH and GJR-GARCH 

Table 11 presents the results for the one-day ahead forecast evaluation of the 

GARCH(1,1) and the GJR-GARCH(1,1) models. In terms of MSE, GJR-GARCH 

led to lower average values of the loss function and in six cases the improvement 

of the GJR-GARCH model was even statistically significant. The GARCH model 

outperformed the GJR-GARCH model for only one index (AORD). In terms of 
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QLIKE loss function, GJR-GARCH is superior for nine indices and GARCH 

superior in three of the indices. GARCH is superior for three indices where in-

sample estimated coefficients were of low magnitude (HSI and South Korea’s KS) 

or the coefficient was insignificant (Mexico’s MXX).  In general GJR-GARCH 

models are superior over the simple GARCH for both loss functions employed in 

four of the indices, the U.S.’s SPX and DJI, the Europe’s STOXX50 and the 

Singapore’s FTSTI. Meanwhile, GARCH is not superior for any of the indices 

with respect to both loss functions.  

 

Since there is no clear pattern in the results, we cannot conclude on which 

model is the superior one. These findings are consistent with the results of earlier 

research (Ng & McAleer, 2004), which indicated that the GJR-GARCH is not 

superior over the symmetric (and simpler) GARCH model. The average 

improvement of the MSE and QLIKE for the GJR-GARCH reported in Table 10 

is just 0.58 % and 1.65 % respectively. The results imply that either the leverage 

effect is not very strong, or the GJR-GARCH model is not very suitable for 

capturing the leverage effect.  

 

Table 11:Out-of-sample results for GARCH (1,1) and GJR-GARCH (1,1). Reported are the MSE and QLIKE 

lossfunctions, and the p-values from the Model Confidence Set (Hansen et al., 2011). 

Ticker GARCH GJRGARCH % change P-value GARCH GJRGARCH % change P-value 

MSE MSE Delta MCS QLIKE QLIKE Delta MCS

SPX 42.76 39.07 -8.64 0.0146 0.073 0.067 -8.76 0.0000

FTSE 19.70 18.57 -5.76 0.0343 0.045 0.044 -2.06 0.1589

N2252 49.63 52.45 5.68 0.0636 0.069 0.067 -2.26 0.0110

GDAXI 38.04 35.05 -7.86 0.1389 0.047 0.045 -4.74 0.0024

RUT 69.63 68.81 -1.18 0.4328 0.108 0.109 1.17 0.1943

AORD 21.65 25.27 16.74 0.0004 0.072 0.074 2.23 0.1184

DJI 44.31 39.91 -9.93 0.0088 0.073 0.067 -8.88 0.0000

IXIC 34.78 34.89 0.30 0.7719 0.067 0.068 1.21 0.2269

FCHI 33.74 33.01 -2.16 0.3493 0.045 0.043 -5.64 0.0022

HSI 28.07 28.52 1.61 0.2309 0.048 0.050 4.86 0.0000

KS 28.67 28.99 1.12 0.3451 0.052 0.055 5.73 0.0000

AEX 26.66 27.20 2.04 0.3729 0.047 0.044 -7.06 0.0000

SSMI 23.59 26.09 10.56 0.1870 0.043 0.043 -0.58 0.5554

IBEX 44.67 43.55 -2.51 0.3356 0.048 0.045 -5.60 0.0062

NSEI 44.33 43.12 -2.71 0.3132 0.052 0.052 0.49 0.3862

MXX 70.13 71.67 2.19 0.3032 0.114 0.117 3.24 0.0011

BVSP 77.51 74.37 -4.05 0.1885 0.059 0.060 2.98 0.0633

GSPTSE 27.99 28.57 2.08 0.2143 0.071 0.071 0.02 0.9382

STOXX50E 46.23 42.20 -8.73 0.0097 0.055 0.049 -10.92 0.0000

FTSTI 18.76 17.34 -7.57 0.0239 0.039 0.038 -2.00 0.0130

FTSEMIB 40.68 43.34 6.55 0.1144 0.054 0.055 1.89 0.2222  
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4.4.2 Log-GARCH and E-GARCH 

Table 12 presents the results for the forecast evaluation of the Log-GARCH(1,1) 

and E-GARCH(1,1) model. The results show that E-GARCH model, with respect 

to the MSE loss function, performs significantly better. For 17 of the 21 indices it 

is the only model included in the set of superior models 𝑀∗. Log-GARCH model 

is not included as the only model in 𝑀∗ for any of the indices in our sample. The 

models are found to have equal predictive ability for four of the indices, namely 

Hong Kong’s HSI, South Korea’s KS, the Swiss’s SSMI and Mexico’s MXX. 

 

The results in the term of the QLIKE loss function are quite similar. The 

E-GARCH model is superior for 15 of the indices and the Log-GARCH is 

superior only for the KS and HIS index. The E-GARCH model performs 

significantly better then the Log-GARCH model for both loss functions for 14 of 

the indices.  

 

The results clearly show that the model including the leverage effect (E-

GARCH) has superior predictive ability compared to the model not exhibiting 

asymmetries (Log-GARCH). Other researchers have come to the same conclusion 

(Watt, Yadav, & Loudon, 2000), concluding that the E-GARCH is superior in 

predicting volatility in stock markets. Furthermore, Evans & McMillan (2007)  

found that the E-GARCH are marginally superior over varoius GARCH models 

when evaluating forecasting performance for 33 countries. The average 

improvement of the MSE and QLIKE for the EGARCH reported in Table 12 is 

9.21 % and 5.21 % respectively.  
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Table 12: Out-of-sample results for Lo-gGARCH(1,1) and E-GARCH(1,1). Reported are the MSE and 

QLIKE lossfunctions, and the p-values from the Model Confidence Set (Hansen et al., 2011). 

Ticker logGARCH EGARCH % change P-value logGARCH EGARCH % change P-value 

MSE MSE Delta MCS QLIKE QLIKE Delta MCS

SPX 44.89 34.64 -22.82 0.0000 0.075 0.068 -10.03 0.0000

FTSE 19.96 18.04 -9.63 0.0004 0.046 0.044 -3.03 0.1193

N2252 44.44 40.58 -8.69 0.0211 0.068 0.064 -6.03 0.0000

GDAXI 38.28 33.10 -13.52 0.0013 0.049 0.044 -9.09 0.0000

RUT 70.66 60.09 -14.97 0.0002 0.109 0.105 -3.43 0.0332

AORD 23.47 21.17 -9.81 0.0000 0.079 0.071 -10.14 0.0000

DJI 46.50 38.73 -16.71 0.0000 0.076 0.069 -9.00 0.0000

IXIC 37.08 33.29 -10.24 0.0090 0.069 0.067 -2.72 0.0679

FCHI 34.22 30.68 -10.34 0.0008 0.046 0.042 -10.09 0.0000

HSI 25.83 26.39 2.17 0.1212 0.049 0.051 4.84 0.0000

KS 28.80 28.97 0.60 0.6000 0.051 0.055 7.34 0.0000

AEX 28.54 26.09 -8.60 0.0047 0.050 0.044 -11.77 0.0000

SSMI 24.50 24.72 0.87 0.5791 0.047 0.043 -7.94 0.0025

IBEX 43.33 38.49 -11.16 0.0005 0.047 0.043 -9.66 0.0000

NSEI 47.40 44.04 -7.09 0.0447 0.054 0.053 -2.30 0.0424

MXX 75.24 71.74 -4.65 0.1289 0.120 0.122 1.20 0.1460

BVSP 78.91 73.35 -7.05 0.0439 0.060 0.061 1.38 0.2643

GSPTSE 31.50 28.39 -9.88 0.0000 0.076 0.071 -6.40 0.0000

STOXX50E 47.64 39.99 -16.06 0.0000 0.057 0.049 -13.65 0.0000

FTSTI 19.34 18.08 -6.54 0.0029 0.044 0.042 -2.62 0.0004

FTSEMIB 44.11 39.98 -9.36 0.0088 0.058 0.055 -6.25 0.0040  

4.4.3 HAR-RV and LHAR-RV 

Table 13 presents the results for the forecast comparison of the HAR-RV and 

LHAR-RV. With respect to MSE as the loss function the LHAR-RV are included 

as the only model in the set of superior models  (𝑀∗) for 17 of the indices. This is 

a very strong evidence for the superiority of the leveraged model. The HAR-RV 

model never out-performs the LHAR-RV model. The models are found to have 

equal predictive ability for four of the indices, namely Hong Kong’s HSI, South 

Korea’s KS, Swiss’s SSMI and India’s NSEI. These results are consistent with 

results from the comparison between Log-GARCH and E-GARCH models 

presented earlier. The equal predictive ability for the models in both HSI and KS 

index are as expected, due to the fact that these indices showing the lowest 

magnitude of the asymmetry in the estimated models earlier in the thesis.  

Meanwhile, when employing the QLIKE loss function the LHAR-RV 

forecasts are superior in 17 of the indices. The HAR-RV model is not selected as 

the superior model for any of the indices. 

 

The results clearly show that the model including the leverage effect 

(LHAR-RV) has superior predictive ability compared to the model not accounting 

for the asymmetries (HAR-RV). Results are consistent with the results for the E-

GARCH and Log-GARCH comparison, where the model including the leverage 

effect produces significantly more accurate forecasts then the models not 
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accounting for the asymmetry. On average the LHAR-RV produce an 

improvement in the forecasts based on MSE and QLIKE at 6.23 % and 2.9 % 

respectively.  

 

Table 13: Out-of-sample results for HAR-RV and leveraged HAR-RV. Reported are the MSE and QLIKE 

lossfunctions, percentive change and the p-values from the Model Confidence Set (Hansen et al., 2011). 

Ticker HAR-RV LHAR-RV % change P-value HAR-RV LHAR-RV % change P-value 

MSE MSE Delta MCS QLIKE QLIKE Delta MCS

SPX 29.91 27.59 -7.77 0.0023 0.050 0.048 -4.16 0.0002

FTSE 14.25 13.44 -5.64 0.0054 0.032 0.031 -1.95 0.0155

N2252 27.15 26.22 -3.44 0.0292 0.043 0.042 -2.79 0.0028

GDAXI 28.34 26.93 -4.97 0.0207 0.036 0.035 -2.36 0.0013

RUT 26.77 23.95 -10.52 0.0138 0.043 0.041 -4.18 0.0000

AORD 14.54 13.62 -6.33 0.0011 0.048 0.046 -5.18 0.0000

DJI 34.16 32.10 -6.00 0.0002 0.056 0.053 -4.14 0.0000

IXIC 17.92 16.21 -9.51 0.0060 0.034 0.034 -2.53 0.0066

FCHI 25.72 23.95 -6.87 0.0134 0.033 0.032 -2.44 0.0016

HSI 17.63 17.22 -2.28 0.1252 0.036 0.036 0.32 0.3109

KS 17.69 16.94 -4.23 0.0787 0.030 0.030 -1.03 0.1094

AEX 19.53 18.15 -7.05 0.0000 0.033 0.032 -3.55 0.0002

SSMI 16.43 15.47 -5.88 0.1430 0.026 0.026 0.36 0.4874

IBEX 31.40 29.54 -5.91 0.0000 0.033 0.032 -3.46 0.0000

NSEI 44.46 40.76 -8.32 0.0739 0.047 0.046 -2.88 0.0979

MXX 34.41 33.09 -3.86 0.0017 0.057 0.055 -3.52 0.0000

BVSP 46.19 43.70 -5.37 0.0000 0.034 0.033 -3.08 0.0000

GSPTSE 21.48 19.66 -8.46 0.0026 0.049 0.047 -4.10 0.0002

STOXX50E 38.35 36.16 -5.71 0.0001 0.043 0.041 -3.47 0.0000

FTSTI 6.42 6.09 -5.17 0.0037 0.019 0.018 -2.90 0.0187

FTSEMIB 26.84 24.80 -7.61 0.0000 0.035 0.034 -3.96 0.0000  

 

5 Summary and conclusion 

This thesis investigates the leverage effect in 21 equity indices around the world. 

We investigate not only whether leverage effect can be detected in the in-sample, 

but also whether allowing for the leverage effect improves out-of-sample 

performance of volatility models. We compare three pairs of volatility models. 

Within each pair, two models are almost identical. The only difference is that one 

model allows for the leverage effect, whereas the other model is a restricted 

version which does not allow for the leverage effect. 

The out-of-sample analysis are based on one-step-ahead forecasts from 

different GARCH and HAR-RV models. Using the model confidence set by 

Hansen (2011) we compare the two nested model’s forecasting performance. 

  

From the empirical in-sample results we observe that all the indices 

exhibit the leverage effect. As expected, the volatility models allowing for the 

leverage effect have a better fit to the data than the symmetric counterpart models. 

Unexpectedly, the GJR model does not provide a strong evidence for the leverage 
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effect, with leverage parameter being insignificant for nine (out of 21) equity 

indices in the in-sample analysis.  

Turning to the forecast comparison in the out-of-sample analysis, we 

observe the same results as for the in-sample analysis. The volatility models that 

allow for the leverage effect produce significantly more accurate forecasts than 

their symmetric counterpart models. In particular, this is the case for the E-

GARCH and LHAR-RV model. The LHAR-RV model based on realized 

volatility calculated from high-frequency data yields the most precise forecasts. 

Meanwhile, for the GJR model, we cannot conclude whether the asymmetric GJR-

GARCH model perform better than its symmetric counterpart, the GARCH(1,1) 

model. As a side result, we therefore conclude that the GJR model may not be 

particularly suitable for capturing the leverage effect.    

 

Our results support findings in the earlier research, as we find evidence 

that all the 21 equity indices in our sample exhibit leverage effect. We add new 

findings to the existing literature by presenting results from a large number of 

markets and using the more precise realized volatility as proxy in the forecasting 

evaluation. Moreover, our results show that the models allowing for the leverage 

effect produce significantly more accurate forecasts than the symmetric 

counterpart models that do not allow for the leverage effect. The models including 

the leverage effect is therefore preferable over the symmetric models for volatility 

forecasting. 
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Appendix A 

Estimated GARCH models with close-to-close returns 

A.1 GARCH (1,1) 

 

Table A1 presents the estimated coefficients from GARCH (1,1) based on close-

to-close returns.  

 
Table A1: Estimated coefficients for the GARCH (1,1) model based on close-to-close returns, reported 

together with the corresponding AIC values. Superscripts a, b, c, d indicate significance at the 10 %, 5 %, 1 

% level and 0. 1% respectively. 

Ticker μ ω α β ν κ AIC 

SPX 4.30E-04b 1.00E-06 0.10 0.89d -0.35 1.95b -6.44 

FTSE 2.92E-04a 1.00E-06 0.10 0.89d -0.67 2.64c -6.46 

N2252 4.05E-04b 4.00E-06 0.09d 0.89d -0.52d 2.41d -5.75 

GDAXI 6.34E-04 2.00E-06 0.094 0.91d -0.42 2.29a -5.92 

RUT 5.68E-04d 3.00E-06 0.08c 0.90d -1.51b 3.97d -5.85 

AORD 3.95E-04c 1.00E-06 0.08 0.91d -0.83c 2.53d -6.85 

DJI 4.33E.04b 1.00E-06 0.10 0.89d -0.32 1.98b -6.55 

IXIC 6.39E-04c 1.00E-06 0.08 0.91d -0.47b 2.36d -5.91 

FCHI 4.19E-04 2.00E-06 0.09 0.90 -0.41 2.36 -5.95 

HSI 3.18E-04a 2.00E-06 0.06a 0.93d -0.18b 1.78d -5.95 

KS 3.67E-04b 1.00E-06 0.07b 0.93d -0.41d 1.95d -5.94 

AEX 3.81E-04 2.00E-06 0.16 0.90 -0.43 2.27 -6.13 

SSMI 3.97E-04d 2.00E-06 0.12b 0.87d -0.44d 2.20d -6.43 

IBEX 4.61E-04b 1.00E-06 0.08 0.91d -0.40a 2.21d -5.89 

NSEI 7.89E-04d 5.00R-06 0.11d 0.86d -0.28c 1.89d -5.90 

MXX 6.18E-04d 2.00E-06 0.08 0.91d -0.31b 1.98d -6.16 

BVSP 4.49E-04a 4.00E-06 0.06d 0.93d -0.35c 2.44d -5.36 

GSPTSE 4.58E-04c 1.00E-06 0.09 0.90d -1.26 2.80b -6.74 

STOXX50 3.77E-04 2.00E-06 0.09 0.91d -0.32 2.15c -5.94 

FTSTI 3.12E-04b 1.00E-06 0.09 0.91d -0.30a 1.94d -6.54 

FTSEMIB 3.00E-04 1.00E-06 0.09 0.91d -0.55b 2.23d -5.85 
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A.2 GJR-GARCH (1,1) 

Table A2 presents the estimated coefficients from GJRGARCH (1,1) based on 

close-to-close returns.  

 
Table A2: Estimated coefficients for the GJR-GARCH (1,1) model based on close-to-close returns, reported 

together with the corresponding AIC values. Superscripts a, b, c, d indicate significance at the 10 %, 5 %, 1 

% level and 0.1 % respectively 

Ticker μ ω α β 𝛾 ν κ AIC 

SPX 8.30E-05 2.00E-06 0.00E+00 0.89d 0.19a -0.53c 2.11d -6.48 

FTSE -2.50E-05 2.00E-06 0.00E+00 0.90d 0.16 -1.01b 3.07d -6.50 

N2252 1.64E-04 5.00E-06b 2.93E-02 0.88d 0.12d -0.57d 2.50d -5.77 

GDAXI 2.78E-04 2.00E-06 0.00E+00 0.91d 0.15b -0.64d 2.60d -5.95 

RUT 1.78E-04 4.00E-06b 0.00E+00 0.91d 0.14d -1.81b 4.28d -5.88 

AORD 2.57E-04 1.00E-06 9.10E-03 0.92d 0.11 -1.02 2.84 -6.87 

DJI 1.42E-04 1.00E-06 0.00E+00 0.90d 0.18 -0.47b 2.13d -6.59 

IXIC 2.55E-04 2.00E-06 0.00E+00 0.92d 0.15c -0.66b 2.52d -5.94 

FCHI 2.40E-05 3.00E-06 0.00E+00 0.90d 0.17d -0.66d 2.67d -5.99 

HSI 1.67E-04 2.00E-06 1.36E-02 0.94d 0.08 -0.19 1.81d -5.97 

KS 1.95E-04 1.00E-06 2.35E-02 0.92d 0.09b -0.44d 1.99d -5.95 

AEX 5.20E-05 2.00E-06 0.00E+00 0.91d 0.16 -0.72 2.80b -6.17 

SSMI 9.50E-05 3.00E-06 0.00E+00 0.88d 0.20d -0.59d 2.41d -6.46 

IBEX 1.90E-04 2.00E-06 0.00E+00 0.92d 0.13 -0.51b 2.38d -5.92 

NSEI 6.09E-04c 7.00E-06d 3.34E-02c 0.85d 0.17d -0.29c 1.91d -5.91 

MXX 4.41E-04b 2.00E-06 1.82E-02 0.92d 0.10 -0.37b 2.13d -6.17 

BVSP 1.71E-04 5.00E-06 1.02E-03 0.93d 0.08d -0.40c 2.58d -5.37 

GSPTSE 2.45E-04a 1.00E-06 6.10E-03 0.91d 0.12 -1.41d 2.93d -6.76 

STOXX50 4.00E-06 1.00E-06 0.00E+00 0.91d 0.17c -0.54c 2.50d -5.98 

FTSTI 2.32E-04 1.00E-06 5.33E-02 0.91d 0.06a -0.31a 1.98d -6.55 

FTSEMIB 2.90E-05 1.00E-06 8.80E-03 0.92d 0.13 -0.69a 2.41d -5.88 
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A.3 Log-GARCH (1,1) 

Table A3 presents the estimated coefficients from Log-GARCH (1,1) based on 

close-to-close returns.  

 

Table A3: Estimated coefficients for the Log-GARCH (1,1) model based on close-to-close returns, reported 

together with the corresponding AIC values. Superscripts a, b, c, d indicate significance at the 10 %, 5 %, 1 

% level and 0.1% respectively. 

Ticker μ ω β 𝛾 ν κ AIC 

SPX 4.00E-04d -0.12d 0.99d 0.21d -0.34d 1.92d -6.44 

FTSE 3.00E-04b -0.13c 0.99d 0.20d -0.61d 2.56d -6.46 

N2252 4.00E-04 -0.19d 0.98d 0.20d -0.48c 2.35d -5.75 

GDAXI 5.91E-04d -0.10d 0.99d 0.19d -0.41d 2.25d -5.91 

RUT 5.89E-04b -0.13d 0.99d 0.18d -1.30 3.60c -5.84 

AORD 4.11E-04a -0.11 0.99d 0.17 -0.84 2.61 -6.85 

DJI 4.77E-04d -0.14d 0.99d 0.22d -0.30d 1.95d -6.55 

IXIC 6.32E-04d -0.07d 0.99d 0.18d -0.46d 2.32d -5.90 

FCHI 4.10E-04a -0.11 0.99d 0.19 -0.41 2.36 -5.95 

HSI 3.56E-04b -0.09 0.99d 0.14 -0.15 1.75d -5.95 

KS 3.99E-04d -0.06d 0.99d 0.16d -0.41d 1.96d -5.94 

AEX 3.74E-04c -0.10d 0.99d 0.21d -0.41d 2.23d -6.12 

SSMI 3.93E-04c -0.21c 0.98d 0.24d -0.41d 2.17d -6.43 

IBEX 4.71E-04a -0.09d 0.99d 0.18d -0.39d 2.20d -5.89 

NSEI 7.16E-04 -0.20d 0.98d 0.21d -0.29d 1.86d -5.90 

MXX 5.90E-04d -0.11d 0.99d 0.18d -0.32d 1.96d -6.16 

BVSP 4.14E-04 -0.11d 0.99d 0.13a -0.34 2.38d -5.35 

GSPTSE 4.80E-04c -0.12 0.99d 0.18d -1.13 2.67 -6.73 

STOXX50 3.68E-04b -0.10d 0.99d 0.18d -0.32d 2.16d -5.94 

FTSTI 3.25E-04c -0.11d 0.99d 0.19d -0.31d 1.94d -6.54 

FTSEMIB 3.11E-04a -0.08d 0.99d 0.19d -0.53d 2.21d -5.85 
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A.4 E-GARCH (1,1) 

Table A4 presents the estimated coefficients from E-GARCH (1,1) based on 

close-to-close returns.  

 

Table A4: Estimated coefficients for the E-GARCH (1,1) model based on close-to-close returns, reported 

together with the corresponding AIC values. Superscripts a, b, c, d indicate significance at the 10 %, 5 %, 1 

% level and 0.1 % respectively. 

Ticker μ ω α β 𝛾 ν κ AIC 

SPX 6.70E-05 -0.18d -0.16d 0.98d 0.11d -0.58d 2.13d -6.49 

FTSE -5.80E-05 -0.16d -0.13d 0.98d 0.11d -1.03d 3.10d -6.50 

N2252 9.40E-05 -0.29d -0.10d 0.97d 0.17d -0.55c 2.47d -5.77 

GDAXI 1.98E-04 -0.17d -0.13d 0.98d 0.12d -0.65d 2.58d -5.96 

RUT 1.06E-04 -0.17d -0.11d 0.98d 0.12d -1.92c 4.14d -5.88 

AORD 2.19E-04b -0.17d -0.09d 0.98d 0.12d -1.08d 2.94d -6.88 

DJI 1.20E-04 -0.18d -0.15d 0.98d 0.12d -0.50d 2.15d -6.59 

IXIC 2.00E-04a -0.10d -0.12d 0.99d 0.11d -0.77d 2.58d -5.94 

FCHI -1.00E-04 -0.18d -0.15d 0.98d 0.10d -0.78d 2.82d -6.01 

HSI 1.92E-04 -0.12d -0.07d 0.99d 0.12d -0.16b 1.77d -5.97 

KS 1.40E-04 -0.10d -0.08d 0.99d 0.15d -0.45d 2.01d -5.96 

AEX 3.50E-04 -0.14d -0.14d 0.98d 0.11d -0.78d 2.91d -6.17 

SSMI 4.50E-04 -0.26d -0.15d 0.97d 0.14d -0.61d 2.45d -6.47 

IBEX 1.35E-04a -0.14d -0.11d 0.98d 0.10d -0.55d 2.47d -5.93 

NSEI 4.92E-04d -0.30d -0.10d 0.97d 0.21d -0.31d 1.91d -5.92 

MXX 3.67E-04c -0.13d -0.08d 0.99d 0.15d -0.39d 2.13d -6.17 

BVSP 1.52E-04 -0.14d -0.07d 0.98d 0.11d -0.40c 2.54d -5.37 

GSPTSE 2.70E-04 -0.17d -0.10d 0.98d 0.12d -1.37d 2.89d -6.76 

STOXX50 -8.80E-05 -0.17d -0.15d 0.98d 0.10d -0.66d 2.67d -5.99 

FTSTI 1.98E-04b -0.11d -0.05d 0.99d 0.15b -0.32b 1.99d -6.55 

FTSEMIB 2.70E-05 -0.13d -0.11d 0.98d 0.13d -0.72d 2.48d -5.89 
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Appendix B 

Cross-correlation for all indices 

B.1 Cross-correlations for all the indices 

Figure B1 plots the cross-correlations for all the indices.  
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Figure B1: Cross-correlations for all the indices with lags -20 to 20. The panels to the left shows the cross-

correlation between absolute returns and returns. The panels to the right shows the cross-correlation 

between realized volatility and returns. The blue dotted lines indicate a 95% confidence interval under the 

null hypothesis of zero correlations. 
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Appendix C 

Estimated GARCH models, open-to-close returns and ARMA (1,1) as mean 

equation. 

C.1 ARMA (1,1) GARCH (1,1) 

Table C1 presents the estimated coefficients from GARCH (1,1) with ARMA 

(1,1) as the mean equation and based on open-to-close returns.  

 

 

Table C1: Estimated coefficients for the GARCH (1,1) model and ARMA (1,1) as the mean equation, reported 

together with the corresponding AIC values. Superscripts a, b, c, d indicate significance at the 10 %, 5 %, 1 

% level and 0.1 % respectively. 

Ticker μ ϕ θ ω α β ν κ AIC 

SPX 4E-04c 0.76d -0.82d 1E-06 0.09 0.90d -0.52 1.98d -6.45 

FTSE 3E-04b 0.90d -0.94d 1E-06 0.09 0.90d -0.82 2.61d -6.47 

N2252 4E-04b 0.80d -0.82d 4E-06 0.09d 0.90d -0.60d 2.42d -5.75 

GDAXI 7E-04b 0.88d -0.90d 2E-06 0.08 0.91d -0.52 2.32c -5.92 

RUT 6E-04d 0.81d -0.85d 3E-06 0.08a 0.91d -1.95 3.99d -5.86 

AORD 4E-04c -0.10 0.09 1E-06 0.08 0.91d -0.85c 2.59d -6.85 

DJI 5E-04c 0.81c -0.86d 1E-06 0.10 0.89d -0.43 2.01c -6.55 

IXIC 6E-04d 0.78d -0.83d 1E-06 0.08 0.91d -0.66b 2.44d -5.91 

FCHI 4E-04 0.81d -0.86d 2E-06 0.08 0.91d -0.58 2.36c -5.96 

HSI 3E-04a -0.69c 0.71c 2E-06 0.06a 0.93d -0.18b 1.78d -5.95 

KS 4E-04b 0.78d -0.81d 1E-06 0.07c 0.93d -0.47d 1.95d -5.94 

AEX 4E-04 -0.30a 0.31a 2E-06 0.10 0.90 -0.42 2.26 -6.12 

SSMI 4E-04d -0.42d 0.43d 2E-06 0.12b 0.87d -0.43d 2.19d -6.43 

IBEX 5E-04b -0.48c 0.51c 1E-06 0.08 0.91d -0.38a 2.21d -5.89 

NSEI 8E-04d -0.63b 0.69b 5E-06 0.11d 0.86d -0.26c 1.89d -5.90 

MXX 6E-04d -0.36c 0.43c 2E-06 0.08 0.91d -0.3b 1.98d -6.16 

BVSP 4E-04a -0.39b 0.39b 5E-06 0.06d 0.93d -0.35c 2.45d -5.36 

GSPTSE 5E-04c -0.35b 0.36b 1E-06 0.09 0.90d -1.23 2.79b -6.74 

STOXX50 4E-04a 0.82d -0.87d 2E-06 0.08 0.91d -0.46 2.19d -5.94 

FTSTI 3E-04b 0.70d -0.69d 1E-06 0.09 0.91d -0.30a 1.95d -6.54 

FTSEMIB 3E-04 0.39 -0.46 1E-06 0.09 0.91d -0.66a 2.26d -5.86 
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C.2 ARMA (1,1) GJR-GARCH (1,1) 

Table C2 presents the estimated coefficients from GJR-GARCH (1,1) with 

ARMA (1,1) as the mean equation and based on open-to-close returns.  

 

Table C2: Estimated coefficients for the GJR-GARCH (1,1) model and ARMA (1,1) as the mean equation, 

reported together with the corresponding AIC values. Superscripts a, b, c, d indicate significance at the 10 %, 

5 %, 1 % level and 0.1 % respectively 

Ticker μ ϕ θ ω α β 𝛾 ν κ AIC 

SPX 2E-04a 0.59d -0.65d 2E-06 1E-06 0.90d 0.17 -0.59 2.10d -6.49 

FTSE 4E-05 0.67d -0.70d 2E-06 0E+00 0.91d 0.15 -1.04b 3.05d -6.50 

N2252 2E-04 -0.28 0.26 5E-06a 3E-02 0.89d 0.12d -0.57d 2.49d -5.76 

GDAXI 3E-04 -0.44 0.44 2E-06 0E+00 0.91d 0.15b -0.64d 2.60d -5.95 

RUT 3E-04 0.68d -0.71d 4E-06 5E-03 0.91d 0.12c -1.88a 4.23c -5.88 

AORD 2E-04 0.97d -0.97d 1E-06 5E-03 0.92d 0.11 -1.01 2.86c -6.87 

DJI 2E-04 0.16 -0.22 1E-06 0E+00 0.90d 0.17 -0.49b 2.12d -6.59 

IXIC 3E-04a 0.61d -0.64d 2E-06 0E+00 0.92d 0.13c -0.72c 2.54d -5.94 

FCHI 2E-04 0.71d -0.75d 2E-06 0E+00 0.91d 0.15c -0.72d 2.66d -6.00 

HSI 2E-04 -0.68b 0.70b 2E-06 1E-02 0.93d 0.08 -0.19 1.81d -5.97 

KS 2E-04 -0.63 0.64 1E-06 2E-02 0.93d 0.09b -0.44d 2.00d -5.95 

AEX 4E-05 -0.22 0.24 2E-06 2E-06 0.91d 0.16 -0.71 2.78b -6.17 

SSMI 9E-05 -0.35b 0.36b 3E-06 0E+00 0.88d 0.20d -0.59d 2.40d -6.46 

IBEX 2E-04 -0.49a 0.52b 2E-06 1E-06 0.92d 0.13 -0.50b 2.39d -5.92 

NSEI 6E-04c -0.52 0.59a 8E-06d 3E-02c 0.84d 0.18d -0.28c 1.91d -5.92 

MXX 4E-04b -0.34b 0.40c 2E-06 2E-02 0.92d 0.11a -0.36b 2.12d -6.18 

BVSP 2E-04 -0.31 0.32 5E-06 1E-02 0.93d 0.08d -0.40c 2.58d -5.37 

GSPTSE 2E-04a -0.26 0.28 5E-06 6E-03 0.91d 0.12 -1.40d 2.92d -6.76 

STOXX50 1E-04 0.72d -0.75d 5E-06 0E+00 0.91d 0.15b -0.59c 2.49d -5.98 

FTSTI 2E-04 0.78a -0.77a 1E-06 5E-02 0.91d 0.07a -0.30a 1.99d -6.54 

FTSEMIB 6E-05 -0.07 0.01 1E-06 1E-02 0.92d 0.13 -0.75a 2.42d -5.88 
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C.3 ARMA (1,1) Log-GARCH (1,1) 

Table C3 presents the estimated coefficients from Log-GARCH (1,1) with ARMA 

(1,1) as the mean equation and based on open-to-close returns.  

 

 
Table C3: Estimated coefficients for the Log-GARCH (1,1) model and ARMA (1,1) as the mean equation, 

reported together with the corresponding AIC values. Superscripts a, b, c, d indicate significance at the 10 %, 

5 %, 1% level and 0.1% respectively 

Ticker μ ϕ θ ω β 𝛾 ν κ AIC 

SPX 4.62E-04b 0.74a -0.81b -0.11d 0.99d 0.20d -0.50d 1.96d -6.45 

FTSE 3.06E-04 0.90d -0.94d -0.12 0.99c 0.19 -0.77 2.55 -6.46 

N2252 4.34E-04c 0.79d -0.82d -0.19d 0.98d 0.19d -0.56d 2.37d -5.75 

GDAXI 6.32E-04d 0.89d -0.91d -0.10 0.99d 0.18c -0.51a 2.30d -5.92 

RUT 8.82E-04d 0.80d -0.85d -0.12c 0.99d 0.17d -1.76 3.67c -5.85 

AORD 4.28E-04c 0.93d -0.94d -0.11 0.99d 0.16d -0.92 2.63 -6.85 

DJI 4.68E-04d 0.80d -0.85d -0.13d 0.99d 0.21d -0.41d 1.98d -6.55 

IXIC 6.35E-04d 0.79d -0.84d -0.07d 0.99d 0.17d -0.64d 2.41d -5.91 

FCHI 4.33E-04d 0.81d -0.86d -0.11c 0.99d 0.18d -0.57b 2.37d -5.96 

HSI 3.67E-04 0.96d -0.96d -0.09c 0.99d 0.14 -0.16a 1.75d -5.95 

KS 3.86E-04c 0.78d -0.81d -0.05d 0.99d 0.15d -0.47d 1.96d -5.94 

AEX 3.81E-04b -0.24d 0.26d -0.10d 0.99d 0.21d -0.40d 2.22d -6.12 

SSMI 3.91E-04d -0.43d 0.44d -0.21c 0.98d 0.24d -0.41d 2.17d -6.43 

IBEX 4.75E-04c -0.53d 0.56d -0.09d 0.99d 0.18d -0.37d 2.20d -5.89 

NSEI 7.25E-04d -0.63d 0.68d -0.20d 0.98d 0.22d -0.28d 1.86d -5.90 

MXX 5.75E-04d -0.38d 0.44d -0.11d 0.99d 0.18d -0.30d 1.96d -6.16 

BVSP 4.18E-04a -0.36d 0.37d -0.11d 0.99d 0.13a -0.34 2.37d 5.35 

GSPTSE 4.80E-04b -0.38d 0.39d -0.12 0.99d 0.18d -1.12 2.67 -6.73 

STOXX50 3.93E-04d 0.84d -0.88d -0.10d 0.99d 0.18d -0.44d 2.17d -5.94 

FTSTI 3.24E-04c 0.68d -0.67d -0.11d 0.99d 0.19d -0.30d 1.94d -6.54 

FTSEMIB 3.22E-04c 0.51d -0.56d -0.09d 0.99d 0.18d -0.64d 2.24d -5.86 
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C.4 ARMA (1,1) E-GARCH (1,1) 

Table C4 presents the estimated coefficients from E-GARCH (1,1) with ARMA 

(1,1) as the mean equation and based on open-to-close returns.  

 

Table C4: Estimated coefficients for the E-GARCH (1,1) model and ARMA (1,1) as the mean equation, 

reported together with the corresponding AIC values. Superscripts a, b, c, d indicate significance at the 10 %, 

5 %, 1 % level and 0.1% respectively  

Ticker μ ϕ θ ω α β 𝛾 ν κ AIC 

SPX 1.00E-04 0.32d -0.38d -0.17d -0.15d 0.98d 0.11d -0.62d 2.12d -6.49 

FTSE -2.00E-05 0.57d -0.59d -0.16d -0.13d 0.98d 0.11d -1.05d 3.10d -6.5 

N2252 1.16E-04 -0.31d 0.29d -0.29d -0.10d 0.97d 0.17d -0.55c 2.46d -5.77 

GDAXI 1.86E-04 -0.42d 0.44d -0.17d -0.13d 0.98d 0.12d -0.64d 2.58d -5.96 

RUT 2.01E-04 0.54d -0.57d -0.16d -0.10d 0.98d 0.12d -1.99c 4.12d 5.88 

AORD -1.17E-04 0.98d -0.97d -0.12d -0.11d 0.99d 0.10d -1.15d 3.01d -6.88 

DJI 1.72E-04b 0.08d -0.13d -0.18d -0.14d 0.98d 0.12d -0.52d 2.14d -6.6 

IXIC 2.54E-04b 0.45d -0.48d -0.10d -0.11d 0.99d 0.11d -0.81d 2.59d -5.94 

FCHI 2.50E-05 0.59d -0.62d -0.17d -0.14d 0.98d 0.10d -0.80d 2.80d -6.01 

HSI 1.97E-04 -0.67d 0.69d -0.12d -0.07d 0.99d 0.12d -0.16b 1.77d -5.97 

KS 1.57E-04 0.62d -0.63d -0.09d -0.07d 0.99d 0.15d -0.46d 2.01d -5.96 

AEX 1.40E-05 -0.02 0.04 -0.14d -0.14d 0.98d 0.11d -0.77d 2.90d -6.17 

SSMI 3.50E-05 -0.33d 0.34d -0.26d -0.15d 0.97d 0.14d -0.60d 2.44d -6.47 

IBEX 1.22E-04 -0.49d 0.52d -0.15d -0.11d 0.98d 0.10d -0.54d 2.48d -5.93 

NSEI 4.65E-04c -0.48d 0.54d -0.32d -0.11d 0.96d 0.21d -0.30d 1.91d -5.92 

MXX 3.27E-04b -0.30d 0.37d -0.13d -0.09d 0.99d 0.15d -0.38c 2.13d -6.18 

BVSP 1.44E-04 -0.29d 0.30d -0.14d -0.07d 0.98d 0.11d -0.40c 2.54d -5.37 

GSPTSE 2.56E-04b -0.22d 0.24d -0.17d -0.10d 0.98d 0.12d -1.36d 2.88d -6.76 

STOXX50 -1.30E-05 0.57d -0.59d -0.16d -0.14d 0.98d 0.10d -0.67d 2.66d -5.99 

FTSTI -7.57E-04d 1.00d -1.00d -0.10d -0.05d 0.99d 0.15d -0.33d 1.95d -6.55 

FTSEMIB 2.00E-06 -0.21d 0.16d -0.13d -0.11d 0.98d 0.13d -0.77d 2.49d -5.89 
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Appendix D 

Forecasting performance GARCH and GJR-GARCH with ARMA (1,1) as mean 

equation and open-to-close returns. 

D.1 GARCH and GJR-GARCH 

Table D1 presents the results for the forecast evaluation of GARCH and GJR-

GARCH with ARMA (1,1) as the mean equation and based on open-to-close 

returns.  

 
Table D1: Out-of-sample results for ARMA (1,1) GARCH (1,1) and GJR-GARCH (1,1). Reported are the 

MSE and QLIKE lossfunctions, and the p-values from the Model Confidence Set (Hansen et al., 2011). 

 
GARCH GJRGARCH % change P-value GARCH GJRGARCH % change P-value 

Ticker MSE MSE Delta MCS QLIKE QLIKE Delta MCS

SPX 41.38 40.37 -2.44 0.3183 0.072 0.068 -5.56 0.0004

FTSE 19.30 18.81 -2.54 0.2181 0.044 0.044 0.00 0.7716

N2252 48.29 51.54 6.73 0.0214 0.068 0.068 0.00 0.0953

GDAXI 37.47 35.11 -6.30 0.1791 0.047 0.045 -4.26 0.0128

RUT 68.17 69.18 1.48 0.3456 0.107 0.109 1.87 0.0507

AORD 21.57 25.40 17.76 0.0003 0.072 0.074 2.78 0.0837

DJI 43.35 40.31 -7.01 0.0659 0.073 0.068 -6.85 0.0000

IXIC 34.33 34.91 1.69 0.3272 0.067 0.068 1.49 0.1473

FCHI 32.92 33.93 3.07 0.2970 0.045 0.044 -2.22 0.1735

HSI 27.66 28.30 2.31 0.1473 0.047 0.050 6.38 0.0000

KS 28.07 28.42 1.25 0.2656 0.052 0.054 3.85 0.0000

AEX 26.27 27.10 3.16 0.2785 0.047 0.044 -6.38 0.0000

SSMI 23.34 26.06 11.65 0.1586 0.043 0.043 0.00 0.9893

IBEX 44.70 43.78 -2.06 0.3693 0.048 0.045 -6.25 0.0056

NSEI 44.65 43.59 -2.37 0.3447 0.052 0.052 0.00 0.3019

MXX 69.47 69.77 0.43 0.7272 0.114 0.117 2.63 0.0068

BVSP 76.99 74.25 -3.56 0.2145 0.058 0.060 3.45 0.0378

GSPTSE 27.97 28.66 2.47 0.1988 0.071 0.071 0.00 0.9817

STOXX50E 45.20 44.33 -1.92 0.3250 0.055 0.051 -7.27 0.0000

FTSTI 18.26 16.91 -7.39 0.0209 0.039 0.038 -2.56 0.0205

FTSEMIB 39.95 43.43 8.71 0.0260 0.053 0.055 3.77 0.1176  
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D.2 Log-GARCH and E-GARCH 

Table D2 presents the results for the forecast evaluation of Log-GARCH and E-

GARCH with ARMA (1,1) as the mean equation and based on open-to-close 

returns.  

 
Table D2:Out-of-sample results for ARMA (1,1) Log-GARCH (1,1) and E-GARCH (1,1). Reported are the 

MSE and QLIKE lossfunctions, and the p-values from the Model Confidence Set (Hansen et al., 2011). 

logGARCH EGARCH % change P-value logGARCH EGARCH % change P-value 

Ticker MSE MSE Delta MCS QLIKE QLIKE Delta MCS

SPX 43.86 35.22 -19.70 0.0000 0.075 0.068 -9.33 0.0000

FTSE 19.74 18.29 -7.35 0.0028 0.045 0.044 -2.22 0.2132

N2252 42.95 40.24 -6.31 0.0385 0.067 0.064 -4.48 0.0000

GDAXI 37.81 33.06 -12.56 0.0037 0.048 0.044 -8.33 0.0000

RUT 69.61 60.29 -13.39 0.0013 0.108 0.105 -2.78 0.0221

AORD 23.51 21.18 -9.91 0.0000 0.079 0.070 -11.39 0.0000

DJI 45.83 38.93 -15.06 0.0000 0.076 0.069 -9.21 0.0000

IXIC 37.10 33.58 -9.49 0.0122 0.068 0.067 -1.47 0.1020

FCHI 33.59 30.99 -7.74 0.0086 0.046 0.042 -8.70 0.0001

HSI 25.41 26.04 2.48 0.0775 0.048 0.050 4.17 0.0000

KS 28.44 28.65 0.74 0.4229 0.051 0.054 5.88 0.0000

AEX 28.19 25.98 -7.84 0.0119 0.050 0.044 -12.00 0.0000

SSMI 24.30 24.51 0.86 0.5653 0.047 0.043 -8.51 0.0033

IBEX 43.31 38.68 -10.69 0.0001 0.047 0.043 -8.51 0.0000

NSEI 47.81 44.60 -6.71 0.0691 0.054 0.053 -1.85 0.0807

MXX 74.22 70.33 -5.24 0.0867 0.120 0.121 0.83 0.2257

BVSP 78.20 73.24 -6.34 0.0550 0.060 0.061 1.67 0.1700

GSPTSE 31.52 28.38 -9.96 0.0000 0.076 0.071 -6.58 0.0000

STOXX50E 46.74 40.52 -13.31 0.0000 0.057 0.050 -12.28 0.0000

FTSTI 18.95 17.76 -6.28 0.0028 0.043 0.042 -2.33 0.0015

FTSEMIB 43.74 39.64 -9.37 0.0077 0.058 0.054 -6.90 0.0017  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


